1
|
Nixon RA, Rubinsztein DC. Mechanisms of autophagy-lysosome dysfunction in neurodegenerative diseases. Nat Rev Mol Cell Biol 2024; 25:926-946. [PMID: 39107446 DOI: 10.1038/s41580-024-00757-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2024] [Indexed: 08/15/2024]
Abstract
Autophagy is a lysosome-based degradative process used to recycle obsolete cellular constituents and eliminate damaged organelles and aggregate-prone proteins. Their postmitotic nature and extremely polarized morphologies make neurons particularly vulnerable to disruptions caused by autophagy-lysosomal defects, especially as the brain ages. Consequently, mutations in genes regulating autophagy and lysosomal functions cause a wide range of neurodegenerative diseases. Here, we review the role of autophagy and lysosomes in neurodegenerative diseases such as Alzheimer disease, Parkinson disease and frontotemporal dementia. We also consider the strong impact of cellular ageing on lysosomes and autophagy as a tipping point for the late-age emergence of related neurodegenerative disorders. Many of these diseases have primary defects in autophagy, for example affecting autophagosome formation, and in lysosomal functions, especially pH regulation and calcium homeostasis. We have aimed to provide an integrative framework for understanding the central importance of autophagic-lysosomal function in neuronal health and disease.
Collapse
Affiliation(s)
- Ralph A Nixon
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, New York, NY, USA.
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, USA.
- Department of Cell Biology, New York University Grossman School of Medicine, New York, NY, USA.
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA.
| | - David C Rubinsztein
- Department of Medical Genetics, Cambridge Institute for Medical Research, Cambridge, UK
- UK Dementia Research Institute, University of Cambridge, Cambridge Institute for Medical Research, Cambridge, UK
| |
Collapse
|
2
|
Lei Q, Chen X, Xiong Y, Li S, Wang J, He H, Deng Y. Lysosomal Ca 2+ release-facilitated TFEB nuclear translocation alleviates ischemic brain injury by attenuating autophagic/lysosomal dysfunction in neurons. Sci Rep 2024; 14:24836. [PMID: 39438678 PMCID: PMC11496619 DOI: 10.1038/s41598-024-75802-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 10/08/2024] [Indexed: 10/25/2024] Open
Abstract
Neuronal death was frequently driven by autophagic/lysosomal dysfunction after ischemic stroke, whereas how to restore the impaired autophagic flux remained elusive. Autophagic/lysosomal signaling could be augmented after transcription factor EB (TFEB) nuclear translocation, which was facilitated by its dephosphorylation. A key TFEB dephosphorylase was calcineurin (CaN), whose activity was drastically regulated by cytosolic calcium ion concentration ([Ca2+]) controlled by lysosomal Ca2+ channel-like protein of TRPML1. Our research shows that ML-SA1, an agonist of the TRPML1 channel, significantly enhanced the lysosomal Ca2+ release and the CaN expression in penumbric neurons, subsequently promoted TFEB nuclear translocation, and greatly reversed autophagy/lysosome dysfunction. Moreover, ML-SA1 treatment significantly reduced neuronal loss, infarct size, and neurological deficits. By contrast, ML-SI3, an inhibitor of TRPML1, inhibited the lysosomal Ca2+ release conversely, aggravated the impairment of autophagic flux and consequentially exacerbated brain stroke lesion. These studies suggest that TRPML1 elevation alleviates ischemic brain injury by restoring autophagic/lysosomal dysfunction via Lysosomal Ca2+ release-facilitated TFEB nuclear translocation in neurons.
Collapse
Affiliation(s)
- Qian Lei
- School of Basic Medical Sciences, Kunming University of Science and Technology, Kunming, 650500, China
| | - Xuemei Chen
- School of Basic Medical Sciences, Kunming University of Science and Technology, Kunming, 650500, China
| | - Yajie Xiong
- School of Basic Medical Sciences, Kunming University of Science and Technology, Kunming, 650500, China
| | - Shangdan Li
- School of Basic Medical Sciences, Kunming University of Science and Technology, Kunming, 650500, China
| | - Jiaqian Wang
- School of Basic Medical Sciences, Kunming University of Science and Technology, Kunming, 650500, China
| | - Hongyun He
- School of Basic Medical Sciences, Kunming University of Science and Technology, Kunming, 650500, China.
- Anning First People's Hospital, Kunming University of Science and Technology, Kunming, 650500, China.
| | - Yihao Deng
- School of Basic Medical Sciences, Kunming University of Science and Technology, Kunming, 650500, China.
| |
Collapse
|
3
|
Afghah Z, Khan N, Datta G, Halcrow PW, Geiger JD, Chen X. Involvement of Endolysosomes and Aurora Kinase A in the Regulation of Amyloid β Protein Levels in Neurons. Int J Mol Sci 2024; 25:6200. [PMID: 38892390 PMCID: PMC11172969 DOI: 10.3390/ijms25116200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/28/2024] [Accepted: 06/01/2024] [Indexed: 06/21/2024] Open
Abstract
Aurora kinase A (AURKA) is a serine/threonine-protein kinase that regulates microtubule organization during neuron migration and neurite formation. Decreased activity of AURKA was found in Alzheimer's disease (AD) brain samples, but little is known about the role of AURKA in AD pathogenesis. Here, we demonstrate that AURKA is expressed in primary cultured rat neurons, neurons from adult mouse brains, and neurons in postmortem human AD brains. AURKA phosphorylation, which positively correlates with its activity, is reduced in human AD brains. In SH-SY5Y cells, pharmacological activation of AURKA increased AURKA phosphorylation, acidified endolysosomes, decreased the activity of amyloid beta protein (Aβ) generating enzyme β-site amyloid precursor protein cleaving enzyme (BACE-1), increased the activity of the Aβ degrading enzyme cathepsin D, and decreased the intracellular and secreted levels of Aβ. Conversely, pharmacological inhibition of AURKA decreased AURKA phosphorylation, de-acidified endolysosomes, decreased the activity of cathepsin D, and increased intracellular and secreted levels of Aβ. Thus, reduced AURKA activity in AD may contribute to the development of intraneuronal accumulations of Aβ and extracellular amyloid plaque formation.
Collapse
Affiliation(s)
| | | | | | | | | | - Xuesong Chen
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58203, USA; (Z.A.); (N.K.); (G.D.); (P.W.H.); (J.D.G.)
| |
Collapse
|
4
|
Jeong J, Kim OH, Shim J, Keum S, Hwang YE, Song S, Kim JW, Choi JH, Lee HJ, Rhee S. Microtubule acetylation induced by oxidative stress regulates subcellular distribution of lysosomal vesicles for amyloid-beta secretion. J Cell Physiol 2023; 238:2812-2826. [PMID: 37801327 DOI: 10.1002/jcp.31131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 09/04/2023] [Accepted: 09/19/2023] [Indexed: 10/07/2023]
Abstract
Excessive production and accumulation of amyloid-beta (Aβ) in the brain are one of the hallmarks of Alzheimer's disease (AD). Although oxidative stress is known to trigger and promote the progression of AD, the molecular relationship between oxidative stress and Aβ production is not yet fully understood. In this study, we demonstrate that microtubule acetylation induced by oxidative stress plays a critical role in Aβ production and secretion by altering the subcellular distribution of Aβ precursor protein (APP)-containing lysosomal vesicles. Under oxidative stress, both H4-APPSwe/Ind and HEK293T-APPSwe/Ind cell lines showed increased microtubule acetylation and Aβ secretion. Knockdown (KD) of alpha-tubulin N-acetyltransferase 1 (ATAT1) by using a lentiviral shRNA not only inhibited the generation of intermediate APP fragments, such as β-CTF and AICD, but also suppressed Aβ secretion. Oxidative stress promoted the dispersion of LAMP1-positive vesicles to the periphery of the cell through microtubule acetylation, leading to the formation of neutralized lysosomal vesicles (NLVs), which was inhibited by ATAT1 KD. Treatment of the cells with the dynein ATPase inhibitor EHNA or downregulation of LIS1, a regulator of dynein-mediated intracellular transport, increased the peripheral localization of NLVs and promoted Aβ secretion, whereas KD of ADP ribosylation factor like GTPase 8B showed the opposite result. ATAT1 KD in the hippocampal region of the 5×FAD AD mouse model also showed significant reductions in Aβ plaque accumulation and memory loss. Taken together, these findings suggest that oxidative stress-induced microtubule acetylation promotes the peripheral localization of lysosomal vesicles to form NLVs, thereby enhancing Aβ secretion.
Collapse
Affiliation(s)
- Jangho Jeong
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Ok-Hyeon Kim
- Department of Anatomy and Cell Biology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Jaeyeoung Shim
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Seula Keum
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Ye Eun Hwang
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Seongeun Song
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Jung-Woong Kim
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Jee-Hye Choi
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Hyun Jung Lee
- Department of Anatomy and Cell Biology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, Republic of Korea
| | - Sangmyung Rhee
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| |
Collapse
|
5
|
Tan JX, Finkel T. Lysosomes in senescence and aging. EMBO Rep 2023; 24:e57265. [PMID: 37811693 PMCID: PMC10626421 DOI: 10.15252/embr.202357265] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/08/2023] [Accepted: 09/21/2023] [Indexed: 10/10/2023] Open
Abstract
Dysfunction of lysosomes, the primary hydrolytic organelles in animal cells, is frequently associated with aging and age-related diseases. At the cellular level, lysosomal dysfunction is strongly linked to cellular senescence or the induction of cell death pathways. However, the precise mechanisms by which lysosomal dysfunction participates in these various cellular or organismal phenotypes have remained elusive. The ability of lysosomes to degrade diverse macromolecules including damaged proteins and organelles puts lysosomes at the center of multiple cellular stress responses. Lysosomal activity is tightly regulated by many coordinated cellular processes including pathways that function inside and outside of the organelle. Here, we collectively classify these coordinated pathways as the lysosomal processing and adaptation system (LYPAS). We review evidence that the LYPAS is upregulated by diverse cellular stresses, its adaptability regulates senescence and cell death decisions, and it can form the basis for therapeutic manipulation for a wide range of age-related diseases and potentially for aging itself.
Collapse
Affiliation(s)
- Jay Xiaojun Tan
- Aging InstituteUniversity of Pittsburgh School of Medicine/University of Pittsburgh Medical CenterPittsburghPAUSA
- Department of Cell BiologyUniversity of Pittsburgh School of MedicinePittsburghPAUSA
| | - Toren Finkel
- Aging InstituteUniversity of Pittsburgh School of Medicine/University of Pittsburgh Medical CenterPittsburghPAUSA
- Department of MedicineUniversity of Pittsburgh School of MedicinePittsburghPAUSA
| |
Collapse
|
6
|
Huang LY, Ou YN, Yang YX, Wang ZT, Tan L, Yu JT. Associations of cardiovascular risk factors and lifestyle behaviors with neurodegenerative disease: a Mendelian randomization study. Transl Psychiatry 2023; 13:267. [PMID: 37488110 PMCID: PMC10366095 DOI: 10.1038/s41398-023-02553-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/26/2023] Open
Abstract
Previous observational studies reported that midlife clustering of cardiovascular risk factors and lifestyle behaviors were associated with neurodegenerative disease; however, these findings might be biased by confounding and reverse causality. This study aimed to investigate the causal associations of cardiovascular risk factors and lifestyle behaviors with neurodegenerative disease, using the two-sample Mendelian randomization design. Genetic variants for the modifiable risk factors and neurodegenerative disease were extracted from large-scale genome-wide association studies. The inverse-variance weighted method was used as the main analysis method, and MR-Egger regression and leave-one-out analyses were performed to identify potential violations. Genetically predicted diastolic blood pressure (DBP: OR per 1 mmHg, 0.990 [0.979-1.000]), body mass index (BMI: OR per 1 SD, 0.880 [0.825-0.939]), and educational level (OR per 1 SD, 0.698 [0.602-0.810]) were associated with lower risk of late-onset Alzheimer's disease (LOAD), while genetically predicted low-density lipoprotein (LDL: OR per 1 SD, 1.302 [1.066-1.590]) might increase LOAD risk. Genetically predicted exposures (including LDL and BMI) applied to familial AD showed the same effect. The association of LDL was also found with Amyotrophic lateral sclerosis (ALS) (LDL: OR per 1 SD, 1.180 [1.080-1.289]). This MR analysis showed that LDL, BMI, BP, and educational level were causally related to AD; a significant association between LDL and ALS risk, as well as the potential effect of sleep duration on PD risk, were also revealed. Targeting these modifiable factors was a promising strategy of neurodegenerative disease prevention.
Collapse
Affiliation(s)
- Liang-Yu Huang
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Ya-Nan Ou
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Yu-Xiang Yang
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontier Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zuo-Teng Wang
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China.
| | - Jin-Tai Yu
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontier Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
7
|
Somogyi A, Kirkham ED, Lloyd-Evans E, Winston J, Allen ND, Mackrill JJ, Anderson KE, Hawkins PT, Gardiner SE, Waller-Evans H, Sims R, Boland B, O'Neill C. The synthetic TRPML1 agonist ML-SA1 rescues Alzheimer-related alterations of the endosomal-autophagic-lysosomal system. J Cell Sci 2023; 136:jcs259875. [PMID: 36825945 PMCID: PMC10112969 DOI: 10.1242/jcs.259875] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 02/13/2023] [Indexed: 02/25/2023] Open
Abstract
Abnormalities in the endosomal-autophagic-lysosomal (EAL) system are an early event in Alzheimer's disease (AD) pathogenesis. However, the mechanisms underlying these abnormalities are unclear. The transient receptor potential channel mucolipin 1(TRPML1, also known as MCOLN1), a vital endosomal-lysosomal Ca2+ channel whose loss of function leads to neurodegeneration, has not been investigated with respect to EAL pathogenesis in late-onset AD (LOAD). Here, we identify pathological hallmarks of TRPML1 dysregulation in LOAD neurons, including increased perinuclear clustering and vacuolation of endolysosomes. We reveal that induced pluripotent stem cell (iPSC)-derived human cortical neurons expressing APOE ε4, the strongest genetic risk factor for LOAD, have significantly diminished TRPML1-induced endolysosomal Ca2+ release. Furthermore, we found that blocking TRPML1 function in primary neurons by depleting the TRPML1 agonist PI(3,5)P2 via PIKfyve inhibition, recreated multiple features of EAL neuropathology evident in LOAD. This included increased endolysosomal Ca2+ content, enlargement and perinuclear clustering of endolysosomes, autophagic vesicle accumulation and early endosomal enlargement. Strikingly, these AD-like neuronal EAL defects were rescued by TRPML1 reactivation using its synthetic agonist ML-SA1. These findings implicate defects in TRPML1 in LOAD EAL pathogenesis and present TRPML1 as a potential therapeutic target.
Collapse
Affiliation(s)
- Aleksandra Somogyi
- School of Biochemistry and Cell Biology, BioSciences Institute, University College Cork, T12 YT20 Cork, Ireland
- Department of Pharmacology and Therapeutics, Western Gateway Building, University College Cork, T12 XF62 Cork, Ireland
- Cork Neuroscience Centre (CNSC), University College Cork, T12 YT20 Cork, Ireland
| | - Emily D Kirkham
- School of Biosciences, Sir Martin Evans building, Cardiff University, CF10 3AX Cardiff, UK
| | - Emyr Lloyd-Evans
- School of Biosciences, Sir Martin Evans building, Cardiff University, CF10 3AX Cardiff, UK
| | - Jincy Winston
- UK Dementia Research Institute, Hadyn Ellis Building, Cardiff University, CF24 4HQ Cardiff, UK
| | - Nicholas D Allen
- School of Biosciences, Sir Martin Evans building, Cardiff University, CF10 3AX Cardiff, UK
| | - John J Mackrill
- Department of Physiology, School of Medicine, University College Cork, T12 YT20 Cork, Ireland
| | - Karen E Anderson
- The Babraham Institute, Babraham Research Campus, CB22 3AT Cambridge, UK
| | - Phillip T Hawkins
- The Babraham Institute, Babraham Research Campus, CB22 3AT Cambridge, UK
| | - Sian E Gardiner
- Medicines Discovery Institute, Main Building, Cardiff University, CF10 3AT Cardiff, UK
| | - Helen Waller-Evans
- Medicines Discovery Institute, Main Building, Cardiff University, CF10 3AT Cardiff, UK
| | - Rebecca Sims
- Division of Psychological Medicine and Clinical Neuroscience, Cardiff University, C14 4XN Cardiff, UK
| | - Barry Boland
- Department of Pharmacology and Therapeutics, Western Gateway Building, University College Cork, T12 XF62 Cork, Ireland
- Cork Neuroscience Centre (CNSC), University College Cork, T12 YT20 Cork, Ireland
| | - Cora O'Neill
- School of Biochemistry and Cell Biology, BioSciences Institute, University College Cork, T12 YT20 Cork, Ireland
- Cork Neuroscience Centre (CNSC), University College Cork, T12 YT20 Cork, Ireland
| |
Collapse
|
8
|
Yuan S, Jiang SC, Zhang ZW, Fu YF, Yang XY, Li ZL, Hu J. Rethinking of Alzheimer's disease: Lysosomal overloading and dietary therapy. Front Aging Neurosci 2023; 15:1130658. [PMID: 36861123 PMCID: PMC9968973 DOI: 10.3389/fnagi.2023.1130658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 01/30/2023] [Indexed: 02/15/2023] Open
Affiliation(s)
- Shu Yuan
- College of Resources, Sichuan Agricultural University, Chengdu, China,*Correspondence: Shu Yuan ✉
| | - Si-Cong Jiang
- Haisco Pharmaceutical Group Comp. Ltd., Chengdu, China
| | - Zhong-Wei Zhang
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Yu-Fan Fu
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Xin-Yue Yang
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Zi-Lin Li
- Department of Cardiovascular Surgery, Xijing Hospital, Medical University of the Air Force, Xi'an, China
| | - Jing Hu
- School of Medicine, Northwest University, Xi'an, China
| |
Collapse
|
9
|
Abstract
Lysosomes are acidic membrane-bound organelles that use hydrolytic enzymes to break down material through pathways such as endocytosis, phagocytosis, mitophagy, and autophagy. To function properly, intralysosomal environments are strictly controlled by a set of integral membrane proteins such as ion channels and transporters. Potassium ion (K+) channels are a large and diverse family of membrane proteins that control K+ flux across both the plasma membrane and intracellular membranes. In the plasma membrane, they are essential in both excitable and non-excitable cells for the control of membrane potential and cell signaling. However, our understanding of intracellular K+ channels is very limited. In this review, we summarize the recent development in studies of K+ channels in the lysosome. We focus on their characterization, potential roles in maintaining lysosomal membrane potential and lysosomal function, and pathological implications.
Collapse
Affiliation(s)
- Peng Huang
- Collaborative Innovation Center for Biomedicine, School of Clinical Medicine, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Mengnan Xu
- Department of Physiology and Biophysics, Dalhousie University, Sir Charles Tupper Medical Building, Halifax, NS, Canada
| | - Yi Wu
- Collaborative Innovation Center for Biomedicine, School of Clinical Medicine, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Alia Kazim Rizvi Syeda
- Department of Physiology and Biophysics, Dalhousie University, Sir Charles Tupper Medical Building, Halifax, NS, Canada
| | - Xian-Ping Dong
- Department of Physiology and Biophysics, Dalhousie University, Sir Charles Tupper Medical Building, Halifax, NS, Canada.
| |
Collapse
|
10
|
Lie PPY, Yoo L, Goulbourne CN, Berg MJ, Stavrides P, Huo C, Lee JH, Nixon RA. Axonal transport of late endosomes and amphisomes is selectively modulated by local Ca 2+ efflux and disrupted by PSEN1 loss of function. SCIENCE ADVANCES 2022; 8:eabj5716. [PMID: 35486730 PMCID: PMC9054012 DOI: 10.1126/sciadv.abj5716] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Dysfunction and mistrafficking of organelles in autophagy- and endosomal-lysosomal pathways are implicated in neurodegenerative diseases. Here, we reveal selective vulnerability of maturing degradative organelles (late endosomes/amphisomes) to disease-relevant local calcium dysregulation. These organelles undergo exclusive retrograde transport in axons, with occasional pauses triggered by regulated calcium efflux from agonist-evoked transient receptor potential cation channel mucolipin subfamily member 1 (TRPML1) channels-an effect greatly exaggerated by exogenous agonist mucolipin synthetic agonist 1 (ML-SA1). Deacidification of degradative organelles, as seen after Presenilin 1 (PSEN1) loss of function, induced pathological constitutive "inside-out" TRPML1 hyperactivation, slowing their transport comparably to ML-SA1 and causing accumulation in dystrophic axons. The mechanism involved calcium-mediated c-Jun N-terminal kinase (JNK) activation, which hyperphosphorylated dynein intermediate chain (DIC), reducing dynein activity. Blocking TRPML1 activation, JNK activity, or DIC1B serine-80 phosphorylation reversed transport deficits in PSEN1 knockout neurons. Our results, including features demonstrated in Alzheimer-mutant PSEN1 knockin mice, define a mechanism linking dysfunction and mistrafficking in lysosomal pathways to neuritic dystrophy under neurodegenerative conditions.
Collapse
Affiliation(s)
- Pearl P. Y. Lie
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, NY 10962, USA
- Department of Psychiatry, New York University Langone Medical Center, New York, NY 10016, USA
| | - Lang Yoo
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, NY 10962, USA
- Department of Psychiatry, New York University Langone Medical Center, New York, NY 10016, USA
| | - Chris N. Goulbourne
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, NY 10962, USA
| | - Martin J. Berg
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, NY 10962, USA
| | - Philip Stavrides
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, NY 10962, USA
| | - Chunfeng Huo
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, NY 10962, USA
| | - Ju-Hyun Lee
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, NY 10962, USA
- Department of Psychiatry, New York University Langone Medical Center, New York, NY 10016, USA
| | - Ralph A. Nixon
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, NY 10962, USA
- Department of Psychiatry, New York University Langone Medical Center, New York, NY 10016, USA
- Department of Cell Biology, New York University Langone Medical Center, New York, NY 10016, USA
- NYU Neuroscience Institute, New York University Langone Medical Center, New York, NY 10016, USA
- Corresponding author.
| |
Collapse
|
11
|
Zhang W, Bai J, Hang K, Xu J, Zhou C, Li L, Wang Z, Wang Y, Wang K, Xue D. Role of Lysosomal Acidification Dysfunction in Mesenchymal Stem Cell Senescence. Front Cell Dev Biol 2022; 10:817877. [PMID: 35198560 PMCID: PMC8858834 DOI: 10.3389/fcell.2022.817877] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/14/2022] [Indexed: 12/11/2022] Open
Abstract
Mesenchymal stem cell (MSC) transplantation has been widely used as a potential treatment for a variety of diseases. However, the contradiction between the low survival rate of transplanted cells and the beneficial therapeutic effects has affected its clinical use. Lysosomes as organelles at the center of cellular recycling and metabolic signaling, play essential roles in MSC homeostasis. In the first part of this review, we summarize the role of lysosomal acidification dysfunction in MSC senescence. In the second part, we summarize some of the potential strategies targeting lysosomal proteins to enhance the therapeutic effect of MSCs.
Collapse
Affiliation(s)
- Weijun Zhang
- Department of Orthopaedics, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Institute of Orthopaedics, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jinwu Bai
- Department of Orthopaedics, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Institute of Orthopaedics, School of Medicine, Zhejiang University, Hangzhou, China
| | - Kai Hang
- Department of Orthopaedics, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Institute of Orthopaedics, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jianxiang Xu
- Department of Orthopaedics, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Institute of Orthopaedics, School of Medicine, Zhejiang University, Hangzhou, China
| | - Chengwei Zhou
- Department of Orthopaedics, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Institute of Orthopaedics, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lijun Li
- Department of Orthopaedics, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Institute of Orthopaedics, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhongxiang Wang
- Department of Orthopaedics, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Institute of Orthopaedics, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yibo Wang
- Department of Orthopaedics, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Institute of Orthopaedics, School of Medicine, Zhejiang University, Hangzhou, China
| | - Kanbin Wang
- Department of Orthopaedics, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Institute of Orthopaedics, School of Medicine, Zhejiang University, Hangzhou, China
| | - Deting Xue
- Department of Orthopaedics, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Institute of Orthopaedics, School of Medicine, Zhejiang University, Hangzhou, China
- *Correspondence: Deting Xue,
| |
Collapse
|
12
|
Interaction between TRPML1 and p62 in Regulating Autophagosome-Lysosome Fusion and Impeding Neuroaxonal Dystrophy in Alzheimer’s Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8096009. [PMID: 35116093 PMCID: PMC8807035 DOI: 10.1155/2022/8096009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 11/23/2022]
Abstract
The loss of transient receptor potential mucolipin 1 (TRPML1), an endosomal and lysosomal Ca2+-releasing channel, has been implicated in neurodegenerative disorders. Mounting evidence have shown that TRPML1 could clear intraneuronal amyloid-β (Aβ), which triggers a hypothesis that TRPML1 activation may be beneficial for axonal transport in Alzheimer's disease (AD). In this work, the functional roles of TRPML1 were studied in the APP/PS1 transgenic mice and Aβ1-42-stimulated hippocampal neurons HT22. We found that lentivirus-mediated overexpression of TRPML1 was shown to promote an accumulation of autolysosomes and increase brain-derived neurotrophic factor (BDNF) transportation to the nucleus, suggesting an axon-protective function. More importantly, we found that TRPML1 also increased p62 that interacted with dynein. Lentivirus-mediated knockdown of p62 or inhibition of dynein by ciliobrevin D stimulation was found to reduce autolysosome formation and nuclear accumulation of BDNF in HT22 cells with Aβ1-42 stimulation. Inhibition of p62 by XRK3F2 stimulation was observed to promote the death of hippocampal neurons of the APP/PS1 transgenic mice. TRPML1 recruited dynein by interacting with p62 to promote the autophagosome-lysosome fusion to mediate BDNF nuclear translocation to impede axon dystrophy in mice with Alzheimer-like phenotypes. In summary, these results demonstrate the presence of a TRPML1/p62/dynein regulatory network in AD, and activation of TRPML1 is required for axon protection to prevent neuroaxonal dystrophy.
Collapse
|
13
|
Wu Y, Xu M, Wang P, Syeda AKR, Huang P, Dong XP. Lysosomal potassium channels. Cell Calcium 2022; 102:102536. [PMID: 35016151 DOI: 10.1016/j.ceca.2022.102536] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 12/21/2022]
Abstract
The lysosome is an important membrane-bound acidic organelle that is regarded as the degradative center as well as multifunctional signaling hub. It digests unwanted macromolecules, damaged organelles, microbes, and other materials derived from endocytosis, autophagy, and phagocytosis. To function properly, the ionic homeostasis and membrane potential of the lysosome are strictly regulated by transporters and ion channels. As the most abundant cation inside the cell, potassium ions (K+) are vital for lysosomal membrane potential and lysosomal calcium (Ca2+) signaling. However, our understanding about how lysosomal K+homeostasis is regulated and what are the functions of K+in the lysosome is very limited. Currently, two lysosomal K+channels have been identified: large-conductance Ca2+-activated K+channel (BK) and transmembrane Protein 175 (TMEM175). In this review, we summarize recent development in our understanding of K+ homeostasis and K+channels in the lysosome. We hope to guide the readers into a more in-depth discussion of lysosomal K+ channels in lysosomal physiology and human diseases.
Collapse
Affiliation(s)
- Yi Wu
- Collaborative Innovation Center for Biomedicine, Shanghai University of Medicine and Health Sciences, 279 Zhouzhu Rd, Shanghai 201318, China; School of Pharmacy, Shanghai University of Medicine and Health Sciences, 279 Zhouzhu Rd, Shanghai 201318, China
| | - Mengnan Xu
- Department of Physiology and Biophysics, Dalhousie University, Sir Charles Tupper Medical Building, 5850 College Street, Halifax, Nova NS B3H 4R2, Canada
| | - Pingping Wang
- Department of Physiology and Biophysics, Dalhousie University, Sir Charles Tupper Medical Building, 5850 College Street, Halifax, Nova NS B3H 4R2, Canada
| | - Alia Kazim Rizvi Syeda
- Department of Physiology and Biophysics, Dalhousie University, Sir Charles Tupper Medical Building, 5850 College Street, Halifax, Nova NS B3H 4R2, Canada
| | - Peng Huang
- Collaborative Innovation Center for Biomedicine, Shanghai University of Medicine and Health Sciences, 279 Zhouzhu Rd, Shanghai 201318, China; School of Clinical Medicine, Shanghai University of Medicine and Health Sciences, 279 Zhouzhu Rd, Shanghai 201318, China.
| | - Xian-Ping Dong
- Department of Physiology and Biophysics, Dalhousie University, Sir Charles Tupper Medical Building, 5850 College Street, Halifax, Nova NS B3H 4R2, Canada.
| |
Collapse
|
14
|
Petese A, Cesaroni V, Cerri S, Blandini F. Are Lysosomes Potential Therapeutic Targets for Parkinson's Disease? CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2022; 21:642-655. [PMID: 34370650 DOI: 10.2174/1871527320666210809123630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 05/16/2021] [Accepted: 06/10/2021] [Indexed: 06/13/2023]
Abstract
Parkinson´s Disease (PD) is the second most common neurodegenerative disorder, affecting ~2-3% of the population over 65 years old. In addition to progressive degeneration of nigrostriatal neurons, the histopathological feature of PD is the accumulation of misfolded α-synuclein protein in abnormal cytoplasmatic inclusions, known as Lewy Bodies (LBs). Recently, Genome-Wide Association Studies (GWAS) have indicated a clear association of variants within several lysosomal genes with risk for PD. Newly evolving data have been shedding light on the relationship between lysosomal dysfunction and alpha-synuclein aggregation. Defects in lysosomal enzymes could lead to the insufficient clearance of neurotoxic protein materials, possibly leading to selective degeneration of dopaminergic neurons. Specific modulation of lysosomal pathways and their components could be considered a novel opportunity for therapeutic intervention for PD. The purpose of this review is to illustrate lysosomal biology and describe the role of lysosomal dysfunction in PD pathogenesis. Finally, the most promising novel therapeutic approaches designed to modulate lysosomal activity, as a potential disease-modifying treatment for PD will be highlighted.
Collapse
Affiliation(s)
- Alessandro Petese
- Cellular and Molecular Neurobiology Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Valentina Cesaroni
- Cellular and Molecular Neurobiology Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Silvia Cerri
- Cellular and Molecular Neurobiology Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Fabio Blandini
- Cellular and Molecular Neurobiology Unit, IRCCS Mondino Foundation, Pavia, Italy
- Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|
15
|
Chen X, Geiger JD. Janus sword actions of chloroquine and hydroxychloroquine against COVID-19. Cell Signal 2020; 73:109706. [PMID: 32629149 PMCID: PMC7333634 DOI: 10.1016/j.cellsig.2020.109706] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/26/2020] [Accepted: 06/29/2020] [Indexed: 02/06/2023]
Abstract
Chloroquine (CQ) and its analogue hydroxychloroquine (HCQ) have been thrust into our everyday vernacular because some believe, based on very limited basic and clinical data, that they might be helpful in preventing and/or lessening the severity of the pandemic coronavirus disease 2019 (COVID-19). However, lacking is a temperance in enthusiasm for their possible use as well as sufficient perspective on their effects and side-effects. CQ and HCQ have well-known properties of being diprotic weak bases that preferentially accumulate in acidic organelles (endolysosomes and Golgi apparatus) and neutralize luminal pH of acidic organelles. These primary actions of CQ and HCQ are responsible for their anti-malarial effects; malaria parasites rely on acidic digestive vacuoles for survival. Similarly, de-acidification of endolysosomes and Golgi by CQ and HCQ may block severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) integration into host cells because SARS-CoV-2 may require an acidic environment for its entry and for its ability to bud and infect bystander cells. Further, de-acidification of endolysosomes and Golgi may underly the immunosuppressive effects of these two drugs. However, modern cell biology studies have shown clearly that de-acidification results in profound changes in the structure, function and cellular positioning of endolysosomes and Golgi, in signaling between these organelles and other subcellular organelles, and in fundamental cellular functions. Thus, studying the possible therapeutic effects of CQ and HCQ against COVID-19 must occur concurrent with studies of the extent to which these drugs affect organellar and cell biology. When comprehensively examined, a better understanding of the Janus sword actions of these and other drugs might yield better decisions and better outcomes.
Collapse
Affiliation(s)
- Xuesong Chen
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota, United States of America.
| | - Jonathan D Geiger
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota, United States of America
| |
Collapse
|
16
|
Santoni G, Maggi F, Amantini C, Marinelli O, Nabissi M, Morelli MB. Pathophysiological Role of Transient Receptor Potential Mucolipin Channel 1 in Calcium-Mediated Stress-Induced Neurodegenerative Diseases. Front Physiol 2020; 11:251. [PMID: 32265740 PMCID: PMC7105868 DOI: 10.3389/fphys.2020.00251] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 03/05/2020] [Indexed: 12/15/2022] Open
Abstract
Mucolipins (TRPML) are endosome/lysosome Ca2+ permeable channels belonging to the family of transient receptor potential channels. In mammals, there are three TRPML proteins, TRPML1, 2, and 3, encoded by MCOLN1-3 genes. Among these channels, TRPML1 is a reactive oxygen species sensor localized on the lysosomal membrane that is able to control intracellular oxidative stress due to the activation of the autophagic process. Moreover, genetic or pharmacological inhibition of the TRPML1 channel stimulates oxidative stress signaling pathways. Experimental data suggest that elevated levels of reactive species play a role in several neurological disorders. There is a need to gain better understanding of the molecular mechanisms behind these neurodegenerative diseases, considering that the main sources of free radicals are mitochondria, that mitochondria/endoplasmic reticulum and lysosomes are coupled, and that growing evidence links neurodegenerative diseases to the gain or loss of function of proteins related to lysosome homeostasis. This review examines the significant roles played by the TRPML1 channel in the alterations of calcium signaling responsible for stress-mediated neurodegenerative disorders and its potential as a new therapeutic target for ameliorating neurodegeneration in our ever-aging population.
Collapse
Affiliation(s)
- Giorgio Santoni
- Immunopathology Laboratory, School of Pharmacy, University of Camerino, Camerino, Italy
| | - Federica Maggi
- Immunopathology Laboratory, School of Pharmacy, University of Camerino, Camerino, Italy.,Department of Molecular Medicine, Sapienza University, Rome, Italy
| | - Consuelo Amantini
- Immunopathology Laboratory, School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Oliviero Marinelli
- Immunopathology Laboratory, School of Pharmacy, University of Camerino, Camerino, Italy.,Immunopathology Laboratory, School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Massimo Nabissi
- Immunopathology Laboratory, School of Pharmacy, University of Camerino, Camerino, Italy
| | - Maria Beatrice Morelli
- Immunopathology Laboratory, School of Pharmacy, University of Camerino, Camerino, Italy.,Immunopathology Laboratory, School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| |
Collapse
|
17
|
Afghah Z, Chen X, Geiger JD. Role of endolysosomes and inter-organellar signaling in brain disease. Neurobiol Dis 2020; 134:104670. [PMID: 31707116 PMCID: PMC7184921 DOI: 10.1016/j.nbd.2019.104670] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 10/14/2019] [Accepted: 11/05/2019] [Indexed: 12/29/2022] Open
Abstract
Endosomes and lysosomes (endolysosomes) are membrane bounded organelles that play a key role in cell survival and cell death. These acidic intracellular organelles are the principal sites for intracellular hydrolytic activity required for the maintenance of cellular homeostasis. Endolysosomes are involved in the degradation of plasma membrane components, extracellular macromolecules as well as intracellular macromolecules and cellular fragments. Understanding the physiological significance and pathological relevance of endolysosomes is now complicated by relatively recent findings of physical and functional interactions between endolysosomes with other intracellular organelles including endoplasmic reticulum, mitochondria, plasma membranes, and peroxisomes. Indeed, evidence clearly indicates that endolysosome dysfunction and inter-organellar signaling occurs in different neurodegenerative diseases including Alzheimer's disease (AD), HIV-1 associated neurocognitive disease (HAND), Parkinson's disease (PD) as well as various forms of brain cancer such as glioblastoma multiforme (GBM). These findings open new areas of cell biology research focusing on understanding the physiological actions and pathophysiological consequences of inter-organellar communication. Here, we will review findings of others and us that endolysosome de-acidification and dysfunction coupled with impaired inter-organellar signaling is involved in the pathogenesis of AD, HAND, PD, and GBM. A more comprehensive appreciation of cell biology and inter-organellar signaling could lead to the development of new drugs to prevent or cure these diseases.
Collapse
Affiliation(s)
- Zahra Afghah
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota 58201, United States of America
| | - Xuesong Chen
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota 58201, United States of America
| | - Jonathan D Geiger
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota 58201, United States of America.
| |
Collapse
|
18
|
BK channels regulate extracellular Tat-mediated HIV-1 LTR transactivation. Sci Rep 2019; 9:12285. [PMID: 31439883 PMCID: PMC6706582 DOI: 10.1038/s41598-019-48777-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 08/05/2019] [Indexed: 01/22/2023] Open
Abstract
HIV-1 Tat is essential for HIV-1 replication and plays an important role in latent HIV-1 infection, HIV-1 associated neurological complication, and other HIV-1 comorbidities. Secreted from HIV-1 infected or transfected cells, Tat can be up-taken into cells by receptor-mediated endocytosis and internalized into endolysosomes. To reach nucleus where it can facilitate HIV-1 viral replication, exogenous Tat has to escape the degradation by endolysosomes. Because of findings that endolysosome de-acidification with, for example, the weak-base anti-malarial drug chloroquine prevents exogenous Tat degradation and enhances the amount of Tat available to activate HIV-1 LTR, we hypothesize that acidifying endolysosomes may enhance Tat degradation in endolysosomes and restrict LTR transactivation. Here, we determined the involvement of endolysosome-resident transient receptor potential mucolipin 1 channel (TRPML1) and the big conductance Ca2+-activated potassium (BK) channel in regulating endolysosome pH, as well as Tat-mediated HIV-1 LTR transactivation in U87MG cells stably integrated with HIV-1 LTR luciferase reporter. Activating TRPML1 channels with ML-SA1 acidified endolysosomes and restricted Tat-mediated HIV-1 LTR transactivation. These effects of ML-SA1 appeared to be mediated through activation of BK channels, because the effects of ML-SA1 on Tat-mediated HIV-1 LTR transactivation were blocked using pharmacological inhibitors or shRNA knock-down of BK channels. On the other hand, activating TRPML1 and BK channels enhanced cellular degradation of exogenous Tat. These results suggest that acidifying endolysosomes by activating TRPML1 or BK channels may provide therapeutic benefit against latent HIV-1 infection, HIV-1 associated neurocognitive disorders, and other HIV-1 comorbidities.
Collapse
|
19
|
Hui L, Ye Y, Soliman ML, Lakpa KL, Miller NM, Afghah Z, Geiger JD, Chen X. Antiretroviral Drugs Promote Amyloidogenesis by De-Acidifying Endolysosomes. J Neuroimmune Pharmacol 2019; 16:159-168. [PMID: 31338753 DOI: 10.1007/s11481-019-09862-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 06/30/2019] [Indexed: 12/15/2022]
Abstract
Antiretroviral therapeutics (ART) have effectively increased the long-term survival of HIV-1 infected individuals. However, the prevalence of HIV-1 associated neurocognitive disorders (HAND) has increased and so too have clinical manifestations and pathological features of Alzheimer's disease (AD) in people living with HIV-1/AIDS. Although underlying mechanisms are not clear, chronic exposure to ART drugs has been implicated in the development of AD-like symptoms and pathology. ART drugs are categorized according to their mechanism of action in controlling HIV-1 levels. All ART drugs are organic compounds that can be classified as being either weak acids or weak bases, and these physicochemical properties may be of central importance to ART drug-induced AD-like pathology because weak bases accumulate in endolysosomes, weak bases can de-acidify endolysosomes where amyloidogenesis occurs, and endolysosome de-acidification increases amyloid beta (Aβ) protein production and decreases Aβ degradation. Here, we investigated the effects of ART drugs on endolysosome pH and Aβ levels in rat primary cultured neurons. ART drugs that de-acidified endolysosomes increased Aβ levels, whereas those that acidified endolysosomes decreased Aβ levels. Acidification of endolysosomes with the mucolipin transient receptor potential (TRPML) channel agonist ML-SA1 blocked ART drug-induced increases in Aβ levels. Further, ART drug-induced endolysosome de-acidification increased endolysosome sizes; effects that were blocked by ML-SA1-induced endolysosome acidification. These results suggest that ART drug-induced endolysosome de-acidification plays an important role in ART drug-induced amyloidogenesis and that endolysosome acidification might attenuate AD-like pathology in HIV-1 positive people taking ART drugs that de-acidify endolysosomes. Graphical Abstract.
Collapse
Affiliation(s)
- Liang Hui
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, 504 Hamline Street, Grand Forks, ND, 58203, USA
| | - Yan Ye
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, 504 Hamline Street, Grand Forks, ND, 58203, USA
| | - Mahmoud L Soliman
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, 504 Hamline Street, Grand Forks, ND, 58203, USA
| | - Koffi L Lakpa
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, 504 Hamline Street, Grand Forks, ND, 58203, USA
| | - Nicole M Miller
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, 504 Hamline Street, Grand Forks, ND, 58203, USA
| | - Zahra Afghah
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, 504 Hamline Street, Grand Forks, ND, 58203, USA
| | - Jonathan D Geiger
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, 504 Hamline Street, Grand Forks, ND, 58203, USA
| | - Xuesong Chen
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, 504 Hamline Street, Grand Forks, ND, 58203, USA.
| |
Collapse
|