1
|
Aranda AJ, Aguilar-Tipacamú G, Perez DR, Bañuelos-Hernandez B, Girgis G, Hernandez-Velasco X, Escorcia-Martinez SM, Castellanos-Huerta I, Petrone-Garcia VM. Emergence, migration and spreading of the high pathogenicity avian influenza virus H5NX of the Gs/Gd lineage into America. J Gen Virol 2025; 106:002081. [PMID: 40279164 PMCID: PMC12032427 DOI: 10.1099/jgv.0.002081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 01/31/2025] [Indexed: 04/26/2025] Open
Abstract
The high pathogenicity avian influenza virus H5N1, which first emerged in the winter of 2021, has resulted in multiple outbreaks across the American continent through the summer of 2023 and they continue based on early 2025 records, presenting significant challenges for global health and food security. The viruses causing the outbreaks belong to clade 2.3.4.4b, which are descendants of the lineage A/Goose/Guangdong/1/1996 (Gs/Gd) through genetic reassortments with several low pathogenicity avian influenza viruses present in populations of Anseriformes and Charadriiformes orders. This review addresses these issues by thoroughly analysing available epidemiological databases and specialized literature reviews. This project explores the mechanisms behind the resurgence of the H5N1 virus. It provides a comprehensive overview of the origin, timeline and factors contributing to its prevalence among wild bird populations on the American continent.
Collapse
Affiliation(s)
- Alejandro J. Aranda
- Maestría en Salud y Producción Animal Sustentable, Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Querétaro, Mexico
| | - Gabriela Aguilar-Tipacamú
- Maestría en Salud y Producción Animal Sustentable, Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Querétaro, Mexico
- Licenciatura en Medicina Veterinaria y Zootecnia, Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Querétaro, México
| | - Daniel R. Perez
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Bernardo Bañuelos-Hernandez
- Facultad de Veterinaria, Universidad De La Salle Bajío, Avenida Universidad 602, Lomas del Campestre, León, México
| | - George Girgis
- Nevysta Laboratory, Iowa State University Research Park, Ames, Lowa, USA
| | - Xochitl Hernandez-Velasco
- Departamento de Medicina y Zootecnia de Aves, Facultad de Medicina Veterinaria y Zootecnia (FMVZ), Universidad Nacional Autónoma de México (UNAM), Cd. de México, México
| | - Socorro M. Escorcia-Martinez
- Departamento de Medicina y Zootecnia de Aves, Facultad de Medicina Veterinaria y Zootecnia (FMVZ), Universidad Nacional Autónoma de México (UNAM), Cd. de México, México
| | | | - Victor M. Petrone-Garcia
- Departamento de Ciencias Pecuarias, Facultad de Estudios Superiores de Cuautitlán (FESC), Universidad Nacional Autónoma de México (UNAM), Cuautitlán, Mexico
| |
Collapse
|
2
|
Jahid MJ, Nolting JM. Dynamics of a Panzootic: Genomic Insights, Host Range, and Epidemiology of the Highly Pathogenic Avian Influenza A(H5N1) Clade 2.3.4.4b in the United States. Viruses 2025; 17:312. [PMID: 40143242 PMCID: PMC11946527 DOI: 10.3390/v17030312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/04/2025] [Accepted: 02/11/2025] [Indexed: 03/28/2025] Open
Abstract
In late 2021, Eurasian-lineage highly pathogenic avian influenza (HPAI) A(H5N1) viruses from HA clade 2.3.4.4b were first detected in the United States. These viruses have caused severe morbidity and mortality in poultry and have been detected in numerous wild and domestic animals, including cows and humans. Notably, infected cows transmitted the virus to cats, causing extreme pathogenicity and death. While human-to-human spread of the virus has not been recorded, efficient transmission of the bovine-origin virus has also led to extreme pathogenicity and death in ferret models. Recently, markers in PB2 (E627K) and HA (E186D, Q222H), indicating mammalian adaptation mutations, were detected in an H5N1-infected patient manifesting critical illness in Canada. These, combined with instances of interspecies spread of the virus, have raised global public health concerns. This could highlight the potential for the virus to successfully adapt to mammals, posing a serious risk of a global outbreak. A One Health approach is, thereby, necessary to monitor and control the outbreak. This review aims to analyze the epidemiology, transmission, and ecological impacts of HPAI A(H5N1) clade 2.3.4.4b in the U.S., identify knowledge gaps, and inform strategies for effective outbreak management and mitigation.
Collapse
|
3
|
Sanogo IN, Fusade-Boyer M, Molia S, Koita OA, Camus C, Ducatez MF. Identification of risk areas for avian influenza outbreaks in domestic poultry in Mali using the GIS-MCDA approach. Epidemiol Infect 2024; 152:e152. [PMID: 39618107 PMCID: PMC11626446 DOI: 10.1017/s0950268824001390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/17/2024] [Accepted: 09/24/2024] [Indexed: 12/11/2024] Open
Abstract
Mali is a country where little information is known about the circulation of avian influenza viruses (AIVs) in poultry. Implementing risk-based surveillance strategies would allow early detection and rapid control of AIVs outbreaks in the country. In this study, we implemented a multi-criteria decision analysis (MCDA) method coupled with geographic information systems (GIS) to identify risk areas for AIVs occurrence in domestic poultry in Mali. Five risk factors associated with AIVs occurrence were identified from the literature, and their relative weights were determined using the analytic hierarchy process (AHP). Spatial data were collected for each risk factor and processed to produce risk maps for AIVs outbreaks using a weighted linear combination (WLC). We identified the southeast regions (Bamako and Sikasso) and the central region (Mopti) as areas with the highest risk of AIVs occurrence. Conversely, northern regions were considered low-risk areas. The risk areas agree with the location of HPAI outbreaks in Mali. This study provides the first risk map using the GIS-MCDA approach to identify risk areas for AIVs occurrence in Mali. It should provide a basis for designing risk-based and more cost-effective surveillance strategies for the early detection of avian influenza outbreaks in Mali.
Collapse
Affiliation(s)
- Idrissa Nonmon Sanogo
- Interactions Hôtes-Agents Pathogènes (IHAP), UMR 1225, Université de Toulouse, ENVT, INRAE, 31076Toulouse, France
- Faculté d’Agronomie et de Médecine Animale (FAMA), Université de Ségou, SégouBP 24, Mali
| | - Maxime Fusade-Boyer
- Interactions Hôtes-Agents Pathogènes (IHAP), UMR 1225, Université de Toulouse, ENVT, INRAE, 31076Toulouse, France
| | - Sophie Molia
- CIRAD, UMR ASTRE, F-34398Montpellier, France
- ASTRE, Université de Montpellier, CIRAD, INRAE, Montpellier, France
| | - Ousmane A. Koita
- Laboratoire de Biologie Moléculaire Appliquée (LMBA), Université des Sciences, des Techniques et des Technologies de Bamako, Bamako, Mali
| | - Christelle Camus
- Interactions Hôtes-Agents Pathogènes (IHAP), UMR 1225, Université de Toulouse, ENVT, INRAE, 31076Toulouse, France
| | - Mariette F. Ducatez
- Interactions Hôtes-Agents Pathogènes (IHAP), UMR 1225, Université de Toulouse, ENVT, INRAE, 31076Toulouse, France
| |
Collapse
|
4
|
Moatasim Y, Aboulhoda BE, Gomaa M, El Taweel A, Kutkat O, Kamel MN, El Sayes M, GabAllah M, Elkhrsawy A, AbdAllah H, Kandeil A, Ali MA, Kayali G, El-Shesheny R. Genetic and pathogenic potential of highly pathogenic avian influenza H5N8 viruses from live bird markets in Egypt in avian and mammalian models. PLoS One 2024; 19:e0312134. [PMID: 39471134 PMCID: PMC11521303 DOI: 10.1371/journal.pone.0312134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 10/01/2024] [Indexed: 11/01/2024] Open
Abstract
Since its first isolation from migratory birds in Egypt in 2016, highly pathogenic avian influenza (HPAI) H5N8 has caused several outbreaks among domestic poultry in various areas of the country affecting poultry health and production systems. However, the genetic and biological properties of the H5N8 HPAI viruses have not been fully elucidated yet. In this study, we aimed to monitor the evolution of circulating H5N8 viruses and identify the pathogenicity and mammalian adaptation in vitro and in vivo. Three H5N8 HPAI viruses were used in this study and were isolated in 2021-2022 from poultry and wild birds during our routine surveillance. RNA extracts were subjected to full genome sequencing. Genetic, phylogenetic, and antigenic analyses were performed to assess viral characteristics and similarities to previously isolated viruses. Phylogenetic analysis showed that the hemagglutinin genes of the three isolates belonged to clade 2.3.4.4b and grouped with the 2019 viruses from G3 with high similarity to Russian and European lineages. Multiple basic amino acids were observed at cleavage sites in the hemagglutinin proteins of the H5N8 isolates, indicating high pathogenicity. In addition, several mutations associated with increased virulence and polymerase activity in mammals were observed. Growth kinetics assays showed that the H5N8 isolate is capable of replicating efficiently in mammalian cells lines. In vivo studies were conducted in SPF chickens (White Leghorn), mice, and hamsters to compare the virological characteristics of the 2022 H5N8 isolates with previous H5N8 viruses isolated in 2016 from the first introduction. The H5N8 viruses caused lethal infection in all tested chickens and transmitted by direct contact. However, we showed that the 2016 H5N8 virus causes a higher mortality in chickens compared to 2022 H5N8 virus. Moreover, the 2022 virus can replicate efficiently in hamsters and mice without preadaptation causing systemic infection. These findings underscore the need for continued surveillance of H5 viruses to identify circulating strains, determine the commercial vaccine's effectiveness, and identify zoonotic potential.
Collapse
Affiliation(s)
- Yassmin Moatasim
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, Egypt
| | - Basma Emad Aboulhoda
- Department of Anatomy and Embryology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mokhtar Gomaa
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, Egypt
| | - Ahmed El Taweel
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, Egypt
| | - Omnia Kutkat
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, Egypt
| | - Mina Nabil Kamel
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, Egypt
| | - Mohamed El Sayes
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, Egypt
| | - Mohamed GabAllah
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, Egypt
| | - Amany Elkhrsawy
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, Egypt
| | - Hend AbdAllah
- Department of Anatomy and Embryology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Ahmed Kandeil
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, Egypt
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN, United States of America
| | - Mohamed Ahmed Ali
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, Egypt
| | | | - Rabeh El-Shesheny
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, Egypt
| |
Collapse
|
5
|
Munyua P, Osoro E, Jones J, Njogu G, Yang G, Hunsperger E, Szablewski CM, Njoroge R, Marwanga D, Oyas H, Andagalu B, Ndanyi R, Otieno N, Obanda V, Nasimiyu C, Njagi O, DaSilva J, Jang Y, Barnes J, Emukule GO, Onyango CO, Davis CT. Characterization of Avian Influenza Viruses Detected in Kenyan Live Bird Markets and Wild Bird Habitats Reveal Genetically Diverse Subtypes and High Proportion of A(H9N2), 2018-2020. Viruses 2024; 16:1417. [PMID: 39339892 PMCID: PMC11436075 DOI: 10.3390/v16091417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 08/26/2024] [Accepted: 08/29/2024] [Indexed: 09/30/2024] Open
Abstract
Following the detection of highly pathogenic avian influenza (HPAI) virus in countries bordering Kenya to the west, we conducted surveillance among domestic and wild birds along the shores of Lake Victoria. In addition, between 2018 and 2020, we conducted surveillance among poultry and poultry workers in live bird markets and among wild migratory birds in various lakes that are resting sites during migration to assess introduction and circulation of avian influenza viruses in these populations. We tested 7464 specimens (oropharyngeal (OP) and cloacal specimens) from poultry and 6531 fresh fecal specimens from wild birds for influenza A viruses by real-time RT-PCR. Influenza was detected in 3.9% (n = 292) of specimens collected from poultry and 0.2% (n = 10) of fecal specimens from wild birds. On hemagglutinin subtyping, most of the influenza A positives from poultry (274/292, 93.8%) were H9. Of 34 H9 specimens randomly selected for further subtyping, all were H9N2. On phylogenetic analysis, these viruses were genetically similar to other H9 viruses detected in East Africa. Only two of the ten influenza A-positive specimens from the wild bird fecal specimens were successfully subtyped; sequencing analysis of one specimen collected in 2018 was identified as a low-pathogenicity avian influenza H5N2 virus of the Eurasian lineage, and the second specimen, collected in 2020, was subtyped as H11. A total of 18 OP and nasal specimens from poultry workers with acute respiratory illness (12%) were collected; none were positive for influenza A virus. We observed significant circulation of H9N2 influenza viruses in poultry in live bird markets in Kenya. During the same period, low-pathogenic H5N2 virus was detected in a fecal specimen collected in a site hosting a variety of migratory and resident birds. Although HPAI H5N8 was not detected in this survey, these results highlight the potential for the introduction and establishment of highly pathogenic avian influenza viruses in poultry populations and the associated risk of spillover to human populations.
Collapse
Affiliation(s)
- Peninah Munyua
- Division of Global Health Protection, US Centers for Disease Control and Prevention, Village Market, Nairobi P.O. Box 606-00621, Kenya
| | - Eric Osoro
- Paul G. Allen School for Global Health-Kenya, Washington State University, Nairobi P.O. Box 72938-00200, Kenya
| | - Joyce Jones
- National Center for Immunization and Respiratory Diseases, US Centers for Disease Control and Prevention, 1600 Clifton Road, NE Atlanta, GA 30333, USA
| | - George Njogu
- Directorate of Veterinary Services, Ministry of Agriculture and Livestock Development, P.O. Box 29114, Kangemi, Nairobi 00625, Kenya
| | - Genyan Yang
- National Center for Immunization and Respiratory Diseases, US Centers for Disease Control and Prevention, 1600 Clifton Road, NE Atlanta, GA 30333, USA
| | - Elizabeth Hunsperger
- Division of Global Health Protection, US Centers for Disease Control and Prevention, Village Market, Nairobi P.O. Box 606-00621, Kenya
| | - Christine M. Szablewski
- National Center for Immunization and Respiratory Diseases, US Centers for Disease Control and Prevention, 1600 Clifton Road, NE Atlanta, GA 30333, USA
| | - Ruth Njoroge
- Paul G. Allen School for Global Health-Kenya, Washington State University, Nairobi P.O. Box 72938-00200, Kenya
| | - Doris Marwanga
- Paul G. Allen School for Global Health-Kenya, Washington State University, Nairobi P.O. Box 72938-00200, Kenya
| | - Harry Oyas
- Directorate of Veterinary Services, Ministry of Agriculture and Livestock Development, P.O. Box 29114, Kangemi, Nairobi 00625, Kenya
| | - Ben Andagalu
- Influenza Division, US Centers for Disease Control and Prevention, Village Market, Nairobi P.O. Box 606-00621, Kenya
| | - Romona Ndanyi
- Directorate of Veterinary Services, Ministry of Agriculture and Livestock Development, P.O. Box 29114, Kangemi, Nairobi 00625, Kenya
| | - Nancy Otieno
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu P.O. Box 1578-40100, Kenya
| | - Vincent Obanda
- Department of Veterinary Services, Kenya Wildlife Services, Nairobi P.O. Box 40241-00100, Kenya
| | - Carolyne Nasimiyu
- Paul G. Allen School for Global Health-Kenya, Washington State University, Nairobi P.O. Box 72938-00200, Kenya
| | - Obadiah Njagi
- Directorate of Veterinary Services, Ministry of Agriculture and Livestock Development, P.O. Box 29114, Kangemi, Nairobi 00625, Kenya
| | - Juliana DaSilva
- National Center for Immunization and Respiratory Diseases, US Centers for Disease Control and Prevention, 1600 Clifton Road, NE Atlanta, GA 30333, USA
| | - Yunho Jang
- National Center for Immunization and Respiratory Diseases, US Centers for Disease Control and Prevention, 1600 Clifton Road, NE Atlanta, GA 30333, USA
| | - John Barnes
- National Center for Immunization and Respiratory Diseases, US Centers for Disease Control and Prevention, 1600 Clifton Road, NE Atlanta, GA 30333, USA
| | - Gideon O. Emukule
- Influenza Division, US Centers for Disease Control and Prevention, Village Market, Nairobi P.O. Box 606-00621, Kenya
| | - Clayton O. Onyango
- Division of Global Health Protection, US Centers for Disease Control and Prevention, Village Market, Nairobi P.O. Box 606-00621, Kenya
| | - C. Todd Davis
- National Center for Immunization and Respiratory Diseases, US Centers for Disease Control and Prevention, 1600 Clifton Road, NE Atlanta, GA 30333, USA
| |
Collapse
|
6
|
Ammali N, Kara R, Guetarni D, Chebloune Y. Highly pathogenic avian influenza H5N8 and H5N1 outbreaks in Algerian avian livestock production. Comp Immunol Microbiol Infect Dis 2024; 111:102202. [PMID: 38852439 DOI: 10.1016/j.cimid.2024.102202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/15/2024] [Accepted: 05/26/2024] [Indexed: 06/11/2024]
Abstract
Avian Alpha-influenza-virus (AIV) massively affects poultry, targeting mainly the respiratory tract for virus replication. Recently, two major H5N8 and H5N1 outbreaks caused tremendous losses in Algerian poultry. The clinical symptoms that had not been seen in the past didn't prompt a rapid reaction to control the epidemics. We report here the characteristics of these outbreaks and the epidemiological status of AIV in Algeria. Following autopsy observation samples from target organs were taken and analyzed by the classical real-time reverse transcription polymerase chain reaction (RRT-PCR). Specific PCR HA and NA identification was used for subtyping H5 and N1/N8 genes. Systemic damage was observed in the upper-respiratory tracts with hemorrhagic and congestive tracheas, lungs, proventriculus, gut, and cecal tonsils were bloody. Out of 77 positive cases 13 were H5N8, 8 H5N1, and 10 H5Nx strains. These findings raise questions about the strain's pathotype considering severe organ damage and high mortality.
Collapse
Affiliation(s)
- Naouel Ammali
- Laboratory of Biotechnologies, Environment and Health, Biology department, Faculty of Natural and Life Sciences, University of Blida 1, BP 270 Route Soumâa, Blida, Algeria.
| | - Radhouane Kara
- Veterinary Practitioner, Avian pathology clinic, Rue 1 er Novembre 1954 Zaouia Beni Tamou, Blida, Algeria.
| | - Djamel Guetarni
- Biology department, Faculty of Natural and Life Sciences, University of Blida 1, BP 270 Route Soumâa, Blida, Algeria.
| | - Yahia Chebloune
- INRAE/UGA Laboratoire Pathogénèse et Vaccination Lentivirales, PAVAL Lab, Université Grenoble Alpes, Bat. NanoBio2, 570 rue de la chimie, domaine universitaire, St Martin d'Hères, Grenoble, France.
| |
Collapse
|
7
|
Al-Eitan L, Khair I, Shakhatreh Z, Almahdawi D, Alahmad S. Epidemiology, biosafety, and biosecurity of Avian Influenza: Insights from the East Mediterranean region. Rev Med Virol 2024; 34:e2559. [PMID: 38886173 DOI: 10.1002/rmv.2559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/22/2024] [Accepted: 06/03/2024] [Indexed: 06/20/2024]
Abstract
The World Organization for Animal Health defines Avian Influenza Virus as a highly infectious disease caused by diverse subtypes that continue to evolve rapidly, impacting poultry species, pet birds, wild birds, non-human mammals, and occasionally humans. The effects of Avian influenza viruses have been recognised as a precursor for serious health concerns among affected birds, poultry, and human populations in the Middle East. Furthermore, low and high pathogenic avian influenza viruses lead to respiratory illness with varying severity, depending on the virus subtype (e.g., H5, H7, H9, etc.). Possible future outbreaks and endemics of newly emerging subtypes are expected to occur, as many studies have reported the emergence of novel mutations and viral subtypes. However, proper surveillance programs and biosecurity applications should be developed, and countries with incapacitated defences against such outbreaks should be encouraged to undergo complete reinstation and reinforcement in their health and research sectors. Public education regarding biosafety and virus prevention is necessary to ensure minimal spread of avian influenza endemic.
Collapse
Affiliation(s)
- Laith Al-Eitan
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid, Jordan
| | - Iliya Khair
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid, Jordan
| | - Zaid Shakhatreh
- Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Diana Almahdawi
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid, Jordan
| | - Saif Alahmad
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
8
|
Litvinova VR, Rudometov AP, Rudometova NB, Kisakov DN, Borgoyakova MB, Kisakova LA, Starostina EV, Fando AA, Yakovlev VA, Tigeeva EV, Ivanova KI, Gudymo AS, Ilyicheva TN, Marchenko VY, Sergeev AA, Ilyichev AA, Karpenko LI. DNA Vaccine Encoding a Modified Hemagglutinin Trimer of Avian Influenza A Virus H5N8 Protects Mice from Viral Challenge. Vaccines (Basel) 2024; 12:538. [PMID: 38793789 PMCID: PMC11126123 DOI: 10.3390/vaccines12050538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
The development of a safe and effective vaccine against avian influenza A virus (AIV) H5N8 is relevant due to the widespread distribution of this virus in the bird population and the existing potential risk of human infection, which can lead to significant public health concerns. Here, we developed an experimental pVAX-H5 DNA vaccine encoding a modified trimer of AIV H5N8 hemagglutinin. Immunization of BALB/c mice with pVAX-H5 using jet injection elicited high titer antibody response (the average titer in ELISA was 1 × 105), and generated a high level of neutralizing antibodies against H5N8 and T-cell response, as determined by ELISpot analysis. Both liquid and lyophilized forms of pVAX-H5 DNA vaccine provided 100% protection of immunized mice against lethal challenge with influenza A virus A/turkey/Stavropol/320-01/2020 (H5N8). The results obtained indicate that pVAX-H5 has good opportunities as a vaccine candidate against the influenza A virus (H5N8).
Collapse
Affiliation(s)
| | - Andrey P. Rudometov
- Federal Budgetary Research Institution State Research Center of Virology and Biotechnology «Vector», Rospotrebnadzor, Koltsovo 630559, Novosibirsk Region, Russia; (V.R.L.); (N.B.R.); (D.N.K.); (M.B.B.); (L.A.K.); (E.V.S.); (A.A.F.); (E.V.T.); (K.I.I.); (A.S.G.); (T.N.I.); (V.Y.M.); (A.A.S.); (A.A.I.); (L.I.K.)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Djurdjević B, Polaček V, Pajić M, Petrović T, Vučićević I, Vidanović D, Aleksić-Kovačević S. Highly Pathogenic Avian Influenza H5N8 Outbreak in Backyard Chickens in Serbia. Animals (Basel) 2023; 13:ani13040700. [PMID: 36830487 PMCID: PMC9952722 DOI: 10.3390/ani13040700] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/16/2023] [Accepted: 02/13/2023] [Indexed: 02/19/2023] Open
Abstract
In winter 2016/2017, the highly pathogenic avian influenza virus H5N8 was detected in backyard poultry in Serbia for the first time. The second HPAI outbreak case in backyard poultry was reported in 2022, caused by subtype H5N1. This is the first study that documents the laboratory identification and pathology associated with highly pathogenic avian influenza in poultry in Serbia during the first and second introduction waves. In both cases, the diagnosis was based on real-time reverse transcriptase PCR. The most common observed lesions included subepicardial hemorrhages, congestion and hemorrhages in the lungs, and petechial hemorrhages in coelomic and epicardial adipose tissue. Histologically, the observed lesions were mostly nonpurulent encephalitis accompanied by encephalomalacia, multifocal necrosis in the spleen, pancreas, and kidneys, pulmonary congestion, and myocardial and pulmonary hemorrhages. In H5N8-infected chickens, immunohistochemical examination revealed strong positive IHC staining in the brain and lungs. Following these outbreaks, strict control measures were implemented on farms and backyard holdings to prevent the occurrence and spread of the disease. Extensive surveillance of birds for avian influenza virus did not detect any additional cases in poultry. These outbreaks highlight the importance of a rapid detection and response system in order to quickly suppress outbreaks.
Collapse
Affiliation(s)
- Biljana Djurdjević
- Department of Epizootiology, Clinical diagnostics and DDD, Scientific Veterinary Institute “Novi Sad”, 21000 Novi Sad, Serbia
- Correspondence:
| | - Vladimir Polaček
- Department of Epizootiology, Clinical diagnostics and DDD, Scientific Veterinary Institute “Novi Sad”, 21000 Novi Sad, Serbia
| | - Marko Pajić
- Department of Epizootiology, Clinical diagnostics and DDD, Scientific Veterinary Institute “Novi Sad”, 21000 Novi Sad, Serbia
| | - Tamaš Petrović
- Department of Virology, Scientific Veterinary Institute “Novi Sad”, 21000 Novi Sad, Serbia
| | - Ivana Vučićević
- Department of Pathology, Faculty of Veterinary Medicine, University of Belgrade, 11080 Belgrade, Serbia
| | - Dejan Vidanović
- Veterinary Specialized Institute Kraljevo, 36000 Kraljevo, Serbia
| | - Sanja Aleksić-Kovačević
- Department of Pathology, Faculty of Veterinary Medicine, University of Belgrade, 11080 Belgrade, Serbia
| |
Collapse
|
10
|
El-Shesheny R, Moatasim Y, Mahmoud SH, Song Y, Taweel AE, Gomaa M, Kamel MN, Sayes ME, Kandeil A, Lam TTY, McKenzie PP, Webby RJ, Kayali G, Ali MA. Highly Pathogenic Avian Influenza A(H5N1) Virus Clade 2.3.4.4b in Wild Birds and Live Bird Markets, Egypt. Pathogens 2022; 12:36. [PMID: 36678384 PMCID: PMC9866256 DOI: 10.3390/pathogens12010036] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/15/2022] [Accepted: 12/24/2022] [Indexed: 12/28/2022] Open
Abstract
Clade 2.3.4.4 H5Nx influenza viruses have further diversified into several subclades. Sub-clade 2.3.4.4b H5N1 viruses have been widely circulating in wild birds and detected in Europe, Africa, Asia, and North America since October 2020. In this study, we report the first detection of highly pathogenic avian influenza H5N1 clade 2.3.4.4b viruses in wild birds and domestic ducks from live bird markets in Egypt. Phylogenetic analysis revealed that the Egyptian H5N1 virus retained the genomic composition of Eurasian strains. Mutations in the viral proteins associated with zoonotic potential and pathogenicity were detected in Egyptian isolates. Egypt is considered a hot spot for the evolution of the influenza virus, so active surveillance of avian influenza viruses in Egypt is warranted.
Collapse
Affiliation(s)
- Rabeh El-Shesheny
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza 12622, Egypt
| | - Yassmin Moatasim
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza 12622, Egypt
| | - Sara H. Mahmoud
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza 12622, Egypt
| | - Yi Song
- State Key Laboratory of Emerging Infectious Diseases, School of Public Health, The University of Hong Kong, Hong Kong SAR, China
- Laboratory of Data Discovery for Health Limited, Hong Kong SAR, China
| | - Ahmed El Taweel
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza 12622, Egypt
| | - Mokhtar Gomaa
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza 12622, Egypt
| | - Mina Nabil Kamel
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza 12622, Egypt
| | - Mohamed El Sayes
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza 12622, Egypt
| | - Ahmed Kandeil
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza 12622, Egypt
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Tommy T. Y. Lam
- State Key Laboratory of Emerging Infectious Diseases, School of Public Health, The University of Hong Kong, Hong Kong SAR, China
- Laboratory of Data Discovery for Health Limited, Hong Kong SAR, China
- Centre for Immunology & Infection Limited, Hong Kong SAR, China
| | - Pamela P. McKenzie
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Richard J. Webby
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Ghazi Kayali
- Human Link, Dubai 3O-01-BA380, United Arab Emirates
| | - Mohamed Ahmed Ali
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza 12622, Egypt
| |
Collapse
|
11
|
Zinyakov N, Andriyasov A, Zhestkov P, Kozlov A, Nikonova Z, Ovchinnikova E, Grekhneva A, Shcherbakova L, Andreychuk D, Sprygin A, Prokhvatilova L, Chvala I. Analysis of Avian Influenza (H5N5) Viruses Isolated in the Southwestern European Part of the Russian Federation in 2020-2021. Viruses 2022; 14:2725. [PMID: 36560728 PMCID: PMC9783257 DOI: 10.3390/v14122725] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/28/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
In 2021, several isolates of the H5N5 avian influenza virus (AIV) were detected in Europe and the Russian Federation, which differed from those detected in 2020. Genetic analysis revealed a relationship between the highly pathogenic avian influenza H5N5 subtype, detected in Europe, and some isolates detected in the Russian Federation territory in 2020-2021: it was shown that both originated in the Caspian Sea regions around the autumn of 2020. The appearance of H5N5 subtype viruses in the spring of 2021 in Europe and the Russian Federation was not associated with the mass migration of birds from Africa. The results of the analysis revealed the presence of a deletion in the stem of a neuraminidase between bp 139 and 204 (open reading frame). It has been shown that AIVs of the H5N5 subtype are capable of long-term circulation in wild bird populations with the possibility of reassortment. The results also highlighted the need for careful monitoring of the circulation of AIVs in the Caspian Sea region, the role of which, in the preservation and emergence of new antigenic variants of such viruses in Eurasia, is currently underestimated.
Collapse
|
12
|
Development and Evaluation of an Inactivated Influenza A(H5N8) Vaccine. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2022. [DOI: 10.22207/jpam.16.3.71] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Highly pathogenic avian influenza viruses are circulating in lots of avian species, causing major outbreaks in both wild and domestic poultry. Since its first emergence in 2014, clade 2.3.4.4 H5N8 viruses widely spread in the world resulting in enormous economic losses. In Egypt, the newly emerging high pathogenic avian influenza (HPAI) H5N8 viruses have been detected in domestic poultry and in wild birds since the 2016/2017 winter season. AI H5N8 is cocirculating with LP H9N2 and HP H5N1 in the Egyptian environment. Poultry vaccination strategy in Egypt is based on commercially available H5 vaccines as an essential control policy, while the majority of commercial avian influenza H5 vaccines utilized in Egypt are not effective against H5N8 viruses. The present study included 3 experimental H5N8 inactivated vaccines based on the 2 major antigenic proteins of the currently circulating strain A/chicken/Egypt/Q16684C/2019 (H5N8), and the internal segments of the A/PR/8/1934 (H1N1) virus. Then, the protective efficacy of the three forms of inactivated vaccines (HAH5N8+7PR8, NAH5N8+7PR8 and HA, NAH5N8+6PR8) were compared regarding the parental PR8 virus in vaccinated specific pathogen free chickens. The NAH5N8+6PR8 as well as HAH5N8+7PR8 and HA vaccines showed the highest protection capacity of challenged SPF chickens and were able to elicit the highest titers of virus-neutralizing antibodies. Thus, a continuous active surveillance strategy is needed to determine the most dominant circulating strain and updating of vaccine seed strains.
Collapse
|
13
|
Connect to Protect: Dynamics and Genetic Connections of Highly Pathogenic Avian Influenza Outbreaks in Poultry from 2016 to 2021 in Germany. Viruses 2022; 14:v14091849. [PMID: 36146657 PMCID: PMC9502251 DOI: 10.3390/v14091849] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 11/17/2022] Open
Abstract
During autumn/winter in 2016–2017 and 2020–2021, highly pathogenic avian influenza viruses (HPAIV) caused severe outbreaks in Germany and Europe. Multiple clade 2.3.4.4b H5 HPAI subtypes were responsible for increased mortality in wild birds and high mortality and massive losses in the poultry sector. To clarify putative entry sources and delineate interconnections between outbreaks in poultry holdings and wild birds, we applied whole-genome sequencing and phylodynamic analyses combined with the results of epidemiological outbreak investigations. Varying outbreak dynamics of the distinct reassortants allowed for the identification of individual, putatively wild bird-mediated entries into backyard holdings, several clusters comprising poultry holdings, local virus circulation for several weeks, direct farm-to-farm transmission and potential reassortment within a turkey holding with subsequent spill-over of the novel reassorted virus into the wild bird population. Whole-genome sequencing allowed for a unique high-resolution molecular epidemiology analysis of HPAIV H5Nx outbreaks and is recommended to be used as a standard tool. The presented detailed account of the genetic, temporal, and geographical characteristics of the recent German HPAI H5Nx situation emphasizes the role of poultry holdings as an important source of novel genetic variants and reassortants.
Collapse
|
14
|
Ding L, Li J, Li X, Qu B. Evolutionary and Mutational Characterization of the First H5N8 Subtype Influenza A Virus in Humans. Pathogens 2022; 11:pathogens11060666. [PMID: 35745520 PMCID: PMC9227545 DOI: 10.3390/pathogens11060666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 05/29/2022] [Accepted: 06/01/2022] [Indexed: 02/04/2023] Open
Abstract
Highly pathogenic influenza A virus H5 subtype remains a risk for transmission in humans. The H5N8 subtype has caused multiple outbreaks in poultry in Europe over the past few winters. During one recent outbreak in poultry in Astrakhan, workers on the farm were also infected. So far, little is known about how this virus evolves and adapts to infect humans. Here, we performed a time-resolved phylogenetic analysis of 129 HA sequences representing all 1891 available H5N8 viruses collected from 2010 to 2020. We also conducted a whole-genome scan on the human virus at the protein level. We found that H5N8 viruses have spilled over in 34 European countries during the flu season of 2020–2021. These viruses underwent two significant evolutionary steps during 2015–2016 and after 2018. Furthermore, we characterized a number of critical mutations in all viral proteins except PB1-F2, which contribute to increased virulence and avian-to-human adaptation. Our findings suggested that the accumulated mutations under evolution led to quantitative and qualitative changes, likely allowing the virus to spread to humans. Given that the H5N8 virus is co-circulating with other H5 viruses in Europe, the risk of a pandemic should not be underestimated. Continental surveillance and pandemic preparedness are to be established.
Collapse
Affiliation(s)
- Lin Ding
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200240, China;
| | - Jie Li
- Department of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Hangzhou 310059, China;
| | - Xue Li
- Department of Internal Medicine III, University Hospital Heidelberg, 69120 Heidelberg, Germany;
| | - Bingqian Qu
- Department of Veterinary Medicine, Paul Ehrlich Institute, 63225 Langen, Germany
- European Virus Bioinformatics Center (EVBC), 07743 Jena, Germany
- Correspondence:
| |
Collapse
|
15
|
Kandeil A, Moatasim Y, El Taweel A, El Sayes M, Rubrum A, Jeevan T, McKenzie PP, Webby RJ, Ali MA, Kayali G, El-Shesheny R. Genetic and Antigenic Characteristics of Highly Pathogenic Avian Influenza A(H5N8) Viruses Circulating in Domestic Poultry in Egypt, 2017–2021. Microorganisms 2022; 10:microorganisms10030595. [PMID: 35336170 PMCID: PMC8948635 DOI: 10.3390/microorganisms10030595] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/04/2022] [Accepted: 03/07/2022] [Indexed: 02/05/2023] Open
Abstract
In Egypt, the endemicity of avian influenza viruses is a serious concern. Since 2016, several outbreaks of H5N8 have been recorded among domestic poultry in various areas of the country. Active surveillance of domestic poultry across several governorates in Egypt from 2017 to 2021 detected at least six genotypes of Highly Pathogenic Avian Influenza (HPAI) H5N8 viruses with evidence of partial or complete annual replacement of dominant strains. Although all Egyptian H5N8 viruses had clade 2.3.4.4b hemagglutinin (HA) genes, the remaining viral gene segments were from multiple geographic origins, indicating that the H5N8 isolates resulted from multiple introductions. Mutations in the viral proteins associated with pathogenicity and antiviral drug resistance were detected. Some mutations in the HA resulted in antigenic drift. Heterogeneity in circulating H5N8 HPAI threatens poultry production and public health.
Collapse
Affiliation(s)
- Ahmed Kandeil
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza 12622, Egypt; (A.K.); (Y.M.); (A.E.T.); (M.E.S.); (M.A.A.)
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (A.R.); (T.J.); (P.P.M.)
| | - Yassmin Moatasim
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza 12622, Egypt; (A.K.); (Y.M.); (A.E.T.); (M.E.S.); (M.A.A.)
| | - Ahmed El Taweel
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza 12622, Egypt; (A.K.); (Y.M.); (A.E.T.); (M.E.S.); (M.A.A.)
| | - Mohamed El Sayes
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza 12622, Egypt; (A.K.); (Y.M.); (A.E.T.); (M.E.S.); (M.A.A.)
| | - Adam Rubrum
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (A.R.); (T.J.); (P.P.M.)
| | - Trushar Jeevan
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (A.R.); (T.J.); (P.P.M.)
| | - Pamela P. McKenzie
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (A.R.); (T.J.); (P.P.M.)
| | - Richard J. Webby
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (A.R.); (T.J.); (P.P.M.)
- Correspondence: (R.J.W.); (G.K.); (R.E.-S.)
| | - Mohamed A. Ali
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza 12622, Egypt; (A.K.); (Y.M.); (A.E.T.); (M.E.S.); (M.A.A.)
| | - Ghazi Kayali
- Human Link, Dubai 971, United Arab Emirates
- Correspondence: (R.J.W.); (G.K.); (R.E.-S.)
| | - Rabeh El-Shesheny
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza 12622, Egypt; (A.K.); (Y.M.); (A.E.T.); (M.E.S.); (M.A.A.)
- Correspondence: (R.J.W.); (G.K.); (R.E.-S.)
| |
Collapse
|
16
|
Stoimenov GM. Highly pathogenic avian influenza in Bulgaria - a review. BULGARIAN JOURNAL OF VETERINARY MEDICINE 2022. [DOI: 10.15547/bjvm.2020-0062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The aim of this review was to summarise the information about the cases of highly pathogenic avian influenza in Bulgaria during the last two decades. According to the EMPRES-I FAO data, from January 2006 to the end of 2019, 141 HPAI outbreaks have been registered in Bulgaria, with two identified virus serotypes (H5N1 and H5N8). The H5N1 outbreaks were reported in 2006, 2010 and 2015. Almost all H5N1 cases were observed in wild birds, with only one outbreak in domestic chickens in a backyard farm in 2015. From 2016 to the end of 2019, 132 outbreaks of HPAI identified as H5N8 were recorded: sixteen in wild birds and the other 116 - in domestic poultry. Large farms with fattening ducks used for foie gras production in four administrative districts (Plovdiv, Haskovo, Stara Zagora, Dobrich) were mainly affected.
Collapse
Affiliation(s)
- G. M. Stoimenov
- Department of Infectious Pathology and Food Hygiene, Faculty of Veterinary Medicine, University of Forestry, Sofia, Bulgaria
| |
Collapse
|
17
|
Chang N, Zhang C, Mei X, Du F, Li J, Zhang L, Du H, Yun F, Aji D, Shi W, Bi Y, Ma Z. Novel reassortment 2.3.4.4b H5N8 highly pathogenic avian influenza viruses circulating in Xinjiang, China. Prev Vet Med 2021; 199:105564. [PMID: 34959041 DOI: 10.1016/j.prevetmed.2021.105564] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 11/25/2021] [Accepted: 12/16/2021] [Indexed: 11/30/2022]
Abstract
In 2016, H5N8 avian influenza viruses of clade 2.3.4.4b were detected at Qinghai Lake, China. Afterwards, the viruses of this clade rapidly spread to Asia, Europe, and Africa via migratory birds, and caused massive deaths in poultry and wild birds globally. In this study, four H5N8 isolates (abbreviated as 001, 002, 003, and 004) were isolated from the live poultry market in Xinjiang in 2017. Phylogenetic analysis showed that the hemagglutinin genes of the four isolates belonged to clade 2.3.4.4b, while the viral gene segments were from multiple geographic origins. For 002, the polymerase acidic gene had the highest sequence homology (99.55 %) with H5N8 virus identified from green-winged teal in Egypt in 2016, and the remaining genes exhibited the highest sequence homologies (99.18-100 %) with those of H5N8 viruses isolated from domestic duck sampled in Siberia in 2016. The polymerase basic 1 gene clustered together with H5N8 virus identified from painted stork of India in 2016, and the remaining genes had relatively close genetic relationships with H5N8 viruses identified from the duck of Siberia in 2016 and turkey in Italy in 2017. For the other three isolates, the nucleoprotein gene of 001 had the highest sequence homology (98.82 %) and relatively close genetic relationship with H9N2 viruses identified from poultry in Vietnam and Cambodia in 2015-2017, and all the remaining genes had the highest sequence homologies (99.18 %-99.58 %) and relatively close genetic relationships with H5N8 viruses identified from poultry and waterfowl sampled in African countries in 2017 and swan sampled in China in 2016. Multiple basic amino acids were observed at cleavage sites in the hemagglutinin proteins of the H5N8 isolates, indicating high pathogenicity. In addition, the L89V, G309D, R477G, I495V, A676T and I504V mutations in the polymerase basic 2 protein, N30D and T215A mutations in the matrix 1 protein, P42S mutation, and 80-84 amino acid deletion in the nonstructural 1 protein were detected in all isolates. These mutations were associated with increased virulence and polymerase activity in mammals. Therefore, our results indicate that the H5N8 isolates involved multiple introductions of reassorted viruses, and also revealed that the wetlands of Northern Tianshan Mountain may play a key role in H5N8 AIVs disseminating among Central China, the Eurasian continent, and East African Countries.
Collapse
Affiliation(s)
- Nana Chang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830046, China
| | - Cheng Zhang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830046, China; CAS Key Laboratory of Pathogenic Microbiology and Immunology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, Institute of Microbiology, Center for Influenza Research and Early-Warning (CASCIRE), Chinese Academy of Science, Beijing, 100101, China
| | - Xindi Mei
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830046, China
| | - Fei Du
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830046, China
| | - Juan Li
- Key Laboratory of Etiology and Emerging Infections Disease in Shandong First Medical University, Taian, 271016, China
| | - Lijuan Zhang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830046, China
| | - Han Du
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830046, China
| | - Fengze Yun
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830046, China
| | - Dilihuma Aji
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830046, China
| | - Weifeng Shi
- Key Laboratory of Etiology and Emerging Infections Disease in Shandong First Medical University, Taian, 271016, China
| | - Yuhai Bi
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830046, China; CAS Key Laboratory of Pathogenic Microbiology and Immunology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, Institute of Microbiology, Center for Influenza Research and Early-Warning (CASCIRE), Chinese Academy of Science, Beijing, 100101, China.
| | - Zhenghai Ma
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830046, China.
| |
Collapse
|
18
|
Sapachova M, Kovalenko G, Sushko M, Bezymennyi M, Muzyka D, Usachenko N, Mezhenskyi A, Abramov A, Essen S, Lewis NS, Bortz E. Phylogenetic Analysis of H5N8 Highly Pathogenic Avian Influenza Viruses in Ukraine, 2016–2017. Vector Borne Zoonotic Dis 2021; 21:979-988. [DOI: 10.1089/vbz.2021.0031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Maryna Sapachova
- State Scientific and Research Institute of Laboratory Diagnostics and Veterinary and Sanitary Expertise (SSRILDVSE), Kyiv, Ukraine
| | - Ganna Kovalenko
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
- Department of Biological Sciences, University of Alaska Anchorage (UAA), Anchorage, Alaska, USA
| | - Mykola Sushko
- State Scientific and Research Institute of Laboratory Diagnostics and Veterinary and Sanitary Expertise (SSRILDVSE), Kyiv, Ukraine
| | | | - Denys Muzyka
- National Scientific Center Institute for Experimental Clinical and Veterinary Medicine (NSC IECVM), Kharkiv, Ukraine
| | - Natalia Usachenko
- State Scientific and Research Institute of Laboratory Diagnostics and Veterinary and Sanitary Expertise (SSRILDVSE), Kyiv, Ukraine
| | - Andrii Mezhenskyi
- State Scientific and Research Institute of Laboratory Diagnostics and Veterinary and Sanitary Expertise (SSRILDVSE), Kyiv, Ukraine
| | - Artur Abramov
- State Scientific Control Institute of Biotechnology and Strains of Microorganisms (SSCIBSM), Kyiv, Ukraine
| | - Stephen Essen
- OIE/FAO International Reference Laboratory, Animal and Plant Health Agency (APHA), Weybridge, United Kingdom
| | - Nicola S. Lewis
- OIE/FAO International Reference Laboratory, Animal and Plant Health Agency (APHA), Weybridge, United Kingdom
- Royal Veterinary College, University of London, London, United Kingdom
| | - Eric Bortz
- Department of Biological Sciences, University of Alaska Anchorage (UAA), Anchorage, Alaska, USA
- Institute for Veterinary Medicine (IVM), Kyiv, Ukraine
| |
Collapse
|
19
|
El-Shesheny R, Turner JCM, Walker D, Franks J, Seiler P, Barman S, Feeroz MM, Hasan MK, Akhtar S, Mukherjee N, Kercher L, McKenzie P, Webster RG, Webby RJ. Detection of a Novel Reassortant H9N9 Avian Influenza Virus in Free-Range Ducks in Bangladesh. Viruses 2021; 13:v13122357. [PMID: 34960626 PMCID: PMC8704232 DOI: 10.3390/v13122357] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/16/2021] [Accepted: 11/20/2021] [Indexed: 01/10/2023] Open
Abstract
Wild aquatic birds are the primary natural reservoir for influenza A viruses (IAVs). In this study, an A(H9N9) influenza A virus (A/duck/Bangladesh/44493/2020) was identified via routine surveillance in free-range domestic ducks in Bangladesh. Phylogenetic analysis of hemagglutinin showed that the H9N9 virus belonged to the Y439-like lineage. The HA gene had the highest nucleotide identity to A/Bean Goose (Anser fabalis)/South Korea/KNU 2019-16/2019 (H9N2). The other seven gene segments clustered within the Eurasian lineage.
Collapse
Affiliation(s)
- Rabeh El-Shesheny
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (R.E.-S.); (J.C.M.T.); (D.W.); (J.F.); (P.S.); (S.B.); (N.M.); (L.K.); (P.M.); (R.G.W.)
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza 12622, Egypt
| | - Jasmine C. M. Turner
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (R.E.-S.); (J.C.M.T.); (D.W.); (J.F.); (P.S.); (S.B.); (N.M.); (L.K.); (P.M.); (R.G.W.)
| | - David Walker
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (R.E.-S.); (J.C.M.T.); (D.W.); (J.F.); (P.S.); (S.B.); (N.M.); (L.K.); (P.M.); (R.G.W.)
| | - John Franks
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (R.E.-S.); (J.C.M.T.); (D.W.); (J.F.); (P.S.); (S.B.); (N.M.); (L.K.); (P.M.); (R.G.W.)
| | - Patrick Seiler
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (R.E.-S.); (J.C.M.T.); (D.W.); (J.F.); (P.S.); (S.B.); (N.M.); (L.K.); (P.M.); (R.G.W.)
| | - Subrata Barman
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (R.E.-S.); (J.C.M.T.); (D.W.); (J.F.); (P.S.); (S.B.); (N.M.); (L.K.); (P.M.); (R.G.W.)
| | - Mohammed M. Feeroz
- Department of Zoology, Jahangirnagar University, Savar 1342, Bangladesh; (M.M.F.); (M.K.H.); (S.A.)
| | - Md Kamrul Hasan
- Department of Zoology, Jahangirnagar University, Savar 1342, Bangladesh; (M.M.F.); (M.K.H.); (S.A.)
| | - Sharmin Akhtar
- Department of Zoology, Jahangirnagar University, Savar 1342, Bangladesh; (M.M.F.); (M.K.H.); (S.A.)
| | - Nabanita Mukherjee
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (R.E.-S.); (J.C.M.T.); (D.W.); (J.F.); (P.S.); (S.B.); (N.M.); (L.K.); (P.M.); (R.G.W.)
| | - Lisa Kercher
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (R.E.-S.); (J.C.M.T.); (D.W.); (J.F.); (P.S.); (S.B.); (N.M.); (L.K.); (P.M.); (R.G.W.)
| | - Pamela McKenzie
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (R.E.-S.); (J.C.M.T.); (D.W.); (J.F.); (P.S.); (S.B.); (N.M.); (L.K.); (P.M.); (R.G.W.)
| | - Robert G. Webster
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (R.E.-S.); (J.C.M.T.); (D.W.); (J.F.); (P.S.); (S.B.); (N.M.); (L.K.); (P.M.); (R.G.W.)
| | - Richard J. Webby
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (R.E.-S.); (J.C.M.T.); (D.W.); (J.F.); (P.S.); (S.B.); (N.M.); (L.K.); (P.M.); (R.G.W.)
- Correspondence:
| |
Collapse
|
20
|
Yeo SJ, Hoang VT, Duong TB, Nguyen NM, Tuong HT, Azam M, Sung HW, Park H. Emergence of a Novel Reassortant H5N3 Avian Influenza Virus in Korean Mallard Ducks in 2018. Intervirology 2021; 65:1-16. [PMID: 34438407 DOI: 10.1159/000517057] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 04/29/2021] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION The avian influenza (AI) virus causes a highly contagious disease which is common in wild and domestic birds and sporadic in humans. Mutations and genetic reassortments among the 8 negative-sense RNA segments of the viral genome alter its pathogenic potential, demanding well-targeted, active surveillance for infection control. METHODS Wild duck fecal samples were collected during the 2018 bird health annual surveillance in South Korea for tracking variations of the AI virus. One low-pathogenic avian influenza H5N3 reassortment virus (A/mallard duck/South Korea/KNU18-91/2018 [H5N3]) was isolated and genomically characterized by phylogenetic and molecular analyses in this study. RESULTS It was devoid of polybasic amino acids at the hemagglutinin (HA) cleavage site and exhibited a stalk region without deletion in the neuraminidase (NA) gene and NA inhibitor resistance-linked E/D627K/N and D701N marker mutations in the PB2 gene, suggesting its low-pathogenic AI. It showed a potential of a reassortment where only HA originated from the H5N3 poultry virus of China and other genes were derived from Mongolia. In phylogenetic analysis, HA was different from that of the isolate of H5N3 in Korea, 2015. In addition, this novel virus showed adaptation in Madin-Darby canine kidney cells, with 8.05 ± 0.14 log10 50% tissue culture infectious dose (TCID50) /mL at 36 h postinfection. However, it could not replicate in mice well, showing positive growth at 3 days postinfection (dpi) (2.1 ± 0.13 log10 TCID50/mL) but not at 6 dpi. CONCLUSIONS The HA antigenic relationship of A/mallard duck/South Korea/KNU18-91/2018 (H5N3) showed differences toward one of the old low-pathogenic H5N3 viruses in Korea. These results indicated that a novel reassortment low-pathogenic avian influenza H5N3 subtype virus emerged in South Korea in 2018 via novel multiple reassortments with Eurasian viruses, rather than one of old Korean H5N3 strains.
Collapse
Affiliation(s)
- Seon-Ju Yeo
- Department of Tropical Medicine and Parasitology, Seoul National University College of Medicine, Seoul, Republic of Korea,
| | - Vui Thi Hoang
- Department of Infection Biology, Zoonosis Research Center, School of Medicine, Wonkwang University, Iksan, Republic of Korea
| | - Tuan Bao Duong
- Department of Infection Biology, Zoonosis Research Center, School of Medicine, Wonkwang University, Iksan, Republic of Korea
| | - Ngoc Minh Nguyen
- Department of Infection Biology, Zoonosis Research Center, School of Medicine, Wonkwang University, Iksan, Republic of Korea
| | - Hien Thi Tuong
- Department of Infection Biology, Zoonosis Research Center, School of Medicine, Wonkwang University, Iksan, Republic of Korea
| | - Mudsser Azam
- Department of Infection Biology, Zoonosis Research Center, School of Medicine, Wonkwang University, Iksan, Republic of Korea
| | - Haan Woo Sung
- College of Veterinary Medicine, Kangwon National University, Chuncheon, Republic of Korea
| | - Hyun Park
- Department of Infection Biology, Zoonosis Research Center, School of Medicine, Wonkwang University, Iksan, Republic of Korea
| |
Collapse
|
21
|
Preferential Selection and Contribution of Non-Structural Protein 1 (NS1) to the Efficient Transmission of Panzootic Avian Influenza H5N8 Virus Clades 2.3.4.4A and B in Chickens and Ducks. J Virol 2021; 95:e0044521. [PMID: 34160261 DOI: 10.1128/jvi.00445-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Highly pathogenic avian influenza virus H5N8 clade 2.3.4.4 caused outbreaks in poultry at an unprecedented global scale. The virus was spread by wild birds in Asia in two waves: clade 2.3.4.4A in 2014/2015 and clade 2.3.4.4B from 2016 up to today. Both clades were highly virulent in chickens, but only clade B viruses exhibited high virulence in ducks. Viral factors which contribute to virulence and transmission of these panzootic H5N8 2.3.4.4 viruses are largely unknown. The NS1 protein, typically composed of 230 amino acids (aa), is a multifunctional protein which is also a pathogenicity factor. Here, we studied the evolutionary trajectory of H5N8 NS1 proteins from 2013 to 2019 and their role in the fitness of H5N8 viruses in chickens and ducks. Sequence analysis and in vitro experiments indicated that clade 2.3.4.4A and clade 2.3.4.4B viruses have a preference for NS1 of 237 aa and 217 aa, respectively, over NS1 of 230 aa. NS217 was exclusively seen in domestic and wild birds in Europe. The extension of the NS1 C terminus (CTE) of clade B virus reduced virus transmission and replication in chickens and ducks and partially impaired the systemic tropism to the endothelium in ducks. Conversely, lower impact on fitness of clade A virus was observed. Remarkably, the NS1 of clade A and clade B, regardless of length, was efficient in blocking interferon (IFN) induction in infected chickens, and changes in the NS1 C terminus reduced the efficiency for interferon antagonism. Together, the NS1 C terminus contributes to the efficient transmission and high fitness of H5N8 viruses in chickens and ducks. IMPORTANCE The panzootic H5N8 highly pathogenic avian influenza viruses of clade 2.3.4.4A and 2.3.4.4B devastated the poultry industry globally. Clade 2.3.4.4A was predominant in 2014/2015 while clade 2.3.4.4B was widely spread in 2016/2017. The two clades exhibited different pathotypes in ducks. Virus factors contributing to virulence and transmission are largely unknown. The NS1 protein is typically composed of 230 amino acids (aa) and is an essential interferon (IFN) antagonist. Here, we found that the NS1 protein of clade 2.3.4.4A preferentially evolved toward long NS1 with 237 aa, while clade 2.3.4.4B evolved toward shorter NS1 with 217 aa (exclusively found in Europe) due to stop codons in the C terminus (CTE). We showed that the NS1 CTE of H5N8 is required for efficient virus replication, transmission, and endotheliotropism in ducks. In chickens, H5N8 NS1 evolved toward higher efficiency to block IFN response. These findings may explain the preferential pattern for short NS1 and high fitness of the panzootic H5N8 in birds.
Collapse
|
22
|
Turner JCM, Barman S, Feeroz MM, Hasan MK, Akhtar S, Jeevan T, Walker D, Franks J, Seiler P, Mukherjee N, Kercher L, McKenzie P, Lam T, El-Shesheny R, Webby RJ. Highly Pathogenic Avian Influenza A(H5N6) Virus Clade 2.3.4.4h in Wild Birds and Live Poultry Markets, Bangladesh. Emerg Infect Dis 2021; 27:2492-2494. [PMID: 34424167 PMCID: PMC8386775 DOI: 10.3201/eid2709.210819] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Migratory birds play a major role in spreading influenza viruses over long distances. We report highly pathogenic avian influenza A(H5N6) viruses in migratory and resident ducks in Bangladesh. The viruses were genetically similar to viruses detected in wild birds in China and Mongolia, suggesting migration-associated dissemination of these zoonotic pathogens.
Collapse
|
23
|
Genetic Characterization of Highly Pathogenic Avian Influenza A(H5N8) Virus in Pakistani Live Bird Markets Reveals Rapid Diversification of Clade 2.3.4.4b Viruses. Viruses 2021; 13:v13081633. [PMID: 34452498 PMCID: PMC8402709 DOI: 10.3390/v13081633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/06/2021] [Accepted: 08/16/2021] [Indexed: 11/17/2022] Open
Abstract
The highly pathogenic (HPAI) avian influenza A(H5N1) viruses have undergone reassortment with multiple non-N1-subtype neuraminidase genes since 2008, leading to the emergence of H5Nx viruses. H5Nx viruses established themselves quickly in birds and disseminated from China to Africa, the Middle East, Europe and North America. Multiple genetic clades have successively evolved through frequent mutations and reassortment, posing a continuous threat to domestic poultry and causing substantial economic losses. Live bird markets are recognized as major sources of avian-to-human infection and for the emergence of zoonotic influenza. In Pakistan, the A(H5N1) virus was first reported in domestic birds in 2007; however, avian influenza surveillance is limited and there is a lack of knowledge on the evolution and transmission of the A(H5) virus in the country. We collected oropharyngeal swabs from domestic poultry and environmental samples from six different live bird markets during 2018–2019. We detected and sequenced HPAI A(H5N8) viruses from two chickens, one quail and one environmental sample in two markets. Temporal phylogenetics indicated that all novel HPAI A(H5N8) viruses belonged to clade 2.3.4.4b, with all eight genes of Pakistan A(H5N8) viruses most closely related to 2017 Saudi Arabia A(H5N8) viruses, which were likely introduced via cross-border transmission from neighboring regions approximately three months prior to virus detection into domestic poultry. Our data further revealed that clade 2.3.4.4b viruses underwent rapid lineage expansion in 2017 and acquired significant amino acid mutations, including mutations associated with increased haemagglutinin affinity to human α-2,6 receptors, prior to the first human A(H5N8) infection in Russian poultry workers in 2020. These results highlight the need for systematic avian influenza surveillance in live bird markets in Pakistan to monitor for potential A(H5Nx) variants that may arise from poultry populations.
Collapse
|
24
|
Svyatchenko SV, Goncharova NI, Marchenko VY, Kolosova NP, Shvalov AN, Kovrizhkina VL, Durymanov AG, Onkhonova GS, Tregubchak TV, Susloparov IM, Gudymo AS, Ilyicheva TN, Ryzhikov AB. An influenza A(H5N8) virus isolated during an outbreak at a poultry farm in Russia in 2017 has an N294S substitution in the neuraminidase and shows reduced susceptibility to oseltamivir. Antiviral Res 2021; 191:105079. [PMID: 33933515 DOI: 10.1016/j.antiviral.2021.105079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 04/20/2021] [Accepted: 04/22/2021] [Indexed: 11/25/2022]
Abstract
This study aimed to assess the antiviral susceptibility of influenza A(H5N8) viruses isolated in Russia in 2014-2018. Genetic analysis of 57 Russian isolates with full genome sequences did not find any markers of reduced susceptibility to baloxavir. Only one strain bore an amino acid substitution associated with adamantane resistance (M2-S31N). The neuraminidase of 1 strain had an NA-N293/294S (N8/N2 numbering) substitution associated with reduced inhibition by oseltamivir and normal inhibition by zanamivir, which was confirmed phenotypically. There were no other strains with reduced inhibition by oseltamivir and zanamivir in the phenotypic analysis. In order to estimate the worldwide prevalence of influenza A(H5N8) viruses bearing genetic markers of antiviral resistance, genome sequences deposited in the GISAID database were analyzed (database access: October 2020). The M2 protein of A(H5N8) viruses from the 2.3.4.4c clade had an M2-S31N substitution associated with reduced susceptibility to adamantanes. On the contrary, the majority (94%) of viruses from the 2.3.4.4b clade had the M2-S31 genotype. Fewer than 1% of analyzed viruses had amino acid substitutions associated with reduced susceptibility to baloxavir (PA-E199G, PA-E199E/G) or reduced or highly reduced inhibition by neuraminidase inhibitors (NA-R150/152K, NA-I221/222M, NA-I221/222I/M, NA-I221/222V, NA-I115/117V, NA-G145/147R, NA-R291/292R/K). An NA-N293/294S substitution was not present in sequences from the GISAID database. To the best of our knowledge, influenza A(H5N8) viruses with reduced inhibition by oseltamivir bearing an NA-N293/294S substitution have not been previously reported in epidemiological surveillance studies.
Collapse
Affiliation(s)
- Svetlana V Svyatchenko
- State Research Center of Virology and Biotechnology "Vector" Rospotrebnadzor, Koltsovo, Novosibirsk Region, 630559, Russian Federation.
| | - Natalia I Goncharova
- State Research Center of Virology and Biotechnology "Vector" Rospotrebnadzor, Koltsovo, Novosibirsk Region, 630559, Russian Federation
| | - Vasiliy Y Marchenko
- State Research Center of Virology and Biotechnology "Vector" Rospotrebnadzor, Koltsovo, Novosibirsk Region, 630559, Russian Federation
| | - Natalia P Kolosova
- State Research Center of Virology and Biotechnology "Vector" Rospotrebnadzor, Koltsovo, Novosibirsk Region, 630559, Russian Federation
| | - Alexander N Shvalov
- State Research Center of Virology and Biotechnology "Vector" Rospotrebnadzor, Koltsovo, Novosibirsk Region, 630559, Russian Federation
| | - Valentina L Kovrizhkina
- State Research Center of Virology and Biotechnology "Vector" Rospotrebnadzor, Koltsovo, Novosibirsk Region, 630559, Russian Federation
| | - Alexander G Durymanov
- State Research Center of Virology and Biotechnology "Vector" Rospotrebnadzor, Koltsovo, Novosibirsk Region, 630559, Russian Federation
| | - Galina S Onkhonova
- State Research Center of Virology and Biotechnology "Vector" Rospotrebnadzor, Koltsovo, Novosibirsk Region, 630559, Russian Federation
| | - Tatyana V Tregubchak
- State Research Center of Virology and Biotechnology "Vector" Rospotrebnadzor, Koltsovo, Novosibirsk Region, 630559, Russian Federation
| | - Ivan M Susloparov
- State Research Center of Virology and Biotechnology "Vector" Rospotrebnadzor, Koltsovo, Novosibirsk Region, 630559, Russian Federation
| | - Andrey S Gudymo
- State Research Center of Virology and Biotechnology "Vector" Rospotrebnadzor, Koltsovo, Novosibirsk Region, 630559, Russian Federation
| | - Tatyana N Ilyicheva
- State Research Center of Virology and Biotechnology "Vector" Rospotrebnadzor, Koltsovo, Novosibirsk Region, 630559, Russian Federation
| | - Alexander B Ryzhikov
- State Research Center of Virology and Biotechnology "Vector" Rospotrebnadzor, Koltsovo, Novosibirsk Region, 630559, Russian Federation
| |
Collapse
|
25
|
Moatasim Y, Kandeil A, Mostafa A, Kutkat O, Sayes ME, El Taweel AN, AlKhazindar M, AbdElSalam ET, El-Shesheny R, Kayali G, Ali MA. Impact of Individual Viral Gene Segments from Influenza A/H5N8 Virus on the Protective Efficacy of Inactivated Subtype-Specific Influenza Vaccine. Pathogens 2021; 10:pathogens10030368. [PMID: 33808583 PMCID: PMC8003407 DOI: 10.3390/pathogens10030368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 01/18/2023] Open
Abstract
Since its emergence in 2014, the highly pathogenic avian influenza H5N8 virus has continuously and rapidly spread worldwide in the poultry sector resulting in huge economic losses. A typical inactivated H5N8 vaccine is prepared using the six internal genes from A/PR8/1934 (H1N1) and the two major antigenic proteins (HA and NA) from the circulating H5N8 strain with the HA modified to a low pathogenic form (PR8HA/NA-H5N8). The contribution of the other internal proteins from H5N8, either individually or in combination, to the overall protective efficacy of PR8-based H5N8 vaccine has not been investigated. Using reverse genetics, a set of PR8-based vaccines expressing the individual proteins from an H5N8 strain were rescued and compared to the parent PR8 and low pathogenic H5N8 strains and the commonly used PR8HA/NA-H5N8. Except for the PR8-based vaccine strains expressing the HA of H5N8, none of the rescued combinations could efficiently elicit virus-neutralizing antibodies. Compared to PR8, the non-HA viral proteins provided some protection to infected chickens six days post infection. We assume that this late protection was related to cell-based immunity rather than antibody-mediated immunity. This may explain the slight advantage of using full low pathogenic H5N8 instead of PR8HA/NA-H5N8 to improve protection by both the innate and the humoral arms of the immune system.
Collapse
Affiliation(s)
- Yassmin Moatasim
- Center of Scientific Excellence for Influenza Virus, National Research Centre, Environmental Research Division, Giza 12622, Egypt; (Y.M.); (A.K.); (A.M.); (O.K.); (M.E.S.); (A.N.E.T.); (R.E.-S.)
| | - Ahmed Kandeil
- Center of Scientific Excellence for Influenza Virus, National Research Centre, Environmental Research Division, Giza 12622, Egypt; (Y.M.); (A.K.); (A.M.); (O.K.); (M.E.S.); (A.N.E.T.); (R.E.-S.)
| | - Ahmed Mostafa
- Center of Scientific Excellence for Influenza Virus, National Research Centre, Environmental Research Division, Giza 12622, Egypt; (Y.M.); (A.K.); (A.M.); (O.K.); (M.E.S.); (A.N.E.T.); (R.E.-S.)
| | - Omnia Kutkat
- Center of Scientific Excellence for Influenza Virus, National Research Centre, Environmental Research Division, Giza 12622, Egypt; (Y.M.); (A.K.); (A.M.); (O.K.); (M.E.S.); (A.N.E.T.); (R.E.-S.)
| | - Mohamed El Sayes
- Center of Scientific Excellence for Influenza Virus, National Research Centre, Environmental Research Division, Giza 12622, Egypt; (Y.M.); (A.K.); (A.M.); (O.K.); (M.E.S.); (A.N.E.T.); (R.E.-S.)
| | - Ahmed N. El Taweel
- Center of Scientific Excellence for Influenza Virus, National Research Centre, Environmental Research Division, Giza 12622, Egypt; (Y.M.); (A.K.); (A.M.); (O.K.); (M.E.S.); (A.N.E.T.); (R.E.-S.)
| | - Maha AlKhazindar
- Department of Botany and Microbiology, Faculty of Science, Cairo University, Gamaa Street, Giza 12613, Egypt; (M.A.); (E.T.A.)
| | - Elsayed T. AbdElSalam
- Department of Botany and Microbiology, Faculty of Science, Cairo University, Gamaa Street, Giza 12613, Egypt; (M.A.); (E.T.A.)
| | - Rabeh El-Shesheny
- Center of Scientific Excellence for Influenza Virus, National Research Centre, Environmental Research Division, Giza 12622, Egypt; (Y.M.); (A.K.); (A.M.); (O.K.); (M.E.S.); (A.N.E.T.); (R.E.-S.)
- St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Ghazi Kayali
- Human Link, Dubai, United Arab Emirates
- Department of Epidemiology, Human Genetics, and Environmental Sciences, University of Texas, Houston, TX 77030, USA
- Correspondence: (G.K.); (M.A.A.)
| | - Mohamed A. Ali
- Center of Scientific Excellence for Influenza Virus, National Research Centre, Environmental Research Division, Giza 12622, Egypt; (Y.M.); (A.K.); (A.M.); (O.K.); (M.E.S.); (A.N.E.T.); (R.E.-S.)
- Correspondence: (G.K.); (M.A.A.)
| |
Collapse
|
26
|
Continued Evolution of H5Nx Avian Influenza Viruses in Bangladeshi Live Poultry Markets: Pathogenic Potential in Poultry and Mammalian Models. J Virol 2020; 94:JVI.01141-20. [PMID: 32907981 DOI: 10.1128/jvi.01141-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 08/21/2020] [Indexed: 11/20/2022] Open
Abstract
The genesis of novel influenza viruses through reassortment poses a continuing risk to public health. This is of particular concern in Bangladesh, where highly pathogenic avian influenza viruses of the A(H5N1) subtype are endemic and cocirculate with other influenza viruses. Active surveillance of avian influenza viruses in Bangladeshi live poultry markets detected three A(H5) genotypes, designated H5N1-R1, H5N1-R2, and H5N2-R3, that arose from reassortment of A(H5N1) clade 2.3.2.1a viruses. The H5N1-R1 and H5N1-R2 viruses contained HA, NA, and M genes from the A(H5N1) clade 2.3.2.1a viruses and PB2, PB1, PA, NP, and NS genes from other Eurasian influenza viruses. H5N2-R3 viruses contained the HA gene from circulating A(H5N1) clade 2.3.2.1a viruses, NA and M genes from concurrently circulating A(H9N2) influenza viruses, and PB2, PB1, PA, NP, and NS genes from other Eurasian influenza viruses. Representative viruses of all three genotypes and a parental clade 2.3.2.1a strain (H5N1-R0) infected and replicated in mice without prior adaptation; the H5N2-R3 virus replicated to the highest titers in the lung. All viruses efficiently infected and killed chickens. All viruses replicated in inoculated ferrets, but no airborne transmission was detected, and only H5N2-R3 showed limited direct-contact transmission. Our findings demonstrate that although the A(H5N1) viruses circulating in Bangladesh have the capacity to infect and replicate in mammals, they show very limited capacity for transmission. However, reassortment does generate viruses of distinct phenotypes.IMPORTANCE Highly pathogenic avian influenza A(H5N1) viruses have circulated continuously in Bangladesh since 2007, and active surveillance has detected viral evolution driven by mutation and reassortment. Recently, three genetically distinct A(H5N1) reassortant viruses were detected in live poultry markets in Bangladesh. Currently, we cannot assign pandemic risk by only sequencing viruses; it must be conducted empirically. We found that the H5Nx highly pathogenic avian influenza viruses exhibited high virulence in mice and chickens, and one virus had limited capacity to transmit between ferrets, a property considered consistent with a higher zoonotic risk.
Collapse
|
27
|
Dinev I, Zarkov I, Goujgoulova GV, Stoimenov GM, Georgiev G, Kanakov D. Pathologic Evaluation of Influenza A H5N8 Infection Outbreaks in Mule Ducks in Bulgaria. Avian Dis 2020; 64:203-209. [PMID: 32550621 DOI: 10.1637/0005-2086-64.2.203] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 02/19/2020] [Indexed: 11/05/2022]
Abstract
This article outlines pathomorphologic findings of a study involving commercial mule ducks with confirmed influenza A H5N8 infections after a series of outbreaks in Bulgaria. Examinations were carried out after performing necropsy on dead birds from three different age groups (up to 15, 20 to 30, and 40+ days of age) fattened on different farms. Among birds of all ages, gross lesions were present as lesions affecting the heart. Histologically, the myocardium exhibited severe intermyofibrillar edema, moderate to massive hemorrhages, and degenerative changes. All lesions resulted in single or multiple and small to massive myocardial infarctions. Other affected organs included the brain, lungs, liver, spleen, and pancreas. Nonpurulent lymphocytic encephalitis was found postmortem in ducks that had shown prior clinical nervous signs. Among ducks of all ages, a viral antigen in the cardiomyocytes and the epithelium of air capillaries was found through immunohistochemical detection methods. The results of the present study allowed us to conclude that the highly pathogenic avian influenza A H5N8 viral infection may manifest itself as a systemic illness in commercial mule ducks with septicemic lesions, resulting in high morbidity and mortality rates of up to 100%. Pathomorphologic lesions were somewhat different from those previously reported in wild waterfowl.
Collapse
Affiliation(s)
- Ivan Dinev
- Department of General and Clinical Pathology, Faculty of Veterinary Medicine, Trakia University, 6000 Stara Zagora, Bulgaria,
| | - Ivan Zarkov
- Department of Microbiology, Infection and Parasite Diseases, Faculty of Veterinary Medicine, Trakia University, 6000 Stara Zagora, Bulgaria
| | | | - Georgi M Stoimenov
- Department of Infectious Pathology and Food Hygiene, Faculty of Veterinary Medicine, University of Forestry, 1000 Sofia, Bulgaria
| | - Georgi Georgiev
- Risk Assessment Center on Food Chain, Ministry of Agriculture, Food and Forestry, 1000 Sofia, Bulgaria
| | - Dian Kanakov
- Department of Internal Noninfectious Diseases, Faculty of Veterinary Medicine, Trakia University, 6000 Stara Zagora, Bulgaria
| |
Collapse
|
28
|
Li X, Li X, Xu B. Phylogeography of Highly Pathogenic H5 Avian Influenza Viruses in China. Virol Sin 2020; 35:548-555. [DOI: 10.1007/s12250-020-00193-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 12/17/2019] [Indexed: 12/09/2022] Open
|
29
|
King J, Harder T, Conraths FJ, Beer M, Pohlmann A. The genetics of highly pathogenic avian influenza viruses of subtype H5 in Germany, 2006-2020. Transbound Emerg Dis 2020; 68:1136-1150. [PMID: 32964686 DOI: 10.1111/tbed.13843] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/03/2020] [Accepted: 09/12/2020] [Indexed: 12/22/2022]
Abstract
The H5 A/Goose/Guangdong/1/1996 (gs/GD) lineage emerged in China in 1996. Rooted in the respective gs/GD lineage, the hemagglutinin (HA) gene of highly pathogenic avian influenza viruses (HPAIV) has genetically diversified into a plethora of clades and subclades and evolved into an assortment of sub- and genotypes. Some caused substantial losses in the poultry industry and had a major impact on wild bird populations alongside public health implications due to a zoonotic potential of certain clades. After the primary introduction of the HPAI H5N1 gs/GD lineage into Europe in autumn 2005 and winter 2005/2006, Germany has seen recurring incursions of four varying H5Nx subtypes (H5N1, H5N8, H5N5, H5N6) carrying multiple distinct reassortants, all descendants of the gs/GD virus. The first HPAIV H5 epidemic in Germany during 2006/2007 was caused by a clade 2.2 subtype H5N1 virus. Phylogenetic analysis confirmed three distinct clusters belonging to clades 2.2.1, 2.2.2 and 2.2, concurring with geographic and temporal structures. From 2014 onwards, HPAIV clade 2.3.4.4 has dominated the epidemiological situation in Germany. The initial clade 2.3.4.4a HPAIV H5N8, reaching Germany in November 2014, caused a limited epidemic affecting five poultry holdings, one zoo in Northern Germany and few wild birds. After November 2016, HPAIV of clade 2.3.4.4b have dominated the situation to date. The most extensive HPAIV H5 epidemic on record reached Germany in winter 2016/2017, encompassing multiple incursion events with two subtypes (H5N8, H5N5) and entailing five reassortants. A novel H5N6 clade 2.3.4.4b strain affected Germany from December 2017 onwards, instigating low-level infection in smallholdings and wild birds. Recently, in spring 2020, a novel incursion of a genetically distinct HPAI clade 2.3.4.4b H5N8 virus caused another epidemic in Europe, which affected a small number of poultry holdings, one zoo and two wild birds throughout Germany.
Collapse
Affiliation(s)
- Jacqueline King
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Insel Riems, Germany
| | - Timm Harder
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Insel Riems, Germany
| | - Franz J Conraths
- Institute of Epidemiology, Friedrich-Loeffler-Institut, Insel Riems, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Insel Riems, Germany
| | - Anne Pohlmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Insel Riems, Germany
| |
Collapse
|
30
|
Outbreak Severity of Highly Pathogenic Avian Influenza A(H5N8) Viruses Is Inversely Correlated to Polymerase Complex Activity and Interferon Induction. J Virol 2020; 94:JVI.00375-20. [PMID: 32238581 DOI: 10.1128/jvi.00375-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 03/04/2020] [Indexed: 12/21/2022] Open
Abstract
Highly pathogenic avian influenza A(H5N8) viruses first emerged in China in 2010 and in 2014 spread throughout Asia and to Europe and the United States via migrating birds. Influenza A(H5N8) viruses were first detected in the Netherlands in 2014 and caused five outbreaks in poultry farms but were infrequently detected in wild birds. In 2016, influenza A(H5N8) viruses were reintroduced into the Netherlands, resulting in eight poultry farm outbreaks. This outbreak resulted in numerous dead wild birds with severe pathology. Phylogenetic analysis showed that the polymerase genes of these viruses had undergone extensive reassortment between outbreaks. Here, we investigated the differences in virulence between the 2014-15 and the 2016-17 outbreaks by characterizing the polymerase complex of influenza A(H5N8) viruses from both outbreaks. We found that viruses from the 2014-15 outbreak had significantly higher polymerase complex activity in both human and avian cell lines than did those from the 2016-17 outbreak. No apparent differences in the balance between transcription and replication of the viral genome were observed. Interestingly, the 2014-15 polymerase complexes induced significantly higher levels of interferon beta (IFN-β) than the polymerase complexes of the 2016-17 outbreak viruses, mediated via retinoic acid-inducible gene I (RIG-I). Inoculation of primary duck cells with recombinant influenza A(H5N8) viruses, including viruses with reassorted polymerase complexes, showed that the polymerase complexes from the 2014-15 outbreak induced higher levels of IFN-β despite relatively minor differences in replication capacity. Together, these data suggest that despite the lower levels of polymerase activity, the higher 2016-17 influenza A(H5N8) virus virulence may be attributed to the lower level of activation of the innate immune system.IMPORTANCE Compared to the 2014-15 outbreak, the 2016-17 outbreak of influenza A(H5N8) viruses in the Netherlands and Europe was more virulent; the number of dead or diseased wild birds found and the severity of pathological changes were higher during the 2016-17 outbreak. The polymerase complex plays an important role in influenza virus virulence, and the gene segments of influenza A(H5N8) viruses reassorted extensively between the outbreaks. In this study, the 2014-15 polymerase complexes were found to be more active, which is counterintuitive with the observed higher virulence of the 2016-17 outbreak viruses. Interestingly, the 2014-15 polymerase complexes also induced higher levels of IFN-β. These findings suggest that the higher virulence of influenza A(H5N8) viruses from the 2016-17 outbreak may be related to the lower induction of IFN-β. An attenuated interferon response could lead to increased dissemination, pathology, and mortality, as observed in (wild) birds infected during the 2016-2017 outbreak.
Collapse
|
31
|
Pénzes Z, Czeglédi A, Nagy Z, Kollár A, Tóth Á, Misák F, Rendes K, Ivók M, Gyimesi R, Lovrecz G, Tretyakova I, El-Attrache J, Palya V, Pushko P. Rapid Construction and Immunogenicity Testing of a Novel H5 Virus-Like Particle Prototype Vaccine Against Clade 2.3.4.4 H5N8 Highly Pathogenic Avian Influenza Virus. Avian Dis 2020; 63:203-208. [PMID: 31131578 DOI: 10.1637/11888-042718-reg.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 12/18/2018] [Indexed: 11/05/2022]
Abstract
From October 2016 to July 2017, 47 countries have been affected by highly pathogenic avian influenza (HPAI) viruses of the H5N8 clade 2.3.4.4 subtype, including European and African, and it has been the most severe HPAI outbreak ever in Europe. The development of effective influenza vaccines is required to combine preventive and control measures in order to avoid similar avian influenza epidemics taking place. Here we describe a novel prototype recombinant virus-like particle (VLP) vaccine based on a clade 2.3.4.4 H5 HA derived from a French duck HPAI H5N8 isolate of the 2016-2017 epidemics. Prototype vaccines with different antigen content were formulated and the immunogenicity was examined in specific-pathogen-free chickens and in ducks. Serum samples were collected at 3 and 4 weeks postvaccination, and development of the immune response was evaluated by hemagglutination inhibition test and ELISA. The VLP vaccines induced a dose-dependent and high level of antibody response in both chickens and ducks. The results of HPAI H5N8 challenge experiments in ducks are reported separately.
Collapse
Affiliation(s)
- Zoltán Pénzes
- Ceva Animal Health (Ceva-Phylaxia), 1107 Budapest, Hungary,
| | - Alíz Czeglédi
- Ceva Animal Health (Ceva-Phylaxia), 1107 Budapest, Hungary
| | - Zoltán Nagy
- Ceva Animal Health (Ceva-Phylaxia), 1107 Budapest, Hungary
| | - Anna Kollár
- Ceva Animal Health (Ceva-Phylaxia), 1107 Budapest, Hungary
| | - Ádám Tóth
- Ceva Animal Health (Ceva-Phylaxia), 1107 Budapest, Hungary
| | - Ferenc Misák
- Ceva Animal Health (Ceva-Phylaxia), 1107 Budapest, Hungary
| | - Katalin Rendes
- Ceva Animal Health (Ceva-Phylaxia), 1107 Budapest, Hungary
| | - Marianna Ivók
- Ceva Animal Health (Ceva-Phylaxia), 1107 Budapest, Hungary
| | - Réka Gyimesi
- Ceva Animal Health (Ceva-Phylaxia), 1107 Budapest, Hungary
| | | | | | | | - Vilmos Palya
- Ceva Animal Health (Ceva-Phylaxia), 1107 Budapest, Hungary
| | | |
Collapse
|
32
|
Tatár-Kis T, Dán Á, Felföldi B, Bálint Á, Rónai Z, Dauphin G, Pénzes Z, El-Attrache J, Gardin Y, Palya V. Virus-Like Particle Based Vaccine Provides High Level of Protection Against Homologous H5N8 HPAIV Challenge in Mule and Pekin Duck, Including Prevention of Transmission. Avian Dis 2020; 63:193-202. [PMID: 31131577 DOI: 10.1637/11882-042718-reg.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 12/18/2018] [Indexed: 11/05/2022]
Abstract
The most recent pandemic clade of highly pathogenic avian influenza (HPAI) H5, clade 2.3.4.4, spread widely, with the involvement of wild birds, most importantly wild waterfowl, carrying the virus (even asymptomatically) from Asia to North America, Europe, and Africa. Domestic waterfowl being in regular contact with wild birds played a significant role in the H5Nx epizootics. Therefore, protection of domestic waterfowl from H5Nx avian influenza infection would likely cut the transmission chain of these viruses and greatly enhance efforts to control and prevent disease outbreak in other poultry and animal species, as well as infection of humans. The expectation for such a vaccine is not only to provide clinical protection, but also to control challenge virus transmission efficiently and ensure that the ability to differentiate infected from vaccinated animals is retained. A water-in-oil emulsion virus-like particle vaccine, containing homologous hemagglutinin antigen to the current European H5N8 field strains, has been developed to meet these requirements. The vaccine was tested in commercial Pekin and mule ducks by vaccinating them either once, at 3 wk of age, or twice (at 1 day and at 3 wk of age). Challenge was performed at 6 wk of age with a Hungarian HPAIV H5N8 isolate (2.3.4.4 Group B). Efficacy of vaccination was evaluated on the basis of clinical signs, amount of virus shedding, and transmission. Vaccination resulted in complete clinical protection and prevention of challenge virus transmission from the directly challenged vaccinated ducks to the vaccinated contact animals.
Collapse
Affiliation(s)
- Tímea Tatár-Kis
- Scientific Support and Investigation Unit, Ceva Phylaxia, Ceva Animal Health, Budapest, Hungary 1107
| | - Ádám Dán
- Veterinary Diagnostic Institute, National Food Chain Safety Office, Budapest, Hungary 1149
| | - Balázs Felföldi
- Scientific Support and Investigation Unit, Ceva Phylaxia, Ceva Animal Health, Budapest, Hungary 1107
| | - Ádám Bálint
- Veterinary Diagnostic Institute, National Food Chain Safety Office, Budapest, Hungary 1149
| | - Zsuzsanna Rónai
- Veterinary Diagnostic Institute, National Food Chain Safety Office, Budapest, Hungary 1149
| | - Gwenaelle Dauphin
- Science and Innovation Direction, Ceva Animal Health, 33500-Libourne, France
| | - Zoltán Pénzes
- Bio R&D, Ceva Phylaxia, Ceva Animal Health, Budapest, Hungary 1107
| | - John El-Attrache
- Scientific Support and Investigation Unit, Ceva Biomune, Ceva Animal Health, Lenexa, KS 66215
| | - Yannick Gardin
- Science and Innovation Direction, Ceva Animal Health, 33500-Libourne, France
| | - Vilmos Palya
- Scientific Support and Investigation Unit, Ceva Phylaxia, Ceva Animal Health, Budapest, Hungary 1107,
| |
Collapse
|
33
|
Li YT, Linster M, Mendenhall IH, Su YCF, Smith GJD. Avian influenza viruses in humans: lessons from past outbreaks. Br Med Bull 2019; 132:81-95. [PMID: 31848585 PMCID: PMC6992886 DOI: 10.1093/bmb/ldz036] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 10/11/2019] [Accepted: 10/15/2019] [Indexed: 12/28/2022]
Abstract
BACKGROUND Human infections with avian influenza viruses (AIV) represent a persistent public health threat. The principal risk factor governing human infection with AIV is from direct contact with infected poultry and is primarily observed in Asia and Egypt where live-bird markets are common. AREAS OF AGREEMENT Changing patterns of virus transmission and a lack of obvious disease manifestations in avian species hampers early detection and efficient control of potentially zoonotic AIV. AREAS OF CONTROVERSY Despite extensive studies on biological and environmental risk factors, the exact conditions required for cross-species transmission from avian species to humans remain largely unknown. GROWING POINTS The development of a universal ('across-subtype') influenza vaccine and effective antiviral therapeutics are a priority. AREAS TIMELY FOR DEVELOPING RESEARCH Sustained virus surveillance and collection of ecological and physiological parameters from birds in different environments is required to better understand influenza virus ecology and identify risk factors for human infection.
Collapse
Affiliation(s)
- Yao-Tsun Li
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road, Singapore 169857
| | - Martin Linster
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road, Singapore 169857
| | - Ian H Mendenhall
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road, Singapore 169857
| | - Yvonne C F Su
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road, Singapore 169857
| | - Gavin J D Smith
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road, Singapore 169857
- SingHealth Duke-NUS Global Health Institute, 31 Third Hospital Ave, Singapore 168753
- Duke Global Health Institute, Duke University, 310 Trent Drive, Durham, NC 27710, USA
| |
Collapse
|
34
|
Li X, Cui P, Zeng X, Jiang Y, Li Y, Yang J, Pan Y, Gao X, Zhao C, Wang J, Wang K, Deng G, Guo J. Characterization of avian influenza H5N3 reassortants isolated from migratory waterfowl and domestic ducks in China from 2015 to 2018. Transbound Emerg Dis 2019; 66:2605-2610. [PMID: 31402584 DOI: 10.1111/tbed.13324] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/16/2019] [Accepted: 08/02/2019] [Indexed: 01/22/2023]
Abstract
Wild and domestic aquatic birds are the natural reservoirs of avian influenza viruses (AIVs). All subtypes of AIVs, including 16 hemagglutinin (HA) and nine neuraminidase (NA), have been isolated from the waterfowls. The H5 viruses in wild birds display distinct biological differences from their highly pathogenic H5 counterparts. Here, we isolated seven H5N3 AIVs including three from wild birds and four from domestic ducks in China from 2015 to 2018. The isolation sites of all the seven viruses were located in the region of the East Asian-Australasian Migratory Flyway. Phylogenetic analysis indicated that the surface genes of these viruses originated from the wild bird H5 HA subtype and the N3 Eurasian lineage. The internal genes of the seven H5N3 isolates are derived from the five gene donors isolated from the wild birds or ducks in Eastern-Asia region. They were also divided into five genotypes according to their surface genes and internal gene combinations. Interestingly, two of the seven H5N3 viruses contributed their partial internal gene segments (PB1, M and NS) to the newly emerged H7N4 reassortants, which have caused first human H7N4 infection in China in 2018. Moreover, we found that the H5N3 virus used in this study react with the anti-serum of the H5 subtype vaccine isolate (Re-11 and Re-12) and reacted well with the Re-12 anti-serum. Our findings suggest that worldwide intensive surveillance and the H5 vaccination (Re-11 and Re-12) in domestic ducks are needed to monitor the emergence of novel H5N3 reassortants in wild birds and domestic ducks and to prevent H5N3 viruses transmission from the apparently healthy wild birds and domestic ducks to chickens.
Collapse
Affiliation(s)
- Xuyong Li
- College of Agricultural, Liaocheng University, Liaocheng, People's Republic of China
| | - Pengfei Cui
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Xianying Zeng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Yongping Jiang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Yubao Li
- College of Agricultural, Liaocheng University, Liaocheng, People's Republic of China
| | - Jiaxin Yang
- College of Agricultural, Liaocheng University, Liaocheng, People's Republic of China
| | - Yudi Pan
- College of Agricultural, Liaocheng University, Liaocheng, People's Republic of China
| | - Xinxin Gao
- College of Agricultural, Liaocheng University, Liaocheng, People's Republic of China
| | - Conghui Zhao
- College of Agricultural, Liaocheng University, Liaocheng, People's Republic of China
| | - Jinhui Wang
- College of Agricultural, Liaocheng University, Liaocheng, People's Republic of China
| | - Kai Wang
- College of Agricultural, Liaocheng University, Liaocheng, People's Republic of China
| | - Guohua Deng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Jing Guo
- College of Agricultural, Liaocheng University, Liaocheng, People's Republic of China
| |
Collapse
|
35
|
Pathogenicity and genomic changes of a 2016 European H5N8 highly pathogenic avian influenza virus (clade 2.3.4.4) in experimentally infected mallards and chickens. Virology 2019; 537:172-185. [PMID: 31493656 DOI: 10.1016/j.virol.2019.08.020] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 08/19/2019] [Accepted: 08/20/2019] [Indexed: 02/06/2023]
Abstract
Highly pathogenic avian influenza H5N8 clade 2.3.4.4 virus caused outbreaks in poultry and unusually high mortality in wild birds in 2016-2017. The pathobiology of one of these viruses was examined in mallards and chickens. High mortality and transmission to direct contacts were observed in mallards inoculated with medium and high doses of the virus. However, in chickens, high mortality occurred only when birds are given the high virus dose and no transmission was observed, indicating that the virus was better adapted to mallards. In comparison with the virus inoculum, viral sequences obtained from the chickens had a higher number of nucleotide changes but lower intra-host genomic diversity than viral sequences obtained from the mallards. These observations are consistent with population bottlenecks occurring when viruses infect and replicate in a host that it is not well adapted to. Whether these observations apply to influenza viruses in general remains to be determined.
Collapse
|
36
|
Yang G, Chowdury S, Hodges E, Rahman MZ, Jang Y, Hossain ME, Jones J, Stark TJ, Di H, Cook PW, Ghosh S, Azziz-Baumgartner E, Barnes JR, Wentworth DE, Kennedy E, Davis CT. Detection of highly pathogenic avian influenza A(H5N6) viruses in waterfowl in Bangladesh. Virology 2019; 534:36-44. [DOI: 10.1016/j.virol.2019.05.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/21/2019] [Accepted: 05/21/2019] [Indexed: 11/24/2022]
|
37
|
Chen J, Liang B, Hu J, Liu H, Sun J, Li M, Chen Q, He Y, Liu D. Circulation, Evolution and Transmission of H5N8 virus, 2016-2018. J Infect 2019; 79:363-372. [PMID: 31306679 DOI: 10.1016/j.jinf.2019.07.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 06/28/2019] [Accepted: 07/10/2019] [Indexed: 01/24/2023]
Abstract
OBJECTIVES A second wave of highly pathogenic avian influenza A virus (HPAIV) H5N8 clade 2.3.4.4 has spread globally, causing outbreaks among wild birds and domestic poultry since autumn 2016. The circulation and evolutionary dynamics of the virus remain largely unknown. METHODS We performed surveillance for H5N8 in Qinghai Lake in China since the emergence of the virus (from 2016 to 2018). By analyzing recovered viruses in Qinghai Lake and all related viruses worldwide (449 strains), we identified the genotypes, estimated their genesis and reassortment, and evaluated their global distribution and transmission. RESULTS Through surveillance of wild migratory birds around Qinghai Lake between 2016 and 2018, we revealed that the H5N8 was introduced into Qinghai Lake bird populations (QH-H5N8), with distinct gene constellations in 2016 and 2017. A global analysis of QH-H5N8-related viruses showed that avian influenza viruses with low pathogenicity in wild birds contributed to the high diversity of genotypes; the major reassortment events possibly occurred during the 2016 breeding season and the following winters. CONCLUSIONS Continued circulation of QH-H5N8-related viruses among wild birds has resulted in the global distribution of high genotypic diversity. Thus, these viruses pose an ongoing threat to wild and domestic bird populations and warrant continuous surveillance.
Collapse
Affiliation(s)
- Jianjun Chen
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; Center for Influenza Research and Early warning (CASCIRE), Chinese Academy of Sciences, Beijing 100101, China.
| | - Bilin Liang
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy Sciences, Beijing 101409, China
| | - Juefu Hu
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Haizhou Liu
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Jianqing Sun
- Qinghai Lake National Nature Reserve, Xining 810099, China
| | - Mingxin Li
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Quanjiao Chen
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; Center for Influenza Research and Early warning (CASCIRE), Chinese Academy of Sciences, Beijing 100101, China
| | - Yubang He
- Qinghai Lake National Nature Reserve, Xining 810099, China
| | - Di Liu
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; Center for Influenza Research and Early warning (CASCIRE), Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy Sciences, Beijing 101409, China.
| |
Collapse
|
38
|
Antigua KJC, Choi WS, Baek YH, Song MS. The Emergence and Decennary Distribution of Clade 2.3.4.4 HPAI H5Nx. Microorganisms 2019; 7:microorganisms7060156. [PMID: 31146461 PMCID: PMC6616411 DOI: 10.3390/microorganisms7060156] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 05/24/2019] [Accepted: 05/28/2019] [Indexed: 11/27/2022] Open
Abstract
Reassortment events among influenza viruses occur naturally and may lead to the development of new and different subtypes which often ignite the possibility of an influenza outbreak. Between 2008 and 2010, highly pathogenic avian influenza (HPAI) H5 of the N1 subtype from the A/goose/Guangdong/1/96-like (Gs/GD) lineage generated novel reassortants by introducing other neuraminidase (NA) subtypes reported to cause most outbreaks in poultry. With the extensive divergence of the H5 hemagglutinin (HA) sequences of documented viruses, the WHO/FAO/OIE H5 Evolutionary Working Group clustered these viruses into a systematic and unified nomenclature of clade 2.3.4.4 currently known as “H5Nx” viruses. The rapid emergence and circulation of these viruses, namely, H5N2, H5N3, H5N5, H5N6, H5N8, and the regenerated H5N1, are of great concern based on their pandemic potential. Knowing the evolution and emergence of these novel reassortants helps to better understand their complex nature. The eruption of reports of each H5Nx reassortant through time demonstrates that it could persist beyond its usual seasonal activity, intensifying the possibility of these emerging viruses’ pandemic potential. This review paper provides an overview of the emergence of each novel HPAI H5Nx virus as well as its current epidemiological distribution.
Collapse
Affiliation(s)
- Khristine Joy C Antigua
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Chungbuk 28644, Korea.
| | - Won-Suk Choi
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Chungbuk 28644, Korea.
| | - Yun Hee Baek
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Chungbuk 28644, Korea.
| | - Min-Suk Song
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Chungbuk 28644, Korea.
| |
Collapse
|
39
|
Inactivated H5 Antigens of H5N8 Protect Chickens from Lethal Infections by the Highly Pathogenic H5N8 and H5N6 Avian Influenza Viruses. J Vet Res 2018; 62:413-420. [PMID: 30729196 PMCID: PMC6364154 DOI: 10.2478/jvetres-2018-0078] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Accepted: 12/12/2018] [Indexed: 11/20/2022] Open
Abstract
Introduction Highly pathogenic Asian H5-subtype avian influenza viruses have been found in poultry and wild birds worldwide since they were first detected in southern China in 1996. Extensive control efforts have not eradicated them. Vaccination prevents such viruses infecting poultry and reduces the number lost to compulsory slaughter. The study showed the efficacy of inactivated H5 vaccine from the H5N8 virus against highly pathogenic H5N8 and H5N6 avian influenza viruses in chickens. Material and Methods Reverse genetics constructed an H5 vaccine virus using the HA gene of the 2014 H5N8 avian influenza virus and the rest of the genes from A/PR/8/34 (H1N1). The vaccine viruses were grown in fertilised eggs, partially purified through a sucrose gradient, and inactivated with formalin. Chickens were immunised i.m. with 1 μg of oil-adjuvanted inactivated H5 antigens. Results Single dose H5 vaccine recipients were completely protected from lethal infections by homologous H5N8 avian influenza virus and shed no virus from the respiratory or intestinal tracts but were not protected from lethal infections by heterologous H5N6. When chickens were immunised with two doses and challenged with homologous H5N8 or heterologous H5N6, all survived and shed no virus. Conclusion Our results indicate that two-dose immunisations of chickens with H5 antigens with oil adjuvant are needed to provide broad protection against different highly pathogenic H5 avian influenza viruses.
Collapse
|
40
|
Al-Ghadeer H, Chu DK, Rihan EM, Abd-Allah EM, Gu H, Chin AW, Qasim IA, Aldoweriej A, Alharbi SS, Al-Aqil MA, Al-Sahaf A, Abdel Rahman SS, Aljassem AH, Abdul-Al A, Aljasir MR, Alhammad YM, Kasem S, Peiris M, Zaki AZ, Poon LL. Circulation of Influenza A(H5N8) Virus, Saudi Arabia. Emerg Infect Dis 2018; 24:1961-1964. [PMID: 29943727 PMCID: PMC6154161 DOI: 10.3201/eid2410.180846] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Highly pathogenic avian influenza A(H5N8) viruses have been detected in several continents. However, limited viral sequence data are available from countries in the Middle East. We report full-genome analyses of highly pathogenic H5N8 viruses recently detected in different provinces in Saudi Arabia.
Collapse
|
41
|
Voronina O, Ryzhova N, Aksenova E, Kunda M, Sharapova N, Fedyakina I, Chvala I, Borisevich S, Logunov DY, Gintsburg A. Genetic features of highly pathogenic avian influenza viruses A(H5N8), isolated from the European part of the Russian Federation. INFECTION GENETICS AND EVOLUTION 2018; 63:144-150. [DOI: 10.1016/j.meegid.2018.05.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 05/16/2018] [Accepted: 05/23/2018] [Indexed: 11/26/2022]
|
42
|
El-Shesheny R, Feeroz MM, Krauss S, Vogel P, McKenzie P, Webby RJ, Webster RG. Replication and pathogenic potential of influenza A virus subtypes H3, H7, and H15 from free-range ducks in Bangladesh in mammals. Emerg Microbes Infect 2018; 7:70. [PMID: 29691394 PMCID: PMC5915612 DOI: 10.1038/s41426-018-0072-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 03/13/2018] [Accepted: 03/20/2018] [Indexed: 12/16/2022]
Abstract
Surveillance of wild aquatic birds and free-range domestic ducks in the Tanguar Haor wetlands in Bangladesh has identified influenza virus subtypes H3N6, H7N1, H7N5, H7N9, and H15N9. Molecular characterization of these viruses indicates their contribution to the genesis of new genotypes of H5N1 influenza viruses from clade 2.3.2.1a that are dominant in poultry markets in Bangladesh as well as to the genesis of the highly pathogenic H5N8 virus currently causing disease outbreaks in domestic poultry in Europe and the Middle East. Therefore, we studied the antigenicity, replication, and pathogenicity of influenza viruses isolated from Tanguar Haor in the DBA/2J mouse model. All viruses replicated in the lung without prior mammalian adaptation, and H7N1 and H7N9 viruses caused 100% and 60% mortality, respectively. H7N5 viruses replicated only in the lungs, whereas H7N1 and H7N9 viruses also replicated in the heart, liver, and brain. Replication and transmission studies in mallard ducks showed that H7N1 and H7N9 viruses replicated in ducks without clinical signs of disease and shed at high titers from the cloaca of infected and contact ducks, which could facilitate virus transmission and spread. Our results indicate that H7 avian influenza viruses from free-range ducks can replicate in mammals, cause severe disease, and be efficiently transmitted to contact ducks. Our study highlights the role of free-range ducks in the spread of influenza viruses to other species in live poultry markets and the potential for these viruses to infect and cause disease in mammals.
Collapse
Affiliation(s)
- Rabeh El-Shesheny
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA.,Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, Egypt
| | - Mohammed M Feeroz
- Department of Zoology, Jahangirnagar University, Dhaka, 1342, Bangladesh
| | - Scott Krauss
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Peter Vogel
- Department of Pathology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Pamela McKenzie
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Richard J Webby
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Robert G Webster
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
43
|
Screening for Neuraminidase Inhibitor Resistance Markers among Avian Influenza Viruses of the N4, N5, N6, and N8 Neuraminidase Subtypes. J Virol 2017; 92:JVI.01580-17. [PMID: 29046464 DOI: 10.1128/jvi.01580-17] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Accepted: 10/09/2017] [Indexed: 12/22/2022] Open
Abstract
Several subtypes of avian influenza viruses (AIVs) are emerging as novel human pathogens, and the frequency of related infections has increased in recent years. Although neuraminidase (NA) inhibitors (NAIs) are the only class of antiviral drugs available for therapeutic intervention for AIV-infected patients, studies on NAI resistance among AIVs have been limited, and markers of resistance are poorly understood. Previously, we identified unique NAI resistance substitutions in AIVs of the N3, N7, and N9 NA subtypes. Here, we report profiles of NA substitutions that confer NAI resistance in AIVs of the N4, N5, N6, and N8 NA subtypes using gene-fragmented random mutagenesis. We generated libraries of mutant influenza viruses using reverse genetics (RG) and selected resistant variants in the presence of the NAIs oseltamivir carboxylate and zanamivir in MDCK cells. In addition, two substitutions, H274Y and R292K (N2 numbering), were introduced into each NA gene for comparison. We identified 37 amino acid substitutions within the NA gene, 16 of which (4 in N4, 4 in N5, 4 in N6, and 4 in N8) conferred resistance to NAIs (oseltamivir carboxylate, zanamivir, or peramivir) as determined using a fluorescence-based NA inhibition assay. Substitutions conferring NAI resistance were mainly categorized as either novel NA subtype specific (G/N147V/I, A246V, and I427L) or previously reported in other subtypes (E119A/D/V, Q136K, E276D, R292K, and R371K). Our results demonstrate that each NA subtype possesses unique NAI resistance markers, and knowledge of these substitutions in AIVs is important in facilitating antiviral susceptibility monitoring of NAI resistance in AIVs.IMPORTANCE The frequency of human infections with avian influenza viruses (AIVs) has increased in recent years. Despite the availability of vaccines, neuraminidase inhibitors (NAIs), as the only available class of drugs for AIVs in humans, have been constantly used for treatment, leading to the inevitable emergence of drug-resistant variants. To screen for substitutions conferring NAI resistance in AIVs of N4, N5, N6, and N8 NA subtypes, random mutations within the target gene were generated, and resistant viruses were selected from mutant libraries in the presence of individual drugs. We identified 16 NA substitutions conferring NAI resistance in the tested AIV subtypes; some are novel and subtype specific, and others have been previously reported in other subtypes. Our findings will contribute to an increased and more comprehensive understanding of the mechanisms of NAI-induced inhibition of influenza virus and help lead to the development of drugs that bind to alternative interaction motifs.
Collapse
|
44
|
Abstract
Avian influenza A viruses pose a constant threat to global human health as sporadic infections continue to occur with associated high mortality rates. To date, a number of avian influenza virus subtypes have infected humans, including H5N1, H7N9, H9N2 and H7N7. The majority of ‘bird flu’ cases are thought to have arisen from direct contact with infected poultry, particularly in live markets in Asia.1 While human cases of the H5N8 subtype have not been documented as yet, there is the potential that H5N8 viruses could acquire mutations which favour infection of human cells. There is also the possibility that novel viruses with a tropism for human cells could be generated if H5N8 should reassasort with other circulating avian viruses, such as those of the H5N1 subtype. The emergence of a novel H5N8 virus with the capability of infecting humans could have drastic consequences to global health.
Collapse
Affiliation(s)
- M D Tate
- a Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research , Clayton , Victoria , Australia.,b Department of Molecular and Translational Sciences , Monash University , Clayton , Victoria , Australia
| |
Collapse
|
45
|
Brown I, Mulatti P, Smietanka K, Staubach C, Willeberg P, Adlhoch C, Candiani D, Fabris C, Zancanaro G, Morgado J, Verdonck F. Avian influenza overview October 2016-August 2017. EFSA J 2017; 15:e05018. [PMID: 32625308 PMCID: PMC7009863 DOI: 10.2903/j.efsa.2017.5018] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The A(H5N8) highly pathogenic avian influenza (HPAI) epidemic occurred in 29 European countries in 2016/2017 and has been the largest ever recorded in the EU in terms of number of poultry outbreaks, geographical extent and number of dead wild birds. Multiple primary incursions temporally related with all major poultry sectors affected but secondary spread was most commonly associated with domestic waterfowl species. A massive effort of all the affected EU Member States (MSs) allowed a descriptive epidemiological overview of the cases in poultry, captive birds and wild birds, providing also information on measures applied at the individual MS level. Data on poultry population structure are required to facilitate data and risk factor analysis, hence to strengthen science-based advice to risk managers. It is suggested to promote common understanding and application of definitions related to control activities and their reporting across MSs. Despite a large number of human exposures to infected poultry occurred during the ongoing outbreaks, no transmission to humans has been identified. Monitoring the avian influenza (AI) situation in other continents indicated a potential risk of long-distance spread of HPAI virus (HPAIV) A(H5N6) from Asia to wintering grounds towards Western Europe, similarly to what happened with HPAIV A(H5N8) and HPAIV A(H5N1) in previous years. Furthermore, the HPAI situation in Africa with A(H5N8) and A(H5N1) is rapidly evolving. Strengthening collaborations at National, EU and Global levels would allow close monitoring of the AI situation, ultimately helping to increase preparedness. No human case was reported in the EU due to AIVs subtypes A(H5N1), A(H5N6), A(H7N9) and A(H9N2). Direct transmission of these viruses to humans has only been reported in areas, mainly in Asia and Egypt, with a substantial involvement of wild bird and/or poultry populations. It is suggested to improve the collection and reporting of exposure events of people to AI.
Collapse
|
46
|
Hiono T, Okamatsu M, Matsuno K, Haga A, Iwata R, Nguyen LT, Suzuki M, Kikutani Y, Kida H, Onuma M, Sakoda Y. Characterization of H5N6 highly pathogenic avian influenza viruses isolated from wild and captive birds in the winter season of 2016-2017 in Northern Japan. Microbiol Immunol 2017; 61:387-397. [DOI: 10.1111/1348-0421.12506] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 07/20/2017] [Accepted: 08/12/2017] [Indexed: 11/29/2022]
Affiliation(s)
- Takahiro Hiono
- Laboratory of Microbiology; Department of Disease Control; Faculty of Veterinary Medicine; Japan
| | - Masatoshi Okamatsu
- Laboratory of Microbiology; Department of Disease Control; Faculty of Veterinary Medicine; Japan
| | - Keita Matsuno
- Laboratory of Microbiology; Department of Disease Control; Faculty of Veterinary Medicine; Japan
- Global Station for Zoonosis Control; Global Institution for Collaborative Research and Education (GI-CoRE); Japan
| | - Atsushi Haga
- National Institute for Environmental Studies; Tsukuba; Ibaraki 305-8506 Japan
| | - Ritsuko Iwata
- National Institute for Environmental Studies; Tsukuba; Ibaraki 305-8506 Japan
| | - Lam Thanh Nguyen
- Laboratory of Microbiology; Department of Disease Control; Faculty of Veterinary Medicine; Japan
| | - Mizuho Suzuki
- Laboratory of Microbiology; Department of Disease Control; Faculty of Veterinary Medicine; Japan
| | - Yuto Kikutani
- Laboratory of Microbiology; Department of Disease Control; Faculty of Veterinary Medicine; Japan
| | - Hiroshi Kida
- Global Station for Zoonosis Control; Global Institution for Collaborative Research and Education (GI-CoRE); Japan
- Research Center for Zoonosis Control; Hokkaido University; Sapporo Hokkaido 001-0020 Japan
| | - Manabu Onuma
- National Institute for Environmental Studies; Tsukuba; Ibaraki 305-8506 Japan
| | - Yoshihiro Sakoda
- Laboratory of Microbiology; Department of Disease Control; Faculty of Veterinary Medicine; Japan
- Global Station for Zoonosis Control; Global Institution for Collaborative Research and Education (GI-CoRE); Japan
| |
Collapse
|
47
|
Evolution of Influenza A Virus by Mutation and Re-Assortment. Int J Mol Sci 2017; 18:ijms18081650. [PMID: 28783091 PMCID: PMC5578040 DOI: 10.3390/ijms18081650] [Citation(s) in RCA: 232] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Revised: 07/20/2017] [Accepted: 07/24/2017] [Indexed: 12/13/2022] Open
Abstract
Influenza A virus (IAV), a highly infectious respiratory pathogen, has continued to be a significant threat to global public health. To complete their life cycle, influenza viruses have evolved multiple strategies to interact with a host. A large number of studies have revealed that the evolution of influenza A virus is mainly mediated through the mutation of the virus itself and the re-assortment of viral genomes derived from various strains. The evolution of influenza A virus through these mechanisms causes worldwide annual epidemics and occasional pandemics. Importantly, influenza A virus can evolve from an animal infected pathogen to a human infected pathogen. The highly pathogenic influenza virus has resulted in stupendous economic losses due to its morbidity and mortality both in human and animals. Influenza viruses fall into a category of viruses that can cause zoonotic infection with stable adaptation to human, leading to sustained horizontal transmission. The rapid mutations of influenza A virus result in the loss of vaccine optimal efficacy, and challenge the complete eradication of the virus. In this review, we highlight the current understanding of influenza A virus evolution caused by the mutation and re-assortment of viral genomes. In addition, we discuss the specific mechanisms by which the virus evolves.
Collapse
|