1
|
Van Borm S, Roupie V, Linden A, Vangeluwe D, De Waele V, Lambrecht B, Steensels M. RNA sequencing of avian paramyxovirus (Paramyxoviridae, Avulavirinae) isolates from wild mallards in Belgium, 2021: complete genomes and coinfections. Virus Genes 2023; 59:723-731. [PMID: 37392346 DOI: 10.1007/s11262-023-02015-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/10/2023] [Indexed: 07/03/2023]
Abstract
We used untargeted RNA sequencing to characterize three Avulavirinae isolates from pooled samples obtained from wild mallards in Belgium in 2021. The complete genome sequences of two avian Orthoavulavirus-1 (AOAV-1) strains and one avian Paraavulavirus-4 (APMV-4) strain were determined confirming hemagglutination inhibition testing of the virus isolates. In addition, the applied sequencing strategy identified an avian influenza virus (AIV) coinfection in all three virus isolates, confirming weak-positive AIV realtime RT-PCR results from the original sample material. In one AOAV-1 isolate, partial sequences covering all genome segments of an AIV of subtype H11N9 could be de novo assembled from the sequencing data. Besides an AIV coinfection, RNA metagenomic data from the APMV-4 isolate also showed evidence of Alpharetrovirus and Megrivirus coinfection. In total, two AOAV-1 of Class II, genotype I.2 and one APMV-4 complete genome sequences were assembled and compared to publicly available sequences, highlighting the importance of surveillance for poultry pathogens in wild birds. Beyond the insights from full genome characterization of virus isolates, untargeted RNA sequencing strategies provide additional insights in the RNA virome of clinical samples as well as their derived virus isolates that are particularly useful when targeting wild avifauna reservoirs of poultry pathogens.
Collapse
Affiliation(s)
- Steven Van Borm
- Avian Virology and Immunology, Sciensano, Brussels, Belgium.
| | - V Roupie
- Avian Virology and Immunology, Sciensano, Brussels, Belgium
| | - A Linden
- Fundamental and Applied Research for Animals and Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - D Vangeluwe
- Belgian Ringing Scheme (BeBirds), Royal Belgian Institute of Natural Sciences, Brussels, Belgium
| | - V De Waele
- Department of Natural and Agricultural Environment Studies, Public Service of Wallonia, Gembloux, Belgium
| | | | | |
Collapse
|
2
|
Zamora G, Aguilar Pierlé S, Loncopan J, Araos L, Verdugo F, Rojas-Fuentes C, Krüger L, Gaggero A, Barriga GP. Scavengers as Prospective Sentinels of Viral Diversity: the Snowy Sheathbill Virome as a Potential Tool for Monitoring Virus Circulation, Lessons from Two Antarctic Expeditions. Microbiol Spectr 2023; 11:e0330222. [PMID: 37227283 PMCID: PMC10269608 DOI: 10.1128/spectrum.03302-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 03/29/2023] [Indexed: 05/26/2023] Open
Abstract
Antarctica is a unique environment due to its extreme meteorological and geological conditions. In addition to this, its relative isolation from human influences has kept it undisturbed. This renders our limited understanding of its fauna and its associated microbial and viral communities a relevant knowledge gap to fill. This includes members of the order Charadriiformes such as snowy sheathbills. They are opportunistic predator/scavenger birds distributed on Antarctic and sub-Antarctic islands that are in frequent contact with other bird and mammal species. This makes them an interesting species for surveillance studies due to their high potential for the acquisition and transport of viruses. In this study, we performed whole-virome and targeted viral surveillance for coronaviruses, paramyxoviruses, and influenza viruses in snowy sheathbills from two locations, the Antarctic Peninsula and South Shetland. Our results suggest the potential role of this species as a sentinel for this region. We highlight the discovery of two human viruses, a member of the genus Sapovirus GII and a gammaherpesvirus, and a virus previously described in marine mammals. Here, we provide insight into a complex ecological picture. These data highlight the surveillance opportunities provided by Antarctic scavenger birds. IMPORTANCE This article describes whole-virome and targeted viral surveillance for coronaviruses, paramyxoviruses, and influenza viruses in snowy sheathbills from the Antarctic Peninsula and South Shetland. Our results suggest an important role of this species as a sentinel for this region. This species' RNA virome showcased a diversity of viruses likely tied to its interactions with assorted Antarctic fauna. We highlight the discovery of two viruses of likely human origin, one with an intestinal impact and another with oncogenic potential. Analysis of this data set detected a variety of viruses tied to various sources (from crustaceans to nonhuman mammals), depicting a complex viral landscape for this scavenger species.
Collapse
Affiliation(s)
- Gabriel Zamora
- Laboratory of Emerging Viruses, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | | | - Johana Loncopan
- Laboratory of Emerging Viruses, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Loreto Araos
- Laboratory of Emerging Viruses, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Francisco Verdugo
- Laboratory of Emerging Viruses, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Cecilia Rojas-Fuentes
- Laboratory of Environmental Virology, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Facultad de Ciencias de la Salud, Programa Magister en Ciencias Químico Biológicas, Universidad Bernardo O’Higgins, Santiago, Chile
| | - Lucas Krüger
- Instituto Antártico Chileno, Punta Arenas, Chile
- Fundación Instituto de Biodiversidad de Ecosistemas Antárticos y Subantárticos, Las Palmeras, Ñuñoa, Santiago, Chile
| | - Aldo Gaggero
- Laboratory of Environmental Virology, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Gonzalo P. Barriga
- Laboratory of Emerging Viruses, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| |
Collapse
|
3
|
Influenza A(H11N2) Virus Detection in Fecal Samples from Adélie ( Pygoscelis adeliae) and Chinstrap ( Pygoscelis antarcticus) Penguins, Penguin Island, Antarctica. Microbiol Spectr 2022; 10:e0142722. [PMID: 36121294 PMCID: PMC9603087 DOI: 10.1128/spectrum.01427-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Influenza A viruses infect a range of host species, including a large variety of mammals and more than a hundred species of birds. A total of 95 avian fecal samples were collected from penguin colonies in the South Shetland Islands, close to the Antarctic Peninsula, and tested by reverse transcription-PCR (RT-PCR) to detect avian influenza viruses (AIVs). Five out of seven samples collected from Penguin Island were positive for AIVs. Analysis of the genomes recovered from four samples revealed the detection of influenza A(H11N2) virus in fecal samples from Adélie penguins (Pygoscelis adeliae) and from a colony of chinstrap penguins (Pygoscelis antarcticus). Bayesian phylogeographic analysis revealed the clustering of all currently available H11N2 samples from Antarctica's avifauna in a single cluster that emerged at least in the early 2010s, suggesting its continued circulation on the continent. Our results reinforce the need for continuous surveillance of avian influenza on the Antarctic continent. IMPORTANCE Although wild birds play a role in the transmission and ecology of avian influenza viruses (AIVs) across the globe, there are significant gaps in our understanding of the worldwide distribution of these viruses in polar environments. In this study, using molecular analysis and full-genome sequencing, we describe the detection of distinct influenza A(H11N2) viruses in fecal samples of penguins in the Southern Shetland Islands, Antarctica. We emphasize the need for virus monitoring as AIVs may have implications for the health of endemic fauna and the potential risk of the introduction of highly pathogenic AIVs to the continent.
Collapse
|
4
|
Jin JH, Wang JJ, Ren YC, Liu S, Li JP, Hou GY, Liu HL, Zhuang QY, Wang SC, Jiang WM, Yu XH, Yu JM, Yuan LP, Peng C, Zhang GZ, Chen JM. A set of RT-PCR assays for detection of all known avian paramyxoviruses and application in surveillance of avian paramyxoviruses in China. PeerJ 2021; 9:e10748. [PMID: 33717667 PMCID: PMC7937338 DOI: 10.7717/peerj.10748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 12/18/2020] [Indexed: 12/13/2022] Open
Abstract
Background Avian paramyxoviruses (APMVs), also termed avian avulaviruses, are of a vast diversity and great significance in poultry. Detection of all known APMVs is challenging, and distribution of APMVs have not been well investigated. Methods A set of reverse transcription polymerase chain reaction (RT-PCR) assays for detection of all known APMVs were established using degenerate primers targeting the viral polymerase L gene. The assays were preliminarily evaluated using in-vitro transcribed double-stranded RNA controls and 24 known viruses, and then they were employed to detect 4,346 avian samples collected from 11 provinces. Results The assays could detect 20-200 copies of the double-stranded RNA controls, and detected correctly the 24 known viruses. Of the 4,346 avian samples detected using the assays, 72 samples were found positive. Of the 72 positives, 70 were confirmed through sequencing, indicating the assays were specific for APMVs. The 4,346 samples were also detected using a reported RT-PCR assay, and the results showed this RT-PCR assay was less sensitive than the assays reported here. Of the 70 confirmed positives, 40 were class I Newcastle disease virus (NDV or APMV-1) and 27 were class II NDV from poultry including chickens, ducks, geese, and pigeons, and three were APMV-2 from parrots. The surveillance identified APMV-2 in parrots for the first time, and revealed that prevalence of NDVs in live poultry markets was higher than that in poultry farms. The surveillance also suggested that class I NDVs in chickens could be as prevalent as in ducks, and class II NDVs in ducks could be more prevalent than in chickens, and class II NDVs could be more prevalent than class I NDVs in ducks. Altogether, we developed a set of specific and sensitive RT-PCR assays for detection of all known APMVs, and conducted a large-scale surveillance using the assays which shed novel insights into APMV epidemiology.
Collapse
Affiliation(s)
- Ji-Hui Jin
- Laboratory for Avian Disease Surveillance (OIE Reference Laboratory for Newcastle Disease), China Animal Health and Epidemiology Center, Qingdao, China
| | - Jing-Jing Wang
- Laboratory for Avian Disease Surveillance (OIE Reference Laboratory for Newcastle Disease), China Animal Health and Epidemiology Center, Qingdao, China
| | - Ying-Chao Ren
- Department for Animal Health Assessment, China Animal Health and Epidemiology Center, Qingdao, China
| | - Shuo Liu
- Laboratory for Avian Disease Surveillance (OIE Reference Laboratory for Newcastle Disease), China Animal Health and Epidemiology Center, Qingdao, China
| | - Jin-Ping Li
- Laboratory for Avian Disease Surveillance (OIE Reference Laboratory for Newcastle Disease), China Animal Health and Epidemiology Center, Qingdao, China
| | - Guang-Yu Hou
- Laboratory for Avian Disease Surveillance (OIE Reference Laboratory for Newcastle Disease), China Animal Health and Epidemiology Center, Qingdao, China
| | - Hua-Lei Liu
- Laboratory for Avian Disease Surveillance (OIE Reference Laboratory for Newcastle Disease), China Animal Health and Epidemiology Center, Qingdao, China
| | - Qing-Ye Zhuang
- Laboratory for Avian Disease Surveillance (OIE Reference Laboratory for Newcastle Disease), China Animal Health and Epidemiology Center, Qingdao, China
| | - Su-Chun Wang
- Laboratory for Avian Disease Surveillance (OIE Reference Laboratory for Newcastle Disease), China Animal Health and Epidemiology Center, Qingdao, China
| | - Wen-Ming Jiang
- Laboratory for Avian Disease Surveillance (OIE Reference Laboratory for Newcastle Disease), China Animal Health and Epidemiology Center, Qingdao, China
| | - Xiao-Hui Yu
- Laboratory for Avian Disease Surveillance (OIE Reference Laboratory for Newcastle Disease), China Animal Health and Epidemiology Center, Qingdao, China
| | - Jian-Min Yu
- Laboratory for Avian Disease Surveillance (OIE Reference Laboratory for Newcastle Disease), China Animal Health and Epidemiology Center, Qingdao, China
| | - Li-Ping Yuan
- Laboratory for Avian Disease Surveillance (OIE Reference Laboratory for Newcastle Disease), China Animal Health and Epidemiology Center, Qingdao, China
| | - Cheng Peng
- Laboratory for Avian Disease Surveillance (OIE Reference Laboratory for Newcastle Disease), China Animal Health and Epidemiology Center, Qingdao, China
| | - Guo-Zhong Zhang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Ji-Ming Chen
- Laboratory for Avian Disease Surveillance (OIE Reference Laboratory for Newcastle Disease), China Animal Health and Epidemiology Center, Qingdao, China
| |
Collapse
|
5
|
Ariyama N, Tapia R, Godoy C, Agüero B, Valdés V, Berrios F, García Borboroglu P, Pütz K, Alegria R, Barriga GP, Medina R, Neira V. Avian orthoavulavirus 1 (Newcastle Disease virus) antibodies in five penguin species, Antarctic peninsula and Southern Patagonia. Transbound Emerg Dis 2021; 68:3096-3102. [PMID: 33587778 DOI: 10.1111/tbed.14037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 02/06/2021] [Accepted: 02/11/2021] [Indexed: 11/29/2022]
Abstract
Avian orthoavulavirus 1 (AOaV-1) causes Newcastle disease, one of the most important and contagious infections in poultry, where migratory birds can play a key role as a reservoir. Seven hundred and seven serum samples were collected from five penguin species (King, Magellanic, Gentoo, Chinstrap and Adelie penguins) in the Antarctic and Sub-Antarctic zones. Using a competitive ELISA to detect antibodies against AOaV-1, we identified positive individuals in all penguin species. The Magellanic penguin showed the highest seropositivity rate (30.3%), suggesting it could be a natural reservoir of this virus. At the Antarctic zones, Chinstrap penguin showed the highest occurrence (7.5%). Interesting, positive sera was only obtained in Sub-Antarctic and Northern zones at the Antarctic peninsula, no seroreactivity was observed in Southern locations. Further studies are needed to establish the role of these penguin species in the epidemiology of the AOaV-1 and determine the effects of this virus in these populations.
Collapse
Affiliation(s)
- Naomi Ariyama
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - Rodrigo Tapia
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - Claudia Godoy
- Global Penguin Society, San Francisco, CA, USA.,Parque Pingüino Rey, Porvenir, Chile
| | - Belén Agüero
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - Valentina Valdés
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - Felipe Berrios
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | | | | | - Raul Alegria
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - Gonzalo P Barriga
- Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile.,Laboratory of Emerging Viruses, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Rafael Medina
- Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile.,Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Víctor Neira
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| |
Collapse
|
6
|
Identification and Distribution of Novel Cressdnaviruses and Circular molecules in Four Penguin Species in South Georgia and the Antarctic Peninsula. Viruses 2020; 12:v12091029. [PMID: 32947826 PMCID: PMC7551938 DOI: 10.3390/v12091029] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/11/2020] [Accepted: 09/14/2020] [Indexed: 12/26/2022] Open
Abstract
There is growing interest in uncovering the viral diversity present in wild animal species. The remote Antarctic region is home to a wealth of uncovered microbial diversity, some of which is associated with its megafauna, including penguin species, the dominant avian biota. Penguins interface with a number of other biota in their roles as marine mesopredators and several species overlap in their ranges and habitats. To characterize the circular single-stranded viruses related to those in the phylum Cressdnaviricota from these environmental sentinel species, cloacal swabs (n = 95) were obtained from King Penguins in South Georgia, and congeneric Adélie Penguins, Chinstrap Penguins, and Gentoo Penguins across the South Shetland Islands and Antarctic Peninsula. Using a combination of high-throughput sequencing, abutting primers-based PCR recovery of circular genomic elements, cloning, and Sanger sequencing, we detected 97 novel sequences comprising 40 ssDNA viral genomes and 57 viral-like circular molecules from 45 individual penguins. We present their detection patterns, with Chinstrap Penguins harboring the highest number of new sequences. The novel Antarctic viruses identified appear to be host-specific, while one circular molecule was shared between sympatric Chinstrap and Gentoo Penguins. We also report viral genotype sharing between three adult-chick pairs, one in each Pygoscelid species. Sequence similarity network approaches coupled with Maximum likelihood phylogenies of the clusters indicate the 40 novel viral genomes do not fall within any known viral families and likely fall within the recently established phylum Cressdnaviricota based on their replication-associated protein sequences. Similarly, 83 capsid protein sequences encoded by the viruses or viral-like circular molecules identified in this study do not cluster with any of those encoded by classified viral groups. Further research is warranted to expand knowledge of the Antarctic virome and would help elucidate the importance of viral-like molecules in vertebrate host evolution.
Collapse
|
7
|
Identification of Circovirus Genome in a Chinstrap Penguin ( Pygoscelis antarcticus) and Adélie Penguin ( Pygoscelis adeliae) on the Antarctic Peninsula. Viruses 2020; 12:v12080858. [PMID: 32781620 PMCID: PMC7472332 DOI: 10.3390/v12080858] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/01/2020] [Accepted: 08/03/2020] [Indexed: 12/21/2022] Open
Abstract
Circoviruses infect a variety of animal species and have small (~1.8–2.2 kb) circular single-stranded DNA genomes. Recently a penguin circovirus (PenCV) was identified associated with an Adélie Penguin (Pygoscelis adeliae) with feather disorder and in the cloacal swabs of three asymptomatic Adélie Penguins at Cape Crozier, Antarctica. A total of 75 cloacal swab samples obtained from adults and chicks of three species of penguin (genus: Pygoscelis) from seven Antarctic breeding colonies (South Shetland Islands and Western Antarctic Peninsula) in the 2015−2016 breeding season were screened for PenCV. We identified new variants of PenCV in one Adélie Penguin and one Chinstrap Penguin (Pygoscelis antarcticus) from Port Charcot, Booth Island, Western Antarctic Peninsula, a site home to all three species of Pygoscelid penguins. These two PenCV genomes (length of 1986 nucleotides) share > 99% genome-wide nucleotide identity with each other and share ~87% genome-wide nucleotide identity with the PenCV sequences described from Adélie Penguins at Cape Crozier ~4400 km away in East Antarctica. We did not find any evidence of recombination among PenCV sequences. This is the first report of PenCV in Chinstrap Penguins and the first detection outside of Ross Island, East Antarctica. Given the limited knowledge on Antarctic animal viral diversity, future samples from Antarctic wildlife should be screened for these and other viruses to determine the prevalence and potential impact of viral infections.
Collapse
|
8
|
Rao PL, Gandham RK, Subbiah M. Molecular evolution and genetic variations of V and W proteins derived by RNA editing in Avian Paramyxoviruses. Sci Rep 2020; 10:9532. [PMID: 32533018 PMCID: PMC7293227 DOI: 10.1038/s41598-020-66252-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 05/06/2020] [Indexed: 11/12/2022] Open
Abstract
The newly assigned subfamily Avulavirinae in the family Paramyxoviridae includes avian paramyxoviruses (APMVs) isolated from a wide variety of avian species across the globe. Till date, 21 species of APMVs are reported and their complete genome sequences are available in GenBank. The APMV genome comprises of a single stranded, negative sense, non-segmented RNA comprising six transcriptional units (except APMV-6 with seven units) each coding for a structural protein. Additionally, by co-transcriptional RNA editing of phosphoprotein (P) gene, two mRNAs coding for accessory viral proteins, V and W, are generated along with unedited P mRNA. However, in APMV-11, the unedited mRNA codes for V protein while +2 edited mRNA translates to P protein, similar to members of subfamily Rubulavirinae in the same family. Such RNA editing in paramyxoviruses enables maximizing the coding capacity of their smaller genome. The three proteins of P gene: P, V and W, share identical N terminal but varied C terminal sequences that contribute to their unique functions. Here, we analyzed the P gene editing site, V and W sequences of all 21 APMV species known so far (55 viruses) by using bioinformatics and report their genetic variations and molecular evolution. The variations observed in the sequence and hexamer phase positions of the P gene editing sites is likely to influence the levels and relative proportions of P, V and W proteins' expressions which could explain the differences in the pathogenicity of APMVs. The V protein sequences of APMVs had conserved motifs similar to V proteins of other paramyxoviruses including the seven cysteine residues involved in MDA5 interference, STAT1 degradation and interferon antagonism. Conversely, W protein sequences of APMVs were distinct. High sequence homology was observed in both V and W proteins between strains of the same species than between species except in APMV-3 which was the most divergent APMV species. The estimates of synonymous and non-synonymous substitution rates suggested negative selection pressure on the V and W proteins within species indicating their low evolution rate. The molecular clock analysis revealed higher conservation of V protein sequence compared to W protein indicating the important role played by V protein in viral replication, pathogenesis and immune evasion. However, we speculate the genetic diversity of W proteins could impact the degree of pathogenesis, variable interferon antagonistic activity and the wide host range exhibited by APMV species. Phylogenetically, V proteins of APMVs clustered into three groups similar to the recent classification of APMVs into three new genera while no such pattern could be deciphered in the analysis of W proteins except that strains of same species grouped together. This is the first comprehensive study describing in detail the genetic variations and the molecular evolution of P gene edited, accessory viral proteins of Avian paramyxoviruses.
Collapse
Affiliation(s)
| | - Ravi Kumar Gandham
- National Institute of Animal Biotechnology, Hyderabad, 500032, Telangana, India
| | - Madhuri Subbiah
- National Institute of Animal Biotechnology, Hyderabad, 500032, Telangana, India.
| |
Collapse
|
9
|
Levy H, Fiddaman SR, Vianna JA, Noll D, Clucas GV, Sidhu JKH, Polito MJ, Bost CA, Phillips RA, Crofts S, Miller GD, Pistorius P, Bonnadonna F, Le Bohec C, Barbosa A, Trathan P, Raya Rey A, Frantz LAF, Hart T, Smith AL. Evidence of Pathogen-Induced Immunogenetic Selection across the Large Geographic Range of a Wild Seabird. Mol Biol Evol 2020; 37:1708-1726. [PMID: 32096861 PMCID: PMC7253215 DOI: 10.1093/molbev/msaa040] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Over evolutionary time, pathogen challenge shapes the immune phenotype of the host to better respond to an incipient threat. The extent and direction of this selection pressure depend on the local pathogen composition, which is in turn determined by biotic and abiotic features of the environment. However, little is known about adaptation to local pathogen threats in wild animals. The Gentoo penguin (Pygoscelis papua) is a species complex that lends itself to the study of immune adaptation because of its circumpolar distribution over a large latitudinal range, with little or no admixture between different clades. In this study, we examine the diversity in a key family of innate immune genes-the Toll-like receptors (TLRs)-across the range of the Gentoo penguin. The three TLRs that we investigated present varying levels of diversity, with TLR4 and TLR5 greatly exceeding the diversity of TLR7. We present evidence of positive selection in TLR4 and TLR5, which points to pathogen-driven adaptation to the local pathogen milieu. Finally, we demonstrate that two positively selected cosegregating sites in TLR5 are sufficient to alter the responsiveness of the receptor to its bacterial ligand, flagellin. Taken together, these results suggest that Gentoo penguins have experienced distinct pathogen-driven selection pressures in different environments, which may be important given the role of the Gentoo penguin as a sentinel species in some of the world's most rapidly changing environments.
Collapse
Affiliation(s)
- Hila Levy
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | | | - Juliana A Vianna
- Departamento de Ecosistemas y Medio Ambiente, Pontificia Universidad Católica de Chile, Macul, Santiago, Chile
| | - Daly Noll
- Departamento de Ecosistemas y Medio Ambiente, Pontificia Universidad Católica de Chile, Macul, Santiago, Chile
- Departamento de Ciencias Ecológicas, Instituto de Ecología y Biodiversidad, Universidad de Chile, Santiago, Chile
| | - Gemma V Clucas
- Cornell Atkinson Center for a Sustainable Future, Cornell University, Ithaca, NY
- Cornell Lab of Ornithology, Cornell University, Ithaca, NY
| | | | - Michael J Polito
- Department of Oceanography and Coastal Sciences, Louisiana State University, Baton Rouge, LA
| | - Charles A Bost
- Centre d’Etudes Biologiques de Chizé (CEBC), UMR 7372 du CNRS‐Université de La Rochelle, Villiers‐en‐Bois, France
| | | | - Sarah Crofts
- Falklands Conservation, Stanley, Falkland Islands, United Kingdom
| | - Gary D Miller
- Microbiology and Immunology, PALM, University of Western Australia, Crawley, Western Australia, Australia
| | - Pierre Pistorius
- DST/NRF Centre of Excellence at the Percy FitzPatrick Institute for African Ornithology, Department of Zoology, Nelson Mandela University, Port Elizabeth, South Africa
| | - Francesco Bonnadonna
- CEFE UMR 5175, CNRS, Université de Montpellier, Université Paul-Valéry Montpellier, EPHE, Montpellier, France
| | - Céline Le Bohec
- Université de Strasbourg, CNRS, IPHC UMR 7178, Strasbourg, France
- Département de Biologie Polaire, Centre Scientifique de Monaco, Monaco, Principality of Monaco
| | - Andrés Barbosa
- Museo Nacional de Ciencias Naturales, Departamento de Ecología Evolutiva, CSIC, Madrid, Spain
| | - Phil Trathan
- British Antarctic Survey, Cambridge, United Kingdom
| | - Andrea Raya Rey
- Centro Austral de Investigaciones Científicas – Consejo Nacional de Investigaciones Científicas y Técnicas (CADIC-CONICET), Ushuaia, Tierra del Fuego, Argentina
- Instituto de Ciencias Polares, Ambiente y Recursos Naturales, Universidad Nacional de Tierra del Fuego, Ushuaia, Tierra del Fuego, Argentina
- Wildlife Conservation Society, Buenos Aires, Argentina
| | - Laurent A F Frantz
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Tom Hart
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Adrian L Smith
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
10
|
Sustained RNA virome diversity in Antarctic penguins and their ticks. ISME JOURNAL 2020; 14:1768-1782. [PMID: 32286545 PMCID: PMC7305176 DOI: 10.1038/s41396-020-0643-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 03/16/2020] [Accepted: 03/20/2020] [Indexed: 01/07/2023]
Abstract
Despite its isolation and extreme climate, Antarctica is home to diverse fauna and associated microorganisms. It has been proposed that the most iconic Antarctic animal, the penguin, experiences low pathogen pressure, accounting for their disease susceptibility in foreign environments. There is, however, a limited understanding of virome diversity in Antarctic species, the extent of in situ virus evolution, or how it relates to that in other geographic regions. To assess whether penguins have limited microbial diversity we determined the RNA viromes of three species of penguins and their ticks sampled on the Antarctic peninsula. Using total RNA sequencing we identified 107 viral species, comprising likely penguin associated viruses (n = 13), penguin diet and microbiome associated viruses (n = 82), and tick viruses (n = 8), two of which may have the potential to infect penguins. Notably, the level of virome diversity revealed in penguins is comparable to that seen in Australian waterbirds, including many of the same viral families. These data run counter to the idea that penguins are subject to lower pathogen pressure. The repeated detection of specific viruses in Antarctic penguins also suggests that rather than being simply spill-over hosts, these animals may act as key virus reservoirs.
Collapse
|
11
|
de Souza WM, Fumagalli MJ, Martin MC, de Araujo J, Orsi MA, Sanfilippo LF, Modha S, Durigon EL, Proença-Módena JL, Arns CW, Murcia PR, Figueiredo LTM. Pingu virus: A new picornavirus in penguins from Antarctica. Virus Evol 2019; 5:vez047. [PMID: 31850147 PMCID: PMC6908804 DOI: 10.1093/ve/vez047] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Picornaviridae family comprises single-stranded, positive-sense RNA viruses distributed into forty-seven genera. Picornaviruses have a broad host range and geographic distribution in all continents. In this study, we applied a high-throughput sequencing approach to examine the presence of picornaviruses in penguins from King George Island, Antarctica. We discovered and characterized a novel picornavirus from cloacal swab samples of gentoo penguins (Pygoscelis papua), which we tentatively named Pingu virus. Also, using RT-PCR we detected this virus in 12.9 per cent of cloacal swabs derived from P. papua, but not in samples from adélie penguins (Pygoscelis adeliae) or chinstrap penguins (Pygoscelis antarcticus). Attempts to isolate the virus in a chicken cell line and in embryonated chicken eggs were unsuccessful. Our results expand the viral diversity, host range, and geographical distribution of the Picornaviridae.
Collapse
Affiliation(s)
- William Marciel de Souza
- Virology Research Center, Ribeirão Preto Medical School, University of São Paulo, Avenida dos Bandeirantes 3900, Ribeirão Preto, SP, 14049-900 Brazil
| | - Marcílio Jorge Fumagalli
- Virology Research Center, Ribeirão Preto Medical School, University of São Paulo, Avenida dos Bandeirantes 3900, Ribeirão Preto, SP, 14049-900 Brazil
| | - Matheus Cavalheiro Martin
- Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato, 255Cidade Universitária "Zeferino Vaz", Campinas, SP, 13083-862 Brazil
| | - Jansen de Araujo
- Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 2415 - Butantã, São Paulo - SP, 05508-900 Brazil
| | - Maria Angela Orsi
- Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato, 255Cidade Universitária "Zeferino Vaz", Campinas, SP, 13083-862 Brazil
| | - Luiz Francisco Sanfilippo
- Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 2415 - Butantã, São Paulo - SP, 05508-900 Brazil
| | - Sejal Modha
- MRC-University of Glasgow Centre for Virus Research, 464 Bearsden Rd, Bearsden, Glasgow G61 1QH, UK
| | - Edison Luiz Durigon
- Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 2415 - Butantã, São Paulo - SP, 05508-900 Brazil
| | - José Luiz Proença-Módena
- Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato, 255Cidade Universitária "Zeferino Vaz", Campinas, SP, 13083-862 Brazil
| | - Clarice Weis Arns
- Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato, 255Cidade Universitária "Zeferino Vaz", Campinas, SP, 13083-862 Brazil
| | - Pablo Ramiro Murcia
- MRC-University of Glasgow Centre for Virus Research, 464 Bearsden Rd, Bearsden, Glasgow G61 1QH, UK
| | - Luiz Tadeu Moraes Figueiredo
- Virology Research Center, Ribeirão Preto Medical School, University of São Paulo, Avenida dos Bandeirantes 3900, Ribeirão Preto, SP, 14049-900 Brazil
| |
Collapse
|
12
|
Olivares F, Tapia R, Gálvez C, Meza F, Barriga GP, Borras-Chavez R, Mena-Vasquez J, Medina RA, Neira V. Novel penguin Avian avulaviruses 17, 18 and 19 are widely distributed in the Antarctic Peninsula. Transbound Emerg Dis 2019; 66:2227-2232. [PMID: 31355981 PMCID: PMC8628254 DOI: 10.1111/tbed.13309] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/12/2019] [Accepted: 07/14/2019] [Indexed: 11/30/2022]
Abstract
Three novel Avian avulavirus species were discovered and isolated during 2017 from Gentoo penguins (Pygoscelis papua) at Kopaitic island in the Northwestern region of the Antarctic Peninsula. The viruses were officially named as Avian avulavirus 17 (AAV17), Avian avulavirus 18 (AAV18) and Avian avulavirus 19 (AAV19), collectively referred to as penguin avulaviruses (PAVs). To determine whether these viruses are capable of infecting the three species of Pygoscelis spp. penguins (Gentoo, Adelie and Chinstrap) and assess its geographical distribution, serum samples were collected from seven locations across the Antarctic Peninsula and Southern Shetland Islands. The samples were tested by Hemagglutination inhibition assay using reference viruses for AAV17, AAV18 and AAV19. A total of 498 sera were tested, and 40 were positive for antibodies against AAV17, 20 for AAV18 and 45 for AAV19. Positive sera were obtained for the penguin's species for each virus; however, antibodies against AAV18 were not identified in Adelie penguins. Positive penguins were identified in all regions studied. Positive locations include Ardley Island and Cape Shirreff at Livingston Island (Southern Shetland Region); Anvers Island, Doumer Island and Paradise Bay in the Central Western region; and Avian Island at Southwestern region of the Antarctic Peninsula. The lowest occurrence was observed at the Southwestern region at Lagotellerie Island, where all samples were negative. On the other hand, Cape Shirreff and Paradise Bay showed the highest antibody titres. Field samples did not evidence cross-reactivity between viruses, and detection was significantly higher for AAV19 and lower for AAV18. This is the first serologic study on the prevalence of the novel Avian avulaviruses including different locations in the white continent. The results indicate that these novel viruses can infect the three Pygoscelis spp. penguins, which extend across large distances of the Antarctic Peninsula.
Collapse
Affiliation(s)
- Florencia Olivares
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - Rodrigo Tapia
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - Camilo Gálvez
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - Fernanda Meza
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - Gonzalo P. Barriga
- Laboratory of Emerging Viruses, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Renato Borras-Chavez
- Instituto Antártico Chileno, Punta Arenas, Chile
- Center of Applied Ecology and Sustainability-CAPES, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Juan Mena-Vasquez
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - Rafael A. Medina
- Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
- Icahn School of Medicine at Mount Sinai, New York City, New York
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Victor Neira
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| |
Collapse
|
13
|
Liu YP, Kuo ST, Chiou CJ, Terregino C, Tsai HJ. Novel avian metaavulavirus isolated from birds of the family Columbidae in Taiwan. Vet Microbiol 2019; 236:108377. [PMID: 31500723 DOI: 10.1016/j.vetmic.2019.07.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 07/31/2019] [Accepted: 07/31/2019] [Indexed: 01/06/2023]
Abstract
Avian paramyxoviruses (APMVs) consist of twenty known species and have been isolated from domestic and wild birds around the world. In 2009, the isolate APMV/dove/Taiwan/AHRI33/2009 was isolated from swabs of red turtle doves (Streptopelia tranquebarica) during active surveillance of avian influenza in resident birds in Taiwan, and it was initially identified as paramyxovirus based on electron microscopy. Hemagglutination inhibition assays indicated antigenic heterogeneity of AHRI33 with the known APMV-1, -2, -3, -4, -6, -8, and -9 species, only showing weak but measurable cross-reactivity with APMV-7. Pathogenicity ICPI test revealed that the virus was avirulent for chickens. The AHRI33 virus genome revealed a typical APMV structure consisting of six genes 3'-NP-P-M-F-HN-L-5', and the length of the genome was 16,914 nucleotides, the third longest among the members of the subfamily Avulavirinae. Estimates of the nucleotide sequence identities of the genome between each prototype of APMVs had shown AHRI33 to be more closely related to APMV-7 than to the others, with a sequence identity of 62.8%. Based on topology of the phylogenetic tree of RdRp genes and the branch length between the nearest node and the tip of the branch, AHRI33 met the criteria for designation as distinct species. Together, the data suggest that the isolate APMV/dove/Taiwan/AHRI33/2009 should be considered as the prototype strain of the new species Avian metaavulavirus 21 in the genus Metaavulavirus in the subfamily Avulavirinae.
Collapse
Affiliation(s)
- Yu-Pin Liu
- Animal Health Research Institute, 376 Chung-Cheng Road, Tamsui District, New Taipei City, 25158, Taiwan; Graduate Institute of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, 1, Section 4, Roosevelt Road, Taipei, 10617, Taiwan
| | - Shu-Ting Kuo
- Animal Health Research Institute, 376 Chung-Cheng Road, Tamsui District, New Taipei City, 25158, Taiwan
| | - Chwei-Jang Chiou
- Animal Health Research Institute, 376 Chung-Cheng Road, Tamsui District, New Taipei City, 25158, Taiwan
| | - Calogero Terregino
- OIE/FAO and National Reference Laboratory for Newcastle Disease and Avian Influenza, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università, 10-35020, Legnaro, PD, Italy
| | - Hsiang-Jung Tsai
- Graduate Institute of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, 1, Section 4, Roosevelt Road, Taipei, 10617, Taiwan.
| |
Collapse
|
14
|
Antarctic Penguins as Reservoirs of Diversity for Avian Avulaviruses. J Virol 2019; 93:JVI.00271-19. [PMID: 30894472 PMCID: PMC6532105 DOI: 10.1128/jvi.00271-19] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 03/05/2019] [Indexed: 02/06/2023] Open
Abstract
Approximately 99% of all viruses are still to be described, and in our changing world, any one of these unknown viruses could potentially expand their host range and cause epidemic disease in wildlife, agricultural animals, or humans. Avian avulavirus 1 causes outbreaks in wild birds and poultry and is thus well described. However, for many avulavirus species, only a single specimen has been described, and their viral ecology and epidemiology are unknown. Through the detection of avian avulaviruses in penguins from Antarctica, we have been able to expand upon our understanding of three avian avulavirus species (avian avulaviruses 17 to 19) and report a potentially novel avulavirus species. Importantly, we show that penguins appear to play a key role in the epidemiology of avian avulaviruses, and we encourage additional sampling of this avian group. Wild birds harbor a huge diversity of avian avulaviruses (formerly avian paramyxoviruses). Antarctic penguin species have been screened for avian avulaviruses since the 1980s and, as such, are known hosts of these viruses. In this study, we screened three penguin species from the South Shetland Islands and the Antarctic Peninsula for avian avulaviruses. We show that Adelie penguins (Pygoscelis adeliae) are hosts for four different avian avulavirus species, the recently described avian avulaviruses 17 to 19 and avian avulavirus 10-like, never before isolated in Antarctica. A total of 24 viruses were isolated and sequenced; avian avulavirus 17 was the most common, and phylogenetic analysis demonstrated patterns of occurrence, with different genetic clusters corresponding to penguin age and location. Following infection in specific-pathogen-free (SPF) chickens, all four avian avulavirus species were shed from the oral cavity for up to 7 days postinfection. There was limited shedding from the cloaca in a proportion of infected chickens, and all but one bird seroconverted by day 21. No clinical signs were observed. Taken together, we propose that penguin species, including Antarctic penguins, may be the central reservoir for a diversity of avian avulavirus species and that these viruses have the potential to infect other avian hosts. IMPORTANCE Approximately 99% of all viruses are still to be described, and in our changing world, any one of these unknown viruses could potentially expand their host range and cause epidemic disease in wildlife, agricultural animals, or humans. Avian avulavirus 1 causes outbreaks in wild birds and poultry and is thus well described. However, for many avulavirus species, only a single specimen has been described, and their viral ecology and epidemiology are unknown. Through the detection of avian avulaviruses in penguins from Antarctica, we have been able to expand upon our understanding of three avian avulavirus species (avian avulaviruses 17 to 19) and report a potentially novel avulavirus species. Importantly, we show that penguins appear to play a key role in the epidemiology of avian avulaviruses, and we encourage additional sampling of this avian group.
Collapse
|
15
|
Karamendin KO, Sayatov MK, Kydyrmanov AI, Kasymbekov ET, Asanova SE, Daulbayeva KD, Khan EY. [Molecular-genetic characterization of Avian avulavirus 20 strains isolated from wild birds.]. Vopr Virusol 2019; 64:185-192. [PMID: 32163685 DOI: 10.36233/0507-4088-2019-64-4-185-192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 10/31/2018] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Previously unknown paramyxovirus strains were isolated from wild birds in 2013-2014 in Kazakhstan and subsequently identified as representatives of the novel Avian avulavirus 20 species. The aims and tasks were molecular genetic characterization of novel avulaviruses and investigation of their phylogenetic relationships. MATERIAL AND METHODS Embryonated chicken eggs were inoculated with cloacal and tracheal swabs from wild birds with subsequent virus isolation. The complete nucleotide sequences of viral genomes were obtained by massive parallel sequencing with subsequent bioinformatics processing. RESULTS By initial infection of chicken embryos with samples from 179 wild birds belonging to the Anatidae, Laridae, Scolopacidae and Charadriidae families, 19 hemagglutinating agents were isolated, and five of them were identified as representatives of new viral species. The study of their sequenced genomes revealed their similarity in size, but there was a significant genetic variability within the species. 2,640 nucleotide substitutions were identified and 273 of them were nonsynonymous, influencing the protein structure of viruses. It was shown that isolates Avian avulavirus 20/black-headed gull/Balkhash/5844/2013 and Avian avulavirus 20 /great black-headed gull/Atyrau/5541/2013 were 86% and 95% respectively identical to the previously described reference strain, indicating a significant evolutionary divergence within species. DISCUSSION The authors suggest the existence of two independent lineages - the Caspian, represented by the reference strain Aktau/5976 and Atyrau/5541, as well as the second, geographically significantly distant Balkhash lineage. CONCLUSION The study confirms the role of the birds of the Laridae family as the main reservoir of Avian avulavirus 20 in the avifauna that plays a key role in maintaining viruses of the genus Avulavirus in the biosphere and is a potential natural source for the emergence of new viral variants. Continuous surveillance of them in the wild is one of the most important tasks in ensuring the safety of the poultry industry.
Collapse
Affiliation(s)
- K O Karamendin
- SPC for Microbiology and Virology, Almaty, 050010, Kazakhstan
| | - M K Sayatov
- SPC for Microbiology and Virology, Almaty, 050010, Kazakhstan
| | - A I Kydyrmanov
- SPC for Microbiology and Virology, Almaty, 050010, Kazakhstan
| | - E T Kasymbekov
- SPC for Microbiology and Virology, Almaty, 050010, Kazakhstan
| | - S E Asanova
- SPC for Microbiology and Virology, Almaty, 050010, Kazakhstan
| | - K D Daulbayeva
- SPC for Microbiology and Virology, Almaty, 050010, Kazakhstan
| | - E Y Khan
- SPC for Microbiology and Virology, Almaty, 050010, Kazakhstan
| |
Collapse
|
16
|
Aziz-ul-Rahman, Munir M, Shabbir MZ. Comparative evolutionary and phylogenomic analysis of Avian avulaviruses 1–20. Mol Phylogenet Evol 2018; 127:931-951. [DOI: 10.1016/j.ympev.2018.06.040] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 05/15/2018] [Accepted: 06/25/2018] [Indexed: 12/20/2022]
|
17
|
Chen Y, Ding Z, Liu X, Chen J, Li J, Fei Y, Liu Z, Stoeger T, Bi Y, Yin R. Biological and phylogenetic characterization of a novel hemagglutination-negative avian avulavirus 6 isolated from wild waterfowl in China. Transbound Emerg Dis 2018; 65:1421-1428. [PMID: 30146734 PMCID: PMC7169737 DOI: 10.1111/tbed.13005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 08/08/2018] [Accepted: 08/21/2018] [Indexed: 02/05/2023]
Abstract
Up to now only nine whole genome sequences of avian avulavirus 6 (AAvV‐6) had been documented in the world since the first discovery of AAvV‐6 (AAvV‐6/duck/HongKong/18/199/77) at a domestic duck in 1977 from Hong Kong of China. Very limited information is known about the regularities of transmission, genetic and biological characteristics of AAvV‐6 because of the lower isolation rate and mild losses for poultry industry. To better further explore the relationships among above factors, an AAvV‐6 epidemiological surveillance of domestic poultry and wild birds in six provinces of China suspected of sites of inter‐species transmission and being intercontinental flyways during the year 2013–2017 was conducted. Therefore, 9,872 faecal samples from wild birds and 1,642 cloacal and tracheal swab samples from clinically healthy poultry of live bird market (LBM) were collected respectively. However, only one novel hemagglutination‐negative AAvV‐6 isolate (AAvV‐6/mallard/Hubei/2015) was isolated from a fresh faecal sample obtained from mallard at a wetland of Hubei province. Sequencing and phylogenetic analyses of this AAvV‐6 isolate (AAvV‐6/mallard/Hubei/2015) indicated that this isolate grouping to genotype I were epidemiological intercontinentally linked with viruses from the wild birds in Europe and America. Meanwhile, at least two genotypes (I and II) are existed within serotype AAvV‐6. In additional, this novel hemagglutination‐negative AAvV‐6 isolate in chicken embryos restored its hemagglutination when pre‐treated with trypsin. These findings, together with data from other AAvV‐6, suggest potential epidemiological intercontinental spreads among AAvV‐6 transmission by wild migratory birds, and reveal potential threats to wild birds and domestic poultry worldwide.
Collapse
Affiliation(s)
- Yanyu Chen
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Zhuang Ding
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xinxin Liu
- College of Food Science and Engineering, Jilin University, Changchun, China
| | - Jianjun Chen
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Hubei, China
| | - Junjiao Li
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yidong Fei
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Zhe Liu
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Tobias Stoeger
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease (iLBD), Helmholtz Zentrum Muenchen, Munich, Germany
| | - Yuhai Bi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Renfu Yin
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
18
|
Amarasinghe GK, Aréchiga Ceballos NG, Banyard AC, Basler CF, Bavari S, Bennett AJ, Blasdell KR, Briese T, Bukreyev A, Caì Y, Calisher CH, Campos Lawson C, Chandran K, Chapman CA, Chiu CY, Choi KS, Collins PL, Dietzgen RG, Dolja VV, Dolnik O, Domier LL, Dürrwald R, Dye JM, Easton AJ, Ebihara H, Echevarría JE, Fooks AR, Formenty PBH, Fouchier RAM, Freuling CM, Ghedin E, Goldberg TL, Hewson R, Horie M, Hyndman TH, Jiāng D, Kityo R, Kobinger GP, Kondō H, Koonin EV, Krupovic M, Kurath G, Lamb RA, Lee B, Leroy EM, Maes P, Maisner A, Marston DA, Mor SK, Müller T, Mühlberger E, Ramírez VMN, Netesov SV, Ng TFF, Nowotny N, Palacios G, Patterson JL, Pawęska JT, Payne SL, Prieto K, Rima BK, Rota P, Rubbenstroth D, Schwemmle M, Siddell S, Smither SJ, Song Q, Song T, Stenglein MD, Stone DM, Takada A, Tesh RB, Thomazelli LM, Tomonaga K, Tordo N, Towner JS, Vasilakis N, Vázquez-Morón S, Verdugo C, Volchkov VE, Wahl V, Walker PJ, Wang D, Wang LF, Wellehan JFX, Wiley MR, Whitfield AE, Wolf YI, Yè G, Zhāng YZ, Kuhn JH. Taxonomy of the order Mononegavirales: update 2018. Arch Virol 2018; 163:2283-2294. [PMID: 29637429 PMCID: PMC6076851 DOI: 10.1007/s00705-018-3814-x] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 03/12/2018] [Indexed: 11/27/2022]
Abstract
In 2018, the order Mononegavirales was expanded by inclusion of 1 new genus and 12 novel species. This article presents the updated taxonomy of the order Mononegavirales as now accepted by the International Committee on Taxonomy of Viruses (ICTV) and summarizes additional taxonomic proposals that may affect the order in the near future.
Collapse
Affiliation(s)
- Gaya K Amarasinghe
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | | | | | - Christopher F Basler
- Center for Microbial Pathogenesis, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Sina Bavari
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, USA
| | - Andrew J Bennett
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Kim R Blasdell
- Australian Animal Health Laboratory, CSIRO Health and Biosecurity, Geelong, VIC, Australia
| | - Thomas Briese
- Department of Epidemiology, Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY, USA
| | | | - Yíngyún Caì
- Integrated Research Facility at Fort Detrick (IRF-Frederick), Division of Clinical Research (DCR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), B-8200 Research Plaza, Fort Detrick, Frederick, MD, 21702, USA
| | - Charles H Calisher
- Arthropod-Borne and Infectious Diseases Laboratory, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Cristine Campos Lawson
- Integrated Research Facility at Fort Detrick (IRF-Frederick), Division of Clinical Research (DCR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), B-8200 Research Plaza, Fort Detrick, Frederick, MD, 21702, USA
| | - Kartik Chandran
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Colin A Chapman
- Department of Anthropology and McGill School of Environment, McGill University, Montreal, QC, Canada
- Wildlife Conservation Society, Bronx, NY, USA
- Section of Social Systems Evolution, Primate Research Institute, Kyoto University, Kyoto, Japan
| | | | - Kang-Seuk Choi
- Avian Disease Research Division, Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
| | - Peter L Collins
- Respiratory Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MA, USA
| | - Ralf G Dietzgen
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD, Australia
| | - Valerian V Dolja
- Department of Botany and Plant Pathology and Center for Genome Research and Biocomputing, Oregon State University, Corvallis, OR, USA
| | - Olga Dolnik
- Institute of Virology, Philipps University Marburg, Marburg, Germany
| | - Leslie L Domier
- Department of Crop Sciences, University of Illinois, Chicago, IL, USA
| | | | - John M Dye
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, USA
| | - Andrew J Easton
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Hideki Ebihara
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Juan E Echevarría
- National Center of Microbiology, Carlos III Institute of Health, Majadahonda, Madrid, Spain
| | | | | | - Ron A M Fouchier
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Conrad M Freuling
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institute, WHO Collaborating Centre for Rabies Surveillance and Research, Greifswald-Insel Riems, Germany
| | - Elodie Ghedin
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY, USA
| | - Tony L Goldberg
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Roger Hewson
- Public Health England, Porton Down, Salisbury, Wiltshire, UK
| | - Masayuki Horie
- Hakubi Center for Advanced Research, Kyoto University, Kyoto, Japan
| | - Timothy H Hyndman
- College of Veterinary Medicine, School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA, Australia
| | - Dàohóng Jiāng
- State Key Laboratory of Agricultural Microbiology, The Provincial Key Lab of Plant Pathology of Húběi Province, College of Plant Science and Technology, Huázhōng Agricultural University, Wuhan, China
| | - Robert Kityo
- Department of Zoology, Makerere University, Kampala, Uganda
| | - Gary P Kobinger
- Department of Microbiology, Immunology and Infectious Diseases, Université Laval, Quebec City, Canada
| | - Hideki Kondō
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Mart Krupovic
- Department of Microbiology, Institut Pasteur, Paris, France
| | - Gael Kurath
- US Geological Survey Western Fisheries Research Center, Seattle, WA, USA
| | - Robert A Lamb
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
- Howard Hughes Medical Institute, Northwestern University, Evanston, IL, USA
| | - Benhur Lee
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Eric M Leroy
- Centre International de Recherches Médicales de Franceville, Institut de Recherche pour le Développement, Franceville, Gabon
| | - Piet Maes
- Zoonotic Infectious Diseases Unit, KU Leuven, Leuven, Belgium
| | - Andrea Maisner
- Institute of Virology, Philipps University Marburg, Marburg, Germany
| | | | - Sunil Kumar Mor
- Department of Veterinary Population Medicine and Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, USA
| | - Thomas Müller
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institute, WHO Collaborating Centre for Rabies Surveillance and Research, Greifswald-Insel Riems, Germany
| | - Elke Mühlberger
- Department of Microbiology and National Emerging Infectious Diseases Laboratories, Boston University School of Medicine, Boston, MA, USA
| | | | - Sergey V Netesov
- Novosibirsk State University, Novosibirsk, Novosibirsk Oblast, Russia
| | - Terry Fei Fan Ng
- Department of Laboratory Medicine, University of California at San Francisco, San Francisco, CA, USA
| | - Norbert Nowotny
- Institute of Virology, University of Veterinary Medicine, Vienna, Austria
- Department of Basic Medical Sciences, College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Gustavo Palacios
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, USA
| | - Jean L Patterson
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Janusz T Pawęska
- Center for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Sandringham, Johannesburg, Gauteng, South Africa
| | - Susan L Payne
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Karla Prieto
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, USA
| | - Bertus K Rima
- Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, The Queen's University of Belfast, Belfast, Northern Ireland, UK
| | - Paul Rota
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Dennis Rubbenstroth
- Institute of Virology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Martin Schwemmle
- Institute of Virology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Stuart Siddell
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | | | - Qisheng Song
- Division of Plant Sciences, College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, MO, USA
| | - Timothy Song
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY, USA
| | - Mark D Stenglein
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - David M Stone
- Centre for Environment, Fisheries and Aquaculture Science, Weymouth, Dorset, UK
| | - Ayato Takada
- Division of Global Epidemiology, Hokkaido University Research Center for Zoonosis Control, Sapporo, Japan
| | - Robert B Tesh
- Department of Pathology and Center for Biodefense and Emerging Infectious Diseases, Center for Tropical Diseases and Institute for Human Infections and Immunity, The University of Texas Medical Branch, Galveston, TX, USA
| | | | - Keizō Tomonaga
- Institute for Frontier Life and Medical Sciences (inFront), Kyoto University, Kyoto, Japan
| | - Noël Tordo
- Institut Pasteur, Unité des Stratégies Antivirales, WHO Collaborative Centre for Viral Haemorrhagic Fevers and Arboviruses, OIE Reference Laboratory for RVFV and CCHFV, Paris, France
- Institut Pasteur de Guinée, Conakry, Guinea
| | - Jonathan S Towner
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Nikos Vasilakis
- Department of Pathology and Center for Biodefense and Emerging Infectious Diseases, Center for Tropical Diseases and Institute for Human Infections and Immunity, The University of Texas Medical Branch, Galveston, TX, USA
| | - Sonia Vázquez-Morón
- National Center of Microbiology, Carlos III Institute of Health, Majadahonda, Madrid, Spain
| | - Claudio Verdugo
- Universidad Austral de Chile Facultad de Ciencias Veterinarias, Valdivia, Chile
| | - Viktor E Volchkov
- Molecular Basis of Viral Pathogenicity, CIRI, INSERM U1111-CNRS, UMR5308, Université de Lyon, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Victoria Wahl
- National Biodefense Analysis and Countermeasures Center, Fort Detrick, Frederick, MD, USA
| | - Peter J Walker
- School of Biological Sciences, University of Queensland, St. Lucia, QLD, Australia
| | - David Wang
- Departments of Molecular Microbiology and Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Lin-Fa Wang
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - James F X Wellehan
- College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| | - Michael R Wiley
- The University of Texas Medical Branch, Galveston, TX, USA
- University of Nebraska Medical Center, Omaha, NE, USA
| | - Anna E Whitfield
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
| | - Yuri I Wolf
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Gōngyín Yè
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Yǒng-Zhèn Zhāng
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Zoonoses, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China
| | - Jens H Kuhn
- Integrated Research Facility at Fort Detrick (IRF-Frederick), Division of Clinical Research (DCR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), B-8200 Research Plaza, Fort Detrick, Frederick, MD, 21702, USA.
| |
Collapse
|
19
|
Crane A, Goebel ME, Kraberger S, Stone AC, Varsani A. Novel anelloviruses identified in buccal swabs of Antarctic fur seals. Virus Genes 2018; 54:719-723. [DOI: 10.1007/s11262-018-1585-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 06/29/2018] [Indexed: 11/27/2022]
|
20
|
Genetic Diversity of Avian Paramyxovirus Type 6 Isolated from Wild Ducks in the Republic of Korea. J Wildl Dis 2018. [PMID: 29517403 DOI: 10.7589/2017-07-158] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Eleven avian paramyxovirus type 6 (APMV-6) isolates from Eurasian Wigeon ( n=5; Anas penelope), Mallards ( n=2; Anas platyrhynchos), and unknown species of wild ducks ( n=4) from Korea were analyzed based on the nucleotide (nt) and deduced amino acid sequences of the fusion (F) gene. Fecal samples were collected in 2010-14. Genotypes were assigned based on phylogenetic analyses. Our results revealed that APMV-6 could be classified into at least two distinct genotypes, G1 and G2. The open reading frame (ORF) of the G1 genotype was 1,668 nt in length, and the putative F0 cleavage site sequence was 113PAPEPRL119. The G2 genotype viruses included five isolates from Eurasian wigeons and four isolates from unknown waterfowl species, together with two reference APMV-6 strains from the Red-necked Stint ( Calidris ruficollis) from Japan and an unknown duck from Italy. There was an N-truncated ORF (1,638 nt), due to an N-terminal truncation of 30 nt in the signal peptide region of the F gene, and the putative F0 cleavage site sequence was 103SIREPRL109. The genetic diversity and ecology of APMV-6 are discussed.
Collapse
|
21
|
Smeele ZE, Burns JM, Van Doorsaler K, Fontenele RS, Waits K, Stainton D, Shero MR, Beltran RS, Kirkham AL, Berngartt R, Kraberger S, Varsani A. Diverse papillomaviruses identified in Weddell seals. J Gen Virol 2018; 99:549-557. [PMID: 29469687 DOI: 10.1099/jgv.0.001028] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Papillomaviridae is a diverse family of circular, double-stranded DNA (dsDNA) viruses that infect a broad range of mammalian, avian and fish hosts. While papillomaviruses have been characterized most extensively in humans, the study of non-human papillomaviruses has contributed greatly to our understanding of their pathogenicity and evolution. Using high-throughput sequencing approaches, we identified 7 novel papillomaviruses from vaginal swabs collected from 81 adult female Weddell seals (Leptonychotes weddellii) in the Ross Sea of Antarctica between 2014-2017. These seven papillomavirus genomes were amplified from seven individual seals, and six of the seven genomes represented novel species with distinct evolutionary lineages. This highlights the diversity of papillomaviruses among the relatively small number of Weddell seal samples tested. Viruses associated with large vertebrates are poorly studied in Antarctica, and this study adds information about papillomaviruses associated with Weddell seals and contributes to our understanding of the evolutionary history of papillomaviruses.
Collapse
Affiliation(s)
- Zoe E Smeele
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ 85287-5001, USA.,School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, New Zealand
| | - Jennifer M Burns
- Department of Biological Sciences, University of Alaska Anchorage, 3211 Providence Drive, Anchorage, AK 99508, USA
| | - Koenraad Van Doorsaler
- School of Animal and Comparative Biomedical Sciences, Cancer Biology Graduate Interdisciplinary Program, Genetics Graduate Interdisciplinary Program, and Bio5, University of Arizona, 1657 E Helen St., Tucson, AZ 85721, USA
| | - Rafaela S Fontenele
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ 85287-5001, USA
| | - Kara Waits
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ 85287-5001, USA
| | - Daisy Stainton
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, New Zealand
| | - Michelle R Shero
- Department of Biological Sciences, University of Alaska Anchorage, 3211 Providence Drive, Anchorage, AK 99508, USA
| | - Roxanne S Beltran
- Department of Biological Sciences, University of Alaska Anchorage, 3211 Providence Drive, Anchorage, AK 99508, USA.,Department of Biology and Wildlife, University of Alaska Fairbanks, PO Box 756100, Fairbanks, AK 99775, USA
| | - Amy L Kirkham
- Department of Biological Sciences, University of Alaska Anchorage, 3211 Providence Drive, Anchorage, AK 99508, USA.,College of Fisheries and Ocean Sciences, University of Alaska Fairbanks, 17101 Point Lena Loop Rd Juneau, Alaska 99801, USA
| | | | - Simona Kraberger
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ 85287-5001, USA
| | - Arvind Varsani
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, New Zealand.,The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ 85287-5001, USA.,Structural Biology Research Unit, Department of Clinical Laboratory Sciences, University of Cape Town, Rondebosch, 7701, Cape Town, South Africa
| |
Collapse
|
22
|
Karamendin K, Kydyrmanov A, Kasymbekov Y, Asanova S, Daulbayeva K, Seidalina A, Khan E, Harrison SM, Carr IM, Goodman SJ, Moldakozhayev A, Sayatov M. Novel avian paramyxovirus isolated from gulls in Caspian seashore in Kazakhstan. PLoS One 2017; 12:e0190339. [PMID: 29284037 PMCID: PMC5746266 DOI: 10.1371/journal.pone.0190339] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 12/07/2017] [Indexed: 01/30/2023] Open
Abstract
Three isolates APMV/gull/Kazakhstan/5976/2014, APMV/gull/Kazakhstan/ 5977/2014 and APMV/gull/Kazakhstan/5979/2014, were obtained from independent samples during annual surveillance for avian influenza and paramyxoviruses in wild birds from the Caspian Sea coast in Western Kazakhstan, and were initially identified as putative paramyxoviruses on the basis of electron microscopy. Hemagglutination Inhibition Assays with antisera to nine known APMV serotypes (APMV1-9) indicated no relation to any of them. Next generation sequencing of whole genome sequences indicated the three isolates were genetically identical, and had a nucleotide structure typical for all APMVs, consisting of six genes 3'-NP-P-M-F-HN-L-5'. Phylogenetic analyses, and assessment of amino acid identities, suggested the most closely related lineages to be APMV-2, 8, 10 and 15, but the novel isolate had less than 64% identity to them and all other known avian paramyxoviruses. This value was above levels considered to generally define other APMV serotypes. Estimates of the evolutionary divergence of the nucleotide sequences of the genomes of APMVs have shown that novel Kazakhstan APMV strain was closest to APMV-2, APMV-8, APMV-10 and APMV-15, with calculated distance values of 2.057, 2.058, 2.026 and 2.286 respectively, which is above values considered to differentiate other serotypes (observed minimum was 1.108 between APMV-1 and recently isolated APMV/UPO216/Korea). Together, the data suggest that isolate APMV/gull/Kazakhstan/5976/2014 and other two should be considered as the first representative of a novel APMV-20 group, and is the first time that avian paramyxoviruses have been found infecting members of the gull family, extending the known taxonomic host range.
Collapse
Affiliation(s)
- Kobey Karamendin
- Laboratory of Viral Ecology, Institute of Microbiology and Virology, Almaty, Kazakhstan
- * E-mail:
| | - Aidyn Kydyrmanov
- Laboratory of Viral Ecology, Institute of Microbiology and Virology, Almaty, Kazakhstan
| | | | - Saule Asanova
- Laboratory of Viral Ecology, Institute of Microbiology and Virology, Almaty, Kazakhstan
| | - Klara Daulbayeva
- Laboratory of Viral Ecology, Institute of Microbiology and Virology, Almaty, Kazakhstan
| | - Aigerim Seidalina
- Laboratory of Viral Ecology, Institute of Microbiology and Virology, Almaty, Kazakhstan
| | - Elizaveta Khan
- Laboratory of Viral Ecology, Institute of Microbiology and Virology, Almaty, Kazakhstan
| | - Sally M. Harrison
- School of Medicine, Faculty of Medicine and Health, University of Leeds, St. James’s University Hospital, Leeds, United Kingdom
| | - Ian M. Carr
- School of Medicine, Faculty of Medicine and Health, University of Leeds, St. James’s University Hospital, Leeds, United Kingdom
| | - Simon J. Goodman
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Alibek Moldakozhayev
- Laboratory of Viral Ecology, Institute of Microbiology and Virology, Almaty, Kazakhstan
| | - Marat Sayatov
- Laboratory of Viral Ecology, Institute of Microbiology and Virology, Almaty, Kazakhstan
| |
Collapse
|
23
|
Viruses associated with Antarctic wildlife: From serology based detection to identification of genomes using high throughput sequencing. Virus Res 2017; 243:91-105. [PMID: 29111456 PMCID: PMC7114543 DOI: 10.1016/j.virusres.2017.10.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 10/24/2017] [Accepted: 10/24/2017] [Indexed: 11/30/2022]
Abstract
Summary of identified viruses associated with Antarctic animals. Genomes of Antarctic animals viruses have only been determine in the last five years. Limited knowledge of animal virology relative to environmental virology in Antarctica.
The Antarctic, sub-Antarctic islands and surrounding sea-ice provide a unique environment for the existence of organisms. Nonetheless, birds and seals of a variety of species inhabit them, particularly during their breeding seasons. Early research on Antarctic wildlife health, using serology-based assays, showed exposure to viruses in the families Birnaviridae, Flaviviridae, Herpesviridae, Orthomyxoviridae and Paramyxoviridae circulating in seals (Phocidae), penguins (Spheniscidae), petrels (Procellariidae) and skuas (Stercorariidae). It is only during the last decade or so that polymerase chain reaction-based assays have been used to characterize viruses associated with Antarctic animals. Furthermore, it is only during the last five years that full/whole genomes of viruses (adenoviruses, anelloviruses, orthomyxoviruses, a papillomavirus, paramyoviruses, polyomaviruses and a togavirus) have been sequenced using Sanger sequencing or high throughput sequencing (HTS) approaches. This review summaries the knowledge of animal Antarctic virology and discusses potential future directions with the advent of HTS in virus discovery and ecology.
Collapse
|
24
|
Sabra M, Dimitrov KM, Goraichuk IV, Wajid A, Sharma P, Williams-Coplin D, Basharat A, Rehmani SF, Muzyka DV, Miller PJ, Afonso CL. Phylogenetic assessment reveals continuous evolution and circulation of pigeon-derived virulent avian avulaviruses 1 in Eastern Europe, Asia, and Africa. BMC Vet Res 2017; 13:291. [PMID: 28950869 PMCID: PMC5615457 DOI: 10.1186/s12917-017-1211-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 09/22/2017] [Indexed: 01/24/2023] Open
Abstract
Background The remarkable diversity and mobility of Newcastle disease viruses (NDV) includes virulent viruses of genotype VI. These viruses are often referred to as pigeon paramyxoviruses 1 because they are normally isolated and cause clinical disease in birds from the Columbidae family. Genotype VI viruses occasionally infect, and may also cause clinical disease in poultry. Thus, the evolution, current spread and detection of these viruses are relevant to avian health. Results Here, we describe the isolation and genomic characterization of six Egyptian (2015), four Pakistani (2015), and two Ukrainian (2007, 2013) recent pigeon-derived NDV isolates of sub-genotype VIg. These viruses are closely related to isolates from Kazakhstan, Nigeria and Russia. In addition, eight genetically related NDV isolates from Pakistan (2014–2016) that define a new sub-genotype (VIm) are described. All of these viruses, and the ancestral Bulgarian (n = 2) and South Korean (n = 2) viruses described here, have predicted virulent cleavage sites of the fusion protein, and those selected for further characterization have intracerebral pathogenicity index assay values characteristic of NDV of genotype VI (1.31 to 1.48). A validated matrix gene real-time RT-PCR (rRT-PCR) NDV test detect all tested isolates. However, the validated rRT-PCR test that is normally used to identify the virulent fusion gene fails to detect the Egyptian and Ukrainian viruses due to mismatches in primers and probe. A new rapid rRT-PCR test to determine the presence of virulent cleavage sites for viruses from sub-genotypes VIg was developed and evaluated on these and other viruses. Conclusions We describe the almost simultaneous circulation and continuous evolution of genotype VI Newcastle disease viruses in distant locations, suggesting epidemiological connections among three continents. As pigeons are not migratory, this study suggests the need to understand the possible role of human activity in the dispersal of these viruses. Complete genomic characterization identified previously unrecognized genetic diversity that contributes to diagnostic failure and will facilitate future evolutionary studies. These results highlight the importance of conducting active surveillance on pigeons worldwide and the need to update existent rapid diagnostic protocols to detect emerging viral variants and help manage the disease in affected regions. Electronic supplementary material The online version of this article (10.1186/s12917-017-1211-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mahmoud Sabra
- Department of Poultry Diseases, Faculty of Veterinary Medicine, South Valley University, Qena, 83523, Egypt.,Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, US National Poultry Research Center, Agricultural Research Service, USDA, 934 College Station Road, Athens, GA, 30605, USA
| | - Kiril M Dimitrov
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, US National Poultry Research Center, Agricultural Research Service, USDA, 934 College Station Road, Athens, GA, 30605, USA
| | - Iryna V Goraichuk
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, US National Poultry Research Center, Agricultural Research Service, USDA, 934 College Station Road, Athens, GA, 30605, USA.,National Scientific Center Institute of Experimental and Clinical Veterinary Medicine, 83 Pushkinskaya Street, Kharkiv, 61023, Ukraine
| | - Abdul Wajid
- Quality Operations Laboratory (QOL), University of Veterinary and Animal Sciences, Syed Abdul Qadir Jilani Road, Lahore, 54000, Pakistan.,Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Syed Abdul Qadir Jilani Road, Lahore, 54000, Pakistan
| | - Poonam Sharma
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, US National Poultry Research Center, Agricultural Research Service, USDA, 934 College Station Road, Athens, GA, 30605, USA
| | - Dawn Williams-Coplin
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, US National Poultry Research Center, Agricultural Research Service, USDA, 934 College Station Road, Athens, GA, 30605, USA
| | - Asma Basharat
- Quality Operations Laboratory (QOL), University of Veterinary and Animal Sciences, Syed Abdul Qadir Jilani Road, Lahore, 54000, Pakistan
| | - Shafqat F Rehmani
- Quality Operations Laboratory (QOL), University of Veterinary and Animal Sciences, Syed Abdul Qadir Jilani Road, Lahore, 54000, Pakistan
| | - Denys V Muzyka
- National Scientific Center Institute of Experimental and Clinical Veterinary Medicine, 83 Pushkinskaya Street, Kharkiv, 61023, Ukraine
| | - Patti J Miller
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, US National Poultry Research Center, Agricultural Research Service, USDA, 934 College Station Road, Athens, GA, 30605, USA
| | - Claudio L Afonso
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, US National Poultry Research Center, Agricultural Research Service, USDA, 934 College Station Road, Athens, GA, 30605, USA.
| |
Collapse
|