1
|
Goncalves K, Przyborski S. Modulation of the Nogo signaling pathway to overcome amyloid-β-mediated neurite inhibition in human pluripotent stem cell-derived neurites. Neural Regen Res 2025; 20:2645-2654. [PMID: 39105379 DOI: 10.4103/nrr.nrr-d-23-01628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 07/09/2024] [Indexed: 08/07/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202509000-00026/figure1/v/2024-11-05T132919Z/r/image-tiff Neuronal cell death and the loss of connectivity are two of the primary pathological mechanisms underlying Alzheimer's disease. The accumulation of amyloid-β peptides, a key hallmark of Alzheimer's disease, is believed to induce neuritic abnormalities, including reduced growth, extension, and abnormal growth cone morphology, all of which contribute to decreased connectivity. However, the precise cellular and molecular mechanisms governing this response remain unknown. In this study, we used an innovative approach to demonstrate the effect of amyloid-β on neurite dynamics in both two-dimensional and three-dimensional culture systems, in order to provide more physiologically relevant culture geometry. We utilized various methodologies, including the addition of exogenous amyloid-β peptides to the culture medium, growth substrate coating, and the utilization of human-induced pluripotent stem cell technology, to investigate the effect of endogenous amyloid-β secretion on neurite outgrowth, thus paving the way for potential future applications in personalized medicine. Additionally, we also explore the involvement of the Nogo signaling cascade in amyloid-β-induced neurite inhibition. We demonstrate that inhibition of downstream ROCK and RhoA components of the Nogo signaling pathway, achieved through modulation with Y-27632 (a ROCK inhibitor) and Ibuprofen (a Rho A inhibitor), respectively, can restore and even enhance neuronal connectivity in the presence of amyloid-β. In summary, this study not only presents a novel culture approach that offers insights into the biological process of neurite growth and inhibition, but also proposes a specific mechanism for reduced neural connectivity in the presence of amyloid-β peptides, along with potential intervention points to restore neurite growth. Thereby, we aim to establish a culture system that has the potential to serve as an assay for measuring preclinical, predictive outcomes of drugs and their ability to promote neurite outgrowth, both generally and in a patient-specific manner.
Collapse
Affiliation(s)
| | - Stefan Przyborski
- Department of Biosciences, Durham University, Durham, UK
- Reprocell Europe Ltd., Glasgow, UK
| |
Collapse
|
2
|
Wu B, Li S, Han W. Selective Protonation of Catalytic Dyad for γ-Secretase-Mediated Hydrolysis Revealed by Multiscale Simulations. J Phys Chem B 2024. [PMID: 39506927 DOI: 10.1021/acs.jpcb.4c04085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
γ-Secretase plays a crucial role in producing disease-related amyloid-β proteins by cleaving the amyloid precursor protein (APP). The enzyme employs its catalytic dyad containing two aspartates (Asp257 and Asp385) to hydrolyze the substrate by a general acid-base catalytic mechanism, necessitating monoprotonation of the two aspartates for efficient hydrolysis. However, the precise protonation states of the aspartates remain uncertain. In this study, we employed a multiscale computational approach to investigate the dependence of the catalytic efficiency of γ-secretase on the protonation states of its catalytic dyad. Over 200 ms unbiased atomistic simulations of the substrate-enzyme complex reveal diverse orientations of the scissile bond of the bound substrate and accessible structural ensembles of the catalytic dyad with Asp257-Asp385 distances fluctuating between 4 and 10 Å. With a quantum mechanics/molecular mechanics (QM/MM) approach accelerated by enhanced sampling techniques, we find that the first step of the hydrolysis reaction, i.e., the formation of a gem-diol intermediate, experiences a higher reaction barrier by ∼2 kcal/mol when Asp385 is protonated. Furthermore, we find that Arg269 of the enzyme is most likely responsible for this preference of the protonation state: its basic side chain is spatially close to that of Asp257 and specifically stabilizes the transition state electrostatically when Asp257 is protonated. Collectively, our study suggests that Asp257 is likely the favored protonation site for APP cleavage by γ-secretase.
Collapse
Affiliation(s)
- Bohua Wu
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Shu Li
- Centre for Artificial Intelligence Driven Drug Discovery, Faculty of Applied Sciences, Macao Polytechnic University, Macao 999078, China
| | - Wei Han
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
- Department of Chemistry, Faculty of Science, Hong Kong Baptist University, Hong Kong SAR 999077, China
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen 518132, China
| |
Collapse
|
3
|
Nixon RA, Rubinsztein DC. Mechanisms of autophagy-lysosome dysfunction in neurodegenerative diseases. Nat Rev Mol Cell Biol 2024; 25:926-946. [PMID: 39107446 DOI: 10.1038/s41580-024-00757-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2024] [Indexed: 08/15/2024]
Abstract
Autophagy is a lysosome-based degradative process used to recycle obsolete cellular constituents and eliminate damaged organelles and aggregate-prone proteins. Their postmitotic nature and extremely polarized morphologies make neurons particularly vulnerable to disruptions caused by autophagy-lysosomal defects, especially as the brain ages. Consequently, mutations in genes regulating autophagy and lysosomal functions cause a wide range of neurodegenerative diseases. Here, we review the role of autophagy and lysosomes in neurodegenerative diseases such as Alzheimer disease, Parkinson disease and frontotemporal dementia. We also consider the strong impact of cellular ageing on lysosomes and autophagy as a tipping point for the late-age emergence of related neurodegenerative disorders. Many of these diseases have primary defects in autophagy, for example affecting autophagosome formation, and in lysosomal functions, especially pH regulation and calcium homeostasis. We have aimed to provide an integrative framework for understanding the central importance of autophagic-lysosomal function in neuronal health and disease.
Collapse
Affiliation(s)
- Ralph A Nixon
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, New York, NY, USA.
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, USA.
- Department of Cell Biology, New York University Grossman School of Medicine, New York, NY, USA.
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA.
| | - David C Rubinsztein
- Department of Medical Genetics, Cambridge Institute for Medical Research, Cambridge, UK
- UK Dementia Research Institute, University of Cambridge, Cambridge Institute for Medical Research, Cambridge, UK
| |
Collapse
|
4
|
Preethy H A, Rajendran K, Sukumar AJ, Krishnan UM. Emerging paradigms in Alzheimer's therapy. Eur J Pharmacol 2024; 981:176872. [PMID: 39117266 DOI: 10.1016/j.ejphar.2024.176872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 07/13/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Alzheimer's disease is a neurodegenerative disorder that affects elderly, and its incidence is continuously increasing across the globe. Unfortunately, despite decades of research, a complete cure for Alzheimer's disease continues to elude us. The current medications are mainly symptomatic and slow the disease progression but do not result in reversal of all disease pathologies. The growing body of knowledge on the factors responsible for the onset and progression of the disease has resulted in the identification of new targets that could be targeted for treatment of Alzheimer's disease. This has opened new vistas for treatment of Alzheimer's disease that have moved away from chemotherapeutic agents modulating a single target to biologics and combinations that acted on multiple targets thereby offering better therapeutic outcomes. This review discusses the emerging directions in therapeutic interventions against Alzheimer's disease highlighting their merits that promise to change the treatment paradigm and challenges that limit their clinical translation.
Collapse
Affiliation(s)
- Agnes Preethy H
- School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, India; Centre for Nanotechnology & Advanced Biomaterials, SASTRA Deemed University, Thanjavur, India
| | - Kayalvizhi Rajendran
- School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, India; Centre for Nanotechnology & Advanced Biomaterials, SASTRA Deemed University, Thanjavur, India
| | - Anitha Josephine Sukumar
- School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, India; Centre for Nanotechnology & Advanced Biomaterials, SASTRA Deemed University, Thanjavur, India
| | - Uma Maheswari Krishnan
- School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, India; Centre for Nanotechnology & Advanced Biomaterials, SASTRA Deemed University, Thanjavur, India; School of Arts, Sciences, Humanities & Education, SASTRA Deemed University, Thanjavur, India.
| |
Collapse
|
5
|
Granzotto A, Vissel B, Sensi SL. Lost in translation: Inconvenient truths on the utility of mouse models in Alzheimer's disease research. eLife 2024; 13:e90633. [PMID: 39329365 PMCID: PMC11434637 DOI: 10.7554/elife.90633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/13/2024] [Indexed: 09/28/2024] Open
Abstract
The recent, controversial approval of antibody-based treatments for Alzheimer's disease (AD) is fueling a heated debate on the molecular determinants of this condition. The discussion should also incorporate a critical revision of the limitations of preclinical mouse models in advancing our understanding of AD. We critically discuss the limitations of animal models, stressing the need for careful consideration of how experiments are designed and results interpreted. We identify the shortcomings of AD models to recapitulate the complexity of the human disease. We dissect these issues at the quantitative, qualitative, temporal, and context-dependent levels. We argue that these models are based on the oversimplistic assumptions proposed by the amyloid cascade hypothesis (ACH) of AD and fail to account for the multifactorial nature of the condition. By shedding light on the constraints of current experimental tools, this review aims to foster the development and implementation of more clinically relevant tools. While we do not rule out a role for preclinical models, we call for alternative approaches to be explored and, most importantly, for a re-evaluation of the ACH.
Collapse
Affiliation(s)
- Alberto Granzotto
- Center for Advanced Studies and Technology – CAST, University G. d’Annunzio of Chieti-PescaraChietiItaly
- Department of Neuroscience, Imaging, and Clinical Sciences, University G. d’Annunzio of Chieti-PescaraChietiItaly
| | - Bryce Vissel
- St Vincent’s Hospital Centre for Applied Medical Research, St Vincent’s HospitalDarlinghurstAustralia
- School of Clinical Medicine, UNSW Medicine & Health, St Vincent's Healthcare Clinical Campus, Faculty of Medicine and Health, UNSW SydneySydneyAustralia
| | - Stefano L Sensi
- Center for Advanced Studies and Technology – CAST, University G. d’Annunzio of Chieti-PescaraChietiItaly
- Department of Neuroscience, Imaging, and Clinical Sciences, University G. d’Annunzio of Chieti-PescaraChietiItaly
- Institute for Advanced Biomedical Technologies – ITAB, University G. d’Annunzio of Chieti-PescaraChietiItaly
- Institute of Neurology, SS Annunziata University Hospital, University G. d’Annunzio of Chieti-PescaraChietiItaly
| |
Collapse
|
6
|
Fritzen L, Wienken K, Wagner L, Kurtyka M, Vogel K, Körbelin J, Weggen S, Fricker G, Pietrzik CU. Truncated mini LRP1 transports cargo from luminal to basolateral side across the blood brain barrier. Fluids Barriers CNS 2024; 21:74. [PMID: 39289695 PMCID: PMC11409491 DOI: 10.1186/s12987-024-00573-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 09/02/2024] [Indexed: 09/19/2024] Open
Abstract
BACKGROUND The most crucial area to focus on when thinking of novel pathways for drug delivery into the CNS is the blood brain barrier (BBB). A number of nanoparticulate formulations have been shown in earlier research to target receptors at the BBB and transport therapeutics into the CNS. However, no mechanism for CNS entrance and movement throughout the CNS parenchyma has been proposed yet. Here, the truncated mini low-density lipoprotein receptor-related protein 1 mLRP1_DIV* was presented as blood to brain transport carrier, exemplified by antibodies and immunoliposomes using a systematic approach to screen the receptor and its ligands' route across endothelial cells in vitro. METHODS The use of mLRP1_DIV* as liposomal carrier into the CNS was validated based on internalization and transport assays across an in vitro model of the BBB using hcMEC/D3 and bEnd.3 cells. Trafficking routes of mLRP1_DIV* and corresponding cargo across endothelial cells were analyzed using immunofluorescence. Modulation of γ-secretase activity by immunoliposomes loaded with the γ-secretase modulator BB25 was investigated in co-cultures of bEnd.3 mLRP1_DIV* cells and CHO cells overexpressing human amyloid precursor protein (APP) and presenilin 1 (PSEN1). RESULTS We showed that while expressed in vitro, mLRP1_DIV* transports both, antibodies and functionalized immunoliposomes from luminal to basolateral side across an in vitro model of the BBB, followed by their mLRP1_DIV* dependent release of the cargo. Importantly, functionalized liposomes loaded with the γ-secretase modulator BB25 were demonstrated to effectively reduce toxic Aß42 peptide levels after mLRP1_DIV* mediated transport across a co-cultured endothelial monolayer. CONCLUSION Together, the data strongly suggest mLRP1_DIV* as a promising tool for drug delivery into the CNS, as it allows a straight transport of cargo from luminal to abluminal side across an endothelial monolayer and it's release into brain parenchyma in vitro, where it exhibits its intended therapeutic effect.
Collapse
Affiliation(s)
- Laura Fritzen
- Molecular Neurodegeneration, Institute for Pathobiochemistry, University Medical Center of the Johannes Gutenberg-University of Mainz, Duesbergweg 6, 55099, Mainz, Germany.
| | - Katharina Wienken
- Institute for Pharmacy and Molecular Biotechnology, University Heidelberg, Heidelberg, Germany
| | - Lelia Wagner
- Institute for Pharmacy and Molecular Biotechnology, University Heidelberg, Heidelberg, Germany
| | - Magdalena Kurtyka
- Molecular Neurodegeneration, Institute for Pathobiochemistry, University Medical Center of the Johannes Gutenberg-University of Mainz, Duesbergweg 6, 55099, Mainz, Germany
| | - Katharina Vogel
- Department of Neuropathology, Heinrich-Heine-University, Düsseldorf, Germany
| | - Jakob Körbelin
- Department for Oncology and Hematology, University Medical Center Hamburg-Eppendorf, Hubertus Wald Cancer Center, Hamburg, Germany
| | - Sascha Weggen
- Department of Neuropathology, Heinrich-Heine-University, Düsseldorf, Germany
| | - Gert Fricker
- Institute for Pharmacy and Molecular Biotechnology, University Heidelberg, Heidelberg, Germany
| | - Claus U Pietrzik
- Molecular Neurodegeneration, Institute for Pathobiochemistry, University Medical Center of the Johannes Gutenberg-University of Mainz, Duesbergweg 6, 55099, Mainz, Germany.
| |
Collapse
|
7
|
Nixon RA. Autophagy-lysosomal-associated neuronal death in neurodegenerative disease. Acta Neuropathol 2024; 148:42. [PMID: 39259382 PMCID: PMC11418399 DOI: 10.1007/s00401-024-02799-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/30/2024] [Accepted: 08/31/2024] [Indexed: 09/13/2024]
Abstract
Autophagy, the major lysosomal pathway for degrading damaged or obsolete constituents, protects neurons by eliminating toxic organelles and peptides, restoring nutrient and energy homeostasis, and inhibiting apoptosis. These functions are especially vital in neurons, which are postmitotic and must survive for many decades while confronting mounting challenges of cell aging. Autophagy failure, especially related to the declining lysosomal ("phagy") functions, heightens the neuron's vulnerability to genetic and environmental factors underlying Alzheimer's disease (AD) and other late-age onset neurodegenerative diseases. Components of the global autophagy-lysosomal pathway and the closely integrated endolysosomal system are increasingly implicated as primary targets of these disorders. In AD, an imbalance between heightened autophagy induction and diminished lysosomal function in highly vulnerable pyramidal neuron populations yields an intracellular lysosomal build-up of undegraded substrates, including APP-βCTF, an inhibitor of lysosomal acidification, and membrane-damaging Aβ peptide. In the most compromised of these neurons, β-amyloid accumulates intraneuronally in plaque-like aggregates that become extracellular senile plaques when these neurons die, reflecting an "inside-out" origin of amyloid plaques seen in human AD brain and in mouse models of AD pathology. In this review, the author describes the importance of lysosomal-dependent neuronal cell death in AD associated with uniquely extreme autophagy pathology (PANTHOS) which is described as triggered by lysosomal membrane permeability during the earliest "intraneuronal" stage of AD. Effectors of other cell death cascades, notably calcium-activated calpains and protein kinases, contribute to lysosomal injury that induces leakage of cathepsins and activation of additional death cascades. Subsequent events in AD, such as microglial invasion and neuroinflammation, induce further cytotoxicity. In major neurodegenerative disease models, neuronal death and ensuing neuropathologies are substantially remediable by reversing underlying primary lysosomal deficits, thus implicating lysosomal failure and autophagy dysfunction as primary triggers of lysosomal-dependent cell death and AD pathogenesis and as promising therapeutic targets.
Collapse
Affiliation(s)
- Ralph A Nixon
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, 10962, USA.
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, 10016, USA.
- Department of Cell Biology, New York University Grossman School of Medicine, New York, NY, 10016, USA.
- Neuroscience Institute, New York University, New York, NY, 10012, USA.
| |
Collapse
|
8
|
Zoltowska KM, Das U, Lismont S, Enzlein T, Maesako M, Houser MCQ, Franco ML, Özcan B, Gomes Moreira D, Karachentsev D, Becker A, Hopf C, Vilar M, Berezovska O, Mobley W, Chávez-Gutiérrez L. Alzheimer's disease linked Aβ42 exerts product feedback inhibition on γ-secretase impairing downstream cell signaling. eLife 2024; 12:RP90690. [PMID: 39027984 PMCID: PMC11259434 DOI: 10.7554/elife.90690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024] Open
Abstract
Amyloid β (Aβ) peptides accumulating in the brain are proposed to trigger Alzheimer's disease (AD). However, molecular cascades underlying their toxicity are poorly defined. Here, we explored a novel hypothesis for Aβ42 toxicity that arises from its proven affinity for γ-secretases. We hypothesized that the reported increases in Aβ42, particularly in the endolysosomal compartment, promote the establishment of a product feedback inhibitory mechanism on γ-secretases, and thereby impair downstream signaling events. We conducted kinetic analyses of γ-secretase activity in cell-free systems in the presence of Aβ, as well as cell-based and ex vivo assays in neuronal cell lines, neurons, and brain synaptosomes to assess the impact of Aβ on γ-secretases. We show that human Aβ42 peptides, but neither murine Aβ42 nor human Aβ17-42 (p3), inhibit γ-secretases and trigger accumulation of unprocessed substrates in neurons, including C-terminal fragments (CTFs) of APP, p75, and pan-cadherin. Moreover, Aβ42 treatment dysregulated cellular homeostasis, as shown by the induction of p75-dependent neuronal death in two distinct cellular systems. Our findings raise the possibility that pathological elevations in Aβ42 contribute to cellular toxicity via the γ-secretase inhibition, and provide a novel conceptual framework to address Aβ toxicity in the context of γ-secretase-dependent homeostatic signaling.
Collapse
Affiliation(s)
| | - Utpal Das
- Department of Neurosciences, University of California San DiegoLa JollaUnited States
| | - Sam Lismont
- VIB-KU Leuven Center for Brain & Disease ResearchLeuvenBelgium
| | - Thomas Enzlein
- VIB-KU Leuven Center for Brain & Disease ResearchLeuvenBelgium
- Center for Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied SciencesMannheimGermany
| | - Masato Maesako
- Department of Neurology, Massachusetts General Hospital/Harvard Medical SchoolCharlestownUnited States
| | - Mei CQ Houser
- Department of Neurology, Massachusetts General Hospital/Harvard Medical SchoolCharlestownUnited States
| | - Maria Luisa Franco
- Molecular Basis of Neurodegeneration Unit, Instituto de Biomedicina de ValenciaValenciaSpain
| | - Burcu Özcan
- VIB-KU Leuven Center for Brain & Disease ResearchLeuvenBelgium
| | | | - Dmitry Karachentsev
- Department of Neurosciences, University of California San DiegoLa JollaUnited States
| | - Ann Becker
- Department of Neurosciences, University of California San DiegoLa JollaUnited States
| | - Carsten Hopf
- Center for Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied SciencesMannheimGermany
- Medical Faculty, Heidelberg UniversityHeidelbergGermany
- Mannheim Center for Translational Neuroscience (MCTN), Medical Faculty Mannheim, Heidelberg UniversityHeidelbergGermany
| | - Marçal Vilar
- Molecular Basis of Neurodegeneration Unit, Instituto de Biomedicina de ValenciaValenciaSpain
| | - Oksana Berezovska
- Department of Neurology, Massachusetts General Hospital/Harvard Medical SchoolCharlestownUnited States
| | - William Mobley
- Department of Neurosciences, University of California San DiegoLa JollaUnited States
| | | |
Collapse
|
9
|
Condorelli AG, Nobili R, Muglia A, Scarpelli G, Marzuolo E, De Stefanis C, Rota R, Diociaiuti A, Alaggio R, Castiglia D, Odorisio T, El Hachem M, Zambruno G. Gamma-Secretase Inhibitors Downregulate the Profibrotic NOTCH Signaling Pathway in Recessive Dystrophic Epidermolysis Bullosa. J Invest Dermatol 2024; 144:1522-1533.e10. [PMID: 38237731 DOI: 10.1016/j.jid.2023.10.045] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 09/29/2023] [Accepted: 10/12/2023] [Indexed: 03/03/2024]
Abstract
Recessive dystrophic epidermolysis bullosa (RDEB) is a rare skin fragility disorder caused by mutations in COL7A1. RDEB is hallmarked by trauma-induced unremitting blistering, chronic wounds with inflammation, and progressive fibrosis, leading to severe disease complications. There is currently no cure for RDEB-associated fibrosis. Our previous studies and increasing evidence highlighted the profibrotic role of NOTCH pathway in different skin disorders, including RDEB. In this study, we further investigated the role of NOTCH signaling in RDEB pathogenesis and explored the effects of its inhibition by γ-secretase inhibitors DAPT and PF-03084014 (nirogacestat). Our analyses demonstrated that JAG1 and cleaved NOTCH1 are upregulated in primary RDEB fibroblasts (ie, RDEB-derived fibroblasts) compared with controls, and their protein levels are further increased by TGF-β1 stimulation. Functional assays unveiled the involvement of JAG1/NOTCH1 axis in RDEB fibrosis and demonstrated that its blockade counteracts a variety of fibrotic traits. In particular, RDEB-derived fibroblasts treated with PF-03084014 showed (i) a significant reduction of contractility, (ii) a diminished secretion of TGF-β1 and collagens, and (iii) the downregulation of several fibrotic proteins. Although less marked than PF-03084014-treated cells, RDEB-derived fibroblasts exhibited a reduction of fibrotic traits also upon DAPT treatment. This study provides potential therapeutic strategies to antagonize RDEB fibrosis onset and progression.
Collapse
Affiliation(s)
- Angelo Giuseppe Condorelli
- Genodermatosis Unit, Translational Pediatrics and Clinical Genetics Research Division, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.
| | - Rebecca Nobili
- Genodermatosis Unit, Translational Pediatrics and Clinical Genetics Research Division, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Anita Muglia
- Genodermatosis Unit, Translational Pediatrics and Clinical Genetics Research Division, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Giorgia Scarpelli
- Genodermatosis Unit, Translational Pediatrics and Clinical Genetics Research Division, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Elisa Marzuolo
- Genodermatosis Unit, Translational Pediatrics and Clinical Genetics Research Division, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | | | - Rossella Rota
- Department of Hematology and Oncology, Cell and Gene Therapy Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Andrea Diociaiuti
- Genodermatosis Unit, Translational Pediatrics and Clinical Genetics Research Division, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy; Dermatology Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Rita Alaggio
- Pathology Unit and Predictive Molecular Pathology Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy; Department of Medical-Surgical Sciences and Biotechnologies, University of Rome "La Sapienza", Rome, Italy
| | - Daniele Castiglia
- Laboratory of Molecular and Cell Biology, Istituto Dermopatico dell'Immacolata-IRCCS, Rome, Italy
| | - Teresa Odorisio
- Laboratory of Molecular and Cell Biology, Istituto Dermopatico dell'Immacolata-IRCCS, Rome, Italy
| | - May El Hachem
- Genodermatosis Unit, Translational Pediatrics and Clinical Genetics Research Division, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy; Dermatology Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Giovanna Zambruno
- Genodermatosis Unit, Translational Pediatrics and Clinical Genetics Research Division, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| |
Collapse
|
10
|
Pettersson M, Johnson DS, Humphrey JM, Am Ende CW, Butler TW, Dorff PH, Efremov IV, Evrard E, Green ME, Helal CJ, Kauffman GW, Mullins PB, Navaratnam T, O'Donnell CJ, O'Sullivan TJ, Patel NC, Stepan AF, Stiff CM, Subramanyam C, Trapa P, Tran TP, Vetelino BC, Yang E, Xie L, Pustilnik LR, Steyn SJ, Wood KM, Bales KR, Hajos-Korcsok E, Verhoest PR. Discovery of Clinical Candidate PF-06648671: A Potent γ-Secretase Modulator for the Treatment of Alzheimer's Disease. J Med Chem 2024; 67:10248-10262. [PMID: 38848667 DOI: 10.1021/acs.jmedchem.4c00580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
Herein, we describe the design and synthesis of γ-secretase modulator (GSM) clinical candidate PF-06648671 (22) for the treatment of Alzheimer's disease. A key component of the design involved a 2,5-cis-tetrahydrofuran (THF) linker to impart conformational rigidity and lock the compound into a putative bioactive conformation. This effort was guided using a pharmacophore model since crystallographic information was not available for the membrane-bound γ-secretase protein complex at the time of this work. PF-06648671 achieved excellent alignment of whole cell in vitro potency (Aβ42 IC50 = 9.8 nM) and absorption, distribution, metabolism, and excretion (ADME) parameters. This resulted in favorable in vivo pharmacokinetic (PK) profile in preclinical species, and PF-06648671 achieved a human PK profile suitable for once-a-day dosing. Furthermore, PF-06648671 was found to have favorable brain availability in rodent, which translated into excellent central exposure in human and robust reduction of amyloid β (Aβ) 42 in cerebrospinal fluid (CSF).
Collapse
Affiliation(s)
- Martin Pettersson
- Pfizer Worldwide Research and Development, Cambridge, Massachusetts 02139, United States
| | - Douglas S Johnson
- Pfizer Worldwide Research and Development, Cambridge, Massachusetts 02139, United States
| | - John M Humphrey
- Pfizer Worldwide Research and Development, Groton, Connecticut 06340, United States
| | | | - Todd W Butler
- Pfizer Worldwide Research and Development, Groton, Connecticut 06340, United States
| | - Peter H Dorff
- Pfizer Worldwide Research and Development, Groton, Connecticut 06340, United States
| | - Ivan V Efremov
- Pfizer Worldwide Research and Development, Groton, Connecticut 06340, United States
| | - Edelweiss Evrard
- Pfizer Worldwide Research and Development, Cambridge, Massachusetts 02139, United States
| | - Michael E Green
- Pfizer Worldwide Research and Development, Cambridge, Massachusetts 02139, United States
| | - Christopher J Helal
- Pfizer Worldwide Research and Development, Groton, Connecticut 06340, United States
| | - Gregory W Kauffman
- Pfizer Worldwide Research and Development, Cambridge, Massachusetts 02139, United States
| | - Patrick B Mullins
- Pfizer Worldwide Research and Development, Groton, Connecticut 06340, United States
| | - Thayalan Navaratnam
- Pfizer Worldwide Research and Development, Groton, Connecticut 06340, United States
| | | | - Theresa J O'Sullivan
- Pfizer Worldwide Research and Development, Groton, Connecticut 06340, United States
| | - Nandini C Patel
- Pfizer Worldwide Research and Development, Cambridge, Massachusetts 02139, United States
| | - Antonia F Stepan
- Pfizer Worldwide Research and Development, Cambridge, Massachusetts 02139, United States
| | - Cory M Stiff
- Pfizer Worldwide Research and Development, Groton, Connecticut 06340, United States
| | | | - Patrick Trapa
- Pfizer Worldwide Research and Development, Cambridge, Massachusetts 02139, United States
| | - Tuan P Tran
- Pfizer Worldwide Research and Development, Groton, Connecticut 06340, United States
| | - Beth Cooper Vetelino
- Pfizer Worldwide Research and Development, Groton, Connecticut 06340, United States
| | - Eddie Yang
- Pfizer Worldwide Research and Development, Groton, Connecticut 06340, United States
| | - Longfei Xie
- Pfizer Worldwide Research and Development, Groton, Connecticut 06340, United States
| | - Leslie R Pustilnik
- Pfizer Worldwide Research and Development, Groton, Connecticut 06340, United States
| | - Stefanus J Steyn
- Pfizer Worldwide Research and Development, Cambridge, Massachusetts 02139, United States
| | - Kathleen M Wood
- Pfizer Worldwide Research and Development, Groton, Connecticut 06340, United States
| | - Kelly R Bales
- Pfizer Worldwide Research and Development, Cambridge, Massachusetts 02139, United States
| | - Eva Hajos-Korcsok
- Pfizer Worldwide Research and Development, Cambridge, Massachusetts 02139, United States
| | - Patrick R Verhoest
- Pfizer Worldwide Research and Development, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
11
|
Zoltowska KM, Das U, Lismont S, Enzlein T, Maesako M, Houser MCQ, Franco ML, Özcan B, Moreira DG, Karachentsev D, Becker A, Hopf C, Vilar M, Berezovska O, Mobley W, Chávez-Gutiérrez L. Alzheimer's disease linked Aβ42 exerts product feedback inhibition on γ-secretase impairing downstream cell signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.02.551596. [PMID: 37577527 PMCID: PMC10418207 DOI: 10.1101/2023.08.02.551596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Amyloid β (Aβ) peptides accumulating in the brain are proposed to trigger Alzheimer's disease (AD). However, molecular cascades underlying their toxicity are poorly defined. Here, we explored a novel hypothesis for Aβ42 toxicity that arises from its proven affinity for γ-secretases. We hypothesized that the reported increases in Aβ42, particularly in the endolysosomal compartment, promote the establishment of a product feedback inhibitory mechanism on γ-secretases, and thereby impair downstream signaling events. We show that human Aβ42 peptides, but neither murine Aβ42 nor human Aβ17-42 (p3), inhibit γ-secretases and trigger accumulation of unprocessed substrates in neurons, including C-terminal fragments (CTFs) of APP, p75 and pan-cadherin. Moreover, Aβ42 treatment dysregulated cellular -homeostasis, as shown by the induction of p75-dependent neuronal death in two distinct cellular systems. Our findings raise the possibility that pathological elevations in Aβ42 contribute to cellular toxicity via the γ-secretase inhibition, and provide a novel conceptual framework to address Aβ toxicity in the context of γ-secretase-dependent homeostatic signaling.
Collapse
Affiliation(s)
| | - Utpal Das
- Department of Neurosciences, University of California San Diego, La Jolla, CA, United States of America
| | - Sam Lismont
- VIB-KU Leuven Center for Brain & Disease Research, VIB, Leuven, Belgium
| | - Thomas Enzlein
- VIB-KU Leuven Center for Brain & Disease Research, VIB, Leuven, Belgium
- Center for Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Mannheim, Germany
| | - Masato Maesako
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA, United States of America
| | - Mei CQ Houser
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA, United States of America
| | - María Luisa Franco
- Molecular Basis of Neurodegeneration Unit, Institute of Biomedicine of València (IBV-CSIC), València, Spain
| | - Burcu Özcan
- VIB-KU Leuven Center for Brain & Disease Research, VIB, Leuven, Belgium
| | | | - Dmitry Karachentsev
- Department of Neurosciences, University of California San Diego, La Jolla, CA, United States of America
| | - Ann Becker
- Department of Neurosciences, University of California San Diego, La Jolla, CA, United States of America
| | - Carsten Hopf
- Center for Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Mannheim, Germany
- Medical Faculty, Heidelberg University, Heidelberg, Germany
- Mannheim Center for Translational Neuroscience (MCTN), Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Marçal Vilar
- Molecular Basis of Neurodegeneration Unit, Institute of Biomedicine of València (IBV-CSIC), València, Spain
| | - Oksana Berezovska
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA, United States of America
| | - William Mobley
- Department of Neurosciences, University of California San Diego, La Jolla, CA, United States of America
| | | |
Collapse
|
12
|
Weatherbee BAT, Weberling A, Gantner CW, Iwamoto-Stohl LK, Barnikel Z, Barrie A, Campbell A, Cunningham P, Drezet C, Efstathiou P, Fishel S, Vindel SG, Lockwood M, Oakley R, Pretty C, Chowdhury N, Richardson L, Mania A, Weavers L, Christie L, Elder K, Snell P, Zernicka-Goetz M. Distinct pathways drive anterior hypoblast specification in the implanting human embryo. Nat Cell Biol 2024; 26:353-365. [PMID: 38443567 PMCID: PMC10940163 DOI: 10.1038/s41556-024-01367-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/24/2024] [Indexed: 03/07/2024]
Abstract
Development requires coordinated interactions between the epiblast, which generates the embryo proper; the trophectoderm, which generates the placenta; and the hypoblast, which forms both the anterior signalling centre and the yolk sac. These interactions remain poorly understood in human embryogenesis because mechanistic studies have only recently become possible. Here we examine signalling interactions post-implantation using human embryos and stem cell models of the epiblast and hypoblast. We find anterior hypoblast specification is NODAL dependent, as in the mouse. However, while BMP inhibits anterior signalling centre specification in the mouse, it is essential for its maintenance in human. We also find contrasting requirements for BMP in the naive pre-implantation epiblast of mouse and human embryos. Finally, we show that NOTCH signalling is important for human epiblast survival. Our findings of conserved and species-specific factors that drive these early stages of embryonic development highlight the strengths of comparative species studies.
Collapse
Affiliation(s)
- Bailey A T Weatherbee
- Mammalian Embryo and Stem Cell Group, Department of Physiology, Development and Neuroscience, Mammalian Embryo and Stem Cell Group, University of Cambridge, Cambridge, UK
- Center for Stem Cell and Organoid Medicine, Perinatal Institute, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Antonia Weberling
- Mammalian Embryo and Stem Cell Group, Department of Physiology, Development and Neuroscience, Mammalian Embryo and Stem Cell Group, University of Cambridge, Cambridge, UK
- All Souls College, Oxford, UK
- Nuffield Department of Women's and Reproductive Health, Women's Centre, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Carlos W Gantner
- Mammalian Embryo and Stem Cell Group, Department of Physiology, Development and Neuroscience, Mammalian Embryo and Stem Cell Group, University of Cambridge, Cambridge, UK
| | - Lisa K Iwamoto-Stohl
- Mammalian Embryo and Stem Cell Group, Department of Physiology, Development and Neuroscience, Mammalian Embryo and Stem Cell Group, University of Cambridge, Cambridge, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | - Lucy Richardson
- Herts & Essex Fertility Centre, Bishops College, Cheshunt, UK
| | | | | | | | - Kay Elder
- Bourn Hall Fertility Clinic, Bourn, UK
| | | | - Magdalena Zernicka-Goetz
- Mammalian Embryo and Stem Cell Group, Department of Physiology, Development and Neuroscience, Mammalian Embryo and Stem Cell Group, University of Cambridge, Cambridge, UK.
- Stem Cells Self-Organization Group, Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
13
|
Sun Y, Islam S, Michikawa M, Zou K. Presenilin: A Multi-Functional Molecule in the Pathogenesis of Alzheimer's Disease and Other Neurodegenerative Diseases. Int J Mol Sci 2024; 25:1757. [PMID: 38339035 PMCID: PMC10855926 DOI: 10.3390/ijms25031757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/24/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
Presenilin, a transmembrane protein primarily known for its role in Alzheimer's disease (AD) as part of the γ-secretase complex, has garnered increased attention due to its multifaceted functions in various cellular processes. Recent investigations have unveiled a plethora of functions beyond its amyloidogenic role. This review aims to provide a comprehensive overview of presenilin's diverse roles in AD and other neurodegenerative disorders. It includes a summary of well-known substrates of presenilin, such as its involvement in amyloid precursor protein (APP) processing and Notch signaling, along with other functions. Additionally, it highlights newly discovered functions, such as trafficking function, regulation of ferritin expression, apolipoprotein E (ApoE) secretion, the interaction of ApoE and presenilin, and the Aβ42-to-Aβ40-converting activity of ACE. This updated perspective underscores the evolving landscape of presenilin research, emphasizing its broader impact beyond established pathways. The incorporation of these novel findings accentuates the dynamic nature of presenilin's involvement in cellular processes, further advancing our comprehension of its multifaceted roles in neurodegenerative disorders. By synthesizing evidence from a range of studies, this review sheds light on the intricate web of presenilin functions and their implications in health and disease.
Collapse
Affiliation(s)
- Yang Sun
- Department of Biochemistry, Graduate School of Medical Sciences, Nagoya City University, Nagoya 467-8601, Japan; (Y.S.); (S.I.)
| | - Sadequl Islam
- Department of Biochemistry, Graduate School of Medical Sciences, Nagoya City University, Nagoya 467-8601, Japan; (Y.S.); (S.I.)
| | - Makoto Michikawa
- Department of Geriatric Medicine, School of Life Dentistry at Niigata, The Nippon Dental University, Niigata 951-8580, Japan;
| | - Kun Zou
- Department of Biochemistry, Graduate School of Medical Sciences, Nagoya City University, Nagoya 467-8601, Japan; (Y.S.); (S.I.)
| |
Collapse
|
14
|
Ibrahim R, Assi T, Khoury R, Ngo C, Faron M, Verret B, Lévy A, Honoré C, Hénon C, Le Péchoux C, Bahleda R, Le Cesne A. Desmoid-type fibromatosis: Current therapeutic strategies and future perspectives. Cancer Treat Rev 2024; 123:102675. [PMID: 38159438 DOI: 10.1016/j.ctrv.2023.102675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/18/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
Desmoid tumors (DT) are rare, slow-growing, locally invasive soft tissue tumors that often pose significant therapeutic challenges. Traditional management strategies including active surveillance, surgery, radiotherapy, and systemic therapy which are associated with varying recurrence rates and high morbidity. Given the challenging nature of DT and the modest outcomes associated with current treatment strategies, there has been a growing interest in the field of γ-secretase inhibitors as a result of its action on the Wnt/β-catenin signaling pathway. In this review article, we will shed the light on the pathogenesis and molecular biology of DT, discuss its symptoms and diagnosis, and provide a comprehensive review of the traditional therapeutic approaches. We will also delve into the mechanisms of action of γ-secretase inhibitors, its efficacy, and the existing preclinical and clinical data available to date on the use of these agents, as well as the potential challenges and future prospects in the treatment landscape of these tumors.
Collapse
Affiliation(s)
- Rebecca Ibrahim
- Division of International Patients Care, Gustave Roussy Cancer Campus, Villejuif, France
| | - Tarek Assi
- Division of International Patients Care, Gustave Roussy Cancer Campus, Villejuif, France; Sarcoma Unit, Gustave Roussy Cancer Campus, Villejuif, France.
| | - Rita Khoury
- Division of International Patients Care, Gustave Roussy Cancer Campus, Villejuif, France
| | - Carine Ngo
- Sarcoma Unit, Gustave Roussy Cancer Campus, Villejuif, France
| | - Matthieu Faron
- Sarcoma Unit, Gustave Roussy Cancer Campus, Villejuif, France
| | - Benjamin Verret
- Sarcoma Unit, Gustave Roussy Cancer Campus, Villejuif, France
| | - Antonin Lévy
- Sarcoma Unit, Gustave Roussy Cancer Campus, Villejuif, France
| | - Charles Honoré
- Sarcoma Unit, Gustave Roussy Cancer Campus, Villejuif, France
| | - Clémence Hénon
- Sarcoma Unit, Gustave Roussy Cancer Campus, Villejuif, France
| | | | | | - Axel Le Cesne
- Division of International Patients Care, Gustave Roussy Cancer Campus, Villejuif, France; Sarcoma Unit, Gustave Roussy Cancer Campus, Villejuif, France
| |
Collapse
|
15
|
Ajore R, Mattsson J, Pertesi M, Ekdahl L, Ali Z, Hansson M, Nilsson B. Genome-wide CRISPR/Cas9 screen identifies regulators of BCMA expression on multiple myeloma cells. Blood Cancer J 2024; 14:21. [PMID: 38272874 PMCID: PMC10811322 DOI: 10.1038/s41408-024-00986-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/06/2024] [Accepted: 01/09/2024] [Indexed: 01/27/2024] Open
Affiliation(s)
- Ram Ajore
- Division of Hematology and Transfusion Medicine, Department of Laboratory Medicine, Lund University, 221 84, Lund, Sweden
- Lund Stem Cell Center, Lund University, 221 84, Lund, Sweden
| | - Jenny Mattsson
- Division of Hematology and Transfusion Medicine, Department of Laboratory Medicine, Lund University, 221 84, Lund, Sweden
- Lund Stem Cell Center, Lund University, 221 84, Lund, Sweden
- BioInvent International AB, Ideongatan 1, 223 70, Lund, Sweden
| | - Maroulio Pertesi
- Division of Hematology and Transfusion Medicine, Department of Laboratory Medicine, Lund University, 221 84, Lund, Sweden
- Lund Stem Cell Center, Lund University, 221 84, Lund, Sweden
| | - Ludvig Ekdahl
- Division of Hematology and Transfusion Medicine, Department of Laboratory Medicine, Lund University, 221 84, Lund, Sweden
- Lund Stem Cell Center, Lund University, 221 84, Lund, Sweden
| | - Zain Ali
- Division of Hematology and Transfusion Medicine, Department of Laboratory Medicine, Lund University, 221 84, Lund, Sweden
- Lund Stem Cell Center, Lund University, 221 84, Lund, Sweden
| | - Markus Hansson
- Division of Hematology and Transfusion Medicine, Department of Laboratory Medicine, Lund University, 221 84, Lund, Sweden
- Department of Internal Medicine and Clinical Nutrition, Sahlgrenska Academy, Göteborg University, 41346, Göteborg, Sweden
| | - Björn Nilsson
- Division of Hematology and Transfusion Medicine, Department of Laboratory Medicine, Lund University, 221 84, Lund, Sweden.
- Lund Stem Cell Center, Lund University, 221 84, Lund, Sweden.
- Broad Institute, Cambridge, MA, 02142, USA.
| |
Collapse
|
16
|
Burbach KF, Yoo AS. Notch Inhibition Enhances Morphological Reprogramming of microRNA-Induced Human Neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.12.575384. [PMID: 38260259 PMCID: PMC10802628 DOI: 10.1101/2024.01.12.575384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Although the importance of Notch signaling in brain development is well-known, its specific contribution to cellular reprogramming remains less defined. Here, we use microRNA-induced neurons that are directly reprogrammed from human fibroblasts to determine how Notch signaling contributes to neuronal identity. We found that inhibiting Notch signaling led to an increase in neurite extension, while activating Notch signaling had the opposite effect. Surprisingly, Notch inhibition during the first week of reprogramming was both necessary and sufficient to enhance neurite outgrowth at a later timepoint. This timeframe is when the reprogramming miRNAs, miR-9/9* and miR-124, primarily induce a post-mitotic state and erase fibroblast identity. Accordingly, transcriptomic analysis showed that the effect of Notch inhibition was likely due to improvements in fibroblast fate erasure and silencing of anti-neuronal genes. To this effect, we identify MYLIP , whose downregulation in response to Notch inhibition significantly promoted neurite outgrowth. Moreover, Notch inhibition resulted in cells with neuronal transcriptome signature defined by expressing long genes at a faster rate than the control, demonstrating the effect of accelerated fate erasure on neuronal fate acquisition. Our results demonstrate the critical role of Notch signaling in mediating morphological changes in miRNA-based neuronal reprogramming of human adult fibroblasts.
Collapse
|
17
|
Kang J, Zhang C, Wang Y, Peng J, Berger B, Perrimon N, Shen J. Lipophorin receptors genetically modulate neurodegeneration caused by reduction of Psn expression in the aging Drosophila brain. Genetics 2024; 226:iyad202. [PMID: 37996068 PMCID: PMC10763532 DOI: 10.1093/genetics/iyad202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/01/2023] [Accepted: 11/12/2023] [Indexed: 11/25/2023] Open
Abstract
Mutations in the Presenilin (PSEN) genes are the most common cause of early-onset familial Alzheimer's disease (FAD). Studies in cell culture, in vitro biochemical systems, and knockin mice showed that PSEN mutations are loss-of-function mutations, impairing γ-secretase activity. Mouse genetic analysis highlighted the importance of Presenilin (PS) in learning and memory, synaptic plasticity and neurotransmitter release, and neuronal survival, and Drosophila studies further demonstrated an evolutionarily conserved role of PS in neuronal survival during aging. However, molecular pathways that interact with PS in neuronal survival remain unclear. To identify genetic modifiers that modulate PS-dependent neuronal survival, we developed a new DrosophilaPsn model that exhibits age-dependent neurodegeneration and increases of apoptosis. Following a bioinformatic analysis, we tested top ranked candidate genes by selective knockdown (KD) of each gene in neurons using two independent RNAi lines in Psn KD models. Interestingly, 4 of the 9 genes enhancing neurodegeneration in Psn KD flies are involved in lipid transport and metabolism. Specifically, neuron-specific KD of lipophorin receptors, lpr1 and lpr2, dramatically worsens neurodegeneration in Psn KD flies, and overexpression of lpr1 or lpr2 does not alleviate Psn KD-induced neurodegeneration. Furthermore, lpr1 or lpr2 KD alone also leads to neurodegeneration, increased apoptosis, climbing defects, and shortened lifespan. Lastly, heterozygotic deletions of lpr1 and lpr2 or homozygotic deletions of lpr1 or lpr2 similarly lead to age-dependent neurodegeneration and further exacerbate neurodegeneration in Psn KD flies. These findings show that LpRs modulate Psn-dependent neuronal survival and are critically important for neuronal integrity in the aging brain.
Collapse
Affiliation(s)
- Jongkyun Kang
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Chen Zhang
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Yuhao Wang
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jian Peng
- Department of Computer Science, University of Illinois at Urbana-Champaign, Champaign, IL 61801, USA
| | - Bonnie Berger
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Norbert Perrimon
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Boston, MA 02115, USA
| | - Jie Shen
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
18
|
Stabell SH, Renzi A, Nilsen HR, Antonsen OH, Fosse JH, Haraldsen G, Sundnes O. Detection of native, activated Notch receptors in normal human apocrine-bearing skin and in hidradenitis suppurativa. Exp Dermatol 2024; 33:e14977. [PMID: 38060347 DOI: 10.1111/exd.14977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/30/2023] [Accepted: 11/05/2023] [Indexed: 01/30/2024]
Abstract
Notch signalling has generated considerable interest as a pathogenetic factor and a drug target in a range of human diseases. The gamma-secretase complex is crucial in the activation of Notch receptors by cleaving the intracellular domain allowing nuclear translocation. In recent years several mutations in gamma-secretase components have been discovered in patients with familial hidradenitis suppurativa (HS). This has led to hypotheses that impaired Notch signalling could be an important driver for HS in general, not only in the monogenic variants. However, no study has examined in situ Notch activation per se in HS, and some reports with conflicting results have instead been based on expression of Notch receptors or indirect measures of Notch target gene expression. In this study we established immunostaining protocols to identify native, activated Notch receptors in human skin tissue. The ability to detect changes in Notch activation was confirmed with an ex vivo skin organ model in which signal was reduced or obliterated in tissue exposed to a gamma-secretase inhibitor. Using these methods on skin biopsies from healthy volunteers and a general HS cohort we demonstrated for the first time the distribution of active Notch signalling in human apocrine-bearing skin. Quantification of activated NOTCH1 & NOTCH2 revealed similar levels in non-lesional and peri-lesional HS to that of healthy controls, thus ruling out a general defect in Notch activation in HS patients. We did find a variable but significant reduction of activated Notch in epidermis of lesional HS with a distribution that appeared related to the extent of surrounding tissue inflammation.
Collapse
Affiliation(s)
- Siri Hansen Stabell
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Dermatology, Oslo University Hospital, Oslo, Norway
- Department of Pathology, Oslo University Hospital, Oslo, Norway
| | - Anastasia Renzi
- Department of Pathology, Oslo University Hospital, Oslo, Norway
| | | | | | | | - Guttorm Haraldsen
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Pathology, Oslo University Hospital, Oslo, Norway
| | - Olav Sundnes
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Dermatology, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
19
|
Höppner S, Schröder B, Fluhrer R. Structure and function of SPP/SPPL proteases: insights from biochemical evidence and predictive modeling. FEBS J 2023; 290:5456-5474. [PMID: 37786993 DOI: 10.1111/febs.16968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/13/2023] [Accepted: 09/29/2023] [Indexed: 10/04/2023]
Abstract
More than 20 years ago, signal peptide peptidase (SPP) and its homologues, the signal peptide peptidase-like (SPPL) proteases have been identified based on their sequence similarity to presenilins, a related family of intramembrane aspartyl proteases. Other than those for the presenilins, no high-resolution structures for the SPP/SPPL proteases are available. Despite this limitation, over the years bioinformatical and biochemical data have accumulated, which altogether have provided a picture of the overall structure and topology of these proteases, their localization in the cell, the process of substrate recognition, their cleavage mechanism, and their function. Recently, the artificial intelligence-based structure prediction tool AlphaFold has added high-confidence models of the expected fold of SPP/SPPL proteases. In this review, we summarize known structural aspects of the SPP/SPPL family as well as their substrates. Of particular interest are the emerging substrate recognition and catalytic mechanisms that might lead to the prediction and identification of more potential substrates and deeper insight into physiological and pathophysiological roles of proteolysis.
Collapse
Affiliation(s)
- Sabine Höppner
- Biochemistry and Molecular Biology, Faculty of Medicine, Institute of Theoretical Medicine, University of Augsburg, Germany
| | - Bernd Schröder
- Institute for Physiological Chemistry, Technische Universität Dresden, Germany
| | - Regina Fluhrer
- Biochemistry and Molecular Biology, Faculty of Medicine, Institute of Theoretical Medicine, University of Augsburg, Germany
- Center for Interdisciplinary Health Research, University of Augsburg, Germany
| |
Collapse
|
20
|
Narlawar R, Serneels L, Gaffric C, Gijsen HJM, De Strooper B, Bischoff F. Discovery of brain permeable 2-Azabicyclo[2.2.2]octane sulfonamides as a novel class of presenilin-1 selective γ-secretase inhibitors. Eur J Med Chem 2023; 260:115725. [PMID: 37657269 DOI: 10.1016/j.ejmech.2023.115725] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/04/2023] [Accepted: 08/13/2023] [Indexed: 09/03/2023]
Abstract
This paper describes the rational design, synthesis, structure-activity relationship (SAR), and biological profile of presenilin-1 (PSEN-1) complex selective γ-secretase inhibitors, assessed for selectivity using a unique set of four γ-secretase subtype complexes. A set of known PSEN-1 selective γ-Secretase inhibitors (GSIs) was analyzed to understand the pharmacophoric features required for selective inhibition. Conformational modeling suggests that a characteristic 'U' shape orientation between aromatic sulfone/sulfonamide and aryl ring is crucial for PSEN-1 selectivity and potency. Using these insights, a series of brain-penetrant 2-azabicyclo[2,2,2]octane sulfonamides was devised and synthesized as a new class of PSEN-1 selective inhibitors. Compounds 13c and 13k displayed high potency towards PSEN1-APH1B complex but moderate selectivity towards PSEN2 complexes. However, compound (+)-13b displayed low nanomolar potency towards the PSEN1-APH1B complex, little (∼4-fold) selectivity towards PSEN1-APH1A, and high selectivity (>350-fold) versus PSEN2 complexes. Excellent brain penetration, no significant CYP inhibition, or cardiotoxicity, good solubility, and permeability make (+)-13b an excellent candidate for further lead optimization.
Collapse
Affiliation(s)
- Rajeshwar Narlawar
- Discovery Chemistry, Therapeutics Discovery, Janssen Research & Development, Janssen Pharmaceutica NV, Turnhoutseweg 30, B-2340, Beerse, Belgium; KU Leuven, Department of Neurosciences, Leuven Institute for Neuroscience and Disease, (LIND), Leuven, Belgium.
| | | | - Celia Gaffric
- Discovery Chemistry, Therapeutics Discovery, Janssen Research & Development, Janssen Pharmaceutica NV, Turnhoutseweg 30, B-2340, Beerse, Belgium
| | - Harrie J M Gijsen
- Discovery Chemistry, Therapeutics Discovery, Janssen Research & Development, Janssen Pharmaceutica NV, Turnhoutseweg 30, B-2340, Beerse, Belgium
| | - Bart De Strooper
- KU Leuven, Department of Neurosciences, Leuven Institute for Neuroscience and Disease, (LIND), Leuven, Belgium; VIB Center for Brain and Disease Research, Leuven, Belgium; Dementia Research Institute, University College London, London, UK
| | - François Bischoff
- Discovery Chemistry, Therapeutics Discovery, Janssen Research & Development, Janssen Pharmaceutica NV, Turnhoutseweg 30, B-2340, Beerse, Belgium.
| |
Collapse
|
21
|
van der Ende EL, In ‘t Veld SGJG, Hanskamp I, van der Lee S, Dijkstra JIR, Hok-A-Hin YS, Blujdea ER, van Swieten JC, Irwin DJ, Chen-Plotkin A, Hu WT, Lemstra AW, Pijnenburg YAL, van der Flier WM, del Campo M, Teunissen CE, Vermunt L. CSF proteomics in autosomal dominant Alzheimer's disease highlights parallels with sporadic disease. Brain 2023; 146:4495-4507. [PMID: 37348871 PMCID: PMC10629764 DOI: 10.1093/brain/awad213] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 06/24/2023] Open
Abstract
Autosomal dominant Alzheimer's disease (ADAD) offers a unique opportunity to study pathophysiological changes in a relatively young population with few comorbidities. A comprehensive investigation of proteome changes occurring in ADAD could provide valuable insights into AD-related biological mechanisms and uncover novel biomarkers and therapeutic targets. Furthermore, ADAD might serve as a model for sporadic AD, but in-depth proteome comparisons are lacking. We aimed to identify dysregulated CSF proteins in ADAD and determine the degree of overlap with sporadic AD. We measured 1472 proteins in CSF of PSEN1 or APP mutation carriers (n = 22) and age- and sex-matched controls (n = 20) from the Amsterdam Dementia Cohort using proximity extension-based immunoassays (PEA). We compared protein abundance between groups with two-sided t-tests and identified enriched biological pathways. Using the same protein panels in paired plasma samples, we investigated correlations between CSF proteins and their plasma counterparts. Finally, we compared our results with recently published PEA data from an international cohort of sporadic AD (n = 230) and non-AD dementias (n = 301). All statistical analyses were false discovery rate-corrected. We detected 66 differentially abundant CSF proteins (65 increased, 1 decreased) in ADAD compared to controls (q < 0.05). The most strongly upregulated proteins (fold change >1.8) were related to immunity (CHIT1, ITGB2, SMOC2), cytoskeletal structure (MAPT, NEFL) and tissue remodelling (TMSB10, MMP-10). Significant CSF-plasma correlations were found for the upregulated proteins SMOC2 and LILR1B. Of the 66 differentially expressed proteins, 36 had been measured previously in the sporadic dementias cohort, 34 of which (94%) were also significantly upregulated in sporadic AD, with a strong correlation between the fold changes of these proteins in both cohorts (rs = 0.730, P < 0.001). Twenty-nine of the 36 proteins (81%) were also upregulated among non-AD patients with suspected AD co-pathology. This CSF proteomics study demonstrates substantial biochemical similarities between ADAD and sporadic AD, suggesting involvement of the same biological processes. Besides known AD-related proteins, we identified several relatively novel proteins, such as TMSB10, MMP-10 and SMOC2, which have potential as novel biomarkers. With shared pathophysiological CSF changes, ADAD study findings might be translatable to sporadic AD, which could greatly expedite therapy development.
Collapse
Affiliation(s)
- Emma L van der Ende
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Sjors G J G In ‘t Veld
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Iris Hanskamp
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Sven van der Lee
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
- Genomics of Neurodegenerative Diseases and Aging, Human Genetics, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Janna I R Dijkstra
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
- Genomics of Neurodegenerative Diseases and Aging, Human Genetics, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Yanaika S Hok-A-Hin
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Elena R Blujdea
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - John C van Swieten
- Alzheimer Center and Department of Neurology, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - David J Irwin
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alice Chen-Plotkin
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - William T Hu
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30307, USA
| | - Afina W Lemstra
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Yolande A L Pijnenburg
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Wiesje M van der Flier
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
- Department of Epidemiology and Data Science, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Marta del Campo
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, 28003 Madrid, Spain
- Barcelonabeta Brain Research Center (BBRC), Pasqual Maragall Foundation, 08005 Barcelona, Spain
| | - Charlotte E Teunissen
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Lisa Vermunt
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
22
|
Wang X, Zhou R, Sun X, Li J, Wang J, Yue W, Wang L, Liu H, Shi Y, Zhang D. Preferential Regulation of Γ-Secretase-Mediated Cleavage of APP by Ganglioside GM1 Reveals a Potential Therapeutic Target for Alzheimer's Disease. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303411. [PMID: 37759382 PMCID: PMC10646247 DOI: 10.1002/advs.202303411] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/20/2023] [Indexed: 09/29/2023]
Abstract
A hallmark of Alzheimer's disease (AD) is the senile plaque, which contains β-amyloid peptides (Aβ). Ganglioside GM1 is the most common brain ganglioside. However, the mechanism of GM1 in modulating Aβ processing is rarely known. Aβ levels are detected by using Immunohistochemistry (IHC) and enzyme-linked immune-sorbent assay (ELISA). Cryo-electron microscopy (Cryo-EM) is used to determine the structure of γ-secretase supplemented with GM1. The levels of the cleavage of amyloid precursor protein (APP)/Cadherin/Notch1 are detected using Western blot analysis. Y maze, object translocation, and Barnes maze are performed to evaluate cognitive functions. GM1 leads to conformational change of γ-secretase structure and specifically accelerates γ-secretase cleavage of APP without affecting other substrates including Notch1, potentially through its interaction with the N-terminal fragment of presenilin 1 (PS1). Reduction of GM1 levels decreases amyloid plaque deposition and improves cognitive dysfunction. This study reveals the mechanism of GM1 in Aβ generation and provides the evidence that decreasing GM1 levels represents a potential strategy in AD treatment. These results provide insights into the detailed mechanism of the effect of GM1 on PS1, representing a step toward the characterization of its novel role in the modulation of γ-secretase activity and the pathogenesis of AD.
Collapse
Affiliation(s)
- Xiaotong Wang
- Peking University Sixth HospitalPeking University Institute of Mental HealthNHC Key Laboratory of Mental Health (Peking University)National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital)Beijing100191China
- Changping LaboratoryBeijing102206China
| | - Rui Zhou
- Beijing Frontier Research Center for Biological StructureTsinghua‐Peking Joint Center for Life SciencesSchool of Life SciencesTsinghua UniversityBeijing100084China
| | - Xiaqin Sun
- Peking University Sixth HospitalPeking University Institute of Mental HealthNHC Key Laboratory of Mental Health (Peking University)National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital)Beijing100191China
| | - Jun Li
- Peking University Sixth HospitalPeking University Institute of Mental HealthNHC Key Laboratory of Mental Health (Peking University)National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital)Beijing100191China
| | - Jinxin Wang
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain ResearchBeijing Normal UniversityBeijing100875China
| | - Weihua Yue
- Peking University Sixth HospitalPeking University Institute of Mental HealthNHC Key Laboratory of Mental Health (Peking University)National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital)Beijing100191China
- PKU‐IDG/McGovern Institute for Brain ResearchPeking UniversityBeijing100871China
| | - Lifang Wang
- Peking University Sixth HospitalPeking University Institute of Mental HealthNHC Key Laboratory of Mental Health (Peking University)National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital)Beijing100191China
| | - Hesheng Liu
- Changping LaboratoryBeijing102206China
- Biomedical Pioneering Innovation CenterPeking UniversityBeijing100871China
| | - Yigong Shi
- Beijing Frontier Research Center for Biological StructureTsinghua‐Peking Joint Center for Life SciencesSchool of Life SciencesTsinghua UniversityBeijing100084China
- Westlake Laboratory of Life Science and BiomedicineHangzhouZhejiang310024China
- Key Laboratory of Structural Biology of Zhejiang ProvinceSchool of Life SciencesWestlake UniversityHangzhouZhejiang310024China
- Institute of BiologyWestlake Institute for Advanced Study18 Shilongshan Road, Xihu DistrictHangzhouZhejiang310024China
| | - Dai Zhang
- Peking University Sixth HospitalPeking University Institute of Mental HealthNHC Key Laboratory of Mental Health (Peking University)National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital)Beijing100191China
- Changping LaboratoryBeijing102206China
| |
Collapse
|
23
|
Essayan-Perez S, Südhof TC. Neuronal γ-secretase regulates lipid metabolism, linking cholesterol to synaptic dysfunction in Alzheimer's disease. Neuron 2023; 111:3176-3194.e7. [PMID: 37543038 PMCID: PMC10592349 DOI: 10.1016/j.neuron.2023.07.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 06/16/2023] [Accepted: 07/10/2023] [Indexed: 08/07/2023]
Abstract
Presenilin mutations that alter γ-secretase activity cause familial Alzheimer's disease (AD), whereas ApoE4, an apolipoprotein for cholesterol transport, predisposes to sporadic AD. Both sporadic and familial AD feature synaptic dysfunction. Whether γ-secretase is involved in cholesterol metabolism and whether such involvement impacts synaptic function remains unknown. Here, we show that in human neurons, chronic pharmacological or genetic suppression of γ-secretase increases synapse numbers but decreases synaptic transmission by lowering the presynaptic release probability without altering dendritic or axonal arborizations. In search of a mechanism underlying these synaptic impairments, we discovered that chronic γ-secretase suppression robustly decreases cholesterol levels in neurons but not in glia, which in turn stimulates neuron-specific cholesterol-synthesis gene expression. Suppression of cholesterol levels by HMG-CoA reductase inhibitors (statins) impaired synaptic function similar to γ-secretase inhibition. Thus, γ-secretase enables synaptic function by maintaining cholesterol levels, whereas the chronic suppression of γ-secretase impairs synapses by lowering cholesterol levels.
Collapse
Affiliation(s)
- Sofia Essayan-Perez
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Thomas C Südhof
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
24
|
Kepp KP, Robakis NK, Høilund-Carlsen PF, Sensi SL, Vissel B. The amyloid cascade hypothesis: an updated critical review. Brain 2023; 146:3969-3990. [PMID: 37183523 DOI: 10.1093/brain/awad159] [Citation(s) in RCA: 52] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 04/20/2023] [Accepted: 04/23/2023] [Indexed: 05/16/2023] Open
Abstract
Results from recent clinical trials of antibodies that target amyloid-β (Aβ) for Alzheimer's disease have created excitement and have been heralded as corroboration of the amyloid cascade hypothesis. However, while Aβ may contribute to disease, genetic, clinical, imaging and biochemical data suggest a more complex aetiology. Here we review the history and weaknesses of the amyloid cascade hypothesis in view of the new evidence obtained from clinical trials of anti-amyloid antibodies. These trials indicate that the treatments have either no or uncertain clinical effect on cognition. Despite the importance of amyloid in the definition of Alzheimer's disease, we argue that the data point to Aβ playing a minor aetiological role. We also discuss data suggesting that the concerted activity of many pathogenic factors contribute to Alzheimer's disease and propose that evolving multi-factor disease models will better underpin the search for more effective strategies to treat the disease.
Collapse
Affiliation(s)
- Kasper P Kepp
- Section of Biophysical and Biomedicinal chemistry, DTU Chemistry, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Nikolaos K Robakis
- Icahn School of Medicine at Mount Sinai Medical Center, New York, NY 10029, USA
| | - Poul F Høilund-Carlsen
- Department of Nuclear Medicine, Odense University Hospital, 5000 Odense C, Denmark
- Department of Clinical Research, University of Southern Denmark, 5000 Odense C, Denmark
| | - Stefano L Sensi
- Center for Advanced Studies and Technology-CAST, and Institute for Advanced Biotechnology (ITAB), University G. d'Annunzio of Chieti-Pescara, Chieti, 66013, Italy
- Department of Neuroscience, Imaging, and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, 66013, Italy
| | - Bryce Vissel
- St Vincent's Hospital Centre for Applied Medical Research, St Vincent's Hospital, Sydney, 2010, Australia
- School of Clinical Medicine, UNSW Medicine and Health, St Vincent's Healthcare Clinical Campus, Faculty of Medicine and Health, Sydney, NSW 2052, Australia
| |
Collapse
|
25
|
Song C, Zhang J, Xu C, Gao M, Li N, Geng Q. The critical role of γ-secretase and its inhibitors in cancer and cancer therapeutics. Int J Biol Sci 2023; 19:5089-5103. [PMID: 37928268 PMCID: PMC10620818 DOI: 10.7150/ijbs.87334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 07/22/2023] [Indexed: 11/07/2023] Open
Abstract
As a multi-substrate transmembrane protease, γ-secretase exists widely in various cells. It controls multiple important cellular activities through substrate cleavage. γ-secretase inhibitors (GSIs) play a role in cancer inhibition by blocking Notch cleavage, and are considered as potential therapeutic strategies for cancer. Currently, GSIs have encouraging performance in preclinical models, yet this success does not translate well in clinical trials. In recent years, a number of breakthrough discoveries have shown us the promise of targeting γ-secretase for the treatment of cancer. Here, we integrate a large amount of data from γ-secretase and its inhibitors and cancer in nearly 30 years, comb and discuss the close connection between γ-secretase and cancer, as well as the potential and problems of current GSIs in cancer treatment. We analyze the possible reasons for the failure performance of current GSIs in clinical trials, and make recommendations for future research areas.
Collapse
Affiliation(s)
- Congkuan Song
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jinjin Zhang
- Department of Emergency, Taihe Hospital, Shiyan, China
| | - Chenzhen Xu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Minglang Gao
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ning Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qing Geng
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
26
|
Khan A, Killick R, Wirth D, Hoogland D, Hristova K, Ulmschneider JP, King CR, Ulmschneider MB. Masking the transmembrane region of the amyloid β precursor protein as a safe means to lower amyloid β production. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2023; 9:e12428. [PMID: 37954165 PMCID: PMC10632552 DOI: 10.1002/trc2.12428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/19/2023] [Indexed: 11/14/2023]
Abstract
Introduction Reducing brain levels of both soluble and insoluble forms of amyloid beta (Aβ) remains the primary goal of most therapies that target Alzheimer's disease (AD). However, no treatment has so far resulted in patient benefit, and clinical trials of the most promising drug candidates have generally failed due to significant adverse effects. This highlights the need for safer and more selective ways to target and modulate Aβ biogenesis. Methods Peptide technology has advanced to allow reliable synthesis, purification, and delivery of once-challenging hydrophobic sequences. This is opening up new routes to target membrane processes associated with disease. Here we deploy a combination of atomic detail molecular dynamics (MD) simulations, living-cell Förster resonance energy transfer (FRET), and in vitro assays to elucidate the atomic-detail dynamics, molecular mechanisms, and cellular activity and selectivity of a membrane-active peptide that targets the Aβ precursor protein (APP). Results We demonstrate that Aβ biogenesis can be downregulated selectively using an APP occlusion peptide (APPOP). APPOP inhibits Aβ production in a dose-dependent manner, with a mean inhibitory concentration (IC50) of 450 nM toward exogenous APP and 50 nM toward endogenous APP in primary rat cortical neuronal cultures. APPOP does not impact the γ-secretase cleavage of Notch-1, or exhibit toxicity toward cultured primary rat neurons, suggesting that it selectively shields APP from proteolysis. Discussion Drugs targeting AD need to be given early and for very long periods to prevent the onset of clinical symptoms. This necessitates being able to target Aβ production precisely and without affecting the activity of key cellular enzymes such as γ-secretase for other substrates. Peptides offer a powerful way for targeting key pathways precisely, thereby reducing the risk of adverse effects. Here we show that protecting APP from proteolytic processing offers a promising route to safely and specifically lower Aβ burden. In particular, we show that the amyloid pathway can be targeted directly and specificically. This reduces the risk of off-target effects and paves the way for a safe prophylactic treatment.
Collapse
Affiliation(s)
| | - Richard Killick
- Living Systems InstituteUniversity of ExeterExeterUK
- King's College LondonMaurice Wohl Clinical Neuroscience InstituteCamberwellLondonUK
| | - Daniel Wirth
- Department of Materials Science and Engineering and Institute for NanoBioTechnologyJohns Hopkins UniversityBaltimoreMarylandUSA
| | | | - Kalina Hristova
- Department of Materials Science and Engineering and Institute for NanoBioTechnologyJohns Hopkins UniversityBaltimoreMarylandUSA
| | | | - Christopher R. King
- National Institutes of HealthNational Institute of Neurological Disorders and StrokeBethesdaMarylandUSA
| | | |
Collapse
|
27
|
Orobets KS, Karamyshev AL. Amyloid Precursor Protein and Alzheimer's Disease. Int J Mol Sci 2023; 24:14794. [PMID: 37834241 PMCID: PMC10573485 DOI: 10.3390/ijms241914794] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/20/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
Alzheimer's disease (AD) is one of the most common neurodegenerative disorders associated with age or inherited mutations. It is characterized by severe dementia in the late stages that affect memory, cognitive functions, and daily life overall. AD progression is linked to the accumulation of cytotoxic amyloid beta (Aβ) and hyperphosphorylated tau protein combined with other pathological features such as synaptic loss, defective energy metabolism, imbalances in protein, and metal homeostasis. Several treatment options for AD are under investigation, including antibody-based therapy and stem cell transplantation. Amyloid precursor protein (APP) is a membrane protein considered to play a main role in AD pathology. It is known that APP in physiological conditions follows a non-amyloidogenic pathway; however, it can proceed to an amyloidogenic scenario, which leads to the generation of extracellular deleterious Aβ plaques. Not all steps of APP biogenesis are clear so far, and these questions should be addressed in future studies. AD is a complex chronic disease with many factors that contribute to disease progression.
Collapse
Affiliation(s)
| | - Andrey L. Karamyshev
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA;
| |
Collapse
|
28
|
Balić A, Marinović B, Bukvić Mokos Z. The genetic aspects of hidradenitis suppurativa. Clin Dermatol 2023; 41:551-563. [PMID: 37652193 DOI: 10.1016/j.clindermatol.2023.08.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Genetic aspects have a substantial role in hidradenitis suppurativa (HS) pathogenesis. A positive family history of HS occurs in about one-third of HS cases and is significantly higher in patients with early onset of the disease. Recent twin studies have shown a high heritability in HS, fortifying the importance of genetic factors in disease pathogenesis. Based on existing knowledge on the genomics of HS, the disease can be categorized as familial HS, sporadic, syndromic HS, and "HS plus" associated with other syndromes. In familial HS, autosomal dominant transmission is proposed, and monogenic inheritance is rare. This monogenic trait is related to mutations of γ-secretase component genes and Notch signaling or defects in inflammasome function. With newly discovered gene mutations, such as those related to innate and adaptive immunity, skin microbiome, inflammasome, epidermal homeostasis, and keratinization pathway, we can define HS as a polygenic, multifactorial, autoinflammatory disease. To fully elucidate the genetic aspects of HS, we need extensive, long-term global collaborations.
Collapse
Affiliation(s)
- Anamaria Balić
- Department of Dermatology and Venereology, University Hospital Centre Zagreb, European Reference Network (ERN) - Skin Reference Centre, Zagreb, Croatia
| | - Branka Marinović
- Department of Dermatology and Venereology, University Hospital Centre Zagreb, European Reference Network (ERN) - Skin Reference Centre, Zagreb, Croatia; School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Zrinka Bukvić Mokos
- Department of Dermatology and Venereology, University Hospital Centre Zagreb, European Reference Network (ERN) - Skin Reference Centre, Zagreb, Croatia; School of Medicine, University of Zagreb, Zagreb, Croatia.
| |
Collapse
|
29
|
Liu C, Nikain C, Li YM. γ-Secretase fanning the fire of innate immunity. Biochem Soc Trans 2023; 51:1597-1610. [PMID: 37449907 PMCID: PMC11212119 DOI: 10.1042/bst20221445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/29/2023] [Accepted: 07/03/2023] [Indexed: 07/18/2023]
Abstract
Innate immunity is the first line of defense against pathogens, alerting the individual cell and surrounding area to respond to this potential invasion. γ-secretase is a transmembrane protease complex that plays an intricate role in nearly every stage of this innate immune response. Through regulation of pattern recognition receptors (PRR) such as TREM2 and RAGE γ-secretase can modulate pathogen recognition. γ-secretase can act on cytokine receptors such as IFNαR2 and CSF1R to dampen their signaling capacity. While γ-secretase-mediated regulated intramembrane proteolysis (RIP) can further moderate innate immune responses through downstream signaling pathways. Furthermore, γ-secretase has also been shown to be regulated by the innate immune system through cytokine signaling and γ-secretase modulatory proteins such as IFITM3 and Hif-1α. This review article gives an overview of how γ-secretase is implicated in innate immunity and the maintenance of its responses through potentially positive and negative feedback loops.
Collapse
Affiliation(s)
- Chenge Liu
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center
- Programs of Pharmacology, Weill Graduate School of Medical Sciences of Cornell University
| | - Cyrus Nikain
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center
- Programs of Pharmacology, Weill Graduate School of Medical Sciences of Cornell University
| | - Yue-Ming Li
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center
- Programs of Pharmacology, Weill Graduate School of Medical Sciences of Cornell University
| |
Collapse
|
30
|
Swanson MJ, Lewis KN, Carpenter R, Whetzel A, Bae NS. The human RAP1 and GFAPɛ proteins increase γ-secretase activity in a yeast model system. G3 (BETHESDA, MD.) 2023; 13:jkad057. [PMID: 36929840 PMCID: PMC10411568 DOI: 10.1093/g3journal/jkad057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/24/2023] [Accepted: 03/06/2023] [Indexed: 03/18/2023]
Abstract
Alzheimer's disease (AD) is an age-related disorder that results in progressive cognitive impairment and memory loss. Deposition of amyloid β (Aβ) peptides in senile plaques is a hallmark of AD. γ-secretase produces Aβ peptides, mostly as the soluble Aβ40 with fewer insoluble Aβ42 peptides. Rare, early-onset AD (EOAD) occurs in individuals under 60 years of age. Most EOAD cases are due to unknown genetic causes, but a subset is due to mutations in the genes encoding the amyloid precursor protein that is processed into Aβ peptides or the presenilins (PS1 and PS2) that process APP. PS1 interacts with the epsilon isoform of glial fibrillary acidic protein (GFAPɛ), a protein found in the subventricular zone of the brain. We have found that GFAPɛ interacts with the telomere protection factor RAP1 (TERF2IP). RAP1 can also interact with PS1 alone or with GFAPɛ in vitro. Our data show that the nuclear protein RAP1 has an extratelomeric role in the cytoplasm through its interactions with GFAPɛ and PS1. GFAPɛ coprecipitated with RAP1 from human cell extracts. RAP1, GFAPɛ, and PS1 all colocalized in human SH-SY5Y cells. Using a genetic model of the γ-secretase complex in Saccharomyces cerevisiae, RAP1 increased γ-secretase activity, and this was potentiated by GFAPɛ. Our studies are the first to connect RAP1 with an age-related disorder.
Collapse
Affiliation(s)
- Mark J Swanson
- Department of Biochemistry and Molecular Genetics, Midwestern University, Glendale, AZ 85308, USA
| | - Kelsey N Lewis
- Department of Biochemistry and Molecular Genetics, Midwestern University, Glendale, AZ 85308, USA
| | - Robert Carpenter
- Department of Biomedical Sciences, College of Graduate Studies, Midwestern University, Glendale, AZ 85308, USA
| | - Alexis Whetzel
- Department of Biochemistry and Molecular Genetics, Midwestern University, Glendale, AZ 85308, USA
| | - Nancy S Bae
- Department of Biochemistry and Molecular Genetics, Midwestern University, Glendale, AZ 85308, USA
| |
Collapse
|
31
|
Tien PC, Chen X, Elzey BD, Pollock RE, Kuang S. Notch signaling regulates a metabolic switch through inhibiting PGC-1α and mitochondrial biogenesis in dedifferentiated liposarcoma. Oncogene 2023; 42:2521-2535. [PMID: 37433985 PMCID: PMC10575759 DOI: 10.1038/s41388-023-02768-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 07/13/2023]
Abstract
Human dedifferentiated liposarcoma (DDLPS) is a rare but lethal cancer with no driver mutations being identified, hampering the development of targeted therapies. We and others recently reported that constitutive activation of Notch signaling through overexpression of the Notch1 intracellular domain (NICDOE) in murine adipocytes leads to tumors resembling human DDLPS. However, the mechanisms underlying the oncogenic functions of Notch activation in DDLPS remains unclear. Here, we show that Notch signaling is activated in a subset of human DDLPS and correlates with poor prognosis and expression of MDM2, a defining marker of DDLPS. Metabolic analyses reveal that murine NICDOE DDLPS cells exhibit markedly reduced mitochondrial respiration and increased glycolysis, mimicking the Warburg effect. This metabolic switch is associated with diminished expression of peroxisome proliferator-activated receptor gamma coactivator 1α (Ppargc1a, encoding PGC-1α protein), a master regulator of mitochondrial biogenesis. Genetic ablation of the NICDOE cassette rescues the expression of PGC-1α and mitochondrial respiration. Similarly, overexpression of PGC-1α is sufficient to rescue mitochondria biogenesis, inhibit the growth and promote adipogenic differentiation of DDLPS cells. Together, these data demonstrate that Notch activation inhibits PGC-1α to suppress mitochondrial biogenesis and drive a metabolic switch in DDLPS.
Collapse
Affiliation(s)
- Pei-Chieh Tien
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Xiyue Chen
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Bennett D Elzey
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, 47907, USA
- Center for Cancer Research, Purdue University, West Lafayette, IN, 47907, USA
| | - Raphael E Pollock
- Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Shihuan Kuang
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA.
- Center for Cancer Research, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
32
|
Karunungan K, Garza RH, Grodzki AC, Holt M, Lein PJ, Chandrasekaran V. Gamma secretase activity modulates BMP-7-induced dendritic growth in primary rat sympathetic neurons. Auton Neurosci 2023; 247:103085. [PMID: 37031474 PMCID: PMC10330319 DOI: 10.1016/j.autneu.2023.103085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 04/08/2023]
Abstract
Autonomic dysfunction has been observed in Alzheimer's disease (AD); however, the effects of genes involved in AD on the peripheral nervous system are not well understood. Previous studies have shown that presenilin-1 (PSEN1), the catalytic subunit of the gamma secretase (γ-secretase) complex, mutations in which are associated with familial AD function, regulates dendritic growth in hippocampal neurons. In this study, we examined whether the γ-secretase pathway also influences dendritic growth in primary sympathetic neurons. Using immunoblotting and immunocytochemistry, molecules of the γ-secretase complex, PSEN1, PSEN2, PEN2, nicastrin and APH1a, were detected in sympathetic neurons dissociated from embryonic (E20/21) rat sympathetic ganglia. Addition of bone morphogenetic protein-7 (BMP-7), which induces dendrites in these neurons, did not alter expression or localization of γ-secretase complex proteins. BMP-7-induced dendritic growth was inhibited by siRNA knockdown of PSEN1 and by three γ-secretase inhibitors, γ-secretase inhibitor IX (DAPT), LY-411575 and BMS-299897. These effects were specific to dendrites and concentration-dependent and did not alter early downstream pathways of BMP signaling. In summary, our results indicate that γ-secretase activity enhances BMP-7 induced dendritic growth in sympathetic neurons. These findings provide insight into the normal cellular role of the γ-secretase complex in sympathetic neurons.
Collapse
Affiliation(s)
- Krystal Karunungan
- Department of Biology, Saint Mary's College of California, 1928 Saint Mary's Road, Moraga, CA 94556, United States of America
| | - Rachel H Garza
- Department of Biology, Saint Mary's College of California, 1928 Saint Mary's Road, Moraga, CA 94556, United States of America
| | - Ana Cristina Grodzki
- Department of Molecular Biosciences, University of California, Davis, 1089 Veterinary Medicine Drive, Davis, CA 95616, United States of America
| | - Megan Holt
- Department of Biology, Saint Mary's College of California, 1928 Saint Mary's Road, Moraga, CA 94556, United States of America
| | - Pamela J Lein
- Department of Molecular Biosciences, University of California, Davis, 1089 Veterinary Medicine Drive, Davis, CA 95616, United States of America
| | - Vidya Chandrasekaran
- Department of Biology, Saint Mary's College of California, 1928 Saint Mary's Road, Moraga, CA 94556, United States of America.
| |
Collapse
|
33
|
Huang T, Lin Y, Chen J, Hu J, Chen H, Zhang Y, Zhang B, He X. CD51 Intracellular Domain Promotes Cancer Cell Neurotropism through Interacting with Transcription Factor NR4A3 in Colorectal Cancer. Cancers (Basel) 2023; 15:cancers15092623. [PMID: 37174090 PMCID: PMC10177513 DOI: 10.3390/cancers15092623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/29/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023] Open
Abstract
The abundant nervous system in intestine provides the basis for perineural invasion (PNI) of colorectal cancer (CRC). PNI is defined as the invasion of the nerves by cancer cells. Although PNI is already known to be an independent prognostic factor in CRC, the molecular mechanism underlying PNI remains obscure. In this study, we first demonstrated that CD51 could promote the neurotropism of tumor cells through cleavage with γ-secretase to generate an intracellular domain (ICD). Mechanistically, ICD of CD51 could bind to the transcription factor NR4A3, and act as a coactivator to promote the expression of downstream effectors, such as NTRK1, NTRK3, and SEMA3E. Pharmacological inhibition of γ-secretase impedes PNI mediated by CD51 in CRC both in vitro and in vivo and may become a potential therapeutic target for PNI in CRC.
Collapse
Affiliation(s)
- Tianze Huang
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510655, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510655, China
| | - Yanyun Lin
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510655, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510655, China
| | - Junguo Chen
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510655, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510655, China
| | - Jiancong Hu
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510655, China
| | - Hao Chen
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510655, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510655, China
| | - Yanhong Zhang
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510655, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510655, China
| | - Bin Zhang
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510655, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510655, China
| | - Xiaosheng He
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510655, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510655, China
| |
Collapse
|
34
|
Diluvio G, Kelley TT, Lahiry M, Alvarez-Trotta A, Kolb EM, Shersher E, Astudillo L, Kovall RA, Schürer SC, Capobianco AJ. A novel chemical attack on Notch-mediated transcription by targeting the NACK ATPase. Mol Ther Oncolytics 2023; 28:307-320. [PMID: 36938545 PMCID: PMC10015116 DOI: 10.1016/j.omto.2023.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 02/17/2023] [Indexed: 02/25/2023] Open
Abstract
Notch activation complex kinase (NACK) is a component of the Notch transcriptional machinery critical for the Notch-mediated tumorigenesis. However, the mechanism through which NACK regulates Notch-mediated transcription is not well understood. Here, we demonstrate that NACK binds and hydrolyzes ATP and that only ATP-bound NACK can bind to the Notch ternary complex (NTC). Considering this, we sought to identify inhibitors of this ATP-dependent function and, using computational pipelines, discovered the first small-molecule inhibitor of NACK, Z271-0326, that directly blocks the activity of Notch-mediated transcription and shows potent antineoplastic activity in PDX mouse models. In conclusion, we have discovered the first inhibitor that holds promise for the efficacious treatment of Notch-driven cancers by blocking the Notch activity downstream of the NTC.
Collapse
Affiliation(s)
- Giulia Diluvio
- Molecular Oncology Program, The DeWitt Daughtry Family Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Tanya T. Kelley
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Mohini Lahiry
- Molecular Oncology Program, The DeWitt Daughtry Family Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Annamil Alvarez-Trotta
- Molecular Oncology Program, The DeWitt Daughtry Family Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Ellen M. Kolb
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Elena Shersher
- Molecular Oncology Program, The DeWitt Daughtry Family Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Cancer Epigenetics Program, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Luisana Astudillo
- Molecular Oncology Program, The DeWitt Daughtry Family Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Rhett A. Kovall
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Stephan C. Schürer
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Corresponding author: Stephan C. Schürer, Miller School of Medicine, University of Miami, 1600 North West 10th Avenue, Miami, FL 33136, USA.
| | - Anthony J. Capobianco
- Molecular Oncology Program, The DeWitt Daughtry Family Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Corresponding author: Anthony J. Capobianco, Miller School of Medicine, University of Miami, 1600 North West 10th Avenue, Miami, FL 33136, USA.
| |
Collapse
|
35
|
Corsi GI, Gadekar VP, Haukedal H, Doncheva NT, Anthon C, Ambardar S, Palakodeti D, Hyttel P, Freude K, Seemann SE, Gorodkin J. The transcriptomic landscape of neurons carrying PSEN1 mutations reveals changes in extracellular matrix components and non-coding gene expression. Neurobiol Dis 2023; 178:105980. [PMID: 36572121 DOI: 10.1016/j.nbd.2022.105980] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 12/12/2022] [Accepted: 12/22/2022] [Indexed: 12/24/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive and irreversible brain disorder, which can occur either sporadically, due to a complex combination of environmental, genetic, and epigenetic factors, or because of rare genetic variants in specific genes (familial AD, or fAD). A key hallmark of AD is the accumulation of amyloid beta (Aβ) and Tau hyperphosphorylated tangles in the brain, but the underlying pathomechanisms and interdependencies remain poorly understood. Here, we identify and characterise gene expression changes related to two fAD mutations (A79V and L150P) in the Presenilin-1 (PSEN1) gene. We do this by comparing the transcriptomes of glutamatergic forebrain neurons derived from fAD-mutant human induced pluripotent stem cells (hiPSCs) and their individual isogenic controls generated via precision CRISPR/Cas9 genome editing. Our analysis of Poly(A) RNA-seq data detects 1111 differentially expressed coding and non-coding genes significantly altered in fAD. Functional characterisation and pathway analysis of these genes reveal profound expression changes in constituents of the extracellular matrix, important to maintain the morphology, structural integrity, and plasticity of neurons, and in genes involved in calcium homeostasis and mitochondrial oxidative stress. Furthermore, by analysing total RNA-seq data we reveal that 30 out of 31 differentially expressed circular RNA genes are significantly upregulated in the fAD lines, and that these may contribute to the observed protein-coding gene expression changes. The results presented in this study contribute to a better understanding of the cellular mechanisms impacted in AD neurons, ultimately leading to neuronal damage and death.
Collapse
Affiliation(s)
- Giulia I Corsi
- Center for non-coding RNA in Technology and Health, University of Copenhagen, Frederiksberg 1871, Denmark; Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg 1870, Denmark
| | - Veerendra P Gadekar
- Center for non-coding RNA in Technology and Health, University of Copenhagen, Frederiksberg 1871, Denmark; Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg 1870, Denmark
| | - Henriette Haukedal
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg 1870, Denmark
| | - Nadezhda T Doncheva
- Center for non-coding RNA in Technology and Health, University of Copenhagen, Frederiksberg 1871, Denmark; Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg 1870, Denmark; Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen 2200, Denmark
| | - Christian Anthon
- Center for non-coding RNA in Technology and Health, University of Copenhagen, Frederiksberg 1871, Denmark; Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg 1870, Denmark
| | - Sheetal Ambardar
- Institute for Stem Cell Science and Regenerative Medicine, Bangalore 560065, India; School of Biotechnology, University of Jammu, Jammu and Kashmir 180001, India
| | - Dasaradhi Palakodeti
- Institute for Stem Cell Science and Regenerative Medicine, Bangalore 560065, India
| | - Poul Hyttel
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg 1870, Denmark
| | - Kristine Freude
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg 1870, Denmark
| | - Stefan E Seemann
- Center for non-coding RNA in Technology and Health, University of Copenhagen, Frederiksberg 1871, Denmark; Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg 1870, Denmark
| | - Jan Gorodkin
- Center for non-coding RNA in Technology and Health, University of Copenhagen, Frederiksberg 1871, Denmark; Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg 1870, Denmark.
| |
Collapse
|
36
|
Houser MCQ, Mitchell SPC, Sinha P, Lundin B, Berezovska O, Maesako M. Endosome and Lysosome Membrane Properties Functionally Link to γ-Secretase in Live/Intact Cells. SENSORS (BASEL, SWITZERLAND) 2023; 23:2651. [PMID: 36904854 PMCID: PMC10007619 DOI: 10.3390/s23052651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Our unique multiplexed imaging assays employing FRET biosensors have previously detected that γ-secretase processes APP C99 primarily in late endosomes and lysosomes in live/intact neurons. Moreover we have shown that Aβ peptides are enriched in the same subcellular loci. Given that γ-secretase is integrated into the membrane bilayer and functionally links to lipid membrane properties in vitro, it is presumable that γ-secretase function correlates with endosome and lysosome membrane properties in live/intact cells. In the present study, we show using unique live-cell imaging and biochemical assays that the endo-lysosomal membrane in primary neurons is more disordered and, as a result, more permeable than in CHO cells. Interestingly, γ-secretase processivity is decreased in primary neurons, resulting in the predominant production of long Aβ42 instead of short Aβ38. In contrast, CHO cells favor Aβ38 over the Aβ42 generation. Our findings are consistent with the previous in vitro studies, demonstrating the functional interaction between lipid membrane properties and γ-secretase and provide further evidence that γ-secretase acts in late endosomes and lysosomes in live/intact cells.
Collapse
|
37
|
Ringman JM, Dorrani N, Fernández SG, Signer R, Martinez-Agosto J, Lee H, Douine ED, Qiao Y, Shi Y, D’Orazio L, Pawar S, Robbie L, Kashani AH, Singer M, Byers JT, Magaki S, Guzman S, Sagare A, Zlokovic B, Cederbaum S, Nelson S, Sheikh-Bahaei N, Chui HC, Chávez-Gutiérrez L, Vinters HV. Characterization of spastic paraplegia in a family with a novel PSEN1 mutation. Brain Commun 2023; 5:fcad030. [PMID: 36895955 PMCID: PMC9991506 DOI: 10.1093/braincomms/fcad030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 09/09/2022] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
Spastic paraparesis has been described to occur in 13.7% of PSEN1 mutations and can be the presenting feature in 7.5%. In this paper, we describe a family with a particularly young onset of spastic paraparesis due to a novel mutation in PSEN1 (F388S). Three affected brothers underwent comprehensive imaging protocols, two underwent ophthalmological evaluations and one underwent neuropathological examination after his death at age 29. Age of onset was consistently at age 23 with spastic paraparesis, dysarthria and bradyphrenia. Pseudobulbar affect followed with progressive gait problems leading to loss of ambulation in the late 20s. Cerebrospinal fluid levels of amyloid-β, tau and phosphorylated tau and florbetaben PET were consistent with Alzheimer's disease. Flortaucipir PET showed an uptake pattern atypical for Alzheimer's disease, with disproportionate signal in posterior brain areas. Diffusion tensor imaging showed decreased mean diffusivity in widespread areas of white matter but particularly in areas underlying the peri-Rolandic cortex and in the corticospinal tracts. These changes were more severe than those found in carriers of another PSEN1 mutation, which can cause spastic paraparesis at a later age (A431E), which were in turn more severe than among persons carrying autosomal dominant Alzheimer's disease mutations not causing spastic paraparesis. Neuropathological examination confirmed the presence of cotton wool plaques previously described in association with spastic parapresis and pallor and microgliosis in the corticospinal tract with severe amyloid-β pathology in motor cortex but without unequivocal disproportionate neuronal loss or tau pathology. In vitro modelling of the effects of the mutation demonstrated increased production of longer length amyloid-β peptides relative to shorter that predicted the young age of onset. In this paper, we provide imaging and neuropathological characterization of an extreme form of spastic paraparesis occurring in association with autosomal dominant Alzheimer's disease, demonstrating robust diffusion and pathological abnormalities in white matter. That the amyloid-β profiles produced predicted the young age of onset suggests an amyloid-driven aetiology though the link between this and the white matter pathology remains undefined.
Collapse
Affiliation(s)
- John M Ringman
- Department of Neurology, Keck School of Medicine at University of Southern California, Los Angeles, CA 90033, USA
| | | | - Sara Gutiérrez Fernández
- Department of Neurosciences, VIB-KU Leuven Center for Brain & Disease Research, Leuven 3000, Belgium
- Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven 3000, Belgium
| | - Rebecca Signer
- Department of Human Genetics, UCLA, Los Angeles, CA 90095, USA
| | | | - Hane Lee
- Department of Human Genetics, UCLA, Los Angeles, CA 90095, USA
- Department of Pathology and Laboratory Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Emilie D Douine
- Department of Human Genetics, UCLA, Los Angeles, CA 90095, USA
| | - Yuchuan Qiao
- Department of Neurology, USC Stevens Neuroimaging and Informatics Institute, Los Angeles, CA 90033, USA
| | - Yonggang Shi
- Department of Neurology, USC Stevens Neuroimaging and Informatics Institute, Los Angeles, CA 90033, USA
| | - Lina D’Orazio
- Department of Neurology, Keck School of Medicine at University of Southern California, Los Angeles, CA 90033, USA
| | - Sanjay Pawar
- Department of Neurology, Keck School of Medicine at University of Southern California, Los Angeles, CA 90033, USA
| | - Leah Robbie
- Department of Neurology, Keck School of Medicine at University of Southern California, Los Angeles, CA 90033, USA
| | - Amir H Kashani
- Wilmer Eye Institute, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Maxwell Singer
- Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Joshua T Byers
- Section of Neuropathology, Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Shino Magaki
- Section of Neuropathology, Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Sam Guzman
- Department of Pathology, Keck School of Medicine at USC, Los Angeles, CA 90033, USA
| | - Abhay Sagare
- Zilkha Neurogenetics Institute, University of Southern California, Los Angeles, CA 90033, USA
| | - Berislav Zlokovic
- Zilkha Neurogenetics Institute, University of Southern California, Los Angeles, CA 90033, USA
| | - Stephen Cederbaum
- Department of Pediatrics, UCLA, Los Angeles, CA 90095, USA
- Department of Human Genetics, UCLA, Los Angeles, CA 90095, USA
| | - Stanley Nelson
- Department of Pediatrics, UCLA, Los Angeles, CA 90095, USA
- Department of Human Genetics, UCLA, Los Angeles, CA 90095, USA
- Department of Pathology and Laboratory Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Nasim Sheikh-Bahaei
- Department of Radiology, University of Southern California, Los Angeles, CA 90033, USA
| | - Helena C Chui
- Department of Neurology, Keck School of Medicine at University of Southern California, Los Angeles, CA 90033, USA
| | - Lucía Chávez-Gutiérrez
- Department of Neurosciences, VIB-KU Leuven Center for Brain & Disease Research, Leuven 3000, Belgium
- Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven 3000, Belgium
| | - Harry V Vinters
- Section of Neuropathology, Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
38
|
Notch Signaling in Acute Inflammation and Sepsis. Int J Mol Sci 2023; 24:ijms24043458. [PMID: 36834869 PMCID: PMC9967996 DOI: 10.3390/ijms24043458] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/27/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023] Open
Abstract
Notch signaling, a highly conserved pathway in mammals, is crucial for differentiation and homeostasis of immune cells. Besides, this pathway is also directly involved in the transmission of immune signals. Notch signaling per se does not have a clear pro- or anti-inflammatory effect, but rather its impact is highly dependent on the immune cell type and the cellular environment, modulating several inflammatory conditions including sepsis, and therefore significantly impacts the course of disease. In this review, we will discuss the contribution of Notch signaling on the clinical picture of systemic inflammatory diseases, especially sepsis. Specifically, we will review its role during immune cell development and its contribution to the modulation of organ-specific immune responses. Finally, we will evaluate to what extent manipulation of the Notch signaling pathway could be a future therapeutic strategy.
Collapse
|
39
|
Guzmán-Ocampo DC, Aguayo-Ortiz R, Velasco-Bolom JL, Gupta PL, Roitberg AE, Dominguez L. Elucidating the Protonation State of the γ-Secretase Catalytic Dyad. ACS Chem Neurosci 2023; 14:261-269. [PMID: 36562727 DOI: 10.1021/acschemneuro.2c00563] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
γ-Secretase (GS) is an intramembrane aspartyl protease that participates in the sequential cleavage of C99 to generate different isoforms of the amyloid-β (Aβ) peptides that are associated with the development of Alzheimer's disease. Due to its importance in the proteolytic processing of C99 by GS, we performed pH replica exchange molecular dynamics (pH-REMD) simulations of GS in its apo and substrate-bound forms to sample the protonation states of the catalytic dyad. We found that the catalytic dyad is deprotonated at physiological pH in our apo form, but the presence of the substrate at the active site displaces its monoprotonated state toward physiological pH. Our results show that Asp257 acts as the general base and Asp385 as the general acid during the cleavage mechanism. We identified different amino acids such as Lys265, Arg269, and the PAL motif interacting with the catalytic dyad and promoting changes in its acid-base behavior. Finally, we also found a significant pKa shift of Glu280 related to the internalization of TM6-CT in the GS-apo form. Our study provides critical mechanistic insight into the GS mechanism and the basis for future research on the genesis of Aβ peptides and the development of Alzheimer's disease.
Collapse
Affiliation(s)
- Dulce C Guzmán-Ocampo
- Facultad de Química, Departamento de Fisicoquímica, Universidad Nacional Autónoma de México, Mexico City04510, Mexico
| | - Rodrigo Aguayo-Ortiz
- Facultad de Química, Departamento de Farmacia, Universidad Nacional Autónoma de México, Mexico City04510, Mexico
| | - José-Luis Velasco-Bolom
- Facultad de Química, Departamento de Fisicoquímica, Universidad Nacional Autónoma de México, Mexico City04510, Mexico
| | - Pancham Lal Gupta
- Department of Chemistry, University of Florida, Gainesville, Florida32611-7200, United States
| | - Adrian E Roitberg
- Department of Chemistry, University of Florida, Gainesville, Florida32611-7200, United States
| | - Laura Dominguez
- Facultad de Química, Departamento de Fisicoquímica, Universidad Nacional Autónoma de México, Mexico City04510, Mexico
| |
Collapse
|
40
|
Lardelli M. An Alternative View of Familial Alzheimer's Disease Genetics. J Alzheimers Dis 2023; 96:13-39. [PMID: 37718800 DOI: 10.3233/jad-230313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Probabilistic and parsimony-based arguments regarding available genetics data are used to propose that Hardy and Higgin's amyloid cascade hypothesis is valid but is commonly interpreted too narrowly to support, incorrectly, the primacy of the amyloid-β peptide (Aβ) in driving Alzheimer's disease pathogenesis. Instead, increased activity of the βCTF (C99) fragment of AβPP is the critical pathogenic determinant altered by mutations in the APP gene. This model is consistent with the regulation of APP mRNA translation via its 5' iron responsive element. Similar arguments support that the pathological effects of familial Alzheimer's disease mutations in the genes PSEN1 and PSEN2 are not exerted directly via changes in AβPP cleavage to produce different ratios of Aβ length. Rather, these mutations likely act through effects on presenilin holoprotein conformation and function, and possibly the formation and stability of multimers of presenilin holoprotein and/or of the γ-secretase complex. All fAD mutations in APP, PSEN1, and PSEN2 likely find unity of pathological mechanism in their actions on endolysosomal acidification and mitochondrial function, with detrimental effects on iron homeostasis and promotion of "pseudo-hypoxia" being of central importance. Aβ production is enhanced and distorted by oxidative stress and accumulates due to decreased lysosomal function. It may act as a disease-associated molecular pattern enhancing oxidative stress-driven neuroinflammation during the cognitive phase of the disease.
Collapse
Affiliation(s)
- Michael Lardelli
- Alzheimer's Disease Genetics Laboratory, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
41
|
Ghalayini J, Boulianne GL. Deciphering mechanisms of action of ACE inhibitors in neurodegeneration using Drosophila models of Alzheimer's disease. Front Neurosci 2023; 17:1166973. [PMID: 37113150 PMCID: PMC10126366 DOI: 10.3389/fnins.2023.1166973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 03/17/2023] [Indexed: 04/29/2023] Open
Abstract
Alzheimer's disease (AD) is a devastating neurodegenerative disorder for which there is no cure. Recently, several studies have reported a significant reduction in the incidence and progression of dementia among some patients receiving antihypertensive medications such as angiotensin-converting enzyme inhibitors (ACE-Is) and angiotensin receptor blockers (ARBs). Why these drugs are beneficial in some AD patients and not others is unclear although it has been shown to be independent of their role in regulating blood pressure. Given the enormous and immediate potential of ACE-Is and ARBs for AD therapeutics it is imperative that we understand how they function. Recently, studies have shown that ACE-Is and ARBs, which target the renin angiotensin system in mammals, are also effective in suppressing neuronal cell death and memory defects in Drosophila models of AD despite the fact that this pathway is not conserved in flies. This suggests that the beneficial effects of these drugs may be mediated by distinct and as yet, identified mechanisms. Here, we discuss how the short lifespan and ease of genetic manipulations available in Drosophila provide us with a unique and unparalleled opportunity to rapidly identify the targets of ACE-Is and ARBs and evaluate their therapeutic effectiveness in robust models of AD.
Collapse
Affiliation(s)
- Judy Ghalayini
- Program in Developmental and Stem Cell Biology, Peter Gilgin Center for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Gabrielle L. Boulianne
- Program in Developmental and Stem Cell Biology, Peter Gilgin Center for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- *Correspondence: Gabrielle L. Boulianne,
| |
Collapse
|
42
|
Yu W, Venkatraman A, Menden HL, Martinez M, Umar S, Sampath V. Short-chain fatty acids ameliorate necrotizing enterocolitis-like intestinal injury through enhancing Notch1-mediated single immunoglobulin interleukin-1-related receptor, toll-interacting protein, and A20 induction. Am J Physiol Gastrointest Liver Physiol 2023; 324:G24-G37. [PMID: 36410023 PMCID: PMC9799135 DOI: 10.1152/ajpgi.00057.2022] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 11/15/2022] [Accepted: 11/15/2022] [Indexed: 11/23/2022]
Abstract
Single immunoglobulin interleukin-1-related receptor (SIGIRR), toll-interacting protein (TOLLIP), and A20 are major inhibitors of toll-like receptor (TLR) signaling induced postnatally in the neonatal intestine. Short-chain fatty acids (SCFAs), fermentation products of indigestible carbohydrates produced by symbiotic bacteria, inhibit intestinal inflammation. Herein, we investigated the mechanisms by which SCFAs regulate SIGIRR, A20, and TOLLIP expression and mitigate experimental necrotizing enterocolitis (NEC). Butyrate induced NOTCH activation by repressing sirtuin 1 (SIRT1)-mediated deacetylation of the Notch intracellular domain (NICD) in human intestinal epithelial cells (HIECs). Overexpression of NICD induced SIGIRR, A20, and TOLLIP expression. Chromatin immunoprecipitation revealed that butyrate-induced NICD binds to the SIGIRR, A20, and TOLLIP gene promoters. Notch1-shRNA suppressed butyrate-induced SIGIRR/A20 upregulation in mouse enteroids and HIEC. Flagellin (TLR5 agonist)-induced inflammation in HIEC was inhibited by butyrate in a SIGIRR-dependent manner. Neonatal mice fed butyrate had increased NICD, A20, SIGIRR, and TOLLIP expression in the ileal epithelium. Butyrate inhibited experimental NEC-induced intestinal apoptosis, cytokine expression, and histological injury. Our data suggest that SCFAs can regulate the expression of the major negative regulators of TLR signaling in the neonatal intestine through Notch1 and ameliorate experimental NEC. Enteral SCFAs supplementation in preterm infants provides a promising bacteria-free, therapeutic option for NEC.NEW & NOTEWORTHY Short-chain fatty acids (SCFAs), such as propionate and butyrate, metabolites produced by symbiotic gut bacteria are known to be anti-inflammatory, but the mechanisms by which they protect against NEC are not fully understood. In this study, we reveal that SCFAs regulate intestinal inflammation by inducing the key TLR and IL1R inhibitors, SIGIRR and A20, through activation of the pluripotent transcriptional factor NOTCH1. Butyrate-mediated SIGIRR and A20 induction represses experimental NEC in the neonatal intestine.
Collapse
MESH Headings
- Infant, Newborn
- Animals
- Mice
- Humans
- Enterocolitis, Necrotizing/drug therapy
- Enterocolitis, Necrotizing/prevention & control
- Enterocolitis, Necrotizing/genetics
- Receptors, Interleukin-1/genetics
- Receptors, Interleukin-1/metabolism
- Infant, Premature
- Inflammation/metabolism
- Intestinal Mucosa/metabolism
- Fatty Acids, Volatile/pharmacology
- Fatty Acids, Volatile/metabolism
- Butyrates/metabolism
- Immunoglobulins/metabolism
- Interleukin-1/metabolism
- Receptor, Notch1/metabolism
- Intracellular Signaling Peptides and Proteins/metabolism
Collapse
Affiliation(s)
- Wei Yu
- Division of Neonatology, Department of Pediatrics, Children's Mercy Kansas City, Kansas City, Missouri
- Neonatal Diseases Research Program, Children's Mercy Research Institute, Children's Mercy Kansas City, Kansas City, Missouri
| | - Aparna Venkatraman
- Division of Neonatology, Department of Pediatrics, Children's Mercy Kansas City, Kansas City, Missouri
- Neonatal Diseases Research Program, Children's Mercy Research Institute, Children's Mercy Kansas City, Kansas City, Missouri
| | - Heather L Menden
- Division of Neonatology, Department of Pediatrics, Children's Mercy Kansas City, Kansas City, Missouri
- Neonatal Diseases Research Program, Children's Mercy Research Institute, Children's Mercy Kansas City, Kansas City, Missouri
| | - Maribel Martinez
- Division of Neonatology, Department of Pediatrics, Children's Mercy Kansas City, Kansas City, Missouri
- Neonatal Diseases Research Program, Children's Mercy Research Institute, Children's Mercy Kansas City, Kansas City, Missouri
| | - Shahid Umar
- Department of Surgery, University of Kansas Medical Center, Kansas City, Kansas
| | - Venkatesh Sampath
- Division of Neonatology, Department of Pediatrics, Children's Mercy Kansas City, Kansas City, Missouri
- Neonatal Diseases Research Program, Children's Mercy Research Institute, Children's Mercy Kansas City, Kansas City, Missouri
| |
Collapse
|
43
|
Liu L, Lauro BM, He A, Lee H, Bhattarai S, Wolfe MS, Bennett DA, Karch CM, Young-Pearse T, Selkoe DJ. Identification of the Aβ37/42 peptide ratio in CSF as an improved Aβ biomarker for Alzheimer's disease. Alzheimers Dement 2023; 19:79-96. [PMID: 35278341 PMCID: PMC9464800 DOI: 10.1002/alz.12646] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 01/18/2023]
Abstract
INTRODUCTION Identifying CSF-based biomarkers for the β-amyloidosis that initiates Alzheimer's disease (AD) could provide inexpensive and dynamic tests to distinguish AD from normal aging and predict future cognitive decline. METHODS We developed immunoassays specifically detecting all C-terminal variants of secreted amyloid β-protein and identified a novel biomarker, the Aβ 37/42 ratio, that outperforms the canonical Aβ42/40 ratio as a means to evaluate the γ-secretase activity and brain Aβ accumulation. RESULTS We show that Aβ 37/42 can distinguish physiological and pathological status in (1) presenilin-1 mutant vs wild-type cultured cells, (2) AD vs control brain tissue, and (3) AD versus cognitively normal (CN) subjects in CSF, where 37/42 (AUC 0.9622) outperformed 42/40 (AUC 0.8651) in distinguishing CN from AD. DISCUSSION We conclude that the Aβ 37/42 ratio sensitively detects presenilin/γ-secretase dysfunction and better distinguishes CN from AD than Aβ42/40 in CSF. Measuring this novel ratio alongside promising phospho-tau analytes may provide highly discriminatory fluid biomarkers for AD.
Collapse
Affiliation(s)
- Lei Liu
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA USA
| | - Bianca M. Lauro
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA USA
| | - Amy He
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA USA
| | - Hyo Lee
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA USA
| | - Sanjay Bhattarai
- Department of Medicinal Chemistry, University of Kansas, Lawrence, KS USA
| | - Michael S. Wolfe
- Department of Medicinal Chemistry, University of Kansas, Lawrence, KS USA
| | - David A. Bennett
- Rush Alzheimer’s Disease Center Rush University Medical Center, Chicago, IL USA
| | - Celeste M. Karch
- Department of Psychiatry, Washington University in St Louis, St. Louis, MO USA
- Hope Center for Neurologic Disorders, St. Louis, MO USA
| | - Tracy Young-Pearse
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA USA
| | | | - Dennis J. Selkoe
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA USA
| |
Collapse
|
44
|
Jandrey EHF, Barnabé GF, Maldaun M, Asprino PF, dos Santos NC, Inoue LT, Rozanski A, Galante PAF, Marie SKN, Oba-Shinjo SM, dos Santos TG, Chammas R, Lancellotti CLP, Furnari FB, Camargo AA, Costa ÉT. A novel program of infiltrative control in astrocytomas: ADAM23 depletion promotes cell invasion by activating γ-secretase complex. Neurooncol Adv 2023; 5:vdad147. [PMID: 38024245 PMCID: PMC10681280 DOI: 10.1093/noajnl/vdad147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023] Open
Abstract
Background Infiltration is a life-threatening growth pattern in malignant astrocytomas and a significant cause of therapy resistance. It results in the tumor cell spreading deeply into the surrounding brain tissue, fostering tumor recurrence and making complete surgical resection impossible. We need to thoroughly understand the mechanisms underlying diffuse infiltration to develop effective therapies. Methods We integrated in vitro and in vivo functional assays, RNA sequencing, clinical, and expression information from public data sets to investigate the role of ADAM23 expression coupling astrocytoma's growth and motility. Results ADAM23 downregulation resulted in increased infiltration, reduced tumor growth, and improved overall survival in astrocytomas. Additionally, we show that ADAM23 deficiency induces γ-secretase (GS) complex activity, contributing to the production and deposition of the Amyloid-β and release of NICD. Finally, GS ablation in ADAM23-low astrocytomas induced a significant inhibitory effect on the invasive programs. Conclusions Our findings reveal a role for ADAM23 in regulating the balance between cell proliferation and invasiveness in astrocytoma cells, proposing GS inhibition as a therapeutic option in ADAM23 low-expressing astrocytomas.
Collapse
Affiliation(s)
| | | | - Marcos Maldaun
- Molecular Oncology Center, Hospital Sírio-Libanês, São Paulo, Brazil
| | | | | | | | - Andrei Rozanski
- Molecular Oncology Center, Hospital Sírio-Libanês, São Paulo, Brazil
| | | | | | - Sueli Mieko Oba-Shinjo
- Department of Neurology, Laboratory of Molecular and Cellular Biology, LIM15, FMUSP, São Paulo, Brazil
| | - Tiago Góss dos Santos
- Centro Internacional de Pesquisa, A.C. Camargo Cancer Center, Fundação Antônio Prudente, São Paulo, Brazil
| | - Roger Chammas
- Laboratório de Oncologia Experimental, Centro de Investigação Translacional em Oncologia, Instituto do Câncer do Estado de São Paulo, São Paulo, Brazil
| | | | - Frank B Furnari
- Ludwig Institute for Cancer Research (LICR), University of California, San Diego, California, USA
| | | | | |
Collapse
|
45
|
The role of Hedgehog and Notch signaling pathway in cancer. MOLECULAR BIOMEDICINE 2022; 3:44. [PMID: 36517618 PMCID: PMC9751255 DOI: 10.1186/s43556-022-00099-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/25/2022] [Indexed: 12/23/2022] Open
Abstract
Notch and Hedgehog signaling are involved in cancer biology and pathology, including the maintenance of tumor cell proliferation, cancer stem-like cells, and the tumor microenvironment. Given the complexity of Notch signaling in tumors, its role as both a tumor promoter and suppressor, and the crosstalk between pathways, the goal of developing clinically safe, effective, tumor-specific Notch-targeted drugs has remained intractable. Drugs developed against the Hedgehog signaling pathway have affirmed definitive therapeutic effects in basal cell carcinoma; however, in some contexts, the challenges of tumor resistance and recurrence leap to the forefront. The efficacy is very limited for other tumor types. In recent years, we have witnessed an exponential increase in the investigation and recognition of the critical roles of the Notch and Hedgehog signaling pathways in cancers, and the crosstalk between these pathways has vast space and value to explore. A series of clinical trials targeting signaling have been launched continually. In this review, we introduce current advances in the understanding of Notch and Hedgehog signaling and the crosstalk between pathways in specific tumor cell populations and microenvironments. Moreover, we also discuss the potential of targeting Notch and Hedgehog for cancer therapy, intending to promote the leap from bench to bedside.
Collapse
|
46
|
Morris JC, Weiner M, Xiong C, Beckett L, Coble D, Saito N, Aisen PS, Allegri R, Benzinger TLS, Berman SB, Cairns NJ, Carrillo MC, Chui HC, Chhatwal JP, Cruchaga C, Fagan AM, Farlow M, Fox NC, Ghetti B, Goate AM, Gordon BA, Graff-Radford N, Day GS, Hassenstab J, Ikeuchi T, Jack CR, Jagust WJ, Jucker M, Levin J, Massoumzadeh P, Masters CL, Martins R, McDade E, Mori H, Noble JM, Petersen RC, Ringman JM, Salloway S, Saykin AJ, Schofield PR, Shaw LM, Toga AW, Trojanowski JQ, Vöglein J, Weninger S, Bateman RJ, Buckles VD. Autosomal dominant and sporadic late onset Alzheimer's disease share a common in vivo pathophysiology. Brain 2022; 145:3594-3607. [PMID: 35580594 PMCID: PMC9989348 DOI: 10.1093/brain/awac181] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 04/12/2022] [Accepted: 04/27/2022] [Indexed: 11/13/2022] Open
Abstract
The extent to which the pathophysiology of autosomal dominant Alzheimer's disease corresponds to the pathophysiology of 'sporadic' late onset Alzheimer's disease is unknown, thus limiting the extrapolation of study findings and clinical trial results in autosomal dominant Alzheimer's disease to late onset Alzheimer's disease. We compared brain MRI and amyloid PET data, as well as CSF concentrations of amyloid-β42, amyloid-β40, tau and tau phosphorylated at position 181, in 292 carriers of pathogenic variants for Alzheimer's disease from the Dominantly Inherited Alzheimer Network, with corresponding data from 559 participants from the Alzheimer's Disease Neuroimaging Initiative. Imaging data and CSF samples were reprocessed as appropriate to guarantee uniform pipelines and assays. Data analyses yielded rates of change before and after symptomatic onset of Alzheimer's disease, allowing the alignment of the ∼30-year age difference between the cohorts on a clinically meaningful anchor point, namely the participant age at symptomatic onset. Biomarker profiles were similar for both autosomal dominant Alzheimer's disease and late onset Alzheimer's disease. Both groups demonstrated accelerated rates of decline in cognitive performance and in regional brain volume loss after symptomatic onset. Although amyloid burden accumulation as determined by PET was greater after symptomatic onset in autosomal dominant Alzheimer's disease than in late onset Alzheimer's disease participants, CSF assays of amyloid-β42, amyloid-β40, tau and p-tau181 were largely overlapping in both groups. Rates of change in cognitive performance and hippocampal volume loss after symptomatic onset were more aggressive for autosomal dominant Alzheimer's disease participants. These findings suggest a similar pathophysiology of autosomal dominant Alzheimer's disease and late onset Alzheimer's disease, supporting a shared pathobiological construct.
Collapse
Affiliation(s)
- John C Morris
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Michael Weiner
- Department of Radiology, University of California at San Francisco, San Francisco, CA, USA
| | - Chengjie Xiong
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, USA
| | - Laurel Beckett
- Department of Public Health Sciences, School of Medicine, University of California; Davis, Davis, CA, USA
| | - Dean Coble
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, USA
| | - Naomi Saito
- Department of Public Health Sciences, School of Medicine, University of California; Davis, Davis, CA, USA
| | - Paul S Aisen
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Ricardo Allegri
- Department of Cognitive Neurology, Neuropsychology and Neuropsychiatry, Institute for Neurological Research (FLENI), Buenos Aires, Argentina
| | - Tammie L S Benzinger
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Sarah B Berman
- Department of Neurology and Clinical and Translational Science, University of Pittsburgh, Pittsburgh, PA, USA
| | - Nigel J Cairns
- College of Medicine and Health and the Living Systems Institute, University of Exeter, Exeter, UK
| | | | - Helena C Chui
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jasmeer P Chhatwal
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Carlos Cruchaga
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Anne M Fagan
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Martin Farlow
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Nick C Fox
- Department of Neurodegenerative Disease and UK Dementia Research Institute, UCL Institute of Neurology, London, UK
| | - Bernardino Ghetti
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Alison M Goate
- Ronald M. Loeb Center for Alzheimer’s Disease, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Brian A Gordon
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | | | - Gregory S Day
- Department of Neurology, Mayo Clinic, Jacksonville, FL, USA
| | - Jason Hassenstab
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Takeshi Ikeuchi
- Department of Molecular Genetics, Brain Research Institute, Niigata University, Niigata, Japan
| | | | - William J Jagust
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA
| | - Mathias Jucker
- Cell Biology of Neurological Diseases Group, German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Johannes Levin
- DZNE Munich, Munich Cluster of Systems Neurology (SyNergy) and Ludwig-Maximilians-Universität, Munich, Germany
| | - Parinaz Massoumzadeh
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Colin L Masters
- Florey Institute, University of Melbourne, Melbourne, Australia
| | - Ralph Martins
- Sir James McCusker Alzheimer’s Disease Research Unit, Edith Cowan University, Nedlands, Australia
| | - Eric McDade
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Hiroshi Mori
- Department of Neuroscience, Osaka City University Medical School, Osaka City, Japan
| | - James M Noble
- Department of Neurology, Taub Institute for Research on Aging Brain, Columbia University Irving Medical Center, New York, NY, USA
| | | | - John M Ringman
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Stephen Salloway
- Department of Neurology, Butler Hospital and Alpert Medical School of Brown University, Providence, RI, 02906, USA
| | - Andrew J Saykin
- Department of Radiology and Imaging Sciences and the Indiana Alzheimer’s Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Peter R Schofield
- Neuroscience Research Australia and School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Leslie M Shaw
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Arthur W Toga
- Laboratory of Neuro Imaging, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - John Q Trojanowski
- Center for Neurodegenerative Disease Research, Institute on Aging, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jonathan Vöglein
- German Center for Neurodegenerative Diseases (DZNE) and Department of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany
| | | | - Randall J Bateman
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Virginia D Buckles
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
47
|
Chia K, Klingseisen A, Sieger D, Priller J. Zebrafish as a model organism for neurodegenerative disease. Front Mol Neurosci 2022; 15:940484. [PMID: 36311026 PMCID: PMC9606821 DOI: 10.3389/fnmol.2022.940484] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/01/2022] [Indexed: 11/20/2022] Open
Abstract
The zebrafish is increasingly recognized as a model organism for translational research into human neuropathology. The zebrafish brain exhibits fundamental resemblance with human neuroanatomical and neurochemical pathways, and hallmarks of human brain pathology such as protein aggregation, neuronal degeneration and activation of glial cells, for example, can be modeled and recapitulated in the fish central nervous system. Genetic manipulation, imaging, and drug screening are areas where zebrafish excel with the ease of introducing mutations and transgenes, the expression of fluorescent markers that can be detected in vivo in the transparent larval stages overtime, and simple treatment of large numbers of fish larvae at once followed by automated screening and imaging. In this review, we summarize how zebrafish have successfully been employed to model human neurodegenerative diseases such as Parkinson’s disease, Alzheimer’s disease, amyotrophic lateral sclerosis, and Huntington’s disease. We discuss advantages and disadvantages of choosing zebrafish as a model for these neurodegenerative conditions.
Collapse
Affiliation(s)
- Kelda Chia
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
- United Kingdom Dementia Research Institute at University of Edinburgh, Edinburgh, United Kingdom
| | - Anna Klingseisen
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
- United Kingdom Dementia Research Institute at University of Edinburgh, Edinburgh, United Kingdom
| | - Dirk Sieger
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
- *Correspondence: Dirk Sieger,
| | - Josef Priller
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
- United Kingdom Dementia Research Institute at University of Edinburgh, Edinburgh, United Kingdom
- Department of Psychiatry and Psychotherapy, School of Medicine, Technical University of Munich, Munich, Germany
- Neuropsychiatry and Laboratory of Molecular Psychiatry, Charité - Universitätsmedizin Berlin, DZNE, Berlin, Germany
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
- Josef Priller,
| |
Collapse
|
48
|
Hodges SL, Bouza AA, Isom LL. Therapeutic Potential of Targeting Regulated Intramembrane Proteolysis Mechanisms of Voltage-Gated Ion Channel Subunits and Cell Adhesion Molecules. Pharmacol Rev 2022; 74:1028-1048. [PMID: 36113879 PMCID: PMC9553118 DOI: 10.1124/pharmrev.121.000340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 05/13/2022] [Indexed: 10/03/2023] Open
Abstract
Several integral membrane proteins undergo regulated intramembrane proteolysis (RIP), a tightly controlled process through which cells transmit information across and between intracellular compartments. RIP generates biologically active peptides by a series of proteolytic cleavage events carried out by two primary groups of enzymes: sheddases and intramembrane-cleaving proteases (iCLiPs). Following RIP, fragments of both pore-forming and non-pore-forming ion channel subunits, as well as immunoglobulin super family (IgSF) members, have been shown to translocate to the nucleus to function in transcriptional regulation. As an example, the voltage-gated sodium channel β1 subunit, which is also an IgSF-cell adhesion molecule (CAM), is a substrate for RIP. β1 RIP results in generation of a soluble intracellular domain, which can regulate gene expression in the nucleus. In this review, we discuss the proposed RIP mechanisms of voltage-gated sodium, potassium, and calcium channel subunits as well as the roles of their generated proteolytic products in the nucleus. We also discuss other RIP substrates that are cleaved by similar sheddases and iCLiPs, such as IgSF macromolecules, including CAMs, whose proteolytically generated fragments function in the nucleus. Importantly, dysfunctional RIP mechanisms are linked to human disease. Thus, we will also review how understanding RIP events and subsequent signaling processes involving ion channel subunits and IgSF proteins may lead to the discovery of novel therapeutic targets. SIGNIFICANCE STATEMENT: Several ion channel subunits and immunoglobulin superfamily molecules have been identified as substrates of regulated intramembrane proteolysis (RIP). This signal transduction mechanism, which generates polypeptide fragments that translocate to the nucleus, is an important regulator of gene transcription. RIP may impact diseases of excitability, including epilepsy, cardiac arrhythmia, and sudden death syndromes. A thorough understanding of the role of RIP in gene regulation is critical as it may reveal novel therapeutic strategies for the treatment of previously intractable diseases.
Collapse
Affiliation(s)
- Samantha L Hodges
- Departments of Pharmacology (S.L.H., A.A.B., L.L.I.), Neurology (L.L.I.), and Molecular & Integrative Physiology (L.L.I.), University of Michigan Medical School, Ann Arbor, Michigan
| | - Alexandra A Bouza
- Departments of Pharmacology (S.L.H., A.A.B., L.L.I.), Neurology (L.L.I.), and Molecular & Integrative Physiology (L.L.I.), University of Michigan Medical School, Ann Arbor, Michigan
| | - Lori L Isom
- Departments of Pharmacology (S.L.H., A.A.B., L.L.I.), Neurology (L.L.I.), and Molecular & Integrative Physiology (L.L.I.), University of Michigan Medical School, Ann Arbor, Michigan
| |
Collapse
|
49
|
Lobov AA, Boyarskaya NV, Kachanova OS, Gromova ES, Shishkova AA, Zainullina BR, Pishchugin AS, Filippov AA, Uspensky VE, Malashicheva AB. Crenigacestat (LY3039478) inhibits osteogenic differentiation of human valve interstitial cells from patients with aortic valve calcification in vitro. Front Cardiovasc Med 2022; 9:969096. [PMID: 36247471 PMCID: PMC9556293 DOI: 10.3389/fcvm.2022.969096] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 09/12/2022] [Indexed: 11/17/2022] Open
Abstract
Calcific aortic valve disease (CAVD) is one of the dangerous forms of vascular calcification. CAVD leads to calcification of the aortic valve and disturbance of blood flow. Despite high mortality, there is no targeted therapy against CAVD or vascular calcification. Osteogenic differentiation of valve interstitial cells (VICs) is one of the key factors of CAVD progression and inhibition of this process seems a fruitful target for potential therapy. By our previous study we assumed that inhibitors of Notch pathway might be effective to suppress aortic valve leaflet calcification. We tested CB-103 and crenigacestat (LY3039478), two selective inhibitors of Notch-signaling, for suppression of osteogenic differentiation of VICs isolated from patients with CAVD in vitro. Effect of inhibitors were assessed by the measurement of extracellular matrix calcification and osteogenic gene expression. For effective inhibitor (crenigacestat) we also performed MTT and proteomics study for better understanding of its effect on VICs in vitro. CB-103 did not affect osteogenic differentiation. Crenigacestat completely inhibited osteogenic differentiation (both matrix mineralization and Runx2 expression) in the dosages that had no obvious cytotoxicity. Using proteomics analysis, we found several osteogenic differentiation-related proteins associated with the effect of crenigacestat on VICs differentiation. Taking into account that crenigacestat is FDA approved for clinical trials for anti-tumor therapy, we argue that this drug could be considered as a potential inhibitor of cardiovascular calcification.
Collapse
|
50
|
Eden A, Zhao J, Xiao Y, Gibson J, Wang C. Covalent fragment inhibits intramembrane proteolysis. Front Mol Biosci 2022; 9:958399. [PMID: 36158579 PMCID: PMC9490316 DOI: 10.3389/fmolb.2022.958399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/01/2022] [Indexed: 01/09/2023] Open
Abstract
Alzheimer's disease (AD) is a serious public health crisis with only one current modifying treatment. The reduction of amyloid load by targeting γ-secretase (GS) has been a leading approach in AD drug discovery and development. Despite the focus on GS inhibition, multiple GS inhibitors (GSIs) have failed in clinical trials as a result of side effects including exacerbated cognitive decline. These side effects are largely attributable to inhibition of normal GS function. Standard enzyme inhibitors target catalytic or allosteric sites of the enzyme, including the active site presenilin, as previous GSIs did. To avoid issues observed from broad-spectrum GSIs we discovered that fragment 6H8 that covalently binds to the substrate of GS, the transmembrane domain of amyloid precursor protein (APPTM). Nuclear Magnetic Resonance (NMR) Spectroscopy combined with MALDI-TOF-MS established 6H8 covalently binds to APPTM. 6H8 acts as a Michael acceptor and covalently links to the side chain amines of lysine residues, specifically targeting a cluster of C-terminal lysines K53-K55. Through this modification, 6H8 can inhibit intramembrane proteolysis of an archaeal homolog of presenilin (the active subunit of GS) via substrate binding with a 2-4 μM IC50, determined by a gel-based cleavage assay. 6H8, while too small to be an effective drug candidate, can be combined with a specific non-covalent partner and function as an effective covalent warhead of a targeted covalent inhibitor (TCI). The future development of the 6H8 fragment into the covalent warhead of a TCI is, to our knowledge, a novel approach to AD drug discovery.
Collapse
Affiliation(s)
- Angela Eden
- Center for Biotechnology and Interdisciplinary Studies, Troy, NY, United States
- Department of Chemistry and Chemical Biology, Troy, NY, United States
- Department of Biological Sciences, Troy, NY, United States
| | - Jing Zhao
- Center for Biotechnology and Interdisciplinary Studies, Troy, NY, United States
| | - Yuanyuan Xiao
- Center for Biotechnology and Interdisciplinary Studies, Troy, NY, United States
| | - James Gibson
- Center for Biotechnology and Interdisciplinary Studies, Troy, NY, United States
| | - Chunyu Wang
- Center for Biotechnology and Interdisciplinary Studies, Troy, NY, United States
- Department of Chemistry and Chemical Biology, Troy, NY, United States
- Department of Biological Sciences, Troy, NY, United States
| |
Collapse
|