1
|
Rivera AB, Stephens AB, Conrow KD, Griffith ST, Jameson LE, Cahill TM, Sammi SR, Swinburne MR, Cannon JR, Leung MCK. Regulatory trends of organophosphate and pyrethroid pesticides in cannabis and applications of the Comparative Toxicogenomics Database and Caenorhabditis elegans. Toxicol Sci 2025; 204:218-227. [PMID: 39836634 DOI: 10.1093/toxsci/kfaf009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025] Open
Abstract
Organophosphate and pyrethroid pesticides are common contaminants in cannabis. Due to the status of cannabis as an illicit Schedule I substance at the federal level, there are no unified national guidelines in the United States to mitigate the health risk of pesticide exposure in cannabis. Here, we examined the change in the state-level regulations of organophosphate and pyrethroid pesticides in cannabis. The medians of pyrethroid and organophosphate pesticides specified by each state-level jurisdiction increased from zero pesticide in 2019 to 4.5 pyrethroid and 7 organophosphate pesticides in 2023, respectively. Next, we evaluated the potential connections between pyrethroids, organophosphates, cannabinoids, and Parkinson's disease using the Comparative Toxicogenomics Database (CTD). Eleven pyrethroids, 30 organophosphates, and 14 cannabinoids were associated with 95 genes to form 3,237 inferred and curated Chemical-Gene-Phenotype-Disease tetramers. Using a behavioral repulsion assay with the whole organism model Caenorhabditis elegans, we examined the effect of cannabinoids and insecticides on depleting dopamine synthesis. Exposure to chlorpyrifos and permethrin, but not Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD), results in dose-dependent effects on 1-nonanol repulsive behaviors in C. elegans, indicating dopaminergic neurotoxicity (P < 0.01). Dose-dependent effects of chlorpyrifos are different in the presence of Δ9-THC and CBD (P < 0.001). As a proof of concept, this study demonstrated how to use new approach methodologies such as C. elegans and the CTD to inform further testing and pesticide regulations in cannabis by chemical class.
Collapse
Affiliation(s)
- Albert B Rivera
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ 85306, United States
- ASU-Banner Neurodegenerative Disease Research Center, Arizona State University, Tempe, AZ 85281, United States
| | - Ariell B Stephens
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ 85306, United States
| | - Kendra D Conrow
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ 85306, United States
| | - Symone T Griffith
- ASU-Banner Neurodegenerative Disease Research Center, Arizona State University, Tempe, AZ 85281, United States
- College of Health Solutions, Arizona State University, Phoenix, AZ 85004, United States
| | - Laura E Jameson
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ 85306, United States
| | - Thomas M Cahill
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ 85306, United States
| | - Shreesh R Sammi
- Department of Translational Neuroscience, Michigan State University, Grand Rapids, MI 49503, United States
| | - Mathew R Swinburne
- Francis King Carey School of Laws, University of Maryland, Baltimore, MD 21201, United States
| | - Jason R Cannon
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, United States
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907, United States
| | - Maxwell C K Leung
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ 85306, United States
- ASU-Banner Neurodegenerative Disease Research Center, Arizona State University, Tempe, AZ 85281, United States
- College of Health Solutions, Arizona State University, Phoenix, AZ 85004, United States
| |
Collapse
|
2
|
Alshammari QA. Redox modulatory role of DJ-1 in Parkinson's disease. Biogerontology 2025; 26:81. [PMID: 40159591 DOI: 10.1007/s10522-025-10227-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Accepted: 03/20/2025] [Indexed: 04/02/2025]
Abstract
In particular, oxidative stress, generated by excessive reactive oxygen species (ROS), plays a major role in the neurodegenerative component of Parkinson's disease (PD) in aged neurons. DJ-1 (PARK7) is a key factor for maintaining redox homeostasis and modulation of mitochondrial function to preserve the cellular survival pathways. DJ-1 also plays a role in redox signaling independently of its antioxidant capacity by preventing the redox chain disulfide formation and stabilizing the master regulator of cellular antioxidant defense, Nuclear Factor Erythroid 2-Related Factor 2 (Nrf2). In the DJ-1 or Nrf2 axis, expression of key antioxidant enzymes (glutathione peroxidase (GPx), superoxide dismutase (SOD), and heme oxygenase-1 (HO-1) in response to oxidative stress is increased, and decreased neuronal damage resulting from oxidative stress is achieved. It has been demonstrated that DJ-1 functions as an oxidative stress sensor, and mutations like L166P cause loss of antioxidant activity and increased Reactive Oxygen Species (ROS) accumulation with subsequent mitochondrial dysfunction in dopaminergic neurons. The highly conserved cysteine residue at position 106 (Cys106) of DJ-1 becomes stepwise oxidized (Cys-SOH → Cys-SO₂H → Cys-SO3H), functioning as a redox sensor as well as redox modulator of cellular stress responses. Furthermore, by protecting against α-synuclein aggregation, DJ-1 also protects in models lacking DJ-1, whereby DJ-1 deficiency promotes protein misfolding and neurotoxicity. In addition, DJ-1 participates in regulating neuroinflammation since its diminution provokes NF-κB-mediated exacerbation of proinflammatory cytokine production, leading to neuronal death. Oxidized DJ-1 (OxiDJ-1) is generated in aging brains, particularly in the substantia nigra (SN), and is correlated with PD progression both as a biomarker for disease monitoring and diagnosis of PD early in its course. The therapeutic strategies aimed at DJ-1 include small molecular activators, protein supplementation (Tat-DJ-1, ND-13), and gene therapy aiming to restore the neuroprotective function of DJ-1. Since DJ-1 is multitasking to protect neurons from oxidative damage, mitochondrial dysfunction, and even inflammation, it remains a promising therapeutic target. This review highlights the molecular mechanisms through which DJ-1 can protect from PD and aging-related neurodegeneration and has potential utility as a biomarker or therapeutic target.
Collapse
Affiliation(s)
- Qamar A Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, Northern Border University, Rafha, Saudi Arabia.
- Center for Health Research, Northern Border University, Arar, Saudi Arabia.
| |
Collapse
|
3
|
Lau F, Binacchi R, Brugnara S, Cumplido-Mayoral A, Savino SD, Khan I, Orso A, Sartori S, Bellosta P, Carl M, Poggi L, Provenzano G. Using Single-Cell RNA sequencing with Drosophila, Zebrafish, and mouse models for studying Alzheimer's and Parkinson's disease. Neuroscience 2025:S0306-4522(25)00244-1. [PMID: 40154937 DOI: 10.1016/j.neuroscience.2025.03.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Accepted: 03/19/2025] [Indexed: 04/01/2025]
Abstract
Alzheimer's and Parkinson's disease are the most common neurodegenerative diseases, significantly affecting the elderly with no current cure available. With the rapidly aging global population, advancing research on these diseases becomes increasingly critical. Both disorders are often studied using model organisms, which enable researchers to investigate disease phenotypes and their underlying molecular mechanisms. In this review, we critically discuss the strengths and limitations of using Drosophila, zebrafish, and mice as models for Alzheimer's and Parkinson's research. A focus is the application of single-cell RNA sequencing, which has revolutionized the field by providing novel insights into the cellular and transcriptomic landscapes characterizing these diseases. We assess how combining animal disease modeling with high-throughput sequencing and computational approaches has advanced the field of Alzheimer's and Parkinson's disease research. Thereby, we highlight the importance of integrative multidisciplinary approaches to further our understanding of disease mechanisms and thus accelerating the development of successful therapeutic interventions.
Collapse
Affiliation(s)
- Frederik Lau
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento 38123 Trento, Italy
| | - Rebecca Binacchi
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento 38123 Trento, Italy
| | - Samuele Brugnara
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento 38123 Trento, Italy
| | - Alba Cumplido-Mayoral
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento 38123 Trento, Italy
| | - Serena Di Savino
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento 38123 Trento, Italy
| | - Ihsanullah Khan
- Department of Civil, Environmental and Mechanical Engineering, University of Trento 38123 Trento, Italy
| | - Angela Orso
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento 38123 Trento, Italy
| | - Samuele Sartori
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento 38123 Trento, Italy
| | - Paola Bellosta
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento 38123 Trento, Italy; Department of Medicine NYU Grossman School of Medicine, 550 First Avenue, 10016 NY, USA
| | - Matthias Carl
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento 38123 Trento, Italy
| | - Lucia Poggi
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento 38123 Trento, Italy
| | - Giovanni Provenzano
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento 38123 Trento, Italy
| |
Collapse
|
4
|
Parrales V, Arcile G, Laserre L, Normant S, Le Goff G, Da Costa Noble C, Ouazzani J, Callizot N, Haïk S, Rabhi C, Bizat N. Neuroprotective Effect of Withaferin Derivatives toward MPP + and 6-OHDA Toxicity to Dopaminergic Neurons. ACS Chem Neurosci 2025; 16:802-817. [PMID: 39946298 DOI: 10.1021/acschemneuro.4c00655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2025] Open
Abstract
Parkinson's disease is a neurodegenerative proteinopathy that primarily affects mesencephalic dopaminergic neurons. This dopaminergic depletion can be phenotypically reproduced in various experimental models through the administration of two neurotoxins: N-methyl-4-phenylpyridinium (MPP+) and 6-hydroxydopamine (6-OHDA). The mechanisms underlying the cell death processes induced by these toxins remain a subject of debate. In this context, studies suggest that oxidative-stress-related processes may contribute to the dysfunction and death of dopaminergic neurons. Therefore, investigating pharmacological compounds that can counteract these processes remains crucial for developing therapeutic strategies targeting these neuropathological mechanisms. Withania somnifera (L.) Dunal, commonly known as ashwagandha, is a plant whose roots are used in Ayurvedic medicine to treat various ailments, including those affecting the central nervous system. The active compound Withaferin-A (WFA), a steroid lactone from the withanolide group, is reported to possess antioxidant properties. In this study, we explored the potential neuroprotective effects of WFA and two of its molecular derivatives, cr-591 and cr-777, which contain, respectively, an additional cysteine or glutathione chemical group, known for their antiradical properties. We demonstrated that WFA and its two derivatives, cr-591 and cr-777, protect the integrity and function of dopaminergic neurons exposed to the neurotoxins MPP+ and 6-OHDA both in vitro, using primary mesencephalic neuron cultures from rodents, and in vivo, using the nematode Caenorhabditis elegans.
Collapse
Affiliation(s)
- Valeria Parrales
- Paris Brain Institute, Inserm U1127, CNRS Sorbonne University, Hospital Pitié-Salpêtrière, UMR7225, Paris 75013, France
- Laboratoire Ethnodyne, 151 Boulevard Haussmann, Paris 75008, France
| | - Guillaume Arcile
- Institut de Chimie des Substances Naturelles (ICSN, UPR2301), University Paris-Saclay, 1 Avenue de la Terrasse, Gif-sur-Yvette 91198, France
| | - Louise Laserre
- Paris Brain Institute, Inserm U1127, CNRS Sorbonne University, Hospital Pitié-Salpêtrière, UMR7225, Paris 75013, France
| | - Sébastien Normant
- Paris Brain Institute, Inserm U1127, CNRS Sorbonne University, Hospital Pitié-Salpêtrière, UMR7225, Paris 75013, France
- Laboratoire Ethnodyne, 151 Boulevard Haussmann, Paris 75008, France
| | - Géraldine Le Goff
- Institut de Chimie des Substances Naturelles (ICSN, UPR2301), University Paris-Saclay, 1 Avenue de la Terrasse, Gif-sur-Yvette 91198, France
| | | | - Jamal Ouazzani
- Institut de Chimie des Substances Naturelles (ICSN, UPR2301), University Paris-Saclay, 1 Avenue de la Terrasse, Gif-sur-Yvette 91198, France
| | - Noelle Callizot
- Neuro-Sys, 410 Chemin Départemental 60, Gardanne 13120, France
| | - Stéphane Haïk
- Paris Brain Institute, Inserm U1127, CNRS Sorbonne University, Hospital Pitié-Salpêtrière, UMR7225, Paris 75013, France
- AP-HP, Cellule Nationale de Référence des Maladies de Creutzfeldt-Jakob, University Hospital Pitié-Salpêtrière, Paris 75013, France
| | - Chérif Rabhi
- Institut de Chimie des Substances Naturelles (ICSN, UPR2301), University Paris-Saclay, 1 Avenue de la Terrasse, Gif-sur-Yvette 91198, France
- Laboratoire Ethnodyne, 151 Boulevard Haussmann, Paris 75008, France
| | - Nicolas Bizat
- Paris Brain Institute, Inserm U1127, CNRS Sorbonne University, Hospital Pitié-Salpêtrière, UMR7225, Paris 75013, France
- Faculté de Pharmacie de Paris, Paris University, 4 Avenue de l'Observatoire, Paris 75006, France
| |
Collapse
|
5
|
Kim D, Nguyen TTM, Moon Y, Kim JM, Nam H, Cha DS, An YJ, de Guzman ACV, Park S. Time-Resolved Evaluation of L-Dopa Metabolism in Bacteria-Host Symbiotic System and the Effect on Parkinson's Molecular Pathology. SMALL METHODS 2025; 9:e2400469. [PMID: 39058017 PMCID: PMC11926514 DOI: 10.1002/smtd.202400469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Indexed: 07/28/2024]
Abstract
The gut microbiome influences drug metabolism and therapeutic efficacy. Still, the lack of a general label-free approach for monitoring bacterial or host metabolic contribution hampers deeper insights. Here, a 2D nuclear magnetic resonance (NMR) approach is introduced that enables real-time monitoring of the metabolism of Levodopa (L-dopa), an anti-Parkinson drug, in both live bacteria and bacteria-host (Caenorhabditis elegans) symbiotic systems. The quantitative method reveals that discrete Enterococcus faecalis substrains produce different amounts of dopamine in live hosts, even though they are a single species and all have the Tyrosine decarboxylase (TyrDC) gene involved in L-dopa metabolism. The differential bacterial metabolic activity correlates with differing Parkinson's molecular pathology concerning alpha-synuclein aggregation as well as behavioral phenotypes. The gene's existence or expression is not an indicator of metabolic activity is also shown, underscoring the significance of quantitative metabolic estimation in vivo. This simple approach is widely adaptable to any chemical drug to elucidate pharmacomicrobiomic relationships and may help rapidly screen bacterial metabolic effects in drug development.
Collapse
Affiliation(s)
- Doyeon Kim
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, 08826, South Korea
| | - Tin Tin Manh Nguyen
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, 08826, South Korea
| | - Yechan Moon
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, 08826, South Korea
| | - Jin-Mo Kim
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, 08826, South Korea
| | - Hoonsik Nam
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, 08826, South Korea
| | - Dong Seok Cha
- College of Pharmacy Woosuk University, Jeonbuk, 55338, South Korea
| | - Yong Jin An
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, 08826, South Korea
| | - Arvie Camille V de Guzman
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, 08826, South Korea
| | - Sunghyouk Park
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, 08826, South Korea
| |
Collapse
|
6
|
Donato A, Ritchie FK, Lu L, Wadia M, Martinez-Marmol R, Kaulich E, Sankorrakul K, Lu H, Coakley S, Coulson EJ, Hilliard MA. OSP-1 protects neurons from autophagic cell death induced by acute oxidative stress. Nat Commun 2025; 16:300. [PMID: 39746999 PMCID: PMC11696186 DOI: 10.1038/s41467-024-55105-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 11/21/2024] [Indexed: 01/04/2025] Open
Abstract
Oxidative stress, caused by the accumulation of reactive oxygen species (ROS), is a pathological factor in several incurable neurodegenerative conditions as well as in stroke. However, our knowledge of the genetic elements that can be manipulated to protect neurons from oxidative stress-induced cell death is still very limited. Here, using Caenorhabditis elegans as a model system, combined with the optogenetic tool KillerRed to spatially and temporally control ROS generation, we identify a previously uncharacterized gene, oxidative stress protective 1 (osp-1), that protects C. elegans neurons from oxidative damage. Using rodent and human cell cultures, we also show that the protective effect of OSP-1 extends to mammalian cells. Moreover, we demonstrate that OSP-1 functions in a strictly cell-autonomous fashion, and that it localizes to the endoplasmic reticulum (ER) where it has an ER-remodeling function. Finally, we present evidence suggesting that OSP-1 may exert its neuroprotective function by influencing autophagy. Our results point to a potential role of OSP-1 in modulating autophagy, and suggest that overactivation of this cellular process could contribute to neuronal death triggered by oxidative damage.
Collapse
Affiliation(s)
- Alessandra Donato
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Fiona K Ritchie
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Lachlan Lu
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Mehershad Wadia
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Ramon Martinez-Marmol
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Eva Kaulich
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Kornraviya Sankorrakul
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Hang Lu
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Sean Coakley
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Elizabeth J Coulson
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Massimo A Hilliard
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
7
|
Subhan I, Siddique YH. Modeling of Parkinson's Disease in Different Models. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2025; 24:102-114. [PMID: 39354776 DOI: 10.2174/0118715273326866240922193029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/29/2024] [Accepted: 08/07/2024] [Indexed: 10/03/2024]
Abstract
Parkinson's Disease (PD) is a progressive disorder worldwide and its etiology remains unidentified. Over the last few decades, animal models of PD have been extensively utilized to explore the development and mechanisms of this neurodegenerative condition. Toxic and transgenic animal models for PD possess unique characteristics and constraints, necessitating careful consideration when selecting the appropriate model for research purposes. Animal models have played a significant role in uncovering the causes and development of PD, including its cellular and molecular processes. These models suggest that the disorder arises from intricate interplays between genetic predispositions and environmental influences. Every model possesses its unique set of strengths and weaknesses. This review provides a critical examination of animal models for PD and compares them with the features observed in the human manifestation of the disease.
Collapse
Affiliation(s)
- Iqra Subhan
- Laboratory of Alternative Animal Models, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India
| | - Yasir Hasan Siddique
- Laboratory of Alternative Animal Models, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India
| |
Collapse
|
8
|
Chen Y, Xu R, Liu Q, Zeng Y, Chen W, Liu Y, Cao Y, Liu G, Chen Y. Rosmarinic acid ameliorated oxidative stress, neuronal injuries, and mitochondrial dysfunctions mediated by polyglutamine and ɑ-synuclein in Caenorhabditis elegans models. Mol Neurobiol 2024; 61:10138-10158. [PMID: 38703342 DOI: 10.1007/s12035-024-04206-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 04/22/2024] [Indexed: 05/06/2024]
Abstract
Numerous natural antioxidants have been developed into agents for neurodegenerative diseases (NDs) treatment. Rosmarinic acid (RA), an excellent antioxidant, exhibits neuroprotective activity, but its anti-NDs efficacy remains puzzling. Here, Caenorhabditis elegans models were employed to systematically reveal RA-mediated mechanisms in delaying NDs from diverse facets, including oxidative stress, the homeostasis of neural and protein, and mitochondrial disorders. Firstly, RA significantly inhibited reactive oxygen species accumulation, reduced peroxide malonaldehyde production, and strengthened the antioxidant defense system via increasing superoxide dismutase activity. Besides, RA reduced neuronal loss and ameliorated polyglutamine and ɑ-synuclein-mediated dyskinesia in NDs models. Further, in combination with the data and molecular docking results, RA may bind specifically to Huntington protein and ɑ-synuclein to prevent toxic protein aggregation and thus enhance proteostasis. Finally, RA ameliorated mitochondrial dysfunction including increasing adenosine triphosphate and mitochondrial membrane potential levels and rescuing mitochondrial membrane proteins' expressions and mitochondrial structural abnormalities via regulating mitochondrial dynamics genes and improving the mitochondrial kinetic homeostasis. Thus, this study systematically revealed the RA-mediated neuroprotective mechanism and promoted RA as a promising nutritional intervention strategy to prevent NDs.
Collapse
Affiliation(s)
- Yun Chen
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, 510640, Guangdong, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510640, Guangdong, China
| | - Ruina Xu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, 510640, Guangdong, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510640, Guangdong, China
| | - Qiaoxing Liu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, 510640, Guangdong, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510640, Guangdong, China
| | - Yanting Zeng
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, 510640, Guangdong, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510640, Guangdong, China
| | - Weitian Chen
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, 510640, Guangdong, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510640, Guangdong, China
| | - Yongfa Liu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, 510640, Guangdong, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510640, Guangdong, China
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, 510640, Guangdong, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510640, Guangdong, China
| | - Guo Liu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, 510640, Guangdong, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510640, Guangdong, China.
- College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, Guangdong, China.
| | - Yunjiao Chen
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, 510640, Guangdong, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510640, Guangdong, China.
| |
Collapse
|
9
|
Alam M, Abbas K, Mustafa M, Usmani N, Habib S. Microbiome-based therapies for Parkinson's disease. Front Nutr 2024; 11:1496616. [PMID: 39568727 PMCID: PMC11576319 DOI: 10.3389/fnut.2024.1496616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 10/21/2024] [Indexed: 11/22/2024] Open
Abstract
The human gut microbiome dysbiosis plays an important role in the pathogenesis of Parkinson's disease (PD). The bidirectional relationship between the enteric nervous system (ENS) and central nervous system (CNS) under the mediation of the gut-brain axis control the gastrointestinal functioning. This review article discusses key mechanisms by which modifications in the composition and function of the gut microbiota (GM) influence PD progression and motor control loss. Increased intestinal permeability, chronic inflammation, oxidative stress, α-synuclein aggregation, and neurotransmitter imbalances are some key factors that govern gastrointestinal pathology and PD progression. The bacterial taxa of the gut associated with PD development are discussed with emphasis on the enteric nervous system (ENS), as well as the impact of gut bacteria on dopamine production and levodopa metabolism. The pathophysiology and course of the disease are associated with several inflammatory markers, including TNF-α, IL-1β, and IL-6. Emerging therapeutic strategies targeting the gut microbiome include probiotics, prebiotics, synbiotics, postbiotics, and fecal microbiota transplantation (FMT). The article explored how dietary changes may affect the gut microbiota (GM) and the ways that can affect Parkinson's disease (PD), with a focus on nutrition-based, Mediterranean, and ketogenic diets. This comprehensive review synthesizes current evidence on the role of the gut microbiome in PD pathogenesis and explores its potential as a therapeutic target. Understanding these complex interactions may assist in the development of novel diagnostic tools and treatment options for this neurodegenerative disorder.
Collapse
Affiliation(s)
- Mudassir Alam
- Indian Biological Sciences and Research Institute (IBRI), Noida, India
| | - Kashif Abbas
- Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Mohd Mustafa
- Department of Biochemistry, J.N. Medical College, Aligarh Muslim University, Aligarh, India
| | - Nazura Usmani
- Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Safia Habib
- Department of Biochemistry, J.N. Medical College, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
10
|
Talarmin-Gas C, Smolyakov G, Parisi C, Scandola C, Andrianasolonirina V, Lecoq C, Houtart V, Lee SH, Adle-Biassette H, Thiébot B, Ganderton T, Manivet P. Validation of metaxin-2 deficient C. elegans as a model for MandibuloAcral Dysplasia associated to mtx-2 (MADaM) syndrome. Commun Biol 2024; 7:1398. [PMID: 39462037 PMCID: PMC11513083 DOI: 10.1038/s42003-024-06967-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 09/25/2024] [Indexed: 10/28/2024] Open
Abstract
MandibuloAcral Dysplasia associated to MTX2 gene (MADaM) is a recently described progeroid syndrome (accelerated aging disease) whose clinical manifestations include skin abnormalities, growth retardation, and cardiovascular diseases. We previously proposed that mtx-2-deficient C. elegans could be used as a model for MADaM and to support this, we present here our comprehensive phenotypic characterization of these worms using atomic force microscopy (AFM), transcriptomic, and oxygen consumption rate analyses. AFM analysis showed that young mtx-2-less worms had a significantly rougher, less elastic cuticle which becomes significantly rougher and less elastic as they age, and abnormal mitochondrial morphology. mtx-2 C. elegans displayed slightly delayed development, decreased pharyngeal pumping, significantly reduced mitochondrial respiratory capacities, and transcriptomic analysis identified perturbations in the aging, TOR, and WNT-signaling pathways. The phenotypic characteristics of mtx-2 worms shown here are analogous to many of the human clinical presentations of MADaM and we believe this validates their use as a model which will allow us to uncover the molecular details of the disease and develop new therapeutics and treatments.
Collapse
Affiliation(s)
- Chloé Talarmin-Gas
- Université Paris Cité, INSERM UMR 1141 "NeuroDiderot", FHU Iio2-D2, Paris, France.
- AP-HP, DMU BioGem, Centre de Ressources Biologiques Biobank Lariboisière/Saint Louis (BB-0033-00064), Hôpital Lariboisière, Paris, France.
| | - Georges Smolyakov
- Université Paris Cité, INSERM UMR 1141 "NeuroDiderot", FHU Iio2-D2, Paris, France
- AP-HP, DMU BioGem, Centre de Ressources Biologiques Biobank Lariboisière/Saint Louis (BB-0033-00064), Hôpital Lariboisière, Paris, France
| | - Cleo Parisi
- Université Paris Cité, INSERM UMR 1141 "NeuroDiderot", FHU Iio2-D2, Paris, France
- AP-HP, DMU BioGem, Centre de Ressources Biologiques Biobank Lariboisière/Saint Louis (BB-0033-00064), Hôpital Lariboisière, Paris, France
| | - Cyril Scandola
- Institut Pasteur, Université Paris Cité, Ultrastructural Bioimaging Unit, 75015, Paris, France
| | - Valérie Andrianasolonirina
- Université Paris Cité, INSERM UMR 1141 "NeuroDiderot", FHU Iio2-D2, Paris, France
- AP-HP, DMU BioGem, Centre de Ressources Biologiques Biobank Lariboisière/Saint Louis (BB-0033-00064), Hôpital Lariboisière, Paris, France
| | - Cloé Lecoq
- Université Paris Cité, INSERM UMR 1141 "NeuroDiderot", FHU Iio2-D2, Paris, France
- AP-HP, DMU BioGem, Centre de Ressources Biologiques Biobank Lariboisière/Saint Louis (BB-0033-00064), Hôpital Lariboisière, Paris, France
| | - Valentine Houtart
- AP-HP, DMU BioGem, Centre de Ressources Biologiques Biobank Lariboisière/Saint Louis (BB-0033-00064), Hôpital Lariboisière, Paris, France
| | | | - Homa Adle-Biassette
- Université Paris Cité, INSERM UMR 1141 "NeuroDiderot", FHU Iio2-D2, Paris, France
- AP-HP, DMU BioGem, Centre de Ressources Biologiques Biobank Lariboisière/Saint Louis (BB-0033-00064), Hôpital Lariboisière, Paris, France
- AP-HP, DMU DREAM, Service d'Anatomocytopathologie, Hôpital Lariboisière, Paris, France
| | - Bénédicte Thiébot
- CY Cergy Paris Université, Université d'Evry, Université Paris-Saclay, CNRS, LAMBE, F-95000, Cergy, France
| | - Timothy Ganderton
- Université Paris Cité, INSERM UMR 1141 "NeuroDiderot", FHU Iio2-D2, Paris, France
- AP-HP, DMU BioGem, Centre de Ressources Biologiques Biobank Lariboisière/Saint Louis (BB-0033-00064), Hôpital Lariboisière, Paris, France
| | - Philippe Manivet
- Université Paris Cité, INSERM UMR 1141 "NeuroDiderot", FHU Iio2-D2, Paris, France.
- AP-HP, DMU BioGem, Centre de Ressources Biologiques Biobank Lariboisière/Saint Louis (BB-0033-00064), Hôpital Lariboisière, Paris, France.
- CeleScreen SAS, Paris, France.
| |
Collapse
|
11
|
Lal R, Singh A, Watts S, Chopra K. Experimental models of Parkinson's disease: Challenges and Opportunities. Eur J Pharmacol 2024; 980:176819. [PMID: 39029778 DOI: 10.1016/j.ejphar.2024.176819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 05/29/2024] [Accepted: 07/17/2024] [Indexed: 07/21/2024]
Abstract
Parkinson's disease (PD) is a widespread neurodegenerative disorder occurs due to the degradation of dopaminergic neurons present in the substantia nigra pars compacta (SNpc). Millions of people are affected by this devastating disorder globally, and the frequency of the condition increases with the increase in the elderly population. A significant amount of progress has been made in acquiring more knowledge about the etiology and the pathogenesis of PD over the past decades. Animal models have been regarded to be a vital tool for the exploration of complex molecular mechanisms involved in PD. Various animals used as models for disease monitoring include vertebrates (zebrafish, rats, mice, guinea pigs, rabbits and monkeys) and invertebrate models (Drosophila, Caenorhabditis elegans). The animal models most relevant for study of PD are neurotoxin induction-based models (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), 6-Hydroxydopamine (6-OHDA) and agricultural pesticides (rotenone, paraquat), pharmacological models (reserpine or haloperidol treated rats), genetic models (α-synuclein, Leucine-rich repeat kinase 2 (LRRK2), DJ-1, PINK-1 and Parkin). Several non-mammalian genetic models such as zebrafish, Drosophila and Caenorhabditis elegance have also gained popularity in recent years due to easy genetic manipulation, presence of genes homologous to human PD, and rapid screening of novel therapeutic molecules. In addition, in vitro models (SH-SY5Y, PC12, Lund human mesencephalic (LUHMES) cells, Human induced pluripotent stem cell (iPSC), Neural organoids, organ-on-chip) are also currently in trend providing edge in investigating molecular mechanisms involved in PD as they are derived from PD patients. In this review, we explain the current situation and merits and demerits of the various animal models.
Collapse
Affiliation(s)
- Roshan Lal
- Pharmacology Division, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh, 160014, India.
| | - Aditi Singh
- TR(i)P for Health Laboratory, Centre for Excellence in Functional Foods, Department of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute (NABI), Knowledge City, Sector 81, SAS Nagar, Punjab, 140306, India.
| | - Shivam Watts
- Pharmacology Division, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh, 160014, India.
| | - Kanwaljit Chopra
- Pharmacology Division, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
12
|
Weishaupt AK, Ruecker L, Meiners T, Schwerdtle T, Silva Avila D, Aschner M, Bornhorst J. Copper-mediated neurotoxicity and genetic vulnerability in the background of neurodegenerative diseases in C. elegans. Toxicol Sci 2024; 201:254-262. [PMID: 39067045 PMCID: PMC11424883 DOI: 10.1093/toxsci/kfae092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024] Open
Abstract
The mechanisms associated with neurodegenerative diseases, such as Alzheimer's disease (AD) and Parkinson's disease (PD), have yet to be fully characterized, and genetic as well as environmental factors in their disease etiology are underappreciated. Although mutations in genes such as PARKIN and LRRK2 have been linked to PD, the idiopathic component of the disease suggests a contribution of environmental risk factors, including metals, such as copper (Cu). Cu overexposure has been reported to cause oxidative stress and neurotoxicity, but its role in neurodegenerative diseases is rarely studied. Using Caenorhabditis elegans (C. elegans) as a model organism for neurotoxicity, we assessed the effects of Cu oversupply in AD and PD models. Our findings reveal that although copper treatment did not induce neurodegeneration in wild-type worms or the AD model, it significantly exacerbated neurodegeneration in the PD-associated mutants PARKIN and LRRK2. These results suggest that genetic predisposition for PD enhances the sensitivity to copper toxicity, highlighting the multifactorial nature of neurodegenerative diseases. Furthermore, our study provides insight into the mechanisms underlying Cu-induced neurotoxicity in PD models, including disruptions in dopamine levels, altered dopamine-dependent behavior and degraded dopaminergic neurons. Overall, our novel findings contribute to a better understanding of the complex interactions between genetic susceptibility, environmental factors, and neurodegenerative disease pathogenesis, emphasizing the importance of a tightly regulated Cu homeostasis in the etiology of PD. Copper oversupply exacerbated neurodegeneration in Caenorhabditis elegans models of Parkinson's disease, highlighting the genetic susceptibility and emphasizing the crucial role of tightly regulated copper homeostasis in Parkinson's disease pathogenesis.
Collapse
Affiliation(s)
- Ann-Kathrin Weishaupt
- Food Chemistry with Focus on Toxicology, Faculty of Mathematics and Natural Sciences, University of Wuppertal, 42119 Wuppertal, Germany
- TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Berlin, Potsdam, Jena, Wuppertal, Germany
| | - Lysann Ruecker
- Food Chemistry with Focus on Toxicology, Faculty of Mathematics and Natural Sciences, University of Wuppertal, 42119 Wuppertal, Germany
| | - Torben Meiners
- Food Chemistry with Focus on Toxicology, Faculty of Mathematics and Natural Sciences, University of Wuppertal, 42119 Wuppertal, Germany
| | - Tanja Schwerdtle
- TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Berlin, Potsdam, Jena, Wuppertal, Germany
- German Federal Institute for Risk Assessment (BfR), 10589 Berlin, Germany
| | - Daiana Silva Avila
- Laboratory of Toxicology and Biochemistry in Caenorhabditis elegans, Universidade Federal do Pampa, 97501-970 Uruguaiana, Brazil
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, United States
| | - Julia Bornhorst
- Food Chemistry with Focus on Toxicology, Faculty of Mathematics and Natural Sciences, University of Wuppertal, 42119 Wuppertal, Germany
- TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Berlin, Potsdam, Jena, Wuppertal, Germany
| |
Collapse
|
13
|
Chen M, Chen S, Liu K, Ye Z, Qian Y, He J, Xia J, Xing P, Yang J, Wa Ng Y, Wu T. Putative Adverse Outcome Pathway for Parkinson's Disease-like Symptoms Induced by Silicon Quantum Dots based on In Vivo/ Vitro Approaches. ACS NANO 2024; 18:25271-25289. [PMID: 39186478 DOI: 10.1021/acsnano.4c08516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Given the commercial proliferation of silicon quantum dots (SiQDs) and their inevitable environmental dispersal, this study critically examines their biological and public health implications, specifically regarding Parkinson's disease. The study investigated the toxicological impact of SiQDs on the onset and development of PD-like symptoms through the induction of ferroptosis, utilizing both in vivo [Caenorhabditis elegans (C. elegans)] and in vitro (SH-SY5Y neuroblastoma cell line) models. Our findings demonstrated that SiQDs, characterized by their stable and water-soluble physicochemical properties, tended to accumulate in neuronal tissues. This accumulation precipitated dopaminergic neurodegeneration, manifested as diminished dopamine-dependent behaviors, and escalated the expression of PD-specific genes in C. elegans. Importantly, the results revealed that SiQDs induced ferritinophagy, a selective autophagy pathway that triggered ferroptosis and resulted in PD-like symptoms, even exacerbating disease progression in biological models. These insights were incorporated into a putatively qualitative and quantitative adverse outcome pathway framework, highlighting the serious neurodegenerative risks posed by SiQDs through ferroptosis pathways. This study provides a multidisciplinary analysis critical for informing policy on the regulation of SiQDs exposure to safeguard susceptible populations and guiding the responsible development of nanotechnologies impacting environmental and public health.
Collapse
Affiliation(s)
- Min Chen
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing 210009, P. R. China
- Yancheng Kindergarten Teachers College, Yancheng 224005, P. R. China
| | - Siyuan Chen
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing 210009, P. R. China
| | - Kehan Liu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing 210009, P. R. China
| | - Zongjian Ye
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing 210009, P. R. China
| | - Yijing Qian
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing 210009, P. R. China
| | - Jing He
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing 210009, P. R. China
| | - Jieyi Xia
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing 210009, P. R. China
| | - Pengcheng Xing
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing 210009, P. R. China
| | - Jiafu Yang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing 210009, P. R. China
| | - Yán Wa Ng
- Department of Toxicology & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, School of Public Health, Anhui Medical University, Hefei 230032, P. R. China
| | - Tianshu Wu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing 210009, P. R. China
| |
Collapse
|
14
|
Srivastava T, Tyagi D, Fatima S, Sathyan MTV, Raj R, Sharma A, Chaturvedi M, Sinha M, Shishodia SK, Kumar D, Sharma SK, Shankar J, Satish A, Priya S. A natural small molecule-mediated inhibition of alpha-synuclein aggregation leads to neuroprotection in Caenorhabditis elegans. J Neurochem 2024; 168:1640-1654. [PMID: 37429595 DOI: 10.1111/jnc.15907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 05/16/2023] [Accepted: 06/04/2023] [Indexed: 07/12/2023]
Abstract
Small molecules are being explored intensively for their applications as therapeutic molecules in the management of metabolic and neurological disorders. The natural small molecules can inhibit protein aggregation and underlying cellular pathogenesis of neurodegenerative diseases involving multi-factorial mechanisms of action. Certain natural small molecular inhibitors of pathogenic protein aggregation are highly efficient and have shown promising therapeutic potential. In the present study, Shikonin (SHK), a natural plant-based naphthoquinone has been investigated for its aggregation inhibition activity against α-synuclein (α-syn) and the neuroprotective potential in Caenorhabditis elegans (C. elegans). SHK significantly inhibited aggregation of α-syn at sub-stochiometric concentrations, delayed the linear lag phase and growth kinetics of seeded and unseeded α-syn aggregation. The binding of SHK to the C-terminus of α-syn maintained α-helical and disordered secondary structures with reduced beta-sheet content and complexity of aggregates. Further, in C. elegans transgenic PD models, SHK significantly reduced α-syn aggregation, improved locomotor activity and prevented dopaminergic (DA) neuronal degeneration, indicating the neuroprotective role of SHK. The present study highlights the potential of natural small molecules in the prevention of protein aggregation that may further be explored for their therapeutic efficacy in the management of protein aggregation and neurodegenerative diseases.
Collapse
Affiliation(s)
- Tulika Srivastava
- Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Divya Tyagi
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Ecotoxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, India
| | - Siraj Fatima
- Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Malur Thirumalesh Vishnu Sathyan
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Ecotoxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, India
| | - Ritu Raj
- Department of Advanced Spectroscopy and Imaging, Centre of Biomedical Research (CBMR), Lucknow, India
| | - Aniket Sharma
- Food, Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, India
- Department of Animal Science, College of Agriculture and Natural Sciences, University of Wyoming, Laramie, Wyoming, USA
| | - Minal Chaturvedi
- Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Meetali Sinha
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Computational Toxicology Facility, Toxicoinformatics Research Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR) Vishvigyan Bhawan, Lucknow, India
| | - Sonia Kumari Shishodia
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Solan, India
- University Institute of Biotechnology (UIBT), Chandigarh University, Mohali, India
| | - Dinesh Kumar
- Department of Advanced Spectroscopy and Imaging, Centre of Biomedical Research (CBMR), Lucknow, India
| | - Sandeep K Sharma
- Food, Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, India
| | - Jata Shankar
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Solan, India
| | - Aruna Satish
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Ecotoxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, India
| | - Smriti Priya
- Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
15
|
Calabrese V, Wenzel U, Piccoli T, Jacob UM, Nicolosi L, Fazzolari G, Failla G, Fritsch T, Osakabe N, Calabrese EJ. Investigating hormesis, aging, and neurodegeneration: From bench to clinics. Open Med (Wars) 2024; 19:20240986. [PMID: 38911254 PMCID: PMC11193355 DOI: 10.1515/med-2024-0986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/25/2024] [Accepted: 06/02/2024] [Indexed: 06/25/2024] Open
Abstract
Mitochondria-derived reactive oxygen species production at a moderate physiological level plays a fundamental role in the anti-aging signaling, due to their action as redox-active sensors for the maintenance of optimal mitochondrial balance between intracellular energy status and hormetic nutrients. Iron regulatory protein dysregulation, systematically increased iron levels, mitochondrial dysfunction, and the consequent oxidative stress are recognized to underlie the pathogenesis of multiple neurodegenerative diseases, such as Parkinson's disease and Alzheimer's disease. Central to their pathogenesis, Nrf2 signaling dysfunction occurs with disruption of metabolic homeostasis. We highlight the potential therapeutic importance of nutritional polyphenols as substantive regulators of the Nrf2 pathway. Here, we discuss the common mechanisms targeting the Nrf2/vitagene pathway, as novel therapeutic strategies to minimize consequences of oxidative stress and neuroinflammation, generally associated to cognitive dysfunction, and demonstrate its key neuroprotective and anti-neuroinflammatory properties, summarizing pharmacotherapeutic aspects relevant to brain pathophysiology.
Collapse
Affiliation(s)
- Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Uwe Wenzel
- Institut für Ernährungswissenschaft, Justus Liebig UniversitatGiessen, Germany
| | - Tommaso Piccoli
- Neurology Unit, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, Palermo, Italy
| | | | - Lidia Nicolosi
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Giovanni Fazzolari
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Gabriella Failla
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | | | - Naomi Osakabe
- Department of Bio-Science and Engineering, Faculty of System Science and Engineering, Shibaura Institute of Technology, Tokyo, Japan
| | - Edward J. Calabrese
- Department of Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA 01003, United States of America
| |
Collapse
|
16
|
Calabrese V, Osakabe N, Khan F, Wenzel U, Modafferi S, Nicolosi L, Fritsch T, Jacob UM, Abdelhameed AS, Rashan L. Frankincense: A neuronutrient to approach Parkinson's disease treatment. Open Med (Wars) 2024; 19:20240988. [PMID: 38911256 PMCID: PMC11193358 DOI: 10.1515/med-2024-0988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 06/03/2024] [Accepted: 06/05/2024] [Indexed: 06/25/2024] Open
Abstract
Parkinson's disease (PD), characterized by tremor, slowness of movement, stiffness, and poor balance, is due to a significant loss of dopaminergic neurons in the substantia nigra pars compacta and dopaminergic nerve terminals in the striatum with deficit of dopamine. To date the mechanisms sustaining PD pathogenesis are under investigation; however, a solid body of experimental evidence involves neuroinflammation, mitochondrial dysfunction, oxidative stress, and apoptotic cell death as the crucial factors operating in the pathogenesis of PD. Nutrition is known to modulate neuroinflammatory processes implicated in the pathogenesis and progression of this neurodegenerative disorder. Consistent with this notion, the Burseraceae family, which includes the genera Boswellia and Commiphora, are attracting emerging interest in the treatment of a wide range of pathological conditions, including neuroinflammation and cognitive decline. Bioactive components present in these species have been shown to improve cognitive function and to protect neurons from degeneration in in vitro, animal, as well as clinical research. These effects are mediated through the anti-inflammatory, antiamyloidogenic, anti-apoptotic, and antioxidative properties of bioactive components. Although many studies have exploited possible therapeutic approaches, data from human studies are lacking and their neuroprotective potential makes them a promising option for preventing and treating major neurodegenerative disorders.
Collapse
Affiliation(s)
- Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, University of Catania, Torre Biologica, 95125Catania, Italy
| | - Naomi Osakabe
- Department of Bioscience and Engineering, Shibaura Institute Technology,
Tokyo, Japan
| | - Foziya Khan
- Biodiversity Unit, Dhofar University,
Salalah, Oman
| | - Uwe Wenzel
- Institute of Nutritional Science, Justus Liebig University of Giessen, Giessen, Germany
| | - Sergio Modafferi
- Department of Biomedical and Biotechnological Sciences, University of Catania, Torre Biologica, 95125Catania, Italy
| | - Lidia Nicolosi
- Department of Biomedical and Biotechnological Sciences, University of Catania, Torre Biologica, 95125Catania, Italy
| | | | | | - Ali S. Abdelhameed
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh11451, Saudi Arabia
| | - Luay Rashan
- Biodiversity Unit, Dhofar University,
Salalah, Oman
| |
Collapse
|
17
|
Promtang S, Sanguanphun T, Chalorak P, Pe LS, Niamnont N, Sobhon P, Meemon K. 2-Butoxytetrahydrofuran, Isolated from Holothuria scabra, Attenuates Aggregative and Oxidative Properties of α-Synuclein and Alleviates Its Toxicity in a Transgenic Caenorhabditis elegans Model of Parkinson's Disease. ACS Chem Neurosci 2024; 15:2182-2197. [PMID: 38726817 PMCID: PMC11157484 DOI: 10.1021/acschemneuro.4c00008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 05/01/2024] [Accepted: 05/01/2024] [Indexed: 06/06/2024] Open
Abstract
Aggregative α-synuclein and incurring oxidative stress are pivotal cascading events, leading to dopaminergic (DAergic) neuronal loss and contributing to clinical manifestations of Parkinson's disease (PD). Our previous study demonstrated that 2-butoxytetrahydrofuran (2-BTHF), isolated from Holothuria scabra (H. scabra), could inhibit amyloid-β aggregation and its ensuing toxicity, which leads to Alzheimer's disease. In the present study, we found that 2-BTHF also attenuated the aggregative and oxidative activities of α-synuclein and lessened its toxicity in a transgenic Caenorhabditis elegans (C. elegans) PD model. Such worms treated with 100 μM of 2-BTHF showed substantial reductions in α-synuclein accumulation and DAergic neurodegeneration. Mechanistically, 2-BTHF, at this concentration, significantly decreased aggregation of monomeric α-synuclein and restored locomotion and dopamine-dependent behaviors. Molecular docking exhibited potential bindings of 2-BTHF to HSF-1 and DAF-16 transcription factors. Additionally, 2-BTHF significantly increased the mRNA transcripts of genes encoding proteins involved in proteostasis, including the molecular chaperones hsp-16.2 and hsp-16.49, the ubiquitination/SUMOylation-related ubc-9 gene, and the autophagy-related genes atg-7 and lgg-1. Transcriptomic profiling revealed an additional mechanism of 2-BTHF in α-synuclein-expressing worms, which showed upregulation of PPAR signaling cascades that mediated fatty acid metabolism. 2-BTHF significantly restored lipid deposition, upregulated the fat-7 gene, and enhanced gcs-1-mediated glutathione synthesis in the C. elegans PD model. Taken together, this study demonstrated that 2-BTHF could abrogate aggregative and oxidative properties of α-synuclein and attenuate its toxicity, thus providing a possible therapeutic application for the treatment of α-synuclein-induced PD.
Collapse
Affiliation(s)
- Sukrit Promtang
- Molecular
Medicine Program, Multidisciplinary Unit, Faculty of Science, Mahidol University, Ratchathewi, Bangkok 10400, Thailand
| | - Tanatcha Sanguanphun
- Department
of Anatomy, Faculty of Science, Mahidol
University, Ratchathewi, Bangkok 10400, Thailand
| | - Pawanrat Chalorak
- Department
of Radiological Technology and Medical Physics, Faculty of Allied
Health Sciences, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand
| | - Laurence S. Pe
- Research
Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhon Pathom 73170, Thailand
| | - Nakorn Niamnont
- Department
of Chemistry, Faculty of Science, King Mongkut’s
University of Technology Thonburi, Bang Mod, Bangkok 10140, Thailand
| | - Prasert Sobhon
- Department
of Anatomy, Faculty of Science, Mahidol
University, Ratchathewi, Bangkok 10400, Thailand
| | - Krai Meemon
- Department
of Anatomy, Faculty of Science, Mahidol
University, Ratchathewi, Bangkok 10400, Thailand
- Center for
Neuroscience, Faculty of Science, Mahidol
University, Ratchathewi, Bangkok 10400, Thailand
| |
Collapse
|
18
|
Itkin T, Unger K, Barak Y, Yovel A, Stekolshchik L, Ego L, Aydinov Y, Gerchman Y, Sapir A. Exploiting the Unique Biology of Caenorhabditis elegans to Launch Neurodegeneration Studies in Space. ASTROBIOLOGY 2024; 24:579-589. [PMID: 38917419 DOI: 10.1089/ast.2023.0096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
The 21st century is likely to be the first century in which large-scale short- and long-term space missions become common. Accordingly, an ever-increasing body of research is focusing on understanding the effects of current and future space expeditions on human physiology in health and disease. Yet the complex experimental environment, the small number of participants, and the high cost of space missions are among the primary factors that hinder a better understanding of the impact of space missions on human physiology. The goal of our research was to develop a cost-effective, compact, and easy-to-manipulate system to address questions related to human health and disease in space. This initiative was part of the Ramon SpaceLab program, an annual research-based learning program designed to cultivate high school students' involvement in space exploration by facilitating experiments aboard the International Space Station (ISS). In the present study, we used the nematode Caenorhabditis elegans (C. elegans), a well-suited model organism, to investigate the effect of space missions on neurodegeneration-related processes. Our study specifically focused on the level of aggregation of Huntington's disease-causing polyglutamine stretch-containing (PolyQ) proteins in C. elegans muscles, the canonical system for studying neurodegeneration in this organism. We compared animals expressing PolyQ proteins grown onboard the ISS with their genetically identical siblings grown on Earth and observed a significant difference in the number of aggregates between the two populations. Currently, it is challenging to determine whether this effect stems from developmental or morphological differences between the cultures or is a result of life in space. Nevertheless, our results serve as a proof of concept and open a new avenue for utilizing C. elegans to address various open questions in space studies, including the effects of space conditions on the onset and development of neurodegenerative diseases.
Collapse
Affiliation(s)
- Tatyana Itkin
- Science, Technology, Engineering, and Mathematics Program, Shakim High School, Nahariya, Israel
| | - Ksenia Unger
- Science, Technology, Engineering, and Mathematics Program, Shakim High School, Nahariya, Israel
| | - Yair Barak
- Science, Technology, Engineering, and Mathematics Program, Shakim High School, Nahariya, Israel
| | - Amit Yovel
- Science, Technology, Engineering, and Mathematics Program, Shakim High School, Nahariya, Israel
| | - Liya Stekolshchik
- Science, Technology, Engineering, and Mathematics Program, Shakim High School, Nahariya, Israel
| | - Linoy Ego
- Science, Technology, Engineering, and Mathematics Program, Shakim High School, Nahariya, Israel
| | - Yana Aydinov
- Science, Technology, Engineering, and Mathematics Program, Shakim High School, Nahariya, Israel
| | - Yoram Gerchman
- Department of Biology and the Environment, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
- Institute of Evolution, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
- Oranim Academic College, Kiryat Tivon, Israel
| | - Amir Sapir
- Department of Biology and the Environment, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| |
Collapse
|
19
|
Almutairi N, Khan N, Harrison-Smith A, Arlt VM, Stürzenbaum SR. Stage-specific exposure of Caenorhabditis elegans to cadmium identifies unique transcriptomic response cascades and an uncharacterized cadmium responsive transcript. Metallomics 2024; 16:mfae016. [PMID: 38549424 PMCID: PMC11066929 DOI: 10.1093/mtomcs/mfae016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 03/26/2024] [Indexed: 05/04/2024]
Abstract
Age/stage sensitivity is considered a significant factor in toxicity assessments. Previous studies investigated cadmium (Cd) toxicosis in Caenorhabditis elegans, and a plethora of metal-responsive genes/proteins have been identified and characterized in fine detail; however, most of these studies neglected age sensitivity and stage-specific response to toxicants at the molecular level. This present study compared the transcriptome response between C. elegans L3 vs L4 larvae exposed to 20 µM Cd to explore the transcriptional hallmarks of stage sensitivity. The results showed that the transcriptome of the L3 stage, despite being exposed to Cd for a shorter period, was more affected than the L4 stage, as demonstrated by differences in transcriptional changes and magnitude of induction. Additionally, T08G5.1, a hitherto uncharacterized gene located upstream of metallothionein (mtl-2), was transcriptionally hyperresponsive to Cd exposure. Deletion of one or both metallothioneins (mtl-1 and/or mtl-2) increased T08G5.1 expression, suggesting that its expression is linked to the loss of metallothionein. The generation of an extrachromosomal transgene (PT08G5.1:: GFP) revealed that T08G5.1 is constitutively expressed in the head neurons and induced in gut cells upon Cd exposure, not unlike mtl-1 and mtl-2. The low abundance of cysteine residues in T08G5.1 suggests, however, that it may not be involved directly in Cd sequestration to limit its toxicity like metallothionein, but might be associated with a parallel pathway, possibly an oxidative stress response.
Collapse
Affiliation(s)
- Norah Almutairi
- Department of Analytical, Environmental and Forensic Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Naema Khan
- Department of Analytical, Environmental and Forensic Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Alexandra Harrison-Smith
- Department of Analytical, Environmental and Forensic Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Volker M Arlt
- Department of Analytical, Environmental and Forensic Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Stephen R Stürzenbaum
- Department of Analytical, Environmental and Forensic Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| |
Collapse
|
20
|
Romussi S, Giunti S, Andersen N, De Rosa MJ. C. elegans: a prominent platform for modeling and drug screening in neurological disorders. Expert Opin Drug Discov 2024; 19:565-585. [PMID: 38509691 DOI: 10.1080/17460441.2024.2329103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/06/2024] [Indexed: 03/22/2024]
Abstract
INTRODUCTION Human neurodevelopmental and neurodegenerative diseases (NDevDs and NDegDs, respectively) encompass a broad spectrum of disorders affecting the nervous system with an increasing incidence. In this context, the nematode C. elegans, has emerged as a benchmark model for biological research, especially in the field of neuroscience. AREAS COVERED The authors highlight the numerous advantages of this tiny worm as a model for exploring nervous system pathologies and as a platform for drug discovery. There is a particular focus given to describing the existing models of C. elegans for the study of NDevDs and NDegDs. Specifically, the authors underscore their strong applicability in preclinical drug development. Furthermore, they place particular emphasis on detailing the common techniques employed to explore the nervous system in both healthy and diseased states. EXPERT OPINION Drug discovery constitutes a long and expensive process. The incorporation of invertebrate models, such as C. elegans, stands as an exemplary strategy for mitigating costs and expediting timelines. The utilization of C. elegans as a platform to replicate nervous system pathologies and conduct high-throughput automated assays in the initial phases of drug discovery is pivotal for rendering therapeutic options more attainable and cost-effective.
Collapse
Affiliation(s)
- Stefano Romussi
- Laboratorio de Neurobiología de Invertebrados, Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), UNS-CONICET, Bahía Blanca, Argentina
| | - Sebastián Giunti
- Laboratorio de Neurobiología de Invertebrados, Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), UNS-CONICET, Bahía Blanca, Argentina
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina
| | - Natalia Andersen
- Laboratorio de Neurobiología de Invertebrados, Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), UNS-CONICET, Bahía Blanca, Argentina
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina
| | - María José De Rosa
- Laboratorio de Neurobiología de Invertebrados, Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), UNS-CONICET, Bahía Blanca, Argentina
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina
| |
Collapse
|
21
|
Caldero-Escudero E, Romero-Sanz S, De la Fuente S. Using C. elegans as a model for neurodegenerative diseases: Methodology and evaluation. Methods Cell Biol 2024; 188:1-34. [PMID: 38880519 DOI: 10.1016/bs.mcb.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Caenorhabditis elegans is a nematode that has been used as an animal model for almost 50years. It has primitive and simple tissues and organs, making it an ideal model for studying neurological pathways involved in neurodegenerative diseases like Alzheimer's disease (AD) and Parkinson's disease (PD). C. elegans has conserved neurological pathways and is able to mimic human diseases, providing valuable insights into the human disease phenotype. This methodological review presents current approaches to generate neurodegenerative-like models of AD and PD in C. elegans, and evaluates the experiments commonly used to validate the diseases. These experimental approaches include assessing survival, fertility, mobility, electropharyngeogram assays, confocal mitochondrial imaging, RNA extraction for qRT-PCR or RT-PCR, and rate of defecation. This review also summarizes the current knowledge acquired on AD and PD using the aforementioned experimental approaches. Additionally, gaps in knowledge and future directions for research are also discussed in the review.
Collapse
|
22
|
Zhu F, Wang B, Qin D, Su X, Yu L, Wu J, Law BY, Guo M, Yu C, Zhou X, Wu A. Carpesii fructus extract exhibits neuroprotective effects in cellular and Caenorhabditis elegans models of Parkinson's disease. CNS Neurosci Ther 2024; 30:e14515. [PMID: 37905594 PMCID: PMC11017466 DOI: 10.1111/cns.14515] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/05/2023] [Accepted: 10/14/2023] [Indexed: 11/02/2023] Open
Abstract
OBJECTIVE Parkinson's disease (PD) is a debilitating neurodegenerative disorder characterized by the progressive loss of dopaminergic neurons in the substantia nigra. Despite extensive research, no definitive cure or effective disease-modifying treatment for PD exists to date. Therefore, the identification of novel therapeutic agents with neuroprotective properties is of utmost importance. Here, we aimed to investigate the potential neuroprotective effects of Carpesii fructus extract (CFE) in both cellular and Caenorhabditis elegans (C. elegans) models of PD. METHODS The neuroprotective effect of CFE in H2O2- or 6-OHDA-induced PC-12 cells and α-synuclein-overexpressing PC-12 cells were investigated by determining the cell viability, mitochondrial damage, reactive oxygen species (ROS) production, apoptosis, and α-synuclein expression. In NL5901, BZ555, and N2 worms, the expression of α-synuclein, motive ability, the viability of dopaminergic neurons, lifespan, and aging-related phenotypes were investigated. The signaling pathway was detected by Western blotting and validated by employing small inhibitors and RNAi bacteria. RESULTS In cellular models of PD, CFE significantly attenuated H2O2- or 6-OHDA-induced toxicity, as evidenced by increased cell viability and reduced apoptosis rate. In addition, CFE treatment suppressed ROS generation and restored mitochondrial membrane potential, highlighting its potential as a mitochondrial protective agent. Furthermore, CFE reduced the expression of α-synuclein in wide type (WT)-, A53T-, A30P-, or E46K-α-synuclein-overexpressing PC-12 cells. Our further findings reveal that CFE administration reduced α-synuclein expression and improved its induced locomotor deficits in NL5901 worms, protected dopaminergic neurons against 6-OHDA-induced degeneration in BZ555 worms, extended lifespan, delayed aging-related phenotypes, and enhanced the ability of stress resistance in N2 worms. Mechanistic studies suggest that the neuroprotective effects of CFE may involve the modulation of the MAPK signaling pathway, including ERK, JNK, and p38, whereas the interference of these pathways attenuated the neuroprotective effect of CFE in vitro and in vivo. CONCLUSION Overall, our study highlights the potential therapeutic value of CFE as a neuroprotective agent in the context of PD. Furthermore, elucidation of the active compounds of CFE will provide valuable insights for the development of novel therapeutic strategies for PD.
Collapse
Affiliation(s)
- Feng‐Dan Zhu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of EducationSchool of Pharmacy, Southwest Medical UniversityLuzhouChina
| | - Bin‐Ding Wang
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of EducationSchool of Pharmacy, Southwest Medical UniversityLuzhouChina
| | - Da‐Lian Qin
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of EducationSchool of Pharmacy, Southwest Medical UniversityLuzhouChina
| | - Xiao‐Hui Su
- Institute of Chinese Materia Medica, China Academy of Chinese Medical SciencesBeijingChina
| | - Lu Yu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of EducationSchool of Pharmacy, Southwest Medical UniversityLuzhouChina
| | - Jian‐Ming Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of EducationSchool of Pharmacy, Southwest Medical UniversityLuzhouChina
| | - Betty Yuen‐Kwan Law
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and TechnologyTaipaChina
| | - Min‐Song Guo
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of EducationSchool of Pharmacy, Southwest Medical UniversityLuzhouChina
| | - Chong‐Lin Yu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of EducationSchool of Pharmacy, Southwest Medical UniversityLuzhouChina
| | - Xiao‐Gang Zhou
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of EducationSchool of Pharmacy, Southwest Medical UniversityLuzhouChina
| | - An‐Guo Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of EducationSchool of Pharmacy, Southwest Medical UniversityLuzhouChina
| |
Collapse
|
23
|
Ashok A, Pradeep H, Soundarya HS, Aparna HS. Buffalo colostrum peptide mitigates Parkinson's disease pathophysiology through Cullin-3 inhibition. Bioorg Chem 2024; 145:107242. [PMID: 38428285 DOI: 10.1016/j.bioorg.2024.107242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/23/2024] [Accepted: 02/24/2024] [Indexed: 03/03/2024]
Abstract
Colostrum/Milk is a chief repertoire of antioxidant peptides. Nuclear factor-erythroid 2 related factor 2 (Nrf2) is a viable target for Parkinson's Disease (PD), as this pathway deduced to be impaired in PD. Cullin-3 is one of the crucial E3 ligase responsible for its regulation. The present study screened peptide libraries of buffalo colostrum & milk peptides for Cullin-3 inhibition, thus ensuing activation of Nrf2 to alleviate the molecular etiopathology in PD using the C. elegans as a model. The structure was modelled, binding sites analyzed and peptide-interactions analyzed by docking. Among the 55 sequences (≤1 kDa), the peptide SFVSEVPEL having the highest dock score (-16.919) was synthesized and evaluated for its effects on oxidative stress markers, antioxidant enzymes, neurochemical marker and Nrf2/Skn-1 levels. The lead peptide alleviated the oxidative pathophysiology and behavioural deficits associated with PD in C. elegans.
Collapse
Affiliation(s)
- Arpitha Ashok
- DOS in Biotechnology, University of Mysore, Mysuru, Karnataka, India.
| | - H Pradeep
- DOS in Biotechnology, University of Mysore, Mysuru, Karnataka, India.
| | - H S Soundarya
- DOS in Biotechnology, University of Mysore, Mysuru, Karnataka, India.
| | - H S Aparna
- DOS in Biotechnology, University of Mysore, Mysuru, Karnataka, India.
| |
Collapse
|
24
|
Zheng Z, Chen M, Feng S, Zhao H, Qu T, Zhao X, Ruan Q, Li L, Guo J. VDR and deubiquitination control neuronal oxidative stress and microglial inflammation in Parkinson's disease. Cell Death Discov 2024; 10:150. [PMID: 38514643 PMCID: PMC10957901 DOI: 10.1038/s41420-024-01912-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 02/29/2024] [Accepted: 03/07/2024] [Indexed: 03/23/2024] Open
Abstract
Close correlation between vitamin D (VitD) deficiency and Parkinson's Disease (PD) risk, VitD as an adjuvant treatment promising to improve PD progression. However, VitD excessive intake could induce hypercalcemia and renal damage. Therefore, upregulation of vitD receptor (VDR) is considered a compensatory strategy to overcome VitD insufficiency and alleviate PD symptoms. In this study, we discovered that VDR played antioxidative roles in dopaminergic neurons by decreasing reactive oxygen species (ROS) and maintaining mitochondrial membrane potential. Further, we newly identified VDR downstream events in C. elegans, including glutathione S-transferase (gst) and forkhead box transcription factor class O (daf-16) mediated oxidative stress resistance. VDR upregulation also mitigated microglial activation through inhibition of NLRP3/caspase-1-mediated inflammation and membrane permeabilization. These findings highlight the multifaceted protective effects of VDR in both neurons and microglia against the development of PD. Importantly, we discovered a novel deubiquitinase DUB3, whose N-terminal catalytic domain interacted with the C-terminal ligand-binding domain of VDR to reduce VDR ubiquitination. Identification of DUB3 as an essential player in the deubiquitinating mechanism of VDR provides valuable insights into VDR regulation and its potential as a therapeutic target for PD.
Collapse
Affiliation(s)
- Zihui Zheng
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, P. R. China
| | - Miao Chen
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, P. R. China
| | - Shengliang Feng
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, P. R. China
| | - Huanhuan Zhao
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, P. R. China
| | - Tiange Qu
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, P. R. China
| | - Xudong Zhao
- Department of General Practice, Affiliated Hospital of Xuzhou Medical University, 99 Huaihai West Road, Xuzhou, 221002, Jiangsu, P. R. China
| | - Qinli Ruan
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, P. R. China.
| | - Lei Li
- Department of General Practice, Affiliated Hospital of Xuzhou Medical University, 99 Huaihai West Road, Xuzhou, 221002, Jiangsu, P. R. China.
| | - Jun Guo
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, P. R. China
| |
Collapse
|
25
|
Regoni M, Valtorta F, Sassone J. Dopaminergic neuronal death via necroptosis in Parkinson's disease: A review of the literature. Eur J Neurosci 2024; 59:1079-1098. [PMID: 37667848 DOI: 10.1111/ejn.16136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 08/14/2023] [Accepted: 08/17/2023] [Indexed: 09/06/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by progressive dysfunction and loss of dopaminergic neurons of the substantia nigra pars compacta (SNc). Several pathways of programmed cell death are likely to play a role in dopaminergic neuron death, such as apoptosis, necrosis, pyroptosis and ferroptosis, as well as cell death associated with proteasomal and mitochondrial dysfunction. A better understanding of the molecular mechanisms underlying dopaminergic neuron death could inform the design of drugs that promote neuron survival. Necroptosis is a recently characterized regulated cell death mechanism that exhibits morphological features common to both apoptosis and necrosis. It requires activation of an intracellular pathway involving receptor-interacting protein 1 kinase (RIP1 kinase, RIPK1), receptor-interacting protein 3 kinase (RIP3 kinase, RIPK3) and mixed lineage kinase domain-like pseudokinase (MLKL). The potential involvement of this programmed cell death pathway in the pathogenesis of PD has been studied by analysing biomarkers for necroptosis, such as the levels and oligomerization of phosphorylated RIPK3 (pRIPK3) and phosphorylated MLKL (pMLKL), in several PD preclinical models and in PD human tissue. Although there is evidence that other types of cell death also have a role in DA neuron death, most studies support the hypothesis that this cell death mechanism is activated in PD tissues. Drugs that prevent or reduce necroptosis may provide neuroprotection for PD. In this review, we summarize the findings from these studies. We also discuss how manipulating necroptosis might open a novel therapeutic approach to reduce neuronal degeneration in PD.
Collapse
Affiliation(s)
- Maria Regoni
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Flavia Valtorta
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Jenny Sassone
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
26
|
da Silva LPD, da Cruz Guedes E, Fernandes ICO, Pedroza LAL, da Silva Pereira GJ, Gubert P. Exploring Caenorhabditis elegans as Parkinson's Disease Model: Neurotoxins and Genetic Implications. Neurotox Res 2024; 42:11. [PMID: 38319410 DOI: 10.1007/s12640-024-00686-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/19/2023] [Accepted: 01/05/2024] [Indexed: 02/07/2024]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease in the world, the first being Alzheimer's disease. Patients with PD have a loss of dopaminergic neurons in the substantia nigra of the basal ganglia, which controls voluntary movements, causing a motor impairment as a result of dopaminergic signaling impairment. Studies have shown that mutations in several genes, such as SNCA, PARK2, PINK1, DJ-1, ATP13A2, and LRRK2, and the exposure to neurotoxic agents can potentially increase the chances of PD development. The nematode Caenorhabditis elegans (C. elegans) plays an important role in studying the risk factors, such as genetic factors, aging, exposure to chemicals, disease progression, and drug treatments for PD. C. elegans has a conserved neurotransmission system during evolution; it produces dopamine, through the eight dopaminergic neurons; it can be used to study the effect of neurotoxins and also has strains that express human α-synuclein. Furthermore, the human PD-related genes, LRK-1, PINK-1, PDR-1, DJR-1.1, and CATP-6, are present and functional in this model. Therefore, this review focuses on highlighting and discussing the use of C. elegans an in vivo model in PD-related studies. Here, we identified that nematodes exposed to the neurotoxins, such as 6-OHDA, MPTP, paraquat, and rotenone, had a progressive loss of dopaminergic neurons, dopamine deficits, and decreased survival rate. Several studies have reported that expression of human LRRK2 (G2019S) caused neurodegeneration and pink-1, pdr-1, and djr-1.1 deletion caused several effects PD-related in C. elegans, including mitochondrial dysfunctions. Of note, the deletion of catp-6 in nematodes caused behavioral dysfunction, mitochondrial damage, and reduced survival. In addition, nematodes expressing α-synuclein had neurodegeneration and dopamine-dependent deficits. Therefore, C. elegans can be considered an accurate animal model of PD that can be used to elucidate to assess the underlying mechanisms implicated in PD to find novel therapeutic targets.
Collapse
Affiliation(s)
- Larissa Pereira Dantas da Silva
- Keizo Asami Institute, iLIKA, Universidade Federal de Pernambuco, Moraes Rego Avenue, 1235, Recife, Pernambuco, 50670-901, Brazil
| | - Erika da Cruz Guedes
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Isabel Cristina Oliveira Fernandes
- Keizo Asami Institute, iLIKA, Universidade Federal de Pernambuco, Moraes Rego Avenue, 1235, Recife, Pernambuco, 50670-901, Brazil
- Postgraduate Program in Biological Science, Universidade Federal de Pernambuco, Pernambuco, Recife, Brazil
| | - Lucas Aleixo Leal Pedroza
- Keizo Asami Institute, iLIKA, Universidade Federal de Pernambuco, Moraes Rego Avenue, 1235, Recife, Pernambuco, 50670-901, Brazil
| | | | - Priscila Gubert
- Keizo Asami Institute, iLIKA, Universidade Federal de Pernambuco, Moraes Rego Avenue, 1235, Recife, Pernambuco, 50670-901, Brazil.
- Postgraduate Program in Biological Science, Universidade Federal de Pernambuco, Pernambuco, Recife, Brazil.
- Postgraduate Program in Pure and Applied Chemistry, Universidade Federal do Oeste da Bahia, Bahia, Brazil.
| |
Collapse
|
27
|
Shan L, Heusinkveld HJ, Paul KC, Hughes S, Darweesh SKL, Bloem BR, Homberg JR. Towards improved screening of toxins for Parkinson's risk. NPJ Parkinsons Dis 2023; 9:169. [PMID: 38114496 PMCID: PMC10730534 DOI: 10.1038/s41531-023-00615-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 12/01/2023] [Indexed: 12/21/2023] Open
Abstract
Parkinson's disease (PD) is a chronic, progressive and disabling neurodegenerative disorder. The prevalence of PD has risen considerably over the past decades. A growing body of evidence suggest that exposure to environmental toxins, including pesticides, solvents and heavy metals (collectively called toxins), is at least in part responsible for this rapid growth. It is worrying that the current screening procedures being applied internationally to test for possible neurotoxicity of specific compounds offer inadequate insights into the risk of developing PD in humans. Improved screening procedures are therefore urgently needed. Our review first substantiates current evidence on the relation between exposure to environmental toxins and the risk of developing PD. We subsequently propose to replace the current standard toxin screening by a well-controlled multi-tier toxin screening involving the following steps: in silico studies (tier 1) followed by in vitro tests (tier 2), aiming to prioritize agents with human relevant routes of exposure. More in depth studies can be undertaken in tier 3, with whole-organism (in)vertebrate models. Tier 4 has a dedicated focus on cell loss in the substantia nigra and on the presumed mechanisms of neurotoxicity in rodent models, which are required to confirm or refute the possible neurotoxicity of any individual compound. This improved screening procedure should not only evaluate new pesticides that seek access to the market, but also critically assess all pesticides that are being used today, acknowledging that none of these has ever been proven to be safe from a perspective of PD. Importantly, the improved screening procedures should not just assess the neurotoxic risk of isolated compounds, but should also specifically look at the cumulative risk conveyed by exposure to commonly used combinations of pesticides (cocktails). The worldwide implementation of such an improved screening procedure, would be an essential step for policy makers and governments to recognize PD-related environmental risk factors.
Collapse
Affiliation(s)
- Ling Shan
- Department Neuropsychiatric Disorders, Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, the Netherlands.
| | - Harm J Heusinkveld
- Centre for Health Protection, National Institute for Public Health and Environment (RIVM), Bilthoven, The Netherlands
| | - Kimberly C Paul
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Samantha Hughes
- A-LIFE Amsterdam Institute for Life and Environment, Section Environmental Health and Toxicology, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
| | - Sirwan K L Darweesh
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Bastiaan R Bloem
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Judith R Homberg
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| |
Collapse
|
28
|
Morton KS, Hartman JH, Heffernan N, Ryde IT, Kenny-Ganzert IW, Meng L, Sherwood DR, Meyer JN. Chronic high-sugar diet in adulthood protects Caenorhabditis elegans from 6-OHDA-induced dopaminergic neurodegeneration. BMC Biol 2023; 21:252. [PMID: 37950228 PMCID: PMC10636816 DOI: 10.1186/s12915-023-01733-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 10/11/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND Diets high in saturated fat and sugar, termed "Western diets," have been associated with several negative health outcomes, including increased risk for neurodegenerative disease. Parkinson's disease (PD) is the second most prevalent neurodegenerative disease and is characterized by the progressive death of dopaminergic neurons in the brain. We build upon previous work characterizing the impact of high-sugar diets in Caenorhabditis elegans to mechanistically evaluate the relationship between high-sugar diets and dopaminergic neurodegeneration. RESULTS Adult high-glucose and high-fructose diets, or exposure from day 1 to 5 of adulthood, led to increased lipid content, shorter lifespan, and decreased reproduction. However, in contrast to previous reports, we found that adult chronic high-glucose and high-fructose diets did not induce dopaminergic neurodegeneration alone and were protective from 6-hydroxydopamine (6-OHDA) induced degeneration. Neither sugar altered baseline electron transport chain function and both increased vulnerability to organism-wide ATP depletion when the electron transport chain was inhibited, arguing against energetic rescue as a basis for neuroprotection. The induction of oxidative stress by 6-OHDA is hypothesized to contribute to its pathology, and high-sugar diets prevented this increase in the soma of the dopaminergic neurons. However, we did not find increased expression of antioxidant enzymes or glutathione levels. Instead, we found evidence suggesting downregulation of the dopamine reuptake transporter dat-1 that could result in decreased 6-OHDA uptake. CONCLUSIONS Our work uncovers a neuroprotective role for high-sugar diets, despite concomitant decreases in lifespan and reproduction. Our results support the broader finding that ATP depletion alone is insufficient to induce dopaminergic neurodegeneration, whereas increased neuronal oxidative stress may drive degeneration. Finally, our work highlights the importance of evaluating lifestyle by toxicant interactions.
Collapse
Affiliation(s)
| | - Jessica H Hartman
- Nicholas School of Environment, Duke University, Durham, USA
- Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, USA
| | | | - Ian T Ryde
- Nicholas School of Environment, Duke University, Durham, USA
| | | | - Lingfeng Meng
- Nicholas School of Environment, Duke University, Durham, USA
| | | | - Joel N Meyer
- Nicholas School of Environment, Duke University, Durham, USA.
| |
Collapse
|
29
|
Rani N, Alam MM, Jamal A, Bin Ghaffar U, Parvez S. Caenorhabditis elegans: A transgenic model for studying age-associated neurodegenerative diseases. Ageing Res Rev 2023; 91:102036. [PMID: 37598759 DOI: 10.1016/j.arr.2023.102036] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/15/2023] [Accepted: 08/17/2023] [Indexed: 08/22/2023]
Abstract
Neurodegenerative diseases (NDs) are a heterogeneous group of aging-associated ailments characterized by interrupting cellular proteostasic machinery and the misfolding of distinct proteins to form toxic aggregates in neurons. Neurodegenerative diseases, which include Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), Huntington's disease (HD), and others, are becoming an increasing threat to human health worldwide. The degeneration and death of certain specific groups of neurons are the hallmarks of these diseases. Over the past decades, Caenorhabditis eleganshas beenwidely used as a transgenic model to investigate biological processes related to health and disease. The nematode Caenorhabditis elegans (C. elegans) has developed as a powerful tool for studying disease mechanisms due to its ease of genetic handling and instant cultivation while providing a whole-animal system amendable to several molecular and biochemical techniques. In this review, we elucidate the potential of C. elegans as a versatile platform for systematic dissection of the molecular basis of human disease, focusing on neurodegenerative disorders, and may help better our understanding of the disease mechanisms and search for new therapeutics for these devastating diseases.
Collapse
Affiliation(s)
- Nisha Rani
- Department of Toxicology, School of Chemical & Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Mohammad Mumtaz Alam
- Drug Design and Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Azfar Jamal
- Department of Biology, College of Science Al-Zulfi, Majmaah University, Al-Majmaah 11952, Saudi Arabia
| | - Usama Bin Ghaffar
- Department of Basic Science, College of Medicine, Majmaah University, Al-Majmaah 11952, Saudi Arabia
| | - Suhel Parvez
- Department of Toxicology, School of Chemical & Life Sciences, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
30
|
Fu RH, Hong SY, Chen HJ. Syringin Prevents 6-Hydroxydopamine Neurotoxicity by Mediating the MiR-34a/SIRT1/Beclin-1 Pathway and Activating Autophagy in SH-SY5Y Cells and the Caenorhabditis elegans Model. Cells 2023; 12:2310. [PMID: 37759532 PMCID: PMC10527269 DOI: 10.3390/cells12182310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Defective autophagy is one of the cellular hallmarks of Parkinson's disease (PD). Therefore, a therapeutic strategy could be a modest enhancement of autophagic activity in dopamine (DA) neurons to deal with the clearance of damaged mitochondria and abnormal protein aggregates. Syringin (SRG) is a phenolic glycoside derived from the root of Acanthopanax senticosus. It has antioxidant, anti-apoptotic, and anti-inflammatory properties. However, whether it has a preventive effect on PD remains unclear. The present study found that SRG reversed the increase in intracellular ROS-caused apoptosis in SH-SY5Y cells induced by neurotoxin 6-OHDA exposure. Likewise, in C. elegans, degeneration of DA neurons, DA-related food-sensitive behaviors, longevity, and accumulation of α-synuclein were also improved. Studies of neuroprotective mechanisms have shown that SRG can reverse the suppressed expression of SIRT1, Beclin-1, and other autophagy markers in 6-OHDA-exposed cells. Thus, these enhanced the formation of autophagic vacuoles and autophagy activity. This protective effect can be blocked by pretreatment with wortmannin (an autophagosome formation blocker) and bafilomycin A1 (an autophagosome-lysosome fusion blocker). In addition, 6-OHDA increases the acetylation of Beclin-1, leading to its inactivation. SRG can induce the expression of SIRT1 and promote the deacetylation of Beclin-1. Finally, we found that SRG reduced the 6-OHDA-induced expression of miR-34a targeting SIRT1. The overexpression of miR-34a mimic abolishes the neuroprotective ability of SRG. In conclusion, SRG induces autophagy via partially regulating the miR-34a/SIRT1/Beclin-1 axis to prevent 6-OHDA-induced apoptosis and α-synuclein accumulation. SRG has the opportunity to be established as a candidate agent for the prevention and cure of PD.
Collapse
Affiliation(s)
- Ru-Huei Fu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan;
- Translational Medicine Research Center, China Medical University Hospital, Taichung 40447, Taiwan
- Ph.D. Program for Aging, China Medical University, Taichung 40402, Taiwan
| | - Syuan-Yu Hong
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan;
- Department of Medicine, School of Medicine, China Medical University, Taichung 40447, Taiwan
- Division of Pediatric Neurology, China Medical University Children’s Hospital, Taichung 40447, Taiwan
| | - Hui-Jye Chen
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan;
| |
Collapse
|
31
|
Morton KS, Hartman JS, Heffernan N, Ryde I, Kenny-Ganzert IW, Meng L, Sherwood DR, Meyer JN. Chronic high-sugar diet in adulthood protects Caenorhabditis elegans from 6-OHDA induced dopaminergic neurodegeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.29.542737. [PMID: 37398434 PMCID: PMC10312447 DOI: 10.1101/2023.05.29.542737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
BACKGROUND Diets high in saturated fat and sugar, termed western diets, have been associated with several negative health outcomes, including increased risk for neurodegenerative disease. Parkinson s Disease (PD) is the second most prevalent neurodegenerative disease and is characterized by the progressive death of dopaminergic neurons in the brain. We build upon previous work characterizing the impact of high sugar diets in Caenorhabditis elegans to mechanistically evaluate the relationship between high sugar diets and dopaminergic neurodegeneration. RESULTS Non-developmental high glucose and fructose diets led to increased lipid content and shorter lifespan and decreased reproduction. However, in contrast to previous reports, we found that non-developmental chronic high-glucose and high-fructose diets did not induce dopaminergic neurodegeneration alone and were protective from 6-hydroxydopamine (6-OHDA) induced degeneration. Neither sugar altered baseline electron transport chain function, and both increased vulnerability to organism-wide ATP depletion when the electron transport chain was inhibited, arguing against energetic rescue as a basis for neuroprotection. The induction of oxidative stress by 6-OHDA is hypothesized to contribute to its pathology, and high sugar diets prevented this increase in the soma of the dopaminergic neurons. However, we did not find increased expression of antioxidant enzymes or glutathione levels. Instead, we found evidence suggesting alterations to dopamine transmission that could result in decreased 6-OHDA uptake. CONCLUSION Our work uncovers a neuroprotective role for high sugar diets, despite concomitant decreases in lifespan and reproduction. Our results support the broader finding that ATP depletion alone is insufficient to induce dopaminergic neurodegeneration, whereas increased neuronal oxidative stress may drive degeneration. Finally, our work highlights the importance of evaluating lifestyle by toxicant interactions.
Collapse
|
32
|
Martins AC, Virgolini MB, Ávila DS, Scharf P, Li J, Tinkov AA, Skalny AV, Bowman AB, Rocha JBT, Aschner M. Mitochondria in the Spotlight: C. elegans as a Model Organism to Evaluate Xenobiotic-Induced Dysfunction. Cells 2023; 12:2124. [PMID: 37681856 PMCID: PMC10486742 DOI: 10.3390/cells12172124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/19/2023] [Accepted: 08/20/2023] [Indexed: 09/09/2023] Open
Abstract
Mitochondria play a crucial role in cellular respiration, ATP production, and the regulation of various cellular processes. Mitochondrial dysfunctions have been directly linked to pathophysiological conditions, making them a significant target of interest in toxicological research. In recent years, there has been a growing need to understand the intricate effects of xenobiotics on human health, necessitating the use of effective scientific research tools. Caenorhabditis elegans (C. elegans), a nonpathogenic nematode, has emerged as a powerful tool for investigating toxic mechanisms and mitochondrial dysfunction. With remarkable genetic homology to mammals, C. elegans has been used in studies to elucidate the impact of contaminants and drugs on mitochondrial function. This review focuses on the effects of several toxic metals and metalloids, drugs of abuse and pesticides on mitochondria, highlighting the utility of C. elegans as a model organism to investigate mitochondrial dysfunction induced by xenobiotics. Mitochondrial structure, function, and dynamics are discussed, emphasizing their essential role in cellular viability and the regulation of processes such as autophagy, apoptosis, and calcium homeostasis. Additionally, specific toxins and toxicants, such as arsenic, cadmium, and manganese are examined in the context of their impact on mitochondrial function and the utility of C. elegans in elucidating the underlying mechanisms. Furthermore, we demonstrate the utilization of C. elegans as an experimental model providing a promising platform for investigating the intricate relationships between xenobiotics and mitochondrial dysfunction. This knowledge could contribute to the development of strategies to mitigate the adverse effects of contaminants and drugs of abuse, ultimately enhancing our understanding of these complex processes and promoting human health.
Collapse
Affiliation(s)
- Airton C. Martins
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA;
| | - Miriam B. Virgolini
- Departamento de Farmacología Otto Orsingher, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina
- Instituto de Farmacología Experimental de Córdoba-Consejo Nacional de Investigaciones Técnicas (IFEC-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina
| | - Daiana Silva Ávila
- Laboratory of Biochemistry and Toxicology in Caenorhabditis Elegans, Universidade Federal do Pampa, Campus Uruguaiana, BR-472 Km 592, Uruguaiana 97500-970, RS, Brazil
| | - Pablo Scharf
- Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, SP, Brazil
| | - Jung Li
- College of Osteopathic Medicine, Des Moines University, Des Moines, IA 50312, USA
| | - Alexey A. Tinkov
- Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, Yaroslavl 150003, Russia
- Laboratory of Molecular Dietetics, IM Sechenov First Moscow State Medical University (Sechenov University), Moscow 119435, Russia
| | - Anatoly V. Skalny
- Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, Yaroslavl 150003, Russia
- Laboratory of Molecular Dietetics, IM Sechenov First Moscow State Medical University (Sechenov University), Moscow 119435, Russia
- Peoples Friendship University of Russia (RUDN University), Moscow 117198, Russia
| | - Aaron B. Bowman
- School of Health Sciences, Purdue University, West Lafayette, IN 47907-2051, USA
| | - João B. T. Rocha
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria 97105-900, RS, Brazil
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA;
| |
Collapse
|
33
|
Li H, Gao M, Chen Z, Zhou Z, Li W, Zhang X, Jiang X, Luo L, Li F, Wang G, Zhang Y, Huang X, Zhu J, Fan S, Wu X, Huang C. Hordenine improves Parkinsonian-like motor deficits in mice and nematodes by activating dopamine D2 receptor-mediated signaling. Phytother Res 2023; 37:3296-3308. [PMID: 36883794 DOI: 10.1002/ptr.7790] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 02/12/2023] [Accepted: 02/17/2023] [Indexed: 03/09/2023]
Abstract
Parkinson's disease (PD) is a chronic neurodegenerative disease characterized by selective loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc) and the striatum, leading to dopamine (DA) deficiency in the striatum and typical motor symptoms. A small molecule as a dietary supplement for PD would be ideal for practical reasons. Hordenine (HOR) is a phenolic phytochemical marketed as a dietary supplement found in cereals and germinated barley, as well as in beer, a widely consumed beverage. This study was aimed to identify HOR as a dopamine D2 receptor (DRD2) agonist in living cells, and investigate the alleviative effect and mechanism of HOR on PD-like motor deficits in mice and nematodes. Our results firstly showed that HOR is an agonist of DRD2, but not DRD1, in living cells. Moreover, HOR could improve the locomotor dysfunction, gait, and postural imbalance in MPTP- or 6-OHDA-induced mice or Caenorhabditis elegans, and prevent α-synuclein accumulation via the DRD2 pathway in C. elegans. Our results suggested that HOR could activate DRD2 to attenuate the PD-like motor deficits, and provide scientific evidence for the safety and reliability of HOR as a dietary supplement.
Collapse
Affiliation(s)
- Hongli Li
- Drug Discovery Laboratory, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Min Gao
- Drug Discovery Laboratory, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ziyu Chen
- Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhenyu Zhou
- Drug Discovery Laboratory, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wei Li
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Physiology, and Institute for Brain Sciences, School of Life Sciences, Nanjing University, Nanjing, China
| | - Xiaoyang Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Physiology, and Institute for Brain Sciences, School of Life Sciences, Nanjing University, Nanjing, China
| | - Xi Jiang
- Drug Discovery Laboratory, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lingling Luo
- Drug Discovery Laboratory, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fei Li
- Drug Discovery Laboratory, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Gaorui Wang
- Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yu Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Xingxu Huang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Jingning Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Physiology, and Institute for Brain Sciences, School of Life Sciences, Nanjing University, Nanjing, China
| | - Shengjie Fan
- Drug Discovery Laboratory, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaojun Wu
- Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Cheng Huang
- Drug Discovery Laboratory, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
34
|
Weishaupt AK, Kubens L, Ruecker L, Schwerdtle T, Aschner M, Bornhorst J. A Reliable Method Based on Liquid Chromatography-Tandem Mass Spectrometry for the Simultaneous Quantification of Neurotransmitters in Caenorhabditis elegans. Molecules 2023; 28:5373. [PMID: 37513246 PMCID: PMC10385323 DOI: 10.3390/molecules28145373] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/05/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
Neurotransmitters like dopamine (DA), serotonin (SRT), γ-aminobutyric acid (GABA) and acetylcholine (ACh) are messenger molecules that play a pivotal role in transmitting excitation between neurons across chemical synapses, thus enabling complex processes in the central nervous system (CNS). Balance in neurotransmitter homeostasis is essential, and altered neurotransmitter levels are associated with various neurological disorders, e.g., loss of dopaminergic neurons (Parkinson's disease) or altered ACh synthesis (Alzheimer's disease). Therefore, it is crucial to possess adequate tools to assess precise neurotransmitter levels, and to apply targeted therapies. An established in vivo model to study neurotoxicity is the model organism Caenorhabditis elegans (C. elegans), as its neurons have been well characterized and functionally are analogous to mammals. We have developed a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method including a sample preparation assuring neurotransmitter stability, which allows a simultaneous neurotransmitter quantification of DA, SRT, GABA and ACh in C. elegans, but can easily be applied to other matrices. LC-MS/MS combined with isotope-labeled standards is the tool of choice, due to its otherwise unattainable sensitivity and specificity. Using C. elegans together with our analytically validated and verified method provides a powerful tool to evaluate mechanisms of neurotoxicity, and furthermore to identify possible therapeutic approaches.
Collapse
Affiliation(s)
- Ann-Kathrin Weishaupt
- Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Gaußstraße 20, 42119 Wuppertal, Germany; (A.-K.W.); (L.K.); (L.R.)
- TraceAge—DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Berlin-Potsdam-Jena-Wuppertal, 14558 Nuthetal, Germany;
| | - Laura Kubens
- Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Gaußstraße 20, 42119 Wuppertal, Germany; (A.-K.W.); (L.K.); (L.R.)
- Inorganic Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Gaußstraße 20, 42119 Wuppertal, Germany
| | - Lysann Ruecker
- Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Gaußstraße 20, 42119 Wuppertal, Germany; (A.-K.W.); (L.K.); (L.R.)
| | - Tanja Schwerdtle
- TraceAge—DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Berlin-Potsdam-Jena-Wuppertal, 14558 Nuthetal, Germany;
- German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10032, USA;
| | - Julia Bornhorst
- Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Gaußstraße 20, 42119 Wuppertal, Germany; (A.-K.W.); (L.K.); (L.R.)
- TraceAge—DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Berlin-Potsdam-Jena-Wuppertal, 14558 Nuthetal, Germany;
| |
Collapse
|
35
|
Ma C, Feng Y, Li X, Sun L, He Z, Gan J, He M, Zhang X, Chen X. Potential Therapeutic Effects of Policosanol from Insect Wax on Caenorhabditis elegans Models of Parkinson's Disease. J Neuroimmune Pharmacol 2023; 18:127-144. [PMID: 36637699 DOI: 10.1007/s11481-022-10057-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 11/17/2022] [Indexed: 01/14/2023]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease worldwide. The standard treatments for PD focus on symptom relief rather than attempting to address the underlying degenerative processes completely. This study aimed to evaluate the potential therapeutic effects of policosanol derived from insect wax (PIW) by investigating improvements in disease symptoms represented in Caenorhabditis elegans models of PD. For our assessments, we used the following three models: NL5901, which is a transgenic model for α-synuclein aggregation; wild-type N2 induced with 6-hydroxydopamine (6-OHDA); and 6-OHDA-induced BZ555 as a model for loss of dopaminergic neurons (DNs). Specifically, we examined the effects of PIW treatment on α-synuclein aggregation, the loss of DNs, lipid abundance, and the lifespan of treated organisms. Further, we examined treatment-related changes in the levels of reactive oxygen species (ROS), malondialdehyde (MDA), adenosine triphosphate (ATP), glutathione S-transferase (GST), and superoxide dismutase (SOD), as well as the mRNA production profiles of relevant genes. A 10 µg/mL dose of PIW reduced the aggregation of α-synuclein in NL5901 and suppressed the loss of DNs in 6-OHDA-induced BZ555. Overall, PIW treatment decreased ROS and MDA levels, restored lipid abundance, and prolonged the lifespans of worms in all the three models, which may be associated with changes in the expression profiles of genes related to cell survival and oxidative stress response pathways. Our findings show that PIW alleviated the symptoms of PD in these models, possibly by regulating the stress responses initiated by injuries such as α-synuclein aggregation or 6-OHDA treatment.
Collapse
Affiliation(s)
- Chenjing Ma
- Key Laboratory of Breeding and Utilization of Resource Insects of National Forestry and Grassland Administration, Institute of Highland Forest Science, Chinese Academy of Forestry, Panlong District, Kunming, 650224, Yunnan Province, China
| | - Ying Feng
- Key Laboratory of Breeding and Utilization of Resource Insects of National Forestry and Grassland Administration, Institute of Highland Forest Science, Chinese Academy of Forestry, Panlong District, Kunming, 650224, Yunnan Province, China
| | - Xian Li
- Key Laboratory of Breeding and Utilization of Resource Insects of National Forestry and Grassland Administration, Institute of Highland Forest Science, Chinese Academy of Forestry, Panlong District, Kunming, 650224, Yunnan Province, China
| | - Long Sun
- Key Laboratory of Breeding and Utilization of Resource Insects of National Forestry and Grassland Administration, Institute of Highland Forest Science, Chinese Academy of Forestry, Panlong District, Kunming, 650224, Yunnan Province, China
| | - Zhao He
- Key Laboratory of Breeding and Utilization of Resource Insects of National Forestry and Grassland Administration, Institute of Highland Forest Science, Chinese Academy of Forestry, Panlong District, Kunming, 650224, Yunnan Province, China
| | - Jin Gan
- Key Laboratory of Breeding and Utilization of Resource Insects of National Forestry and Grassland Administration, Institute of Highland Forest Science, Chinese Academy of Forestry, Panlong District, Kunming, 650224, Yunnan Province, China
| | - Minjie He
- Health Management Center, The First Affiliated Hospital of Kunming Medical University, Kunming, 650000, Yunnan Province, China
| | - Xin Zhang
- Key Laboratory of Breeding and Utilization of Resource Insects of National Forestry and Grassland Administration, Institute of Highland Forest Science, Chinese Academy of Forestry, Panlong District, Kunming, 650224, Yunnan Province, China.
| | - Xiaoming Chen
- Key Laboratory of Breeding and Utilization of Resource Insects of National Forestry and Grassland Administration, Institute of Highland Forest Science, Chinese Academy of Forestry, Panlong District, Kunming, 650224, Yunnan Province, China
| |
Collapse
|
36
|
Jordan A, Glauser DA. Distinct clusters of human pain gene orthologs in Caenorhabditis elegans regulate thermo-nociceptive sensitivity and plasticity. Genetics 2023; 224:iyad047. [PMID: 36947448 PMCID: PMC10158838 DOI: 10.1093/genetics/iyad047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 05/13/2022] [Accepted: 03/07/2023] [Indexed: 03/23/2023] Open
Abstract
The detection and avoidance of harmful stimuli are essential animal capabilities. The molecular and cellular mechanisms controlling nociception and its plasticity are conserved, genetically controlled processes of broad biomedical interest given their relevance to understand and treat pain conditions that represent a major health burden. Recent genome-wide association studies (GWAS) have identified a rich set of polymorphisms related to different pain conditions and pointed to many human pain gene candidates, whose connection to the pain pathways is however often poorly understood. Here, we used a computer-assisted Caenorhabditis elegans thermal avoidance analysis pipeline to screen for behavioral defects in a set of 109 mutants for genes orthologous to human pain-related genes. We measured heat-evoked reversal thermosensitivity profiles, as well as spontaneous reversal rate, and compared naïve animals with adapted animals submitted to a series of repeated noxious heat stimuli, which in wild type causes a progressive habituation. Mutations affecting 28 genes displayed defects in at least one of the considered parameters and could be clustered based on specific phenotypic footprints, such as high-sensitivity mutants, nonadapting mutants, or mutants combining multiple defects. Collectively, our data reveal the functional architecture of a network of conserved pain-related genes in C. elegans and offer novel entry points for the characterization of poorly understood human pain genes in this genetic model.
Collapse
Affiliation(s)
- Aurore Jordan
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | | |
Collapse
|
37
|
Hernández-Cruz E, Eugenio-Pérez D, Ramírez-Magaña KJ, Pedraza-Chaverri J. Effects of Vegetal Extracts and Metabolites against Oxidative Stress and Associated Diseases: Studies in Caenorhabditis elegans. ACS OMEGA 2023; 8:8936-8959. [PMID: 36936291 PMCID: PMC10018526 DOI: 10.1021/acsomega.2c07025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Oxidative stress is a natural physiological process where the levels of oxidants, such as reactive oxygen species (ROS) and nitrogen (RNS), exceed the strategy of antioxidant defenses, culminating in the interruption of redox signaling and control. Oxidative stress is associated with multiple pathologies, including premature aging, neurodegenerative diseases, obesity, diabetes, atherosclerosis, and arthritis. It is not yet clear whether oxidative stress is the cause or consequence of these diseases; however, it has been shown that using compounds with antioxidant properties, particularly compounds of natural origin, could prevent or slow down the progress of different pathologies. Within this context, the Caenorhabditis elegans (C. elegans) model has served to study the effect of different metabolites and natural compounds, which has helped to decipher molecular targets and the effect of these compounds on premature aging and some diseases such as neurodegenerative diseases and dyslipidemia. This article lists the studies carried out on C. elegans in which metabolites and natural extracts have been tested against oxidative stress and the pathologies associated with providing an overview of the discoveries in the redox area made with this nematode.
Collapse
Affiliation(s)
- Estefani
Yaquelin Hernández-Cruz
- Department
of Biology, Faculty of Chemistry, National
Autonomous University of Mexico, Ciudad Universitaria, 04510 Mexico City, Mexico
- Postgraduate
in Biological Sciences, National Autonomous
University of Mexico, Ciudad Universitaria, 04510 Mexico City, Mexico
| | - Dianelena Eugenio-Pérez
- Department
of Biology, Faculty of Chemistry, National
Autonomous University of Mexico, Ciudad Universitaria, 04510 Mexico City, Mexico
- Postgraduate
in Biochemical Sciences, National Autonomous
University of Mexico, Ciudad Universitaria, 04510 Mexico City, Mexico
| | - Karla Jaqueline Ramírez-Magaña
- Department
of Biology, Faculty of Chemistry, National
Autonomous University of Mexico, Ciudad Universitaria, 04510 Mexico City, Mexico
- Postgraduate
in Biochemical Sciences, National Autonomous
University of Mexico, Ciudad Universitaria, 04510 Mexico City, Mexico
| | - José Pedraza-Chaverri
- Department
of Biology, Faculty of Chemistry, National
Autonomous University of Mexico, Ciudad Universitaria, 04510 Mexico City, Mexico
| |
Collapse
|
38
|
Blume B, Schwantes V, Witting M, Hayen H, Schmitt-Kopplin P, Helmer PO, Michalke B. Lipidomic and Metallomic Alteration of Caenorhabditis elegans after Acute and Chronic Manganese, Iron, and Zinc Exposure with a Link to Neurodegenerative Disorders. J Proteome Res 2023; 22:837-850. [PMID: 36594972 DOI: 10.1021/acs.jproteome.2c00578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Parkinson's disease (PD) progresses with the loss of dopaminergic neurons in the substantia nigra pars compacta region of the brain. The superior mechanisms and the cause of this specific localized neurodegeneration is currently unknown. However, experimental evidence indicates a link between PD progression and reactive oxygen species with imbalanced metal homeostasis. Wild-type Caenorhabditis elegans exposed to redox-active metals was used as the model organism to study cellular response to imbalanced metal homeostasis linked to neurodegenerative diseases. Using modern hyphenated techniques such as capillary electrophoresis coupled to inductively coupled plasma mass spectrometry and ultrahigh-performance liquid chromatography mass spectrometry, alterations in the lipidome and metallome were determined in vivo. In contrast to iron, most of the absorbed zinc and manganese were loosely bound. We observed changes in the phospholipid composition for acute iron and manganese exposures, as well as chronic zinc exposure. Furthermore, we focused on the mitochondrial membrane alteration due to its importance in neuronal function. However, significant changes in the inner mitochondrial membrane by determination of cardiolipin species could only be observed for acute iron exposure. These results indicate different intracellular sites of local ROS generation, depending on the redox active metal. Our study combines metallomic and lipidomic alterations as the cause and consequence to enlighten intracellular mechanisms in vivo, associated with PD progression. The mass spectrometry raw data have been deposited to the MassIVE database (https://massive.ucsd.edu) with the identifier MSV000090796 and 10.25345/C51J97C8F.
Collapse
Affiliation(s)
- Bastian Blume
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München-German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany
| | - Vera Schwantes
- Institute for Inorganic and Analytical Chemistry, University of Münster, 48149 Münster, Germany
| | - Michael Witting
- Metabolomics and Proteomics, Helmholtz Zentrum München-German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany.,Chair of Analytical Food Chemistry, TUM School of Life Science, Technical University of Munich, 85354 Freising-Weihenstephan, Germany
| | - Heiko Hayen
- Institute for Inorganic and Analytical Chemistry, University of Münster, 48149 Münster, Germany
| | - Philippe Schmitt-Kopplin
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München-German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany.,Chair of Analytical Food Chemistry, TUM School of Life Science, Technical University of Munich, 85354 Freising-Weihenstephan, Germany
| | - Patrick O Helmer
- Institute for Inorganic and Analytical Chemistry, University of Münster, 48149 Münster, Germany
| | - Bernhard Michalke
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München-German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany
| |
Collapse
|
39
|
Dong Z, Wang Y, Hao C, Cheng Y, Guo X, He Y, Shi Y, Wang S, Li Y, Shi W. Sanghuangporus sanghuang extract extended the lifespan and healthspan of Caenorhabditis elegans via DAF-16/SIR-2.1. Front Pharmacol 2023; 14:1136897. [PMID: 37153808 PMCID: PMC10159060 DOI: 10.3389/fphar.2023.1136897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 03/20/2023] [Indexed: 05/10/2023] Open
Abstract
Sanghuangporus Sanghuang is a fungus species. As a traditional Chinese medicine, it is known for antitumor, antioxidant and anti-inflammatory properties. However, the antiaging effect of S. Sanghuang has not been deeply studied. In this study, the effects of S. Sanghuang extract (SSE) supernatants on the changes of nematode indicators were investigated. The results showed that different concentrations of SSE prolonged the lifespans of nematodes and substantially increased these by 26.41%. In addition, accumulations of lipofuscin were also visibly reduced. The treatment using SSE also played a role in increasing stress resistance, decreasing ROS accumulations and obesity, and enhancing the physique. RT-PCR analysis showed that the SSE treatment upregulated the transcription of daf-16, sir-2.1, daf-2, sod-3 and hsp-16.2, increased the expression of these genes in the insulin/IGF-1 signalling pathway and prolonged the lifespans of nematodes. This study reveals the new role of S. Sanghuang in promoting longevity and inhibiting stress and provides a theoretical basis for the application of S. Sanghuang in anti-ageing treatments.
Collapse
Affiliation(s)
- Zhenghan Dong
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, Jilin University, Changchun, Jilin, China
- College of Life Sciences, Jilin University, Changchun, Jilin, China
| | - Yachao Wang
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, Jilin University, Changchun, Jilin, China
- College of Life Sciences, Jilin University, Changchun, Jilin, China
| | - Cuiting Hao
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, Jilin University, Changchun, Jilin, China
- College of Life Sciences, Jilin University, Changchun, Jilin, China
| | - Yuan Cheng
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, Jilin University, Changchun, Jilin, China
- College of Life Sciences, Jilin University, Changchun, Jilin, China
| | - Xi Guo
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, Jilin University, Changchun, Jilin, China
- College of Life Sciences, Jilin University, Changchun, Jilin, China
| | - Yanyu He
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, Jilin University, Changchun, Jilin, China
- College of Life Sciences, Jilin University, Changchun, Jilin, China
| | - Yueyue Shi
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, Jilin University, Changchun, Jilin, China
- College of Life Sciences, Jilin University, Changchun, Jilin, China
| | - Shuang Wang
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, Jilin University, Changchun, Jilin, China
- College of Life Sciences, Jilin University, Changchun, Jilin, China
| | - Yunqi Li
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, Jilin University, Changchun, Jilin, China
- College of Life Sciences, Jilin University, Changchun, Jilin, China
| | - Wei Shi
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, Jilin University, Changchun, Jilin, China
- College of Life Sciences, Jilin University, Changchun, Jilin, China
- *Correspondence: Wei Shi,
| |
Collapse
|
40
|
Su J, Yang P, Xing M, Chen B, Xie X, Ding J, Lu M, Liu Y, Guo Y, Hu G. Neuroprotective effects of a lead compound from coral via modulation of the orphan nuclear receptor Nurr1. CNS Neurosci Ther 2022; 29:893-906. [PMID: 36419251 PMCID: PMC9928544 DOI: 10.1111/cns.14025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 08/03/2022] [Accepted: 08/14/2022] [Indexed: 11/26/2022] Open
Abstract
AIMS To screen coral-derived compounds with neuroprotective activity and clarify the potential mechanism of lead compounds. METHODS The lead compounds with neuroprotective effects were screened by H2 O2 and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPP+ )-induced cell damage models in SH-SY5Y cells. CCK8 and LDH assays were used to detect cell viability. The anti-apoptosis of lead compounds was evaluated by flow cytometry. JC-1 and MitoSox assays were performed to examine the changes in mitochondrial membrane potential and mitochondrial ROS level. Survival of primary cortical and dopaminergic midbrain neurons was measured by MAP2 and TH immunoreactivities. The Caenorhabditis elegans (C. elegans) model was established to determine the effect of lead compounds on dopaminergic neurons and behavior changes. RESULTS Three compounds (No. 63, 68, and 74), derived from marine corals, could markedly alleviate the cell damage and notably reverse the loss of worm dopaminergic neurons. Further investigation indicated that compound 63 could promote the expression of Nurr1 and inhibit neuronal apoptosis signaling pathways. CONCLUSION Lead compounds from marine corals exerted significant neuroprotective effects, which indicated that coral might be a new and potential resource for screening and isolating novel natural compounds with neuroprotective effects. Furthermore, this study also provided a new strategy for the clinical treatment of neurodegenerative diseases such as Parkinson's disease.
Collapse
Affiliation(s)
- Jian‐Wei Su
- Department of PharmacologySchool of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese MedicineNanjingJiangsuChina
| | - Pei Yang
- Department of PharmacologySchool of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese MedicineNanjingJiangsuChina
| | - Mei‐Mei Xing
- Department of PharmacologySchool of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese MedicineNanjingJiangsuChina
| | - Bao Chen
- State Key Laboratory of Drug ResearchShanghai Institute of Materia Medica, Chinese Academy of SciencesShanghaiChina
| | - Xia‐Hong Xie
- Department of PharmacologySchool of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese MedicineNanjingJiangsuChina
| | - Jian‐Hua Ding
- Jiangsu Key Laboratory of Neurodegeneration, Department of PharmacologyNanjing Medical UniversityNanjingChina
| | - Ming Lu
- Jiangsu Key Laboratory of Neurodegeneration, Department of PharmacologyNanjing Medical UniversityNanjingChina
| | - Yang Liu
- Department of PharmacologySchool of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese MedicineNanjingJiangsuChina
| | - Yue‐Wei Guo
- State Key Laboratory of Drug ResearchShanghai Institute of Materia Medica, Chinese Academy of SciencesShanghaiChina
| | - Gang Hu
- Department of PharmacologySchool of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese MedicineNanjingJiangsuChina
| |
Collapse
|
41
|
SenGupta T, Lefol Y, Lirussi L, Suaste V, Luders T, Gupta S, Aman Y, Sharma K, Fang EF, Nilsen H. Krill oil protects dopaminergic neurons from age-related degeneration through temporal transcriptome rewiring and suppression of several hallmarks of aging. Aging (Albany NY) 2022; 14:8661-8687. [DOI: 10.18632/aging.204375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/27/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Tanima SenGupta
- Institute of Clinical Medicine, Department of Clinical Molecular Biology, University of Oslo, Oslo N-0318, Norway
- Section of Clinical Molecular Biology, Akershus University Hospital, Nordbyhagen N-1474, Norway
- Department of Biosciences, University of Oslo, Oslo N-0318, Norway
| | - Yohan Lefol
- Institute of Clinical Medicine, Department of Clinical Molecular Biology, University of Oslo, Oslo N-0318, Norway
| | - Lisa Lirussi
- Section of Clinical Molecular Biology, Akershus University Hospital, Nordbyhagen N-1474, Norway
| | - Veronica Suaste
- Department of Microbiology, Oslo University Hospital, Oslo N-0424, Norway
- Department of Biosciences, University of Oslo, Oslo N-0318, Norway
| | - Torben Luders
- Institute of Clinical Medicine, Department of Clinical Molecular Biology, University of Oslo, Oslo N-0318, Norway
| | - Swapnil Gupta
- Section of Clinical Molecular Biology, Akershus University Hospital, Nordbyhagen N-1474, Norway
| | - Yahyah Aman
- Institute of Clinical Medicine, Department of Clinical Molecular Biology, University of Oslo, Oslo N-0318, Norway
- Section of Clinical Molecular Biology, Akershus University Hospital, Nordbyhagen N-1474, Norway
| | - Kulbhushan Sharma
- Section of Clinical Molecular Biology, Akershus University Hospital, Nordbyhagen N-1474, Norway
| | - Evandro Fei Fang
- Institute of Clinical Medicine, Department of Clinical Molecular Biology, University of Oslo, Oslo N-0318, Norway
- Section of Clinical Molecular Biology, Akershus University Hospital, Nordbyhagen N-1474, Norway
| | - Hilde Nilsen
- Institute of Clinical Medicine, Department of Clinical Molecular Biology, University of Oslo, Oslo N-0318, Norway
- Section of Clinical Molecular Biology, Akershus University Hospital, Nordbyhagen N-1474, Norway
- Department of Microbiology, Oslo University Hospital, Oslo N-0424, Norway
| |
Collapse
|
42
|
Arch M, Vidal M, Koiffman R, Melkie ST, Cardona PJ. Drosophila melanogaster as a model to study innate immune memory. Front Microbiol 2022; 13:991678. [PMID: 36338030 PMCID: PMC9630750 DOI: 10.3389/fmicb.2022.991678] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 10/03/2022] [Indexed: 09/12/2023] Open
Abstract
Over the last decades, research regarding innate immune responses has gained increasing importance. A growing body of evidence supports the notion that the innate arm of the immune system could show memory traits. Such traits are thought to be conserved throughout evolution and provide a survival advantage. Several models are available to study these mechanisms. Among them, we find the fruit fly, Drosophila melanogaster. This non-mammalian model has been widely used for innate immune research since it naturally lacks an adaptive response. Here, we aim to review the latest advances in the study of the memory mechanisms of the innate immune response using this animal model.
Collapse
Affiliation(s)
- Marta Arch
- Tuberculosis Research Unit, Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
- Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Maria Vidal
- Tuberculosis Research Unit, Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
- Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Comparative Medicine and Bioimage Centre of Catalonia (CMCiB), Germans Trias I Pujol Research Institute (IGTP), Badalona, Spain
- Microbiology Department, Laboratori Clínic Metropolitana Nord, Germans Trias i Pujol University Hospital, Badalona, Spain
| | - Romina Koiffman
- Tuberculosis Research Unit, Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
- UCBL, UnivLyon, Université Claude Bernard Lyon 1 (UCBL1), Villeurbanne, France
| | - Solomon Tibebu Melkie
- Tuberculosis Research Unit, Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
- UCBL, UnivLyon, Université Claude Bernard Lyon 1 (UCBL1), Villeurbanne, France
| | - Pere-Joan Cardona
- Tuberculosis Research Unit, Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
- Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Comparative Medicine and Bioimage Centre of Catalonia (CMCiB), Germans Trias I Pujol Research Institute (IGTP), Badalona, Spain
- Microbiology Department, Laboratori Clínic Metropolitana Nord, Germans Trias i Pujol University Hospital, Badalona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| |
Collapse
|
43
|
Long HQ, Gao J, He SQ, Han JF, Tu Y, Chen N. The role of crm-1 in ionizing radiation-induced nervous system dysfunction in Caenorhabditis elegans. Neural Regen Res 2022; 18:1386-1392. [PMID: 36453427 PMCID: PMC9838165 DOI: 10.4103/1673-5374.357908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Ionizing radiation can cause changes in nervous system function. However, the underlying mechanism remains unclear. In this study, Caenorhabditis elegans (C. elegans) was irradiated with 75 Gy of 60Co whole-body γ radiation. Behavioral indicators (head thrashes, touch avoidance, and foraging), and the development of dopaminergic neurons related to behavioral function, were evaluated to assess the effects of ionizing radiation on nervous system function in C. elegans. Various behaviors were impaired after whole-body irradiation and degeneration of dopamine neurons was observed. This suggests that 75 Gy of γ radiation is sufficient to induce nervous system dysfunction. The genes nhr-76 and crm-1, which are reported to be related to nervous system function in human and mouse, were screened by transcriptome sequencing and bioinformatics analysis after irradiation or sham irradiation. The expression levels of these two genes were increased after radiation. Next, RNAi technology was used to inhibit the expression of crm-1, a gene whose homologs are associated with motor neuron development in other species. Downregulation of crm-1 expression effectively alleviated the deleterious effects of ionizing radiation on head thrashes and touch avoidance. It was also found that the expression level of crm-1 was regulated by the nuclear receptor gene nhr-76. The results of this study suggest that knocking down the expression level of nhr-76 can reduce the expression level of crm-1, while down-regulating the expression level of crm-1 can alleviate behavioral disorders induced by ionizing radiation. Therefore, inhibition of crm-1 may be of interest as a potential therapeutic target for ionizing radiation-induced neurological dysfunction.
Collapse
Affiliation(s)
- Hui-Qiang Long
- Suzhou Medical College of Soochow University, Suzhou, Jiangsu Province, China,State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, Jiangsu Province, China,Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, Jiangsu Province, China
| | - Jin Gao
- Suzhou Medical College of Soochow University, Suzhou, Jiangsu Province, China,State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, Jiangsu Province, China,Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, Jiangsu Province, China
| | - Shu-Qing He
- Suzhou Medical College of Soochow University, Suzhou, Jiangsu Province, China
| | - Jian-Fang Han
- Suzhou Medical College of Soochow University, Suzhou, Jiangsu Province, China,State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, Jiangsu Province, China,Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, Jiangsu Province, China
| | - Yu Tu
- Suzhou Medical College of Soochow University, Suzhou, Jiangsu Province, China,State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, Jiangsu Province, China,Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, Jiangsu Province, China,Correspondence to: Yu Tu, ; Na Chen, .
| | - Na Chen
- Suzhou Medical College of Soochow University, Suzhou, Jiangsu Province, China,State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, Jiangsu Province, China,Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, Jiangsu Province, China,Correspondence to: Yu Tu, ; Na Chen, .
| |
Collapse
|
44
|
Ma L, Li X, Liu C, Yan W, Ma J, Petersen RB, Peng A, Huang K. Modelling Parkinson's Disease in C. elegans: Strengths and Limitations. Curr Pharm Des 2022; 28:3033-3048. [PMID: 36111767 DOI: 10.2174/1381612828666220915103502] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 08/08/2022] [Indexed: 01/28/2023]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disease that affects the motor system and progressively worsens with age. Current treatment options for PD mainly target symptoms, due to our limited understanding of the etiology and pathophysiology of PD. A variety of preclinical models have been developed to study different aspects of the disease. The models have been used to elucidate the pathogenesis and for testing new treatments. These models include cell models, non-mammalian models, rodent models, and non-human primate models. Over the past few decades, Caenorhabditis elegans (C. elegans) has been widely adopted as a model system due to its small size, transparent body, short generation time and life cycle, fully sequenced genome, the tractability of genetic manipulation and suitability for large scale screening for disease modifiers. Here, we review studies using C. elegans as a model for PD and highlight the strengths and limitations of the C. elegans model. Various C. elegans PD models, including neurotoxin-induced models and genetic models, are described in detail. Moreover, met.
Collapse
Affiliation(s)
- Liang Ma
- Department of Pharmacy, Wuhan Mental Health Center, Wuhan, China.,Department of Pharmacy, Wuhan Hospital for Psychotherapy, Wuhan, China
| | - Xi Li
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chengyu Liu
- Department of Transfusion Medicine, Wuhan Hospital of Traditional Chinese and Western Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wanyao Yan
- Department of Pharmacy, Wuhan Fourth Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinlu Ma
- Human Resources Department, Wuhan Mental Health Center, Wuhan, China.,Human Resources Department, Wuhan Hospital for Psychotherapy, Wuhan, China
| | - Robert B Petersen
- Foundational Sciences, Central Michigan University College of Medicine, Mount Pleasant, MI, USA
| | - Anlin Peng
- Department of Pharmacy, The Third Hospital of Wuhan, Tongren Hospital of Wuhan University, Wuhan, China
| | - Kun Huang
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
45
|
Albrecht PA, Fernandez-Hubeid LE, Deza-Ponzio R, Virgolini MB. The intertwining between lead and ethanol in the model organism Caenorhabditis elegans. FRONTIERS IN TOXICOLOGY 2022; 4:991787. [PMID: 36204698 PMCID: PMC9531147 DOI: 10.3389/ftox.2022.991787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/18/2022] [Indexed: 11/16/2022] Open
Abstract
Caenorhabditis elegans (C. elegans) is a model organism widely used to evaluate the mechanistic aspects of toxicants with the potential to predict responses comparable to those of mammals. We report here the consequences of developmental lead (Pb) exposure on behavioral responses to ethanol (EtOH) in C. elegans. In addition, we present data on morphological alterations in the dopamine (DA) synapse and DA-dependent behaviors aimed to dissect the neurobiological mechanisms that underlie the relationship between these neurotoxicants. Finally, the escalation to superior animals that parallels the observed effects in both experimental models with references to EtOH metabolism and oxidative stress is also discussed. Overall, the literature revised here underpins the usefulness of C. elegans to evidence behavioral responses to a combination of neurotoxicants in mechanistic-orientated studies.
Collapse
Affiliation(s)
- P A Albrecht
- Departamento de Farmacología Otto Orsingher, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Instituto de Farmacología Experimental de Córdoba-Consejo Nacional de Investigaciones Científicas y Técnicas (IFEC-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - L E Fernandez-Hubeid
- Departamento de Farmacología Otto Orsingher, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Instituto de Farmacología Experimental de Córdoba-Consejo Nacional de Investigaciones Científicas y Técnicas (IFEC-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - R Deza-Ponzio
- Departamento de Farmacología Otto Orsingher, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Instituto de Farmacología Experimental de Córdoba-Consejo Nacional de Investigaciones Científicas y Técnicas (IFEC-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - M B Virgolini
- Departamento de Farmacología Otto Orsingher, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Instituto de Farmacología Experimental de Córdoba-Consejo Nacional de Investigaciones Científicas y Técnicas (IFEC-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
46
|
Huang ML, Yen PL, Chang CH, Liao VHC. Chronic di(2-ethylhexyl) phthalate exposure leads to dopaminergic neuron degeneration through mitochondrial dysfunction in C. elegans. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 307:119574. [PMID: 35671892 DOI: 10.1016/j.envpol.2022.119574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/23/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
The plasticizer di(2-ethylhexyl) phthalate (DEHP) is frequently detected in the environment due to the abundance of its use. These levels might be hazardous to human health and ecosystems. Phthalates have been associated with neurological disorders, yet whether chronic DEHP exposure plays a role in Parkinson's disease (PD) or its underlying mechanisms is unknown. We investigated the effects of chronic DEHP exposure less than an environmentally-relevant dose on PD hallmarks, using Caenorhabditis elegans as a model. We show that developmental stage and exposure timing influence DEHP-induced dopaminergic neuron degeneration. In addition, in response to chronic DEHP exposure at 5 mg/L, mitochondrial fragmentation became significantly elevated, reactive oxygen species (ROS) levels increased, and ATP levels decreased, suggesting that mitochondrial dysfunction occurs. Furthermore, the data show that mitochondrial complex I (nuo-1 and gas-1) and complex II (mev-1) are involved in DEHP-induced dopaminergic neuron toxicity. These results suggest that chronic exposure to DEHP at levels less than an environmentally-relevant dose causes dopaminergic neuron degeneration through mitochondrial dysfunction involving mitochondrial complex I and II. Considering the high level of genetic conservation between C. elegans and mammals, chronic DEHP exposure might elevate the risk of developing PD in humans.
Collapse
Affiliation(s)
- Mei-Lun Huang
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei, 106, Taiwan
| | - Pei-Ling Yen
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei, 106, Taiwan
| | - Chun-Han Chang
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei, 106, Taiwan
| | - Vivian Hsiu-Chuan Liao
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei, 106, Taiwan.
| |
Collapse
|
47
|
Agostini F, Agostinis R, Medina DL, Bisaglia M, Greggio E, Plotegher N. The Regulation of MiTF/TFE Transcription Factors Across Model Organisms: from Brain Physiology to Implication for Neurodegeneration. Mol Neurobiol 2022; 59:5000-5023. [PMID: 35665902 PMCID: PMC9363479 DOI: 10.1007/s12035-022-02895-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 05/21/2022] [Indexed: 12/30/2022]
Abstract
The microphthalmia/transcription factor E (MiTF/TFE) transcription factors are responsible for the regulation of various key processes for the maintenance of brain function, including autophagy-lysosomal pathway, lipid catabolism, and mitochondrial homeostasis. Among them, autophagy is one of the most relevant pathways in this frame; it is evolutionary conserved and crucial for cellular homeostasis. The dysregulation of MiTF/TFE proteins was shown to be involved in the development and progression of neurodegenerative diseases. Thus, the characterization of their function is key in the understanding of the etiology of these diseases, with the potential to develop novel therapeutics targeted to MiTF/TFE proteins and to the autophagic process. The fact that these proteins are evolutionary conserved suggests that their function and dysfunction can be investigated in model organisms with a simpler nervous system than the mammalian one. Building not only on studies in mammalian models but also in complementary model organisms, in this review we discuss (1) the mechanistic regulation of MiTF/TFE transcription factors; (2) their roles in different regions of the central nervous system, in different cell types, and their involvement in the development of neurodegenerative diseases, including lysosomal storage disorders; (3) the overlap and the compensation that occur among the different members of the family; (4) the importance of the evolutionary conservation of these protein and the process they regulate, which allows their study in different model organisms; and (5) their possible role as therapeutic targets in neurodegeneration.
Collapse
Affiliation(s)
| | - Rossella Agostinis
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples, Italy
- Scuola Superiore Meridionale SSM, Federico II University, Naples, Italy
| | - Diego L Medina
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples, Italy
- Department of Medical and Translational, Science, II University, Naples, Federico, Italy
| | - Marco Bisaglia
- Department of Biology, University of Padova, Padua, Italy
| | - Elisa Greggio
- Department of Biology, University of Padova, Padua, Italy
| | | |
Collapse
|
48
|
Tian J, Tang Y, Yang L, Ren J, Qing Q, Tao Y, Xu J, Zhu J. Molecular Mechanisms for Anti-aging of Low-Vacuum Cold Plasma Pretreatment in Caenorhabditis elegans. Appl Biochem Biotechnol 2022; 194:4817-4835. [PMID: 35666378 DOI: 10.1007/s12010-022-03989-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2022] [Indexed: 11/02/2022]
Abstract
Cold plasma pretreatment has the potential of anti-aging. However, its molecular mechanism is still not clear. Here, cold plasma pretreatment was firstly used to investigate the anti-aging effects of Caenorhabditis elegans using transcriptomic technique. It showed that the optimal parameters of discharge power, processing time, and working pressure for cold plasma pretreatment were separately 100 W, 15 s, and 135 Pa. The released 0.32 mJ/cm2 of the moderate apparent energy density was possibly beneficial to the strong positive interaction between plasma and C. elegans. The longest lifespan (13.67 ± 0.50 for 30 days) was obviously longer than the control (10.37 ± 0.46 for 23 days). Furthermore, compared with the control, frequencies of head thrashes with an increase of 26.01% and 37.31% and those of body bends with an increase of 33.37% and 34.51% on the fourth and eighth day, respectively, indicated movement behavior was improved. In addition, the variation of the enzyme activity of superoxide dismutase (SOD), catalase (CAT), and malondialdehyde (MDA) hinted that the cold plasma pretreatment contributed to the enhanced anti-aging effects in nematodes. Transcriptomics analysis revealed that cold plasma pretreatment resulted in specific gene expression. Anatomical structure morphogenesis, response to stress, regulation of biological quality, phosphate-containing compound metabolic process, and phosphorus metabolic process were the most enriched biological process for GO analysis. Cellular response to heat stress and HSF1-dependent transactivation were the two most enriched KEGG pathways. This work would provide the methodological basis using cold plasma pretreatment and the potential gene modification targets for anti-aging study.
Collapse
Affiliation(s)
- Jiamei Tian
- National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Changzhou, 213164, Jiangsu, China.,School of Pharmacy, Changzhou University, Changzhou, 213164, Jiangsu, China
| | - Yumeng Tang
- National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Changzhou, 213164, Jiangsu, China.,School of Pharmacy, Changzhou University, Changzhou, 213164, Jiangsu, China
| | - Linsong Yang
- School of Pharmacy, Changzhou University, Changzhou, 213164, Jiangsu, China
| | - Jie Ren
- School of Pharmacy, Changzhou University, Changzhou, 213164, Jiangsu, China
| | - Qing Qing
- School of Pharmacy, Changzhou University, Changzhou, 213164, Jiangsu, China
| | - Yuheng Tao
- School of Pharmacy, Changzhou University, Changzhou, 213164, Jiangsu, China
| | - Jieting Xu
- Wimi Biotechnology (Jiangsu) Co., Ltd, Changzhou, 213032, Jiangsu, China
| | - Jie Zhu
- National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Changzhou, 213164, Jiangsu, China. .,School of Pharmacy, Changzhou University, Changzhou, 213164, Jiangsu, China.
| |
Collapse
|
49
|
Chang CH, Chang ST, Liao VHC. Potential anti-Parkinsonian's effect of S-(+)-linalool from Cinnamomum osmophloeum ct. linalool leaves are associated with mitochondrial regulation via gas-1, nuo-1, and mev-1 in Caenorhabditis elegans. Phytother Res 2022; 36:3325-3334. [PMID: 35665972 DOI: 10.1002/ptr.7516] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 04/24/2022] [Accepted: 05/17/2022] [Indexed: 11/11/2022]
Abstract
Parkinson's disease (PD) is one of the prevalent neurodegenerative diseases, and developing new treatments from natural products is of particular interest. Essential oils from Cinnamomum osmophloeum ct. linalool leaves contain high levels (~95%) of S-(+)-linalool. The neuroprotective effects of linalool have been previously described, yet the underlying molecular mechanisms remain largely unknown. This study aimed to investigate the potential anti-Parkinsonian's effect of S-(+)-linalool on mitochondrial regulation and decipher the underlying molecular mechanisms in Caenorhabditis elegans PD model. Essential oils at 20 mg/L and 20 mg/L S-(+)-linalool each significantly attenuated the damaging effects of 6-hydroxydopamine (6-OHDA) on dopaminergic (DA) neurons and decreased the mitochondrial unfolded protein response (UPRmt ) to antimycin. RNAi knockdown of mitochondrial complex I (gas-1, nuo-1), and complex II (mev-1) genes prevented the improvement of mitochondrial activity by S-(+)-linalool. The protective effects of S-(+)-linalool on 6-OHDA-induced behavior changes were absent in a DA-specific strain of C. elegans produced by gas-1, nuo-1, and mev-1 RNAi knockdown. These results suggest the potential anti-Parkinsonian's effect of S-(+)-linalool is associated with mitochondrial activity and regulated by gas-1, nuo-1, and mev-1 in C. elegans. Our findings suggest that S-(+)-linalool might be a promising candidate for therapeutic application to inhibit the progression of PD.
Collapse
Affiliation(s)
- Chun-Han Chang
- School of Forest and Resource Conservation, National Taiwan University, Taipei, Taiwan
| | - Shang-Tzen Chang
- School of Forest and Resource Conservation, National Taiwan University, Taipei, Taiwan
| | - Vivian Hsiu-Chuan Liao
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
50
|
Palikaras K, SenGupta T, Nilsen H, Tavernarakis N. Assessment of dopaminergic neuron degeneration in a C. elegans model of Parkinson’s disease. STAR Protoc 2022; 3:101264. [PMID: 35403008 PMCID: PMC8983426 DOI: 10.1016/j.xpro.2022.101264] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Transgenic Caenorhabditis elegans that expresses the full-length wild-type human α-synuclein in dopaminergic neurons provides a well-established Parkinson’s disease (PD) nematode model. Here, we present a detailed protocol to monitor and dissect the molecular underpinnings of age-associated neurodegeneration using this PD nematode model. This protocol includes preparation of nematode growth media and bacterial food sources, as well as procedures for nematode growth, synchronization, and treatment. We then describe procedures to assess dopaminergic neuronal death in vivo using fluorescence imaging. For complete details on the use and execution of this protocol, please refer to SenGupta et al. (2021). A Parkinson’s disease nematode model to study α-synuclein-mediated neurotoxicity Comprehensive approach for scoring cell death of dopaminergic neurons in C. elegans Genetic tools to investigate the tissue specific effects on neurodegeneration
Collapse
|