1
|
Joyce AM, Hill JD, Tsoleridis T, Astbury S, Berry L, Howson-Wells HC, Allen N, Canning B, Jones CB, Clark G, Irving WL, Tarr AW, McClure CP. Coxsackievirus A6 U.K. Genetic and Clinical Epidemiology Pre- and Post-SARS-CoV-2 Emergence. Pathogens 2024; 13:1020. [PMID: 39599573 PMCID: PMC11597771 DOI: 10.3390/pathogens13111020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/11/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024] Open
Abstract
Coxsackievirus A6 (CVA6) has become increasingly clinically relevant as a cause of Hand, Foot and Mouth Disease (HFMD) globally since 2008. However, most laboratories do not routinely determine the enteroviral type of positive samples. The non-pharmaceutical measures introduced to curb transmission during the COVID-19 pandemic may also have perturbed CVA6 epidemiology. We thus aimed to determine the prevalence, clinical presentation and genetic relationship of CVA6 across three complete epidemic seasons: one pre-SARS-CoV-2 emergence and two post-SARS-CoV-2 emergence in our regional healthcare setting. Surplus diagnostic nucleic acid from diagnosed enteroviral positives diagnosed between September and December of 2018 and between May 2021 and April of 2023 was subject to VP1 gene sequencing to determine the CVA6 cases and interrogate their phylogenetic relationship. The confirmed CVA6 cases were also retrospectively clinically audited. CVA6 infections were identified in 33 and 69 individuals pre- and post-pandemic, respectively, with cases peaking in November of 2018 and 2022, but in October of 2021. HFMD was the primary diagnosis in 85.5% of the post-pandemic cases, but only 69.7% of the pre-pandemic cases, where respiratory and neurological symptoms (45.5% and 12.1%, respectively) were significantly elevated. A complete VP1 sequence was retrieved for 94% of the CVA6 cases, revealing that studied infections were genetically diverse and suggestive of multiple local and international transmission chains. CVA6 presented a significant clinical burden in our regional U.K. hospital setting both pre- and post-pandemic and was subject to dynamic clinical and genetic epidemiology.
Collapse
Affiliation(s)
- Alice M. Joyce
- School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | - Jack D. Hill
- School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, UK
- Wolfson Centre for Global Virus Research, University of Nottingham, Nottingham NG7 2UH, UK
| | - Theocharis Tsoleridis
- School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, UK
- Wolfson Centre for Global Virus Research, University of Nottingham, Nottingham NG7 2UH, UK
- The Pirbright Institute, Ash Road, Pirbright, Woking GU24 0NF, UK
| | - Stuart Astbury
- Nottingham Digestive Diseases Centre, Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK
- National Institute for Health Research Nottingham Biomedical Research Centre, University of Nottingham and Nottingham University Hospitals NHS Trust, Nottingham NG7 2UH, UK
| | - Louise Berry
- Clinical Microbiology, Nottingham University Hospitals NHS Trust, Nottingham NG7 2UH, UK
| | - Hannah C. Howson-Wells
- Clinical Microbiology, Nottingham University Hospitals NHS Trust, Nottingham NG7 2UH, UK
| | - Nancy Allen
- Clinical Microbiology, Nottingham University Hospitals NHS Trust, Nottingham NG7 2UH, UK
| | - Ben Canning
- Clinical Microbiology, Nottingham University Hospitals NHS Trust, Nottingham NG7 2UH, UK
| | - Carl B. Jones
- Clinical Microbiology, Nottingham University Hospitals NHS Trust, Nottingham NG7 2UH, UK
| | - Gemma Clark
- Clinical Microbiology, Nottingham University Hospitals NHS Trust, Nottingham NG7 2UH, UK
| | - William L. Irving
- School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, UK
- Wolfson Centre for Global Virus Research, University of Nottingham, Nottingham NG7 2UH, UK
- Clinical Microbiology, Nottingham University Hospitals NHS Trust, Nottingham NG7 2UH, UK
| | - Alexander W. Tarr
- School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, UK
- Wolfson Centre for Global Virus Research, University of Nottingham, Nottingham NG7 2UH, UK
| | - C. Patrick McClure
- School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, UK
- Wolfson Centre for Global Virus Research, University of Nottingham, Nottingham NG7 2UH, UK
| |
Collapse
|
2
|
Xie Y, Hu Q, Duan G, Wang F, Feng F, Li D, Jiang W, Ji W, Zhu P, Zhang X, Long J, Feng H, Yang H, Chen S, Jin Y. NLRP3 inflammasome activation contributes to acute liver injury caused by CVA6 infection in mice. BMC Infect Dis 2024; 24:1251. [PMID: 39501208 PMCID: PMC11539563 DOI: 10.1186/s12879-024-10136-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 10/28/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND Coxsackievirus (CV) A6 has emerged as an important causative agent in global outbreaks of hand, foot, and mouth disease (HFMD), which typically presents as a mild illness with a large generalized rash, herpes. However, some patients can develop encephalitis, pneumonia, myocarditis and liver injury. Our previous study took the view that CVA6 could replicate in mouse liver, leading to acute liver injury; however, the precise underlying mechanism remains elusive. METHODS 10-day-old wild-type (WT, C57BL/6J) and NLRP3 knock-out (KO) mice were intraperitoneal (i.p.) inoculated with a lethal dose of the CVA6 strain. The muscle homogenate supernatant from normal mice was used to inoculate mock-infected mice. At 5 days post infection (dpi), the mouse liver was taken out for histopathological analyses and molecular biology experiments. RESULTS Our in vivo experiments demonstrated that CVA6 caused severe liver injury in mice, as evidenced by pathological changes in liver slices, elevated liver injury markers (e.g., AST, ALT, LDH) and pro-inflammatory cytokines (e.g., IL-6, MCP-1, TNF-α, IL-1β). Further results revealed the activation of NLRP3 inflammasome characterized by the increase in the expression of NLRP3, Cleaved-Casp-1 (p20), mature IL-1β and IL-18. Importantly, upon CVA6 infection, NLRP3 KO mice exhibited attenuated pathological damage and reduced levels of pro-inflammatory cytokines production (e.g., TNF-α and IL-1β) compared with WT mice. Finally, increased levels of blood ALT, AST, LDH were strongly correlated with the severity of CVA6 patients. CONCLUSION Collectively, our findings suggest that the activation of NLRP3 inflammasome is involved in CVA6 infection-induced acute liver injury, providing novel insights into CVA6 infection associated adverse clinical outcomes.
Collapse
Affiliation(s)
- Yaqi Xie
- Department of Infectious Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, 450018, China
| | - Quanman Hu
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Guangcai Duan
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Fang Wang
- Department of Infectious Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, 450018, China
| | - Feifei Feng
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Dong Li
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Wenjie Jiang
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Wangquan Ji
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Peiyu Zhu
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Xiaolong Zhang
- NHC Key Laboratory of Birth Defects Prevention, Henan Key Laboratory of Population Defects Prevention, Zhengzhou, 450002, China
| | - Jinzhao Long
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Huifen Feng
- Department of Infection Control, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Haiyan Yang
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Shuaiyin Chen
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China.
| | - Yuefei Jin
- Department of Infectious Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, 450018, China.
- Pingyuan Laboratory, Xinxiang, 453007, China.
| |
Collapse
|
3
|
Mbani CJ, Morvan C, Nekoua MP, Debuysschere C, Alidjinou EK, Moukassa D, Hober D. Enterovirus Antibodies: Friends and Foes. Rev Med Virol 2024; 34:e70004. [PMID: 39505825 DOI: 10.1002/rmv.70004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/02/2024] [Accepted: 10/22/2024] [Indexed: 11/08/2024]
Abstract
Enteroviruses (EV) initiate replication by binding to their cellular receptors, leading to the uncoating and release of the viral genome into the cytosol of the host cell. Neutralising antibodies (NAbs) binding to epitopes on enteroviral capsid proteins can inhibit this infectious process through several mechanisms of neutralisation in vitro. Fc-mediated antibody effector functions such as antibody-dependent cell-mediated cytotoxicity and antibody-dependent cellular phagocytosis have also been described for some EV. However, antibody binding to virions does not always result in viral neutralisation. Non-neutralising antibodies, or sub-neutralising concentrations of antibodies, can enhance infection of viruses, leading to more severe pathologies. This phenomenon, known as antibody-dependent enhancement (ADE) of infection, has been described in vitro and/or in vivo for EV including poliovirus, coxsackievirus B and EV-A71. It has been shown that ADE of EV infection is mediated by FcγRs expressed by monocytes, macrophages, B lymphocytes and granulocytes. Antibodies play a crucial role in the diagnosis and monitoring of infections. They are valuable markers that have been used to establish a link between enteroviral infection and chronic diseases such as type 1 diabetes. Monoclonal and polyclonal antibodies targeting enteroviral proteins have been developed and shown to be effective to prevent or combat EV infections in vitro and in vivo. In addition, vaccines are under development, and clinical trials of vaccines are underway or have been completed, providing hope for the prevention of diseases due to EV. However, the ADE of the infection should be considered in the development of anti-EV antibodies or safe vaccines.
Collapse
Affiliation(s)
- Chaldam Jespère Mbani
- Laboratoire de Virologie URL3610, Univ. Lille et CHU Lille, Lille, France
- Laboratoire de Biologie Cellulaire et Moléculaire, Faculté des Sciences et Techniques, Université Marien Ngouabi, Brazzaville, Congo
| | - Corentin Morvan
- Laboratoire de Virologie URL3610, Univ. Lille et CHU Lille, Lille, France
| | | | - Cyril Debuysschere
- Laboratoire de Virologie URL3610, Univ. Lille et CHU Lille, Lille, France
| | | | - Donatien Moukassa
- Laboratoire de Biologie Cellulaire et Moléculaire, Faculté des Sciences et Techniques, Université Marien Ngouabi, Brazzaville, Congo
| | - Didier Hober
- Laboratoire de Virologie URL3610, Univ. Lille et CHU Lille, Lille, France
| |
Collapse
|
4
|
Kamau E, Lambert B, Allen DJ, Celma C, Beard S, Harvala H, Simmonds P, Grassly NC, Pons-Salort M. Enterovirus A71 and coxsackievirus A6 circulation in England, UK, 2006-2017: A mathematical modelling study using cross-sectional seroprevalence data. PLoS Pathog 2024; 20:e1012703. [PMID: 39565769 PMCID: PMC11578500 DOI: 10.1371/journal.ppat.1012703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 10/30/2024] [Indexed: 11/22/2024] Open
Abstract
Enterovirus A71 (EV-A71) and coxsackievirus A6 (CVA6) primarily cause hand, foot and mouth disease and have emerged to cause potential fatal neurological and systemic manifestations. However, limited surveillance data collected through passive surveillance systems hampers characterization of their epidemiological dynamics. We fit a series of catalytic models to age-stratified seroprevalence data for EV-A71 and CVA6 collected in England at three time points (2006, 2011 and 2017) to estimate the force of infection (FOI) over time and assess possible changes in transmission. For both serotypes, model comparison does not support the occurrence of important changes in transmission over the study period, and we find that a declining risk of infection with age and / or seroreversion are needed to explain the seroprevalence data. Furthermore, we provide evidence that the increased number of reports of CVA6 during 2006-2017 is unlikely to be explained by changes in surveillance. Therefore, we hypothesize that the increased number of CVA6 cases observed since 2011 must be explained by increased virus pathogenicity. Further studies of seroprevalence data from other countries would allow to confirm this. Our results underscore the value of seroprevalence data to unravel changes in the circulation dynamics of pathogens with weak surveillance systems and large number of asymptomatic infections.
Collapse
Affiliation(s)
- Everlyn Kamau
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Ben Lambert
- Department of Mathematics, College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, United Kingdom
| | - David J. Allen
- Department of Comparative Biomedical Sciences, Section Infection and Immunity, School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Cristina Celma
- Enteric Virus Unit, UK Health Security Agency, Colindale, London, United Kingdom
| | - Stuart Beard
- Enteric Virus Unit, UK Health Security Agency, Colindale, London, United Kingdom
| | - Heli Harvala
- Microbiology Services, NHS Blood Transfusion, London, United Kingdom
- Infection and Immunity, University College of London, London, United Kingdom
| | - Peter Simmonds
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Nicholas C. Grassly
- MRC Center for Global Infectious Disease Analysis, School of Public Health, Imperial College London, London, United Kingdom
| | - Margarita Pons-Salort
- MRC Center for Global Infectious Disease Analysis, School of Public Health, Imperial College London, London, United Kingdom
| |
Collapse
|
5
|
Jorgensen D, Grassly NC, Pons-Salort M. Global age-stratified seroprevalence of enterovirus D68: a systematic literature review. THE LANCET. MICROBE 2024:100938. [PMID: 39332429 DOI: 10.1016/j.lanmic.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/26/2024] [Accepted: 07/01/2024] [Indexed: 09/29/2024]
Abstract
Enterovirus D68 (EV-D68), first isolated in 1962, emerged in 2014, causing outbreaks of severe respiratory infections and acute flaccid myelitis. In this systematic review, we have compiled all available literature on age-stratified seroprevalence estimates of EV-D68. Ten studies from six countries were retained, all conducted using microneutralisation assays, despite wide variations in protocols and challenge viruses. The age profiles of seroprevalence were similar across time and regions; seroprevalence increased quickly with age, reaching roughly 100% by the age of 20 years and with no sign of decline throughout adulthood. This suggests continuous or frequent exposure of the populations to the virus, or possible cross-reactivity with other viruses. Studies with two or more cross-sectional surveys reported consistently higher seroprevalence at later timepoints, suggesting a global increase in transmission over time. This systematic review concludes that standardising serological protocols, understanding the contribution of cross-reactivity with other pathogens to the high reported seroprevalence, and quantifying individual exposure to EV-D68 over time are the main research priorities for the future.
Collapse
Affiliation(s)
- David Jorgensen
- Medical Research Council (MRC) Centre for Global Infectious Disease Analysis, Imperial College London, London, UK.
| | - Nicholas C Grassly
- Medical Research Council (MRC) Centre for Global Infectious Disease Analysis, Imperial College London, London, UK
| | - Margarita Pons-Salort
- Medical Research Council (MRC) Centre for Global Infectious Disease Analysis, Imperial College London, London, UK
| |
Collapse
|
6
|
Berginc N, Lunar MM, Šramel N, Poljak M. Molecular epidemiology and characterization of enteroviruses detected in cerebrospinal fluid and respiratory samples in Slovenia, 2014-2023. J Med Virol 2024; 96:e29827. [PMID: 39056240 DOI: 10.1002/jmv.29827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/28/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024]
Abstract
Enterovirus (EV) infections have various symptoms and severe complications, including death. To determine EV prevalence and EV types in Slovenia, data on over 25 000 EV RNA tests for diagnostics and surveillance from 2014 to 2023 were analyzed. Altogether, 3733 cerebrospinal fluid (CSF) and 21 297 respiratory (sentinel and clinical) samples were tested for EV RNA. EV typing was performed on all residual EV-positive CSF samples and on subset of respiratory specimens. Altogether, 1238 samples tested positive for EV RNA: 238 (6.4%) CSF and 1000 (4.7%) respiratory samples. EV-positive patients were predominantly male (p < 0.001). Many EV-positive CSF samples were from infants under 3 months (33.1%), whereas most EV-positive respiratory samples were from children 1 to 2 years old (49.2%). Echovirus 30 (E-30) was most frequent in CSF (33.0%), followed by CV-B5 (13.8%) and E-6 (13.8%). CV-A6 was most frequent in respiratory samples (16.0%), followed by EV-D68 (7.6%) and CV-A5 (7.4%). EV types in CSF and respiratory samples show diverse dynamics, with some outbreaks indicated. A significant difference was found in the EV detection rate between CSF and respiratory samples by age. Various EV types were characterized, showing that some EV types are more neurotropic or cause more severe infections.
Collapse
Affiliation(s)
- Nataša Berginc
- Department of Public Health Microbiology, National Laboratory for Health, Environment, and Food, Maribor, Slovenia
| | - Maja M Lunar
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Nina Šramel
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Mario Poljak
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
7
|
Xie Z, Khamrin P, Maneekarn N, Kumthip K. Epidemiology of Enterovirus Genotypes in Association with Human Diseases. Viruses 2024; 16:1165. [PMID: 39066327 PMCID: PMC11281466 DOI: 10.3390/v16071165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
Enteroviruses (EVs) are well-known causes of a wide range of infectious diseases in infants and young children, ranging from mild illnesses to severe conditions, depending on the virus genotypes and the host's immunity. Recent advances in molecular surveillance and genotyping tools have identified over 116 different human EV genotypes from various types of clinical samples. However, the current knowledge about most of these genotypes, except for those of well-known genotypes like EV-A71 and EV-D68, is still limited due to a lack of comprehensive EV surveillance systems. This limited information makes it difficult to understand the true burden of EV-related diseases globally. Furthermore, the specific EV genotype associated with diseases varies according to country, population group, and study period. The same genotype can exhibit different epidemiological features in different areas. By integrating the data from established EV surveillance systems in the USA, Europe, Japan, and China, in combination with other EV infection studies, we can elaborate a better understanding of the distribution of prevalent EV genotypes and the diseases associated with EV. This review analyzed the data from various EV surveillance databases and explored the EV seroprevalence and the association of specific EV genotypes with human diseases.
Collapse
Affiliation(s)
- Zhenfeng Xie
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (Z.X.); (P.K.); (N.M.)
- Guangxi Colleges and Universities Key Laboratory of Basic Research and Transformation of Cancer Immunity and Infectious Diseases, Youjiang Medical University for Nationalities, Baise 533000, China
| | - Pattara Khamrin
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (Z.X.); (P.K.); (N.M.)
- Center of Excellence in Emerging and Re-Emerging Diarrheal Viruses, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Niwat Maneekarn
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (Z.X.); (P.K.); (N.M.)
- Center of Excellence in Emerging and Re-Emerging Diarrheal Viruses, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Kattareeya Kumthip
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (Z.X.); (P.K.); (N.M.)
- Center of Excellence in Emerging and Re-Emerging Diarrheal Viruses, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
8
|
Wang Z, Wen H. A review of the recombination events, mechanisms and consequences of Coxsackievirus A6. INFECTIOUS MEDICINE 2024; 3:100115. [PMID: 38974347 PMCID: PMC11225671 DOI: 10.1016/j.imj.2024.100115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/25/2024] [Accepted: 04/22/2024] [Indexed: 07/09/2024]
Abstract
Hand, foot, and mouth disease (HFMD) is one of the most common class C infectious diseases, posing a serious threat to public health worldwide. Enterovirus A71 (EV-A71) and coxsackievirus A16 (CV-A16) have been regarded as the major pathogenic agents of HFMD; however, since an outbreak caused by coxsackievirus A6 (CV-A6) in France in 2008, CV-A6 has gradually become the predominant pathogen in many regions. CV-A6 infects not only children but also adults, and causes atypical clinical symptoms such as a more generalized rash, eczema herpeticum, high fever, and onychomadesis, which are different from the symptoms associated with EV-A71 and CV-A16. Importantly, the rate of genetic recombination of CV-A6 is high, which can lead to changes in virulence and the rapid evolution of other characteristics, thus posing a serious threat to public health. To date, no specific vaccines or therapeutics have been approved for CV-A6 prevention or treatment, hence it is essential to fully understand the relationship between recombination and evolution of this virus. Here, we systematically review the genetic recombination events of CV-A6 that have occurred worldwide and explore how these events have promoted virus evolution, thus providing important information regarding future HFMD surveillance and prevention.
Collapse
Affiliation(s)
- Zequn Wang
- Department of Microbiological Laboratory Technology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Key Laboratory of Prevention and Control of Emerging Infectious Diseases, Biosafety in Universities of Shandong, Jinan 250012, China
| | - Hongling Wen
- Department of Microbiological Laboratory Technology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Key Laboratory of Prevention and Control of Emerging Infectious Diseases, Biosafety in Universities of Shandong, Jinan 250012, China
| |
Collapse
|
9
|
Zhang Y, Chen S, Sun T, Duan G, Yang H, Feng H, Jiang W, Li D, Ji W, Zhu P, Jin Y. Abundant Neutrophil-Initiated Acute Myocardial Injury Following Coxsackievirus A6 Infection. J Infect Dis 2024; 229:1440-1450. [PMID: 37738556 DOI: 10.1093/infdis/jiad407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 09/07/2023] [Accepted: 09/20/2023] [Indexed: 09/24/2023] Open
Abstract
Coxsackievirus A6 (CVA6) is currently considered as a predominant pathogen of hand, foot, and mouth disease (HFMD), and is occasionally linked to myocardial injury. We first established a mouse model of CVA6-induced myocardial injury. Next, we analyzed the immune cell phenotypes CVA6-infected mice hearts by fluorescence-activated cell sorting, and found that CVA6 led to massive neutrophils infiltration, suggesting their potential link with the occurrence of myocardial injury. We further used either αGr-1 or αLy6G antibody to deplete neutrophils, and found that neutrophil-depleted animals showed decreased cardiac enzymes, lower degree of pathology in hearts, and reduced inflammatory cytokine production compared to isotype controls. Finally, we confirmed the involvement of neutrophils in myocardial injury of clinical patients with severe HFMD. Our study suggests that excessive neutrophils contribute to myocardial injury caused by CVA6 infection, which provides new insights into myocardial injury during the development of HFMD severity and the outcome of immune cell-mediated therapies.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Shuaiyin Chen
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Tiantian Sun
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Guangcai Duan
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, China
| | - Haiyan Yang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Huifen Feng
- Department of Infectious Diseases, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Wenjie Jiang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Dong Li
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Wangquan Ji
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Peiyu Zhu
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Yuefei Jin
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
10
|
Kordi R, Chang AJ, Hicar MD. Seasonal Testing, Results, and Effect of the Pandemic on Coxsackievirus Serum Studies. Microorganisms 2024; 12:367. [PMID: 38399771 PMCID: PMC10893248 DOI: 10.3390/microorganisms12020367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
Coxsackieviruses (CVs) are common causes of infections and can be life-threatening. Unfortunately, rigorous studies guiding the clinician in interpreting CV serum antibody titer testing is lacking. To explore the epidemiology of circulating CVs and the serological test utility in aiding diagnosis of CV infections in our community, we obtained results of CV immunologic diagnostic tests between 2018 and 2022 from a regional healthcare database. For CV type A, rare individuals had positive CF (complement fixation) tests whereas all 16 individuals with IFA testing showed at least one positive serotype. For CV type B CF testing, 52.2% of 222 patients had at least one serotype positive, with B5 being most common and also the most common with higher titers (14.8% with ≥1:32). We found a significant reduction in seropositivity rate during the pandemic in 2020 compared to 2018, which continued through 2022 (OR: 0.2, 95% CI: 0.08-0.49, p-value < 0.001). During the pandemic, the seasonal pattern of positive tests varied from the pre-pandemic pattern. Testing for CVs was increased after the first year of the pandemic. Overall, the variability by month and seasonal change in our data support that CF testing can be used to identify recent CVB infection.
Collapse
Affiliation(s)
- Ramesh Kordi
- Department of Pediatric Infectious Diseases, State University of New York at Buffalo, Buffalo, NY 14203, USA;
| | - Arthur J. Chang
- Division of Pediatric Infectious Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Mark D. Hicar
- Department of Pediatric Infectious Diseases, State University of New York at Buffalo, Buffalo, NY 14203, USA;
| |
Collapse
|
11
|
Zhou K, Ding Z, Hu B, Zhan J, Cai K. Circulating trends of hand, foot, and mouth disease in Hubei Province, China: Impact from the COVID-19 pandemic. Heliyon 2023; 9:e22872. [PMID: 38058442 PMCID: PMC10696181 DOI: 10.1016/j.heliyon.2023.e22872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 12/08/2023] Open
Abstract
Objectives This study was performed to investigate the effect of non-pharmaceutical interventions on hand, foot, and mouth disease in Hubei Province China during the coronavirus disease 2019 pandemic. Methods Data and samples were collected from the hand, foot, and mouth disease surveillance laboratory network in Hubei Province between 2018 and 2022. The samples were identified as Enterovirus A71, Coxsackievirus A6or Coxsackievirus A16 via real-time polymerase chain reaction. Representative Coxsackievirus A6 and Coxsackievirus A16 samples were sequenced and subjected to phylogenetic analyses. Results A noticeable 3-fold reduction in the number of hand, foot, and mouth disease cases was observed from 2019 to 2020. The age and sex distributions of patients with hand, foot, and mouth disease were approximately the same from 2018 to 2022. The proportion of Coxsackievirus A6 accounted for 86 % in 2020 and 75 % in 2021 for hand, foot, and mouth disease compared with 48 % in 2018, 53 % in 2019, and 29 % in 2022. The proportions of Coxsackievirus A16 in 2020 and 2021 were 2 % and 17 %, respectively, showing a sharp decline in 2018 (37.8 %) and 2019 (35 %). In 2022, Coxsackievirus A16 was the dominant serotype (46 %). Only slight differences were found in the VP1 sequences across the different years. Conclusions Our study confirmed that a series of non-pharmaceutical interventions during the coronavirus disease 2019 period reduced the transmission of enteroviruses and that long-term restrictions could significantly change the prevalence of enterovirus serotypes causing hand, foot, and mouth disease.
Collapse
Affiliation(s)
- Kangping Zhou
- Hubei Provincial Center for Disease Control and Prevention, 35 North Zhuodaoquan, Hongshan District, Wuhan, 430079, China
| | - Zhihong Ding
- Xiangyang Hospital of Traditional Chinese Medicine, Xiangyang, Hubei, 441000, China
| | - Bin Hu
- Hubei Provincial Center for Disease Control and Prevention, 35 North Zhuodaoquan, Hongshan District, Wuhan, 430079, China
| | - Jianbo Zhan
- Hubei Provincial Center for Disease Control and Prevention, 35 North Zhuodaoquan, Hongshan District, Wuhan, 430079, China
| | - Kun Cai
- Hubei Provincial Center for Disease Control and Prevention, 35 North Zhuodaoquan, Hongshan District, Wuhan, 430079, China
| |
Collapse
|
12
|
Wang SH, Du J, Yu J, Zhao Y, Wang Y, Hua S, Zhao K. Coxsackievirus A6 2C protein antagonizes IFN-β production through MDA5 and RIG-I depletion. J Virol 2023; 97:e0107523. [PMID: 37847581 PMCID: PMC10688345 DOI: 10.1128/jvi.01075-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/09/2023] [Indexed: 10/19/2023] Open
Abstract
IMPORTANCE Coxsackievirus A6 (CV-A6) is a major emerging pathogen associated with atypical hand, foot, and mouth disease and can cause serious complications such as encephalitis, acute flaccid paralysis, and neurorespiratory syndrome. Therefore, revealing the associated pathogenic mechanisms could benefit the control of CV-A6 infections. In this study, we demonstrate that the nonstructural 2CCV-A6 suppresses IFN-β production, which supports CV-A6 infection. This is achieved by depleting RNA sensors such as melanoma differentiation-associated gene 5 and retinoic acid-inducible gene I (RIG-I) through the lysosomal pathway. Such a function is shared by 2CEV-A71 and 2CCV-B3 but not 2CCV-A16, suggesting the latter might have an alternative way to promote viral replication. This study broadens our understanding of enterovirus 2C protein regulation of the RIG-I-like receptor signaling pathway and reveals a novel mechanism by which CV-A6 and other enteroviruses evade the host innate immune response. These findings on 2C may provide new therapeutic targets for the development of effective inhibitors against CV-A6 and other enterovirus infections.
Collapse
Affiliation(s)
- Shao-Hua Wang
- Center of Infectious Diseases and Pathogen Biology, First Hospital of Jilin University, Changchun, China
- Institute of Virology and AIDS Research, First Hospital of Jilin University, Changchun, China
| | - Juan Du
- Center of Infectious Diseases and Pathogen Biology, First Hospital of Jilin University, Changchun, China
- Institute of Virology and AIDS Research, First Hospital of Jilin University, Changchun, China
| | - Jinghua Yu
- Center of Infectious Diseases and Pathogen Biology, First Hospital of Jilin University, Changchun, China
- Institute of Virology and AIDS Research, First Hospital of Jilin University, Changchun, China
| | - Yifei Zhao
- Center of Infectious Diseases and Pathogen Biology, First Hospital of Jilin University, Changchun, China
- Institute of Virology and AIDS Research, First Hospital of Jilin University, Changchun, China
| | - Yu Wang
- Center of Infectious Diseases and Pathogen Biology, First Hospital of Jilin University, Changchun, China
- Institute of Virology and AIDS Research, First Hospital of Jilin University, Changchun, China
| | - Shucheng Hua
- Department of Respiratory Medicine, First Hospital of Jilin University, Changchun, China
| | - Ke Zhao
- Center of Infectious Diseases and Pathogen Biology, First Hospital of Jilin University, Changchun, China
- Institute of Virology and AIDS Research, First Hospital of Jilin University, Changchun, China
| |
Collapse
|
13
|
Kamau E, Bessaud M, Majumdar M, Martin J, Simmonds P, Harvala H. Estimating prevalence of Enterovirus D111 in human and non-human primate populations using cross-sectional serology. J Gen Virol 2023; 104:001915. [PMID: 37910158 PMCID: PMC10768692 DOI: 10.1099/jgv.0.001915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 10/19/2023] [Indexed: 11/03/2023] Open
Abstract
Enteroviruses primarily affect young children with a varying severity of disease. Recent outbreaks of severe respiratory and neurological disease due to EV-D68 and EV-A71, as well as atypical hand-foot-and-mouth-disease due to CVA6, have brought to light the potency of enteroviruses to emerge as severe human pathogens. Enterovirus D111 (EV-D111) is an enteric pathogen initially detected in Central Africa in human and wildlife samples and was recently detected in environmental samples. The natural history and epidemiology of EV-D111 are poorly studied. Here, the presence of serum neutralizing antibodies to EV-D111 was estimated in human and wildlife samples from five countries. We report high prevalence of neutralizing antibodies measured against EV-D111 in human populations (range, 55-83 %), a proxy for previous infection, which indicates active virus circulation in absence of detection in clinical cases and a high number of undiagnosed infections. Notably, seroprevalence in samples from the UK varied by age and was higher in children and older adults (1-5 and >60 years old), but lower in ages 11-60. EV-D111 seroprevalence in apes and Old World monkeys was 50 % (33-66 %), which also suggests prior exposure and supports existing knowledge of enterovirus circulation in wild and captive apes and Old World monkeys. Generally, reported cases of infection likely underestimate the prevalence of infection particularly when the knowledge of community transmission is limited. Continued serologic surveillance and detection of EV-D111 in clinical and environmental samples will allow for a more robust assessment of EV-D111 epidemiology.
Collapse
Affiliation(s)
- Everlyn Kamau
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Mael Bessaud
- Institut Pasteur-Unité de Biologie des Virus Entériques, Paris, France
- WHO Collaborating Centre for Enteroviruses and Viral Vaccines, Paris, France
| | - Manasi Majumdar
- Science Research and Innovation, Medicines and Healthcare Products Regulatory Agency, South Mimms, UK
| | - Javier Martin
- Science Research and Innovation, Medicines and Healthcare Products Regulatory Agency, South Mimms, UK
| | - Peter Simmonds
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Heli Harvala
- Microbiology Services, NHS Blood Transfusion, London, UK
| |
Collapse
|
14
|
Zhou X, Qian K, Zhu C, Yi L, Tu J, Yang S, Zhang Y, Zhang Y, Xia W, Ni X, Xu T, He F, Li H. Surveillance, epidemiology, and impact of the coronavirus disease 2019 interventions on the incidence of enterovirus infections in Nanchang, China, 2010-2022. Front Microbiol 2023; 14:1251683. [PMID: 37920267 PMCID: PMC10618362 DOI: 10.3389/fmicb.2023.1251683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 09/27/2023] [Indexed: 11/04/2023] Open
Abstract
Introduction Pathogen spectrum of Hand, foot and mouth disease (HFMD) has substantially changed in the past decade in China. Growing evidence has indicated that anti-COVID-19 nonpharmaceutical interventions (NPIs) can support control of various infectious diseases, including intestinal diseases. Methods In this study, HFMD cases were enrolled from sentinel hospitals of Nanchang, Jiangxi province, and enteroviruses were genotyped using specific real time RT-PCR. We systematically characterized the epidemiology of HFMD based on the continuous molecular surveillance and estimated the impact of COVID-19 intervention on HFMD incidence using seasonal autoregressive integrated moving average (ARIMA) models. Results A total of 10247 HFMD cases were included during 2010-2022, of which 6121 enterovirus (EV)-positive cases (59.7%) were identified by real-time RT-PCR. Over 80% cases were associated with EV-A71 and coxsackievirus A16 (CVA16) during 2010-2012, while the type distribution significantly changed as CVA6 emerged to be dominant, accounting for 22.6%-59.6% during 2013-2022. It was observed that the prevalence patterns of EV-A71 and CVA16 were similar and both of them peaked in the second quarter and then leveled off. However, CVA6 was generally prevalent around the fourth quarter, demonstrating a staggered prevalence during 2010-2019. During the COVID-19 epidemic, the seasonal HFMD epidemic peak was restrained, and the ARIMA analysis indicated that the COVID-19 intervention had mitigated EV transmission during the first COVID-19 outbreak in early 2020. In addition, bivariate Spearman's cross-correlation coefficients were estimated for the major types CVA6, CVA16 and EV-A71. Our analyses indicated the possible existence of correlations among CVA6, CVA16 and EV-A71 prevalence in the epidemiological level. Discussion Taken together, the type distribution of HFMD has substantially changed over the last decade and CVA6 and CVA16 are currently the most predominant types co-circulating in Nanchang. The anti-COVID-19 NPIs significantly reduced the incidence of EV infections.
Collapse
Affiliation(s)
- Xianfeng Zhou
- Cancer Research Center, Jiangxi University of Chinese Medicine, Nanchang, China
- Jiangxi Provincial Health Commission Key Laboratory of Pathogenic Diagnosis and Genomics of Emerging Infectious Diseases, Nanchang Center for Disease Control and Prevention, Nanchang, China
| | - Ke Qian
- Jiangxi Provincial Health Commission Key Laboratory of Pathogenic Diagnosis and Genomics of Emerging Infectious Diseases, Nanchang Center for Disease Control and Prevention, Nanchang, China
| | - Chunlong Zhu
- Clinical Laboratory, Third Hospital of Nanchang, Nanchang, China
| | - Liu Yi
- Jiangxi Provincial Health Commission Key Laboratory of Pathogenic Diagnosis and Genomics of Emerging Infectious Diseases, Nanchang Center for Disease Control and Prevention, Nanchang, China
| | - Junling Tu
- Jiangxi Provincial Health Commission Key Laboratory of Pathogenic Diagnosis and Genomics of Emerging Infectious Diseases, Nanchang Center for Disease Control and Prevention, Nanchang, China
| | - Shu Yang
- Jiangxi Provincial Health Commission Key Laboratory of Pathogenic Diagnosis and Genomics of Emerging Infectious Diseases, Nanchang Center for Disease Control and Prevention, Nanchang, China
| | - Yanxia Zhang
- Jiangxi Provincial Health Commission Key Laboratory of Pathogenic Diagnosis and Genomics of Emerging Infectious Diseases, Nanchang Center for Disease Control and Prevention, Nanchang, China
| | - Yanglin Zhang
- Clinical Laboratory, Third Hospital of Nanchang, Nanchang, China
| | - Wen Xia
- Jiangxi Provincial Health Commission Key Laboratory of Pathogenic Diagnosis and Genomics of Emerging Infectious Diseases, Nanchang Center for Disease Control and Prevention, Nanchang, China
| | - Xiansheng Ni
- Jiangxi Provincial Health Commission Key Laboratory of Pathogenic Diagnosis and Genomics of Emerging Infectious Diseases, Nanchang Center for Disease Control and Prevention, Nanchang, China
| | - Tielong Xu
- School of Life Science, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Fenglan He
- Jiangxi Provincial Health Commission Key Laboratory of Pathogenic Diagnosis and Genomics of Emerging Infectious Diseases, Nanchang Center for Disease Control and Prevention, Nanchang, China
| | - Hui Li
- Jiangxi Provincial Health Commission Key Laboratory of Pathogenic Diagnosis and Genomics of Emerging Infectious Diseases, Nanchang Center for Disease Control and Prevention, Nanchang, China
| |
Collapse
|
15
|
Wang Y, Ji W, Li D, Sun T, Zhu P, Li J, Zhang L, Zhang Y, Yang H, Chen S, Jin Y, Duan G. Active inoculation with an inactivated Coxsackievirus A2 vaccine induces neutralizing antibodies and protects mice against lethal infection. Vaccine 2023; 41:6470-6482. [PMID: 37718187 DOI: 10.1016/j.vaccine.2023.08.083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 08/29/2023] [Accepted: 08/29/2023] [Indexed: 09/19/2023]
Abstract
Coxsackievirus A2 (CVA2) is one of the causative agents of hand-foot-and-mouth disease (HFMD), which poses a great challenge for global public health. However, presently, there are no available commercial vaccines or antivirals to prevent CVA2 infection. Here, we present an inactivated Vero cell-based whole CVA2 vaccine candidate and evaluate its safety and efficacy in this study. Neonatal BALB/c mice were vaccinated at 5 and 7 days old, respectively, and then challenged with either homologous or heterologous strain of CVA2 at a lethal dose at 10 days old. The inactivated whole CVA2 vaccine candidate showed a high protective efficacy. Additionally, our inactivated vaccine stimulated the production of CVA2-specific IgG1 and IgG2a antibodies in vivo and high titers of neutralization antibodies (NtAbs) in the serum of immunized mice. Maternal immunization with the inactivated CVA2 vaccine provided full protection to pups against lethal infection. Compared with mice inoculated with only alum, the viral loads were decreased, and pathological changes were relieved in tissue samples of immunized mice. Moreover, the transcription levels of some genes related to cytokines (IFN-γ and TNF-α, MCP-1, IL-6, CXCL-10 etc.) were significantly reduced. The number of immune cells and levels of cytokines in peripheral blood of mice inoculated with only alum were higher than that of immunized mice. It is noteworthy that this vaccine showed a good cross-immunity efficacy against Enterovirus A71 (EVA71) challenge. In conclusion, our findings suggest that this experimental inactivated CVA2 vaccine is a promising component of polyvalent vaccines related to HFMD in the near future.
Collapse
Affiliation(s)
- Yuexia Wang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China; Academy of Medical Science, Zhengzhou University, Zhengzhou 450001, Henan, China; Department of Infectious Disease Control and Prevention, Jiangshan Center for Disease Control and Prevention, Jiangshan 324100, Zhejiang, China
| | - Wangquan Ji
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China; Academy of Medical Science, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Dong Li
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China; Academy of Medical Science, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Tiantian Sun
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China; Academy of Medical Science, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Peiyu Zhu
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China; Academy of Medical Science, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Junwei Li
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China; Department of Infectious Disease Control and Prevention, Jiangshan Center for Disease Control and Prevention, Jiangshan 324100, Zhejiang, China
| | - Liang Zhang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China; Academy of Medical Science, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Yu Zhang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Haiyan Yang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Shuaiyin Chen
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Yuefei Jin
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China.
| | - Guangcai Duan
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China; Academy of Medical Science, Zhengzhou University, Zhengzhou 450001, Henan, China.
| |
Collapse
|
16
|
Ibba R, Corona P, Nonne F, Caria P, Serreli G, Palmas V, Riu F, Sestito S, Nieddu M, Loddo R, Sanna G, Piras S, Carta A. Design, Synthesis, and Antiviral Activities of New Benzotriazole-Based Derivatives. Pharmaceuticals (Basel) 2023; 16:ph16030429. [PMID: 36986528 PMCID: PMC10054465 DOI: 10.3390/ph16030429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 03/16/2023] Open
Abstract
Several human diseases are caused by enteroviruses and are currently clinically untreatable, pushing the research to identify new antivirals. A notable number of benzo[d][1,2,3]triazol-1(2)-yl derivatives were designed, synthesized, and in vitro evaluated for cytotoxicity and antiviral activity against a wide spectrum of RNA positive- and negative-sense viruses. Five of them (11b, 18e, 41a, 43a, 99b) emerged for their selective antiviral activity against Coxsackievirus B5, a human enteroviruses member among the Picornaviridae family. The EC50 values ranged between 6 and 18.5 μM. Among all derivatives, compounds 18e and 43a were interestingly active against CVB5 and were selected to better define the safety profile on cell monolayers by transepithelial resistance test (TEER). Results indicated compound 18e as the hit compound to investigate the potential mechanism of action by apoptosis assay, virucidal activity test, and the time of addition assay. CVB5 is known to be cytotoxic by inducing apoptosis in infected cells; in this study, compound 18e was proved to protect cells from viral infection. Notably, cells were mostly protected when pre-treated with derivative 18e, which had, however, no virucidal activity. From the performed biological assays, compound 18e turned out to be non-cytotoxic as well as cell protective against CVB5 infection, with a mechanism of action ascribable to an interaction on the early phase of infection, by hijacking the viral attachment process.
Collapse
Affiliation(s)
- Roberta Ibba
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Via Muroni, 23/A, 07100 Sassari, Italy; (R.I.); (P.C.); (F.R.); (M.N.)
| | - Paola Corona
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Via Muroni, 23/A, 07100 Sassari, Italy; (R.I.); (P.C.); (F.R.); (M.N.)
| | - Francesca Nonne
- GSK Vaccine Institute for Global Health GSK, Via Fiorentina, 1, 53100 Siena, Italy;
| | - Paola Caria
- Department of Biomedical Sciences, Section of Microbiology and Virology, University of Cagliari, Cittadella Universitaria, 09042 Monserrato, Italy; (P.C.); (G.S.); (V.P.); (R.L.)
| | - Gabriele Serreli
- Department of Biomedical Sciences, Section of Microbiology and Virology, University of Cagliari, Cittadella Universitaria, 09042 Monserrato, Italy; (P.C.); (G.S.); (V.P.); (R.L.)
| | - Vanessa Palmas
- Department of Biomedical Sciences, Section of Microbiology and Virology, University of Cagliari, Cittadella Universitaria, 09042 Monserrato, Italy; (P.C.); (G.S.); (V.P.); (R.L.)
| | - Federico Riu
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Via Muroni, 23/A, 07100 Sassari, Italy; (R.I.); (P.C.); (F.R.); (M.N.)
- Department of Chemistry, Biomedicinskt Centrum, BMC, Uppsala University, Box 576, 75123 Uppsala, Sweden
| | - Simona Sestito
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, Via Vienna 2, 07100 Sassari, Italy;
| | - Maria Nieddu
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Via Muroni, 23/A, 07100 Sassari, Italy; (R.I.); (P.C.); (F.R.); (M.N.)
| | - Roberta Loddo
- Department of Biomedical Sciences, Section of Microbiology and Virology, University of Cagliari, Cittadella Universitaria, 09042 Monserrato, Italy; (P.C.); (G.S.); (V.P.); (R.L.)
| | - Giuseppina Sanna
- Department of Biomedical Sciences, Section of Microbiology and Virology, University of Cagliari, Cittadella Universitaria, 09042 Monserrato, Italy; (P.C.); (G.S.); (V.P.); (R.L.)
- Correspondence: (G.S.); (S.P.)
| | - Sandra Piras
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Via Muroni, 23/A, 07100 Sassari, Italy; (R.I.); (P.C.); (F.R.); (M.N.)
- Correspondence: (G.S.); (S.P.)
| | - Antonio Carta
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Via Muroni, 23/A, 07100 Sassari, Italy; (R.I.); (P.C.); (F.R.); (M.N.)
| |
Collapse
|
17
|
Sun T, Li D, Dai X, Meng C, Li Y, Cheng C, Ji W, Zhu P, Chen S, Yang H, Jin Y, Zhang W, Duan G. Local immune dysregulation and subsequent inflammatory response contribute to pulmonary edema caused by Enterovirus infection in mice. J Med Virol 2023; 95:e28454. [PMID: 36597906 DOI: 10.1002/jmv.28454] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/15/2022] [Accepted: 01/01/2023] [Indexed: 01/05/2023]
Abstract
Pulmonary edema that comes on suddenly is the leading cause of mortality in hand-foot-and-mouth disease (HFMD) patients; however, its pathogenesis is still largely unclear. A range of research suggest immunopathogenesis during the occurrence of pulmonary edema in severe HFMD patients. Herein, to investigate the potential mechanism of immune dysregulation in the development of pulmonary edema upon Enterovirus (EV) infection, we established mouse infection models for Enteroviruses (EVs) including Coxsackievirus (CV) A6, Enterovirus A71 (EVA71), and CVA2 exhibiting a high incidence of pulmonary edema. We found that EVs infection induced an immune system disorder by reducing the numbers of pulmonary and circulatory T cells, B cells, macrophages, and monocytes and increasing the numbers of lung neutrophils, myeloid-derived suppressor cells (MDSCs), and activated T cells. In addition, the concentrations of C-X-C motif chemokine ligand 1 (CXCL-1), tumor necrosis factor-alpha, monocyte chemoattractant protein-1, and interleukin 6 were increased in EV-infected lungs. Moreover, we found that EVs replication in mice lungs lead to apoptosis of lung cells and degradation of tight junction proteins. In conclusion, EVs infection likely triggered a complexed immune defense mechanism and caused dysregulation of innate immune cells (MDSCs, neutrophils, monocytes, and macrophages) and adaptive cellular immunity (B cells, T cells). This dysregulation increased the release of cytokines and other inflammatory factors from activated immune-related cells and caused lung barrier damage and pulmonary edema.
Collapse
Affiliation(s)
- Tiantian Sun
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Dong Li
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Xinchen Dai
- Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China
| | - Caiyun Meng
- Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China
| | - Yi Li
- Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China
| | - Cheng Cheng
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Wangquan Ji
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Peiyu Zhu
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Shuaiyin Chen
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Haiyan Yang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Yuefei Jin
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Weiguo Zhang
- Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China
| | - Guangcai Duan
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China.,Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
18
|
Shi Y, Chen P, Bai Y, Xu X, Liu Y. Seroprevalence of coxsackievirus A6 and enterovirus A71 infection in humans: a systematic review and meta-analysis. Arch Virol 2023; 168:37. [PMID: 36609748 PMCID: PMC9825098 DOI: 10.1007/s00705-022-05642-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 10/25/2022] [Indexed: 01/09/2023]
Abstract
Hand, foot, and mouth disease (HFMD) is a common infectious disease in children. Enterovirus A71 (EV-A71) is one of the main pathogens, and coxsackievirus A6 (CVA6) has gradually become the dominant pathogen of HFMD in recent years. This study was conducted mainly to assess the serological prevalence of EV-A71 and CVA6 antibodies in people of different ages, sexes, and regions through a systematic review and meta-analysis. A comprehensive study was performed based on the EV-A71 and CVA6 serological literature published before May 2022. Heterogeneity analysis (Cochrane's Q test and the I2 statistic) and random effect models were adopted. Subgroup and meta-regression analyses were used to identify potential sources of heterogeneity in the data, and all analysis was performed using STATA version 16.0. This study included 71 studies involving 55,176 people from 13 countries that met the inclusion criteria. The serological prevalence of EV-A71 antibody in different studies was 4.31-88.8%, and that of CVA6 antibody was 40.8-80.9%. Meta-analysis results showed that the serum positive rate for EV-A71 antibody was 45.9% (95% CI: 37.6-54.1%). The rate in the Chinese population was 47.8% (95% CI: 42.4-53.2%), and in the other countries, it was 38% (95% CI: 23-55%). The serum positive rate for CVA6 antibody was 58.3% (95% CI: 46.5-70.2%). The rate in the Chinese population was 49.1% (95% CI: 38.3-59.9%), and in the other countries, it was 68% (95% CI: 51-83%). Subgroup analysis was also conducted. The seroprevalence of EV-A71 and CVA6 antibodies is related to age rather than gender or region. The rates of EV-A71 and CVA6 seropositivity are considerably lower in children younger than five years of age. However, the rates gradually increase with age. The findings of this study suggest that children under five years of age may be susceptible to EV-A71 and CVA6. Thus, safety education and vaccination should be strengthened accordingly. This study provides a basis for understanding the risk factors for EV-A71 and CVA6 infection in China and for deciding how to formulate standard preventive measures to prevent the spread of the virus.
Collapse
Affiliation(s)
- Yingying Shi
- Department of Immunology, School of Medicine, Jianghan University, Wuhan, Hubei, China
| | - Peiqing Chen
- Department of Immunology, School of Medicine, Jianghan University, Wuhan, Hubei, China
| | - Yijing Bai
- Department of Immunology, School of Medicine, Jianghan University, Wuhan, Hubei, China
| | - Xuan Xu
- Department of Immunology, School of Medicine, Jianghan University, Wuhan, Hubei, China
| | - Yongjuan Liu
- Department of Central Laboratory, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, 222000, Jiangsu, China.
| |
Collapse
|
19
|
Cheng FF, Zhang BB, Cao ML, Zhang Q, Chen QH, Hui ZF, Tian JM, Yan WH. Clinical characteristics of 68 children with atypical hand, foot, and mouth disease caused by coxsackievirus A6: a single-center retrospective analysis. Transl Pediatr 2022; 11:1502-1509. [PMID: 36247893 PMCID: PMC9561509 DOI: 10.21037/tp-22-352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/26/2022] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Hand, foot, and mouth disease (HFMD) caused by coxsackievirus A6 (CV-A6) has become prevalent in many parts of the world. It is commonly referred to as atypical HFMD which more likely to present as bullous lesions. Compared with traditional HFMD, its misdiagnosis rate is relatively high, which brings difficulties to clinical diagnosis. We retrospectively analyze the clinical characteristics of children with HFMD with bullous lesions caused by CV-A6. METHODS The study included 68 children with atypical HFMD caused by CV-A6 who were hospitalized from 2018 to 2020. Data of the children including age, sex, month of HFMD onset, the morphologies and distribution of rashes, the details of fever, the presence or absence of onychomadesis, and laboratory test results were analyzed and compared between an infant group (<1 year), a toddler group (1-<3 years), and a preschool group (3-<6 years). RESULTS Of the 68 children, 67 were younger than 5 years old, with a male to female ratio of 1.62:1. The disease peaked in the period from June to September. With 75.0% of the infant group had more than three kinds of rashes; 95.0% of the preschool group had rashes in more than five locations. These differences were statistically significant (P<0.05). All children had fever. The peak fever in the toddler group was lower (P=0.033). No critical cases were observed in any of the groups. Of the 61 children who were successfully followed up, 68.9% developed onychomadesis within 2-3 weeks. The proportion of cases with abnormal liver function was 83.3%, 41.7%, and 10.0% in the infant, toddler, and preschool groups (P<0.001). The proportion of cases with increased serum creatine kinase MB isoenzyme (CK-MB) were significantly higher in the toddler group (P<0.05). CONCLUSIONS Atypical HFMD caused by CV-A6 infection usually occurred in children under 5 years old. The morphologies of the rashes in the infant group changed more, while the rashes in the preschool group was more widely distributed. The incidence of critical cases was low. More than half of the cases can develop onychomadesis in the recovery period. Organ damage was relatively mild in the preschool group.
Collapse
Affiliation(s)
- Fang-Fang Cheng
- Infectious Diseases Department, Children's Hospital of Soochow University, Suzhou, China
| | - Bing-Bing Zhang
- Neurology Department, Children's Hospital of Soochow University, Suzhou, China
| | - Meng-Lu Cao
- Infectious Diseases Department, Children's Hospital of Soochow University, Suzhou, China
| | - Qian Zhang
- Infectious Diseases Department, Children's Hospital of Soochow University, Suzhou, China
| | - Qing-Hui Chen
- Infectious Diseases Department, Children's Hospital of Soochow University, Suzhou, China
| | - Zhao-Fang Hui
- Infectious Diseases Department, Children's Hospital of Soochow University, Suzhou, China
| | - Jian-Mei Tian
- Infectious Diseases Department, Children's Hospital of Soochow University, Suzhou, China
| | - Wen-Hua Yan
- Cardiovascular Department, Children's Hospital of Soochow University, Suzhou, China
| |
Collapse
|
20
|
Li D, Sun T, Tao L, Ji W, Zhu P, Liang R, Zhang Y, Chen S, Yang H, Jin Y, Duan G. A Mouse-adapted CVA6 Strain Exhibits Neurotropism and Triggers Systemic Manifestations in a Novel Murine Model. Emerg Microbes Infect 2022; 11:2248-2263. [PMID: 36036059 PMCID: PMC9518251 DOI: 10.1080/22221751.2022.2119166] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
CVA6 is one of Enteroviruses causing worldwide epidemics of HFMD with neurological and systemic complications. A suitable animal model is necessary for studying the pathogenesis of CVA6 and evaluating antiviral and vaccine efficacy. In this study, we generated a mouse-adapted CVA6 strain that successfully infected 10-day-old ICR mice via oral route. All infected mice were paralyzed and died within 11 dpi. Analysis of pathological changes and virus loads in fourteen tissues showed that CVA6 triggered systematic damage similar to i.p. inoculation route. Unlike i.p. route, we detected oral and gastrointestinal lesions with the presence of viral antigens. Both specific anti-CVA6 serum and inactivated vaccines successfully generated immune protection in mice. Meanwhile, we also established a successful infection of CVA6 via i.p. and i.m. route in 10-day-old mice. After infection, mice developed remarkably neurological signs and systemic manifestations such as emaciation, polypnea, quadriplegia, depilation and even death. Through i.p. inoculation, pathological examination showed brain and spinal cord damage caused by the virus infection with neuronal reduction, apoptosis, astrocyte activation, and recruitment of neutrophils and monocytes. Following neurological manifestation, the CVA6 infection became systemic, and high viral loads were detected in multiple organs along with morphological changes and inflammation. Moreover, analysis of spleen cells by FACS indicated that CVA6 led to immune system activation, which further contributed to systemic inflammation. Taken together, our novel murine model of CVA6 provides a useful tool for studying the pathogenesis and evaluating antiviral and vaccine efficacy.
Collapse
Affiliation(s)
- Dong Li
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
- Henan Key Laboratory of Molecular Medicine, Zhengzhou University, Zhengzhou 450001, China
| | - Tiantian Sun
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Ling Tao
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China
| | - Wangquan Ji
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Peiyu Zhu
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Ruonan Liang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Yu Zhang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Shuaiyin Chen
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Haiyan Yang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Yuefei Jin
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Guangcai Duan
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
- Henan Key Laboratory of Molecular Medicine, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
21
|
Carmona RCC, Machado BC, Reis FC, Jorge AMV, Cilli A, Dias AMN, Morais DR, Leme L, Yu ALF, Silva MR, Carvalhanas TRMP, Timenetsky MCST. Hand, foot, and mouth disease outbreak by Coxsackievirus A6 during COVID-19 pandemic in 2021, São Paulo, Brazil. J Clin Virol 2022; 154:105245. [PMID: 35896051 PMCID: PMC9301960 DOI: 10.1016/j.jcv.2022.105245] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 07/08/2022] [Accepted: 07/20/2022] [Indexed: 12/02/2022]
Abstract
Introduction Hand, foot, and mouth disease (HFMD) is an acute febrile illness characterized by fever; sore throat; and vesicular eruptions on the hands, feet, and oral mucosa. Outbreaks of HFMD in children aged <5 years have been reported worldwide and the major causative agents are Coxsackievirus (CV)A16, enterovirus (EV)-A71 and recently CVA6. Aim and methods The aim of this study was to investigated a large outbreak of Hand, foot, and mouth disease during COVID-19 pandemic in 2021 from clinical samples of 315 suspected cases, in São Paulo State, Brazil. Diagnostic evaluation was performed by RT-qPCR, culture cell isolation and serological neutralization assay. EV-positive were genotyped by partial VP1 genome sequencing. Results One hundred and forty-nine cases analyzed were positive for enterovirus (47.3%; n = 149/315) by neutralizing test (n = 10 patients) and RT-qPCR (n = 139 patients), and identified as CVA6 sub-lineage D3 by analysis of VP1 partial sequences. Conclusions This finding indicated the reemergence of CVA6 in HFMD, soon after the gradual easing of non-pharmaceutical interventions during-pandemic COVID-19 and the relevance of continued surveillance of circulating enterovirus types in the post-COVID pandemic era.
Collapse
Affiliation(s)
- Rita C C Carmona
- Enteric Diseases Laboratory, Virology Center, Adolfo Lutz Institute, São Paulo, Brazil.
| | - Bráulio C Machado
- Enteric Diseases Laboratory, Virology Center, Adolfo Lutz Institute, São Paulo, Brazil
| | - Fabricio C Reis
- Enteric Diseases Laboratory, Virology Center, Adolfo Lutz Institute, São Paulo, Brazil
| | - Adriana M V Jorge
- Enteric Diseases Laboratory, Virology Center, Adolfo Lutz Institute, São Paulo, Brazil
| | - Audrey Cilli
- Enteric Diseases Laboratory, Virology Center, Adolfo Lutz Institute, São Paulo, Brazil
| | - Amanda M N Dias
- Enteric Diseases Laboratory, Virology Center, Adolfo Lutz Institute, São Paulo, Brazil
| | - Daniele R Morais
- Enteric Diseases Laboratory, Virology Center, Adolfo Lutz Institute, São Paulo, Brazil
| | - Lucas Leme
- Enteric Diseases Laboratory, Virology Center, Adolfo Lutz Institute, São Paulo, Brazil
| | - Ana L F Yu
- Divisão de Doenças de Transmissão Respiratoria, Centro de Vigilancia Epidemiológica "Prof. Alexandre Vranjac", Secretaria de Estado da Saúde de São Paulo, Brazil
| | - Marcela R Silva
- Divisão de Doenças de Transmissão Respiratoria, Centro de Vigilancia Epidemiológica "Prof. Alexandre Vranjac", Secretaria de Estado da Saúde de São Paulo, Brazil
| | - Telma R M P Carvalhanas
- Divisão de Doenças de Transmissão Respiratoria, Centro de Vigilancia Epidemiológica "Prof. Alexandre Vranjac", Secretaria de Estado da Saúde de São Paulo, Brazil
| | | |
Collapse
|