1
|
Du H, Liu J, Jude KM, Yang X, Li Y, Bell B, Yang H, Kassardjian A, Blackson W, Mobedi A, Parekh U, Parra Sperberg RA, Julien JP, Mellins ED, Garcia KC, Huang PS. A general system for targeting MHC class II-antigen complex via a single adaptable loop. Nat Biotechnol 2024:10.1038/s41587-024-02466-y. [PMID: 39672953 DOI: 10.1038/s41587-024-02466-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 10/10/2024] [Indexed: 12/15/2024]
Abstract
Major histocompatibility complex class II (MHCII) bound to a peptide antigen mediates interactions between CD4+ T cells and antigen-presenting cells. Targeting peptide-MHCII with T cell antigen receptors (TCRs) and TCR-like antibodies has shown promise for autoimmune diseases and microbiome tolerance. To develop a general targeting approach, we introduce targeted recognition of antigen-MHC complex reporter for MHCII (TRACeR-II) for the rapid development of peptide-specific MHCII binders. TRACeR-II binders have a small helical bundle scaffold and use a single loop to recognize peptide-MHCII, which offers versatility and enables structural modeling of the interactions to target MHCII antigens. We demonstrate rapid generation of TRACeR-II binders to multiple molecules with affinities in the low-nanomolar to low-micromolar range, comparable to best-in-class TCRs and antibodies. Through computational protein design, we created specific binding sequences in silico from only the sequence of a severe acute respiratory syndrome coronavirus 2 peptide. TRACeR-II provides a straightforward approach to target antigen-MHCII without relying on combinatorial selection on complementarity-determining region loops.
Collapse
Affiliation(s)
- Haotian Du
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Jingjia Liu
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Kevin M Jude
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Xinbo Yang
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Ying Li
- Department of Pediatrics, Divisions of Human Gene Therapy and Allergy, Immunology & Rheumatology, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Program in Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Braxton Bell
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Hongli Yang
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Audrey Kassardjian
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Wyatt Blackson
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Ali Mobedi
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Udit Parekh
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | | | - Jean-Philippe Julien
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Elizabeth D Mellins
- Department of Pediatrics, Divisions of Human Gene Therapy and Allergy, Immunology & Rheumatology, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Program in Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - K Christopher Garcia
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Po-Ssu Huang
- Department of Bioengineering, Stanford University, Stanford, CA, USA.
| |
Collapse
|
2
|
Du H, Liu J, Jude KM, Yang X, Li Y, Bell B, Yang H, Kassardjian A, Mobedi A, Parekh U, Sperberg RAP, Julien JP, Mellins ED, Garcia KC, Huang PS. A general platform for targeting MHC-II antigens via a single loop. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.26.577489. [PMID: 38352315 PMCID: PMC10862749 DOI: 10.1101/2024.01.26.577489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Class-II major histocompatibility complexes (MHC-IIs) are central to the communications between CD4+ T cells and antigen presenting cells (APCs), but intrinsic structural features associated with MHC-II make it difficult to develop a general targeting system with high affinity and antigen specificity. Here, we introduce a protein platform, Targeted Recognition of Antigen-MHC Complex Reporter for MHC-II (TRACeR-II), to enable the rapid development of peptide-specific MHC-II binders. TRACeR-II has a small helical bundle scaffold and uses an unconventional mechanism to recognize antigens via a single loop. This unique antigen-recognition mechanism renders this platform highly versatile and amenable to direct structural modeling of the interactions with the antigen. We demonstrate that TRACeR-II binders can be rapidly evolved across multiple alleles, while computational protein design can produce specific binding sequences for a SARS-CoV-2 peptide of unknown complex structure. TRACeR-II sheds light on a simple and straightforward approach to address the MHC peptide targeting challenge, without relying on combinatorial selection on complementarity determining region (CDR) loops. It presents a promising basis for further exploration in immune response modulation as well as a broad range of theragnostic applications.
Collapse
Affiliation(s)
- Haotian Du
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Jingjia Liu
- Department of Bioengineering, Stanford University, CA, USA
| | - Kevin M. Jude
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Xinbo Yang
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Ying Li
- Department of Pediatrics, Divisions of Human Gene Therapy and Allergy, Immunology & Rheumatology, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Program in Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Braxton Bell
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Hongli Yang
- Department of Bioengineering, Stanford University, CA, USA
| | - Audrey Kassardjian
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Ali Mobedi
- Department of Bioengineering, Stanford University, CA, USA
| | - Udit Parekh
- Department of Bioengineering, Stanford University, CA, USA
| | | | - Jean-Philippe Julien
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Elizabeth D. Mellins
- Department of Pediatrics, Divisions of Human Gene Therapy and Allergy, Immunology & Rheumatology, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Program in Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - K. Christopher Garcia
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Po-Ssu Huang
- Department of Bioengineering, Stanford University, CA, USA
| |
Collapse
|
3
|
Migalska M, Węglarczyk K, Dudek K, Homa J. Evolutionary trade-offs constraining the MHC gene expansion: beyond simple TCR depletion model. Front Immunol 2024; 14:1240723. [PMID: 38259496 PMCID: PMC10801004 DOI: 10.3389/fimmu.2023.1240723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024] Open
Abstract
The immune system is as much shaped by the pressure of pathogens as it is by evolutionary trade-offs that constrain its structure and function. A perfect example comes from the major histocompatibility complex (MHC), molecules that initiate adaptive immune response by presentation of foreign antigens to T cells. The remarkable, population-level polymorphism of MHC genes is assumed to result mainly from a co-evolutionary arms race between hosts and pathogens, while the limited, within-individual number of functional MHC loci is thought to be the consequence of an evolutionary trade-off between enhanced pathogen recognition and excessive T cell depletion during negative selection in the thymus. Certain mathematical models and infection studies suggest that an intermediate individual MHC diversity would thus be optimal. A recent, more direct test of this hypothesis has shown that the effects of MHC diversity on T-cell receptor (TCR) repertoires may differ between MHC classes, supporting the depletion model only for MHC class I. Here, we used the bank vole (Myodes=Cletronomys glareolus), a rodent species with variable numbers of expressed MHC genes, to test how an individual MHC diversity influences the proportions and TCR repertoires of responding T cell subsets. We found a non-linear relationship between MHC diversity and T cell proportions (with intermediate MHC numbers coinciding with the largest T cell proportions), perhaps reflecting an optimality effect of balanced positive and negative thymic selection. The association was strongest for the relationship between MHC class I and splenic CD8+ T cells. The CD8+ TCR richness alone was unaffected by MHC class I diversity, suggesting that MHC class I expansion may be limited by decreasing T cell counts, rather than by direct depletion of TCR richness. In contrast, CD4+ TCR richness was positively correlated with MHC class II diversity, arguing against a universal TCR depletion. It also suggests that different evolutionary forces or trade-offs may limit the within-individual expansion of the MHC class II loci.
Collapse
Affiliation(s)
- Magdalena Migalska
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Krakow, Poland
| | - Kazimierz Węglarczyk
- Department of Clinical Immunology, Institute of Paediatrics, Jagiellonian University Medical College, Krakow, Poland
| | - Katarzyna Dudek
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Krakow, Poland
| | - Joanna Homa
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
4
|
You Y, Ma X, Fan S, Wang X, Shen J. The novel HLA-DRB1*12:108 allele identified by next-generation sequencing. HLA 2024; 103:e15306. [PMID: 38247287 DOI: 10.1111/tan.15306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 11/13/2023] [Accepted: 11/16/2023] [Indexed: 01/23/2024]
Abstract
HLA-DRB1*12:108 differs from HLA-DRB1*12:02:01:01 by one nucleotide in exon 2.
Collapse
Affiliation(s)
- Yajie You
- Department of HLA Lab, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiao Ma
- Department of HLA Lab, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu, China
| | - Su Fan
- Department of HLA Lab, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaoyan Wang
- Department of HLA Lab, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jie Shen
- Department of HLA Lab, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
5
|
Wang F, Li Y, Chen N, Zhang W, Zhu F. Description of two new HLA alleles: HLA-DRB1*09:01:12 and HLA-DRB1*09:49. HLA 2023; 102:637-639. [PMID: 37539815 DOI: 10.1111/tan.15178] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 07/20/2023] [Accepted: 07/22/2023] [Indexed: 08/05/2023]
Abstract
Compared to HLA-DRB1*09:01:02:01, the alleles HLA-DRB1*09:01:12 and HLA-DRB1*09:49 each show one nucleotide substitution, respectively.
Collapse
Affiliation(s)
- Fang Wang
- HLA Typing Laboratory, Blood Center of Zhejiang Province, Hangzhou, China
- HLA Typing Laboratory, Key Laboratory of Blood Safety Research of Zhejiang Province, Hangzhou, China
| | - Ying Li
- HLA Typing Laboratory, Blood Center of Zhejiang Province, Hangzhou, China
- HLA Typing Laboratory, Key Laboratory of Blood Safety Research of Zhejiang Province, Hangzhou, China
| | - Nanying Chen
- HLA Typing Laboratory, Blood Center of Zhejiang Province, Hangzhou, China
- HLA Typing Laboratory, Key Laboratory of Blood Safety Research of Zhejiang Province, Hangzhou, China
| | - Wei Zhang
- HLA Typing Laboratory, Blood Center of Zhejiang Province, Hangzhou, China
- HLA Typing Laboratory, Key Laboratory of Blood Safety Research of Zhejiang Province, Hangzhou, China
| | - Faming Zhu
- HLA Typing Laboratory, Blood Center of Zhejiang Province, Hangzhou, China
- HLA Typing Laboratory, Key Laboratory of Blood Safety Research of Zhejiang Province, Hangzhou, China
| |
Collapse
|
6
|
Li W, Guan X, Wang Y, Lv Y, Wu Y, Yu M, Sun Y. Cuproptosis-related gene identification and immune infiltration analysis in systemic lupus erythematosus. Front Immunol 2023; 14:1157196. [PMID: 37313407 PMCID: PMC10258330 DOI: 10.3389/fimmu.2023.1157196] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/17/2023] [Indexed: 06/15/2023] Open
Abstract
Background Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by loss of tolerance to self-antigen, autoantibody production, and abnormal immune response. Cuproptosis is a recently reported cell death form correlated with the initiation and development of multiple diseases. This study intended to probe cuproptosis-related molecular clusters in SLE and constructed a predictive model. Methods We analyzed the expression profile and immune features of cuproptosis-related genes (CRGs) in SLE based on GSE61635 and GSE50772 datasets and identified core module genes associated with SLE occurrence using the weighted correlation network analysis (WGCNA). We selected the optimal machine-learning model by comparing the random forest (RF) model, support vector machine (SVM) model, generalized linear model (GLM), and the extreme gradient boosting (XGB) model. The predictive performance of the model was validated by nomogram, calibration curve, decision curve analysis (DCA), and external dataset GSE72326. Subsequently, a CeRNA network based on 5 core diagnostic markers was established. Drugs targeting core diagnostic markers were acquired using the CTD database, and Autodock vina software was employed to perform molecular docking. Results Blue module genes identified using WGCNA were highly related to SLE initiation. Among the four machine-learning models, the SVM model presented the best discriminative performance with relatively low residual and root-mean-square error (RMSE) and high area under the curve (AUC = 0.998). An SVM model was constructed based on 5 genes and performed favorably in the GSE72326 dataset for validation (AUC = 0.943). The nomogram, calibration curve, and DCA validated the predictive accuracy of the model for SLE as well. The CeRNA regulatory network includes 166 nodes (5 core diagnostic markers, 61 miRNAs, and 100 lncRNAs) and 175 lines. Drug detection showed that D00156 (Benzo (a) pyrene), D016604 (Aflatoxin B1), D014212 (Tretinoin), and D009532 (Nickel) could simultaneously act on the 5 core diagnostic markers. Conclusion We revealed the correlation between CRGs and immune cell infiltration in SLE patients. The SVM model using 5 genes was selected as the optimal machine learning model to accurately evaluate SLE patients. A CeRNA network based on 5 core diagnostic markers was constructed. Drugs targeting core diagnostic markers were retrieved with molecular docking performed.
Collapse
Affiliation(s)
- Wuquan Li
- College of Pharmacy, Binzhou Medical University, Yantai, China
| | - Xiaoran Guan
- College of Pharmacy, Binzhou Medical University, Yantai, China
| | - Yong Wang
- College of Pharmacy, Binzhou Medical University, Yantai, China
| | - Yan Lv
- College of Life Science, Yantai University, Yantai, China
| | - Yuyong Wu
- College of Pharmacy, Binzhou Medical University, Yantai, China
| | - Min Yu
- College of Pharmacy, Binzhou Medical University, Yantai, China
| | - Yeying Sun
- College of Pharmacy, Binzhou Medical University, Yantai, China
| |
Collapse
|
7
|
Vargas-Uricoechea H. Molecular Mechanisms in Autoimmune Thyroid Disease. Cells 2023; 12:918. [PMID: 36980259 PMCID: PMC10047067 DOI: 10.3390/cells12060918] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023] Open
Abstract
The most common cause of acquired thyroid dysfunction is autoimmune thyroid disease, which is an organ-specific autoimmune disease with two presentation phenotypes: hyperthyroidism (Graves-Basedow disease) and hypothyroidism (Hashimoto's thyroiditis). Hashimoto's thyroiditis is distinguished by the presence of autoantibodies against thyroid peroxidase and thyroglobulin. Meanwhile, autoantibodies against the TSH receptor have been found in Graves-Basedow disease. Numerous susceptibility genes, as well as epigenetic and environmental factors, contribute to the pathogenesis of both diseases. This review summarizes the most common genetic, epigenetic, and environmental mechanisms involved in autoimmune thyroid disease.
Collapse
Affiliation(s)
- Hernando Vargas-Uricoechea
- Metabolic Diseases Study Group, Department of Internal Medicine, Universidad del Cauca, Carrera 6 Nº 13N-50, Popayán 190001, Colombia
| |
Collapse
|
8
|
Conundrum for Psoriasis and Thyroid Involvement. Int J Mol Sci 2023; 24:ijms24054894. [PMID: 36902323 PMCID: PMC10003398 DOI: 10.3390/ijms24054894] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 02/21/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Strategies concerning thyroid anomalies in patients confirmed with psoriasis, either on clinical level or molecular levels, and their genetic findings remain an open issue. Identification of the exact subgroup of individuals that are candidates to endocrine assessments is also controversial. Our purpose in this work was to overview clinical and pathogenic data concerning psoriasis and thyroid comorbidities from a dual perspective (dermatologic and endocrine). This was a narrative review of English literature between January 2016 and January 2023. We included clinically relevant, original articles with different levels of statistical evidence published on PubMed. We followed four clusters of conditions: thyroid dysfunction, autoimmunity, thyroid cancer, and subacute thyroiditis. A new piece of information in this field was the fact that psoriasis and autoimmune thyroid diseases (ATD) have been shown to be related to the immune-based side effects of modern anticancer drugs-namely, immune checkpoint inhibitors (ICP). Overall, we identified 16 confirmatory studies, but with heterogeneous data. Psoriatic arthritis had a higher risk of positive antithyroperoxidase antibodies (TPOAb) (25%) compared to cutaneous psoriasis or control. There was an increased risk of thyroid dysfunction versus control, and hypothyroidism was the most frequent type of dysfunction (subclinical rather than clinical), among thyroid anomalies correlated with >2-year disease duration, peripheral > axial and polyarticular involvement. With a few exceptions, there was a female predominance. Hormonal imbalance included, most frequently, low thyroxine (T4) and/or triiodothyronine (T3) with normal thyroid stimulating hormone (TSH), followed by high TSH (only one study had higher total T3). The highest ratio of thyroid involvement concerning dermatologic subtypes was 59% for erythrodermic psoriasis. Most studies found no correlation between thyroid anomalies and psoriasis severity. Statistically significant odds ratios were as follows: hypothyroidism: 1.34-1.38; hyperthyroidism: 1.17-1.32 (fewer studies than hypo); ATD: 1.42-2.05; Hashimoto's thyroiditis (HT): 1.47-2.09; Graves' disease: 1.26-1.38 (fewer studies than HT). A total of 8 studies had inconsistent or no correlations, while the lowest rate of thyroid involvement was 8% (uncontrolled studies). Other data included 3 studies on patients with ATD looking for psoriasis, as well as 1 study on psoriasis and thyroid cancer. ICP was shown to potentially exacerbate prior ATD and psoriasis or to induce them both de novo (5 studies). At the case report level, data showed subacute thyroiditis due to biological medication (ustekinumab, adalimumab, infliximab). Thyroid involvement in patients with psoriasis thus remained puzzling. We observed significant data that confirmed a higher risk of identifying positive antibodies and/or thyroid dysfunction, especially hypothyroidism, in these subjects. Awareness will be necessary to improve overall outcomes. The exact profile of individuals diagnosed with psoriasis who should be screened by the endocrinology team is still a matter of debate, in terms of dermatological subtype, disease duration, activity, and other synchronous (especially autoimmune) conditions.
Collapse
|
9
|
Giannos P, Prokopidis K, Isanejad M, Wright HL. Markers of immune dysregulation in response to the ageing gut: insights from aged murine gut microbiota transplants. BMC Gastroenterol 2022; 22:533. [PMID: 36544093 PMCID: PMC9773626 DOI: 10.1186/s12876-022-02613-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Perturbations in the composition and diversity of the gut microbiota are accompanied by a decline in immune homeostasis during ageing, characterized by chronic low-grade inflammation and enhanced innate immunity. Genetic insights into the interaction between age-related alterations in the gut microbiota and immune function remain largely unexplored. METHODS We investigated publicly available transcriptomic gut profiles of young germ-free mouse hosts transplanted with old donor gut microbiota to identify immune-associated differentially expressed genes (DEGs). Literature screening of the Gene Expression Omnibus and PubMed identified one murine (Mus musculus) gene expression dataset (GSE130026) that included small intestine tissues from young (5-6 weeks old) germ-free mice hosts that were compared following 8 weeks after transplantation with either old (~ 24-month old; n = 5) or young (5-6 weeks old; n = 4) mouse donor gut microbiota. RESULTS A total of 112 differentially expressed genes (DEGs) were identified and used to construct a gut network of encoded proteins, in which DEGs were functionally annotated as being involved in an immune process based on gene ontology. The association between the expression of immune-process DEGs and abundance of immune infiltrates from gene signatures in normal colorectal tissues was estimated from The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) project. The analysis revealed a 25-gene signature of immune-associated DEGs and their expression profile was positively correlated with naïve T-cell, effector memory T-cell, central memory T-cell, resident memory T-cell, exhausted T-cell, resting Treg T-cell, effector Treg T-cell and Th1-like colorectal gene signatures. Conclusions These genes may have a potential role as candidate markers of immune dysregulation during gut microbiota ageing. Moreover, these DEGs may provide insights into the altered immune response to microbiota in the ageing gut, including reduced antigen presentation and alterations in cytokine and chemokine production.
Collapse
Affiliation(s)
- Panagiotis Giannos
- Society of Meta-Research and Biomedical Innovation, London, UK.,Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, UK
| | - Konstantinos Prokopidis
- Society of Meta-Research and Biomedical Innovation, London, UK.,Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, William Henry Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK
| | - Masoud Isanejad
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, William Henry Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK
| | - Helen L Wright
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, William Henry Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK.
| |
Collapse
|
10
|
Prasad N, Yadav B, Prakash S, Yadav D, Singh A, Gautam S, Bhadauria D, Kaul A, Patel MR, Behera MR, Kushwaha RS, Yachha M. Association of Human Leucocyte Antigen Polymorphism with Coronavirus Disease 19 in Renal Transplant Recipients. Vaccines (Basel) 2022; 10:1840. [PMID: 36366349 PMCID: PMC9697220 DOI: 10.3390/vaccines10111840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/28/2022] [Accepted: 10/28/2022] [Indexed: 08/30/2023] Open
Abstract
Human leucocyte antigens (HLAs) are highly polymorphic glycoproteins expressed at the surface of all nucleated cells. It is required for the SARS-CoV-2 peptide antigen presentation to immune cells for their effector response. However, polymorphism in HLA significantly impacts the binding of SARS-CoV-2 antigenic peptide to the HLA pocket and regulates immune activation. In this study, 514 renal transplant recipients (RTRs) were recruited from the outpatient department and categorized either into symptomatic (n = 173) or asymptomatic groups (n = 341) based on Coronavirus disease-19 (COVID-19) symptoms. The anti-SARS-CoV-2 spike protein-specific IgG antibody titer was measured by chemiluminescent microparticle immune-assay methods in 310 RTRs. The HLA details of 514 patients were retrieved from the electronic medical records and analyzed retrospectively. We found that HLA antigen allele A*24 was significantly associated with asymptomatic infection in 22.78%, HLA C*02 in 4.51%, DRB1*12 in 10.85%, and HLA DQA1*02 in 27.74% of RTRs. Whereas HLA A*29 in 3.46%, A*33 in 26.01%, B*13 in 10.40%, DRB1*10 in 4.62%, DRB1*15 in 39.30%, DRB1*30 in 1.15%, and DQA1*60 in 3.57% of RTRs were associated with symptomatic infection. HLA DRB1*13 and DRB1*15 were associated with moderate to severe degrees of COVID-19 disease. The seroconversion rate in asymptomatic patients was 118/137 (86.13%), had a median titer of 647.80 au/ml, compared to symptomatic patients 148/173 (85.54%) with a median titer of 400.00 au/ml, which was not significant between the two groups (P = 0.88 and 0.13). In conclusion, HLA alleles A*24, C*02, DRB1*12, and DQA1*02 were significantly associated with asymptomatic infection, and A*29, A*33, B*13, DRB1*10, DRB*15, and DRB1*30 were significantly associated with symptomatic infection. HLA DRB1*13 and DRB1*15 were associated with moderate to severe degrees of COVID-19 disease.
Collapse
Affiliation(s)
- Narayan Prasad
- Department of Nephrology and Renal Transplantation, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
BACKGROUND Autoimmune hepatitis has an unknown cause and genetic associations that are not disease-specific or always present. Clarification of its missing causality and heritability could improve prevention and management strategies. AIMS Describe the key epigenetic and genetic mechanisms that could account for missing causality and heritability in autoimmune hepatitis; indicate the prospects of these mechanisms as pivotal factors; and encourage investigations of their pathogenic role and therapeutic potential. METHODS English abstracts were identified in PubMed using multiple key search phases. Several hundred abstracts and 210 full-length articles were reviewed. RESULTS Environmental induction of epigenetic changes is the prime candidate for explaining the missing causality of autoimmune hepatitis. Environmental factors (diet, toxic exposures) can alter chromatin structure and the production of micro-ribonucleic acids that affect gene expression. Epistatic interaction between unsuspected genes is the prime candidate for explaining the missing heritability. The non-additive, interactive effects of multiple genes could enhance their impact on the propensity and phenotype of autoimmune hepatitis. Transgenerational inheritance of acquired epigenetic marks constitutes another mechanism of transmitting parental adaptations that could affect susceptibility. Management strategies could range from lifestyle adjustments and nutritional supplements to precision editing of the epigenetic landscape. CONCLUSIONS Autoimmune hepatitis has a missing causality that might be explained by epigenetic changes induced by environmental factors and a missing heritability that might reflect epistatic gene interactions or transgenerational transmission of acquired epigenetic marks. These unassessed or under-evaluated areas warrant investigation.
Collapse
|
12
|
Kung PJ, Elsayed I, Reyes-Pérez P, Bandres-Ciga S. Immunogenetic Determinants of Parkinson’s Disease Etiology. JOURNAL OF PARKINSON'S DISEASE 2022; 12:S13-S27. [PMID: 35367971 PMCID: PMC9535568 DOI: 10.3233/jpd-223176] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Parkinson’s disease (PD) is increasingly recognised as a systemic disorder in which inflammation might play a causative role rather than being a consequence or an epiphenomenon of the neurodegenerative process. Although growing genetic evidence links the central and peripheral immune system with both monogenic and sporadic PD, our understanding on how the immune system contributes to PD pathogenesis remains a daunting challenge. In this review, we discuss recent literature aimed at exploring the role of known genes and susceptibility loci to PD pathogenesis through immune system related mechanisms. Furthermore, we outline shared genetic etiologies and interrelations between PD and autoimmune diseases and underlining challenges and limitations faced in the translation of relevant allelic and regulatory risk loci to immune-pathological mechanisms. Lastly, with the field of immunogenetics expanding rapidly, we place these insights into a future context highlighting the prospect of immune modulation as a promising disease-modifying strategy.
Collapse
Affiliation(s)
- Pin-Jui Kung
- Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei, Taiwan
| | - Inas Elsayed
- Faculty of Pharmacy, University of Gezira, Wad Medani, Sudan
- International Parkinson Disease Genomics Consortium (IPDGC)-Africa, University of Gezira, Wad Medani, Sudan
| | - Paula Reyes-Pérez
- Laboratorio Internacional de Investigacion sobre el Genoma Humano, Universidad Autonoma de México, Queretaro, Mexico
| | - Sara Bandres-Ciga
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
13
|
Biomolecular Mechanisms of Autoimmune Diseases and Their Relationship with the Resident Microbiota: Friend or Foe? PATHOPHYSIOLOGY 2022; 29:507-536. [PMID: 36136068 PMCID: PMC9505211 DOI: 10.3390/pathophysiology29030041] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/23/2022] [Accepted: 08/26/2022] [Indexed: 12/02/2022] Open
Abstract
The use of innovative approaches to elucidate the pathophysiological mechanisms of autoimmune diseases, as well as to further study of the factors which can have either a positive or negative effect on the course of the disease, is essential. In this line, the development of new molecular techniques and the creation of the Human Genome Program have allowed access to many more solutions to the difficulties that exist in the identification and characterization of the microbiome, as well as changes due to various factors. Such innovative technologies can rekindle older hypotheses, such as molecular mimicry, allowing us to move from hypothesis to theory and from correlation to causality, particularly regarding autoimmune diseases and dysbiosis of the microbiota. For example, Prevotella copri appears to have a strong association with rheumatoid arthritis; it is expected that this will be confirmed by several scientists, which, in turn, will make it possible to identify other mechanisms that may contribute to the pathophysiology of the disease. This article seeks to identify new clues regarding similar correlations between autoimmune activity and the human microbiota, particularly in relation to qualitative and quantitative microbial variations therein.
Collapse
|
14
|
Fu R, Wang F, Zhao S, Zhang W, Zhu F. Identification of the novel allele,
HLA‐DRB1
*08:03:12, in a Chinese cord blood donor. HLA 2022; 100:94-95. [DOI: 10.1111/tan.14580] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/06/2022] [Accepted: 02/11/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Rui Fu
- HLA typing laboratory, Blood Center of Zhejiang Province Hangzhou China
- Key Laboratory of Blood Safety Research, Zhejiang Province Hangzhou China
| | - Fang Wang
- HLA typing laboratory, Blood Center of Zhejiang Province Hangzhou China
- Key Laboratory of Blood Safety Research, Zhejiang Province Hangzhou China
| | - Shuoxian Zhao
- HLA typing laboratory, Blood Center of Zhejiang Province Hangzhou China
- Key Laboratory of Blood Safety Research, Zhejiang Province Hangzhou China
| | - Wei Zhang
- HLA typing laboratory, Blood Center of Zhejiang Province Hangzhou China
- Key Laboratory of Blood Safety Research, Zhejiang Province Hangzhou China
| | - Faming Zhu
- HLA typing laboratory, Blood Center of Zhejiang Province Hangzhou China
- Key Laboratory of Blood Safety Research, Zhejiang Province Hangzhou China
| |
Collapse
|
15
|
He J, Chen J, Han X, Gu Q, Liang J, Sun M, Liu S, Yao Y, Shi L. Association of HLA-DM and HLA class II Genes with Antibody Response Induced by Inactivated Japanese Encephalitis Vaccine. HLA 2022; 99:357-367. [PMID: 35118816 DOI: 10.1111/tan.14575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 01/29/2022] [Accepted: 01/31/2022] [Indexed: 11/04/2022]
Abstract
HLA (HLA) class II molecules, HLA-DR, DP, and DQ, together with HLA II-like protein DM, play a dominant role in the processing and presentation of antigens, which may influence vaccine effectiveness. We previously demonstrated that variations in the HLA-DRB1, DPB1, and DQB1 genes may affect the neutralising antibody (NAb) response induced by the inactivated Japanese encephalitis vaccine (IJEV). In the present study, we genotyped HLA-DPA1, DQA1, DMA, and DMB genes and used previous HLA-DRB1, DPB1, and DQB1 data to evaluate the association of these genes with IJEV-induced NAbs, at both the seroconversion and geometric mean titres (GMTs). We confirmed the seropositive association of DQB1*02:01 and NAbs (0.156 vs. 0.075, Padj = 0.018; OR = 2.270; 95% CI = 1.285-3.999) and seronegative association of DQB1*02:02 (0.014 vs. 0.09, Padj = 0.0002; OR = 0.130; 95% CI = 0.047-0.400). Furthermore, the DMB*01:03-DMA*01:01-DPA1*01:03-DPB1*04:01 haplotype was associated with a negative response (0.020 vs. 0.074; Padj = 0.03; OR = 0.250; 95% CI = 0.097-0.649), whereas DRB1*15:02-DMB*01:01-DMA*01:01 was associated with a positive response (0.034 vs. 0; Padj = 0.044). In addition, DRB1*12:02, DRB1*13:02, DPB1*04:01, DPB1*05:01, DPB1*09:01, DQA1*06:01, and DQA1*01:02 were associated with a higher GMT of NAbs, whereas DRB1*11:01, DPB1*13:01, and DQA1*05:05 were associated with a lower GMT of NAbs. In conclusion, the present study suggests that variations in the HLA-DM and HLA class II genes, as well as their combined allotypes, may influence the IJEV NAbs at seroconversion and GMT levels. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Jihong He
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, China
| | - Jun Chen
- Department of Immunogenetics, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, China
| | - Xue Han
- Department of Immunogenetics, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, China
| | - Qin Gu
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, China.,Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Disease, Kunming, China
| | - Jiangli Liang
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, China.,Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Disease, Kunming, China
| | - Mingbo Sun
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, China.,Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Disease, Kunming, China
| | - Shuyuan Liu
- Department of Immunogenetics, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, China
| | - Yufeng Yao
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, China
| | - Li Shi
- Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Disease, Kunming, China
| |
Collapse
|
16
|
Elkoshi Z. Cancer and Autoimmune Diseases: A Tale of Two Immunological Opposites? Front Immunol 2022; 13:821598. [PMID: 35145524 PMCID: PMC8822211 DOI: 10.3389/fimmu.2022.821598] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/06/2022] [Indexed: 01/21/2023] Open
Abstract
The present article compares, side-by-side, cancer and autoimmune diseases in terms of innate and adaptive immune cells involvement, MHC Class I and Class II expression, TGFβ effect, immune modulating drugs effect and the effect of reactive oxygen species. The change in the inflammatory immune reaction during the progress of cancer and the effect of this change on the comorbidity of autoimmune diseases and cancer are discussed. The similar inflammatory properties of autoimmune diseases and early cancer, and the contrasting inflammatory properties of autoimmune diseases and advanced cancer elucidate the increased incidence of many types of cancer in patients with pre-existing autoimmune diseases and the decreased cancer-specific mortality of these patients. Stage-dependent effects of reactive oxygen-species on tumor proliferation are an additional probable cause for these epidemiological observations. The relationship: {standardized incidence ratio (SIR)} > {cancer-specific hazard ratio (HR)} for cancer patients with a history of autoimmune diseases is substantiated and rationalized.
Collapse
|
17
|
Alberti ML, Rincon-Alvarez E, Buendia-Roldan I, Selman M. Hypersensitivity Pneumonitis: Diagnostic and Therapeutic Challenges. Front Med (Lausanne) 2021; 8:718299. [PMID: 34631740 PMCID: PMC8495410 DOI: 10.3389/fmed.2021.718299] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/30/2021] [Indexed: 12/12/2022] Open
Abstract
Hypersensitivity pneumonitis (HP) is one of the most common interstitial lung diseases (ILD), that presents unique challenges for a confident diagnosis and limited therapeutic options. The disease is triggered by exposure to a wide variety of inciting antigens in susceptible individuals which results in T-cell hyperactivation and bronchioloalveolar inflammation. However, the genetic risk and the pathogenic mechanisms remain incompletely elucidated. Revised diagnostic criteria have recently been proposed, recommending to classify the disease in fibrotic and non-fibrotic HP which has strong therapeutic and outcome consequences. Confident diagnosis depends on the presence of clinical features of ILD, identification of the antigen(s), typical images on high-resolution computed tomography (HRCT), characteristic histopathological features, and lymphocytosis in the bronchoalveolar lavage. However, identifying the source of antigen is usually challenging, and HRCT and histopathology are often heterogeneous and not typical, supporting the notion that diagnosis should include a multidisciplinary assessment. Antigen removal and treating the inflammatory process is crucial in the progression of the disease since chronic persistent inflammation seems to be one of the mechanisms leading to lung fibrotic remodeling. Fibrotic HP has a few therapeutic options but evidence of efficacy is still scanty. Deciphering the molecular pathobiology of HP will contribute to open new therapeutic avenues and will provide vital insights in the search for novel diagnostic and prognostic biomarkers.
Collapse
Affiliation(s)
| | | | - Ivette Buendia-Roldan
- Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Mexico City, Mexico
| | - Moises Selman
- Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Mexico City, Mexico
| |
Collapse
|
18
|
Fan X, Zhou Y, Guo X, Xu M. Utilizing single-cell RNA sequencing for analyzing the characteristics of PBMC in patients with Kawasaki disease. BMC Pediatr 2021; 21:277. [PMID: 34126969 PMCID: PMC8201934 DOI: 10.1186/s12887-021-02754-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 06/02/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Kawasaki disease (KD) is the main cause of acquired heart disease in children and can lead to coronary artery lesions. This present study was designed to analyze the characteristics of KD peripheral blood mononuclear cells (PBMC) through single-cell RNA sequencing (scRNA-seq) and to explore the potential molecular mechanism of KD. METHODS PBMC was collected from one healthy child and one KD patient, and was used to single-cell RNA sequencing for cell clusters identification and differently expressed gene (DEG) determination. GO function enrichment analysis of DEG in B cell and T cells were performed to explore the most active biological function in KD immune cells. RESULTS Twelve cell clusters can be identified in two samples. Compared with healthy child, naive CD8+ T cell, T helper cell and B cell in KD child were decreased, mainly immune-related T cells, and natural killer T (NKT) cell were increased. Cell activation, lymphocyte activation and regulation of immune system process were 3 GO function shared by all four types of T cells and B cell. CONCLUSIONS Immune cell disorder appears in the KD patient at single cell level by scRNA-seq.
Collapse
Affiliation(s)
- Xue Fan
- The Department of Pediatric Cardiology, Shenzhen Children's Hospital of China Medical University, Shenzhen, 518038, China
| | - Yuhan Zhou
- Department of Pediatric, The Fifth Affiliated Hospital (Zhuhai) of Zunyi Medical University, 519100, Zhuhai, China
| | - Xin Guo
- The Department of Pediatric, Shenzhen Children's Hospital of China Medical University, Longgang District Maternal and Children Health Care Hospital, Shenzhen, 518038, China
| | - Mingguo Xu
- The Department of Pediatric Cardiology, Shenzhen Children's Hospital of China Medical University, Shenzhen, 518038, China. .,The Department of Pediatric, Shenzhen Children's Hospital of China Medical University, Longgang District Maternal and Children Health Care Hospital, Shenzhen, 518038, China.
| |
Collapse
|
19
|
Yang H, Liu D, Zhao C, Feng B, Lu W, Yang X, Xu M, Zhou W, Jing H, Yang J. Mendelian randomization integrating GWAS and eQTL data revealed genes pleiotropically associated with major depressive disorder. Transl Psychiatry 2021; 11:225. [PMID: 33866329 PMCID: PMC8053199 DOI: 10.1038/s41398-021-01348-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 03/19/2021] [Accepted: 03/31/2021] [Indexed: 01/21/2023] Open
Abstract
Previous genome-wide association studies (GWAS) have identified potential genetic variants associated with the risk of major depressive disorder (MDD), but the underlying biological interpretation remains largely unknown. We aimed to prioritize genes that were pleiotropically or potentially causally associated with MDD. We applied the summary data-based Mendelian randomization (SMR) method integrating GWAS and gene expression quantitative trait loci (eQTL) data in 13 brain regions to identify genes that were pleiotropically associated with MDD. In addition, we repeated the analysis by using the meta-analyzed version of the eQTL summary data in the brain (brain-eMeta). We identified multiple significant genes across different brain regions that may be involved in the pathogenesis of MDD. The prime-specific gene BTN3A2 (corresponding probe: ENSG00000186470.9) was the top hit showing pleiotropic association with MDD in 9 of the 13 brain regions and in brain-eMeta, after correction for multiple testing. Many of the identified genes are located in the human major histocompatibility complex (MHC) region on chromosome 6 and are mainly involved in the immune response. Our SMR analysis indicated that multiple genes showed pleiotropic association with MDD across the brain regions. These findings provided important leads to a better understanding of the mechanism of MDD and revealed potential therapeutic targets for the prevention and effective treatment of MDD.
Collapse
Affiliation(s)
- Huarong Yang
- Department of Neurology, The Second Affiliated Hospital of Guizhou Medical University, Kaili, Guizhou, China
| | - Di Liu
- Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing, China
| | - Chuntao Zhao
- Brain Tumor Center, Cancer & Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Bowen Feng
- Odette School of Business, University of Windsor, Windsor, ON, Canada
| | - Wenjin Lu
- Department of Mathematics, University College London, London, UK
| | - Xiaohan Yang
- Department of Health Management and Policy, School of Public Health, Capital Medical University, Beijing, China
| | - Minglu Xu
- Department of Health Management and Policy, School of Public Health, Capital Medical University, Beijing, China
| | - Weizhu Zhou
- Department of Epidemiology and Health Statistics, School of Public Health, Shenyang Medical College, Shenyang, China
| | - Huiquan Jing
- Department of Health Management and Policy, School of Public Health, Capital Medical University, Beijing, China.
| | - Jingyun Yang
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA.
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA.
| |
Collapse
|
20
|
Lorente L, Martín MM, Franco A, Barrios Y, Cáceres JJ, Solé-Violán J, Perez A, Marcos Y Ramos JA, Ramos-Gómez L, Ojeda N, Jiménez A. [HLA genetic polymorphisms and prognosis of patients with COVID-19]. Med Intensiva 2021; 45:96-103. [PMID: 32988645 PMCID: PMC7905376 DOI: 10.1016/j.medin.2020.08.004] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/22/2020] [Accepted: 08/07/2020] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Different genetic polymorphisms of human leukocyte antigen (HLA) have been associated with the risk and prognosis of autoimmune and infectious diseases. The objectives of this study were to determine whether there is an association between HLA genetic polymorphisms and the susceptibility to and mortality of coronavirus disease 2019 (COVID-19) patients. DESIGN Observational and prospective study. SETTING Eight Intensive Care Units (ICU) from 6 hospitals of Canary Islands (Spain). PATIENTS COVID-19 patients admitted in ICU and healthy subjects. INTERVENTIONS Determination of HLA genetic polymorphisms. MAIN VARIABLE OF INTEREST Mortality at 30 days. RESULTS A total of 3886 healthy controls and 72 COVID-19 patients (10 non-survivors and 62 survivor patients at 30 days) were included. We found a trend to a higher rate of the alleles HLA-A*32 (p=0.004) in healthy controls than in COVID-19 patients, and of the alleles HLA-B*39 (p=0.02) and HLA-C*16 (p=0.02) in COVID-19 patients than in healthy controls; however, all these p-values were not significant after correction for multiple comparisons. Logistic regression analysis showed that the presence of certain alleles was associated with higher mortality, such as the allele HLA-A*11 after controlling for SOFA (OR=7.693; 95% CI=1.063-55.650; p=0.04) or APACHE-II (OR=11.858; 95% CI=1.524-92.273; p=0.02), the allele HLA-C*01 after controlling for SOFA (OR=11.182; 95% CI=1.053-118.700; p=0.04) or APACHE-II (OR=17.604; 95% CI=1.629-190.211; p=0.02), and the allele HLA-DQB1*04 after controlling for SOFA (OR=9.963; 95% CI=1.235-80.358; p=0.03). CONCLUSIONS The new finding from our preliminary study of small sample size was that HLA genetic polymorphisms could be associated with COVID-19 mortality; however, studies with a larger sample size before definitive conclusions can be drawn.
Collapse
Affiliation(s)
- L Lorente
- Intensive Care Unit, Hospital Universitario de Canarias, Ofra, s/n., La Laguna 38320, Santa Cruz de Tenerife, Spain.
| | - M M Martín
- Intensive Care Unit, Hospital Universitario Nuestra Señora de Candelaria, Crta del Rosario s/n., Santa Cruz de Tenerife 38010, Spain
| | - A Franco
- Immunology Unit of Laboratory Department, Hospital Universitario de Canarias, Ofra, s/n., La Laguna 38320, Santa Cruz de Tenerife, Spain
| | - Y Barrios
- Immunology Unit of Laboratory Department, Hospital Universitario de Canarias, Ofra, s/n., La Laguna 38320, Santa Cruz de Tenerife, Spain
| | - J J Cáceres
- Intensive Care Unit, Hospital Insular, Plaza Dr. Pasteur s/n., Las Palmas de Gran Canaria 35016, Spain
| | - J Solé-Violán
- Intensive Care Unit, Hospital Universitario Dr. Negrín, Barranco de la Ballena s/n., Las Palmas de Gran Canaria 35010, Spain
| | - A Perez
- Internal Intensive Care Unit, Hospital Universitario de Canarias, Ofra, s/n., La Laguna 38320, Santa Cruz de Tenerife, Spain
| | - J A Marcos Y Ramos
- Intensive Care Unit, Hospital Doctor José Molina Orosa, Ctra. Arrecife-Tinajo, km 1.300, Arrecife, Lanzarote 35550, Spain
| | - L Ramos-Gómez
- Intensive Care Unit, Hospital General La Palma, Buenavista de Arriba s/n, Breña Alta, La Palma 38713, Spain
| | - N Ojeda
- Department of Anesthesiology, Hospital Universitario Dr. Negrín, Barranco de la Ballena s/n., Las Palmas de Gran Canaria 35010, Spain
| | - A Jiménez
- Research Unit, Hospital Universitario de Canarias, Ofra, s/n., La Laguna 38320, Santa Cruz de Tenerife, Spain
| |
Collapse
|
21
|
Lorente L, Martín M, Franco A, Barrios Y, Cáceres J, Solé-Violán J, Perez A, Marcos y Ramos J, Ramos-Gómez L, Ojeda N, Jiménez A, Lorente L, Franco A, Barrios Y, Perez A, Jiménez A, Pérez-Cejas A, Pérez-Llombet A, Uribe L, González L, Alvarez R, Martín MM, Alcoba-Flórez J, Estupiñan A, Cáceres JJ, Vega P, Gonzalez L, Solé-Violán J, Ojeda N, López S, Rodríguez-Pérez A, Domínguez C, Marcos y Ramos JA, Zapata MF, Ramos-Gómez L, Ortiz-López R. HLA genetic polymorphisms and prognosis of patients with COVID-19. MEDICINA INTENSIVA (ENGLISH EDITION) 2021. [PMCID: PMC7905376 DOI: 10.1016/j.medine.2020.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Objective Different genetic polymorphisms of human leukocyte antigen (HLA) have been associated with the risk and prognosis of autoimmune and infectious diseases. The objectives of this study were to determine whether there is an association between HLA genetic polymorphisms and the susceptibility to and mortality of coronavirus disease 2019 (COVID-19) patients. Design Observational and prospective study. Setting Eight Intensive Care Units (ICU) from 6 hospitals of Canary Islands (Spain). Patients COVID-19 patients admitted in ICU and healthy subjects. Interventions Determination of HLA genetic polymorphisms. Main variable of interest Mortality at 30 days. Results A total of 3886 healthy controls and 72 COVID-19 patients (10 non-survivors and 62 survivor patients at 30 days) were included. We found a trend to a higher rate of the alleles HLA-A*32 (p = 0.004) in healthy controls than in COVID-19 patients, and of the alleles HLA-B*39 (p = 0.02) and HLA-C*16 (p = 0.02) in COVID-19 patients than in healthy controls; however, all these p-values were not significant after correction for multiple comparisons. Logistic regression analysis showed that the presence of certain alleles was associated with higher mortality, such as the allele HLA-A*11 after controlling for SOFA (OR = 7.693; 95% CI = 1.063–55.650; p = 0.04) or APACHE-II (OR = 11.858; 95% CI = 1.524–92.273; p = 0.02), the allele HLA-C*01 after controlling for SOFA (OR = 11.182; 95% CI = 1.053–118.700; p = 0.04) or APACHE-II (OR = 17.604; 95% CI = 1.629–190.211; p = 0.02), and the allele HLA-DQB1*04 after controlling for SOFA (OR = 9.963; 95% CI = 1.235–80.358; p = 0.03). Conclusions The new finding from our preliminary study of small sample size was that HLA genetic polymorphisms could be associated with COVID-19 mortality; however, studies with a larger sample size before definitive conclusions can be drawn.
Collapse
|
22
|
Frommer L, Kahaly GJ. Type 1 Diabetes and Autoimmune Thyroid Disease-The Genetic Link. Front Endocrinol (Lausanne) 2021; 12:618213. [PMID: 33776915 PMCID: PMC7988207 DOI: 10.3389/fendo.2021.618213] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 01/06/2021] [Indexed: 12/12/2022] Open
Abstract
Type 1 diabetes (T1D) and autoimmune thyroid disease (AITD) are the most frequent chronic autoimmune diseases worldwide. Several autoimmune endocrine and non-endocrine disorders tend to occur together. T1D and AITD often cluster in individuals and families, seen in the formation of autoimmune polyendocrinopathy (AP). The close relationship between these two diseases is largely explained by sharing a common genetic background. The HLA antigens DQ2 (DQA1*0501-DQB1*0201) and DQ8 (DQA1*0301-DQB1*0302), tightly linked with DR3 and DR4, are the major common genetic predisposition. Moreover, functional single nucleotide polymorphisms (or rare variants) of various genes, such as the cytotoxic T-lymphocyte- associated antigen (CTLA4), the protein tyrosine phosphatase non-receptor type 22 (PTPN22), the interleukin-2 Receptor (IL2Ra), the Vitamin D receptor (VDR), and the tumor-necrosis-factor-α (TNF) that are involved in immune regulation have been identified to confer susceptibility to both T1D and AITD. Other genes including cluster of differentiation 40 (CD40), the forkhead box P3 (FOXP3), the MHC Class I Polypeptide-Related Sequence A (MICA), insulin variable number of tandem repeats (INS-VNTR), the C-Type Lectin Domain Containing 16A (CLEC16A), the Erb-B2 Receptor Tyrosine Kinase 3 (ERBB3) gene, the interferon-induced helicase C domain-containing protein 1 (IFIH1), and various cytokine genes are also under suspicion to increase susceptibility to T1D and AITD. Further, BTB domain and CNC homolog 2 (BACH2), C-C motif chemokine receptor 5 (CCR5), SH2B adaptor protein 3 (SH2B3), and Rac family small GTPase 2 (RAC2) are found to be associated with T1D and AITD by various independent genome wide association studies and overlap in our list, indicating a strong common genetic link for T1D and AITD. As several susceptibility genes and environmental factors contribute to the disease aetiology of both T1D and AITD and/or AP subtype III variant (T1D+AITD) simultaneously, all patients with T1D should be screened for AITD, and vice versa.
Collapse
|
23
|
Ishina IA, Filimonova IN, Zakharova MY, Ovchinnikova LA, Mamedov AE, Lomakin YA, Belogurov AA. Exhaustive Search of the Receptor Ligands by the CyCLOPS (Cytometry Cell-Labeling Operable Phage Screening) Technique. Int J Mol Sci 2020; 21:ijms21176258. [PMID: 32872428 PMCID: PMC7504098 DOI: 10.3390/ijms21176258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/25/2020] [Accepted: 08/27/2020] [Indexed: 01/01/2023] Open
Abstract
Effective and versatile screening of the peptide ligands capable of selectively binding to diverse receptors is in high demand for the state-of-the-art technologies in life sciences, including probing of specificity of the cell surface receptors and drug development. Complex microenvironment and structure of the surface receptors significantly reduce the possibility to determine their specificity, especially when in vitro conditions are utilized. Previously, we designed a publicly available platform for the ultra-high-throughput screening (uHTS) of the specificity of surface-exposed receptors of the living eukaryotic cells, which was done by consolidating the phage display and flow cytometry techniques. Here, we significantly improved this methodology and designed the fADL-1e-based phage vectors that do not require a helper hyperphage for the virion assembly. The enhanced screening procedure was tested on soluble human leukocyte antigen (HLA) class II molecules and transgenic antigen-specific B cells that express recombinant lymphoid B-cell receptor (BCR). Our data suggest that the improved vector system may be successfully used for the comprehensive search of the receptor ligands in either cell-based or surface-immobilized assays.
Collapse
Affiliation(s)
- Irina A. Ishina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia; (I.A.I.); (I.N.F.); (M.Y.Z.); (L.A.O.); (A.E.M.)
| | - Ioanna N. Filimonova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia; (I.A.I.); (I.N.F.); (M.Y.Z.); (L.A.O.); (A.E.M.)
| | - Maria Y. Zakharova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia; (I.A.I.); (I.N.F.); (M.Y.Z.); (L.A.O.); (A.E.M.)
- Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Leyla A. Ovchinnikova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia; (I.A.I.); (I.N.F.); (M.Y.Z.); (L.A.O.); (A.E.M.)
| | - Azad E. Mamedov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia; (I.A.I.); (I.N.F.); (M.Y.Z.); (L.A.O.); (A.E.M.)
| | - Yakov A. Lomakin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia; (I.A.I.); (I.N.F.); (M.Y.Z.); (L.A.O.); (A.E.M.)
- Correspondence: (Y.A.L.); (A.A.B.J.)
| | - Alexey A. Belogurov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia; (I.A.I.); (I.N.F.); (M.Y.Z.); (L.A.O.); (A.E.M.)
- Lomonosov Moscow State University, 119991 Moscow, Russia
- Correspondence: (Y.A.L.); (A.A.B.J.)
| |
Collapse
|
24
|
Wen L, Zou X, Chen Y, Bai X, Liang T. Sintilimab-Induced Autoimmune Diabetes in a Patient With the Anti-tumor Effect of Partial Regression. Front Immunol 2020; 11:2076. [PMID: 32973816 PMCID: PMC7472830 DOI: 10.3389/fimmu.2020.02076] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 07/30/2020] [Indexed: 12/21/2022] Open
Abstract
Context Immune checkpoint blockades (ICBs) have been approved widely to treat various malignancies. Autoimmune diabetes mellitus, which can be caused by programmed cell death protein 1 (PD-1) inhibitors, is rare. Sintilimab, a monoclonal anti-PD-1 antibody, has been approved in China for the treatment of Hodgkin’s lymphoma and was used in our clinical trial for patients with unresectable hepatocellular carcinoma (HCC). Case Presentation We present the first case of autoimmune diabetes during Sintilimab treatment in a patient with unresectable HCC, accompanied by a remarkable anti-tumor effect of partial regression. A 56-year-old male with typical symptoms presented with diabetic ketoacidosis (DKA) at 24 weeks after Sintilimab initiation. His fasting plasma glucose level was 22.2 mmol/L, HbA1c was 7.8%, fasting insulin was 1.5 mIU/L, and fasting C-peptide was 1.12 ng/mL, which further decreased to 0.21 ng/mL 4 days later. The patient was diagnosed with new-onset diabetes mellitus using the oral glucose tolerance test. The anti-glutamic acid decarboxylase 65 antibody, anti-islet cell antibody, and anti-insulin antibody tests were all negative. For the type 1 diabetes-associated alleles of human leukocyte antigen (HLA) class I and II, the most relevant type was identified as HLA-A∗0201. A diagnosis of PD-1 inhibitor-induced autoimmune diabetes was made. After rectification of DKA, he was treated with insulin therapy daily, which has since controlled his plasma glucose well. Thereafter, Sintilimab was been continued with sustained therapeutic effect. Conclusion Due to unpredictability of this rare immune related adverse event (irAE), diabetes-related autoantibodies and C-peptide are recommended to be tested before immunotherapy, and plasma glucose monitoring should be performed. After plasma glucose is well controlled using insulin therapy, PD-1 inhibitor treatment might be continued, especially when the immunotherapy is effective.
Collapse
Affiliation(s)
- Liang Wen
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou, China
| | - Xiuwen Zou
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou, China
| | - Yiwen Chen
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou, China
| | - Xueli Bai
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou, China
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou, China
| |
Collapse
|
25
|
Calcaterra V, Nappi RE, Regalbuto C, De Silvestri A, Incardona A, Amariti R, Bassanese F, Clemente AM, Vinci F, Albertini R, Larizza D. Gender Differences at the Onset of Autoimmune Thyroid Diseases in Children and Adolescents. Front Endocrinol (Lausanne) 2020; 11:229. [PMID: 32362875 PMCID: PMC7181383 DOI: 10.3389/fendo.2020.00229] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 03/30/2020] [Indexed: 12/15/2022] Open
Abstract
Background: The incidence of autoimmune thyroid diseases (ATD) may vary with the beginning of reproductive function, although few reports differentiate the incidence before and during the onset of puberty, examining gender bias. We analyzed onset of ATD in a pediatric population to assess gender differences in onset age, disease subtype, pubertal status, autoimmune co-morbidity, family history and treatment, focusing on the interaction between gender and pubertal stage. Patients and methods: We retrospectively recorded 382 children and adolescents with ATD. In each patient physical examination was considered. The presence of other associated autoimmune diseases (AAD) and familial predisposition was also recorded. Results: Predominant prevalence was noted in females compared to males (p < 0.001), both in Hashimoto's diseases (HD or HT) and Graves' disease (GD) (p < 0.001). Mean age at diagnosis showed no significant difference between sexes (p > 0.05). A higher prevalence in pubertal subjects was noted compared to prepubertal (p < 0.001, particularly HT in early and GD in late pubertal stage), without sexes difference intra-(prepubertal vs. pubertal) and inter-puberty groups (prepubertal vs. early pubertal vs. late pubertal). Both in HT and in GD, the prevalence of autoimmune associated diseases (AAD) was higher in males compared to females (p = 0.04), with similar distribution according to the pubertal maturation. The familial predisposition was similarly distributed in both genders (p > 0.05) and into pubertal stages (p > 0.05). Conclusions: Females are more prone to develop ATD during puberty, earlier in HT than in GD. The effect of puberty is not different between genders, suggesting the role of additional factors other than hormones. The screening for detection of ATD is recommended in all patients with positive family history and other autoimmune diseases, mostly in males. Considerations of gender in pediatrics could be important to define pathogenic mechanisms of ATD and to help in early diagnosis and clinical management.
Collapse
Affiliation(s)
- Valeria Calcaterra
- Pediatric and Adolescent Unit, Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
- Pediatric Endocrinology Unit, Department of Maternal and Children's Health, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
- *Correspondence: Valeria Calcaterra
| | - Rossella E. Nappi
- Research Center for Reproductive Medicine, Gynecological Endocrinology and Menopause, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
- Department of Clinical, Surgical, Diagnostic and Padiatric Sciences, University of Pavia, Pavia, Italy
| | - Corrado Regalbuto
- Pediatric and Adolescent Unit, Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
- Pediatric Endocrinology Unit, Department of Maternal and Children's Health, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Annalisa De Silvestri
- Biometry and Clinical Epidemiology, Scientific Direction, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Antonino Incardona
- Pediatric and Adolescent Unit, Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
- Pediatric Endocrinology Unit, Department of Maternal and Children's Health, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Rossella Amariti
- Pediatric and Adolescent Unit, Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
- Pediatric Endocrinology Unit, Department of Maternal and Children's Health, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Francesco Bassanese
- Pediatric and Adolescent Unit, Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
- Pediatric Endocrinology Unit, Department of Maternal and Children's Health, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Andrea Martina Clemente
- Pediatric and Adolescent Unit, Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
- Pediatric Endocrinology Unit, Department of Maternal and Children's Health, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Federica Vinci
- Pediatric and Adolescent Unit, Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
- Pediatric Endocrinology Unit, Department of Maternal and Children's Health, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Riccardo Albertini
- Laboratory of Clinical Chemistry, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Daniela Larizza
- Pediatric and Adolescent Unit, Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
- Pediatric Endocrinology Unit, Department of Maternal and Children's Health, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| |
Collapse
|