1
|
Kumar R, Rao GN. Glucose-Regulated Protein 78, via Releasing β-Catenin from Adherens Junctions, Facilitates Its Interaction with STAT3 in Mediating Retinal Neovascularization. THE AMERICAN JOURNAL OF PATHOLOGY 2024:S0002-9440(24)00324-9. [PMID: 39222910 DOI: 10.1016/j.ajpath.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 08/01/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Retinopathy due to neovascularization is one of the major causes of vision loss. To understand the mechanisms underlying retinal neovascularization, using the oxygen-induced retinopathy (OIR) model, we performed two-dimensional gel matrix-assisted laser desorption/ionization time-of-flight/time-of-flight analysis of normoxic and 24-hour post-OIR mice pups' retinas. Two-dimensional gel analysis revealed that glucose-regulated protein 78 (GRP78) is one of the several molecules induced by OIR in the retinal endothelial cells (ECs). Vascular endothelial growth factor A (VEGFA) also induced GRP78 expression independent of endoplasmic reticulum stress response in human retinal microvascular endothelial cells, and depletion of its levels reduced VEGFA-induced EC angiogenic responses. Consistent with these observations, EC-specific deletion of GRP78 inhibited OIR-induced retinal neovascularization. In exploring the mechanisms, we found that GRP78 binds with vascular endothelial-cadherin and releases adherens junction- but not Wnt-mediated β-catenin and that β-catenin, in turn, via interacting with STAT3, triggers cyclin D1 expression. Furthermore, depletion of β-catenin or cyclin D1 levels negated VEGFA-induced EC angiogenic responses and OIR-induced retinal neovascularization. EC-specific deletion of GRP78 also suppressed OIR-induced vascular leakage. In elucidating the upstream signaling, we found that activating transcription factor 6 mediates GRP78 induction in the modulation of VEGFA-induced EC angiogenic responses and OIR-induced retinal neovascularization. Together, these observations reveal that GRP78, independent of its response to endoplasmic reticulum stress, is involved in mediating EC angiogenic responses by VEGFA and retinal neovascularization by OIR. In view of these findings, it appears that GRP78 could be a desirable target for drug development against diabetic retinopathy.
Collapse
Affiliation(s)
- Raj Kumar
- Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Gadiparthi N Rao
- Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee.
| |
Collapse
|
2
|
Kawasoe K, Watanabe T, Yoshida-Sakai N, Yamamoto Y, Kurahashi Y, Kidoguchi K, Ureshino H, Kamachi K, Fukuda-Kurahashi Y, Kimura S. A Combination of Alectinib and DNA-Demethylating Agents Synergistically Inhibits Anaplastic-Lymphoma-Kinase-Positive Anaplastic Large-Cell Lymphoma Cell Proliferation. Cancers (Basel) 2023; 15:5089. [PMID: 37894456 PMCID: PMC10605931 DOI: 10.3390/cancers15205089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 10/07/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
The recent evolution of molecular targeted therapy has improved clinical outcomes in several human malignancies. The translocation of anaplastic lymphoma kinase (ALK) was originally identified in anaplastic large-cell lymphoma (ALCL) and subsequently in non-small cell lung carcinoma (NSCLC). Since ALK fusion gene products act as a driver of carcinogenesis in both ALCL and NSCLC, several ALK tyrosine kinase inhibitors (TKIs) have been developed. Crizotinib and alectinib are first- and second-generation ALK TKIs, respectively, approved for the treatment of ALK-positive ALCL (ALK+ ALCL) and ALK+ NSCLC. Although most ALK+ NSCLC patients respond to crizotinib and alectinib, they generally relapse after several years of treatment. We previously found that DNA-demethylating agents enhanced the efficacy of ABL TKIs in chronic myeloid leukemia cells. Moreover, aberrant DNA methylation has also been observed in ALCL cells. Thus, to improve the clinical outcomes of ALK+ ALCL therapy, we investigated the synergistic efficacy of the combination of alectinib and the DNA-demethylating agent azacytidine, decitabine, or OR-2100 (an orally bioavailable decitabine derivative). As expected, the combination of alectinib and DNA-demethylating agents synergistically suppressed ALK+ ALCL cell proliferation, concomitant with DNA hypomethylation and a reduction in STAT3 (a downstream target of ALK fusion proteins) phosphorylation. The combination of alectinib and OR-2100 markedly altered gene expression in ALCL cells, including that of genes implicated in apoptotic signaling, which possibly contributed to the synergistic anti-ALCL effects of this drug combination. Therefore, alectinib and OR-2100 combination therapy has the potential to improve the outcomes of patients with ALK+ ALCL.
Collapse
Affiliation(s)
- Kazunori Kawasoe
- Department of Drug Discovery and Biomedical Sciences, Faculty of Medicine, Saga University, Saga 849-8501, Japan
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga 849-8501, Japan
| | - Tatsuro Watanabe
- Department of Drug Discovery and Biomedical Sciences, Faculty of Medicine, Saga University, Saga 849-8501, Japan
| | - Nao Yoshida-Sakai
- Department of Drug Discovery and Biomedical Sciences, Faculty of Medicine, Saga University, Saga 849-8501, Japan
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga 849-8501, Japan
| | - Yuta Yamamoto
- Department of Drug Discovery and Biomedical Sciences, Faculty of Medicine, Saga University, Saga 849-8501, Japan
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga 849-8501, Japan
| | - Yuki Kurahashi
- Department of Drug Discovery and Biomedical Sciences, Faculty of Medicine, Saga University, Saga 849-8501, Japan
- OHARA Pharmaceutical Co., Ltd., Koka 520-3403, Japan
| | - Keisuke Kidoguchi
- Department of Drug Discovery and Biomedical Sciences, Faculty of Medicine, Saga University, Saga 849-8501, Japan
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga 849-8501, Japan
| | - Hiroshi Ureshino
- Department of Drug Discovery and Biomedical Sciences, Faculty of Medicine, Saga University, Saga 849-8501, Japan
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga 849-8501, Japan
| | - Kazuharu Kamachi
- Department of Drug Discovery and Biomedical Sciences, Faculty of Medicine, Saga University, Saga 849-8501, Japan
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga 849-8501, Japan
| | - Yuki Fukuda-Kurahashi
- Department of Drug Discovery and Biomedical Sciences, Faculty of Medicine, Saga University, Saga 849-8501, Japan
- OHARA Pharmaceutical Co., Ltd., Koka 520-3403, Japan
| | - Shinya Kimura
- Department of Drug Discovery and Biomedical Sciences, Faculty of Medicine, Saga University, Saga 849-8501, Japan
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga 849-8501, Japan
| |
Collapse
|
3
|
Chen B, Shi Z, Wang Y, Chen M, Yang C, Cui H, Su T, Kwan HY. Discovery of a novel anti-obesity meroterpenoid agent targeted subcutaneous adipose tissue. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 106:154396. [PMID: 36057145 DOI: 10.1016/j.phymed.2022.154396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/28/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Meroterpenoid furanasperterpene A (T2-3) with a novel 6/6/6/6/5 pentacyclic skeleton was isolated from the Aspergillus terreus GZU-31-1. Previously, we showed that T2-3 possessed significant lipid-lowering effects in 3T3-L1 adipocytes at 5 μM concentration. However, its therapeutic effect in metabolic disease and the underlying mechanisms of action remain unclear. METHODS High fat diet-induced obesity (DIO) mouse model and 3T3-L1 cell model were used to assess the anti-obesity effects of T2-3. Lipids in the adipocytes were examined by Oil Red O staining. β-catenin expression was examined by immunofluorescence and Western blotting, its activity was assessed by TOPflash/FOPflash assay. RESULTS T2-3 possessed potent anti-obesity effects in DIO mice, it significantly reduced body weight and subcutaneous adipose tissue (SAT) mass. Mechanistic studies showed that T2-3 significantly inhibited 3T3-L1 preadipocyte differentiation as indicated by the reduced number of mature adipocytes. The treatments also reduced the expressions of critical adipogenic transcription factors CEBP-α and PPAR-γ in both 3T3-L1 adipocytes and SAT in DIO mice. Interestingly, T2-3 increased the cytoplasmic and nuclear expressions of β-catenin and the transcriptional activity of β-catenin in 3T3-L1 adipocytes; the elevated β-catenin expression was also observed in SAT of the T2-3-treated DIO mice. Indeed, upregulation of β-catenin activity suppressed adipogenesis, while β-catenin inhibitor JW67 reversed the anti-adipogenic effect of T2-3. Taken together, our data suggest that T2-3 inhibits adipogenesis by upregulating β-catenin activity. CONCLUSIONS Our study is the first report demonstrating meroterpenoid furanasperterpene A as a novel 6/6/6/6/5 pentacyclic skeleton (T2-3) that possesses potent anti-adipogenic effect by targeting β-catenin signaling pathway. Our findings drive new anti-obesity drug discovery and provide drug leads for chemists and pharmacologists.
Collapse
Affiliation(s)
- Baisen Chen
- Centre for Cancer & Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
| | - Zhiqiang Shi
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Yechun Wang
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Minting Chen
- Centre for Cancer & Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Chunfang Yang
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Hui Cui
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China; School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| | - Tao Su
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| | - Hiu Yee Kwan
- Centre for Cancer & Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
| |
Collapse
|
4
|
Choi YS, Cho HJ, Jung HJ. Atorvastatin inhibits the proliferation of MKN45-derived gastric cancer stem cells in a mevalonate pathway-independent manner. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY 2022; 26:367-375. [PMID: 36039737 PMCID: PMC9437372 DOI: 10.4196/kjpp.2022.26.5.367] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/22/2022] [Accepted: 07/27/2022] [Indexed: 11/17/2022]
Abstract
Gastric cancer stem cells (GCSCs) are a major cause of radioresistance and chemoresistance in gastric cancer (GC). Therefore, targeting GCSCs is regarded as a powerful strategy for the effective treatment of GC. Atorvastatin is a widely prescribed cholesterol-lowering drug that inhibits 3-hydroxy-3-methylglutaryl-coenzyme A reductase, a rate-limiting enzyme in the mevalonate pathway. The anticancer activity of atorvastatin, a repurposed drug, is being investigated; however, its therapeutic effect and molecular mechanism of action against GCSCs remain unknown. In this study, we evaluated the anticancer effects of atorvastatin on MKN45-derived GCSCs. Atorvastatin significantly inhibited the proliferative and tumorsphere-forming abilities of MKN45 GCSCs in a mevalonate pathway-independent manner. Atorvastatin induced cell cycle arrest at the G0/G1 phase and promoted apoptosis by activating the caspase cascade. Furthermore, atorvastatin exerted an antiproliferative effect against MKN45 GCSCs by inhibiting the expression of cancer stemness markers, such as CD133, CD44, integrin α6, aldehyde dehydrogenase 1A1, Oct4, Sox2, and Nanog, through the downregulation of β-catenin, signal transducer and activator of transcription 3, and protein kinase B activities. Additionally, the combined treatment of atorvastatin and sorafenib, a multi-kinase targeted anticancer drug, synergistically suppressed not only the proliferation and tumorsphere formation of MKN45 GCSCs but also the in vivo tumor growth in a chick chorioallantoic membrane model implanted with MKN45 GCSCs. These findings suggest that atorvastatin can therapeutically eliminate GCSCs.
Collapse
Affiliation(s)
- Ye Seul Choi
- Department of Pharmaceutical Engineering and Biotechnology, Genome-Based BioIT Convergence Institute, Sun Moon University, Asan 31460, Korea
| | - Hee Jeong Cho
- Department of Pharmaceutical Engineering and Biotechnology, Genome-Based BioIT Convergence Institute, Sun Moon University, Asan 31460, Korea
| | - Hye Jin Jung
- Department of Pharmaceutical Engineering and Biotechnology, Genome-Based BioIT Convergence Institute, Sun Moon University, Asan 31460, Korea
| |
Collapse
|
5
|
Sasso J, Tenchov R, Wang D, Johnson LS, Wang X, Zhou QA. Molecular Glues: The Adhesive Connecting Targeted Protein Degradation to the Clinic. Biochemistry 2022; 62:601-623. [PMID: 35856839 PMCID: PMC9910052 DOI: 10.1021/acs.biochem.2c00245] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Targeted protein degradation is a rapidly exploding drug discovery strategy that uses small molecules to recruit disease-causing proteins for rapid destruction mainly via the ubiquitin-proteasome pathway. It shows great potential for treating diseases such as cancer and infectious, inflammatory, and neurodegenerative diseases, especially for those with "undruggable" pathogenic protein targets. With the recent rise of the "molecular glue" type of protein degraders, which tighten and simplify the connection of an E3 ligase with a disease-causing protein for ubiquitination and subsequent degradation, new therapies for unmet medical needs are being designed and developed. Here we use data from the CAS Content Collection and the publication landscape of recent research on targeted protein degraders to provide insights into these molecules, with a special focus on molecular glues. We also outline the advantages of the molecular glues and summarize the advances in drug discovery practices for molecular glue degraders. We further provide a thorough review of drug candidates in targeted protein degradation through E3 ligase recruitment. Finally, we highlight the progression of molecular glues in drug discovery pipelines and their targeted diseases. Overall, our paper provides a comprehensive reference to support the future development of molecular glues in medicine.
Collapse
|
6
|
Tripathi S, Miyake T, Kelebeev J, McDermott JC. TAZ exhibits phase separation properties and interacts with Smad7 and β-catenin to repress skeletal myogenesis. J Cell Sci 2021; 135:273968. [PMID: 34859820 DOI: 10.1242/jcs.259097] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 11/18/2021] [Indexed: 11/20/2022] Open
Abstract
Hippo signaling in Drosophila and mammals is prominent in regulating cell proliferation, death and differentiation. Hippo signaling effectors (YAP/TAZ) exhibit crosstalk with transforming growth factor-β (TGF-β)-Smad and Wnt-β-catenin pathways. Previously, we implicated Smad7 and β-catenin in myogenesis. Therefore, we assessed a potential role of TAZ on theSmad7/β-catenin complex in muscle cells. Here, we document functional interactions between Smad7, TAZ and β-catenin in myogenic cells. Ectopic TAZ expression resulted in repression of the muscle-specific creatine kinase muscle (ckm) gene promoter and its corresponding protein level. Depletion of endogenous TAZ enhanced ckm promoter activation. Ectopic TAZ, while potently active on a TEAD reporter (HIP-HOP), repressed myogenin and myod enhancer regions and Myogenin protein level. Additionally, a Wnt/β-catenin readout (TOP flash) demonstrated TAZ inhibition of β-catenin activity. In myoblasts, TAZ is predominantly localized in nuclear speckles, while in differentiation conditions TAZ is hyperphosphorylated at Ser 89 leading to enhanced cytoplasmic sequestration. Finally, live cell imaging indicates that TAZ exhibits properties of liquid-liquid phase separation (LLPS). These observations indicate that TAZ, as an effector of Hippo signaling, supresses the myogenic differentiation machinery.
Collapse
Affiliation(s)
- Soma Tripathi
- Department of Biology, York University, Toronto, ON, M3J 1P3, Canada.,Muscle Health Research Centre (MHRC), York University, Toronto, ON, M3J 1P3, Canada.,Centre for Research in Biomolecular Interactions (CRBI), York University, Toronto, ON, M3J 1P3, Canada
| | - Tetsuaki Miyake
- Department of Biology, York University, Toronto, ON, M3J 1P3, Canada.,Muscle Health Research Centre (MHRC), York University, Toronto, ON, M3J 1P3, Canada.,Centre for Research in Biomolecular Interactions (CRBI), York University, Toronto, ON, M3J 1P3, Canada
| | - Jonathan Kelebeev
- Department of Biology, York University, Toronto, ON, M3J 1P3, Canada.,Muscle Health Research Centre (MHRC), York University, Toronto, ON, M3J 1P3, Canada.,Centre for Research in Biomolecular Interactions (CRBI), York University, Toronto, ON, M3J 1P3, Canada
| | - John C McDermott
- Department of Biology, York University, Toronto, ON, M3J 1P3, Canada.,Muscle Health Research Centre (MHRC), York University, Toronto, ON, M3J 1P3, Canada.,Centre for Research in Biomolecular Interactions (CRBI), York University, Toronto, ON, M3J 1P3, Canada.,Centre for Research in Mass Spectrometry (CRMS), York University, Toronto, ON, M3J 1P3, Canada
| |
Collapse
|
7
|
A nexus of miR-1271, PAX4 and ALK/RYK influences the cytoskeletal architectures in Alzheimer's Disease and Type 2 Diabetes. Biochem J 2021; 478:3297-3317. [PMID: 34409981 PMCID: PMC8454712 DOI: 10.1042/bcj20210175] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 08/12/2021] [Accepted: 08/18/2021] [Indexed: 02/08/2023]
Abstract
Alzheimer's Disease (AD) and Type 2 Diabetes (T2D) share a common hallmark of insulin resistance. Reportedly, two non-canonical Receptor Tyrosine Kinases (RTKs), ALK and RYK, both targets of the same micro RNA miR-1271, exhibit significant and consistent functional down-regulation in post-mortem AD and T2D tissues. Incidentally, both have Grb2 as a common downstream adapter and NOX4 as a common ROS producing factor. Here we show that Grb2 and NOX4 play critical roles in reducing the severity of both the diseases. The study demonstrates that the abundance of Grb2 in degenerative conditions, in conjunction with NOX4, reverse cytoskeletal degradation by counterbalancing the network of small GTPases. PAX4, a transcription factor for both Grb2 and NOX4, emerges as the key link between the common pathways of AD and T2D. Down-regulation of both ALK and RYK through miR-1271, elevates the PAX4 level by reducing its suppressor ARX via Wnt/β-Catenin signaling. For the first time, this study brings together RTKs beyond Insulin Receptor (IR) family, transcription factor PAX4 and both AD and T2D pathologies on a common regulatory platform.
Collapse
|
8
|
RANKL immunisation inhibits prostate cancer metastasis by modulating EMT through a RANKL-dependent pathway. Sci Rep 2021; 11:12186. [PMID: 34108600 PMCID: PMC8190078 DOI: 10.1038/s41598-021-91721-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 05/31/2021] [Indexed: 12/17/2022] Open
Abstract
Prostate cancer (PCa) morbidity in the majority of patients is due to metastatic events, which are a clinical obstacle. Therefore, a better understanding of the mechanism underlying metastasis is imperative if we are to develop novel therapeutic strategies. Receptor activator of nuclear factor kappa-B (NF-κB) ligand (RANKL) regulates bone remodelling. Thus, agents that suppress RANKL signalling may be useful pharmacological treatments. Here, we used preclinical experimental models to investigate whether an inactive form of RANKL affects bone metastasis in RANKL-induced PCa. RANKL was associated with epithelial–mesenchymal transition (EMT) and expression of metastasis-related genes in PC3 cells. Therefore, we proposed a strategy to induce anti-cytokine antibodies using mutant RANKL as an immunogen. RANKL promoted migration and invasion of PC3 cells through EMT, and induced a significant increase in binding of β-catenin to TCF-4, an EMT-induced transcription factor in PCa cells, via mitogen-activated protein kinase and β-catenin/TCF-4 signalling. Thus, RANKL increased EMT and the metastatic properties of PC3 cells, suggesting a role as a therapeutic target to prevent PCa metastasis. Treatment with mutant RANKL reduced EMT and metastasis of PC3 PCa cells in an experimental metastasis model. Thus, mutant RANKL could serve as a potential vaccine to prevent and treat metastatic PCa.
Collapse
|
9
|
Elkenani M, Nyamsuren G, Toischer K, Adham IM, Mohamed BA. Perturbed differentiation of murine embryonic stem cells upon Pelota deletion due to dysregulated FOXO1/β-catenin signaling. FEBS J 2020; 288:3317-3329. [PMID: 33245852 DOI: 10.1111/febs.15643] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 11/04/2020] [Accepted: 11/15/2020] [Indexed: 11/28/2022]
Abstract
Differentiation of the embryonic stem cells (ESCs) is regulated by a variety of different signaling pathways. Genetic depletion of murine Pelota gene (Pelo) leads to early embryonic lethality. Here, we aimed at determining the embryonic stage and deciphering the dysregulated signaling pathways affected upon Pelo deletion. We found that development of PELO-null embryos is perturbed between the embryonic days E4.5 and E5.5, at which first differentiation process of ESCs takes place. Molecular analysis revealed enhanced activity of phosphoinositide 3-kinase-protein kinase B/ AKT (PI3K-PKB/AKT) signaling, but nuclear accumulation of forkhead box O1 (FOXO1), and upregulation of the pluripotency-related gene, Oct4, in mutant ESCs cultured under differentiation condition. Despite increased levels of nuclear β-catenin in PELO-null ESCs as a result of decreased activity of glycogen synthase kinase-3β, the activity of the canonical wingless (Wnt)/β-catenin/T-cell factor (TCF) was significantly attenuated as judged by the promoter reporter assay, downregulated Wnt/β-catenin target genes, and impaired cell proliferation. Interestingly, we demonstrated an increased binding of β-catenin to FOXO1 in PELO-mutant ESCs cultured under differentiation condition that could explain, on one side, the nuclear accumulation of FOXO1 protein and hence persistent pluripotency of PELO-mutant ESCs, and on the other side, the dysregulated transcriptional activity of β-catenin/TCF and therefore attenuated PELO-null ESC self-renewal. Taken together, our results strongly suggest that PELO deletion averts ESC differentiation through promoting FOXO1/β-catenin binding with subsequent dysregulation of FOXO1 and canonical β-catenin/TCF signaling pathways.
Collapse
Affiliation(s)
- Manar Elkenani
- Institute of Human Genetics, University Medical Centre Göttingen, Germany.,Department of Cardiology and Pneumology, Heart Centre, University Medical Centre Göttingen, Germany.,Cardiovascular Division, King's College London British Heart Foundation Centre of Excellence, London, UK
| | - Gunsmaa Nyamsuren
- Institute of Human Genetics, University Medical Centre Göttingen, Germany.,Department of Nephrology and Rheumatology, University Medical Centre Göttingen, Germany
| | - Karl Toischer
- Department of Cardiology and Pneumology, Heart Centre, University Medical Centre Göttingen, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, Germany
| | - Ibrahim M Adham
- Institute of Human Genetics, University Medical Centre Göttingen, Germany
| | - Belal A Mohamed
- Institute of Human Genetics, University Medical Centre Göttingen, Germany.,Department of Cardiology and Pneumology, Heart Centre, University Medical Centre Göttingen, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, Germany
| |
Collapse
|
10
|
Yuan C, Yang D, Ma J, Yang J, Xue J, Song F, Liu X. Modulation of Wnt/β-catenin signaling in IL-17A-mediated macrophage polarization of RAW264.7 cells. ACTA ACUST UNITED AC 2020; 53:e9488. [PMID: 32578719 PMCID: PMC7307890 DOI: 10.1590/1414-431x20209488] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 05/04/2020] [Indexed: 12/24/2022]
Abstract
Macrophages play pivotal roles in host defense and immune homeostasis, which have
two major functional polarization states, the classically activated M1 and the
alternatively activated M2. Interleukin (IL)-17A is an immune modulator able to
shape macrophage phenotypes. Wnt/β-catenin is a developmental signaling pathway
that plays crucial roles in morphogenesis and tissue homeostasis, which has also
been recently demonstrated playing roles in immune regulation. A growing amount
of evidence suggests that both Wnt and IL-17A signaling are involved in
macrophage polarization. However, their interaction in macrophage polarization
remains elusive. The aim of present study was to explore impacts of
Wnt/β-catenin on IL-17A-mediated macrophage M1/M2 polarization in murine
monocyte/macrophage-like cell line RAW264.7. Results revealed that IL-17A
activated Wnt/β-catenin signaling and induced macrophage M1 polarization, but
inhibited M2 polarization. In contrast, the activation of Wnt/β-catenin
signaling led to the inhibition of M1 macrophage polarization but the promotion
of M2 polarization. Importantly, the activation of Wnt/β-catenin also showed
abilities to inhibit the IL-17A-induced M1 macrophage polarization while
diminishing the IL-17A-inhibited M2 polarization. Molecular analysis further
uncovered that the JAK/STAT signaling pathway was involved in the interaction of
Wnt/β-catenin and IL-17A in the modulation of macrophage polarization. These
results suggested that the Wnt/β-catenin signaling modulated IL-17A-altered
macrophage polarization in part by regulating the JAK/STAT signaling pathway.
This study thus revealed a novel function of Wnt/β-catenin signaling in
regulating IL-17A-altered macrophage polarization.
Collapse
Affiliation(s)
- Chao Yuan
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, Yinchuan, China.,College of Life Science, Ningxia University, Yinchuan, Ningxia, China
| | - Dandan Yang
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, Yinchuan, China.,College of Life Science, Ningxia University, Yinchuan, Ningxia, China
| | - Jia Ma
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, Yinchuan, China.,College of Life Science, Ningxia University, Yinchuan, Ningxia, China
| | - Jiali Yang
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, Yinchuan, China.,College of Life Science, Ningxia University, Yinchuan, Ningxia, China
| | - Jing Xue
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, Yinchuan, China.,College of Life Science, Ningxia University, Yinchuan, Ningxia, China
| | - Fuyang Song
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, Yinchuan, China.,College of Life Science, Ningxia University, Yinchuan, Ningxia, China
| | - Xiaoming Liu
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, Yinchuan, China.,College of Life Science, Ningxia University, Yinchuan, Ningxia, China.,Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
11
|
Kawazoe A, Kuboki Y, Bando H, Fukuoka S, Kojima T, Naito Y, Iino S, Yodo Y, Doi T, Shitara K, Yoshino T. Phase 1 study of napabucasin, a cancer stemness inhibitor, in patients with advanced solid tumors. Cancer Chemother Pharmacol 2020; 85:855-862. [PMID: 32236642 PMCID: PMC7188713 DOI: 10.1007/s00280-020-04059-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 03/12/2020] [Indexed: 01/24/2023]
Abstract
PURPOSE Napabucasin is a cancer stemness inhibitor that targets a number of oncogenic pathways, including signal transducer and activator of transcription 3 (STAT3). Phase 1/2 studies suggest tolerability and anti-tumor activity in various types of cancer; a Phase 3 study of napabucasin plus standard therapy in colorectal cancer is ongoing. This is a Phase 1 dose-escalation study in patients with advanced solid tumors, and the first study of napabucasin in Japanese patients. METHODS Patients received napabucasin 480, 960, or 1440 mg daily in 28-day cycles until disease progression or intolerable toxicity. Primary objectives were to determine dose-limiting toxicities (DLTs), maximum tolerated dose (MTD), and the pharmacokinetic (PK) profile of napabucasin. Blood samples were taken for PK analysis on Days 1, 2, 8, and 15 of Cycle 1, and Days 29 and 30 of Cycle 2. Secondary objectives were to assess napabucasin antitumor activity, and the relationship between biomarkers and antitumor activity. JapicCTI-No: JapicCTI-132152. RESULTS Enrolled were 14 patients (480 mg [n = 3], 960 mg [n = 4], 1440 mg [n = 7]). One patient experienced a DLT (Grade 3, anorexia). MTD was 1440 mg/day. Most common drug-related adverse events were diarrhea (n = 9), nausea (n = 4), vomiting (n = 3), and anorexia (n = 3). Napabucasin showed a similar PK profile to previous studies and no abnormal accumulation was observed. Following treatment, two patients had stable disease; the remaining 12 had progressive disease. CONCLUSION Napabucasin was well-tolerated at doses up to 1440 mg/day in Japanese patients with advanced solid tumors; the PK profile was comparable to that reported previously.
Collapse
Affiliation(s)
- Akihito Kawazoe
- Department of Gastroenterology and Gastrointestinal Oncology Division, National Cancer Center Hospital East, Kashiwa, Japan
| | - Yasutoshi Kuboki
- Department of Gastroenterology and Gastrointestinal Oncology Division, National Cancer Center Hospital East, Kashiwa, Japan
| | - Hideaki Bando
- Department of Gastroenterology and Gastrointestinal Oncology Division, National Cancer Center Hospital East, Kashiwa, Japan
| | - Shota Fukuoka
- Department of Gastroenterology and Gastrointestinal Oncology Division, National Cancer Center Hospital East, Kashiwa, Japan
| | - Takashi Kojima
- Department of Gastroenterology and Gastrointestinal Oncology Division, National Cancer Center Hospital East, Kashiwa, Japan
| | - Yoichi Naito
- Department of Experimental Therapeutics, National Cancer Center Hospital East, Kashiwa, Japan
| | | | | | - Toshihiko Doi
- Department of Experimental Therapeutics, National Cancer Center Hospital East, Kashiwa, Japan
| | - Kohei Shitara
- Department of Gastroenterology and Gastrointestinal Oncology Division, National Cancer Center Hospital East, Kashiwa, Japan
| | - Takayuki Yoshino
- Department of Gastroenterology and Gastrointestinal Oncology Division, National Cancer Center Hospital East, Kashiwa, Japan.
| |
Collapse
|
12
|
Targeting Jak/Stat pathway as a therapeutic strategy against SP/CD44+ tumorigenic cells in Akt/β-catenin-driven hepatocellular carcinoma. J Hepatol 2020; 72:104-118. [PMID: 31541681 DOI: 10.1016/j.jhep.2019.08.035] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 08/20/2019] [Accepted: 08/29/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND & AIMS Hepatic resection and liver transplantation with adjuvant chemo- and radiotherapy are the mainstay of hepatocellular carcinoma (HCC) treatment, but the 5-year survival rate remains poor because of frequent recurrence and intrahepatic metastasis. Only sorafenib and lenvatinib are currently approved for the first-line treatment of advanced, unresected HCC, but they yield modest survival benefits. Thus, there is a need to identify new therapeutic targets to improve current HCC treatment modalities. METHODS The HCC tumor model was generated by hydrodynamic transfection of AKT1 and β-catenin (CTNNB1) oncogenes. Cancer cells with stemness properties were characterized following isolation using side population (SP) and CD44 surface markers by flow cytometry. The effect of Jak/Stat inhibitors was analyzed in vitro by using tumorsphere culture and in vivo using an allograft mouse model. RESULTS Co-activation of both Wnt/β-catenin and Akt/mTOR pathways was found in 14.4% of our HCC patient cohort. More importantly, these patients showed poorer survival than those with either Wnt/β-catenin or Akt/mTOR pathway activation alone, demonstrating the clinical relevance of our study. In addition, we observed that Akt/β-catenin tumors contained a subpopulation of cells with stem/progenitor-like characteristics identified through SP analysis and expression of the cancer stem cell-like marker CD44, which may contribute to tumor self-renewal and drug resistance. Consequently, we identified small molecule inhibitors of the Jak/Stat pathway that demonstrated efficacy in mitigating tumor proliferation and formation in Akt/β-catenin-driven HCC. CONCLUSIONS In conclusion, we have shown that Akt/β-catenin tumors contain a subpopulation of tumor-initiating cells with stem/progenitor-like characteristics which can be effectively targeted with inhibitors of the Jak/Stat pathway, demonstrating that inhibition of the Jak/Stat pathway could be an alternative method to overcome drug resistance and effectively treat Akt/β-catenin-driven HCC tumors. LAY SUMMARY The prognosis for patients with hepatocellular carcinoma is poor, partly because of the lack of effective treatment options for those with more advanced disease. In this study, we identified a subpopulation of cancer cells with stem cell-like properties that were critical for tumor maintenance and growth in a mouse model of hepatocellular carcinoma. Through further experiments, we demonstrated that the Jak/Stat pathway is a promising therapeutic target in hepatocellular carcinoma.
Collapse
|
13
|
Song T, Yang J, Zhou J, Chen Z, Yuan X. A Review of the Mechanisms of Wnt7b in the Process of Malignant Tumor Invasion and Metastasis. INT J PHARMACOL 2019. [DOI: 10.3923/ijp.2019.523.532] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
14
|
Shitara K, Yodo Y, Iino S. A Phase I Study of Napabucasin Plus Paclitaxel for Japanese Patients With Advanced/Recurrent Gastric Cancer. In Vivo 2019; 33:933-937. [PMID: 31028219 PMCID: PMC6559899 DOI: 10.21873/invivo.11561] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 03/27/2019] [Accepted: 04/01/2019] [Indexed: 01/26/2023]
Abstract
AIM To report results from the first phase I study of napabucasin plus paclitaxel in Japanese patients with pre-treated unresectable/recurrent gastric cancer. PATIENTS AND METHODS Patients received napabucasin (480 mg bid) plus paclitaxel [80 mg/m2 on days 3, 10 and 17 (cycles 1 and 2) and on days 1, 8 and 15 (cycle 3 and subsequent cycles)] until disease progression or unacceptable toxicity. Primary objectives were tolerability, safety and pharmacokinetics of napabucasin plus paclitaxel. Trial registration ID: JapicCTI-142420. RESULTS Six patients were enrolled. Paclitaxel had a minimal effect on napabucasin pharmacokinetics and median plasma paclitaxel concentrations were similar in combination and monotherapy. No dose-limiting toxicities were observed. There were no grade 4/5 adverse events. Partial response, stable disease and progressive disease were reported in two patients each. CONCLUSION Napabucasin plus paclitaxel was well-tolerated in Japanese patients with gastric cancer.
Collapse
Affiliation(s)
- Kohei Shitara
- Department of Gastrointestinal Oncology, National Cancer Center Hospital East, Chiba, Japan
| | | | - Shuichi Iino
- Sumitomo Dainippon Pharma Co., Ltd, Osaka, Japan
| |
Collapse
|
15
|
Li H, Rong S, Chen C, Fan Y, Chen T, Wang Y, Chen D, Yang C, Yang J. Disparate roles of CXCR3A and CXCR3B in regulating progressive properties of colorectal cancer cells. Mol Carcinog 2018; 58:171-184. [PMID: 30302818 DOI: 10.1002/mc.22917] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 09/04/2018] [Accepted: 09/23/2018] [Indexed: 01/11/2023]
Affiliation(s)
- Hai Li
- Department of Colorectal Surgery; General Hospital of Ningxia Medical University; Yinchuan China
- College of Clinical Medicine; Ningxia Medical University; Yinchuan Ningxia China
| | - Shikuo Rong
- College of Clinical Medicine; Ningxia Medical University; Yinchuan Ningxia China
- Human Stem Cell Institute; General Hospital of Ningxia Medical University; Yinchuan China
| | - Chao Chen
- College of Clinical Medicine; Ningxia Medical University; Yinchuan Ningxia China
- Human Stem Cell Institute; General Hospital of Ningxia Medical University; Yinchuan China
| | - Yayun Fan
- Department of Gynaecology; Jingzhou Central Hospital; Jingzhou China
| | - Tuo Chen
- College of Clinical Medicine; Ningxia Medical University; Yinchuan Ningxia China
| | - Yong Wang
- College of Clinical Medicine; Ningxia Medical University; Yinchuan Ningxia China
- Human Stem Cell Institute; General Hospital of Ningxia Medical University; Yinchuan China
| | - Dongmei Chen
- Human Stem Cell Institute; General Hospital of Ningxia Medical University; Yinchuan China
| | - Chun Yang
- College of Clinical Medicine; Ningxia Medical University; Yinchuan Ningxia China
| | - Jiali Yang
- College of Clinical Medicine; Ningxia Medical University; Yinchuan Ningxia China
- Ningxia Key Laboratory of Clinical and Pathological Microbiology; General Hospital of Ningxia Medical University; Yinchuan Ningxia China
| |
Collapse
|
16
|
Control of PD-L1 expression by miR-140/142/340/383 and oncogenic activation of the OCT4-miR-18a pathway in cervical cancer. Oncogene 2018; 37:5257-5268. [PMID: 29855617 PMCID: PMC6160397 DOI: 10.1038/s41388-018-0347-4] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 03/20/2018] [Accepted: 05/01/2018] [Indexed: 12/16/2022]
Abstract
PD-L1, a key inhibitory immune receptor, has crucial functions in cancer immune evasion, but whether PD-L1 promotes the malignant properties of cervical cancer (CC) cells and the mechanism by which PD-L1 is regulated in CC remains unclear. We report that PD-L1 is overexpressed in CC, and shRNA-mediated PD-L1 depletion suppresses the proliferation, invasion, and tumorigenesis of CC cells. Loss of miR-140/142/340/383 contributes to PD-L1 upregulation. miR-18a enhances PD-L1 levels by targeting PTEN, WNK2 (ERK1/2 pathway inhibitor), and SOX6 (Wnt/β-catenin pathway inhibitor and p53 pathway activator) to activate the PI3K/AKT, MEK/ERK, and Wnt/β-catenin pathways and inhibit the p53 pathway, and miR-18a also directly suppresses the expression of the tumor suppressors BTG3 and RBSP3 (CTDSPL). miR-18a overexpression in CC cells is triggered by OCT4 overexpression. Our data implicate PD-L1 as a novel oncoprotein and indicate that miR-140/142/340/383 and miR-18a are key upstream regulators of PD-L1 and potential targets for CC treatment.
Collapse
|
17
|
Wang F, Liu Z, Park SH, Gwag T, Lu W, Ma M, Sui Y, Zhou C. Myeloid β-Catenin Deficiency Exacerbates Atherosclerosis in Low-Density Lipoprotein Receptor-Deficient Mice. Arterioscler Thromb Vasc Biol 2018; 38:1468-1478. [PMID: 29724817 PMCID: PMC6023740 DOI: 10.1161/atvbaha.118.311059] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 04/18/2018] [Indexed: 11/16/2022]
Abstract
Supplemental Digital Content is available in the text. Objective— The Wnt/β-catenin signaling is an ancient and evolutionarily conserved pathway that regulates essential aspects of cell differentiation, proliferation, migration and polarity. Canonical Wnt/β-catenin signaling has also been implicated in the pathogenesis of atherosclerosis. Macrophage is one of the major cell types involved in the initiation and progression of atherosclerosis, but the role of macrophage β-catenin in atherosclerosis remains elusive. This study aims to investigate the impact of β-catenin expression on macrophage functions and atherosclerosis development. Approach and Results— To investigate the role of macrophage canonical Wnt/β-catenin signaling in atherogenesis, we generated β-cateninΔmyeLDLR−/− mice (low-density lipoprotein receptor–deficient mice with myeloid-specific β-catenin deficiency). As expected, deletion of β-catenin decreased macrophage adhesion and migration properties in vitro. However, deficiency of β-catenin significantly increased atherosclerotic lesion areas in the aortic root of LDLR−/− (low-density lipoprotein receptor–deficient) mice without affecting the plasma lipid levels and atherosclerotic plaque composition. Mechanistic studies revealed that β-catenin can regulate activation of STAT (signal transducer and activator of transcription) pathway in macrophages, and ablation of β-catenin resulted in STAT3 downregulation and STAT1 activation, leading to elevated macrophage inflammatory responses and increased atherosclerosis. Conclusions— This study demonstrates a critical role of myeloid β-catenin expression in atherosclerosis by modulating macrophage inflammatory responses.
Collapse
Affiliation(s)
- Fang Wang
- From the Department of Pharmacology and Nutritional Sciences (F.W., Z.L., S.-H.P., T.G., W.L., M.M., Y.S., C.Z.)
| | - Zun Liu
- From the Department of Pharmacology and Nutritional Sciences (F.W., Z.L., S.-H.P., T.G., W.L., M.M., Y.S., C.Z.)
| | - Se-Hyung Park
- From the Department of Pharmacology and Nutritional Sciences (F.W., Z.L., S.-H.P., T.G., W.L., M.M., Y.S., C.Z.)
| | - Taesik Gwag
- From the Department of Pharmacology and Nutritional Sciences (F.W., Z.L., S.-H.P., T.G., W.L., M.M., Y.S., C.Z.)
| | - Weiwei Lu
- From the Department of Pharmacology and Nutritional Sciences (F.W., Z.L., S.-H.P., T.G., W.L., M.M., Y.S., C.Z.)
| | - Murong Ma
- From the Department of Pharmacology and Nutritional Sciences (F.W., Z.L., S.-H.P., T.G., W.L., M.M., Y.S., C.Z.)
| | - Yipeng Sui
- From the Department of Pharmacology and Nutritional Sciences (F.W., Z.L., S.-H.P., T.G., W.L., M.M., Y.S., C.Z.)
| | - Changcheng Zhou
- From the Department of Pharmacology and Nutritional Sciences (F.W., Z.L., S.-H.P., T.G., W.L., M.M., Y.S., C.Z.)
- Saha Cardiovascular Research Center (C.Z.), University of Kentucky, Lexington
| |
Collapse
|
18
|
Alshareef A, Irwin MS, Gupta N, Zhang HF, Haque M, Findlay SD, Seong BKA, Lai J, Rayis M, Al-Dandan S, Lai R. The absence of a novel intron 19-retaining ALK transcript ( ALK-I19) and MYCN amplification correlates with an excellent clinical outcome in neuroblastoma patients. Oncotarget 2018. [PMID: 29535836 PMCID: PMC5828214 DOI: 10.18632/oncotarget.24216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
ALK missense mutations are detected in 8% of neuroblastoma (NB) tumors at diagnosis and confer gain-of-function oncogenic effects. The mechanisms by which the expression of wild-type or mutant ALK, which is detectable in the majority of cases, is regulated are not well understood. We have identified a novel ALK transcript characterized by the retention of intron 19 (ALK-I19). ALK-I19 was detected in 4/4 NB cell lines, but not other non-NB cells with ALK aberrations. The functional significance of ALK-I19 was determined by specific siRNA knockdown of this transcript, which resulted in substantially decreased expression of the fully-spliced ALK transcripts (FS-ALK) and a significant reduction in cell growth. We also demonstrate that ALK-I19 is a precursor of FS-ALK. ALK-I19 was detected in 14/37 (38%) tumors from patients with newly diagnosed NB. ALK-I19 expression correlated with undifferentiated histology and strong ALK protein expression detectable by immunohistochemistry. Importantly, patients with tumors that did not express ALK-I19 and lacked MYCN amplification had an excellent clinical outcome, with 19/19 patients survived at 5-years. In conclusion, ALK-I19 is a novel ALK transcript that likely represents a marker of undifferentiated NB cells. The absence of ALK-I19 and MYCN amplification is a useful prognostic marker for NB patients.
Collapse
Affiliation(s)
- Abdulraheem Alshareef
- Department of Applied Medical Sciences, Taibah University, Medina, Saudi Arabia.,Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Canada
| | - Meredith S Irwin
- Division of Haematology-Oncology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Ontario, Canada
| | - Nidhi Gupta
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Canada
| | - Hai-Feng Zhang
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Moinul Haque
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Canada
| | - Scott D Findlay
- Department of Oncology, University of Alberta, Edmonton, Canada.,Department of Anatomy and Cell Biology, Faculty of Medicine and Dentistry, University of Western Ontario, London, Canada
| | | | - Justine Lai
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Canada
| | - Mohammed Rayis
- Department of Pediatric Oncology, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Sadeq Al-Dandan
- Department of Anatomical Pathology, King Fahad Medical City, King Saud bin Abdulaziz University, Riyadh, Saudi Arabia
| | - Raymond Lai
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Canada.,Department of Oncology, University of Alberta, Edmonton, Canada.,DynaLIFE Medical Laboratories, Edmonton, Canada
| |
Collapse
|
19
|
Docosahexaenoic acid inhibits 12-O-tetradecanoylphorbol-13- acetate-induced fascin-1-dependent breast cancer cell migration by suppressing the PKCδ- and Wnt-1/β-catenin-mediated pathways. Oncotarget 2018; 7:25162-79. [PMID: 27036017 PMCID: PMC5041895 DOI: 10.18632/oncotarget.7301] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 01/27/2016] [Indexed: 11/25/2022] Open
Abstract
Fascin-1, an actin-bundling protein, plays an important role in cancer cell migration and invasion; however, the underlying mechanism remains unclear. On the basis of a 12-O-tetradecanoylphorbol 13-acetate (TPA)-induced cell migration model, it was shown that TPA increased fascin-1 mRNA and protein expression and fascin-1-dependent cell migration. TPA dose- and time-dependently increased PKCδ and STAT3α activation and GSK3β phosphorylation; up-regulated Wnt-1, β-catenin, and STAT3α expression; and increased the nuclear translocation of β-catenin and STAT3α. Rottlerin, a PKCδ inhibitor, abrogated the increases in STAT3α activation and β-catenin and fascin-1 expression. WP1066, a STAT3 inhibitor, suppressed TPA-induced STAT3α DNA binding activity and β-catenin expression. Knockdown of β-catenin attenuated TPA-induced fascin-1 and STAT3α expression as well as cell migration. In addition to MCF-7, migration of Hs578T breast cancer cells was inhibited by silencing fascin-1, β-catenin, and STAT3α expression as well. TPA also induced Wnt-1 expression and secretion, and blocking Wnt-1 signaling abrogated β-catenin induction. DHA pretreatment attenuated TPA-induced cell migration, PKCδ and STAT3α activation, GSK3β phosphorylation, and Wnt-1, β-catenin, STAT3α, and fascin-1 expression. Our results demonstrated that TPA-induced migration is likely associated with the PKCδ and Wnt-1 pathways, which lead to STAT3α activation, GSK3β inactivation, and β-catenin increase and up-regulation of fascin-1 expression. Moreover, the anti-metastatic potential of DHA is partly attributed to its suppression of TPA-activated PKCδ and Wnt-1 signaling.
Collapse
|
20
|
Alshareef A, Gupta N, Zhang HF, Wu C, Haque M, Lai R. High expression of β-catenin contributes to the crizotinib resistant phenotype in the stem-like cell population in neuroblastoma. Sci Rep 2017; 7:16863. [PMID: 29203817 PMCID: PMC5715105 DOI: 10.1038/s41598-017-17319-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 11/14/2017] [Indexed: 01/06/2023] Open
Abstract
ALK has been identified as a novel therapeutic target in neuroblastoma (NB), but resistance to ALK inhibitors (such as crizotinib) is well recognized. We recently published that the crizotinib sensitivity in NB cells strongly correlates with the crizotinib—ALK binding, and β-catenin effectively hinders this interaction and confers crizotinib resistance. Here, we asked if these observations hold true for the stem-like cells in NB cells, which were purified based on their responsiveness to a Sox2 reporter. Compared to bulk, reporter unresponsive (RU) cells, reporter responsive (RR) cells had significantly higher neurosphere formation ability, expression of CD133/nestin and chemo-resistance. Using the cellular thermal shift assay, we found that RR cells exhibited significantly weaker crizotinib—ALK binding and higher crizotinib resistance than RU cells. The suboptimal crizotinib—ALK binding in RR cells can be attributed to their high β-catenin expression, since siRNA knockdown of β-catenin restored the crizotinib—ALK binding and lowered the crizotinib resistance to the level of RU cells. Enforced expression of β-catenin in RU cells resulted in the opposite effects. To conclude, high expression of β-catenin in the stem-like NB cells contributes to their crizotinib resistance. Combining β-catenin inhibitors and ALK inhibitors may be useful in treating NB patients.
Collapse
Affiliation(s)
- Abdulraheem Alshareef
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada.,Department of Applied Medical Sciences, Taibah University, Almedinah, P.O. Box 41477, Saudi Arabia
| | - Nidhi Gupta
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Hai-Feng Zhang
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Chengsheng Wu
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Moinul Haque
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Raymond Lai
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada. .,Department of Oncology, University of Alberta, Edmonton, Alberta, Canada. .,DynaLIFE Medical Laboratories, Edmonton, Alberta, Canada.
| |
Collapse
|
21
|
Alshareef A. Novel Molecular Challenges in Targeting Anaplastic Lymphoma Kinase in ALK-Expressing Human Cancers. Cancers (Basel) 2017; 9:cancers9110148. [PMID: 29143801 PMCID: PMC5704166 DOI: 10.3390/cancers9110148] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Revised: 09/29/2017] [Accepted: 10/24/2017] [Indexed: 01/14/2023] Open
Abstract
Targeting anaplastic lymphoma kinase (ALK), a receptor tyrosine kinase receptor initially identified as a potent oncogenic driver in anaplastic large-cell lymphoma (ALCL) in the form of nucleophosmin (NPM)-ALK fusion protein, using tyrosine kinase inhibitors has shown to be a promising therapeutic approach for ALK-expressing tumors. However, clinical resistance to ALK inhibitors invariably occurs, and the molecular mechanisms are incompletely understood. Recent studies have clearly shown that clinical resistance to ALK inhibitors is a multifactorial and complex mechanism. While few of the mechanisms of clinical resistance to ALK inhibitors such as gene mutation are well known, there are others that are not well covered. In this review, the molecular mechanisms of cancer stem cells in mediating resistance to ALK inhibitors as well as the current understanding of the molecular challenges in targeting ALK in ALK-expressing human cancers will be discussed.
Collapse
Affiliation(s)
- Abdulraheem Alshareef
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taibah University, Almedinah, Medina P.O. Box 41477, Saudi Arabia.
- Department of Laboratory Medicin and Pathology, University of Alberta, Edmonton, AB T6G 2E1, Canada.
| |
Collapse
|
22
|
Feng Y, Ren J, Gui Y, Wei W, Shu B, Lu Q, Xue X, Sun X, He W, Yang J, Dai C. Wnt/ β-Catenin-Promoted Macrophage Alternative Activation Contributes to Kidney Fibrosis. J Am Soc Nephrol 2017; 29:182-193. [PMID: 29021383 DOI: 10.1681/asn.2017040391] [Citation(s) in RCA: 170] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 08/27/2017] [Indexed: 01/15/2023] Open
Abstract
The Wnt/β-catenin pathway is crucial in normal development and throughout life, but aberrant activation of this pathway has been linked to kidney fibrosis, although the mechanisms involved remain incompletely determined. Here, we investigated the role of Wnt/β-catenin in regulating macrophage activation and the contribution thereof to kidney fibrosis. Treatment of macrophages with Wnt3a exacerbated IL-4- or TGFβ1-induced macrophage alternative (M2) polarization and the phosphorylation and nuclear translocation of STAT3 in vitro Conversely, inhibition of Wnt/β-catenin signaling prevented these IL-4- or TGFβ1-induced processes. In a mouse model, induced deletion of β-catenin in macrophages attenuated the fibrosis, macrophage accumulation, and M2 polarization observed in the kidneys of wild-type littermates after unilateral ureter obstruction. This study shows that activation of Wnt/β-catenin signaling promotes kidney fibrosis by stimulating macrophage M2 polarization.
Collapse
Affiliation(s)
- Ye Feng
- Department of Internal Medicine, Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jiafa Ren
- Department of Internal Medicine, Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yuan Gui
- Department of Internal Medicine, Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wei Wei
- Department of Internal Medicine, Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Bingyan Shu
- Department of Internal Medicine, Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qingmiao Lu
- Department of Internal Medicine, Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xian Xue
- Department of Internal Medicine, Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaoli Sun
- Department of Internal Medicine, Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Weichun He
- Department of Internal Medicine, Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Junwei Yang
- Department of Internal Medicine, Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chunsun Dai
- Department of Internal Medicine, Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
23
|
Agostinelli C, Carloni S, Limarzi F, Righi S, Laginestra MA, Musuraca G, Fiorentino M, Napolitano R, Cuneo A, Vergara D, Zinzani PL, Sabattini E, Pileri SA, De Matteis S. The emerging role of GSK-3β in the pathobiology of classical Hodgkin lymphoma. Histopathology 2017; 71:72-80. [PMID: 28208230 DOI: 10.1111/his.13189] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 01/09/2017] [Accepted: 02/14/2017] [Indexed: 02/06/2023]
Abstract
AIMS Glycogen synthase kinase-3 beta (GSK-3β) is a serine/threonine kinase involved in glycogen metabolism, cell cycle progression, differentiation, embryogenesis, migration, metabolism, survival and cellular senescence. Its main biological function is to inhibit β-catenin by sequestration and promotion of its proteasomal degradation in the Wnt canonical pathway; however, GSK-3β interacts with multiple signalling pathways, and aberrant expression of the enzyme was reported in many solid neoplasms. This study aimed to investigate the biological relevance of GSK-3β in classical Hodgkin lymphomas (cHL). METHODS AND RESULTS We analysed the functional status of GSK-3β enzyme in cHL by using antibodies raised against fixation-resistant epitopes of phospho Y216 GSK-3β (active form), phospho S9 GSK-3β (inactive form) and β-catenin protein. We first detected the pY216 GSK-3β active form of the enzyme in 100 of 100 (100%) of the cases, and in line with the latter expression profile, the β-catenin protein was found in only 12 of 100 (12%) of the samples. As reported previously in bladder cancer, pancreatic adenocarcinoma and chronic lymphocytic leukaemia, we showed an aberrant nuclear localization in the neoplastic clone of active pY216 GSK-3β in 78 of 100 (78%) of cHL cases. CONCLUSIONS We demonstrated the activation of GSK-3β in cHL resulting in inhibition of the Wnt/β-catenin signal cascade and the aberrant accumulation of its activated form in nuclei of Hodgkin Reed-Sternberg and Hodgkin cells. These findings may be relevant for future clinical studies, identifying GSK-3β as a potential therapeutic target for cHL.
Collapse
Affiliation(s)
- Claudio Agostinelli
- Hematopathology Unit, Department of Experimental, Diagnostic and Specialty Medicine, Institute of Hematology 'L. e A. Seragnoli', University of Bologna, Bologna, Italy
| | - Silvia Carloni
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori IRCCS, Meldola, Italy
| | - Francesco Limarzi
- Hematopathology Unit, Department of Experimental, Diagnostic and Specialty Medicine, Institute of Hematology 'L. e A. Seragnoli', University of Bologna, Bologna, Italy
| | - Simona Righi
- Hematopathology Unit, Department of Experimental, Diagnostic and Specialty Medicine, Institute of Hematology 'L. e A. Seragnoli', University of Bologna, Bologna, Italy
| | - Maria Antonella Laginestra
- Hematopathology Unit, Department of Experimental, Diagnostic and Specialty Medicine, Institute of Hematology 'L. e A. Seragnoli', University of Bologna, Bologna, Italy
| | - Gerardo Musuraca
- Hematology Unit, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori IRCCS, Meldola, Italy
| | - Michelangelo Fiorentino
- Pathology Service, Addarii Institute of Oncology, S-Orsola-Malpighi Hospital, Bologna, Italy
| | - Roberta Napolitano
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori IRCCS, Meldola, Italy
| | - Antonio Cuneo
- Department of Medical Sciences, University of Ferrara-Arcispedale Sant'Anna, Ferrara, Italy
| | - Daniele Vergara
- Laboratory of Clinical Proteomic, 'Giovanni Paolo II' Hospital, ASL-Lecce, Italy
| | - Pier Luigi Zinzani
- Hemathology Section, Department of Experimental, Diagnostic and Specialty Medicine, Bologna University School of Medicine, Bologna, Italy
| | - Elena Sabattini
- Hematopathology Unit, Department of Experimental, Diagnostic and Specialty Medicine, Institute of Hematology 'L. e A. Seragnoli', University of Bologna, Bologna, Italy
| | - Stefano A Pileri
- Professor Alma Mater Bologna University, Bologna, Italy.,Hematopathology Unit, European Institute of Oncology, Milan, Italy
| | - Serena De Matteis
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori IRCCS, Meldola, Italy
| |
Collapse
|
24
|
Wu C, Zhang HF, Gupta N, Alshareef A, Wang Q, Huang YH, Lewis JT, Douglas DN, Kneteman NM, Lai R. A positive feedback loop involving the Wnt/β-catenin/MYC/Sox2 axis defines a highly tumorigenic cell subpopulation in ALK-positive anaplastic large cell lymphoma. J Hematol Oncol 2016; 9:120. [PMID: 27821172 PMCID: PMC5100098 DOI: 10.1186/s13045-016-0349-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 10/28/2016] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND We have previously described the existence of two phenotypically distinct cell subsets in ALK-positive anaplastic large cell lymphoma (ALK + ALCL) based on their differential responsiveness to a Sox2 reporter (SRR2), with reporter-responsive (RR) cells being more tumorigenic and chemoresistant than reporter-unresponsive (RU) cells. However, the regulator(s) of RU/RR dichotomy are not identified. In this study, we aim to delineate the key regulator(s) of RU/RR dichotomy. METHODS JASPER motif match analysis was used to identify the putative factors binding to SRR2 sequence. SRR2 probe pull-down assay and quantitate real-time PCR were performed to analyze the regulation of Sox2 transcriptional activity by MYC. Methylcellulose colony formation assay, chemoresistance to doxorubicin and mouse xenograft study were performed to investigate the biological functions of MYC. PCR array and western blotting were executed to study related signaling pathways that regulate MYC expression. Immunofluorescence and immunohistochemistry assay were initiated to evaluate the expression of MYC and its correlation with its regulator by chi-square test analysis in human primary tumor cells. RESULTS We identified MYC as a potential regulator of RU/RR dichotomy. In support of its role, MYC was highly expressed in RR cells compared to RU cells, and inhibition of MYC substantially decreased the Sox2/SRR2 binding, Sox2 transcriptional activity, chemoresistance, and methylcellulose colony formation. In contrast, enforced expression of MYC in RU cells conferred the RR phenotype. The Wnt/β-catenin pathway, a positive regulator of MYC, was highly active in RR but not RU cells. While inhibition of this pathway in RR cells substantially decreased MYC expression and SRR2 reporter activity, experimental activation of this pathway led to the opposite effects in RU cells. Collectively, our results support a model in which a positive feedback loop involving Wnt/β-catenin/MYC and Sox2 contributes to the RR phenotype. In a mouse xenograft model, RU cells stably transfected with MYC showed upregulation of the Wnt/β-catenin/MYC/Sox2 axis and increased tumorigenecity. Correlating with these findings, there was a significant correlation between the expression of active β-catenin and MYC in ALK + ALCL primary tumor cells. CONCLUSIONS A positive feedback loop involving the Wnt/β-catenin/MYC/Sox2 axis defines a highly tumorigenic cell subset in ALK + ALCL.
Collapse
Affiliation(s)
- Chengsheng Wu
- Department of Laboratory Medicine and Pathology, 5142J Katz Group Centre for Pharmacy and Health Research, University of Alberta, Edmonton, Alberta T6G 1Z2 Canada
| | - Hai-Feng Zhang
- Department of Laboratory Medicine and Pathology, 5142J Katz Group Centre for Pharmacy and Health Research, University of Alberta, Edmonton, Alberta T6G 1Z2 Canada
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, China
| | - Nidhi Gupta
- Department of Laboratory Medicine and Pathology, 5142J Katz Group Centre for Pharmacy and Health Research, University of Alberta, Edmonton, Alberta T6G 1Z2 Canada
| | - Abdulraheem Alshareef
- Department of Laboratory Medicine and Pathology, 5142J Katz Group Centre for Pharmacy and Health Research, University of Alberta, Edmonton, Alberta T6G 1Z2 Canada
| | - Qian Wang
- Department of Laboratory Medicine and Pathology, 5142J Katz Group Centre for Pharmacy and Health Research, University of Alberta, Edmonton, Alberta T6G 1Z2 Canada
| | - Yung-Hsing Huang
- Department of Laboratory Medicine and Pathology, 5142J Katz Group Centre for Pharmacy and Health Research, University of Alberta, Edmonton, Alberta T6G 1Z2 Canada
| | - Jamie T. Lewis
- Department of Surgery, University of Alberta, Edmonton, Alberta Canada
| | - Donna N. Douglas
- Department of Surgery, University of Alberta, Edmonton, Alberta Canada
| | | | - Raymond Lai
- Department of Laboratory Medicine and Pathology, 5142J Katz Group Centre for Pharmacy and Health Research, University of Alberta, Edmonton, Alberta T6G 1Z2 Canada
- Department of Oncology, University of Alberta, Edmonton, Alberta Canada
- DynaLIFEDX Medical Laboratories, Edmonton, Alberta Canada
| |
Collapse
|
25
|
Alshareef A, Zhang HF, Huang YH, Wu C, Zhang JD, Wang P, El-Sehemy A, Fares M, Lai R. The use of cellular thermal shift assay (CETSA) to study Crizotinib resistance in ALK-expressing human cancers. Sci Rep 2016; 6:33710. [PMID: 27641368 PMCID: PMC5027386 DOI: 10.1038/srep33710] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 09/01/2016] [Indexed: 12/14/2022] Open
Abstract
Various forms of oncogenic ALK proteins have been identified in various types of human cancers. While Crizotinib, an ALK inhibitor, has been found to be therapeutically useful against a subset of ALK(+) tumours, clinical resistance to this drug has been well recognized and the mechanism of this phenomenon is incompletely understood. Using the cellular thermal shift assay (CETSA), we measured the Crizotinib-ALK binding in a panel of ALK(+) cell lines, and correlated the findings with the ALK structure and its interactions with specific binding proteins. The Crizotinib IC50 significantly correlated with Crizotinib-ALK binding. The suboptimal Crizotinib-ALK binding in Crizotinib-resistant cells is not due to the cell-specific environment, since transfection of NPM-ALK into these cells revealed substantial Crizotinib-NPM-ALK binding. Interestingly, we found that the resistant cells expressed higher protein level of β-catenin and siRNA knockdown restored Crizotinib-ALK binding (correlated with a significant lowering of IC50). Computational analysis of the crystal structures suggests that β-catenin exerts steric hindrance to the Crizotinib-ALK binding. In conclusion, the Crizotinib-ALK binding measurable by CETSA is useful in predicting Crizotinib sensitivity, and Crizotinib-ALK binding is in turn dictated by the structure of ALK and some of its binding partners.
Collapse
Affiliation(s)
- Abdulraheem Alshareef
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada.,Department of Applied Medical Sciences, Taibah University, Almedinah, P.O. Box 41477, Saudi Arabia
| | - Hai-Feng Zhang
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V5Z 1L3, Canada
| | - Yung-Hsing Huang
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Chengsheng Wu
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Jing Dong Zhang
- Department of Medical Oncology, The First hospital of China Medical University, Shen Yang 110001, P. R. China
| | - Peng Wang
- Department of Internal Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Ahmed El-Sehemy
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | | | - Raymond Lai
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada.,Department of Oncology, University of Alberta, Edmonton, Alberta, Canada.,DynaLIFEDx Medical Laboratories, Edmonton, Canada
| |
Collapse
|
26
|
Park DS, Yoon GH, Lee HS, Choi SC. Capsaicin inhibits the Wnt/β-catenin signaling pathway by down-regulating PP2A. Biochem Biophys Res Commun 2016; 478:455-461. [DOI: 10.1016/j.bbrc.2016.06.075] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 06/15/2016] [Indexed: 02/01/2023]
|
27
|
Miles RR, Shah RK, Frazer JK. Molecular genetics of childhood, adolescent and young adult non-Hodgkin lymphoma. Br J Haematol 2016; 173:582-96. [PMID: 26969846 DOI: 10.1111/bjh.14011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Molecular genetic abnormalities are ubiquitous in non-Hodgkin lymphoma (NHL), but genetic changes are not yet used to define specific lymphoma subtypes. Certain recurrent molecular genetic abnormalities in NHL underlie molecular pathogenesis and/or are associated with prognosis or represent potential therapeutic targets. Most molecular genetic studies of B- and T-NHL have been performed on adult patient samples, and the relevance of many of these findings for childhood, adolescent and young adult NHL remains to be demonstrated. In this review, we focus on NHL subtypes that are most common in young patients and emphasize features actually studied in younger NHL patients. This approach highlights what is known about NHL genetics in young patients but also points to gaps that remain, which will require cooperative efforts to collect and share biological specimens for genomic and genetic analyses in order to help predict outcomes and guide therapy in the future.
Collapse
Affiliation(s)
- Rodney R Miles
- Department of Pathology, University of Utah and ARUP Laboratories, Salt Lake City, UT, USA
| | - Rikin K Shah
- Jimmy Everest Section of Pediatric Hematology-Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - J Kimble Frazer
- E.L. and Thelma Gaylord Chair in Pediatric Oncology, Jimmy Everest Section of Pediatric Hematology-Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
28
|
Yang P, Li Z, Li H, Lu Y, Wu H, Li Z. Pyruvate kinase M2 accelerates pro-inflammatory cytokine secretion and cell proliferation induced by lipopolysaccharide in colorectal cancer. Cell Signal 2015; 27:1525-32. [PMID: 25778902 DOI: 10.1016/j.cellsig.2015.02.032] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Accepted: 02/28/2015] [Indexed: 01/22/2023]
Abstract
Surgery-induced inflammation has been associated with cancer recurrence and metastasis in colorectal cancer (CRC). As a constituent of gram-negative bacteria, lipopolysaccharide (LPS) is frequently abundant in the peri-operative window. However, the definite roles of LPS in tumour progression remain elusive. Here we reported that LPS treatment increased PKM expression through activation of NF-κB signalling pathway, and knockdown of PKM reversed LPS-induced TNF-α, IL-1β production and cell proliferation in CRC cells. We further showed that the PKM2 but not PKM1 mediated the pro-inflammatory and proliferative effects of LPS. Interestingly, LPS promoted PKM2 binding to the STAT3 promoter to enhance STAT3 expression and its subsequent nuclear translocation. Depletion of STAT3 decreased PKM2-induced TNF-α and IL-1β expression, indicating that STAT3 mediates the pro-inflammatory effects of PKM2. Furthermore, it is the protein kinase activity but not the pyruvate kinase activity of PKM2 that is required for inflammatory cytokine production. Collectively, our findings reveal the NF-κB-PKM2-STAT3 axis as a novel mechanism for the regulation of TNF-α and IL-1β production and suggest the importance of PKM2 as a key inflammatory mediator in inflammatory microenvironment.
Collapse
Affiliation(s)
- Peng Yang
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Zongwei Li
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Hanqing Li
- College of Life Science, Shanxi University, Taiyuan 030006, China
| | - Yangxu Lu
- College of Life Science, Shanxi University, Taiyuan 030006, China
| | - Haili Wu
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Zhuoyu Li
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan 030006, China; College of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| |
Collapse
|
29
|
Uehara Y, Inoue M, Fukuda K, Yamakoshi H, Hosoi Y, Kanda H, Oshima M, Iwabuchi Y, Shibata H. Inhibition of β-catenin and STAT3 with a curcumin analog suppresses gastric carcinogenesis in vivo. Gastric Cancer 2015; 18:774-83. [PMID: 25331984 PMCID: PMC4572076 DOI: 10.1007/s10120-014-0434-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 09/14/2014] [Indexed: 02/07/2023]
Abstract
BACKGROUND Potent chemotherapy for advanced gastric cancer has not been completely established. Many molecularly targeted therapies are under investigation, but their therapeutic outcomes are not promising because they do not target specific and/or critical targets of gastric carcinogenesis. Although the molecular basis of gastric carcinogenesis remains poorly understood, nuclear localization of β-catenin was observed in approximately 50 % of gastric cancer specimens. Recent studies have suggested that activation of signal transducer and activator of transcription 3 (STAT3) contributes to gastric carcinogenesis in a mouse model. A newly synthesized curcumin analog has inhibitory potential against β-catenin and STAT3. METHODS Using a transgenic mouse model of gastric cancer in which β-catenin, cyclooxygenase 2, and microsomal prostaglandin E synthase 1 activation is induced, we examined a curcumin analog with the most enhanced potential for treating gastric cancer through oral administration. Inhibition of these targets was demonstrated using microarray and immunohistochemical analyses. RESULTS The curcumin analog GO-Y031 decreased the incidence of gastric carcinogenesis to 54.5 % of that of the control (50.0 % vs 91.7 %, p = 0.043), and tumor size was reduced to 51.6 % of that of the control (1.6 mm vs 3.1 mm, p = 0.03). β-Catenin and STAT3 levels were suppressed to 26.2 % (p = 0.00023) and 44.8 % (p = 0.025), respectively, of those of the control. Moreover, macrophage infiltration was suppressed with GO-Y031. CONCLUSION β-Catenin and STAT3 can be pharmacologically inhibited in vivo with a curcumin analog, which effectively inhibits β-catenin and STAT3.
Collapse
Affiliation(s)
- Yoshihiko Uehara
- Department of Cell Biology, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Masahiro Inoue
- Department of Clinical Oncology, Graduate School of Medicine, Akita University, Hondo 1-1-1, Akita, 010-8543, Japan
| | - Koji Fukuda
- Department of Clinical Oncology, Graduate School of Medicine, Akita University, Hondo 1-1-1, Akita, 010-8543, Japan
| | - Hiroyuki Yamakoshi
- Department of Organic Chemistry, Graduate School of Pharmaceutical Science, Tohoku University, Sendai, Japan
| | - Yoshio Hosoi
- Department of Cell Biology, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Hiroaki Kanda
- Division of Pathology, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Masanobu Oshima
- Division of Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Yoshiharu Iwabuchi
- Department of Organic Chemistry, Graduate School of Pharmaceutical Science, Tohoku University, Sendai, Japan
| | - Hiroyuki Shibata
- Department of Clinical Oncology, Graduate School of Medicine, Akita University, Hondo 1-1-1, Akita, 010-8543, Japan.
| |
Collapse
|
30
|
Ibrahem S, Al-Ghamdi S, Baloch K, Muhammad B, Fadhil W, Jackson D, Nateri AS, Ilyas M. STAT3 paradoxically stimulates β-catenin expression but inhibits β-catenin function. Int J Exp Pathol 2014; 95:392-400. [PMID: 25348333 PMCID: PMC4285465 DOI: 10.1111/iep.12102] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 09/01/2014] [Indexed: 12/21/2022] Open
Abstract
Wnt signalling and the signal transducer and activator of transcription 3 (STAT3) are oncogenic signalling pathways which are deregulated in colorectal cancer (CRC). Here we investigated the interaction of these two pathways. Firstly, we investigated biochemical interaction by inhibiting STAT3 and β-catenin (through gene knock-down and dominant-negative TCF4 expression) in nine CRC cell lines. β-catenin inhibition did not affect STAT3 levels, whereas STAT3 knock-down resulted in reduced β-catenin mRNA and protein levels. The reduction in β-catenin protein was not prevented by proteasome inhibition, and IL6-induced STAT3 activation resulted in increased β-catenin mRNA. This suggests that STAT3 positively regulates β-catenin (at a transcriptional level) and evaluation of 44 CRCs by immunostaining supported this by showing an association between nuclear STAT3 expression and nuclear β-catenin (P = 0.022). We tested the functional interaction between STAT3 and Wnt signalling by knocking down STAT3 and β-catenin individually and in combination. Knock-down of β-catenin and STAT3 individually inhibited cell proliferation (P < 0. 001 for each) through G1 arrest. However, simultaneous knock-down of STAT3 and β-catenin had a significantly weaker effect than knock-down of β-catenin alone (P < 0.01). Knock-down of STAT3 and β-catenin, individually and together, inhibited cell motility (P < 0.001) without evidence of interaction. We conclude that STAT3 regulates β-catenin but β-catenin does not regulate STAT3. The STAT3/β-catenin interaction is complex but may reduce the proliferative activity of β-catenin possibly by taking β-catenin protein beyond the optimal level. This may indicate biological differences in tumours where both STAT3 and β-catenin are activated compared to those where only one is activated.
Collapse
Affiliation(s)
- Salih Ibrahem
- Academic Unit of Molecular Pathology, Nottingham University, Nottingham, UK
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Murga-Zamalloa C, Lim MS. ALK-driven tumors and targeted therapy: focus on crizotinib. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2014; 7:87-94. [PMID: 24715763 PMCID: PMC3977456 DOI: 10.2147/pgpm.s37504] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Receptor tyrosine kinases have emerged as promising therapeutic targets for a diverse set of tumors. Overactivation of the tyrosine kinase anaplastic lymphoma kinase (ALK) has been reported in several types of malignancies such as anaplastic large cell lymphoma, inflammatory myofibroblastic tumor, neuroblastoma, and non-small-cell lung carcinoma. Further characterization of the molecular role of ALK has revealed an oncogenic signaling signature that results in tumor dependence on ALK. ALK-positive tumors display a different behavior than their ALK-negative counterparts; however, the specific role of ALK in some of these tumors remains to be elucidated. Although more studies are required to establish selective targeting of ALK as a definitive therapeutic option, initial trials have shown extraordinary results in the majority of cases.
Collapse
Affiliation(s)
| | - Megan S Lim
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
32
|
Liu J, Ruan B, You N, Huang Q, Liu W, Dang Z, Xu W, Zhou T, Ji R, Cao Y, Li X, Wang D, Tao K, Dou K. Downregulation of miR-200a induces EMT phenotypes and CSC-like signatures through targeting the β-catenin pathway in hepatic oval cells. PLoS One 2013; 8:e79409. [PMID: 24260215 PMCID: PMC3829824 DOI: 10.1371/journal.pone.0079409] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 09/20/2013] [Indexed: 12/23/2022] Open
Abstract
Hepatocellular carcinoma (HCC) can be derived from malignant transformed adult hepatic progenitor cells. However, the regulatory factors and molecular mechanisms underlying the process are not well defined. Our previous microRNA (miRNA) microarray analysis revealed a significant decrease of miR-200a level in F344 rat HCC side population (SP) fraction cells versus their normal counterparts. In the present study, we further investigated the effect of miR-200a on hepatic oval cell (HOC) phenotypes. We first confirmed downregulated miR-200a levels in rat hepatoma cells compared with WB-F344 cells. Next, by lentivirus-mediated loss-of-function studies, we showed that stable knockdown of miR-200a confers a mesenchymal phenotype to WB-F344 cells, including an elongated cell morphology, enhanced cell migration ability and expression of epithelial mesenchymal transition (EMT)-representative markers. Concomitantly, several cancer stem cell (CSC)-like traits appeared in these cells, which exhibit enhanced spheroid-forming capacity, express putative hepatic CSC markers and display superior resistance to chemotherapeutic drugs in vitro. Furthermore, bioinformatics analysis, luciferase assays and western blot analysis identified β-catenin (CTNNB1) as a direct and functional target of miR-200a. Knockdown of miR-200a partially activated Wnt/β-catenin signaling, and silencing of β-catenin functionally attenuated anti-miR-200a effects in vitro in WB-F344 cells. At length, in vivo xenograft assay demonstrated the acquisition of tumorigenicity of WB-F344 cells after miR-200a siliencing. Collectively, our findings indicate that miR-200a may function as an important regulatory factor in neoplastic transition of HOCs by targeting the β-catenin pathway.
Collapse
Affiliation(s)
- Jie Liu
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, People’s Republic of China
| | - Bai Ruan
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, People’s Republic of China
| | - Nan You
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, People’s Republic of China
- Department of Hepatobiliary Surgery, Xinqiao Hospital, Third Military Medical University, Chongqing, People’s Republic of China
| | - Qike Huang
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, People’s Republic of China
| | - Weihui Liu
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, People’s Republic of China
- PLA Center of General Surgery, General Hospital of Chengdu Army Region, Chengdu, People’s Republic of China
| | - Zheng Dang
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, People’s Republic of China
| | - Weihua Xu
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, People’s Republic of China
| | - Ti Zhou
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, People’s Republic of China
| | - Ru Ji
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, People’s Republic of China
| | - Yang Cao
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, People’s Republic of China
| | - Xia Li
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, People’s Republic of China
| | - Desheng Wang
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, People’s Republic of China
| | - Kaishan Tao
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, People’s Republic of China
- * E-mail: (KD): (KT)
| | - Kefeng Dou
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, People’s Republic of China
- * E-mail: (KD): (KT)
| |
Collapse
|
33
|
Peyser ND, Grandis JR. Critical analysis of the potential for targeting STAT3 in human malignancy. Onco Targets Ther 2013; 6:999-1010. [PMID: 23935373 PMCID: PMC3735336 DOI: 10.2147/ott.s47903] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The signal transducer and activator of transcription (STAT) family of proteins was originally discovered in the context of normal cell biology where they function to transduce intracellular and extracellular signals to the nucleus, ultimately leading to transcription of specific target genes and downstream phenotypic effects. It was quickly appreciated that the STATs, especially STAT3, play a fundamental role in human malignancy. In contrast to normal biology in which transient STAT3 signaling is strictly regulated by a tightly coordinated network of activators and deactivators, STAT3 is constitutively activated in human malignancies. Constitutive STAT3 signaling has been associated with many cancerous phenotypes across nearly all human cancers, including the upregulation of cell growth, proliferation, survival, and motility, among others. Studies involving candidate preclinical STAT3 inhibitors have further demonstrated that the reversal of these phenotypes results from pharmacologic or genetic inhibition of STAT3, suggesting that STAT3 may be a promising target for clinical interventions. Indeed, a Phase 0 clinical trial involving a STAT3 decoy oligonucleotide demonstrated that STAT3 is a drug-gable target in human tumors. Because of the ubiquity of overactive STAT3 in cancer, its role in promoting a wide variety of cancerous phenotypes, and the strong clinical and preclinical studies performed to date, STAT3 represents a promising target for the development of inhibitors for the treatment of human cancers.
Collapse
Affiliation(s)
- Noah D Peyser
- Departments of Otolaryngology and Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | |
Collapse
|
34
|
d’Amore ES, Visco C, Menin A, Famengo B, Bonvini P, Lazzari E. STAT3 Pathway Is Activated in ALK-positive Large B-cell Lymphoma Carrying SQSTM1-ALK Rearrangement and Provides a Possible Therapeutic Target. Am J Surg Pathol 2013; 37:780-6. [DOI: 10.1097/pas.0b013e318287791f] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
35
|
Lai R, Ingham RJ. The pathobiology of the oncogenic tyrosine kinase NPM-ALK: a brief update. Ther Adv Hematol 2013; 4:119-31. [PMID: 23610619 DOI: 10.1177/2040620712471553] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Extensive research has been carried out in the past two decades to study the pathobiology of nucleophosmin-anaplastic lymphoma kinase (NPM-ALK), which is an oncogenic fusion protein found exclusively in a specific type of T-cell lymphoid malignancy, namely ALK-positive anaplastic large cell lymphoma. Results from these studies have provided highly useful insights into the mechanisms by which a constitutively tyrosine kinase, such as NPM-ALK, promotes tumorigenesis. Several previous publications have comprehensively summarized the advances in this field. In this review, we provide readers with a brief update on specific areas of NPM-ALK pathobiology. In the first part, the NPM-ALK/signal transducer and activator of transcription 3 (STAT3) signaling axis is discussed, with an emphasis on the existence of multiple biochemical defects that have been shown to amplify the oncogenic effects of this signaling axis. Specifically, findings regarding JAK3, SHP1 and the stimulatory effects of several cytokines including interleukin (IL)-9, IL-21 and IL-22 are summarized. New concepts stemming from recent observations regarding the functional interactions among the NPM-ALK/STAT3 axis, β catenin and glycogen synthase kinase 3β will be postulated. Lastly, new mechanisms by which the NPM-ALK/STAT3 axis promotes tumorigenesis, such as its modulations of Twist1, hypoxia-induced factor 1α, CD274, will be described. In the second part, we summarize recent data generated by mass spectrometry studies of NPM-ALK, and use MSH2 and heat shock proteins as examples to illustrate the use of mass spectrometry data in stimulating new research in this field. In the third part, the evolving field of microRNA in the context of NPM-ALK biology is discussed.
Collapse
Affiliation(s)
- Raymond Lai
- Department of Laboratory Medicine and Pathology, Cross Cancer Institute and University of Alberta, Rm 2338, Cross Cancer Institute, 11560 University Avenue, Edmonton, Alberta, Canada T6G 1Z2
| | | |
Collapse
|
36
|
Wan R, Guo R, Chen C, Jin L, Zhu C, Zhang Q, Xu Y, Li S. Urocortin increased LPS-induced endothelial permeability by regulating the cadherin-catenin complex via corticotrophin-releasing hormone receptor 2. J Cell Physiol 2013; 228:1295-303. [PMID: 23168683 DOI: 10.1002/jcp.24286] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 11/06/2012] [Indexed: 12/18/2022]
Abstract
Urocortin (Ucn1), a member of corticotrophin-releasing hormone (CRH) family, has been reported to be upregulated in inflammatory diseases and function as an autocrine or paracrine inflammatory mediator. Growing evidence shows that Ucn1 increases the endothelial permeability in inflammatory conditions; however, the detailed mechanisms are not clear. In the present study, we investigated the mechanisms of increased endothelial permeability by Ucn1 in human umbilical vein endothelial cells (HUVECs) exposed to lipopolysaccharide (LPS). Pretreatment of HUVECs with Ucn1 increased the endothelial cell permeability, which was augmented by LPS synergistically. Significant downregulation of VE-cadherin expression was also observed. Moreover, Ucn1 increased phosphorylation of protein kinase D (PKD) and heat shock protein 27 (HSP27) in a time- and CRHR(2) -dependent manner. Inhibition of PKD and HSP27 drastically attenuated Ucn1-induced downregulation of VE-cadherin expression. Further investigations demonstrated that Ucn1 phosphorylated β-catenin at Ser552 to disrupt the cadherin-catenin complex and hence promote the disassociation of β-catenin and VE-cadherin. Disassociation of β-catenin and VE-cadherin resulted in decreased VE-cadherin expression while on the contrary β-catenin was increased, which may due to the inactivation of GSK-3β. Increased β-catenin translocated into the nucleus and subsequently bound to TCF/LEF site, contributing to the elevated expression of vascular endothelial growth factor (VEGF). The above effects of Ucn1 were completely reversed by CRHR(2) receptor blocker, antisauvagine-30. Taken together, our data suggest that Ucn1 increase LPS-induced endothelial permeability by disrupting the VE-cadherin-β-catenin complex via activation of CRHR(2) and PKD-HSP27 signaling pathway.
Collapse
Affiliation(s)
- Rong Wan
- Department of Pharmacology, Jiangsu Provincial Key Lab of Cardiovascular Diseases and Molecular Intervention, Nanjing Medical University, Nanjing, P.R. China
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Armanious H, Gelebart P, Anand M, Lai R. Identification of a novel crosstalk between casein kinase 2α and NPM-ALK in ALK-positive anaplastic large cell lymphoma. Cell Signal 2013; 25:381-8. [DOI: 10.1016/j.cellsig.2012.11.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 11/05/2012] [Indexed: 12/16/2022]
|
38
|
Zhang JX, Zhang J, Yan W, Wang YY, Han L, Yue X, Liu N, You YP, Jiang T, Pu PY, Kang CS. Unique genome-wide map of TCF4 and STAT3 targets using ChIP-seq reveals their association with new molecular subtypes of glioblastoma. Neuro Oncol 2013; 15:279-89. [PMID: 23295773 DOI: 10.1093/neuonc/nos306] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Aberrant activation of beta-catenin/TCF4 and STAT3 signaling in glioblastoma multiforme (GBM) has been reported. However, the molecular mechanisms related to this process are still poorly understood. METHODS Genome-wide screening of the binding characteristics of the transcription factors TCF4 and STAT3 in GBM cells was performed by chromatin immunoprecipitation sequencing (ChIP-seq) assay. Hierarchical clustering was used to analyze the association of TCF4 and STAT3 coregulated genes with The Cancer Genome Atlas (TCGA) GBM subtypes (classical, mesenchymal, neural, and proneural). New molecular classification of GBM was proposed and validated in Western and Asian populations. RESULTS We identified 1250 overlapping putative target genes that were coregulated by TCF4 and STAT3. Further, the coregulated genes had the potential to guide TCGA GBM subtypes. Finally, we proposed a new molecular classification of GBM into 2 subtypes (proneural-like and mesenchymal-like) and showed that the new classification could be applied to both Western and Asian populations. In addition, the GBM response to temozolomide therapy differed depending on its subtype; mesenchymal-like GBM benefited, while there was no benefit for proneural-like GBM. CONCLUSIONS This is the first comprehensive study to combine a ChIP-seq assay of TCF4 and STAT3 and data mining of patient cohorts to derive molecular subtypes of GBM.
Collapse
Affiliation(s)
- Jun-Xia Zhang
- Tianjin Medical University General Hospital, Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Fragoso MA, Patel AK, Nakamura REI, Yi H, Surapaneni K, Hackam AS. The Wnt/β-catenin pathway cross-talks with STAT3 signaling to regulate survival of retinal pigment epithelium cells. PLoS One 2012; 7:e46892. [PMID: 23056515 PMCID: PMC3464242 DOI: 10.1371/journal.pone.0046892] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Accepted: 09/10/2012] [Indexed: 12/23/2022] Open
Abstract
Wnt/β-catenin signaling is an essential pathway that regulates numerous cellular processes, including cell survival. The molecular mechanisms contributing to pro-survival Wnt signaling are mostly unknown. Signal transducer and activator of transcription proteins (STATs) are a well-described family of transcription factors. STAT3 induces expression of anti-apoptotic genes in many tissues and is a downstream mediator of protective growth factors and cytokines. In this study, we investigated whether pro-survival Wnt signaling is mediated by STAT3. The Wnt3a ligand activated Wnt signaling in the retinal pigment epithelium ARPE-19 cell line and significantly increased the viability of cells exposed to oxidative stress. Furthermore, Wnt3a increased STAT3 activation and nuclear translocation, as measured by an antibody against phosphorylated STAT3. Reducing STAT3 levels with siRNA eliminated Wnt3a-dependent protection from oxidative stress. Together, these data demonstrate a previously unknown link between Wnt3a-mediated activation of STAT3 and cell survival, and indicate cross-talk between two important pro-survival signaling pathways.
Collapse
Affiliation(s)
- Miryam A. Fragoso
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Amit K. Patel
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Rei E. I. Nakamura
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Hyun Yi
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Krishna Surapaneni
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Abigail S. Hackam
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, United States of America
- * E-mail:
| |
Collapse
|
40
|
Disheveled proteins promote cell growth and tumorigenicity in ALK-positive anaplastic large cell lymphoma. Cell Signal 2012; 25:295-307. [PMID: 23022960 DOI: 10.1016/j.cellsig.2012.09.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Revised: 09/12/2012] [Accepted: 09/24/2012] [Indexed: 01/21/2023]
Abstract
Our previous oligonucleotide array studies revealed that ALK-positive anaplastic large cell lymphoma (ALK(+)ALCL) express high levels of the disheveled proteins (Dvls), a family of proteins that is integral to the Wnt signaling pathways. In this study, we assessed whether the Dvls are important in the pathogenesis of ALK(+)ALCL. By Western blotting, Dvl-2 and Dvl-3 were found to be highly expressed in ALK(+)ALCL cell lines and patient samples. The higher molecular weight forms, consistent with phosphorylated/active Dvl proteins, were observed in these lysates. siRNA knock-down of Dvls did not affect the Wnt canonical pathway, as assessed by the β-catenin protein levels and nuclear localization. In contrast, the same treatment led to changes in the transcriptional activity of NFAT and the phosphorylation status of Src, both of which are known to be regulated by the Wnt non-canonical signaling pathways in other cell types. Coupled with these biochemical changes, there was a significant decrease in cell growth and soft agar colony formation. NPM-ALK, the oncogenic tyrosine kinase characteristic of ALK(+)ALCL, was found to bind to the Dvls and enhance their tyrosine phosphorylation. In conclusion, our data suggest that the Dvls contribute to the pathogenesis of ALK(+)ALCL via signaling in the Wnt non-canonical pathways. To our knowledge, this is the first report demonstrating a physical and functional interaction between the Dvls and an oncogenic tyrosine kinase.
Collapse
|
41
|
Aberrant expression and biological significance of Sox2, an embryonic stem cell transcriptional factor, in ALK-positive anaplastic large cell lymphoma. Blood Cancer J 2012; 2:e82. [PMID: 22885405 PMCID: PMC3432482 DOI: 10.1038/bcj.2012.27] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Sox2 (sex-determining region Y-Box) is one of the master transcriptional factors that are important in maintaining the pluripotency of embryonic stem cells (ESCs). In line with this function, Sox2 expression is largely restricted to ESCs and somatic stem cells. We report that Sox2 is expressed in cell lines and tumor samples derived from ALK-positive anaplastic large cell lymphoma (ALK+ALCL), for which the normal cellular counterpart is believed to be mature T-cells. The expression of Sox2 in ALK+ALCL can be attributed to nucleophosmin-anaplastic lymphoma kinase (NPM-ALK), the oncogenic fusion protein carrying a central pathogenetic role in these tumors. By confocal microscopy, Sox2 protein was detectable in virtually all cells in ALK+ALCL cell lines. However, the transcriptional activity of Sox2, as assessed using a Sox2-responsive reporter construct, was detectable only in a small proportion of cells. Importantly, downregulation of Sox2 using short interfering RNA in isolated Sox2active cells, but not Sox2inactive cells, resulted in a significant decrease in cell growth, invasiveness and tumorigenicity. To conclude, ALK+ALCL represents the first example of a hematologic malignancy that aberrantly expresses Sox2, which represents a novel mechanism by which NPM-ALK mediates tumorigenesis. We also found that the transcriptional activity and oncogenic effects of Sox2 can be heterogeneous in cancer cells.
Collapse
|
42
|
Zhang K, Zhang J, Han L, Pu P, Kang C. Wnt/beta-catenin signaling in glioma. J Neuroimmune Pharmacol 2012; 7:740-9. [PMID: 22454041 DOI: 10.1007/s11481-012-9359-y] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Accepted: 03/15/2012] [Indexed: 01/29/2023]
Abstract
Extensive data have shown that Wnt/beta-catenin signaling is associated with various disease pathologies, including an important role in tumorigenesis. Here, we review the regulation of Wnt/beta-catenin signaling in glioma, with particular focus on the expression signatures of the main components in Wnt/beta-catenin signaling, the role of key factors in Wnt/beta-catenin signaling, and crosstalk with other signaling pathways. Finally, we discuss the involvement of microRNAs in Wnt/beta-catenin signaling in glioma. This review reveals new insights into the role of Wnt/beta-catenin signaling in gliomagenesis, and highlights new therapeutic approaches for glioma, based on the modulation of the Wnt/beta-catenin pathway.
Collapse
Affiliation(s)
- Kailiang Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, People's Republic of China
| | | | | | | | | |
Collapse
|
43
|
Harada Y, Ishii I, Hatake K, Kasahara T. Pyrvinium pamoate inhibits proliferation of myeloma/erythroleukemia cells by suppressing mitochondrial respiratory complex I and STAT3. Cancer Lett 2011; 319:83-8. [PMID: 22210382 DOI: 10.1016/j.canlet.2011.12.034] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Revised: 12/09/2011] [Accepted: 12/20/2011] [Indexed: 12/11/2022]
Abstract
Pyrvinium pamoate (PP), a classical anthelminthic, potently inhibited proliferation and STAT3 Tyr705 phosphorylation of human myeloma (U266B1 and PCM6)/erythroleukemia (HEL 92.1.7) cells. PCM6 cell proliferation was markedly impaired by STAT3 siRNA knockdown. PP inhibited ATP production/O(2) consumption in those three cells and mitochondrial respiratory complex (I+III, but not II+III) activity in mouse kidney mitochondrial fractions. PP inhibition of ATP production, STAT3 Tyr705 phosphorylation, and proliferation was absent in mitochondrial DNA-deficient HEL 92.1.7-ρ(0) cells. Moreover, PP acted synergistically with dexamethasone to inhibit PCM6 cell proliferation. In conclusion, we identified PP as a potential anticancer drug directed against mitochondrial respiratory complex I/STAT3.
Collapse
Affiliation(s)
- Yasuo Harada
- Department of Biochemistry, Keio University Graduate School of Pharmaceutical Sciences, Tokyo 105-8512, Japan
| | | | | | | |
Collapse
|
44
|
New developments in the pathology of malignant lymphoma: a review of the literature published from November 2010–January 2011. J Hematop 2011. [DOI: 10.1007/s12308-011-0086-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|