1
|
Zhu R, Wu J, Chen R, Zhou M, Cao S, Wu Z, Wang L, Zhang L, Zhu S. HA198 mutations in H9N2 avian influenza: molecular dynamics insights into receptor binding. Front Vet Sci 2025; 11:1526600. [PMID: 39846021 PMCID: PMC11751220 DOI: 10.3389/fvets.2024.1526600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 12/24/2024] [Indexed: 01/24/2025] Open
Abstract
Introduction The H9N2 avian influenza virus is widely disseminated in poultry and poses a zoonotic threat, despite vaccination efforts. Mutations at residue 198 of hemagglutinin (HA) are critical for antigenic variation and receptor-binding specificity, but the underlying molecular mechanisms remain unclear. This study explores the molecular mechanisms by which mutations at the HA 198 site affect the antigenicity, receptor specificity, and binding affinity of the H9N2 virus. Methods Using the sequence of the A/Chicken/Jiangsu/WJ57/2012 strain, we constructed recombinant H9N2 viruses, including rWJ57, rWJ57/HA198A, and rWJ57/HA198T, using reverse genetics. These variants were analyzed through hemagglutination inhibition (HI) assays, receptor-destroying enzyme (RDE) assays, enzyme-linked immunosorbent assays (ELISA) and solid-phase receptor binding assays. Additionally, molecular dynamics (MD) simulations were performed to further dissect the atomic-level interactions between HA and sialic acids (SA). Results The results demonstrated that HA mutations significantly altered the receptor-binding properties of the virus. Specifically, rWJ57 (HA198V) exhibited 4-fold and 16-fold higher overall receptor-binding avidity compared to rWJ57/HA198A and rWJ57/HA198T, respectively. Furthermore, HA198V/T mutations significantly enhanced viral binding to human-type α2,6 SA receptors (p < 0.001), whereas the HA198A mutation exhibited a marked preference for avian-type α2,3 SA receptors (p < 0.001). Additionally, these mutations altered interactions with non-specific antibodies but not specific antibodies, with high-avidity receptor binding mutations exhibiting reduced non-specific antibody binding, suggesting a potential novel mechanism for immune evasion. MD simulations revealed HA198V/T formed stable complexes with the α2,6 SA, mediated by specific residues and water bridges, whereas HA198A formed stable complexes with the α2,3 SA. Interestingly, residue 198 interacted with the α2,6 SA via water bridges but had with showed minimal direct interaction with α2,3 SA. Discussion This study provides new insights into the molecular basis of receptor specificity, binding affinity, and antigenic drift in H9N2 viruses, highlighting the critical role of HA 198 mutations in regulating host adaptation. These findings are of great significance for H9N2 virus surveillance, vaccine development, and zoonotic transmission risk assessment.
Collapse
Affiliation(s)
- Rui Zhu
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou, Jiangsu, China
- Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Taizhou, Jiangsu, China
- Jiangsu Co-innovation Center for Engineering Technology Research Center for Modern Animal Science and Novel Veterinary Pharmaceutic Development, Taizhou, Jiangsu, China
| | - Jie Wu
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou, Jiangsu, China
| | - Ruiying Chen
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou, Jiangsu, China
| | - Mo Zhou
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou, Jiangsu, China
- Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Taizhou, Jiangsu, China
- Jiangsu Co-innovation Center for Engineering Technology Research Center for Modern Animal Science and Novel Veterinary Pharmaceutic Development, Taizhou, Jiangsu, China
| | - Shinuo Cao
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou, Jiangsu, China
- Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Taizhou, Jiangsu, China
- Jiangsu Co-innovation Center for Engineering Technology Research Center for Modern Animal Science and Novel Veterinary Pharmaceutic Development, Taizhou, Jiangsu, China
| | - Zhi Wu
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou, Jiangsu, China
- Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Taizhou, Jiangsu, China
- Jiangsu Co-innovation Center for Engineering Technology Research Center for Modern Animal Science and Novel Veterinary Pharmaceutic Development, Taizhou, Jiangsu, China
| | - Ligang Wang
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou, Jiangsu, China
| | - Lei Zhang
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou, Jiangsu, China
| | - Shanyuan Zhu
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou, Jiangsu, China
- Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Taizhou, Jiangsu, China
- Jiangsu Co-innovation Center for Engineering Technology Research Center for Modern Animal Science and Novel Veterinary Pharmaceutic Development, Taizhou, Jiangsu, China
| |
Collapse
|
2
|
Li Y, Yang HS, Klasse PJ, Zhao Z. The significance of antigen-antibody-binding avidity in clinical diagnosis. Crit Rev Clin Lab Sci 2025; 62:9-23. [PMID: 39041650 DOI: 10.1080/10408363.2024.2379286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/07/2024] [Accepted: 07/09/2024] [Indexed: 07/24/2024]
Abstract
Immunoglobulin G (IgG) and immunoglobulin M (IgM) testing are commonly used to determine infection status. Typically, the detection of IgM indicates an acute or recent infection, while the presence of IgG alone suggests a chronic or past infection. However, relying solely on IgG and IgM antibody positivity may not be sufficient to differentiate acute from chronic infections. This limitation arises from several factors. The prolonged presence of IgM can complicate diagnostic interpretations, and false positive IgM results often arise from antibody cross-reactivity with various antigens. Additionally, IgM may remain undetectable in prematurely collected samples or in individuals who are immunocompromised, further complicating accurate diagnosis. As a result, additional diagnostic tools are required to confirm infection status. Avidity is a measure of the strength of the binding between an antigen and antibody. Avidity-based assays have been developed for various infectious agents, including toxoplasma, cytomegalovirus (CMV), SARS-CoV-2, and avian influenza, and are promising tools in clinical diagnostics. By measuring the strength of antibody binding, they offer critical insights into the maturity of the immune response. These assays are instrumental in distinguishing between acute and chronic or past infections, monitoring disease progression, and guiding treatment decisions. The development of automated platforms has optimized the testing process by enhancing efficiency and minimizing the risk of manual errors. Additionally, the recent advent of real-time biosensor immunoassays, including the label-free immunoassays (LFIA), has further amplified the capabilities of these assays. These advances have expanded the clinical applications of avidity-based assays, making them useful tools for the diagnosis and management of various infectious diseases. This review is structured around several key aspects of IgG avidity in clinical diagnosis, including: (i) a detailed exposition of the IgG affinity maturation process; (ii) a thorough discussion of the IgG avidity assays, including the recently emerged biosensor-based approaches; and (iii) an examination of the applications of IgG avidity in clinical diagnosis. This review is intended to contribute toward the development of enhanced diagnostic tools through critical assessment of the present landscape of avidity-based testing, which allows us to identify the existing knowledge gaps and highlight areas for future investigation.
Collapse
Affiliation(s)
- Yaxin Li
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - He S Yang
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - P J Klasse
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
| | - Zhen Zhao
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
3
|
Putra MA, Soebandrio A, Wibawan IWT, Nugroho CMHN, Kurnia RS, Silaen OSM, Rizkiantino R, Indrawati A, Poetri ON, Krisnamurti DGB. Analyzing Molecular Traits of H9N2 Avian Influenza Virus Isolated from a Same Poultry Farm in West Java Province, Indonesia, in 2017 and 2023. F1000Res 2024; 13:571. [PMID: 39610402 PMCID: PMC11602698 DOI: 10.12688/f1000research.150975.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/11/2024] [Indexed: 11/30/2024] Open
Abstract
Background Indonesia is one of the countries that is endemic to avian influenza virus subtype H9N2. This study aims to compare the molecular characteristics of avian influenza virus (AIV) subtype H9N2 from West Java. Methods Specific pathogen-free (SPF) embryonated chicken eggs were used to inoculate samples. RNA extraction and RT-qPCR confirmed the presence of H9 and N2 genes in the samples. RT-PCR was employed to amplify the H9N2-positive sample. Nucleotide sequences were obtained through Sanger sequencing and analyzed using MEGA 7. Homology comparison and phylogenetic tree analysis, utilizing the neighbor-joining tree method, assessed the recent isolate's similarity to reference isolates from GenBank. Molecular docking analysis was performed on the HA1 protein of the recent isolate and the A/Layer/Indonesia/WestJava-04/2017 isolate, comparing their interactions with the sialic acids Neu5Ac2-3Gal and Neu5Ac2-6Gal. Results RT-qPCR confirmed the isolate samples as AIV subtype H9N2. The recent virus exhibited 11 amino acid residue differences compared to the A/Layer/Indonesia/WestJava-04/2017 isolate. Phylogenetically, the recent virus remains within the h9.4.2.5 subclade. Notably, at antigenic site II, the recent isolate featured an amino acid N at position 183, unlike A/Layer/Indonesia/WestJava-04/2017. Molecular docking analysis revealed a preference of HA1 from the 2017 virus for Neu5Ac2-3Gal, while the 2023 virus displayed a tendency to predominantly bind with Neu5Ac2-6Gal. Conclusion In summary, the recent isolate displayed multiple mutations and a strong affinity for Neu5Ac2-6Gal, commonly found in mammals.
Collapse
Affiliation(s)
- Muhammad Ade Putra
- Master of Animal Biomedical Sciences, School of Veterinary and Biomedical, IPB University, Bogor, West Java, 16680, Indonesia
| | - Amin Soebandrio
- Department of Microbiology, Faculty of Medicine, University of Indonesia, Jakarta, Jakarta, 10320, Indonesia
| | - I Wayan Teguh Wibawan
- Division of Medical Microbiology, School of Veterinary Medicine and Biomedical Sciences, IPB University, Bogor, West Java, 16680, Indonesia
| | | | - Ryan Septa Kurnia
- Animal Health Diagnostic Unit, PT. Medika Satwa Laboratoris, Bogor, West Java, 16166, Indonesia
| | | | - Rifky Rizkiantino
- Division of Central Laboratory and Disease Research Center, Technology and Research Development, Central Proteina Prima (CP Prima) Inc., Tangerang, Banten, 15560, Indonesia
| | - Agustin Indrawati
- Division of Medical Microbiology, School of Veterinary Medicine and Biomedical Sciences, IPB University, Bogor, West Java, 16680, Indonesia
| | - Okti Nadia Poetri
- Division of Medical Microbiology, School of Veterinary Medicine and Biomedical Sciences, IPB University, Bogor, West Java, 16680, Indonesia
| | - Desak Gede Budi Krisnamurti
- Department of Medical Pharmacy, Faculty of Medicine, University of Indonesia, Jakarta, Jakarta, 10430, Indonesia
| |
Collapse
|
4
|
Larbi I, Arbi M, Souiai O, Tougorti H, Butcher GD, Nsiri J, Badr C, Behi IE, Lachhab J, Ghram A. Phylogeographic Dynamics of H9N2 Avian Influenza Viruses in Tunisia. Virus Res 2024; 344:199348. [PMID: 38467378 PMCID: PMC10995884 DOI: 10.1016/j.virusres.2024.199348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/25/2024] [Accepted: 02/27/2024] [Indexed: 03/13/2024]
Abstract
Avian influenza virus subtype H9N2 is endemic in commercial poultry in Tunisia. This subtype affects poultry and wild birds in Tunisia and poses a potential zoonotic risk. Tunisian H9N2 strains carry, in their hemagglutinins, the human-like marker 226 L that is most influential in avian-to-human viral transmission. For a better understanding of how ecological aspects of the H9N2 virus and its circulation in poultry, migratory birds and environment shapes the spread of the dissemination of H9N2 in Tunisia, herein, we investigate the epidemiological, evolutionary and zoonotic potential of seven H9N2 poultry isolates and sequence their whole genome. Phylogeographic and phylodymanic analysis were used to examine viral spread within and among wild birds, poultry and environment at geographical scales. Genetic evolution results showed that the eight gene sequences of Tunisian H9N2 AIV were characterized by molecular markers involved with virulence and mammalian infections. The geographical distribution of avian influenza virus appears as a network interconnecting countries in Europe, Asia, North Africa and West Africa. The spatiotemporal dynamics analysis showed that the H9N2 virus was transmitted from Tunisia to neighboring countries notably Libya and Algeria. Interestingly, this study also revealed, for the first time, that there was a virus transmission between Tunisia and Morocco. Bayesian analysis showed exchanges between H9N2 strains of Tunisia and those of the Middle Eastern countries, analysis of host traits showed that duck, wild birds and environment were ancestry related to chicken. The subtypes phylodynamic showed that PB1 segment was under multiple inter-subtype reassortment events with H10N7, H12N5, H5N2 and H6N1 and that PB2 was also a subject of inter-subtype reassortment with H10N4.
Collapse
Affiliation(s)
- Imen Larbi
- Laboratory of Epidemiology and Veterinary Microbiology, LR19IPT03, Institut Pasteur de Tunis, University of Tunis El Manar, 13, Place Pasteur-BP74, Tunis, Belvédère 1002, Tunisia.
| | - Marwa Arbi
- Laboratory of Bioinformatics, Biomathematics and Biostatistics, LR16IPT09, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Oussama Souiai
- Laboratory of Bioinformatics, Biomathematics and Biostatistics, LR16IPT09, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Halima Tougorti
- Laboratory of Epidemiology and Veterinary Microbiology, LR19IPT03, Institut Pasteur de Tunis, University of Tunis El Manar, 13, Place Pasteur-BP74, Tunis, Belvédère 1002, Tunisia
| | - Gary David Butcher
- College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| | - Jihene Nsiri
- Laboratory of Epidemiology and Veterinary Microbiology, LR19IPT03, Institut Pasteur de Tunis, University of Tunis El Manar, 13, Place Pasteur-BP74, Tunis, Belvédère 1002, Tunisia
| | - Chaima Badr
- Laboratory of Epidemiology and Veterinary Microbiology, LR19IPT03, Institut Pasteur de Tunis, University of Tunis El Manar, 13, Place Pasteur-BP74, Tunis, Belvédère 1002, Tunisia
| | - Imen El Behi
- Laboratory of Epidemiology and Veterinary Microbiology, LR19IPT03, Institut Pasteur de Tunis, University of Tunis El Manar, 13, Place Pasteur-BP74, Tunis, Belvédère 1002, Tunisia
| | - Jihene Lachhab
- Laboratory of Epidemiology and Veterinary Microbiology, LR19IPT03, Institut Pasteur de Tunis, University of Tunis El Manar, 13, Place Pasteur-BP74, Tunis, Belvédère 1002, Tunisia
| | - Abdeljelil Ghram
- Laboratory of Epidemiology and Veterinary Microbiology, LR19IPT03, Institut Pasteur de Tunis, University of Tunis El Manar, 13, Place Pasteur-BP74, Tunis, Belvédère 1002, Tunisia
| |
Collapse
|
5
|
Amin F, Mukhtar N, Ali M, Shehzad R, Ayub S, Aslam A, Sheikh AA, Sultan B, Mahmood MD, Shahid MF, Yaqub S, Aslam HB, Aziz MW, Yaqub T. Mapping Genetic Markers Associated with Antigenicity and Host Range in H9N2 Influenza A Viruses Infecting Poultry in Pakistan. Avian Dis 2024; 68:43-51. [PMID: 38687107 DOI: 10.1637/aviandiseases-d-23-00029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/26/2023] [Indexed: 05/02/2024]
Abstract
The aim of the current study was to map the genetic diversity in the haemagglutinin (HA) glycoprotein of influenza A viruses (IAVs) of the H9N2 subtype. Twenty-five H9N2 IAVs were isolated from broiler chickens from March to July 2019. The HA gene was amplified, and phylogenetic analysis was performed to determine the evolutionary relationship. Important antigenic amino acid residues of HA attributed to immune escape and zoonotic potential were compared among H9N2 IAVs. Phylogenetic analysis revealed that sublineage B2 under the G1 lineage in Pakistan was found to be diversified, and newly sequenced H9N2 isolates were nested into two clades (A and B). Mutations linked to the antigenic variation and potential immune escape were observed as G72E (1/25, 4%), A180T (3/25, 12%), and A180V (1/25, 4%). A twofold significant reduction (P < 0.01) in log2 hemagglutination inhibition titers was observed with H9N2 IAV naturally harboring amino acid V180 instead of A180 in HA protein. Moreover, in the last 20 years, complete substitution at residues (T127D, D135N, and L150N) and partial substitution at residues (72, 74, 131, 148, 180, 183, 188, 216, 217, and 249, mature H9 HA numbering) associated with changes in antigenicity were observed. The presence of L216 in all H9N2 IAV isolates and T/V180 in four isolates in the receptor-binding site reveals the potential of these viruses to cross the species barrier to infect human or mammals. The current study observed the circulation of antigenically diverse H9N2 IAV variants that possess potential mutations that can escape the host immune system.
Collapse
Affiliation(s)
- Faisal Amin
- Institute of Microbiology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
- Grand Parent Laboratory, Lahore 54500, Pakistan
| | - Nadia Mukhtar
- Institute of Microbiology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Muzaffar Ali
- Institute of Microbiology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Rehman Shehzad
- Grand Parent Laboratory, Lahore 54500, Pakistan
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore 54590, Pakistan
| | - Saima Ayub
- Institute of Public Health, Lahore 54610, Pakistan
| | - Asim Aslam
- Institute of Microbiology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Ali Ahmed Sheikh
- Institute of Microbiology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | | | | | - Muhammad Furqan Shahid
- Institute of Microbiology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
- Veterinary Research Institute, Lahore 54600, Pakistan
| | - Saima Yaqub
- Institute of Microbiology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Hassaan Bin Aslam
- Institute of Microbiology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Muhammad Waqar Aziz
- Institute of Microbiology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Tahir Yaqub
- Institute of Microbiology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan,
| |
Collapse
|
6
|
Jiang M, Fang C, Ma Y. Deciphering the rule of antigen-antibody amino acid interaction. Front Immunol 2023; 14:1269916. [PMID: 38111576 PMCID: PMC10725943 DOI: 10.3389/fimmu.2023.1269916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/13/2023] [Indexed: 12/20/2023] Open
Abstract
Purpose Antigenic drift is the biggest challenge for mutagenic RNA virus vaccine development. The primary purpose is to determine the IEMM (immune escape mutation map) of 20 amino acids' replacement to reveal the rule of the viral immune escape. Methods To determine the relationship between epitope mutation and immune escape, we use universal protein tags as a linear epitope model. To describe and draw amino acid linkage diagrams, mutations of protein tags are classified into four categories: IEM (immune escape mutation), ADERM (antibody-dependent enhancement risk mutation), EQM (equivalent mutation), and IVM (invalid mutation). To overcome the data limitation, a general antigen-antibody (Ag-Ab) interaction map was constructed by analyzing the published three-dimensional (3D) Ag-Ab interaction patterns. Results (i) One residue interacts with multiple amino acids in antigen-antibody interaction. (ii) Most amino acid replacements are IVM and EQM. (iii) Once aromatic amino acids replace non-aromatic amino acids, the mutation is often IEM. (iv) Substituting residues with the same physical and chemical properties easily leads to IVM. Therefore, this study has important theoretical significance for future research on antigenic drift, antibody rescue, and vaccine renewal design. Conclusion The antigenic epitope mutations were typed into IEM, ADERM, EQM, and IVM types to describe and quantify the results of antigenic mutations. The antigen-antibody interaction rule was summarized as a one-to-many interaction rule. To sum up, the epitope mutation rules were defined as IVM and EQM predomination rules and the aryl mutation escape rule.
Collapse
Affiliation(s)
| | | | - Yongping Ma
- Department of Biochemistry and Molecular Biology, Molecular Medicine and Cancer Research Center, Basical Medical Collage, Chongqing Medical University, Chongqing, China
| |
Collapse
|
7
|
Zhang N, Quan K, Chen Z, Hu Q, Nie M, Xu N, Gao R, Wang X, Qin T, Chen S, Peng D, Liu X. The emergence of new antigen branches of H9N2 avian influenza virus in China due to antigenic drift on hemagglutinin through antibody escape at immunodominant sites. Emerg Microbes Infect 2023; 12:2246582. [PMID: 37550992 PMCID: PMC10444018 DOI: 10.1080/22221751.2023.2246582] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/13/2023] [Accepted: 08/06/2023] [Indexed: 08/09/2023]
Abstract
Vaccination is a crucial prevention and control measure against H9N2 avian influenza viruses (AIVs) that threaten poultry production and public health. However, H9N2 AIVs in China undergo continuous antigenic drift of hemagglutinin (HA) under antibody pressure, leading to the emergence of immune escape variants. In this study, we investigated the molecular basis of the current widespread antigenic drift of H9N2 AIVs. Specifically, the most prevalent h9.4.2.5-lineage in China was divided into two antigenic branches based on monoclonal antibody (mAb) hemagglutination inhibition (HI) profiling analysis, and 12 antibody escape residues were identified as molecular markers of these two branches. The 12 escape residues were mapped to antigenic sites A, B, and E (H3 was used as the reference). Among these, eight residues primarily increased 3`SLN preference and contributed to antigenicity drift, and four of the eight residues at sites A and B were positively selected. Moreover, the analysis of H9N2 strains over time and space has revealed the emergence of a new antigenic branch in China since 2015, which has replaced the previous branch. However, the old antigenic branch recirculated to several regions after 2018. Collectively, this study provides a theoretical basis for understanding the molecular mechanisms of antigenic drift and for developing vaccine candidates that contest with the current antigenicity of H9N2 AIVs.
Collapse
Affiliation(s)
- Nan Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, People’s Republic of China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, People’s Republic of China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
| | - Keji Quan
- College of Veterinary Medicine, Yangzhou University, Yangzhou, People’s Republic of China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
| | - Zixuan Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, People’s Republic of China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
| | - Qun Hu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, People’s Republic of China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
| | - Maoshun Nie
- College of Veterinary Medicine, Yangzhou University, Yangzhou, People’s Republic of China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
| | - Nuo Xu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, People’s Republic of China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
| | - Ruyi Gao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, People’s Republic of China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
| | - Xiaoquan Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, People’s Republic of China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
| | - Tao Qin
- College of Veterinary Medicine, Yangzhou University, Yangzhou, People’s Republic of China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
| | - Sujuan Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, People’s Republic of China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
| | - Daxin Peng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, People’s Republic of China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, People’s Republic of China
- The International Joint Laboratory for Cooperation in Agriculture and Agricultural Product Safety, Ministry of Education, Yangzhou University, Yangzhou, People’s Republic of China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
- Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, People’s Republic of China
| | - Xiufan Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, People’s Republic of China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, People’s Republic of China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
| |
Collapse
|
8
|
Carnaccini S, Cáceres CJ, Gay LC, Ferreri LM, Skepner E, Burke DF, Brown IH, Geiger G, Obadan A, Rajao DS, Lewis NS, Perez DR. Antigenic mapping of the hemagglutinin of the H9 subtype influenza A viruses using sera from Japanese quail ( Coturnix c. japonica). J Virol 2023; 97:e0074323. [PMID: 37800947 PMCID: PMC10617583 DOI: 10.1128/jvi.00743-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 08/18/2023] [Indexed: 10/07/2023] Open
Abstract
IMPORTANCE Determining the relevant amino acids involved in antigenic drift on the surface protein hemagglutinin (HA) is critical to understand influenza virus evolution and efficient assessment of vaccine strains relative to current circulating strains. We used antigenic cartography to generate an antigenic map of the H9 hemagglutinin (HA) using sera produced in one of the most relevant minor poultry species, Japanese quail. Key antigenic positions were identified and tested to confirm their impact on the antigenic profile. This work provides a better understanding of the antigenic diversity of the H9 HA as it relates to reactivity to quail sera and will facilitate a rational approach for selecting more efficacious vaccines against poultry-origin H9 influenza viruses in minor poultry species.
Collapse
Affiliation(s)
- Silvia Carnaccini
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - C. Joaquín Cáceres
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - L. Claire Gay
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Lucas M. Ferreri
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Eugene Skepner
- Center for Pathogen Evolution, University of Cambridge, Cambridge, United Kingdom
| | - David F. Burke
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, United Kingdom
| | - Ian H. Brown
- Animal and Plant Health Agency (APHA), Weybridge, United Kingdom
| | - Ginger Geiger
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Adebimpe Obadan
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Daniela S. Rajao
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Nicola S. Lewis
- World Influenza Centre, The Francis Crick Institute, London, United Kingdom
| | - Daniel R. Perez
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
9
|
Amino Acid Variation at Hemagglutinin Position 193 Impacts the Properties of H9N2 Avian Influenza Virus. J Virol 2023; 97:e0137922. [PMID: 36749072 PMCID: PMC9973016 DOI: 10.1128/jvi.01379-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Despite active control strategies, including the vaccination program in poultry, H9N2 avian influenza viruses possessing mutations in hemagglutinin (HA) were frequently isolated. In this study, we analyzed the substitutions at HA residue 193 (H3 numbering) of H9N2 and investigated the impact of these mutations on viral properties. Our study indicated that H9N2 circulating in the Chinese poultry have experienced frequent mutations at HA residue 193 since 2013, with viruses that carried asparagine (N) being replaced by those with alanine (A), aspartic acid (D), glutamic acid (E), glycine (G), and serine (S), etc. Our results showed the N193G mutation impeded the multiple cycles of growth of H9N2, and although most of the variant HAs retained the preference for human-like receptors as did the wild-type N193 HA, the N193E mutation altered the preference for both human and avian-like receptors. Furthermore, these mutations substantially altered the antigenicity of H9N2 as measured by both monoclonal antibodies and antisera. In vivo studies further demonstrated that these mutations showed profound impact on viral replication and transmission of H9N2 in chicken. Viruses with D, E, or S at residue 193 acquired the ability to replicate in lungs of the infected chickens, whereas virus with G193 reduced its transmissibility in infected chickens to those in direct contact. Our findings demonstrated that variations at HA residue 193 altered various properties of H9N2, highlighting the significance of the continued surveillance of HA for better understanding of the etiology and effective control of H9N2 in poultry. IMPORTANCE H9N2 are widespread and have sporadically caused clinical diseases in humans. Extensive vaccinations in poultry helped constrain H9N2; however, they might have facilitated the evolution of the virus. It is therefore of importance to monitor the variation of the circulating H9N2 and evaluate its risk to both veterinary and public health. Here, we found substitutions at position 193 of HA from H9N2 circulated since 2013 and assessed the impact of several mutations on viral properties. Our data showed these mutations resulted in substantial antigenic change. N193E altered the binding preference of HA for human-like to both avian and human-like receptors. More importantly, N193G impaired the growth of H9N2 and its transmission in chickens, whereas mutations from N to D, E, and S enhanced the viral replication in lungs of chickens. Our study enriched the knowledge about H9N2 and may help implement an effective control strategy for H9N2.
Collapse
|
10
|
Yehia N, Salem HM, Mahmmod Y, Said D, Samir M, Mawgod SA, Sorour HK, AbdelRahman MAA, Selim S, Saad AM, El-Saadony MT, El-Meihy RM, Abd El-Hack ME, El-Tarabily KA, Zanaty AM. Common viral and bacterial avian respiratory infections: an updated review. Poult Sci 2023; 102:102553. [PMID: 36965253 PMCID: PMC10064437 DOI: 10.1016/j.psj.2023.102553] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 01/24/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023] Open
Abstract
Many pathogens that cause chronic diseases in birds use the respiratory tract as a primary route of infection, and respiratory disorders are the main leading source of financial losses in the poultry business. Respiratory infections are a serious problem facing the poultry sector, causing severe economic losses. Avian influenza virus, Newcastle disease virus, infectious bronchitis virus, and avian pneumovirus are particularly serious viral respiratory pathogens. Mycoplasma gallisepticum, Staphylococcus, Bordetella avium, Pasteurella multocida, Riemerella anatipestifer, Chlamydophila psittaci, and Escherichia coli have been identified as the most serious bacterial respiratory pathogens in poultry. This review gives an updated summary, incorporating the latest data, about the evidence for the circulation of widespread, economically important poultry respiratory pathogens, with special reference to possible methods for the control and prevention of these pathogens.
Collapse
Affiliation(s)
- Nahed Yehia
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center, Giza 12618, Egypt
| | - Heba M Salem
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Yasser Mahmmod
- Department of Veterinary Sciences, Faculty of Health Sciences, Higher Colleges of Technology, Al Ain 17155, United Arab Emirates
| | - Dalia Said
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center, Giza 12618, Egypt
| | - Mahmoud Samir
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center, Giza 12618, Egypt
| | - Sara Abdel Mawgod
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center, Giza 12618, Egypt
| | - Hend K Sorour
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center, Giza 12618, Egypt
| | - Mona A A AbdelRahman
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center, Giza 12618, Egypt
| | - Samy Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72388, Saudi Arabia
| | - Ahmed M Saad
- Department of Biochemistry, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Mohamed T El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Rasha M El-Meihy
- Department of Agricultural Microbiology, Faculty of Agriculture, Benha University, Moshtohor, Qaluybia 13736, Egypt
| | - Mohamed E Abd El-Hack
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Khaled A El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al Ain 15551, United Arab Emirates; Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al Ain 15551, United Arab Emirates; Harry Butler Institute, Murdoch University, Murdoch 6150, Western Australia, Australia.
| | - Ali M Zanaty
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center, Giza 12618, Egypt
| |
Collapse
|
11
|
Genetic Evolution of Avian Influenza A (H9N2) Viruses Isolated from Domestic Poultry in Uganda Reveals Evidence of Mammalian Host Adaptation, Increased Virulence and Reduced Sensitivity to Baloxavir. Viruses 2022; 14:v14092074. [PMID: 36146881 PMCID: PMC9505320 DOI: 10.3390/v14092074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 11/23/2022] Open
Abstract
A (H9N2) avian influenza A viruses were first detected in Uganda in 2017 and have since established themselves in live bird markets. The aim of this study was to establish the subsequent genetic evolution of H9N2 viruses in Uganda. Cloacal samples collected from live bird market stalls in Kampala from 2017 to 2019 were screened by RT-PCR for influenza A virus and H9N2 viruses were isolated in embryonated eggs. One hundred and fifty H9N2 isolates were subjected to whole genome sequencing on the Illumina MiSeq platform. The sequence data analysis and comparison with contemporary isolates revealed that the virus was first introduced into Uganda in 2014 from ancestors in the Middle East. There has since been an increase in nucleotide substitutions and reassortments among the viruses within and between live bird markets, leading to variations in phylogeny of the different segments, although overall diversity remained low. The isolates had several mutations such as HA-Q226L and NS-I106M that enable mammalian host adaptation, NP-M105V, PB1-D3V, and M1-T215A known for increased virulence/pathogenicity and replication, and PA-E199D, NS-P42S, and M2-S31N that promote drug resistance. The PA-E199D substitution in particular confers resistance to the endonuclease inhibitor Baloxavir acid, which is one of the new anti-influenza drugs. Higher EC50 was observed in isolates with a double F105L+E199D substitution that may suggest a possible synergistic effect. These H9N2 viruses have established an endemic situation in live bird markets in Uganda because of poor biosecurity practices and therefore pose a zoonotic threat. Regular surveillance is necessary to further generate the needed evidence for effective control strategies and to minimize the threats.
Collapse
|
12
|
Youk S, Leyson CM, Parris DJ, Kariithi HM, Suarez DL, Pantin-Jackwood MJ. Phylogenetic analysis, molecular changes, and adaptation to chickens of Mexican lineage H5N2 low-pathogenic avian influenza viruses from 1994 to 2019. Transbound Emerg Dis 2022; 69:e1445-e1459. [PMID: 35150205 PMCID: PMC9365891 DOI: 10.1111/tbed.14476] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/08/2022] [Accepted: 02/08/2022] [Indexed: 11/29/2022]
Abstract
The Mexican lineage H5N2 low pathogenic avian influenza viruses (LPAIVs) were first detected in 1994 and mutated to highly pathogenic avian influenza viruses (HPAIVs) in 1994-1995 causing widespread outbreaks in poultry. By using vaccination and other control measures, the HPAIVs were eradicated but the LPAIVs continued circulating in Mexico and spread to several other countries. To get better resolution of the phylogenetics of this virus, the full genome sequences of 44 H5N2 LPAIVs isolated from 1994 to 2011, and 6 detected in 2017 and 2019, were analysed. Phylogenetic incongruence demonstrated genetic reassortment between two separate groups of the Mexican lineage H5N2 viruses between 2005 and 2010. Moreover, the recent H5N2 viruses reassorted with previously unidentified avian influenza viruses. Bayesian phylogeographic results suggested that mechanical transmission involving human activity is the most probable cause of the virus spillover to Central American, Caribbean, and East Asian countries. Increased infectivity and transmission of a 2011 H5N2 LPAIV in chickens compared to a 1994 virus demonstrates improved adaptation to chickens, while low virus shedding, and limited contact transmission was observed in mallards with the same 2011 virus. The sporadic increase in basic amino acids in the HA cleavage site, changes in potential N-glycosylation sites in the HA, and truncations of PB1-F2 should be further examined in relation to the increased infectivity and transmission in poultry. The genetic changes that occur as this lineage of H5N2 LPAIVs continues circulating in poultry is concerning not only because of the effect of these changes on vaccination efficacy, but also because of the potential of the viruses to mutate to the highly pathogenic form. Continued vigilance and surveillance efforts, and the pathogenic and genetic characterization of circulating viruses, are required for the effective control of this virus.
Collapse
Affiliation(s)
- Sungsu Youk
- Exotic and Emerging Avian Diseases Unit, Southeast Poultry Research Laboratory, United States National Poultry Research Center, Agricultural Research Service, United States Department of Agriculture
| | - Christina M. Leyson
- Exotic and Emerging Avian Diseases Unit, Southeast Poultry Research Laboratory, United States National Poultry Research Center, Agricultural Research Service, United States Department of Agriculture
| | - Darren J. Parris
- Exotic and Emerging Avian Diseases Unit, Southeast Poultry Research Laboratory, United States National Poultry Research Center, Agricultural Research Service, United States Department of Agriculture
| | - Henry M. Kariithi
- Exotic and Emerging Avian Diseases Unit, Southeast Poultry Research Laboratory, United States National Poultry Research Center, Agricultural Research Service, United States Department of Agriculture
- Biotechnology Research Centre, Kenya Agricultural and Livestock Research Organization, Nairobi, Kenya
| | - David L. Suarez
- Exotic and Emerging Avian Diseases Unit, Southeast Poultry Research Laboratory, United States National Poultry Research Center, Agricultural Research Service, United States Department of Agriculture
| | - Mary J. Pantin-Jackwood
- Exotic and Emerging Avian Diseases Unit, Southeast Poultry Research Laboratory, United States National Poultry Research Center, Agricultural Research Service, United States Department of Agriculture
| |
Collapse
|
13
|
Zhu R, Xu S, Sun W, Li Q, Wang S, Shi H, Liu X. HA gene amino acid mutations contribute to antigenic variation and immune escape of H9N2 influenza virus. Vet Res 2022; 53:43. [PMID: 35706014 PMCID: PMC9202205 DOI: 10.1186/s13567-022-01058-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 04/11/2022] [Indexed: 11/10/2022] Open
Abstract
Based on differences in the amino acid sequence of the protein haemagglutinin (HA), the H9N2 avian influenza virus (H9N2 virus) has been clustered into multiple lineages, and its rapidly ongoing evolution increases the difficulties faced by prevention and control programs. The HA protein, a major antigenic protein, and the amino acid mutations that alter viral antigenicity in particular have always been of interest. Likewise, it has been well documented that some amino acid mutations in HA alter viral antigenicity in the H9N2 virus, but little has been reported regarding how these antibody escape mutations affect antigenic variation. In this study, we were able to identify 15 HA mutations that were potentially relevant to viral antigenic drift, and we also found that a key amino acid mutation, A180V, at position 180 in HA (the numbering for mature H9 HA), the only site of the receptor binding sites that is not conserved, was directly responsible for viral antigenic variation. Moreover, the recombinant virus with alanine to valine substitution at position 180 in HA in the SH/F/98 backbone (rF/HAA180V virus) showed poor cross-reactivity to immune sera from animals immunized with the SH/F/98 (F/98, A180), SD/SS/94 (A180), JS/Y618/12 (T180), and rF/HAA180V (V180) viruses by microneutralization (MN) assay. The A180V substitution in the parent virus caused a significant decrease in cross-MN titres by enhancing the receptor binding activity, but it did not physically prevent antibody (Ab) binding. The strong receptor binding avidity prevented viral release from cells. Moreover, the A180V substitution promoted H9N2 virus escape from an in vitro pAb-neutralizing reaction, which also slightly affected the cross-protection in vivo. Our results suggest that the A180V mutation with a strong receptor binding avidity contributed to the low reactors in MN/HI assays and slightly affected vaccine efficacy but was not directly responsible for immune escape, which suggested that the A180V mutation might play a key role in the process of the adaptive evolution of H9N2 virus.
Collapse
Affiliation(s)
- Rui Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.,Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou, 225300, Jiangsu, China
| | - Shunshun Xu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
| | - Wangyangji Sun
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
| | - Quan Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
| | - Shifeng Wang
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611-0880, USA
| | - Huoying Shi
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China. .,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China. .,Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611-0880, USA.
| | - Xiufan Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
| |
Collapse
|
14
|
Xu W, Navarro-López R, Solis-Hernandez M, Liljehult-Fuentes F, Molina-Montiel M, Lagunas-Ayala M, Rocha-Martinez M, Ferrara-Tijera E, Pérez de la Rosa J, Berhane Y. Evolutionary Dynamics of Mexican Lineage H5N2 Avian Influenza Viruses. Viruses 2022; 14:v14050958. [PMID: 35632700 PMCID: PMC9146523 DOI: 10.3390/v14050958] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 11/17/2022] Open
Abstract
We have demonstrated for the first time a comprehensive evolutionary analysis of the Mexican lineage H5N2 avian influenza virus (AIV) using complete genome sequences (n = 189), from its first isolation in 1993 until 2019. Our study showed that the Mexican lineage H5N2 AIV originated from the North American wild bird gene pool viruses around 1990 and is currently circulating in poultry populations of Mexico, the Dominican Republic, and Taiwan. Since the implementation of vaccination in 1995, the highly pathogenic AIV (HPAIV) H5N2 virus was eradicated from Mexican poultry in mid-1995. However, the low pathogenic AIV (LPAIV) H5N2 virus has continued to circulate in domestic poultry populations in Mexico, eventually evolving into five distinct clades. In the current study, we demonstrate that the evolution of Mexican lineage H5N2 AIVs involves gene reassortments and mutations gained over time. The current circulating Mexican lineage H5N2 AIVs are classified as LPAIV based on the amino acid sequences of the hemagglutinin (HA) protein cleavage site motif as well as the results of the intravenous pathogenicity index (IVPI). The immune pressure from vaccinations most likely has played a significant role in the positive selection of antigenic drift mutants within the Mexican H5N2 AIVs. Most of the identified substitutions in these viruses are located on the critical antigenic residues of the HA protein and as a result, might have contributed to vaccine failures. This study highlights and stresses the need for vaccine updates while emphasizing the importance of continued molecular monitoring of the HA protein for its antigenic changes compared to the vaccines used.
Collapse
Affiliation(s)
- Wanhong Xu
- National Centre for Foreign Animal Disease, Winnipeg, MB R3E 3M4, Canada;
| | - Roberto Navarro-López
- Animal Health General Directorate, Animal and Plant Health, Food Inspection and Food Safety National Services (SENASICA), Secretariat of Agriculture, Livestock, Rural Development, Fisheries and Food (SAGARPA), Mexico City 06470, Mexico; (R.N.-L.); (M.M.-M.); (M.L.-A.); (M.R.-M.); (E.F.-T.); (J.P.d.l.R.)
| | - Mario Solis-Hernandez
- United States-Mexico Commission for the Prevention of Foot-and-Mouth Disease and Other Exotic Diseases of Animals, Mexico City 64590, Mexico; (M.S.-H.); (F.L.-F.)
| | - Francisco Liljehult-Fuentes
- United States-Mexico Commission for the Prevention of Foot-and-Mouth Disease and Other Exotic Diseases of Animals, Mexico City 64590, Mexico; (M.S.-H.); (F.L.-F.)
| | - Miguel Molina-Montiel
- Animal Health General Directorate, Animal and Plant Health, Food Inspection and Food Safety National Services (SENASICA), Secretariat of Agriculture, Livestock, Rural Development, Fisheries and Food (SAGARPA), Mexico City 06470, Mexico; (R.N.-L.); (M.M.-M.); (M.L.-A.); (M.R.-M.); (E.F.-T.); (J.P.d.l.R.)
| | - María Lagunas-Ayala
- Animal Health General Directorate, Animal and Plant Health, Food Inspection and Food Safety National Services (SENASICA), Secretariat of Agriculture, Livestock, Rural Development, Fisheries and Food (SAGARPA), Mexico City 06470, Mexico; (R.N.-L.); (M.M.-M.); (M.L.-A.); (M.R.-M.); (E.F.-T.); (J.P.d.l.R.)
| | - Marisol Rocha-Martinez
- Animal Health General Directorate, Animal and Plant Health, Food Inspection and Food Safety National Services (SENASICA), Secretariat of Agriculture, Livestock, Rural Development, Fisheries and Food (SAGARPA), Mexico City 06470, Mexico; (R.N.-L.); (M.M.-M.); (M.L.-A.); (M.R.-M.); (E.F.-T.); (J.P.d.l.R.)
| | - Eduardo Ferrara-Tijera
- Animal Health General Directorate, Animal and Plant Health, Food Inspection and Food Safety National Services (SENASICA), Secretariat of Agriculture, Livestock, Rural Development, Fisheries and Food (SAGARPA), Mexico City 06470, Mexico; (R.N.-L.); (M.M.-M.); (M.L.-A.); (M.R.-M.); (E.F.-T.); (J.P.d.l.R.)
| | - Juan Pérez de la Rosa
- Animal Health General Directorate, Animal and Plant Health, Food Inspection and Food Safety National Services (SENASICA), Secretariat of Agriculture, Livestock, Rural Development, Fisheries and Food (SAGARPA), Mexico City 06470, Mexico; (R.N.-L.); (M.M.-M.); (M.L.-A.); (M.R.-M.); (E.F.-T.); (J.P.d.l.R.)
| | - Yohannes Berhane
- National Centre for Foreign Animal Disease, Winnipeg, MB R3E 3M4, Canada;
- Department of Animal Science, University of Manitoba, Winnipeg, MB R3T 2S2, Canada
- Correspondence: ; Tel.: +1-204-789-7062
| |
Collapse
|
15
|
Amin F, Mukhtar N, Aslam A, Sheikh AA, Sultan B, Hussain M, Shehzad R, Ali M, Shahid MF, Aziz MW, Azeem S, Aslam HB, Yaqub T. Rate of Multiple Viral and Bacterial CoInfection(s) in Influenza A/H9N2–Infected Broiler Flocks. Avian Dis 2022; 66:1-8. [DOI: 10.1637/aviandiseases-d-21-00114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/15/2022] [Indexed: 11/05/2022]
Affiliation(s)
- Faisal Amin
- Institute of Microbiology, Faculty of Veterinary Science, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Nadia Mukhtar
- Institute of Microbiology, Faculty of Veterinary Science, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Asim Aslam
- Department of Pathology, Faculty of Veterinary Science, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Ali Ahmed Sheikh
- Institute of Microbiology, Faculty of Veterinary Science, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Bakht Sultan
- GP Laboratory, Grand Parent Poultry (Pvt) Ltd., Lahore, Pakistan
| | | | - Rehman Shehzad
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore, Pakistan
| | - Muzaffar Ali
- Institute of Microbiology, Faculty of Veterinary Science, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Muhammad Furqan Shahid
- Institute of Microbiology, Faculty of Veterinary Science, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Muhammad Waqar Aziz
- Institute of Microbiology, Faculty of Veterinary Science, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Shahan Azeem
- Institute of Microbiology, Faculty of Veterinary Science, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Hassaan Bin Aslam
- Institute of Microbiology, Faculty of Veterinary Science, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Tahir Yaqub
- Institute of Microbiology, Faculty of Veterinary Science, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| |
Collapse
|
16
|
Coinfection of Chickens with H9N2 and H7N9 Avian Influenza Viruses Leads to Emergence of Reassortant H9N9 Virus with Increased Fitness for Poultry and a Zoonotic Potential. J Virol 2022; 96:e0185621. [PMID: 35019727 PMCID: PMC8906417 DOI: 10.1128/jvi.01856-21] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
An H7N9 low-pathogenicity avian influenza virus (LPAIV) emerged in 2013 through genetic reassortment between H9N2 and other LPAIVs circulating in birds in China. This virus causes inapparent clinical disease in chickens, but zoonotic transmission results in severe and fatal disease in humans. To examine a natural reassortment scenario between H7N9 and G1 lineage H9N2 viruses predominant in the Indian subcontinent, we performed an experimental coinfection of chickens with A/Anhui/1/2013/H7N9 (Anhui/13) virus and A/Chicken/Pakistan/UDL-01/2008/H9N2 (UDL/08) virus. Plaque purification and genotyping of the reassortant viruses shed via the oropharynx of contact chickens showed H9N2 and H9N9 as predominant subtypes. The reassortant viruses shed by contact chickens also showed selective enrichment of polymerase genes from H9N2 virus. The viable "6+2" reassortant H9N9 (having nucleoprotein [NP] and neuraminidase [NA] from H7N9 and the remaining genes from H9N2) was successfully shed from the oropharynx of contact chickens, plus it showed an increased replication rate in human A549 cells and a significantly higher receptor binding to α2,6 and α2,3 sialoglycans compared to H9N2. The reassortant H9N9 virus also had a lower fusion pH, replicated in directly infected ferrets at similar levels compared to H7N9 and transmitted via direct contact. Ferrets exposed to H9N9 via aerosol contact were also found to be seropositive, compared to H7N9 aerosol contact ferrets. To the best of our knowledge, this is the first study demonstrating that cocirculation of H7N9 and G1 lineage H9N2 viruses could represent a threat for the generation of novel reassortant H9N9 viruses with greater virulence in poultry and a zoonotic potential. IMPORTANCE We evaluated the consequences of reassortment between the H7N9 and the contemporary H9N2 viruses of the G1 lineage that are enzootic in poultry across the Indian subcontinent and the Middle East. Coinfection of chickens with these viruses resulted in the emergence of novel reassortant H9N9 viruses with genes derived from both H9N2 and H7N9 viruses. The "6+2" reassortant H9N9 (having NP and NA from H7N9) virus was shed from contact chickens in a significantly higher proportion compared to most of the reassortant viruses, showed significantly increased replication fitness in human A549 cells, receptor binding toward human (α2,6) and avian (α2,3) sialic acid receptor analogues, and the potential to transmit via contact among ferrets. This study demonstrated the ability of viruses that already exist in nature to exchange genetic material, highlighting the potential emergence of viruses from these subtypes with zoonotic potential.
Collapse
|
17
|
Sikht FZ, Ducatez M, Touzani CD, Rubrum A, Webby R, El Houadfi M, Tligui NS, Camus C, Fellahi S. Avian Influenza a H9N2 Viruses in Morocco, 2018–2019. Viruses 2022; 14:v14030529. [PMID: 35336936 PMCID: PMC8954086 DOI: 10.3390/v14030529] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 02/04/2023] Open
Abstract
Low pathogenic H9N2 avian influenza (LPAI H9N2) is considered one of the most important diseases found in poultry (broiler, laying hens, breeding chickens, and turkeys). This infection causes considerable economic losses. The objective of this work was to monitor and assess the presence of avian influenza virus (AIV) H9N2 in eight different regions of Morocco using real-time RT-PCR, and to assess the phylogenetic and molecular evolution of the H9N2 viruses between 2016 and 2019. Field samples were collected from 108 farms suspected of being infected with LPAI H9N2 virus. Samples were analyzed using H9N2-specific real-time RT-PCR. Highly positive samples were subjected to virus isolation and seven isolates were fully sequenced. Low pathogenic H9N2 avian influenza virus was introduced in Morocco in 2016. We show that in 2018–2019, the virus was still present irrespective of vaccination status. Phylogenetic and molecular analyses showed mutations related to virulence, although our viruses were related to 2016 Moroccan viruses and grouped in the G1 lineage. Specific amino acid substitutions were identified in Moroccan H9N2 viruses that are believed to lead to increased resistance to antiviral drugs.
Collapse
Affiliation(s)
- Fatima-Zohra Sikht
- Avian Pathology Unit, Department of Veterinary Pathology and Public Health, Agronomy and Veterinary Institute Hassan II, Rabat B.P. 6202, Morocco; (F.-Z.S.); (C.D.T.); (M.E.H.); (S.F.)
- IHAP, Toulouse University, INRAE, ENVT, 31300 Toulouse, France;
| | | | - Charifa Drissi Touzani
- Avian Pathology Unit, Department of Veterinary Pathology and Public Health, Agronomy and Veterinary Institute Hassan II, Rabat B.P. 6202, Morocco; (F.-Z.S.); (C.D.T.); (M.E.H.); (S.F.)
| | - Adam Rubrum
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (A.R.); (R.W.)
| | - Richard Webby
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (A.R.); (R.W.)
| | - Mohammed El Houadfi
- Avian Pathology Unit, Department of Veterinary Pathology and Public Health, Agronomy and Veterinary Institute Hassan II, Rabat B.P. 6202, Morocco; (F.-Z.S.); (C.D.T.); (M.E.H.); (S.F.)
| | - Nour-Said Tligui
- Anatomo-Pathology Unit, Department of Veterinary Pathology and Public Health, Agronomy and Veterinary Institute Hassan II, Rabat B.P. 6202, Morocco;
| | - Christelle Camus
- IHAP, Toulouse University, INRAE, ENVT, 31300 Toulouse, France;
- Correspondence: ; Tel.: +33-5-61-19-38-80
| | - Siham Fellahi
- Avian Pathology Unit, Department of Veterinary Pathology and Public Health, Agronomy and Veterinary Institute Hassan II, Rabat B.P. 6202, Morocco; (F.-Z.S.); (C.D.T.); (M.E.H.); (S.F.)
| |
Collapse
|
18
|
Sun Y, Cong Y, Yu H, Ding Z, Cong Y. Assessing the effects of a two-amino acid flexibility in the Hemagglutinin 220-loop receptor-binding domain on the fitness of Influenza A(H9N2) viruses. Emerg Microbes Infect 2021; 10:822-832. [PMID: 33866955 PMCID: PMC8812783 DOI: 10.1080/22221751.2021.1919566] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/25/2021] [Accepted: 04/15/2021] [Indexed: 01/13/2023]
Abstract
The enzootic and zoonotic nature of H9N2 avian influenza viruses poses a persistent threat to the global poultry industry and public health. In particular, the emerging sublineage h9.4.2.5 of H9N2 viruses has drawn great attention. In this study, we determined the effects of the flexibility at residues 226 and 227 in the hemagglutinin on the receptor avidity and immune evasion of H9N2 viruses. The solid-phase direct binding assay showed that residue 226 plays a core role in the receptor preference of H9N2 viruses, while residue 227 affects the preference of the virus for a receptor. Consequently, each of these two successive residues can modulate the receptor avidity of H9N2 viruses and influence their potential of zoonotic infection. The antigenic map based on the cross-hemagglutination inhibition (HI) titers revealed that amino acid substitutions at positions 226 or 227 appear to be involved in antigenic drift, potentially resulting in the emergence of H9N2 immune evasion mutants. Further analysis suggested that increased receptor avidity facilitated by residue 226Q or 227M resulted in a reduction in the HI titer. Among the four naturally-occurring amino acid combinations comprising QQ, MQ, LQ, and LM, the number of viruses with LM accounted for 79.64% of the sublineage h9.4.2.5 and the rescued virus with LM exhibited absolute advantages of in vitro and in vivo replication and transmission. Collectively, these data demonstrate that residues 226 and 227 are under selective pressure and their synergistic regulation of receptor avidity and antigenicity is related to the evolution of circulating H9N2 viruses.
Collapse
Affiliation(s)
- Yixue Sun
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun, People’s Republic of China
- JilinResearch & Development Center of Biomedical Engineering, Chanchung University, Changchun, People's Republic of China
| | - Yulin Cong
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun, People’s Republic of China
| | - Haiying Yu
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun, People’s Republic of China
| | - Zhuang Ding
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun, People’s Republic of China
| | - Yanlong Cong
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun, People’s Republic of China
| |
Collapse
|
19
|
Abstract
Avian influenza viruses pose a continuous threat to both poultry and human health, with significant economic impact. The ability of viruses to reassort and jump the species barrier into mammalian hosts generates a constant pandemic threat. H10Nx avian viruses have been shown to replicate in mammalian species without prior adaptation and have caused significant human infection and fatalities. They are able to rapidly reassort with circulating poultry strains and go undetected due to their low pathogenicity in chickens. Novel detections of both human reassortant strains and increasing endemicity of H10Nx poultry infections highlight the increasing need for heightened surveillance and greater understanding of the distribution, tropism, and infection capabilities of these viruses. In this minireview, we highlight the gap in the current understanding of this subtype and its prevalence across a vast range of host species and geographical locations.
Collapse
|
20
|
Wang F, Wu J, Wang Y, Wan Z, Shao H, Qian K, Ye J, Qin A. Identification of key residues involved in the neuraminidase antigenic variation of H9N2 influenza virus. Emerg Microbes Infect 2021; 10:210-219. [PMID: 33467981 PMCID: PMC7872579 DOI: 10.1080/22221751.2021.1879602] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Influenza A H9N2 virus causes economic loss to the poultry industry and has likely contributed to the genesis of H5N1 and H7N9 viruses. The neuraminidase (NA) of H9N2 virus, like haemagglutinin, is under antibody selective pressure and may undergo antigenic change; however, its antigenic structure remains to be elucidated. In this study, we used monoclonal antibodies (mAbs) to probe the H9N2 viral NA residues that are key for antibody binding/inhibition. These mAbs fell into three groups based on their binding/inhibition of the NA of H9N2 viruses isolated during 1999–2019: group I only bounded the NA of the early 2000 H9N2 viruses but possessed no neutralizing ability, group II bounded and inhibited the NA of H9N2 viruses isolated before 2012, and group III reacted with most or all tested H9N2 viruses. We showed that NA residue 356 is key for the recognition by group I mAbs, residues 344, 368, 369, and 400 are key for the binding/inhibition of NA by group II antibodies, whereas residues 248, 253, and the 125/296 combination are key for neutralizing antibodies in group III. Our findings highlighted NA antigenic change of the circulating H9N2 viruses, and provided data for a more complete picture of the antigenic structure of H9N2 viral NA.
Collapse
Affiliation(s)
- Fei Wang
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, Jiangsu, People's Republic of China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Jiangsu, People's Republic of China
| | - Jinsen Wu
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, Jiangsu, People's Republic of China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Jiangsu, People's Republic of China
| | - Yajuan Wang
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, Jiangsu, People's Republic of China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Jiangsu, People's Republic of China
| | - Zhimin Wan
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, Jiangsu, People's Republic of China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Jiangsu, People's Republic of China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Jiangsu, People's Republic of China
| | - Hongxia Shao
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, Jiangsu, People's Republic of China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Jiangsu, People's Republic of China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Jiangsu, People's Republic of China
| | - Kun Qian
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, Jiangsu, People's Republic of China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Jiangsu, People's Republic of China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Jiangsu, People's Republic of China
| | - Jianqiang Ye
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, Jiangsu, People's Republic of China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Jiangsu, People's Republic of China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Jiangsu, People's Republic of China
| | - Aijian Qin
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, Jiangsu, People's Republic of China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Jiangsu, People's Republic of China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Jiangsu, People's Republic of China
| |
Collapse
|
21
|
Peacock TP, Penrice-Randal R, Hiscox JA, Barclay WS. SARS-CoV-2 one year on: evidence for ongoing viral adaptation. J Gen Virol 2021; 102:001584. [PMID: 33855951 PMCID: PMC8290271 DOI: 10.1099/jgv.0.001584] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 03/16/2021] [Indexed: 12/23/2022] Open
Abstract
SARS-CoV-2 is thought to have originated in the human population from a zoonotic spillover event. Infection in humans results in a variety of outcomes ranging from asymptomatic cases to the disease COVID-19, which can have significant morbidity and mortality, with over two million confirmed deaths worldwide as of January 2021. Over a year into the pandemic, sequencing analysis has shown that variants of SARS-CoV-2 are being selected as the virus continues to circulate widely within the human population. The predominant drivers of genetic variation within SARS-CoV-2 are single nucleotide polymorphisms (SNPs) caused by polymerase error, potential host factor driven RNA modification, and insertion/deletions (indels) resulting from the discontinuous nature of viral RNA synthesis. While many mutations represent neutral 'genetic drift' or have quickly died out, a subset may be affecting viral traits such as transmissibility, pathogenicity, host range, and antigenicity of the virus. In this review, we summarise the current extent of genetic change in SARS-CoV-2, particularly recently emerging variants of concern, and consider the phenotypic consequences of this viral evolution that may impact the future trajectory of the pandemic.
Collapse
Affiliation(s)
- Thomas P. Peacock
- Department of Infectious Diseases, St Marys Medical School, Imperial College London, UK
| | | | - Julian A. Hiscox
- Institute of Infection, Veterinary and Ecology Sciences, University of Liverpool, UK
- A*STAR Infectious Diseases Laboratories (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Wendy S. Barclay
- Department of Infectious Diseases, St Marys Medical School, Imperial College London, UK
| |
Collapse
|
22
|
Genetic determinants of receptor-binding preference and zoonotic potential of H9N2 avian influenza viruses. J Virol 2021; 95:JVI.01651-20. [PMID: 33268517 PMCID: PMC8092835 DOI: 10.1128/jvi.01651-20] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Receptor recognition and binding is the first step of viral infection and a key determinant of host specificity. The inability of avian influenza viruses to effectively bind human-like sialylated receptors is a major impediment to their efficient transmission in humans and pandemic capacity. Influenza H9N2 viruses are endemic in poultry across Asia and parts of Africa where they occasionally infect humans and are therefore considered viruses with zoonotic potential. We previously described H9N2 viruses, including several isolated from human zoonotic cases, showing a preference for human-like receptors. Here we take a mutagenesis approach, making viruses with single or multiple substitutions in H9 haemagglutinin and test binding to avian and human receptor analogues using biolayer interferometry. We determine the genetic basis of preferences for alternative avian receptors and for human-like receptors, describing amino acid motifs at positions 190, 226 and 227 that play a major role in determining receptor specificity, and several other residues such as 159, 188, 193, 196, 198 and 225 that play a smaller role. Furthermore, we show changes at residues 135, 137, 147, 157, 158, 184, 188, and 192 can also modulate virus receptor avidity and that substitutions that increased or decreased the net positive charge around the haemagglutinin receptor-binding site show increases and decreases in avidity, respectively. The motifs we identify as increasing preference for the human-receptor will help guide future H9N2 surveillance efforts and facilitate our understanding of the emergence of influenza viruses with increased zoonotic potential.IMPORTANCE As of 2020, over 60 infections of humans by H9N2 influenza viruses have been recorded in countries where the virus is endemic. Avian-like cellular receptors are the primary target for these viruses. However, given that human infections have been detected on an almost monthly basis since 2015, there may be a capacity for H9N2 viruses to evolve and gain the ability to target human-like cellular receptors. Here we identify molecular signatures that can cause viruses to bind human-like receptors, and we identify the molecular basis for the distinctive preference for sulphated receptors displayed by the majority of recent H9N2 viruses. This work will help guide future surveillance by providing markers that signify the emergence of viruses with enhanced zoonotic potential as well as improving understanding of the basis of influenza virus receptor-binding.
Collapse
|
23
|
Clements AL, Peacock TP, Sealy JE, Lee HM, Hussain S, Sadeyen JR, Shelton H, Digard P, Iqbal M. PA-X is an avian virulence factor in H9N2 avian influenza virus. J Gen Virol 2021; 102:001531. [PMID: 33544070 PMCID: PMC8515854 DOI: 10.1099/jgv.0.001531] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 11/03/2020] [Indexed: 12/12/2022] Open
Abstract
Influenza A viruses encode several accessory proteins that have host- and strain-specific effects on virulence and replication. The accessory protein PA-X is expressed due to a ribosomal frameshift during translation of the PA gene. Depending on the particular combination of virus strain and host species, PA-X has been described as either acting to reduce or increase virulence and/or virus replication. In this study, we set out to investigate the role PA-X plays in H9N2 avian influenza viruses, focusing on the natural avian host, chickens. We found that the G1 lineage A/chicken/Pakistan/UDL-01/2008 (H9N2) PA-X induced robust host shutoff in both mammalian and avian cells and increased virus replication in mammalian, but not avian cells. We further showed that PA-X affected embryonic lethality in ovo and led to more rapid viral shedding and widespread organ dissemination in vivo in chickens. Overall, we conclude PA-X may act as a virulence factor for H9N2 viruses in chickens, allowing faster replication and wider organ tropism.
Collapse
Affiliation(s)
- Anabel L. Clements
- The Pirbright Institute, Pirbright, Woking, GU24 0NF, UK
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, EH25 9RG, UK
| | - Thomas P. Peacock
- The Pirbright Institute, Pirbright, Woking, GU24 0NF, UK
- Department of Infectious Diseases, Imperial College London, W2 1PG, UK
| | | | - Hui Min Lee
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, EH25 9RG, UK
| | - Saira Hussain
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, EH25 9RG, UK
- Present address: The Francis Crick Institute, London, NW1 1AT, UK
| | | | - Holly Shelton
- The Pirbright Institute, Pirbright, Woking, GU24 0NF, UK
| | - Paul Digard
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, EH25 9RG, UK
| | - Munir Iqbal
- The Pirbright Institute, Pirbright, Woking, GU24 0NF, UK
| |
Collapse
|
24
|
Sealy JE, Peacock TP, Sadeyen JR, Chang P, Everest HJ, Bhat S, Iqbal M. Adsorptive mutation and N-linked glycosylation modulate influenza virus antigenicity and fitness. Emerg Microbes Infect 2020; 9:2622-2631. [PMID: 33179567 PMCID: PMC7738305 DOI: 10.1080/22221751.2020.1850180] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Influenza viruses have an error-prone polymerase complex that facilitates a mutagenic environment. Antigenic mutants swiftly arise from this environment with the capacity to persist in both humans and economically important livestock even in the face of vaccination. Furthermore, influenza viruses can adjust the antigenicity of the haemagglutinin (HA) protein, the primary influenza immunogen, using one of four molecular mechanisms. Two prominent mechanisms are: (1) enhancing binding avidity of HA toward cellular receptors to outcompete antibody binding and (2) amino acid substitutions that introduce an N-linked glycan on HA that sterically block antibody binding. In this study we investigate the impact that adsorptive mutation and N-linked glycosylation have on receptor-binding, viral fitness, and antigenicity. We utilize the H9N2 A/chicken/Pakistan/SKP-827/16 virus which naturally contains HA residue T180 that we have previously shown to be an adsorptive mutant relative to virus with T180A. We find that the addition of N-linked glycans can be beneficial or deleterious to virus replication depending on the background receptor binding avidity. We also find that in some cases, an N-linked glycan can trump the effect of an avidity enhancing substitution with respect to antigenicity. Taken together these data shed light on a potential route to the generation of a virus which is "fit" and able to overcome vaccine pressure.
Collapse
Affiliation(s)
| | - Thomas P Peacock
- Department of Infectious Diseases, Imperial College London, London, UK
| | | | | | - Holly J Everest
- Avian Influenza, The Pirbright Institute, Woking, UK.,Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Sushant Bhat
- Avian Influenza, The Pirbright Institute, Woking, UK
| | - Munir Iqbal
- Avian Influenza, The Pirbright Institute, Woking, UK
| |
Collapse
|
25
|
Wang Y, Lv Y, Niu X, Dong J, Feng P, Li Q, Xu W, Li J, Li C, Li J, Luo J, Li Z, Liu Y, Tan YJ, Pan W, Chen L. L226Q Mutation on Influenza H7N9 Virus Hemagglutinin Increases Receptor-Binding Avidity and Leads to Biased Antigenicity Evaluation. J Virol 2020; 94:e00667-20. [PMID: 32796071 PMCID: PMC7527056 DOI: 10.1128/jvi.00667-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 07/27/2020] [Indexed: 11/20/2022] Open
Abstract
Since the first outbreak in 2013, the influenza A (H7N9) virus has continued emerging and has caused over five epidemic waves. Suspected antigenic changes of the H7N9 virus based on hemagglutination inhibition (HI) assay during the fifth outbreak have prompted the update of H7N9 candidate vaccine viruses (CVVs). In this study, we comprehensively compared the serological cross-reactivities induced by the hemagglutinins (HAs) of the earlier CVV A/Anhui/1/2013 (H7/AH13) and the updated A/Guangdong/17SF003/2016 (H7/GD16). We found that although H7/GD16 showed poor HI cross-reactivity to immune sera from mice and rhesus macaques vaccinated with either H7/AH13 or H7/GD16, the cross-reactive neutralizing antibodies between H7/AH13 and H7/GD16 were comparably high. Passive transfer of H7/AH13 immune sera also provided complete protection against the lethal challenge of H7N9/GD16 virus in mice. Analysis of amino acid mutations in the HAs between H7/AH13 and H7/GD16 revealed that L226Q substitution increases the HA binding avidity to sialic acid receptors on red blood cells, leading to decreased HI titers against viruses containing HA Q226 and thus resulting in a biased antigenic evaluation based on HI assay. These results suggest that amino acids located in the receptor-binding site could mislead the evaluation of antigenic variation by solely impacting the receptor-binding avidity to red blood cells without genuine contribution to antigenic drift. Our study highlighted that viral receptor-binding avidity and combination of multiple serological assays should be taken into consideration in evaluating and selecting a candidate vaccine virus of H7N9 and other subtypes of influenza viruses.IMPORTANCE The HI assay is a standard method for profiling the antigenic characterization of influenza viruses. Suspected antigenic changes based on HI divergency in H7N9 viruses during the 2016-2017 wave prompted the recommendation of new H7N9 candidate vaccine viruses (CVVs). In this study, we found that the L226Q substitution in HA of A/Guangdong/17SF003/2016 (H7/GD16) increased the viral receptor-binding avidity to red blood cells with no impact on the antigenicity of H7N9 virus. Although immune sera raised by an earlier vaccine strain (H7/AH13) showed poor HI titers against H7/GD16, the H7/AH13 immune sera had potent cross-neutralizing antibody titers against H7/GD16 and could provide complete passive protection against H7N9/GD16 virus challenge in mice. Our study highlights that receptor-binding avidity might lead to biased antigenic evaluation by using the HI assay. Other serological assays, such as the microneutralization (MN) assay, should be considered a complementary indicator for analysis of antigenic variation and selection of influenza CVVs.
Collapse
Affiliation(s)
- Yang Wang
- State Key Lab of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yunhua Lv
- State Key Lab of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xuefeng Niu
- State Key Lab of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ji Dong
- State Key Lab of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Pei Feng
- State Key Lab of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qinming Li
- State Key Lab of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wei Xu
- State Key Lab of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jiashun Li
- State Key Lab of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Chufang Li
- State Key Lab of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jiahui Li
- State Key Lab of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jia Luo
- Guangdong Laboratory of Computational Biomedicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Zhixia Li
- Guangdong Laboratory of Computational Biomedicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yichu Liu
- Guangdong Laboratory of Computational Biomedicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yee-Joo Tan
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University Health System (NUHS), National University of Singapore, Singapore, Singapore
| | - Weiqi Pan
- State Key Lab of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ling Chen
- State Key Lab of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
26
|
Genetically and Antigenically Divergent Influenza A(H9N2) Viruses Exhibit Differential Replication and Transmission Phenotypes in Mammalian Models. J Virol 2020; 94:JVI.00451-20. [PMID: 32611751 DOI: 10.1128/jvi.00451-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 06/20/2020] [Indexed: 12/15/2022] Open
Abstract
Low-pathogenicity avian influenza A(H9N2) viruses, enzootic in poultry populations in Asia, are associated with fewer confirmed human infections but higher rates of seropositivity compared to A(H5) or A(H7) subtype viruses. Cocirculation of A(H5) and A(H7) viruses leads to the generation of reassortant viruses bearing A(H9N2) internal genes with markers of mammalian adaptation, warranting continued surveillance in both avian and human populations. Here, we describe active surveillance efforts in live poultry markets in Vietnam in 2018 and compare representative viruses to G1 and Y280 lineage viruses that have infected humans. Receptor binding properties, pH thresholds for HA activation, in vitro replication in human respiratory tract cells, and in vivo mammalian pathogenicity and transmissibility were investigated. While A(H9N2) viruses from both poultry and humans exhibited features associated with mammalian adaptation, one human isolate from 2018, A/Anhui-Lujiang/39/2018, exhibited increased capacity for replication and transmission, demonstrating the pandemic potential of A(H9N2) viruses.IMPORTANCE A(H9N2) influenza viruses are widespread in poultry in many parts of the world and for over 20 years have sporadically jumped species barriers to cause human infection. As these viruses continue to diversify genetically and antigenically, it is critical to closely monitor viruses responsible for human infections, to ascertain if A(H9N2) viruses are acquiring properties that make them better suited to infect and spread among humans. In this study, we describe an active poultry surveillance system established in Vietnam to identify the scope of influenza viruses present in live bird markets and the threat they pose to human health. Assessment of a recent A(H9N2) virus isolated from an individual in China in 2018 is also reported, and it was found to exhibit properties of adaptation to humans and, importantly, it shows similarities to strains isolated from the live bird markets of Vietnam.
Collapse
|
27
|
Arbi M, Souiai O, Rego N, Larbi I, Naya H, Ghram A, Houimel M. Historical origins and zoonotic potential of avian influenza virus H9N2 in Tunisia revealed by Bayesian analysis and molecular characterization. Arch Virol 2020; 165:1527-1540. [PMID: 32335769 DOI: 10.1007/s00705-020-04624-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 03/24/2020] [Indexed: 01/08/2023]
Abstract
During 2009-2012, several outbreaks of avian influenza virus H9N2 were reported in Tunisian poultry. The circulating strains carried in their hemagglutinins the human-like marker 226L, which is known to be important for avian-to-human viral transmission. To investigate the origins and zoonotic potential of the Tunisian H9N2 viruses, five new isolates were identified during 2012-2016 and their whole genomes were sequenced. Bayesian-based phylogeny showed that the HA, NA, M and NP segments belong to the G1-like lineage. The PB1, PB2, PA and NS segments appeared to have undergone multiple intersubtype reassortments and to be only distantly related to all of the Eurasian lineages (G1-like, Y280-like and Korean-like). The spatiotemporal dynamic of virus spread revealed that the H9N2 virus was transferred to Tunisia from the UAE through Asian and European pathways. As indicated by Bayesian analysis of host traits, ducks and terrestrial birds played an important role in virus transmission to Tunisia. The subtype phylodynamics showed that the history of the PB1 and PB2 segments was marked by intersubtype reassortments with H4N6, H10N4 and H2N2 subtypes. Most of these transitions between locations, hosts and subtypes were statistically supported (BF > 3) and not influenced by sampling bias. Evidence of genetic evolution was observed in the predicted amino acid sequences of the viral proteins of recent Tunisian H9N2 viruses, which were characterized by the acquisition of new mutations involved in virus adaptation to avian and mammalian hosts and amantadine resistance. This study is the first comprehensive analysis of the evolutionary history of Tunisian H9N2 viruses and highlights the zoonotic risk associated with their circulation in poultry, indicating the need for continuous surveillance of their molecular evolution.
Collapse
Affiliation(s)
- Marwa Arbi
- Laboratory of Epidemiology and Veterinary Microbiology, LR19IPT03, Institut Pasteur de Tunis, University Tunis El Manar, 13, Place Pasteur, BP74, 1002, Tunis, Belvedere, Tunisia
| | - Oussema Souiai
- Laboratory of Bioinformatics, Biomathematics and Biostatistics, LR16IPT09, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Natalia Rego
- Bioinformatics Unit, Institut Pasteur de Montevideo, Mataojo 2020, 11400, Montevideo, Uruguay
| | - Imen Larbi
- Laboratory of Epidemiology and Veterinary Microbiology, LR19IPT03, Institut Pasteur de Tunis, University Tunis El Manar, 13, Place Pasteur, BP74, 1002, Tunis, Belvedere, Tunisia
| | - Hugo Naya
- Bioinformatics Unit, Institut Pasteur de Montevideo, Mataojo 2020, 11400, Montevideo, Uruguay
- Departmento de Producción Animal y Pasturas, Facultad de Agronomía, Universidad de la República, Av. Gral. Eugenio Garzón 780, 12900, Montevideo, Uruguay
| | - Abdeljelil Ghram
- Laboratory of Epidemiology and Veterinary Microbiology, LR19IPT03, Institut Pasteur de Tunis, University Tunis El Manar, 13, Place Pasteur, BP74, 1002, Tunis, Belvedere, Tunisia
| | - Mehdi Houimel
- Laboratory of Epidemiology and Veterinary Microbiology, LR19IPT03, Institut Pasteur de Tunis, University Tunis El Manar, 13, Place Pasteur, BP74, 1002, Tunis, Belvedere, Tunisia.
| |
Collapse
|
28
|
Everest H, Hill SC, Daines R, Sealy JE, James J, Hansen R, Iqbal M. The Evolution, Spread and Global Threat of H6Nx Avian Influenza Viruses. Viruses 2020; 12:v12060673. [PMID: 32580412 PMCID: PMC7354632 DOI: 10.3390/v12060673] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 12/11/2022] Open
Abstract
Avian influenza viruses of the subtype H6Nx are being detected globally with increasing frequency. Some H6Nx lineages are becoming enzootic in Asian poultry and sporadic incursions into European poultry are occurring more frequently. H6Nx viruses that contain mammalian adaptation motifs pose a zoonotic threat and have caused human cases. Although currently understudied globally, H6Nx avian influenza viruses pose a substantial threat to both poultry and human health. In this review we examine the current state of knowledge of H6Nx viruses including their global distribution, tropism, transmission routes and human health risk.
Collapse
Affiliation(s)
- Holly Everest
- The Pirbright Institute, Woking GU24 0NF, UK
- Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - Sarah C Hill
- Department of Zoology, University of Oxford, Oxford OX1 3SZ UK
- Pathobiology and Population Sciences, Royal Veterinary College, Hertfordshire AL9 7TA, UK
| | - Rebecca Daines
- The Pirbright Institute, Woking GU24 0NF, UK
- Pathobiology and Population Sciences, Royal Veterinary College, Hertfordshire AL9 7TA, UK
| | | | - Joe James
- Department of Virology, Animal and Plant Health Agency, Addlestone KT15 3NB, UK
| | - Rowena Hansen
- Department of Virology, Animal and Plant Health Agency, Addlestone KT15 3NB, UK
| | - Munir Iqbal
- The Pirbright Institute, Woking GU24 0NF, UK
| |
Collapse
|
29
|
Adaptation of H9N2 Influenza Viruses to Mammalian Hosts: A Review of Molecular Markers. Viruses 2020; 12:v12050541. [PMID: 32423002 PMCID: PMC7290818 DOI: 10.3390/v12050541] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/12/2020] [Accepted: 05/12/2020] [Indexed: 11/18/2022] Open
Abstract
As the number of human infections with avian and swine influenza viruses continues to rise, the pandemic risk posed by zoonotic influenza viruses cannot be underestimated. Implementation of global pandemic preparedness efforts has largely focused on H5 and H7 avian influenza viruses; however, the pandemic threat posed by other subtypes of avian influenza viruses, especially the H9 subtype, should not be overlooked. In this review, we summarize the literature pertaining to the emergence, prevalence and risk assessment of H9N2 viruses, and add new molecular analyses of key mammalian adaptation markers in the hemagglutinin and polymerase proteins. Available evidence has demonstrated that H9N2 viruses within the Eurasian lineage continue to evolve, leading to the emergence of viruses with an enhanced receptor binding preference for human-like receptors and heightened polymerase activity in mammalian cells. Furthermore, the increased prevalence of certain mammalian adaptation markers and the enhanced transmissibility of selected viruses in mammalian animal models add to the pandemic risk posed by this virus subtype. Continued surveillance of zoonotic H9N2 influenza viruses, inclusive of close genetic monitoring and phenotypic characterization in animal models, should be included in our pandemic preparedness efforts.
Collapse
|
30
|
Ghabeshi S, Ebrahimie E, Salimi V, Ghanizadeh A, Khodakhah F, Yavarian J, Norouzbabaei Z, Sasani F, Rezaie F, Azad TM. Experimental direct-contact transmission of influenza A/H9N2 virus in the guinea pig model in Iran. Future Virol 2020. [DOI: 10.2217/fvl-2019-0141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aim: The present study aims to evaluate risk factors for the transmission of A/H9N2 viruses in guinea pig model. Materials & methods: Lung tissue samples were collected from the chicken clinically infected with influenza A/H9N2 virus in 2018. Next, virus isolation and titration, as well as reverse transcription PCR were performed. Then, hemagglutnation and neuraminidase genes was sequenced to identify different positions (hotspots) involved in transmission and host adaptation. Results: Influenza A/H9N2 virus could replicate in low titers in the nasal turbinate and transmit from infected to noninfected guinea pigs. Conclusion: Hotspots on the surface glycoproteins had the potential to alter transmission properties in the new host.
Collapse
Affiliation(s)
- Soad Ghabeshi
- Virology Department, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Esmaeil Ebrahimie
- School of Animal and VeterinarySciences, The University of Adelaide, South Australia, Adelaide, Australia
- Genomics Research Platform, Schoolof Life Sciences, La Trobe University, Melbourne, Victoria, Australia
| | - Vahid Salimi
- Virology Department, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Arash Ghanizadeh
- Department of Biotechnology, Razi Vaccine & Serum Research Institute, Karaj, Alborz, Iran
| | - Farshad Khodakhah
- Virology Department, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Jila Yavarian
- Virology Department, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Norouzbabaei
- Virology Department, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Farhang Sasani
- Department of Pathology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Farhad Rezaie
- Virology Department, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Talat Mokhtari Azad
- Virology Department, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
31
|
Lukosaityte D, Sadeyen JR, Shrestha A, Sealy JE, Bhat S, Chang P, Digard P, Iqbal M. Engineered Recombinant Single Chain Variable Fragment of Monoclonal Antibody Provides Protection to Chickens Infected with H9N2 Avian Influenza. Vaccines (Basel) 2020; 8:vaccines8010118. [PMID: 32138253 PMCID: PMC7157677 DOI: 10.3390/vaccines8010118] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 02/28/2020] [Accepted: 03/01/2020] [Indexed: 12/31/2022] Open
Abstract
Passive immunisation with neutralising antibodies can be a potent therapeutic strategy if used pre- or post-exposure to a variety of pathogens. Herein, we investigated whether recombinant monoclonal antibodies (mAbs) could be used to protect chickens against avian influenza. Avian influenza viruses impose a significant economic burden on the poultry industry and pose a zoonotic infection risk for public health worldwide. Traditional control measures including vaccination do not provide rapid protection from disease, highlighting the need for alternative disease mitigation measures. In this study, previously generated neutralizing anti-H9N2 virus monoclonal antibodies were converted to single-chain variable fragment antibodies (scFvs). These recombinant scFv antibodies were produced in insect cell cultures and the preparations retained neutralization capacity against an H9N2 virus in vitro. To evaluate recombinant scFv antibody efficacy in vivo, chickens were passively immunized with scFvs one day before, and for seven days after virus challenge. Groups receiving scFv treatment showed partial virus load reductions measured by plaque assays and decreased disease manifestation. These results indicate that antibody therapy could reduce clinical disease and shedding of avian influenza virus in infected chicken flocks.
Collapse
Affiliation(s)
- Deimante Lukosaityte
- The Pirbright Institute, Pirbright, Woking GU24 0NF, UK; (D.L.); (J.-R.S.); (A.S.); (J.E.S.); (S.B.); (P.C.)
| | - Jean-Remy Sadeyen
- The Pirbright Institute, Pirbright, Woking GU24 0NF, UK; (D.L.); (J.-R.S.); (A.S.); (J.E.S.); (S.B.); (P.C.)
| | - Angita Shrestha
- The Pirbright Institute, Pirbright, Woking GU24 0NF, UK; (D.L.); (J.-R.S.); (A.S.); (J.E.S.); (S.B.); (P.C.)
| | - Joshua E. Sealy
- The Pirbright Institute, Pirbright, Woking GU24 0NF, UK; (D.L.); (J.-R.S.); (A.S.); (J.E.S.); (S.B.); (P.C.)
| | - Sushant Bhat
- The Pirbright Institute, Pirbright, Woking GU24 0NF, UK; (D.L.); (J.-R.S.); (A.S.); (J.E.S.); (S.B.); (P.C.)
| | - Pengxiang Chang
- The Pirbright Institute, Pirbright, Woking GU24 0NF, UK; (D.L.); (J.-R.S.); (A.S.); (J.E.S.); (S.B.); (P.C.)
| | - Paul Digard
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK;
| | - Munir Iqbal
- The Pirbright Institute, Pirbright, Woking GU24 0NF, UK; (D.L.); (J.-R.S.); (A.S.); (J.E.S.); (S.B.); (P.C.)
- Correspondence:
| |
Collapse
|
32
|
Poh ZW, Wang Z, Kumar SR, Yong HY, Prabakaran M. Modification of neutralizing epitopes of hemagglutinin for the development of broadly protective H9N2 vaccine. Vaccine 2020; 38:1286-1290. [PMID: 31924429 DOI: 10.1016/j.vaccine.2019.11.080] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 11/26/2019] [Accepted: 11/27/2019] [Indexed: 12/01/2022]
Abstract
The H9N2 avian influenza viruses cause significant economic losses in poultry worldwide and could potentially cause human pandemic. Currently, the available vaccines have limited efficacy due to antigenic drift of H9N2. To improve vaccine efficacy, we developed monovalent vaccine strain via the modification of neutralizing epitopes on hemagglutinin (HA) to broaden the protection against H9N2 viruses. In this study, single and multiple mutation were introduced to amino acid at position 148, 150 (site I) and 183, 186, 188 (site II) on the full-length HA gene of H9N2 strain (A/Hong Kong/33982/2009). These mutant HA constructs were displayed on the baculovirus surface (BacH9), and evaluated for their cross-protective efficacy against H9N2 viruses in a mouse model. Our findings indicate that mice immunized with multiple BacH9 mutant constructs (148-150 183 and 186) induced cross-protective immunity against circulating H9N2 in the viral challenge study and prove to be a promising vaccine candidate for H9N2.
Collapse
Affiliation(s)
- Zhong Wee Poh
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604, Singapore
| | - Zhenzhang Wang
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604, Singapore
| | | | - Hui Yee Yong
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604, Singapore
| | - Mookkan Prabakaran
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604, Singapore.
| |
Collapse
|
33
|
Sealy JE, Fournie G, Trang PH, Dang NH, Sadeyen JR, Thanh TL, van Doorn HR, Bryant JE, Iqbal M. Poultry trading behaviours in Vietnamese live bird markets as risk factors for avian influenza infection in chickens. Transbound Emerg Dis 2019; 66:2507-2516. [PMID: 31357255 PMCID: PMC6899644 DOI: 10.1111/tbed.13308] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/17/2019] [Accepted: 07/19/2019] [Indexed: 01/16/2023]
Abstract
Vietnamese poultry are host to co‐circulating subtypes of avian influenza viruses, including H5N1 and H9N2, which pose a great risk to poultry productivity and to human health. AIVs circulate throughout the poultry trade network in Vietnam, with live bird markets being an integral component to this network. Traders at LBMs exhibit a variety of trading practices, which may influence the transmission of AIVs. We identified trading practices that impacted on AIV prevalence in chickens marketed in northern Vietnamese LBMs. We generated sequencing data for 31 H9N2 and two H5N6 viruses. Viruses isolated in the same LBM or from chickens sourced from the same province were genetically closer than viruses isolated in different LBMs or from chickens sourced in different provinces. The position of a vendor in the trading network impacted on their odds of having AIV‐infected chickens. Being a retailer and purchasing chickens from middlemen was associated with increased odds of infection, whereas odds decreased if vendors purchased chickens directly from large farms. Odds of infection were also higher for vendors having a greater volume of ducks unsold per day. These results indicate how the spread of AIVs is influenced by the structure of the live poultry trading network.
Collapse
Affiliation(s)
- Joshua E Sealy
- The Pirbright Institute, Pirbright, Woking, UK.,The Royal Veterinary College, London, UK
| | | | - Pham Hong Trang
- The National Centre for Veterinary Diagnostics, Hanoi, Vietnam
| | | | | | - To Long Thanh
- The National Centre for Veterinary Diagnostics, Hanoi, Vietnam.,The Department of Animal Health, Hanoi, Vietnam
| | | | - Juliet E Bryant
- Laboratory of Emerging Pathogens, Fondation Mérieux, Lyon, France
| | - Munir Iqbal
- The Pirbright Institute, Pirbright, Woking, UK
| |
Collapse
|
34
|
A Global Perspective on H9N2 Avian Influenza Virus. Viruses 2019; 11:v11070620. [PMID: 31284485 PMCID: PMC6669617 DOI: 10.3390/v11070620] [Citation(s) in RCA: 179] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 06/30/2019] [Accepted: 07/01/2019] [Indexed: 11/26/2022] Open
Abstract
H9N2 avian influenza viruses have become globally widespread in poultry over the last two decades and represent a genuine threat both to the global poultry industry but also humans through their high rates of zoonotic infection and pandemic potential. H9N2 viruses are generally hyperendemic in affected countries and have been found in poultry in many new regions in recent years. In this review, we examine the current global spread of H9N2 avian influenza viruses as well as their host range, tropism, transmission routes and the risk posed by these viruses to human health.
Collapse
|