1
|
Xu S, Man Y, Yu Z, Xu X, Ji J, Kan Y, Bi Y, Xie Q, Yao L. Molecular analysis of Gyrovirus galga1 variants identified from the sera of dogs and cats in China. Vet Q 2024; 44:1-8. [PMID: 38595267 PMCID: PMC11008310 DOI: 10.1080/01652176.2024.2338381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/29/2024] [Indexed: 04/11/2024] Open
Abstract
Gyrovirus galga1 (GyVg1), a member of the Anelloviridae family and Gyrovirus genus, has been detected in chicken and human tissue samples. In this study, the DNA of GyVg1-related gyroviruses in the sera of six dogs and three cats from Central and Eastern China was identified using PCR. Alignment analysis between the nine obtained and reference GyVg1 strains revealed that the genome identity ranged from 99.20% (DOG03 and DOG04 strains) to 96.17% (DOG01 and DOG06 strains). Six recombination events were predicted in multiple strains, including DOG01, DOG05, DOG06, CAT01, CAT02, and CAT03. The predicted major and minor parents of DOG05 came from Brazil. The DOG06 strain is potentially recombined from strains originating from humans and cats, whereas DOG01 is potentially recombined from G17 (ferret-originated) and Ave3 (chicken-originated), indicating that transmissions across species and regions may occur. Sixteen representative amino acid mutation sites were identified: nine in VP1 (12 R/H, 114S/N, 123I/M, 167 L/P, 231 P/S, 237 P/L, 243 R/W, 335 T/A, and 444S/N), four in VP2 (81 A/P, 103 R/H, 223 R/G, and 228 A/T), and three in VP3 (38 M/I, 61 A/T, and 65 V/A). These mutations were only harbored in strains identified in dogs and cats in this study. Whether this is related to host tropism needs further investigation. In this study, GyVg1 was identified in the sera of dogs and cats, and the molecular characteristics prompted the attention of public health.
Collapse
Affiliation(s)
- Shuqi Xu
- Henan Provincial Engineering Laboratory of Insects Bio-reactor, Henan Provincial Engineering, and Technology Center of Health Products for Livestock and Poultry, Henan Provincial Engineering and Technology Center of Animal Disease Diagnosis and Integrated Control, Nanyang Normal University, Nanyang, PR China
| | - Yuanzhuo Man
- Henan Provincial Engineering Laboratory of Insects Bio-reactor, Henan Provincial Engineering, and Technology Center of Health Products for Livestock and Poultry, Henan Provincial Engineering and Technology Center of Animal Disease Diagnosis and Integrated Control, Nanyang Normal University, Nanyang, PR China
| | - Zhengli Yu
- Henan Provincial Engineering Laboratory of Insects Bio-reactor, Henan Provincial Engineering, and Technology Center of Health Products for Livestock and Poultry, Henan Provincial Engineering and Technology Center of Animal Disease Diagnosis and Integrated Control, Nanyang Normal University, Nanyang, PR China
| | - Xin Xu
- Henan Provincial Engineering Laboratory of Insects Bio-reactor, Henan Provincial Engineering, and Technology Center of Health Products for Livestock and Poultry, Henan Provincial Engineering and Technology Center of Animal Disease Diagnosis and Integrated Control, Nanyang Normal University, Nanyang, PR China
| | - Jun Ji
- Henan Provincial Engineering Laboratory of Insects Bio-reactor, Henan Provincial Engineering, and Technology Center of Health Products for Livestock and Poultry, Henan Provincial Engineering and Technology Center of Animal Disease Diagnosis and Integrated Control, Nanyang Normal University, Nanyang, PR China
| | - Yunchao Kan
- Henan Provincial Engineering Laboratory of Insects Bio-reactor, Henan Provincial Engineering, and Technology Center of Health Products for Livestock and Poultry, Henan Provincial Engineering and Technology Center of Animal Disease Diagnosis and Integrated Control, Nanyang Normal University, Nanyang, PR China
| | - Yingzuo Bi
- College of Animal Science, South China Agricultural University, Guangzhou, PR China
| | - Qingmei Xie
- College of Animal Science, South China Agricultural University, Guangzhou, PR China
| | - Lunguang Yao
- Henan Provincial Engineering Laboratory of Insects Bio-reactor, Henan Provincial Engineering, and Technology Center of Health Products for Livestock and Poultry, Henan Provincial Engineering and Technology Center of Animal Disease Diagnosis and Integrated Control, Nanyang Normal University, Nanyang, PR China
| |
Collapse
|
2
|
Zhang Z, Man Y, Xu X, Wang Y, Ji J, Yao L, Bi Y, Xie Q. Genetic heterogeneity and potential recombination across hosts of Gyrovirus galga1 in central and eastern China during 2021 to 2024. Poult Sci 2024; 103:104149. [PMID: 39154608 PMCID: PMC11381743 DOI: 10.1016/j.psj.2024.104149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/16/2024] [Accepted: 07/27/2024] [Indexed: 08/20/2024] Open
Abstract
Gyrovirus galga1 (GyVg1), formerly known as AGV2, was initially identified in chickens in southern Brazil. The prevalence of GyVg1 from 2021 to 2024 in 28 out of the 63 poultry farms located in Jiangsu, Anhui, Henan, Hunan, Shandong, and Hubei provinces in eastern and central China was detected via PCR. The complete genomes of the 28 strains were sequenced and exhibited a full length of 2,376 bp. Similarity analysis of these strains did not suggest definite correlation with evolutionary branching and geographical distribution. Compared with the reference GyVg1 strains, HN2202 shared the highest similarity of 99.71% with HLJ1511 (chicken-originated) from northeastern China in 2015 to 2016. Recombination analysis revealed that AH2102 was a potential recombinant of peafowl-originated HN2019-PF1 and chicken-originated HLJ1506-2, whereas HN2304 was a recombinant of peafowl-originated HN2019-PF1 and the Hungarian ferret strain G13. Mutation site analysis of the capsid protein revealed that highly mutated regions occurred between sites 288 to 316 and 383 to 419. These results indicate that GyVg1 may have undergone an interspecies transmission, which involved complex mutations and recombination. This study may provide a reference for subsequent investigations targeting the molecular epidemiology and viral evolution of GyVg1.
Collapse
Affiliation(s)
- Zhibin Zhang
- Henan Provincial Engineering Laboratory of Insects Bio-reactor, Henan Provincial Engineering, and Technology Center of Health Products for Livestock and Poultry, Henan Provincial Engineering and Technology Center of Animal Disease Diagnosis and Integrated Control, Nanyang Normal University, Nanyang, 473061, China
| | - Yuanzhuo Man
- Henan Provincial Engineering Laboratory of Insects Bio-reactor, Henan Provincial Engineering, and Technology Center of Health Products for Livestock and Poultry, Henan Provincial Engineering and Technology Center of Animal Disease Diagnosis and Integrated Control, Nanyang Normal University, Nanyang, 473061, China
| | - Xin Xu
- Henan Provincial Engineering Laboratory of Insects Bio-reactor, Henan Provincial Engineering, and Technology Center of Health Products for Livestock and Poultry, Henan Provincial Engineering and Technology Center of Animal Disease Diagnosis and Integrated Control, Nanyang Normal University, Nanyang, 473061, China
| | - Yan Wang
- Henan Provincial Engineering Laboratory of Insects Bio-reactor, Henan Provincial Engineering, and Technology Center of Health Products for Livestock and Poultry, Henan Provincial Engineering and Technology Center of Animal Disease Diagnosis and Integrated Control, Nanyang Normal University, Nanyang, 473061, China
| | - Jun Ji
- Henan Provincial Engineering Laboratory of Insects Bio-reactor, Henan Provincial Engineering, and Technology Center of Health Products for Livestock and Poultry, Henan Provincial Engineering and Technology Center of Animal Disease Diagnosis and Integrated Control, Nanyang Normal University, Nanyang, 473061, China.
| | - Lunguang Yao
- Henan Provincial Engineering Laboratory of Insects Bio-reactor, Henan Provincial Engineering, and Technology Center of Health Products for Livestock and Poultry, Henan Provincial Engineering and Technology Center of Animal Disease Diagnosis and Integrated Control, Nanyang Normal University, Nanyang, 473061, China
| | - Yingzuo Bi
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Qingmei Xie
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
3
|
Yan T, Wang Z, Li R, Zhang D, Song Y, Cheng Z. Gyrovirus: current status and challenge. Front Microbiol 2024; 15:1449814. [PMID: 39220040 PMCID: PMC11362077 DOI: 10.3389/fmicb.2024.1449814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024] Open
Abstract
Gyrovirus (GyV) is small, single-stranded circular DNA viruses that has recently been assigned to the family Anelloviridae. In the last decade, many GyVs that have an apparent pan-tropism at the host level were identified by high-throughput sequencing (HTS) technology. As of now, they have achieved global distribution. Several species of GyVs have been demonstrated to be pathogenic to poultry, particularly chicken anemia virus (CAV), causing significant economic losses to the global poultry industry. Although GyVs are highly prevalent in various birds worldwide, their direct involvement in the etiology of specific diseases and the reasons for their ubiquity and host diversity are not fully understood. This review summarizes current knowledge about GyVs, with a major emphasis on their morphofunctional properties, epidemiological characteristics, genetic evolution, pathogenicity, and immunopathogenesis. Additionally, the association between GyVs and various diseases, as well as its potential impact on the poultry industry, have been discussed. Future prevention and control strategies have also been explored. These insights underscore the importance of conducting research to establish a virus culture system, optimize surveillance, and develop vaccines for GyVs.
Collapse
Affiliation(s)
| | | | | | | | | | - Ziqiang Cheng
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai’an, China
| |
Collapse
|
4
|
Zhang F, Xie Q, Yang Q, Luo Y, Wan P, Wu C, Tu L, Chen J, Kang Z. Prevalence and phylogenetic analysis of Gyrovirus galga 1 in southern China from 2020 to 2022. Poult Sci 2024; 103:103397. [PMID: 38295496 PMCID: PMC10846400 DOI: 10.1016/j.psj.2023.103397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 12/06/2023] [Accepted: 12/19/2023] [Indexed: 02/02/2024] Open
Abstract
Since 2011, the Gyrovirus galga 1 (GyVg1, previously recognized as avian gyrovirus 2) strain has extensively been detected worldwide. However, because there are no up-to-date reports of examining the distribution of GyVg1 in flocks in southern China, the epidemiology of this virus is unknown. To investigate the prevalence and genetic evolution of GyVg1, a total of 2,077 field samples collected from 113 chicken farms in 6 provinces in southern China during 2020 to 2022 were tested. Among them, 315 samples (315/2,077, 15.17%) were positive for GyVg1 by PCR. The positive rate of GyVg1 detection between different regions of southern China ranged from 11.69% (Guangdong) to 22.46% (Yunnan). The correlation between GyVg1 prevalence and sample source groups was analyzed, the results showing that the highest seroprevalence of GyVg1 was observed in visceral tissues (27.34%, 187/684), significantly higher (P < 0.05) than that of feather shafts (17.22%, 31/180), serums (8.85%, 78/881), and fecal (5.72%, 19/332). Additionally, the complete genomes of 10 GyVg1 strains were sequenced and analyzed, which showed nucleotide identities of 96.2 to 99.9%, 97.0 to 100.0%, 95.2 to 100.0%, and 95.7 to 99.8% in the complete genome, ORF1, ORF2, and ORF3, respectively, and 94.4 to 100.0%, 91.3 to 100.0%, and 98.7 to 100.0% amino acid similarity in the VP2, VP3, and VP1 proteins, respectively. Phylogenetic analysis of the whole genome showed that 10 GyVg1 strains belong to genotype I, and one strain belongs to genotype III. Sequence analysis showed several amino acid substitutions in both the VP1, VP2, and VP3 proteins. Our results enhance the understanding of the molecular characterization of GyVg1 infection in southern China. In conclusion, this study reveals the high prevalence and high genetic differentiation of GyVg1 in Chinese chickens and suggests that the potential impact of GyVg1 on the chicken industry may be of concern.
Collapse
Affiliation(s)
- Fanfan Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi 330200, China
| | - Quan Xie
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Qun Yang
- Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi 330200, China
| | - Yangyang Luo
- Wen's Foodstuff Group Co., Ltd., Wen's Group Research Institute, YunFu, Guangdong 527400, China
| | - Peiwei Wan
- Jiangxi Biological Vocational College, Nanchang, Jiangxi 330200, China
| | - Chengcheng Wu
- Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi 330200, China
| | - Lingyun Tu
- Nanchang Animal Disease Control Center, Nanchang, Jiangxi 330008, China
| | - Jiajia Chen
- Jiangxi Biological Vocational College, Nanchang, Jiangxi 330200, China
| | - Zhaofeng Kang
- Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi 330200, China.
| |
Collapse
|
5
|
Zhang S, Yang J, Zhou D, Yan T, Li G, Hao X, Yang Q, Cheng X, Shi H, Liu Q, Li Y, Cheng Z. Development of a DAS-ELISA for Gyrovirus Homsa1 Prevalence Survey in Chickens and Wild Birds in China. Vet Sci 2023; 10:vetsci10050312. [PMID: 37235395 DOI: 10.3390/vetsci10050312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/07/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023] Open
Abstract
Gyrovirus homsa1 (GyH1) is an emerging pathogenic single-stranded circular DNA virus that leads to immunosuppression, aplastic anemia, and multisystem damage in chickens. However, the prevalence of GyH1 infection in chickens and wild birds remains unknown. Here, we developed a double-antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA) to investigate GyH1 infection in 8 chicken species and 25 wild bird species. A total of 2258 serum samples from chickens (n = 2192) in 15 provinces, and wild birds (n = 66) in Jinan Wildlife Hospital were collected from 2017 to 2021 in China. The GyH1-positive rates in chickens and wild birds were 9.3% (203/2192) and 22.7% (15/66), respectively. GyH1 was present in all flocks in 15 provinces. From 2017 to 2021, the positive rate ranged from 7.93% (18/227) to 10.67% (56/525), and the highest positive rate was present in 2019. Upon chicken age, the highest positive rate (25.5%) was present in young chickens (14-35 days old). Moreover, the GyH1-positive rate in broiler breeders (12.6%, 21/167) was significantly higher than that in layer chickens (8.9%, 14/157). This study shows that GyH1 has spread in chicken flocks and wild birds, and the higher GyH1-positive rate in wild birds indicates the risk of spillover from wild birds to chickens. Our study expanded the GyH1 epidemiological aspects and provided a theoretical basis for GyH1 prevention.
Collapse
Affiliation(s)
- Shicheng Zhang
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai 200241, China
| | - Jianhao Yang
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China
| | - Defang Zhou
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China
| | - Tianxing Yan
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China
| | - Gen Li
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Xiaojing Hao
- Qingdao Husbandry and Veterinary Institute, Qingdao 266199, China
| | - Qi Yang
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China
| | - Xiangyu Cheng
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China
| | - Hengyang Shi
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China
| | - Qing Liu
- Zoo Wildlife Hospital, Jinan 250032, China
| | - Yubao Li
- College of Agronomy and Agricultural Engineering, Liaocheng University, Liaocheng 252059, China
| | - Ziqiang Cheng
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China
| |
Collapse
|
6
|
Yan T, Zhao M, Sun Y, Zhang S, Zhang X, Liu Q, Li Y, Cheng Z. Molecular evolution analysis of three species gyroviruses in China from 2018 to 2019. Virus Res 2023; 326:199058. [PMID: 36731631 DOI: 10.1016/j.virusres.2023.199058] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/26/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023]
Abstract
Gyrovirus (GyV) is a widespread ssDNA virus with a high population diversity, and several of its species, including the chicken anemia virus (CAV), gyrovirus galga 1 (GyG1), and gyrovirus homsa 1 (GyH1), have been shown to be pathogenic to poultry. The evolution of these viruses, however, is still unclear. Our study analyzed epidemiology and molecular evolution of three species of GyVs (CAV, GyG1, and GyH1) from 2018 to 2019 in China. The survey results indicated that GyV was widespread in China. It is vital to consider the coinfections among the three species of GyV. The phylogenetic analysis showed that CAV was divided into three clades and GyG1 and GyH1 were divided into two clades. Based on the recombination analysis, CAV and GyG1 had similar recombination regions associated with viral replication and transcription. Furthermore, the substitution rates for CAV and GyG1 were approximately 6.09 × 10-4 and 2.784 × 10-4 nucleotides per site per year, respectively. The high substitution rate and recombination were the main factors for the high diversity of GyVs. Unfortunately, GyH1 strains have not been discovered in enough numbers to allow evolutionary analysis. The GyVs had several positively selected sites, possibly related to their potential to escape the host immune response. In summary, our study provides insights into the time of origin, evolution rate, and recombination of GyV for assessing their evolutionary process and genetic diversity.
Collapse
Affiliation(s)
- Tianxing Yan
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, China
| | - Manda Zhao
- Department of Animal Science and Technology, Vocational-technical school of Husbandry and Veterinary Medicine, Weifang, 261061, China
| | - Yufeng Sun
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, China
| | - Shicheng Zhang
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, China
| | - Xianwen Zhang
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, China
| | - Qing Liu
- Service center of Jinan Zoo, Jinan, 250032, China
| | - Yubao Li
- Liaocheng University, Liaocheng, 252059, China
| | - Ziqiang Cheng
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, China.
| |
Collapse
|
7
|
Detection of Gyrovirus galga 1 in Cryopreserved Organs from Two Commercial Broiler Flocks in Japan. Viruses 2022; 14:v14071590. [PMID: 35891569 PMCID: PMC9319249 DOI: 10.3390/v14071590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/12/2022] [Accepted: 07/20/2022] [Indexed: 02/04/2023] Open
Abstract
Gyrovirus galga 1 (GyVg1, previously recognized as avian gyrovirus 2), which was first reported in chicken in 2011, is a new member of the genus Gyrovirus. The presence of GyVg1 has also been confirmed in different regions of Europe, South America, Africa, and Asia, indicating its global distribution. However, because there are no reports of examining the distribution of GyVg1 in animals in Japan, the epidemiology of this virus is unknown. In this study, we attempted to retrospectively detect GyVg1 in cryopreserved chicken materials derived from different two commercial broiler flocks in 1997. The GyVg1 genome was detected in organ materials derived from both flocks by PCR. GyVg1 detected in both flocks was classified into four genetic groups by analyzing the nucleotide sequences of the detected PCR products. These results suggest that diverse GyVg1 strains were present in commercial chicken flocks as early as 1997 in Japan.
Collapse
|
8
|
Ji J, Yu Z, Cui H, Xu X, Ma K, Leng C, Zhang X, Yao L, Kan Y, Bi Y, Xie Q. Molecular characterization of the Gyrovirus galga 1 strain detected in various zoo animals: The first report from China. Microbes Infect 2022; 24:104983. [DOI: 10.1016/j.micinf.2022.104983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 04/07/2022] [Accepted: 04/21/2022] [Indexed: 11/17/2022]
|
9
|
Liu Y, Lv Q, Li Y, Yu Z, Huang H, Lan T, Wang W, Cao L, Shi Y, Sun W, Zheng M. Cross-species transmission potential of chicken anemia virus and avian gyrovirus 2. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 99:105249. [PMID: 35183752 DOI: 10.1016/j.meegid.2022.105249] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 12/18/2021] [Accepted: 02/14/2022] [Indexed: 11/20/2022]
Abstract
The Gyrovirus genus consists of nonenveloped, icosahedral viruses with small circular single-stranded DNA genomes. Gyroviruses have been detected in diverse hosts, including humans, chickens, rodents, and cats. Two Gyroviruses were detected in canine serum samples using PCR in this study. The results indicated that four serum samples were positive for CAV (0.28%, 2/700) or AGV2 (0.28%, 2/700). Additionally, recombination analysis showed that AGV2 and CAV might have originated from the recombination of viruses similar to those detected in chickens and humans. We detected a total of 14 mutations in CAV VP1 amino acid sequences and identified new mutations at positions 31, 388, 390, 399, and 421 for the first time. The identification of T390C, C912T, T1230C, and T1297C mutations in AGV2 VP1, R93C mutations in AGV2 VP2, and R58C mutations AGV2 VP3 indicated that the differences might be related to a transboundary movement among hosts, which requires further elucidation. To the best of our knowledge, this study is the first report of an AGV2-infected dog in China, suggesting that the cross-species transmission of viruses with circular single-stranded DNA genomes is a public health concern.
Collapse
Affiliation(s)
- Yumeng Liu
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Qiao Lv
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Yuying Li
- Institute of Virology, Wenzhou University, Wenzhou 325035, China
| | - Ziping Yu
- Institute of Virology, Wenzhou University, Wenzhou 325035, China
| | - Haixin Huang
- Institute of Virology, Wenzhou University, Wenzhou 325035, China
| | - Tian Lan
- Institute of Virology, Wenzhou University, Wenzhou 325035, China
| | - Wei Wang
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China; Institute of Virology, Wenzhou University, Wenzhou 325035, China
| | - Liang Cao
- College of Laboratory, Jilin Medical University, Jilin 132013, China
| | - Yaokai Shi
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Wenchao Sun
- Institute of Virology, Wenzhou University, Wenzhou 325035, China.
| | - Min Zheng
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China; Guangxi Centre for Animal Disease Control and Prevention, Nanning 530001, China.
| |
Collapse
|
10
|
Beyond Cytomegalovirus and Epstein-Barr Virus: a Review of Viruses Composing the Blood Virome of Solid Organ Transplant and Hematopoietic Stem Cell Transplant Recipients. Clin Microbiol Rev 2020; 33:33/4/e00027-20. [PMID: 32847820 DOI: 10.1128/cmr.00027-20] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Viral primary infections and reactivations are common complications in patients after solid organ transplantation (SOT) and hematopoietic stem cell transplantation (HSCT) and are associated with high morbidity and mortality. Among these patients, viral infections are frequently associated with viremia. Beyond the usual well-known viruses that are part of the routine clinical management of transplant recipients, numerous other viral signatures or genomes can be identified in the blood of these patients. The identification of novel viral species and variants by metagenomic next-generation sequencing has opened up a new field of investigation and new paradigms. Thus, there is a need to thoroughly describe the state of knowledge in this field with a review of all viral infections that should be scrutinized in high-risk populations. Here, we review the eukaryotic DNA and RNA viruses identified in blood, plasma, or serum samples of pediatric and adult SOT/HSCT recipients and the prevalence of their detection, with a particular focus on recently identified viruses and those for which their potential association with disease remains to be investigated, such as members of the Polyomaviridae, Anelloviridae, Flaviviridae, and Astroviridae families. Current knowledge of the clinical significance of these viral infections with associated viremia among transplant recipients is also discussed. To ensure a comprehensive description in these two populations, individuals described as healthy (mostly blood donors) are considered for comparative purposes. The list of viruses that should be on the clinicians' radar is certainly incomplete and will expand, but the challenge is to identify those of possible clinical significance.
Collapse
|
11
|
A Novel and Divergent Gyrovirus with Unusual Genomic Features Detected in Wild Passerine Birds from a Remote Rainforest in French Guiana. Viruses 2019; 11:v11121148. [PMID: 31835740 PMCID: PMC6950609 DOI: 10.3390/v11121148] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/05/2019] [Accepted: 12/09/2019] [Indexed: 12/17/2022] Open
Abstract
Sequence-independent amplification techniques have become important tools for virus discovery, metagenomics, and exploration of viral diversity at the global scale, especially in remote areas. Here, we describe the detection and genetic characterization of a novel gyrovirus, named GyV11, present in cloacal, oral, and blood samples from neotropical wild birds in French Guiana. The molecular epidemiology revealed the presence of GyV11 only in passerine birds from three different species at a low prevalence (0.73%). This is the first characterization and prevalence study of a gyrovirus carried out in resident wild bird populations in a remote region, and provides evidence of the fecal-oral route transmission and local circulation of the virus. The molecular phylogeny of gyroviruses reveals the existence of two distinct gyrovirus lineages in which GyV11 is phylogenetically distinct from previously reported gyroviruses. Furthermore, GyV11 is placed basal in the gyrovirus phylogeny, likely owing to its ancestral origin and marked divergence. This study also provides important insights into the ecology, epidemiology, and genomic features of gyroviruses in a remote neotropical rainforest. The pathogenesis of this virus in avian species or whether GyV11 can infect humans and/or chickens needs to be further investigated.
Collapse
|
12
|
Cancer Treatment Goes Viral: Using Viral Proteins to Induce Tumour-Specific Cell Death. Cancers (Basel) 2019; 11:cancers11121975. [PMID: 31817939 PMCID: PMC6966515 DOI: 10.3390/cancers11121975] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/04/2019] [Accepted: 12/05/2019] [Indexed: 12/24/2022] Open
Abstract
Cell death is a tightly regulated process which can be exploited in cancer treatment to drive the killing of the tumour. Several conventional cancer therapies including chemotherapeutic agents target pathways involved in cell death, yet they often fail due to the lack of selectivity they have for tumour cells over healthy cells. Over the past decade, research has demonstrated the existence of numerous proteins which have an intrinsic tumour-specific toxicity, several of which originate from viruses. These tumour-selective viral proteins, although from distinct backgrounds, have several similar and interesting properties. Though the mechanism(s) of action of these proteins are not fully understood, it is possible that they can manipulate several cell death modes in cancer exemplifying the intricate interplay between these pathways. This review will discuss our current knowledge on the topic and outstanding questions, as well as deliberate the potential for viral proteins to progress into the clinic as successful cancer therapeutics.
Collapse
|
13
|
Sreekala SM, Gurpreet K, Dwivedi PN. Detection and molecular characterization of chicken infectious anaemia virus in young chicks in Punjab region of north-western India. Braz J Microbiol 2019; 51:805-813. [PMID: 31673994 DOI: 10.1007/s42770-019-00160-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 09/16/2019] [Indexed: 11/28/2022] Open
Abstract
Chicken infectious anaemia (CIA) is an important viral disease of chicken causing significant immunosuppression and severe anaemia worldwide. Occurrence of severe disease and mortality is noticed in young chicks (2-3 weeks). Vertical mode of transmission increases chance of infection and persistence of virus among the infected flocks. The current study was conducted in Punjab state for confirmation and genetic characterization of CAV among chicken flocks of various poultry farms. DNA was extracted from the tissue samples and subjected to polymerase chain reaction (PCR) of VP1 gene and whole genome. PCR products were further sequenced for confirmation of chicken infectious anaemia virus (CIAV) genome in the clinical samples. PCR amplification of DNA from the tissue samples yielded expected product size of 1350 bases of VP1 gene and 2.3 kb of whole genome. Out of 16 commercial poultry farms, 11 were confirmed with presence of CIAV, and out of 65 birds, 39 were found positive (60%) for CIAV genes. Among the various organs, the presence of viral gene was detected at highest level in thymus when compared with other organs. It is concluded that chicken infectious anaemia virus detected from Punjab state is closely related to other Indian isolates and neighbouring countries which necessitates need of more intensive studies with a greater number of samples for implementing effective control measures.
Collapse
Affiliation(s)
- S M Sreekala
- Department of Veterinary Microbiology, College of Veterinary Science, GADVASU, Ludhiana, Punjab, 141004, India.
| | - K Gurpreet
- Department of Veterinary Microbiology, College of Veterinary Science, GADVASU, Ludhiana, Punjab, 141004, India
| | - P N Dwivedi
- Department of Dairy Microbiology, College of Dairy Science & Technology, GADVASU, Ludhiana, Punjab, 141004, India
| |
Collapse
|
14
|
Wu Q, Xu X, Chen Q, Ji J, Kan Y, Yao L, Xie Q. Genetic Analysis of Avian Gyrovirus 2 Variant-Related Gyrovirus Detected in Farmed King Ratsnake ( Elaphe carinata): The First Report from China. Pathogens 2019; 8:pathogens8040185. [PMID: 31614719 PMCID: PMC6963503 DOI: 10.3390/pathogens8040185] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 09/29/2019] [Accepted: 10/09/2019] [Indexed: 12/31/2022] Open
Abstract
Avian gyrovirus 2 (AGV2), which is similar to chicken infectious anemia virus, is a new member of the genus Gyrovirus. AGV2 has been detected not only in chicken but also in human tissues and feces. This study analyzed 91 samples (8 from liver tissue and 83 from fecal samples) collected from king ratsnakes (Elaphe carinata) from 7 separate farms in Hubei and Henan, China, for AGV2 DNA using PCR. The results demonstrated a low positive rate of AGV2 (6.59%, 6/91) in the snakes, and all the positive samples were collected from the same farm. The AGV2 strain HB2018S1 was sequenced, and its 2376 nt genome comprised three partially overlapping open reading frames: VP1, VP2, and VP3. Phylogenetic analysis revealed that the HB2018S1 and NX1506-1 strains from chickens in China belong to the same clade and that they have a nucleotide identity as high as 99.5%. Additionally, recombination analysis showed that HB2018S1 might originate from the recombination of viruses similar to those detected in chickens and a ferret. A total of 10 amino acid mutation sites (44(R/K), 74(T/A), 256 (C/R), 279(L/Q), and 373(V/A) in AGV2 VP1; 60(I/T), 125(T/I), 213(D/N), and 215(L/S) in AGV2 VP2; and 83(H/Y) in AGV2 VP3) different from those observed in most reference strains were found in the genome of HB2018S1, indicating that the differences may be related to a transboundary movement among hosts, which needs further elucidation. To the best of our knowledge, this study is the first report on an AGV2-infected poikilotherm, suggesting that cross-host transmission of viruses with circular single-stranded DNA genomes would be a public health concern.
Collapse
Affiliation(s)
- Qianqian Wu
- Henan Provincial Engineering Laboratory of Insects Bio-reactor, Henan Provincial Engineering and Technology Center of Health Products for Livestock and Poultry, Nanyang Normal University, Nanyang 473061, China.
| | - Xin Xu
- Henan Provincial Engineering Laboratory of Insects Bio-reactor, Henan Provincial Engineering and Technology Center of Health Products for Livestock and Poultry, Nanyang Normal University, Nanyang 473061, China.
| | - Qinxi Chen
- Henan Provincial Engineering Laboratory of Insects Bio-reactor, Henan Provincial Engineering and Technology Center of Health Products for Livestock and Poultry, Nanyang Normal University, Nanyang 473061, China.
| | - Jun Ji
- Henan Provincial Engineering Laboratory of Insects Bio-reactor, Henan Provincial Engineering and Technology Center of Health Products for Livestock and Poultry, Nanyang Normal University, Nanyang 473061, China.
| | - Yunchao Kan
- Henan Provincial Engineering Laboratory of Insects Bio-reactor, Henan Provincial Engineering and Technology Center of Health Products for Livestock and Poultry, Nanyang Normal University, Nanyang 473061, China.
| | - Lunguang Yao
- Henan Provincial Engineering Laboratory of Insects Bio-reactor, Henan Provincial Engineering and Technology Center of Health Products for Livestock and Poultry, Nanyang Normal University, Nanyang 473061, China.
| | - Qingmei Xie
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
15
|
Genomic Characterization of Diverse Gyroviruses Identified in the Feces of Domestic Cats. Sci Rep 2019; 9:13303. [PMID: 31527770 PMCID: PMC6746754 DOI: 10.1038/s41598-019-49955-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 09/03/2019] [Indexed: 12/22/2022] Open
Abstract
Gyroviruses (GyVs) are small, single-stranded, circular DNA viruses in the genus Gyrovirus, which consists of the chicken anemia virus (CAV) prototype and nine other viral species. These different GyV species have been reported in chickens, humans, mice, and companion animals. To date, CAV has been identified in the feces of domestic cats, while the circulation of other GyV species in cats is currently unknown. In the present study, 197 fecal samples were collected from pet cats in northeast China, and samples were screened for different GyV species by PCR. Twelve GyV strains were identified from the feces of pet cats. These included 4 positive for CAV, 3 for HGyV/AGV2, 3 for GyV3 and 2 positive for GyV6. The complete genome sequences of the 12 cat-sourced GyV strains showed 93.9-99.7% nucleotide identities to the homologous reference GyV strains. Phylogenetic analyses based on the complete genomes, VP1, VP2 and VP3 genes showed the identical classification of GyV species with previous reports. Moreover, one and four unique amino acid substitutions were identified in the VP1 protein of the cat-sourced HGyV/AGV2 and GyV6 strains, respectively, and one substitution was also observed in the VP2 protein of one GyV6 strain identified in this study. In conclusion, our investigation demonstrates that the diverse GyV species were circulating in domestic cats, and provides the first molecular evidence for the circulation of HGyV/AGV2, GyV3 and GyV6 in domestic cats. These cat-origin GyVs possessed considerable genetic diversity. This study also raises the possibility that domestic cats, as reservoirs for gyroviruses, may inadvertently disseminate viruses to other species, e.g., humans and chickens.
Collapse
|
16
|
A Duarte M, F Silva JM, R Brito C, S Teixeira D, L Melo F, M Ribeiro B, Nagata T, S Campos F. Faecal Virome Analysis of Wild Animals from Brazil. Viruses 2019; 11:E803. [PMID: 31480274 PMCID: PMC6784175 DOI: 10.3390/v11090803] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/27/2019] [Accepted: 08/28/2019] [Indexed: 12/15/2022] Open
Abstract
The Brazilian Cerrado fauna shows very wide diversity and can be a potential viral reservoir. Therefore, the animal's susceptibility to some virus can serve as early warning signs of potential human virus diseases. Moreover, the wild animal virome of this biome is unknown. Based on this scenario, high-throughput sequencing contributes a robust tool for the identification of known and unknown virus species in this environment. In the present study, faeces samples from cerrado birds (Psittacara leucophthalmus, Amazona aestiva, and Sicalis flaveola) and mammals (Didelphis albiventris, Sapajus libidinosus, and Galictis cuja) were collected at the Veterinary Hospital, University of Brasília. Viral nucleic acid was extracted, submitted to random amplification, and sequenced by Illumina HiSeq platform. The reads were de novo assembled, and the identities of the contigs were evaluated by Blastn and tblastx searches. Most viral contigs analyzed were closely related to bacteriophages. Novel archaeal viruses of the Smacoviridae family were detected. Moreover, sequences of members of Adenoviridae, Anelloviridae, Circoviridae, Caliciviridae, and Parvoviridae families were identified. Complete and nearly complete genomes of known anelloviruses, circoviruses, and parvoviruses were obtained, as well as putative novel species. We demonstrate that the metagenomics approach applied in this work was effective for identification of known and putative new viruses in faeces samples from Brazilian Cerrado fauna.
Collapse
Affiliation(s)
- Matheus A Duarte
- Faculdade de Agronomia e Veterinária, Universidade de Brasília, Brasília-DF 70.910-900, Brazil
- Departamento de Biologia Celular, Instituto de Biologia, Universidade de Brasília, Brasília-DF 70.910-900, Brazil
| | - João M F Silva
- Departamento de Biologia Celular, Instituto de Biologia, Universidade de Brasília, Brasília-DF 70.910-900, Brazil
| | - Clara R Brito
- Faculdade de Agronomia e Veterinária, Universidade de Brasília, Brasília-DF 70.910-900, Brazil
| | - Danilo S Teixeira
- Núcleo de Atendimento e Pesquisa de Animais Silvestres, Universidade Estadual de Santa Cruz, Ilhéus-BA 45.662-900, Brazil
| | - Fernando L Melo
- Departamento de Fitopatologia, Instituto de Biologia, Universidade de Brasília, Brasília-DF 70.910-900, Brazil
| | - Bergmann M Ribeiro
- Departamento de Biologia Celular, Instituto de Biologia, Universidade de Brasília, Brasília-DF 70.910-900, Brazil
| | - Tatsuya Nagata
- Departamento de Biologia Celular, Instituto de Biologia, Universidade de Brasília, Brasília-DF 70.910-900, Brazil
| | - Fabrício S Campos
- Laboratório de Bioinformática e Biotecnologia, Campus de Gurupi, Universidade Federal do Tocantins, Tocantins-TO 77.410-570, Brazil.
| |
Collapse
|
17
|
Aşkar S. Full-Length Genomic Characterization of Chicken Anemia Virus in Turkey. BRAZILIAN JOURNAL OF POULTRY SCIENCE 2019. [DOI: 10.1590/1806-9061-2018-0937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- S Aşkar
- Çankırı Karatekin University, Turkey
| |
Collapse
|
18
|
Genetic Analysis of Two Chicken Infectious Anemia Virus Variants-Related Gyrovirus in Stray Mice and Dogs: The First Report in China, 2015. BIOMED RESEARCH INTERNATIONAL 2017; 2017:6707868. [PMID: 28326326 PMCID: PMC5343220 DOI: 10.1155/2017/6707868] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 10/18/2016] [Indexed: 12/03/2022]
Abstract
Chicken infectious anemia virus (CIAV) causes acute viral infection in chickens worldwide. It can infect chickens of all ages, but the disease is seen only in young chickens and is characterized by hemorrhagic lesions in the muscles, atrophic changes in the lymphoid organs, aplastic bone marrow, and immunosuppression causing increased mortality. Previous studies have demonstrated that CIAV can be isolated from blood specimens of humans and fecal samples of stray cats. In the present study, two variants of CIAV were isolated from fecal samples of mice (CIAV-Mouse) and stray dogs (CIAV-Dog), respectively. The genome of the two CIAV variants was sequenced and the results of the recombination detection program suggested that the CIAV-Dog strain could be a recombinant viral strain generated from parental CIAV strains, AB119448 and GD-1-12, with high confidence. Particularly, these findings were obtained from the comparison of genetic diversity and the relationship of CIAV between different hosts. This is the first report indicating that there is a significant difference in the number of transcription factor binding sites in CIAV noncoding regions from different hosts. Further studies are required to investigate the large geographic distribution of CIAV and monitor the variants, host range, and associated diseases.
Collapse
|
19
|
Yao S, Gao X, Tuo T, Han C, Gao Y, Qi X, Zhang Y, Liu C, Gao H, Wang Y, Wang X. Novel characteristics of the avian gyrovirus 2 genome. Sci Rep 2017; 7:41068. [PMID: 28198372 PMCID: PMC5309784 DOI: 10.1038/srep41068] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 12/13/2016] [Indexed: 11/12/2022] Open
Abstract
Avian gyrovirus 2 (AGV2) was the second member of the viral genus Cyclovirus to be discovered. This virus poses a significant potential threat to humans and poultry due to its global dissemination and infectiousness. We used three overlapping polymerase chain reactions (PCRs) to map the whole genome of AGV2. We then modelled the evolutionary history of these novel sequence data in the context of related sequences from GenBank. We analysed the viral protein characteristics of the different phylogenetic groups and explored differences in evolutionary trends between Chinese strains and strains from other countries. We obtained 17 avian-sourced AGV2 whole genomes from different regions of China from 2015 to 2016. Phylogenetic analyses of these Chinese AGV2 sequences and related sequences produced four distinct groups (A-D) with significant bootstrap values. We also built phylogenies using predicted viral protein sequences. We found a potential hypervariable region in VP1 at sites 288-314, and we identified the amino acid changes responsible for the distinct VP2 and VP3 groups. Three new motifs in the AGV2 5'-UTR direct repeat (DR) region were discovered and grouped. The novel characteristics and diverse research on the AGV2 genome provide a valuable framework for additional research.
Collapse
Affiliation(s)
- Shuai Yao
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
- Northeast Agricultural University, 150030, Harbin, China
| | - Xiang Gao
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Tianbei Tuo
- Northeast Agricultural University, 150030, Harbin, China
| | - Chunyan Han
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
- Northeast Forestry University, 150040, Harbin, China
| | - Yulong Gao
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Xiaole Qi
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Yanping Zhang
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Changjun Liu
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Honglei Gao
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Yongqiang Wang
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Xiaomei Wang
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| |
Collapse
|
20
|
Avian gyrovirus 2 in poultry, China, 2015-2016. Emerg Microbes Infect 2016; 5:e112. [PMID: 27780970 PMCID: PMC5117733 DOI: 10.1038/emi.2016.113] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 09/01/2016] [Accepted: 09/01/2016] [Indexed: 12/25/2022]
|
21
|
Impact of virus load on immunocytological and histopathological parameters during clinical chicken anemia virus (CAV) infection in poultry. Microb Pathog 2016; 96:42-51. [PMID: 27165537 DOI: 10.1016/j.micpath.2016.05.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 05/06/2016] [Indexed: 02/06/2023]
Abstract
Chicken anemia virus (CAV) is one the important pathogen affecting commercial poultry sector globally by causing mortality, production losses, immunosuppression, aggravating co-infections and vaccination failures. Here, we describe the effects of CAV load on hematological, histopathological and immunocytochemical alterations in 1-day old infected chicks. The effects of CAV on cytokine expression profiles and generation of virus specific antibody titer were also studied and compared with viral clearance in various tissues. The results clearly confirmed that peak viral load was achieved mainly in lymphoid tissues between 10 and 20 days post infection (dpi), being highest in the blood (log1010.63 ±0.87/ml) and thymus (log1010.29 ±0.94/g) followed by spleen, liver, bone marrow and bursa. The histopathology and immunoflowcytometric analysis indicated specific degeneration of T lymphoid cells in the thymus, spleen and blood at 15 dpi. While the transcript levels of interleukin (IL)-1, IL-2, IL-12 decreased at all dpi, interferon (IFN)-γ increased (3-15 fold) during early stages of infection and the appearance of virus specific antibodies were found to be strongly associated with virus clearance in all the tissues. Our findings support the immunosuppressive nature of CAV and provide the relation between the virus load in the various body tissues and the immunopathological changes during clinical CAV infections.
Collapse
|
22
|
Ye J, Tian X, Xie Q, Zhang Y, Sheng Y, Zhang Z, Wang C, Zhu H, Wang Y, Shao H, Qin A. Avian Gyrovirus 2 DNA in Fowl from Live Poultry Markets and in Healthy Humans, China. Emerg Infect Dis 2016. [PMID: 26196944 PMCID: PMC4517707 DOI: 10.3201/eid2108.150203] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
23
|
Sydler T, Brägger S, Handke M, Hartnack S, Lewis FI, Sidler X, Brugnera E. Latent porcine circovirus type 2-infected domestic pigs: A potential infection model for the effective development of vaccines against latent or chronic virus induced diseases. Vaccine 2016; 34:1047-53. [PMID: 26795369 DOI: 10.1016/j.vaccine.2016.01.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 12/22/2015] [Accepted: 01/05/2016] [Indexed: 09/30/2022]
Abstract
Until recently, knowledge of the pathogenicity of Circoviridae and Anelloviridae family members was limited. Our previous discoveries provided clues toward resolving this issue based on studies of the latent nature of porcine circovirus type 2 (PCV2) genotype group members. We developed a conventional pig infection model that indicated that weaners already harbored latent PCV2 infection in the thymus, which enabled the viruses to specifically modulate the maturation of T-helper cells. This finding raised the possibility that the thymi of normal fetuses were already infected with PCV2. The present findings further substantiate our hypothesis that PCV2 masquerades as the host by infecting fetuses before they acquire immune-competence. We provide the first demonstration that all domestic pig fetuses preferentially harbor latent PCV2-infected cells in their thymi. These PCV2-infected cells are different from thymocytes and are located in the medulla of the fetal thymus. These latent PCV2-infected cells in fetuses are found at the same location and share characteristics with the infected cells observed in adolescent pigs. Moreover, fetuses also harbor these infected cells in other lymph system organs. We provide the first demonstration that the fetal thymus virus pools are minimally affected by sow vaccination, highlighting the immune-privileged character of this organ. Furthermore, we found a striking reduction in virus-infected cells in the fetal spleen and an increase in PCV2-infected cells in the fetal intestine of anti-PCV2-vaccinated mothers. These data indicate that specific immune response interactions occur between mothers and their progeny that are not dependent on the humoral immunity of the mother and cannot be attributed to the rudimentary humoral responses of the fetuses because these pig fetuses do not have any PCV2-specific antibodies. These shifts in our understanding of the PCV2-infected cell pool will lead to different avenues in the search for effective vaccination strategies against latent and chronic pathogens.
Collapse
Affiliation(s)
- Titus Sydler
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Stefanie Brägger
- Division of Swine Medicine of the Department for Farm Animals, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Martin Handke
- Division of Swine Medicine of the Department for Farm Animals, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Sonja Hartnack
- Division of Veterinary Epidemiology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Fraser I Lewis
- Division of Veterinary Epidemiology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Xaver Sidler
- Division of Swine Medicine of the Department for Farm Animals, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Enrico Brugnera
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland; Division of Swine Medicine of the Department for Farm Animals, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
24
|
Prasetyo AA, Desyardi MN, Tanamas J, Suradi, Reviono, Harsini, Kageyama S, Chikumi H, Shimizu E. Respiratory viruses and torque teno virus in adults with acute respiratory infections. Intervirology 2015; 58:57-68. [PMID: 25890989 PMCID: PMC7179541 DOI: 10.1159/000369211] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Objective To define the molecular epidemiology of respiratory viral infections in adult patients. Methods Nasal and throat swabs were collected from all adult patients with influenza-like illness (ILI), acute respiratory infection (ARI), or severe ARI (SARI) admitted to a tertiary hospital in Surakarta, Indonesia, between March 2010 and April 2011 and analyzed for 19 respiratory viruses and for torque teno virus (TTV) and human gyrovirus (HGyV). Results Respiratory viruses were detected in 61.3% of the subjects, most of whom had ARI (90.8%, OR = 11.39), were hospitalized (96.9%, OR = 22.31), had asthma exacerbation (90.9%, OR = 8.67), and/or had pneumonia (80%, OR = 4.0). Human rhinovirus (HRV) A43 predominated. Influenza A H3N2, human metapneumovirus (HMPV) subtypes A1 and A2, the influenza B virus, human adenovirus B, and human coronavirus OC43 were also detected. All respiratory viruses were detected in the transition month between the rainy and dry seasons. No mixed respiratory virus infection was found. Coinfections of the influenza A H3N2 virus with TTV, HMPV with TTV, HRV with TTV, and human parainfluenza virus-3 with TTV were found in 4.7, 2.8, 19.8, and 0.9% of the samples, respectively. Conclusions This study highlights the need to perform routine detection of respiratory viruses in adults hospitalized with ARI, asthma exacerbation, and/or pneumonia.
Collapse
Affiliation(s)
- Afiono Agung Prasetyo
- Department of Microbiology, Faculty of Medicine, Sebelas Maret University, Jl. Ir. Sutami No. 36A, Surakarta 57126 (Indonesia). afie.agp.la @ gmail.com
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Phan TG, da Costa AC, Zhang W, Pothier P, Ambert-Balay K, Deng X, Delwart E. A new gyrovirus in human feces. Virus Genes 2015; 51:132-5. [PMID: 26013257 PMCID: PMC4519424 DOI: 10.1007/s11262-015-1210-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 05/18/2015] [Indexed: 01/06/2023]
Abstract
A novel gyrovirus genome found in the feces of an adult with diarrhea is described. The genome shows the three expected main ORFs encoding a structural protein (VP1), nonstructural protein (VP2), and Apoptin protein (VP3), which shared identities of 41, 42, and 38 % with those of the most closely related gyrovirus proteins, respectively. Given the high divergence in its genome, this gyrovirus may be considered the prototype for a new viral species (GyV9) in the Gyrovirus genus. Because the closest relatives of this gyrovirus infect chicken, a possible dietary origin for the presence of this virus in human feces is discussed.
Collapse
Affiliation(s)
- Tung Gia Phan
- Blood Systems Research Institute, San Francisco, CA 94118, USA
- Department of Laboratory Medicine, University of California at San Francisco, San Francisco, CA 94118, USA
| | - Antonio Charlys da Costa
- Blood Systems Research Institute, San Francisco, CA 94118, USA
- Institute of Tropical Medicine, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Wen Zhang
- Blood Systems Research Institute, San Francisco, CA 94118, USA
- School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Pierre Pothier
- National Reference Centre for Enteric Viruses, University Hospital of Dijon, Dijon, France
| | - Katia Ambert-Balay
- National Reference Centre for Enteric Viruses, University Hospital of Dijon, Dijon, France
| | - Xutao Deng
- Blood Systems Research Institute, San Francisco, CA 94118, USA
| | - Eric Delwart
- Blood Systems Research Institute, San Francisco, CA 94118, USA
- Department of Laboratory Medicine, University of California at San Francisco, San Francisco, CA 94118, USA
| |
Collapse
|
26
|
Denesvre C, Dumarest M, Rémy S, Gourichon D, Eloit M. Chicken skin virome analyzed by high-throughput sequencing shows a composition highly different from human skin. Virus Genes 2015. [PMID: 26223320 DOI: 10.1007/s11262-015-1231-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recent studies show that human skin at homeostasis is a complex ecosystem whose virome include circular DNA viruses, especially papillomaviruses and polyomaviruses. To determine the chicken skin virome in comparison with human skin virome, a chicken swabs pool sample from fifteen indoor healthy chickens of five genetic backgrounds was examined for the presence of DNA viruses by high-throughput sequencing (HTS). The results indicate a predominance of herpesviruses from the Mardivirus genus, coming from either vaccinal origin or presumably asymptomatic infection. Despite the high sensitivity of the HTS method used herein to detect small circular DNA viruses, we did not detect any papillomaviruses, polyomaviruses, or circoviruses, indicating that these viruses may not be resident of the chicken skin. The results suggest that the turkey herpesvirus is a resident of chicken skin in vaccinated chickens. This study indicates major differences between the skin viromes of chickens and humans. The origin of this difference remains to be further studied in relation with skin physiology, environment, or virus population dynamics.
Collapse
Affiliation(s)
- Caroline Denesvre
- INRA, UMR1282, Infectious Diseases and Public Health, ISP, BIOlogy of Avian Viruses Team, 37380, Nouzilly, France.
| | - Marine Dumarest
- Institut Pasteur, Biology of Infection Unit, Inserm U1117, Pathogen Discovery Laboratory, 75015, Paris, France
| | - Sylvie Rémy
- INRA, UMR1282, Infectious Diseases and Public Health, ISP, BIOlogy of Avian Viruses Team, 37380, Nouzilly, France
| | - David Gourichon
- INRA, Pôle d'expérimentation avicole de Tours, 37380, Nouzilly, France
| | - Marc Eloit
- Institut Pasteur, Biology of Infection Unit, Inserm U1117, Pathogen Discovery Laboratory, 75015, Paris, France. .,PathoQuest, Paris, 25 rue du Dr Roux, 75015, Paris, France.
| |
Collapse
|
27
|
Abstract
We characterized the genome of a highly divergent gyrovirus (GyV8) in the spleen and uropygial gland tissues of a diseased northern fulmar (Fulmarus glacialis), a pelagic bird beached in San Francisco, California. No other exogenous viral sequences could be identified using viral metagenomics. The small circular DNA genome shared no significant nucleotide sequence identity, and only 38-42 % amino acid sequence identity in VP1, with any of the previously identified gyroviruses. GyV8 is the first member of the third major phylogenetic clade of this viral genus and the first gyrovirus detected in an avian species other than chicken.
Collapse
|
28
|
T-cell reprogramming through targeted CD4-coreceptor and T-cell receptor expression on maturing thymocytes by latent Circoviridae family member porcine circovirus type 2 cell infections in the thymus. Emerg Microbes Infect 2015; 4:e15. [PMID: 26038767 PMCID: PMC4355439 DOI: 10.1038/emi.2015.15] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 10/20/2014] [Accepted: 01/31/2015] [Indexed: 02/07/2023]
Abstract
Although porcine circovirus type 2 (PCV2)-associated diseases have been evaluated for known immune evasion strategies, the pathogenicity of these viruses remained concealed for decades. Surprisingly, the same viruses that cause panzootics in livestock are widespread in young, unaffected animals. Recently, evidence has emerged that circovirus-like viruses are also linked to complex diseases in humans, including children. We detected PCV2 genome-carrying cells in fetal pig thymi. To elucidate virus pathogenicity, we developed a new pig infection model by in vivo transfection of recombinant PCV2 and the immunosuppressant cofactor cyclosporine A. Using flow cytometry, immunofluorescence and fluorescence in situ hybridization, we found evidence that PCV2 dictates positive and negative selection of maturing T cells in the thymus. We show for the first time that PCV2-infected cells reside at the corticomedullary junction of the thymus. In diseased animals, we found polyclonal deletion of single positive cells (SPs) that may result from a loss of major histocompatibility complex class-II expression at the corticomedullary junction. The percentage of PCV2 antigen-presenting cells correlated with the degree of viremia and, in turn, the severity of the defect in thymocyte maturation. Moreover, the reversed T-cell receptor/CD4-coreceptor expression dichotomy on thymocytes at the CD4+CD8interm and CD4SP cell stage is viremia-dependent, resulting in a specific hypo-responsiveness of T-helper cells. We compare our results with the only other better-studied member of Circoviridae, chicken anemia virus. Our data show that PCV2 infection leads to thymocyte selection dysregulation, adding a valuable dimension to our understanding of virus pathogenicity.
Collapse
|
29
|
Fehér E, Pazár P, Lengyel G, Phan TG, Bányai K. Sequence and phylogenetic analysis identifies a putative novel gyrovirus 3 genotype in ferret feces. Virus Genes 2014; 50:137-41. [DOI: 10.1007/s11262-014-1128-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 10/08/2014] [Indexed: 10/24/2022]
|
30
|
Rollano Peñaloza OM, Lewandowska M, Stetefeld J, Ossysek K, Madej M, Bereta J, Sobczak M, Shojaei S, Ghavami S, Łos MJ. Apoptins: selective anticancer agents. Trends Mol Med 2014; 20:519-28. [PMID: 25164066 DOI: 10.1016/j.molmed.2014.07.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 07/17/2014] [Accepted: 07/17/2014] [Indexed: 12/20/2022]
Abstract
Therapies that selectively target cancer cells for death have been the center of intense research recently. One potential therapy may involve apoptin proteins, which are able to induce apoptosis in cancer cells leaving normal cells unharmed. Apoptin was originally discovered in the Chicken anemia virus (CAV); however, human gyroviruses (HGyV) have recently been found that also harbor apoptin-like proteins. Although the cancer cell specific activity of these apoptins appears to be well conserved, the precise functions and mechanisms of action are yet to be fully elucidated. Strategies for both delivering apoptin to treat tumors and disseminating the protein inside the tumor body are now being developed, and have shown promise in preclinical animal studies.
Collapse
Affiliation(s)
- Oscar M Rollano Peñaloza
- Department Clinical & Experimental Medicine, Division of Cell Biology, and Integrative Regenerative Medical Center, Linköping University, Linköping, Sweden; Instituto de Biologia Molecular y Biotecnologia, La Paz, Bolivia
| | | | - Joerg Stetefeld
- Department of Chemistry, University of Manitoba, Winnipeg, Canada
| | - Karolina Ossysek
- Department of Cell Biochemistry, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Mariusz Madej
- Department of Cell Biochemistry, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Joanna Bereta
- Department of Cell Biochemistry, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Mateusz Sobczak
- Department of Medical Biotechnology, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Shahla Shojaei
- Department of Biochemistry, Recombinant Protein Laboratory, Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saeid Ghavami
- Department of Human Anatomy & Cell Science, College of Medicine, Faculty of Health Sciences, and Manitoba Institute of Child Health, University of Manitoba, Winnipeg, Canada; Health Policy Research Centre, Shiraz University of Medical Science, Shiraz, Iran
| | - Marek J Łos
- Department Clinical & Experimental Medicine, Division of Cell Biology, and Integrative Regenerative Medical Center, Linköping University, Linköping, Sweden; Department of Pathology, Pomeranian Medical University, Szczecin, Poland.
| |
Collapse
|
31
|
Fehér E, Pazár P, Kovács E, Farkas SL, Lengyel G, Jakab F, Martella V, Bányai K. Molecular detection and characterization of human gyroviruses identified in the ferret fecal virome. Arch Virol 2014; 159:3401-6. [PMID: 25119678 PMCID: PMC7087032 DOI: 10.1007/s00705-014-2203-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 07/17/2014] [Indexed: 12/05/2022]
Abstract
The recently described novel gyroviruses may infect chickens and/or humans; however, their pathogenic potential is unknown. In our metagenomic investigation, we detected many of the novel gyroviruses in the fecal viromes of ferrets with lymph node and organ enlargement. The complete genomic sequences of selected gyrovirus strains showed 90.7-99.4 % similarity to homologous reference gyrovirus strains. This study did not demonstrate an association between gyrovirus shedding from ferrets and the observed background disease; however, it provides evidence for genetic diversity among gyroviruses and raises the possibility that pet ferrets may transmit gyroviruses to heterologous hosts, e.g., humans.
Collapse
Affiliation(s)
- Enikő Fehér
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Hungária krt. 21, Budapest, 1143, Hungary,
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Abeles SR, Pride DT. Molecular bases and role of viruses in the human microbiome. J Mol Biol 2014; 426:3892-906. [PMID: 25020228 PMCID: PMC7172398 DOI: 10.1016/j.jmb.2014.07.002] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 06/30/2014] [Accepted: 07/04/2014] [Indexed: 12/24/2022]
Abstract
Viruses are dependent biological entities that interact with the genetic material of most cells on the planet, including the trillions within the human microbiome. Their tremendous diversity renders analysis of human viral communities ("viromes") to be highly complex. Because many of the viruses in humans are bacteriophage, their dynamic interactions with their cellular hosts add greatly to the complexities observed in examining human microbial ecosystems. We are only beginning to be able to study human viral communities on a large scale, mostly as a result of recent and continued advancements in sequencing and bioinformatic technologies. Bacteriophage community diversity in humans not only is inexorably linked to the diversity of their cellular hosts but also is due to their rapid evolution, horizontal gene transfers, and intimate interactions with host nucleic acids. There are vast numbers of observed viral genotypes on many body surfaces studied, including the oral, gastrointestinal, and respiratory tracts, and even in the human bloodstream, which previously was considered a purely sterile environment. The presence of viruses in blood suggests that virome members can traverse mucosal barriers, as indeed these communities are substantially altered when mucosal defenses are weakened. Perhaps the most interesting aspect of human viral communities is the extent to which they can carry gene functions involved in the pathogenesis of their hosts, particularly antibiotic resistance. Persons in close contact with each other have been shown to share a fraction of oral virobiota, which could potentially have important implications for the spread of antibiotic resistance to healthy individuals. Because viruses can have a large impact on ecosystem dynamics through mechanisms such as the transfers of beneficial gene functions or the lysis of certain populations of cellular hosts, they may have both beneficial and detrimental roles that affect human health, including improvements in microbial resilience to disturbances, immune evasion, maintenance of physiologic processes, and altering the microbial community in ways that promote or prevent pathogen colonization.
Collapse
Affiliation(s)
- Shira R Abeles
- Department of Medicine, University of California, San Diego, CA 92093, USA
| | - David T Pride
- Department of Medicine, University of California, San Diego, CA 92093, USA; Department of Pathology, University of California, San Diego, CA 92093, USA.
| |
Collapse
|
33
|
Novel Gyroviruses, including Chicken Anaemia Virus, in Clinical and Chicken Samples from South Africa. Adv Virol 2014; 2014:321284. [PMID: 24876841 PMCID: PMC4022007 DOI: 10.1155/2014/321284] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 03/17/2014] [Indexed: 11/18/2022] Open
Abstract
Introduction. Chicken anaemia virus, CAV, was until recently the only member of the Gyrovirus genus. 6 novel gyroviruses, AGV2, HGyV1, and GyV3-6, have since been discovered in human and chicken samples. Methods. PCR amplification of the VP2 gene was used to detect AGV2/HGyV1, GyV3, and CAV in a range of clinical samples including stool, respiratory, CSF, and HIV-positive plasma. Screening of fresh local chicken meat was also performed. Results. AGV2/HGyV1 or GyV3 was detected in stools from healthy children (17/49, 34.7%) and patients with diarrhoea (22/149, 14.8%). 1.2% (3/246) nasopharyngeal respiratory samples were positive. No AGV2/HGyV1 or GyV3 was detected in nasal swabs from wheezing patients, in CSF from patients with meningitis, and in HIVpositive plasma. CAV was found in 51% (25/49) of stools from healthy children and 16% (24/149) in diarrhoea samples. Screening of 28 chicken samples showed a higher prevalence of gyrovirus (20/28, 71%) compared to CAV (1/28, 3.6%). Phylogenetic analysis of the CAV VP1 gene showed South African sequences clustering with Brazilian isolates from genotypes D2 and A2. Conclusion. Novel gyroviruses, including CAV, are present in the South African population with diarrhoea and respiratory illness as well as in healthy children. Their presence suggests an origin from chicken meat consumption.
Collapse
|
34
|
Identification of a chicken anemia virus variant-related gyrovirus in stray cats in china, 2012. BIOMED RESEARCH INTERNATIONAL 2014; 2014:313252. [PMID: 24689034 PMCID: PMC3943257 DOI: 10.1155/2014/313252] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 12/25/2013] [Accepted: 12/27/2013] [Indexed: 11/21/2022]
Abstract
The chicken anemia virus (CAV), is a known member of the genus Gyrovirus and was first isolated from chickens in Japan in 1979. Some reports have also demonstrated that CAV can be identified in human stool specimens. In this study, a variant of CAV was detected using PCR with CAV-based primers in fecal samples of stray cats. The genome of CAV variant was sequenced and the results suggest that it could be a recombinant viral strain from parental CAV strains JQ690762 and AF311900. Recombination is an important evolutionary mechanism that contributes to genetic diversification. These findings indicate that CAV variant might have originated from CAV-infected chickens. The epidemiology and pathogenesis of this novel virus remains to be elucidated. This study underscores the importance of CAV surveillance and it presents the first evidence suggesting the possibility of CAV homologous recombination in cat.
Collapse
|
35
|
Abstract
The virus-derived protein Apoptin has the ability to induce p53-independent apoptosis in a variety of human cancer cells while leaving normal cells unharmed. It thus represents a potential anti-cancer therapeutic agent of the future but a proper understanding of Apoptin-induced signalling events is necessary prior to clinical application. The tumor-specific nuclear translocation and phosphorylation of Apoptin by a cellular kinase such as protein kinase C seem to be required for its function but otherwise the mode of tumor selectivity remains unknown. Apoptin has been shown to interact with several cellular proteins including Akt and the anaphase-promoting complex that regulate its activity and promote caspase-dependent apoptosis. This chapter summarizes the available data on tumor-specific pathways sensed by Apoptin and the mechanism of Apoptin-induced cell death.
Collapse
Affiliation(s)
- Jessica Bullenkamp
- Kings College London, Guy's Hospital, Floor 2 Room 2.66S, Hodgkin Building, London, UK
| | | |
Collapse
|
36
|
Phylogenetic and molecular characterization of chicken anemia virus in southern China from 2011 to 2012. Sci Rep 2013; 3:3519. [PMID: 24343380 PMCID: PMC3865467 DOI: 10.1038/srep03519] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 11/28/2013] [Indexed: 11/21/2022] Open
Abstract
Chicken anemia virus (CAV) is an important pathogen that causes severe immunosuppression in young chickens. We have characterized 13 CAVs isolated from different commercial farms in southern China between 2011 and 2012. We discovered 92 variable residues compared to 37 other CAV complete genome sequences from other parts of the world listed in GenBank; these residues have not been previously observed. All of the Chinese CAV genomes that were characterized in this study had a glutamine at position 394, a hallmark of highly pathogenic CAVs. We also discovered that intra-group genetic recombination plays a role in generating genetic diversity in natural populations of CAV. The GD-J-12 isolate was a possible recombinant between GD-C-12 and GD-M-12 in the genomic region that encompassed both the coding and non-coding regions.
Collapse
|
37
|
Biagini P, Bédarida S, Touinssi M, Galicher V, de Micco P. Human gyrovirus in healthy blood donors, France. Emerg Infect Dis 2013; 19:1014-5. [PMID: 23735883 PMCID: PMC3713844 DOI: 10.3201/eid1906.130228] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
38
|
Flores EF, Weiblen R, Cargnelutti JF, Bauermann FV, Spilki FR, Mori E, Franco AC. Emerging animal viruses: real threats or simple bystanders? PESQUISA VETERINARIA BRASILEIRA 2013. [DOI: 10.1590/s0100-736x2013001000001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The list of animal viruses has been frequently added of new members raising permanent concerns to virologists and veterinarians. The pathogenic potential and association with disease have been clearly demonstrated for some, but not for all of these emerging viruses. This review describes recent discoveries of animal viruses and their potential relevance for veterinary practice. Dogs were considered refractory to influenza viruses until 2004, when an influenza A virus subtype H3N8 was transmitted from horses and produced severe respiratory disease in racing greyhounds in Florida/USA. The novel virus, named canine influenza virus (CIV), is considered now a separate virus lineage and has spread among urban canine population in the USA. A new pestivirus (Flaviviridae), tentatively called HoBi-like pestivirus, was identified in 2004 in commercial fetal bovine serum from Brazil. Hobi-like viruses are genetically and antigenically related to bovine viral diarrhea virus (BVDV) and induce similar clinical manifestations. These novel viruses seem to be widespread in Brazilian herds and have also been detected in Southeast Asia and Europe. In 2011, a novel mosquito-borne orthobunyavirus, named Schmallenberg virus (SBV), was associated with fever, drop in milk production, abortion and newborn malformation in cattle and sheep in Germany. Subsequently, the virus disseminated over several European countries and currently represents a real treat for animal health. The origin of SBV is still a matter of debate but it may be a reassortant from previous known bunyaviruses Shamonda and Satuperi. Hepatitis E virus (HEV, family Hepeviridae) is a long known agent of human acute hepatitis and in 1997 was first identified in pigs. Current data indicates that swine HEV is spread worldwide, mainly associated with subclinical infection. Two of the four HEV genotypes are zoonotic and may be transmitted between swine and human by contaminated water and undercooked pork meat. The current distribution and impact of HEV infection in swine production are largely unknown. Avian gyrovirus type 2 (AGV2) is a newly described Gyrovirus, family Circoviridae, which was unexpectedly found in sera of poultry suspected to be infected with chicken anemia virus (CAV). AGV2 is closely related to CAV but displays sufficient genomic differences to be classified as a distinct species. AGV2 seems to be distributed in Brazil and also in other countries but its pathogenic role for chickens is still under investigation. Finally, the long time and intensive search for animal relatives of human hepatitis C virus (HCV) has led to the identification of novel hepaciviruses in dogs (canine hepacivirus [CHV]), horses (non-primate hepaciviruses [NPHV] or Theiler's disease associated virus [TDAV]) and rodents. For these, a clear and definitive association with disease is still lacking and only time and investigation will tell whether they are real disease agents or simple spectators.
Collapse
|
39
|
Gia Phan T, Phung Vo N, Sdiri-Loulizi K, Aouni M, Pothier P, Ambert-Balay K, Deng X, Delwart E. Divergent gyroviruses in the feces of Tunisian children. Virology 2013; 446:346-8. [PMID: 24074598 DOI: 10.1016/j.virol.2013.08.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 08/04/2013] [Accepted: 08/14/2013] [Indexed: 11/15/2022]
Abstract
The Gyrovirus genus consists of the immunosuppressive Chicken Anemia Virus (CAV) prototype and since 2011 three other viral species found in sera/tissues of chickens, human feces, and on human skin. Here the genomes of two other gyrovirus species were characterized in diarrhea samples from Tunisian children whose main ORFs shared amino acid identity of 46-59% with those of the previously characterized gyroviruses and were provisionally named GyV5 and GyV6. All currently known gyroviruses grouped into two clades with distinct genomic features including replacement of the VP2 overlapping Apoptin gene with a distinct ORF of unknown function. Previous reports of gyrovirus DNA in human blood and on human skins warrant studies of possible human tropisms for these newly characterized gyroviruses.
Collapse
Affiliation(s)
- Tung Gia Phan
- Blood Systems Research Institute, San Francisco, CA 94118, USA; Department of Laboratory Medicine, University of California at San Francisco, San Francisco, CA 94118, USA
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Phan TG, Vo NP, Boros Á, Pankovics P, Reuter G, Li OTW, Wang C, Deng X, Poon LLM, Delwart E. The viruses of wild pigeon droppings. PLoS One 2013; 8:e72787. [PMID: 24023772 PMCID: PMC3762862 DOI: 10.1371/journal.pone.0072787] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 07/12/2013] [Indexed: 01/14/2023] Open
Abstract
Birds are frequent sources of emerging human infectious diseases. Viral particles were enriched from the feces of 51 wild urban pigeons (Columba livia) from Hong Kong and Hungary, their nucleic acids randomly amplified and then sequenced. We identified sequences from known and novel species from the viral families Circoviridae, Parvoviridae, Picornaviridae, Reoviridae, Adenovirus, Astroviridae, and Caliciviridae (listed in decreasing number of reads), as well as plant and insect viruses likely originating from consumed food. The near full genome of a new species of a proposed parvovirus genus provisionally called Aviparvovirus contained an unusually long middle ORF showing weak similarity to an ORF of unknown function from a fowl adenovirus. Picornaviruses found in both Asia and Europe that are distantly related to the turkey megrivirus and contained a highly divergent 2A1 region were named mesiviruses. All eleven segments of a novel rotavirus subgroup related to a chicken rotavirus in group G were sequenced and phylogenetically analyzed. This study provides an initial assessment of the enteric virome in the droppings of pigeons, a feral urban species with frequent human contact.
Collapse
Affiliation(s)
- Tung Gia Phan
- Blood Systems Research Institute, San Francisco, California, United States of America
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Nguyen Phung Vo
- Blood Systems Research Institute, San Francisco, California, United States of America
- Pharmacology Department, School of Pharmacy, Ho Chi Minh City University of Medicine and Pharmacy, Ho Chi Minh, Vietnam
| | - Ákos Boros
- Regional Laboratory of Virology, National Reference Laboratory of Gastroenteric Viruses, ÁNTSZ Regional Institute of State Public Health Service, Pécs, Hungary
| | - Péter Pankovics
- Regional Laboratory of Virology, National Reference Laboratory of Gastroenteric Viruses, ÁNTSZ Regional Institute of State Public Health Service, Pécs, Hungary
| | - Gábor Reuter
- Regional Laboratory of Virology, National Reference Laboratory of Gastroenteric Viruses, ÁNTSZ Regional Institute of State Public Health Service, Pécs, Hungary
| | - Olive T. W. Li
- Centre of Influenza Research and School of Public Health, University of Hong Kong, Hong Kong SAR
| | - Chunling Wang
- Stanford Genome Technology Center, Stanford, California, United States of America
| | - Xutao Deng
- Blood Systems Research Institute, San Francisco, California, United States of America
| | - Leo L. M. Poon
- Centre of Influenza Research and School of Public Health, University of Hong Kong, Hong Kong SAR
| | - Eric Delwart
- Blood Systems Research Institute, San Francisco, California, United States of America
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
41
|
Lecuit M, Eloit M. The human virome: new tools and concepts. Trends Microbiol 2013; 21:510-5. [PMID: 23906500 PMCID: PMC7172527 DOI: 10.1016/j.tim.2013.07.001] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 06/15/2013] [Accepted: 07/01/2013] [Indexed: 02/07/2023]
Abstract
New sequencing technologies increase our knowledge regarding the composition of the human virome. There are beneficial and detrimental viruses. The human virome can impact upon health at body surfaces (skin or gut) and within tissues. Some animal viruses are transmitted via the oral route by consumption of food.
The human virome is the viral component of the microbiome. Its composition, and interindividual and temporal variability are not precisely known. Its impact on human health has received less attention than that of the bacterial microbiome, but is likely to be equally important, both in homeostasis and disease. Here we review the recent advances in this field and the questions that arise in the context of our rapidly increasing knowledge regarding the composition and function of the human virome. With the ever-extending use of next-generation sequencing (NGS) on a variety of clinical samples, rapid progress on the composition of the human virome and its impact upon human health are to be expected in the coming years.
Collapse
Affiliation(s)
- Marc Lecuit
- Institut Pasteur, Biology of Infection Unit, 75724 Paris, France; Institut National de la Santé et de la Recherche Médicale (INSERM), Unité 1117, Paris, France; Paris Descartes University, Sorbonne Paris Cité, Institut Imagine, Paris, France; Necker-Enfants Malades University Hospital, Division of Infectious Diseases and Tropical Medicine, Paris, France
| | | |
Collapse
|
42
|
Macera L, Focosi D, Giannelli R, Bulleri M, Zucca A, Scatena F, Pistello M, Ceccherini Nelli L, Maggi F. Human gyrovirus is not found in human CD34+ hematopoietic stem cells from peripheral blood or umbilical cord. J Clin Virol 2013; 57:182-3. [PMID: 23510623 DOI: 10.1016/j.jcv.2013.02.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 02/13/2013] [Accepted: 02/21/2013] [Indexed: 11/28/2022]
|
43
|
Chu DKW, Poon LLM, Chiu SSS, Chan KH, Ng EM, Bauer I, Cheung TK, Ng IHY, Guan Y, Wang D, Peiris JSM. Characterization of a novel gyrovirus in human stool and chicken meat. J Clin Virol 2012; 55:209-13. [PMID: 22824231 DOI: 10.1016/j.jcv.2012.07.001] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Revised: 07/01/2012] [Accepted: 07/04/2012] [Indexed: 11/19/2022]
Abstract
BACKGROUND Sequence-independent amplification of clinical specimens can lead to the identification of novel pathogens. OBJECTIVES To identify novel viruses in human stool specimens from patients with diarrhea and to investigate the ecology and clinical significance of such viruses. STUDY DESIGN Nucleic acid extracted from stool specimens from patients with diarrhea with no known etiology were subjected to random PCR amplification and Roche/454 pyrosequencing. Novel viruses identified were genetically and epidemiologically characterized. RESULTS Four gyroviruses, chicken anemia virus (CAV), human gyrovirus (HGV)/avian gyrovirus 2 (AGV2), gyrovirus 3 (GyV3) and a novel gyrovirus (tentatively designated as gyrovirus 4 (GyV4)) were identified in human stool specimens. GyV4, as well as CAV and AGV2/HGV were also detected in chicken skin and meat used for human consumption. CONCLUSIONS A novel gyrovirus (GyV4) was identified in human stool and in chicken meat sold for human consumption. This virus was phylogenetically distinct from previously reported gyroviruses in chicken and humans (chicken anemia virus, human gyrovirus, avian gyrovirus 2 and recently reported gyrovirus 3). The epidemiology and pathogenesis of this virus in humans and in chicken needs to be further investigated.
Collapse
Affiliation(s)
- Daniel K W Chu
- Centre for Influenza Research and School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|