1
|
Sharma S, Mahadevan A, Narayanappa G, Debnath M, Govindaraj P, Shivaram S, Seshagiri DV, Siram R, Shroti A, Bindu PS, Chickabasaviah YT, Taly AB, Nagappa M. Exploring the evidence for mitochondrial dysfunction and genetic abnormalities in the etiopathogenesis of tropical ataxic neuropathy. J Neurogenet 2024; 38:27-34. [PMID: 38975939 DOI: 10.1080/01677063.2024.2373363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 06/24/2024] [Indexed: 07/09/2024]
Abstract
Tropical ataxic neuropathy (TAN) is characterised by ataxic polyneuropathy, degeneration of the posterior columns and pyramidal tracts, optic atrophy, and sensorineural hearing loss. It has been attributed to nutritional/toxic etiologies, but evidence for the same has been equivocal. TAN shares common clinical features with inherited neuropathies and mitochondrial disorders, it may be hypothesised that genetic abnormalities may underlie the pathophysiology of TAN. This study aimed to establish evidence for mitochondrial dysfunction by adopting an integrated biochemical and multipronged genetic analysis. Patients (n = 65) with chronic progressive ataxic neuropathy with involvement of visual and/or auditory pathways underwent deep phenotyping, genetic studies including mitochondrial DNA (mtDNA) deletion analysis, mtDNA and clinical exome sequencing (CES), and respiratory chain complex (RCC) assay. The phenotypic characteristics included dysfunction of visual (n = 14), auditory (n = 12) and visual + auditory pathways (n = 29). Reduced RCC activity was present in 13 patients. Mitochondrial DNA deletions were noted in five patients. Sequencing of mtDNA (n = 45) identified a homoplasmic variant (MT-ND6) and a heteroplasmic variant (MT-COI) in one patient each. CES (n = 45) revealed 55 variants in nuclear genes that are associated with neuropathy (n = 27), deafness (n = 7), ataxia (n = 4), and mitochondrial phenotypes (n = 5) in 36 patients. This study provides preliminary evidence that TAN is associated with a spectrum of genetic abnormalities, including those associated with mitochondrial dysfunction, which is in contradistinction from the prevailing hypothesis that TAN is related to dietary toxins. Analysing the functional relevance of these genetic variants may improve the understanding of the pathogenesis of TAN.
Collapse
Affiliation(s)
- Shivani Sharma
- Department of Neuropathology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Anita Mahadevan
- Department of Neuropathology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Gayathri Narayanappa
- Department of Neuropathology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Monojit Debnath
- Department of Human Genetics, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Periyasamy Govindaraj
- Department of Neuropathology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Sumanth Shivaram
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Doniparthi V Seshagiri
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Ramesh Siram
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Akhilesh Shroti
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Parayil S Bindu
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Yasha T Chickabasaviah
- Department of Neuropathology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Arun B Taly
- Department of Neuropathology, National Institute of Mental Health and Neurosciences, Bengaluru, India
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Madhu Nagappa
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| |
Collapse
|
2
|
彭 文, 朱 燕, 王 来, 陆 炜, 杨 琳, 朱 丽. [A case of interstitial lung and liver disease caused by MARS1 gene mutation]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2023; 25:1186-1190. [PMID: 37990466 PMCID: PMC10672959 DOI: 10.7499/j.issn.1008-8830.2307050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/13/2023] [Indexed: 11/23/2023]
Abstract
The patient is a female infant, 4 months and 9 days old, who was admitted to the hospital due to recurrent fever, cough, and hepatomegaly for over a month. The patient was a healthy full-term infant with a normal birth history. At 2 months and 22 days after birth, she developed recurrent fever, cough, and respiratory distress. Chest imaging revealed diffuse bilateral lung lesions, and fiberoptic bronchoscopy showed interstitial changes in both lungs. These suggested the presence of interstitial lung disease. The patient also presented with hepatomegaly, anemia, hyperlipidemia, hypothyroidism, and malnutrition. Genetic testing indicated compound heterozygous variations in the MARS1 gene. This mutation can cause interstitial lung and liver disease, which is a severe rare disorder that typically manifests in infancy or early childhood. It is inherited in an autosomal recessive manner and characterized by early-onset respiratory insufficiency and liver disease in infants or young children. Since its first reported case in 2013, as of June 2023, only 38 related cases have been reported worldwide. This article reports the multidisciplinary diagnosis and treatment of interstitial lung and liver disease in an infant caused by MARS1 gene mutation.
Collapse
Affiliation(s)
| | | | | | - 炜 陆
- 国家儿童医学中心/复旦大学附属儿科医院内分泌遗传代谢科上海201102
| | - 琳 杨
- 国家儿童医学中心/复旦大学附属儿科医院内分泌遗传代谢科上海201102
| | | |
Collapse
|
3
|
Castaldo A, Delestrain C, Diesler R, Merveilleux du Vignaux C, Onnee M, Touraine R, Chalabreysse L, Fanen P, Epaud R, Cottin V, De Becdelièvre A. Idiopathic pulmonary fibrosis with benign SFTPC variant and pathogenic MARS1 mutations: can't see the forest for the trees! ERJ Open Res 2023; 9:00472-2023. [PMID: 37936900 PMCID: PMC10626413 DOI: 10.1183/23120541.00472-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/04/2023] [Indexed: 11/09/2023] Open
Abstract
Even in the absence of liver disease, MARS1 screening should be considered in severe lung fibrosis of young individuals. Interpretation of the genetic variants can evolve with improvement of knowledge (databases, bioinformatic tools) over time. https://bit.ly/45OxF5E.
Collapse
Affiliation(s)
- Alice Castaldo
- Centre Hospitalier Intercommunal de Créteil, Service de Pédiatrie Générale, Créteil, France
- Department of Translational Medical Sciences, University Federico II, Naples, Italy
- A. Castaldo and C. Delestrain contributed equally
| | - Celine Delestrain
- Centre Hospitalier Intercommunal de Créteil, Service de Pédiatrie Générale, Créteil, France
- Univ Paris Est Creteil, INSERM, IMRB, F-94010 Creteil, France
- Centre des Maladies Respiratoires Rare, Respirare, Créteil, France
- A. Castaldo and C. Delestrain contributed equally
| | - Rémi Diesler
- Coordinating Reference Center for Rare Pulmonary Diseases, OrphaLung, Louis Pradel Hospital, ERN-LUNG, University of Lyon, INRAE, Lyon, France
| | - Claire Merveilleux du Vignaux
- Coordinating Reference Center for Rare Pulmonary Diseases, OrphaLung, Louis Pradel Hospital, ERN-LUNG, University of Lyon, INRAE, Lyon, France
| | - Marion Onnee
- Univ Paris Est Creteil, INSERM, IMRB, F-94010 Creteil, France
| | - Renaud Touraine
- Service de Genetique Clinique, Chromosomique et Moléculaire, CHU-Hôpital Nord, Saint Étienne, France
| | - Lara Chalabreysse
- Coordinating Reference Center for Rare Pulmonary Diseases, OrphaLung, Louis Pradel Hospital, ERN-LUNG, University of Lyon, INRAE, Lyon, France
| | - Pascale Fanen
- Univ Paris Est Creteil, INSERM, IMRB, F-94010 Creteil, France
- Centre des Maladies Respiratoires Rare, Respirare, Créteil, France
- AP-HP, Hopital Henri Mondor, DMU de Biologie-Pathologie, Département de Génétique, Créteil, France
| | - Ralph Epaud
- Centre Hospitalier Intercommunal de Créteil, Service de Pédiatrie Générale, Créteil, France
- Univ Paris Est Creteil, INSERM, IMRB, F-94010 Creteil, France
- Centre des Maladies Respiratoires Rare, Respirare, Créteil, France
- R. Epaud, V. Cottin and A. De Becdelièvre contributed equally
| | - Vincent Cottin
- Coordinating Reference Center for Rare Pulmonary Diseases, OrphaLung, Louis Pradel Hospital, ERN-LUNG, University of Lyon, INRAE, Lyon, France
- R. Epaud, V. Cottin and A. De Becdelièvre contributed equally
| | - Alix De Becdelièvre
- Univ Paris Est Creteil, INSERM, IMRB, F-94010 Creteil, France
- Centre des Maladies Respiratoires Rare, Respirare, Créteil, France
- AP-HP, Hopital Henri Mondor, DMU de Biologie-Pathologie, Département de Génétique, Créteil, France
- R. Epaud, V. Cottin and A. De Becdelièvre contributed equally
| |
Collapse
|
4
|
Meyer-Schuman R, Marte S, Smith TJ, Feely SME, Kennerson M, Nicholson G, Shy ME, Koutmou KS, Antonellis A. A humanized yeast model reveals dominant-negative properties of neuropathy-associated alanyl-tRNA synthetase mutations. Hum Mol Genet 2023; 32:2177-2191. [PMID: 37010095 PMCID: PMC10281750 DOI: 10.1093/hmg/ddad054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 04/04/2023] Open
Abstract
Aminoacyl-tRNA synthetases (ARSs) are essential enzymes that ligate tRNA molecules to cognate amino acids. Heterozygosity for missense variants or small in-frame deletions in six ARS genes causes dominant axonal peripheral neuropathy. These pathogenic variants reduce enzyme activity without significantly decreasing protein levels and reside in genes encoding homo-dimeric enzymes. These observations raise the possibility that neuropathy-associated ARS variants exert a dominant-negative effect, reducing overall ARS activity below a threshold required for peripheral nerve function. To test such variants for dominant-negative properties, we developed a humanized yeast assay to co-express pathogenic human alanyl-tRNA synthetase (AARS1) mutations with wild-type human AARS1. We show that multiple loss-of-function AARS1 mutations impair yeast growth through an interaction with wild-type AARS1, but that reducing this interaction rescues yeast growth. This suggests that neuropathy-associated AARS1 variants exert a dominant-negative effect, which supports a common, loss-of-function mechanism for ARS-mediated dominant peripheral neuropathy.
Collapse
Affiliation(s)
- Rebecca Meyer-Schuman
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Sheila Marte
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Tyler J Smith
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Shawna M E Feely
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Marina Kennerson
- Northcott Neuroscience Laboratory, ANZAC Research Institute, Sydney, NSW 2139, Australia
- Sydney Medical School, University of Sydney, Sydney, NSW 2050, Australia
- Molecular Medicine Laboratory, Concord General Repatriation Hospital, Sydney, NSW 2139, Australia
| | - Garth Nicholson
- Northcott Neuroscience Laboratory, ANZAC Research Institute, Sydney, NSW 2139, Australia
- Sydney Medical School, University of Sydney, Sydney, NSW 2050, Australia
- Molecular Medicine Laboratory, Concord General Repatriation Hospital, Sydney, NSW 2139, Australia
| | - Mike E Shy
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Kristin S Koutmou
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Anthony Antonellis
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
5
|
Kalotay E, Klugmann M, Housley GD, Fröhlich D. Dominant aminoacyl-tRNA synthetase disorders: lessons learned from in vivo disease models. Front Neurosci 2023; 17:1182845. [PMID: 37274211 PMCID: PMC10234151 DOI: 10.3389/fnins.2023.1182845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 04/05/2023] [Indexed: 06/06/2023] Open
Abstract
Aminoacyl-tRNA synthetases (ARSs) play an essential role in protein synthesis, being responsible for ligating tRNA molecules to their corresponding amino acids in a reaction known as 'tRNA aminoacylation'. Separate ARSs carry out the aminoacylation reaction in the cytosol and in mitochondria, and mutations in almost all ARS genes cause pathophysiology most evident in the nervous system. Dominant mutations in multiple cytosolic ARSs have been linked to forms of peripheral neuropathy including Charcot-Marie-Tooth disease, distal hereditary motor neuropathy, and spinal muscular atrophy. This review provides an overview of approaches that have been employed to model each of these diseases in vivo, followed by a discussion of the existing animal models of dominant ARS disorders and key mechanistic insights that they have provided. In summary, ARS disease models have demonstrated that loss of canonical ARS function alone cannot fully account for the observed disease phenotypes, and that pathogenic ARS variants cause developmental defects within the peripheral nervous system, despite a typically later onset of disease in humans. In addition, aberrant interactions between mutant ARSs and other proteins have been shown to contribute to the disease phenotypes. These findings provide a strong foundation for future research into this group of diseases, providing methodological guidance for studies on ARS disorders that currently lack in vivo models, as well as identifying candidate therapeutic targets.
Collapse
Affiliation(s)
- Elizabeth Kalotay
- Translational Neuroscience Facility and Department of Physiology, School of Biomedical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Matthias Klugmann
- Translational Neuroscience Facility and Department of Physiology, School of Biomedical Sciences, University of New South Wales, Sydney, NSW, Australia
- Research Beyond Borders, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Gary D. Housley
- Translational Neuroscience Facility and Department of Physiology, School of Biomedical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Dominik Fröhlich
- Translational Neuroscience Facility and Department of Physiology, School of Biomedical Sciences, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
6
|
Ma Z, Lv H, Zhang H, Wang H, Li J, Yu M, Zhu Y, Huang D, Meng L, Yuan Y. Clinicopathological features in two families with MARS-related Charcot-Marie-Tooth disease. Neuropathology 2022; 42:505-511. [PMID: 35723632 DOI: 10.1111/neup.12842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 12/15/2022]
Abstract
Mutations in MARS gene cause dominant Charcot-Marie-Tooth disease (CMT) 2U. The aim of this study is to investigate phenotypic heterogeneities and peripheral neuropathology of MARS-related CMT patients. We identified a heterozygous p. R199Q mutation and an already reported heterozygous p. P800T mutation of MARS gene in two unrelated families using targeted next-generation sequencing. The first pedigree comprised three patients over three generations and the second pedigree comprised two patients over two generations. In addition of an asymptomatic carrier in the second pedigree, all patients presented with childhood-onset length dependent sensorimotor neuropathy with pes cavus. Nerve conduction studies revealed slowing of motor nerve conduction velocities (MNCV) of the median nerve indicating intermediate neuropathy in the patient with the p. R199Q mutation, and normal MNCV with reduced compound muscle action potential indicating axonal neuropathy in the patient with the p. P800T mutation. Magnetic resonance imaging detected a pattern of nerve changes similar to those in demyelinating polyneuropathies in intermediate type (p. R199Q mutation) patients compared with normal in the axonal type (p. P800T mutation) patients. Additionally, sural nerve biopsy revealed loss of myelinated axons with onion bulb formation in both mutations. By electron microscopy, a marked decrease of myelinated and unmyelinated fiber, neurofilaments aggregate with degenerating mitochondria and microtubule loss in axons were frequently found. Denervated Schwann cell complexes and few collagen pockets indicated involvement of unmyelinated Schwann cells. Therefore, the investigated MARS mutations cause not only the known axonal type but also intermediate type neuropathy with involvement of both axons and Schwann cells. Those findings are useful for the differential diagnosis of CMT patients with unknown MARS variants.
Collapse
Affiliation(s)
- Zhixing Ma
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - He Lv
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Hongwei Zhang
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Hui Wang
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Jingcheng Li
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Meng Yu
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Ying Zhu
- Department of Radiology, Peking University First Hospital, Beijing, China
| | - Diandian Huang
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Lingchao Meng
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Yun Yuan
- Department of Neurology, Peking University First Hospital, Beijing, China
| |
Collapse
|
7
|
Okamoto N, Miya F, Tsunoda T, Kanemura Y, Saitoh S, Kato M, Yanagi K, Kaname T, Kosaki K. Four pedigrees with aminoacyl-tRNA synthetase abnormalities. Neurol Sci 2021; 43:2765-2774. [PMID: 34585293 DOI: 10.1007/s10072-021-05626-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 09/23/2021] [Indexed: 01/16/2023]
Abstract
Aminoacyl tRNA synthetases (ARSs) are highly conserved enzymes that link amino acids to their cognate tRNAs. Thirty-seven ARSs are known and their deficiencies cause various genetic disorders. Variants in some ARSs are associated with the autosomal dominant inherited form of axonal neuropathy, including Charcot-Marie-Tooth (CMT) disease. Variants of genes encoding ARSs often cause disorders in an autosomal recessive fashion. The clinical features of cytosolic ARS deficiencies are more variable, including systemic features. Deficiencies of ARSs localized in the mitochondria are often associated with neurological disorders including Leigh and early-onset epileptic syndromes. Whole exome sequencing (WES) is an efficient way to identify the genes causing various symptoms in patients. We identified 4 pedigrees with novel compound heterozygous variants in ARS genes (WARS1, MARS1, AARS2, and PARS2) by WES. Some unique manifestations were noted. The number of patients with ARSs has been increasing since the application of WES. Our findings broaden the known genetic and clinical spectrum associated with ARS variants.
Collapse
Affiliation(s)
- Nobuhiko Okamoto
- Department of Medical Genetics, Osaka Women's and Children's Hospital, Izumi, Osaka, Japan.
| | - Fuyuki Miya
- Department of Medical Science Mathematics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan.,Laboratory for Medical Science Mathematics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.,Medical Science Mathematics, Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Tatsuhiko Tsunoda
- Department of Medical Science Mathematics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan.,Laboratory for Medical Science Mathematics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.,Medical Science Mathematics, Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Yonehiro Kanemura
- Department of Neurosurgery, National Hospital Organization Osaka National Hospital, Osaka, Japan.,Department of Biomedical Research and Innovation, Institute for Clinical Research, National Hospital Organization Osaka National Hospital, Osaka, Japan
| | - Shinji Saitoh
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Mitsuhiro Kato
- Department of Pediatrics, Showa University School of Medicine, Tokyo, Japan
| | - Kumiko Yanagi
- Department of Genome Medicine, National Center for Child Health and Development, Tokyo, Japan
| | - Tadashi Kaname
- Department of Genome Medicine, National Center for Child Health and Development, Tokyo, Japan
| | - Kenjiro Kosaki
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
8
|
Ravel JM, Dreumont N, Mosca P, Smith DEC, Mendes MI, Wiedemann A, Coelho D, Schmitt E, Rivière JB, Tran Mau-Them F, Thevenon J, Kuentz P, Polivka M, Fuchs SA, Kok G, Thauvin-Robinet C, Guéant JL, Salomons GS, Faivre L, Feillet F. A bi-allelic loss-of-function SARS1 variant in children with neurodevelopmental delay, deafness, cardiomyopathy, and decompensation during fever. Hum Mutat 2021; 42:1576-1583. [PMID: 34570399 DOI: 10.1002/humu.24285] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 09/01/2021] [Accepted: 09/23/2021] [Indexed: 11/08/2022]
Abstract
Aminoacyl-tRNA synthetases (aaRS) are ubiquitously expressed enzymes responsible for ligating amino acids to their cognate tRNA molecules through an aminoacylation reaction. The resulting aminoacyl-tRNA is delivered to ribosome elongation factors to participate in protein synthesis. Seryl-tRNA synthetase (SARS1) is one of the cytosolic aaRSs and catalyzes serine attachment to tRNASer . SARS1 deficiency has already been associated with moderate intellectual disability, ataxia, muscle weakness, and seizure in one family. We describe here a new clinical presentation including developmental delay, central deafness, cardiomyopathy, and metabolic decompensation during fever leading to death, in a consanguineous Turkish family, with biallelic variants (c.638G>T, p.(Arg213Leu)) in SARS1. This missense variant was shown to lead to protein instability, resulting in reduced protein level and enzymatic activity. Our results describe a new clinical entity and expand the clinical and mutational spectrum of SARS1 and aaRS deficiencies.
Collapse
Affiliation(s)
- Jean-Marie Ravel
- Reference Centre of Inborn Metabolism Diseases, Université de Lorraine, CHRU-Nancy, Nancy, France.,NGERE, Université de Lorraine, Inserm, Nancy, France
| | | | - Pauline Mosca
- NGERE, Université de Lorraine, Inserm, Nancy, France
| | - Desiree E C Smith
- Metabolic Unit, Department of Clinical Chemistry, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Marisa I Mendes
- Metabolic Unit, Department of Clinical Chemistry, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | | | - David Coelho
- NGERE, Université de Lorraine, Inserm, Nancy, France
| | | | - Jean-Baptiste Rivière
- Unité Fonctionnelle Innovation en Diagnostic génomique des maladies rares, CHU Dijon Bourgogne, Dijon, France.,Centre de Génétique, Centre de Référence Anomalies du Développement et Syndromes Malformatifs, Centre de Compétence Maladies Mitochondriales, FHU TRANSLAD, Hôpital d'Enfants, CHU de Dijon, France.,INSERM UMR1231, Equipe Génétique des Anomalies du Développement, Université de Bourgogne, Dijon, France
| | - Frédéric Tran Mau-Them
- Unité Fonctionnelle Innovation en Diagnostic génomique des maladies rares, CHU Dijon Bourgogne, Dijon, France.,Centre de Génétique, Centre de Référence Anomalies du Développement et Syndromes Malformatifs, Centre de Compétence Maladies Mitochondriales, FHU TRANSLAD, Hôpital d'Enfants, CHU de Dijon, France.,INSERM UMR1231, Equipe Génétique des Anomalies du Développement, Université de Bourgogne, Dijon, France
| | - Julien Thevenon
- Unité Fonctionnelle Innovation en Diagnostic génomique des maladies rares, CHU Dijon Bourgogne, Dijon, France.,Centre de Génétique, Centre de Référence Anomalies du Développement et Syndromes Malformatifs, Centre de Compétence Maladies Mitochondriales, FHU TRANSLAD, Hôpital d'Enfants, CHU de Dijon, France.,INSERM UMR1231, Equipe Génétique des Anomalies du Développement, Université de Bourgogne, Dijon, France
| | - Paul Kuentz
- Centre de Génétique, Centre de Référence Anomalies du Développement et Syndromes Malformatifs, Centre de Compétence Maladies Mitochondriales, FHU TRANSLAD, Hôpital d'Enfants, CHU de Dijon, France.,INSERM UMR1231, Equipe Génétique des Anomalies du Développement, Université de Bourgogne, Dijon, France
| | - Marc Polivka
- Department of Pathology, Hôpital Lariboisière, Paris, France
| | - Sabine A Fuchs
- Department of Metabolic Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands.,Regenerative Medicine Center Utrecht, Regenerative Medicine Utrecht, Utrecht, The Netherlands.,On behalf of "United for Metabolic Diseases,", Amsterdam, the Netherlands
| | - Gautam Kok
- Department of Pathology, Hôpital Lariboisière, Paris, France
| | - Christel Thauvin-Robinet
- Unité Fonctionnelle Innovation en Diagnostic génomique des maladies rares, CHU Dijon Bourgogne, Dijon, France.,Centre de Génétique, Centre de Référence Anomalies du Développement et Syndromes Malformatifs, Centre de Compétence Maladies Mitochondriales, FHU TRANSLAD, Hôpital d'Enfants, CHU de Dijon, France.,INSERM UMR1231, Equipe Génétique des Anomalies du Développement, Université de Bourgogne, Dijon, France
| | - Jean-Louis Guéant
- Reference Centre of Inborn Metabolism Diseases, Université de Lorraine, CHRU-Nancy, Nancy, France.,NGERE, Université de Lorraine, Inserm, Nancy, France
| | - Gajja S Salomons
- Metabolic Unit, Department of Clinical Chemistry, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Laurence Faivre
- Centre de Génétique, Centre de Référence Anomalies du Développement et Syndromes Malformatifs, Centre de Compétence Maladies Mitochondriales, FHU TRANSLAD, Hôpital d'Enfants, CHU de Dijon, France.,INSERM UMR1231, Equipe Génétique des Anomalies du Développement, Université de Bourgogne, Dijon, France
| | - François Feillet
- Reference Centre of Inborn Metabolism Diseases, Université de Lorraine, CHRU-Nancy, Nancy, France.,NGERE, Université de Lorraine, Inserm, Nancy, France
| |
Collapse
|
9
|
Yeast as a Tool to Understand the Significance of Human Disease-Associated Gene Variants. Genes (Basel) 2021; 12:genes12091303. [PMID: 34573285 PMCID: PMC8465565 DOI: 10.3390/genes12091303] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/23/2021] [Accepted: 08/23/2021] [Indexed: 02/05/2023] Open
Abstract
At present, the great challenge in human genetics is to provide significance to the growing amount of human disease-associated gene variants identified by next generation DNA sequencing technologies. Increasing evidences suggest that model organisms are of pivotal importance to addressing this issue. Due to its genetic tractability, the yeast Saccharomyces cerevisiae represents a valuable model organism for understanding human genetic variability. In the present review, we show how S. cerevisiae has been used to study variants of genes involved in different diseases and in different pathways, highlighting the versatility of this model organism.
Collapse
|
10
|
Vinogradova ES, Nikonov OS, Nikonova EY. Associations between Neurological Diseases and Mutations in the Human Glycyl-tRNA Synthetase. BIOCHEMISTRY (MOSCOW) 2021; 86:S12-S23. [PMID: 33827397 PMCID: PMC7905983 DOI: 10.1134/s0006297921140029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Aminoacyl-RNA synthetases (aaRSs) are among the key enzymes of protein biosynthesis. They are responsible for conducting the first step in the protein biosynthesis, namely attaching amino acids to the corresponding tRNA molecules both in cytoplasm and mitochondria. More and more research demonstrates that mutations in the genes encoding aaRSs lead to the development of various neurodegenerative diseases, such as incurable Charcot–Marie–Tooth disease (CMT) and distal spinal muscular atrophy. Some mutations result in the loss of tRNA aminoacylation activity, while other mutants retain their classical enzyme activity. In the latter case, disease manifestations are associated with additional neuron-specific functions of aaRSs. At present, seven aaRSs (GlyRS, TyrRS, AlaRS, HisRS, TrpRS, MetRS, and LysRS) are known to be involved in the CMT etiology with glycyl-tRNA synthetase (GlyRS) being the most studied of them.
Collapse
Affiliation(s)
| | - Oleg S Nikonov
- Institute of Protein Research, Pushchino, Moscow Region, 142290, Russia
| | | |
Collapse
|
11
|
Botta E, Theil AF, Raams A, Caligiuri G, Giachetti S, Bione S, Accadia M, Lombardi A, Smith DEC, Mendes MI, Swagemakers SMA, van der Spek PJ, Salomons GS, Hoeijmakers JHJ, Yesodharan D, Nampoothiri S, Ogi T, Lehmann AR, Orioli D, Vermeulen W. Protein instability associated with AARS1 and MARS1 mutations causes Trichothiodystrophy. Hum Mol Genet 2021; 30:1711-1720. [PMID: 33909043 PMCID: PMC8411986 DOI: 10.1093/hmg/ddab123] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 04/16/2021] [Accepted: 04/16/2021] [Indexed: 12/14/2022] Open
Abstract
Trichothiodystrophy (TTD) is a rare hereditary neurodevelopmental disorder defined by sulfur-deficient brittle hair and nails and scaly skin, but with otherwise remarkably variable clinical features. The photosensitive TTD (PS-TTD) forms exhibits in addition to progressive neuropathy and other features of segmental accelerated aging and is associated with impaired genome maintenance and transcription. New factors involved in various steps of gene expression have been identified for the different non-photosensitive forms of TTD (NPS-TTD), which do not appear to show features of premature aging. Here, we identify alanyl-tRNA synthetase 1 and methionyl-tRNA synthetase 1 variants as new gene defects that cause NPS-TTD. These variants result in the instability of the respective gene products alanyl- and methionyl-tRNA synthetase. These findings extend our previous observations that TTD mutations affect the stability of the corresponding proteins and emphasize this phenomenon as a common feature of TTD. Functional studies in skin fibroblasts from affected individuals demonstrate that these new variants also impact on the rate of tRNA charging, which is the first step in protein translation. The extension of reduced abundance of TTD factors to translation as well as transcription redefines TTD as a syndrome in which proteins involved in gene expression are unstable.
Collapse
Affiliation(s)
- Elena Botta
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza" (IGM) CNR, Via Abbiategrasso 207, 27100 Pavia, Italy
| | - Arjan F Theil
- Department of Molecular Genetics, Oncode Institute, Erasmus MC, University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Anja Raams
- Department of Molecular Genetics, Oncode Institute, Erasmus MC, University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Giuseppina Caligiuri
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza" (IGM) CNR, Via Abbiategrasso 207, 27100 Pavia, Italy
| | - Sarah Giachetti
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza" (IGM) CNR, Via Abbiategrasso 207, 27100 Pavia, Italy
| | - Silvia Bione
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza" (IGM) CNR, Via Abbiategrasso 207, 27100 Pavia, Italy
| | - Maria Accadia
- Medical Genetics Service, Hospital "Cardinale G. Panico", Via San Pio X Tricase, Italy
| | - Anita Lombardi
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza" (IGM) CNR, Via Abbiategrasso 207, 27100 Pavia, Italy
| | - Desiree E C Smith
- Metabolic Unit, Department of Clinical Chemistry, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam Gastroenterology & Metabolism, 1081 HZ Amsterdam, The Netherlands
| | - Marisa I Mendes
- Metabolic Unit, Department of Clinical Chemistry, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam Gastroenterology & Metabolism, 1081 HZ Amsterdam, The Netherlands
| | - Sigrid M A Swagemakers
- Department of Pathology and Clinical Bioinformatics Unit, Erasmus University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Peter J van der Spek
- Department of Pathology and Clinical Bioinformatics Unit, Erasmus University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Gajja S Salomons
- Metabolic Unit, Department of Clinical Chemistry, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam Gastroenterology & Metabolism, 1081 HZ Amsterdam, The Netherlands.,Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Jan H J Hoeijmakers
- Department of Molecular Genetics, Oncode Institute, Erasmus MC, University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands.,Princess Maxima Center for Pediatric Oncology, Oncode Institute, 3584 CS Utrecht, the Netherlands.,Institute for Genome Stability in Ageing and Disease, CECAD Forschungszentrum, University of Cologne, 50931 Cologne, Germany
| | - Dhanya Yesodharan
- Department of Pediatric Genetics, Amrita Institute of Medical Sciences & Research Centre, AIMS Ponekkara PO, Cochin 682041, Kerala, India
| | - Sheela Nampoothiri
- Department of Pediatric Genetics, Amrita Institute of Medical Sciences & Research Centre, AIMS Ponekkara PO, Cochin 682041, Kerala, India
| | - Tomoo Ogi
- Department of Genetics, Research Institute of Environmental Medicine (RIeM), Nagoya University, Nagoya, Japan/Department of Human Genetics and Molecular Biology, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Alan R Lehmann
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9RQ, UK
| | - Donata Orioli
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza" (IGM) CNR, Via Abbiategrasso 207, 27100 Pavia, Italy
| | - Wim Vermeulen
- Department of Molecular Genetics, Oncode Institute, Erasmus MC, University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| |
Collapse
|
12
|
Hadchouel A, Drummond D, Abou Taam R, Lebourgeois M, Delacourt C, de Blic J. Alveolar proteinosis of genetic origins. Eur Respir Rev 2020; 29:29/158/190187. [PMID: 33115790 DOI: 10.1183/16000617.0187-2019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 05/21/2020] [Indexed: 12/18/2022] Open
Abstract
Pulmonary alveolar proteinosis (PAP) is a rare form of chronic interstitial lung disease, characterised by the intra-alveolar accumulation of lipoproteinaceous material. Numerous conditions can lead to its development. Whereas the autoimmune type is the main cause in adults, genetic defects account for a large part of cases in infants and children. Even if associated extra-respiratory signs may guide the clinician during diagnostic work-up, next-generation sequencing panels represent an efficient diagnostic tool. Exome sequencing also allowed the discovery of new variants and genes involved in PAP. The aim of this article is to summarise our current knowledge of genetic causes of PAP.
Collapse
Affiliation(s)
- Alice Hadchouel
- AP-HP, Hôpital Necker-Enfants Malades, Service de Pneumologie Pédiatrique, Centre de Référence pour les Maladies Respiratoires Rares de l'Enfant, Paris, France .,INSERM U1151, Institut Necker Enfants Malades, Paris, France.,Université de Paris, Faculté de Médecine, Paris, France
| | - David Drummond
- AP-HP, Hôpital Necker-Enfants Malades, Service de Pneumologie Pédiatrique, Centre de Référence pour les Maladies Respiratoires Rares de l'Enfant, Paris, France
| | - Rola Abou Taam
- AP-HP, Hôpital Necker-Enfants Malades, Service de Pneumologie Pédiatrique, Centre de Référence pour les Maladies Respiratoires Rares de l'Enfant, Paris, France
| | - Muriel Lebourgeois
- AP-HP, Hôpital Necker-Enfants Malades, Service de Pneumologie Pédiatrique, Centre de Référence pour les Maladies Respiratoires Rares de l'Enfant, Paris, France
| | - Christophe Delacourt
- AP-HP, Hôpital Necker-Enfants Malades, Service de Pneumologie Pédiatrique, Centre de Référence pour les Maladies Respiratoires Rares de l'Enfant, Paris, France.,INSERM U1151, Institut Necker Enfants Malades, Paris, France.,Université de Paris, Faculté de Médecine, Paris, France
| | - Jacques de Blic
- AP-HP, Hôpital Necker-Enfants Malades, Service de Pneumologie Pédiatrique, Centre de Référence pour les Maladies Respiratoires Rares de l'Enfant, Paris, France
| |
Collapse
|
13
|
Zhang H, Zhou ZW, Sun L. Aminoacyl-tRNA synthetases in Charcot-Marie-Tooth disease: A gain or a loss? J Neurochem 2020; 157:351-369. [PMID: 33236345 PMCID: PMC8247414 DOI: 10.1111/jnc.15249] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/17/2020] [Accepted: 11/19/2020] [Indexed: 01/05/2023]
Abstract
Charcot‐Marie‐Tooth disease (CMT) is one of the most common inherited neurodegenerative disorders with an increasing number of CMT‐associated variants identified as causative factors, however, there has been no effective therapy for CMT to date. Aminoacyl‐tRNA synthetases (aaRS) are essential enzymes in translation by charging amino acids onto their cognate tRNAs during protein synthesis. Dominant monoallelic variants of aaRSs have been largely implicated in CMT. Some aaRSs variants affect enzymatic activity, demonstrating a loss‐of‐function property. In contrast, loss of aminoacylation activity is neither necessary nor sufficient for some aaRSs variants to cause CMT. Instead, accumulating evidence from CMT patient samples, animal genetic studies or protein conformational analysis has pinpointed toxic gain‐of‐function of aaRSs variants in CMT, suggesting complicated mechanisms underlying the pathogenesis of CMT. In this review, we summarize the latest advances in studies on CMT‐linked aaRSs, with a particular focus on their functions. The current challenges, future direction and the promising candidates for potential treatment of CMT are also discussed. ![]()
Collapse
Affiliation(s)
- Han Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Zhong-Wei Zhou
- School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Litao Sun
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| |
Collapse
|