1
|
Pasupuleti SK, Kapur R. The impact of obesity-induced inflammation on clonal hematopoiesis. Curr Opin Hematol 2024; 31:193-198. [PMID: 38640133 PMCID: PMC11197996 DOI: 10.1097/moh.0000000000000819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2024]
Abstract
PURPOSE OF REVIEW This review meticulously delves into existing literature and recent findings to elucidate the intricate link between obesity and clonal hematopoiesis of indeterminate potential (CHIP) associated clonal hematopoiesis. It aims to enhance our comprehension of this multifaceted association, offering insights into potential avenues for future research and therapeutic interventions. RECENT FINDINGS Recent insights reveal that mutations in CHIP-associated genes are not limited to symptomatic patients but are also present in asymptomatic individuals. This section focuses on the impact of obesity-induced inflammation and fatty bone marrow (FBM) on the development of CHIP-associated diseases. Common comorbidities such as obesity, diabetes, and infection, fostering pro-inflammatory environments, play a pivotal role in the acceleration of these pathologies. Our research underscores a notable association between CHIP and an increased waist-to-hip ratio (WHR), emphasizing the link between obesity and myeloid leukemia. Recent studies highlight a strong correlation between obesity and myeloid leukemias in both children and adults, with increased risks and poorer survival outcomes in overweight individuals. SUMMARY We discuss recent insights into how CHIP-associated pathologies respond to obesity-induced inflammation, offering implications for future studies in the intricate field of clonal hematopoiesis.
Collapse
Affiliation(s)
| | - Reuben Kapur
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indianapolis, Indiana, USA
- Department of Microbiology & Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
2
|
Wu D, Zhang K, Khan FA, Pandupuspitasari NS, Guan K, Sun F, Huang C. A comprehensive review on signaling attributes of serine and serine metabolism in health and disease. Int J Biol Macromol 2024; 260:129607. [PMID: 38253153 DOI: 10.1016/j.ijbiomac.2024.129607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 01/17/2024] [Accepted: 01/17/2024] [Indexed: 01/24/2024]
Abstract
Serine is a metabolite with ever-expanding metabolic and non-metabolic signaling attributes. By providing one‑carbon units for macromolecule biosynthesis and functional modifications, serine and serine metabolism largely impinge on cellular survival and function. Cancer cells frequently have a preference for serine metabolic reprogramming to create a conducive metabolic state for survival and aggressiveness, making intervention of cancer-associated rewiring of serine metabolism a promising therapeutic strategy for cancer treatment. Beyond providing methyl donors for methylation in modulation of innate immunity, serine metabolism generates formyl donors for mitochondrial tRNA formylation which is required for mitochondrial function. Interestingly, fully developed neurons lack the machinery for serine biosynthesis and rely heavily on astrocytic l-serine for production of d-serine to shape synaptic plasticity. Here, we recapitulate recent discoveries that address the medical significance of serine and serine metabolism in malignancies, mitochondrial-associated disorders, and neurodegenerative pathologies. Metabolic control and epigenetic- and posttranslational regulation of serine metabolism are also discussed. Given the metabolic similarities between cancer cells, neurons and germ cells, we further propose the relevance of serine metabolism in testicular homeostasis. Our work provides valuable hints for future investigations that will lead to a deeper understanding of serine and serine metabolism in cellular physiology and pathology.
Collapse
Affiliation(s)
- Di Wu
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Kejia Zhang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Faheem Ahmed Khan
- Research Center for Animal Husbandry, National Research and Innovation Agency, Jakarta Pusat 10340, Indonesia
| | | | - Kaifeng Guan
- School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China.
| | - Fei Sun
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China.
| | - Chunjie Huang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China.
| |
Collapse
|
3
|
Tsilingiris D, Vallianou NG, Spyrou N, Kounatidis D, Christodoulatos GS, Karampela I, Dalamaga M. Obesity and Leukemia: Biological Mechanisms, Perspectives, and Challenges. Curr Obes Rep 2024; 13:1-34. [PMID: 38159164 PMCID: PMC10933194 DOI: 10.1007/s13679-023-00542-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/06/2023] [Indexed: 01/03/2024]
Abstract
PURPOSE OF REVIEW To examine the epidemiological data on obesity and leukemia; evaluate the effect of obesity on leukemia outcomes in childhood acute lymphoblastic leukemia (ALL) survivors; assess the potential mechanisms through which obesity may increase the risk of leukemia; and provide the effects of obesity management on leukemia. Preventive (diet, physical exercise, obesity pharmacotherapy, bariatric surgery) measures, repurposing drugs, candidate therapeutic agents targeting oncogenic pathways of obesity and insulin resistance in leukemia as well as challenges of the COVID-19 pandemic are also discussed. RECENT FINDINGS Obesity has been implicated in the development of 13 cancers, such as breast, endometrial, colon, renal, esophageal cancers, and multiple myeloma. Leukemia is estimated to account for approximately 2.5% and 3.1% of all new cancer incidence and mortality, respectively, while it represents the most frequent cancer in children younger than 5 years. Current evidence indicates that obesity may have an impact on the risk of leukemia. Increased birthweight may be associated with the development of childhood leukemia. Obesity is also associated with worse outcomes and increased mortality in leukemic patients. However, there are several limitations and challenges in meta-analyses and epidemiological studies. In addition, weight gain may occur in a substantial number of childhood ALL survivors while the majority of studies have documented an increased risk of relapse and mortality among patients with childhood ALL and obesity. The main pathophysiological pathways linking obesity to leukemia include bone marrow adipose tissue; hormones such as insulin and the insulin-like growth factor system as well as sex hormones; pro-inflammatory cytokines, such as IL-6 and TNF-α; adipocytokines, such as adiponectin, leptin, resistin, and visfatin; dyslipidemia and lipid signaling; chronic low-grade inflammation and oxidative stress; and other emerging mechanisms. Obesity represents a risk factor for leukemia, being among the only known risk factors that could be prevented or modified through weight loss, healthy diet, and physical exercise. Pharmacological interventions, repurposing drugs used for cardiometabolic comorbidities, and bariatric surgery may be recommended for leukemia and obesity-related cancer prevention.
Collapse
Affiliation(s)
- Dimitrios Tsilingiris
- First Department of Internal Medicine, University Hospital of Alexandroupolis, Democritus University of Thrace, Dragana, 68100, Alexandroupolis, Greece
| | - Natalia G Vallianou
- Department of Internal Medicine, Evangelismos General Hospital, 45-47 Ipsilantou str, 10676, Athens, Greece
| | - Nikolaos Spyrou
- Tisch Cancer Institute Icahn School of Medicine at Mount Sinai, 1190 One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Dimitris Kounatidis
- Department of Internal Medicine, Evangelismos General Hospital, 45-47 Ipsilantou str, 10676, Athens, Greece
| | | | - Irene Karampela
- 2nd Department of Critical Care, Medical School, University of Athens, Attikon General University Hospital, 1 Rimini Str, 12462, Athens, Greece
| | - Maria Dalamaga
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias str, 11527, Athens, Greece.
| |
Collapse
|
4
|
Yamada HY, Rao CV. High-Fat Diet Induced PPARδ Promotes Self-renewal of Preleukemic Progenitors in Development of Acute Promyelocytic Leukemia. Cancer Prev Res (Phila) 2024; 17:47-49. [PMID: 38303649 DOI: 10.1158/1940-6207.capr-23-0469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/05/2023] [Accepted: 12/05/2023] [Indexed: 02/03/2024]
Abstract
From risk association between acute promyelocytic leukemia (APL) and obese-overweight individuals, Mazzarella and colleagues hypothesized that a high-fat diet (HFD) promotes development of APL. Using mouse APL model (PML-RARα knock-in), the authors demonstrated that linoleic acid drives activation of PPARδ in hematopoietic progenitors, and that activation of PPARδ increases proliferation of progenitor cells with PML-RARA expression toward APL. Involvements of PPARδ on regulation of stem cell renewal and proliferation were shown in colorectal cancers earlier, but this study newly demonstrates in hematopoietic progenitors, while suggesting use of diet rich in linoleic acid with caution. See related article by Mazzarella et al., p. 59.
Collapse
Affiliation(s)
- Hiroshi Y Yamada
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hem-Onc Section, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Chinthalapally V Rao
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hem-Onc Section, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- VA Medical Center, Oklahoma City, Oklahoma
| |
Collapse
|
5
|
Pallavi R, Gatti E, Durfort T, Stendardo M, Ravasio R, Leonardi T, Falvo P, Duso BA, Punzi S, Xieraili A, Polazzi A, Verrelli D, Trastulli D, Ronzoni S, Frascolla S, Perticari G, Elgendy M, Varasi M, Colombo E, Giorgio M, Lanfrancone L, Minucci S, Mazzarella L, Pelicci PG. Caloric restriction leads to druggable LSD1-dependent cancer stem cells expansion. Nat Commun 2024; 15:828. [PMID: 38280853 PMCID: PMC10821871 DOI: 10.1038/s41467-023-44348-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 12/10/2023] [Indexed: 01/29/2024] Open
Abstract
Caloric Restriction (CR) has established anti-cancer effects, but its clinical relevance and molecular mechanism remain largely undefined. Here, we investigate CR's impact on several mouse models of Acute Myeloid Leukemias, including Acute Promyelocytic Leukemia, a subtype strongly affected by obesity. After an initial marked anti-tumor effect, lethal disease invariably re-emerges. Initially, CR leads to cell-cycle restriction, apoptosis, and inhibition of TOR and insulin/IGF1 signaling. The relapse, instead, is associated with the non-genetic selection of Leukemia Initiating Cells and the downregulation of double-stranded RNA (dsRNA) sensing and Interferon (IFN) signaling genes. The CR-induced adaptive phenotype is highly sensitive to pharmacological or genetic ablation of LSD1, a lysine demethylase regulating both stem cells and dsRNA/ IFN signaling. CR + LSD1 inhibition leads to the re-activation of dsRNA/IFN signaling, massive RNASEL-dependent apoptosis, and complete leukemia eradication in ~90% of mice. Importantly, CR-LSD1 interaction can be modeled in vivo and in vitro by combining LSD1 ablation with pharmacological inhibitors of insulin/IGF1 or dual PI3K/MEK blockade. Mechanistically, insulin/IGF1 inhibition sensitizes blasts to LSD1-induced death by inhibiting the anti-apoptotic factor CFLAR. CR and LSD1 inhibition also synergize in patient-derived AML and triple-negative breast cancer xenografts. Our data provide a rationale for epi-metabolic pharmacologic combinations across multiple tumors.
Collapse
Affiliation(s)
- Rani Pallavi
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Elena Gatti
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Tiphanie Durfort
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Massimo Stendardo
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Roberto Ravasio
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Tommaso Leonardi
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia, Milan, Italy
| | - Paolo Falvo
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Bruno Achutti Duso
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Simona Punzi
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Aobuli Xieraili
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Andrea Polazzi
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Doriana Verrelli
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Deborah Trastulli
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Simona Ronzoni
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Simone Frascolla
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Giulia Perticari
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Mohamed Elgendy
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- Medical Clinic I, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Mildred-Scheel Early Career Center, National Center for Tumor Diseases Dresden (NCT/UCC) University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- Cancer Cell Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, CZ-14220, Czech Republic
| | - Mario Varasi
- IFOM ETS - The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Emanuela Colombo
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
- Department of Hemato-Oncology, Universita' Statale di Milano, Milan, Italy
| | - Marco Giorgio
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Luisa Lanfrancone
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Saverio Minucci
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
- Department of Hemato-Oncology, Universita' Statale di Milano, Milan, Italy
| | - Luca Mazzarella
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy.
| | - Pier Giuseppe Pelicci
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy.
- Department of Hemato-Oncology, Universita' Statale di Milano, Milan, Italy.
| |
Collapse
|
6
|
Amini M, Sharma R, Jani C. Gender differences in leukemia outcomes based on health care expenditures using estimates from the GLOBOCAN 2020. Arch Public Health 2023; 81:151. [PMID: 37605241 PMCID: PMC10440892 DOI: 10.1186/s13690-023-01154-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 07/18/2023] [Indexed: 08/23/2023] Open
Abstract
BACKGROUND Leukemia contributes significantly to the global cancer burden. Due to the importance of evaluating improvements in leukemia outcomes, the current study aimed to examine the variations in mortality-to-incidence ratio (MIR) between genders and association of MIR with the health expenditures in selected countries. METHODS The leukemia incidence and mortality rates were extracted from the GLOBOCAN 2020 database. In total, 56 countries were included based on the data quality reports and the exclusion of missing data. The associations of MIR and changes in MIR over time ([Formula: see text]MIR) with the human development index (HDI), current health expenditure (CHE) per capita, and current health expenditure as a percentage of gross domestic product (CHE/GDP) were investigated using Spearman's rank correlation coefficient. RESULTS In 2020, an estimated 474,519 new cases of leukemia were diagnosed globally, and 311,594 deaths occurred due to the disease. Male patients exhibited a higher incidence and mortality of leukemia compared to females on a global scale. Our analysis revealed that the MIRs were the highest and lowest in Egypt (0.79) and the United States (0.29), respectively. Remarkably, countries with greater HDI, higher CHE per capita, and a higher CHE/GDP tended to have lower MIR in both genders and within gender-specific subgroups. The δMIR demonstrated a significant negative correlation with HDI and CHE per capita, whereas no significant associations were observed among female patients for CHE/GDP. Besides, all three indicators showed trends towards negative correlations with δMIR among males, though these trends were not statistically significant (p>0.05). CONCLUSIONS Generally, leukemia MIRs tended to be most favorable (i.e., lower) in countries with high HDI and high health expenditure. The gender differences observed in leukemia outcomes may reflect the potential influence of social, material, behavioral, and biological factors.
Collapse
Affiliation(s)
- Maedeh Amini
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Rajesh Sharma
- Humanities and Social Sciences, National Institute of Technology Kurukshetra, Kurukshetra, India
| | - Chinmay Jani
- Mount Aubrun Hospital, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
7
|
Foran JM, Sun Z, Lai C, Fernandez HF, Cripe LD, Ketterling RP, Racevskis J, Luger SM, Paietta E, Lazarus HM, Zhang Y, Bennett JM, Levine RL, Rowe JM, Litzow MR, Tallman MS. Obesity in adult acute myeloid leukemia is not associated with inferior response or survival even when dose capping anthracyclines: An ECOG-ACRIN analysis. Cancer 2023; 129:2479-2490. [PMID: 37185873 PMCID: PMC10932613 DOI: 10.1002/cncr.34807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 02/04/2023] [Accepted: 03/02/2023] [Indexed: 05/17/2023]
Abstract
BACKGROUND Obesity (body mass index [BMI] ≥30 kg/m2 ) is an important epidemiological risk factor for developing acute myeloid leukemia (AML). Therefore, the authors studied the association of obesity with clinical and genetic phenotype and its impact on outcome in adults with AML. METHODS The authors analyzed BMI in 1088 adults who were receiving intensive remission induction and consolidation therapy in two prospective, randomized therapeutic clinical trials of the Eastern Cooperative Oncology Group-American College of Radiology Imaging Network: E1900 (ClinicalTrials.gov identifier NCT00049517; patients younger than 60 years) and E3999 (ClinicalTrials.gov identifier NCT00046930; patients aged 60 years or older). RESULTS Obesity was prevalent at diagnosis (33%) and, compared with nonobesity, was associated with intermediate-risk cytogenetics group (p = .008), poorer performance status (p = .01), and a trend toward older age (p = .06). Obesity was not associated with somatic mutations among a selected 18-gene panel that was tested in a subset of younger patients. Obesity was not associated with clinical outcome (including complete remission, early death, or overall survival), and the authors did not identify any patient subgroup that had inferior outcomes based on BMI. Obese patients were significantly more likely to receive <90% of the intended daunorubicin dose despite protocol specification, particularly in the E1900 high-dose (90 mg/m2 ) daunorubicin arm (p = .002); however, this did not correlate with inferior overall survival on multivariate analysis (hazard ratio, 1.39; 95% confidence interval, 0.90-2.13; p = .14). CONCLUSIONS Obesity is associated with unique clinical and disease-related phenotypic features in AML and may influence physician treatment decisions regarding daunorubicin dosing. However, the current study demonstrates that obesity is not a factor in survival, and strict adherence to body surface area-based dosing is not necessary because dose adjustments do not affect outcomes.
Collapse
Affiliation(s)
- James M. Foran
- Division of Hematology and Medical Oncology and Mayo Clinic Cancer Center, Mayo Clinic, Jacksonville, Florida
| | - Zhuoxin Sun
- ECOG-ACRIN Biostatistics Center, Dana Farber Cancer Institute, Boston, Massachusetts
| | - Catherine Lai
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Hugo F. Fernandez
- Blood & Marrow Transplantation, H. Lee Moffitt Cancer Center, Tampa, Florida
| | - Larry D. Cripe
- Indiana University Melvin and Bren Simon Cancer Center, Indianapolis, Indiana
| | - Rhett P. Ketterling
- Department of Laboratory Medicine and Pathology and Division of Hematology, Mayo Clinic, Rochester, Minnesota
| | | | - Selina M. Luger
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | | | - Yanming Zhang
- Cytogenetics Laboratory, Memorial Sloan Kettering Cancer Center, New York, New York
| | - John M. Bennett
- Hematopathology Division, Department of Pathology, James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York
| | - Ross L. Levine
- Cytogenetics Laboratory, Memorial Sloan Kettering Cancer Center, New York, New York
| | | | - Mark R. Litzow
- Department of Laboratory Medicine and Pathology and Division of Hematology, Mayo Clinic, Rochester, Minnesota
| | - Martin S. Tallman
- Northwestern University Feinberg School of Medicine, Robert H.Lurie Comprehensive Cancer Center, Chicago, Illinois
| |
Collapse
|
8
|
Kayser S, Conneely SE. Management of Acute Promyelocytic Leukemia at Extremes of Age. Cancers (Basel) 2023; 15:3637. [PMID: 37509298 PMCID: PMC10377629 DOI: 10.3390/cancers15143637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/30/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Tailored treatment with all-trans retinoic acid (ATRA) and arsenic trioxide (ATO) has revolutionized the outcome of acute promyelocytic leukemia (APL) from a uniformly fatal disease to one of the most curable malignant diseases in humans. Due to its high efficacy, ATO/ATRA is the standard first-line therapy in younger adult, non-high-risk APL patients. However, early death is still a major issue in APL, particularly in older patients. Thus, rapid diagnostics, immediate access to ATRA-based therapy, and supportive care are of utmost importance. Nevertheless, challenging situations occur, particularly in patients excluded from controlled studies with clinical knowledge mainly based on case reports and registries. Besides the treatment of newly diagnosed patients, managing toxicities and complications remains challenging. This review discusses the approach to the treatment of APL in elderly and pediatric patients.
Collapse
Affiliation(s)
- Sabine Kayser
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
- NCT Trial Center, National Center of Tumor Diseases, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Shannon E Conneely
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, TX 77030, USA
| |
Collapse
|
9
|
Pasupuleti SK, Ramdas B, Burns SS, Palam LR, Kanumuri R, Kumar R, Pandhiri TR, Dave UP, Yellapu NK, Zhou X, Zhang C, Sandusky GE, Yu Z, Honigberg MC, Bick AG, Griffin GK, Niroula A, Ebert BL, Paczesny S, Natarajan P, Kapur R. Obesity-induced inflammation exacerbates clonal hematopoiesis. J Clin Invest 2023; 133:e163968. [PMID: 37071471 PMCID: PMC10231999 DOI: 10.1172/jci163968] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 04/07/2023] [Indexed: 04/19/2023] Open
Abstract
Characterized by the accumulation of somatic mutations in blood cell lineages, clonal hematopoiesis of indeterminate potential (CHIP) is frequent in aging and involves the expansion of mutated hematopoietic stem and progenitor cells (HSC/Ps) that leads to an increased risk of hematologic malignancy. However, the risk factors that contribute to CHIP-associated clonal hematopoiesis (CH) are poorly understood. Obesity induces a proinflammatory state and fatty bone marrow (FBM), which may influence CHIP-associated pathologies. We analyzed exome sequencing and clinical data for 47,466 individuals with validated CHIP in the UK Biobank. CHIP was present in 5.8% of the study population and was associated with a significant increase in the waist-to-hip ratio (WHR). Mouse models of obesity and CHIP driven by heterozygosity of Tet2, Dnmt3a, Asxl1, and Jak2 resulted in exacerbated expansion of mutant HSC/Ps due in part to excessive inflammation. Our results show that obesity is highly associated with CHIP and that a proinflammatory state could potentiate the progression of CHIP to more significant hematologic neoplasia. The calcium channel blockers nifedipine and SKF-96365, either alone or in combination with metformin, MCC950, or anakinra (IL-1 receptor antagonist), suppressed the growth of mutant CHIP cells and partially restored normal hematopoiesis. Targeting CHIP-mutant cells with these drugs could be a potential therapeutic approach to treat CH and its associated abnormalities in individuals with obesity.
Collapse
Affiliation(s)
| | - Baskar Ramdas
- Herman B Wells Center for Pediatric Research, Department of Pediatrics and
| | - Sarah S. Burns
- Herman B Wells Center for Pediatric Research, Department of Pediatrics and
| | | | - Rahul Kanumuri
- Herman B Wells Center for Pediatric Research, Department of Pediatrics and
| | - Ramesh Kumar
- Herman B Wells Center for Pediatric Research, Department of Pediatrics and
| | | | - Utpal P. Dave
- Division of Hematology/Oncology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Nanda Kumar Yellapu
- Department of Biostatistics and Data Science, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Xinyu Zhou
- Department of Medical and Molecular Genetics and
| | - Chi Zhang
- Department of Medical and Molecular Genetics and
| | - George E. Sandusky
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Zhi Yu
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, Massachusetts, USA
- Program in Medical and Population Genetics and the Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
| | - Michael C. Honigberg
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Alexander G. Bick
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Gabriel K. Griffin
- Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Epigenomics Program, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
| | - Abhishek Niroula
- Program in Medical and Population Genetics and the Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
| | - Benjamin L. Ebert
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Sophie Paczesny
- Department of Microbiology and Immunology, Medical University of South Carolina, Charlestown, South Carolina, USA
| | - Pradeep Natarajan
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, Massachusetts, USA
- Program in Medical and Population Genetics and the Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Reuben Kapur
- Herman B Wells Center for Pediatric Research, Department of Pediatrics and
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
10
|
Liang X, Fu W, Peng Y, Duan J, Zhang T, Fan D, Hong W, Qi X, Wu C, He Y, Yu W, Zhou J, Guo P, Bai H, Zhang Q. Lycorine induces apoptosis of acute myeloid leukemia cells and inhibits triglyceride production via binding and targeting FABP5. Ann Hematol 2023; 102:1073-1086. [PMID: 36943465 DOI: 10.1007/s00277-023-05169-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 03/06/2023] [Indexed: 03/23/2023]
Abstract
Acute myeloid leukemia (AML) is the most common hematopoietic malignancy with abnormal lipid metabolism. However, currently available information on the involvement of the alterations in lipid metabolism in AML development is limited. In this study, we demonstrate that FABP5 expression facilitates AML cell viability, protects AML cells from apoptosis, and maintains triglyceride production. Our bioinformatics analysis revealed that FABP5 expression was upregulated and correlated with unfavorable overall survival of AML patients. FABP5 expression may be used to distinguish normal and AML with high accuracy. FABP5-based risk score was an independent risk factor for AML patients. AML patients with highly expressed FABP5 predicted resistance to drugs. In vitro study showed that FABP5 expression was remarkably elevated in primary AML blasts and an AML cell line. Silencing FABP5 expression attenuated AML cell viability, reduced triglyceride production and lipid droplet accumulation, and induced apoptosis. We utilized AutoDock online tool to identify lycorine as an FABP5 inhibitor by binding FABP5 at amino acid residues Ile54, Thr56, Thr63, and Arg109. Lycorine treatment downregulated the expression levels of FABP5 and its target PPARγ, impaired AML cell viability, triggered apoptosis, and reduced triglyceride production in AML cells. These results demonstrate that FABP5 is critical for AML cell survival and highlight a novel metabolic vulnerability for AML.
Collapse
Affiliation(s)
- Xinming Liang
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, School of Basic Medical Science, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Wenli Fu
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, School of Basic Medical Science, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - YuHui Peng
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, School of Basic Medical Science, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Juanjuan Duan
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, School of Basic Medical Science, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Ting Zhang
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, School of Basic Medical Science, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Daogui Fan
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, School of Basic Medical Science, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Wei Hong
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, School of Basic Medical Science, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Xiaolan Qi
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, School of Basic Medical Science, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - ChangXue Wu
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, School of Basic Medical Science, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Yan He
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, School of Basic Medical Science, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Wenfeng Yu
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, School of Basic Medical Science, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Jing Zhou
- School of Biology and Engineering, Guizhou Medical University, Guiyang, China
| | - Pengxiang Guo
- Department of Hematology, Guizhou Provincial People's Hospital, Guizhou University, Guiyang, 550002, Guizhou, China.
| | - Hua Bai
- Medical Laboratory Center, the Third Affiliated Hospital of Guizhou Medical University, Duyun, 558000, Guizhou, China.
| | - Qifang Zhang
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, School of Basic Medical Science, Guizhou Medical University, Guiyang, 550004, Guizhou, China.
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research On Common Chronic Diseases, Guiyang, 550004, Guizhou, China.
| |
Collapse
|
11
|
Gene expression associations with body mass index in the Multi-Ethnic Study of Atherosclerosis. Int J Obes (Lond) 2023; 47:109-116. [PMID: 36463326 PMCID: PMC9990473 DOI: 10.1038/s41366-022-01240-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 12/04/2022]
Abstract
BACKGROUND/OBJECTIVES Obesity, defined as excessive fat accumulation that represents a health risk, is increasing in adults and children, reaching global epidemic proportions. Body mass index (BMI) correlates with body fat and future health risk, yet differs in prediction by fat distribution, across populations and by age. Nonetheless, few genetic studies of BMI have been conducted in ancestrally diverse populations. Gene expression association with BMI was assessed in the Multi-Ethnic Study of Atherosclerosis (MESA) in four self-identified race and ethnicity (SIRE) groups to identify genes associated with obesity. SUBJECTS/METHODS RNA-sequencing was performed on 1096 MESA participants (37.8% white, 24.3% Hispanic, 28.4% African American, and 9.5% Chinese American) and linear models were used to assess the association of expression from each gene for its effect on BMI, adjusting for age, sex, sequencing center, study site, five expression and four genetic principal components in each self-identified race group. Sample-size-weighted meta-analysis was performed to identify genes with BMI-associated expression across ancestry groups. RESULTS Within individual SIRE groups, there were zero to three genes whose expression is significantly (p < 1.97 × 10-6) associated with BMI. Across all groups, 45 genes were identified by meta-analysis whose expression was significantly associated with BMI, explaining 29.7% of BMI variation. The 45 genes are expressed in a variety of tissues and cell types and are enriched for obesity-related processes including erythrocyte function, oxygen binding and transport, and JAK-STAT signaling. CONCLUSIONS We have identified genes whose expression is significantly associated with obesity in a multi-ethnic cohort. We have identified novel genes associated with BMI as well as confirmed previously identified genes from earlier genetic analyses. These novel genes and their biological pathways represent new targets for understanding the biology of obesity as well as new therapeutic intervention to reduce obesity and improve global public health.
Collapse
|
12
|
Muacevic A, Adler JR. Poison With a Purpose: A Case Report on Arsenic Cardiotoxicity and Obesity. Cureus 2022; 14:e33185. [PMID: 36726885 PMCID: PMC9886272 DOI: 10.7759/cureus.33185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/30/2022] [Indexed: 01/01/2023] Open
Abstract
Acute promyelocytic leukemia (APL) is a form of leukemia in which there is an arrest of the maturation of the myeloid lineage at the promyelocyte stage. Although there is high early mortality due to coagulopathy, APL is now a curable disease with the use of arsenic trioxide (ATO) and all-trans-retinoic acid (ATRA). Arsenic is weight-based for the treatment of APL, and many toxicities are dose-dependent, although there are no guidelines regarding dosing adjustments for obese patients. We present a case of a 34-year-old male with obesity and APL who developed arsenic-induced QTc prolongation and symptomatic sinus tachycardia while receiving treatment. Further research is needed to guide appropriate dosing for obese patients to determine if ideal body weight dosing is able to provide similar cure rates with fewer adverse events.
Collapse
|
13
|
Maaoui F, Moumni I, Arboix-Calas F, Safra I, Menif S. Emotional and behavioral attitudes of Tunisian youth towards childhood leukemia: health education and primary prevention in perspective. BMC Public Health 2022; 22:2105. [PMID: 36397037 PMCID: PMC9670582 DOI: 10.1186/s12889-022-14596-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 11/11/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Given the increasing blood cancer incidence in Tunisia and recent discoveries proving the involvement of environmental factors, this study examined the environmental health literacy (EHL) of Tunisian secondary school students concerning not only this disease, but also their emotional and behavioral attitudes towards leukemia risks. METHODS A cross-sectional survey was conducted among Tunisian youths (N = 372, 16-20 years; 68% females, 32% males). Data collection took place in four representative public secondary schools in the North, Center, and South of Tunisia. Students completed a paper and pencil questionnaire and described their EHL level of blood cancer, as well as their attitudes and interests in this disease. The statistical software (SPSS, v.25.0) was used to analyze the data collected. RESULTS The results indicated low EHL levels of leukemia. Most youths failed to identify all the leukemogenic (except tobacco and pollution) and non- leukemogenic risk factors. Pesticide use and exposure to low frequency electromagnetic radiation were not considered risk factors. Proximity to heavy-traffic roads and benzene exposure were not perceived by youth as risk factors. Despite these low levels, most participants were interested in having more information about leukemia and cancers in general. CONCLUSION This investigation shows a lack of knowledge about leukemia. Low EHL levels will incite educational actors and curriculum designers to optimize content and innovate ICT adapted to this environmental health challenge.
Collapse
Affiliation(s)
- Foued Maaoui
- Laboratory of molecular and cellular hematology, Pasteur Institute of Tunis, Tunis, Tunisia.
- ISEFC, Virtual University of Tunis, Tunis, Tunisia.
| | - Imen Moumni
- Laboratory of molecular and cellular hematology, Pasteur Institute of Tunis, Tunis, Tunisia
| | | | - Ines Safra
- Laboratory of molecular and cellular hematology, Pasteur Institute of Tunis, Tunis, Tunisia
| | - Samia Menif
- Laboratory of molecular and cellular hematology, Pasteur Institute of Tunis, Tunis, Tunisia
| |
Collapse
|
14
|
Kincaid JWR, Weiss G, Hill-Baskin AE, Schmidt HM, Omoijuanfo O, Thompson CL, Beck RC, Berger NA. Obesity accelerates acute promyelocytic leukemia in mice and reduces sex differences in latency and penetrance. Obesity (Silver Spring) 2022; 30:1420-1429. [PMID: 35610936 PMCID: PMC9256765 DOI: 10.1002/oby.23435] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/08/2022] [Accepted: 03/14/2022] [Indexed: 11/10/2022]
Abstract
OBJECTIVE Obesity has emerged as a prominent risk factor for multiple serious disease states, including a variety of cancers, and is increasingly recognized as a primary contributor to preventable cancer risk. However, few studies of leukemia have been conducted in animal models of obesity. This study sought to characterize the impact of obesity, diet, and sex in a murine model of acute promyelocytic leukemia (APL). METHODS Male and female C57BL/6J.mCG+/PR mice, genetically predisposed to sporadic APL development, and C57BL/6J (wild type) mice were placed on either a high-fat diet (HFD) or a low-fat diet (LFD) for up to 500 days. RESULTS Relative to LFD-fed mice, HFD-fed animals displayed increased disease penetrance and shortened disease latency as indicated by accelerated disease onset. In addition, a diet-responsive sex difference in APL penetrance and incidence was identified, with LFD-fed male animals displaying increased penetrance and shortened latency relative to female counterparts. In contrast, both HFD-fed male and female mice displayed 100% disease penetrance and insignificant differences in disease latency, indicating that the sexual dimorphism was reduced through HFD feeding. CONCLUSIONS Obesity and obesogenic diet promote the development of APL in vivo, reducing sexual dimorphisms in disease latency and penetrance.
Collapse
Affiliation(s)
- John W R Kincaid
- Center for Science, Health & Society, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Nutrition, Case Western Reserve University, Cleveland, Ohio, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, USA
| | - Gretchen Weiss
- Center for Science, Health & Society, Case Western Reserve University, Cleveland, Ohio, USA
| | - Anne E Hill-Baskin
- Center for Science, Health & Society, Case Western Reserve University, Cleveland, Ohio, USA
| | - Heidi M Schmidt
- Center for Science, Health & Society, Case Western Reserve University, Cleveland, Ohio, USA
| | - Ovwoioise Omoijuanfo
- Center for Science, Health & Society, Case Western Reserve University, Cleveland, Ohio, USA
| | - Cheryl L Thompson
- Department of Nutrition, Case Western Reserve University, Cleveland, Ohio, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, USA
| | - Rose C Beck
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Nathan A Berger
- Center for Science, Health & Society, Case Western Reserve University, Cleveland, Ohio, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, USA
- Departments of Medicine, Biochemistry, Genetics, and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
15
|
Laurie KL, Lee P, Rademaker A, Alonzo TA, Wang YC, Powell BL, Wu D, Larson R, Kutny M, Gregory J, Hijiya N, Feusner J. Obesity in children with acute promyelocytic leukemia: What is its prevalence and prognostic significance? Pediatr Blood Cancer 2022; 69:e29613. [PMID: 35322524 PMCID: PMC9553282 DOI: 10.1002/pbc.29613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 11/19/2021] [Accepted: 12/04/2021] [Indexed: 11/10/2022]
Abstract
OBJECTIVE To compare outcomes of obese and nonobese pediatric patients with acute promyelocytic leukemia (APL) from the Cancer and Leukemia Group B trial (CALGB) 9710 and the Children's Oncology Group trial AAML0631. METHODS Data including demographics, adverse events, overall and event-free survival (EFS) were analyzed. RESULTS The prevalence of obesity was 34% on C9710 and 35% on AAML0631. There was significantly lower overall and EFS in the obese population on multivariable analysis on AAML0631 but not on CALGB 9710. Eleven patients died during therapy or in follow-up. CONCLUSION The prevalence of obesity is higher in pediatric patients with APL compared to the general population. The decreased EFS and OS in obese patients on AAML0631 suggest that the presence of obesity can influence outcomes using the most current treatment. These findings support the need for further research on the potential role of obesity in pediatric APL leukemogenesis.
Collapse
Affiliation(s)
- Kathryn L. Laurie
- Department of Pediatric Hematology/Oncology, Goryeb Children’s Hospital of Morristown Medical Center, Morristown, NJ
| | | | - Alfred Rademaker
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Todd A. Alonzo
- Department of Preventive Medicine, University of Southern California, Los Angeles, CA
| | - Yi-Cheng Wang
- Department of Biostatistics, University of Southern California, Los Angeles, CA
| | - Bayard L. Powell
- Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC
| | - Diana Wu
- St. Jude Children’s Research Hospital, Memphis, TN
| | | | - Matthew Kutny
- Department of Pediatrics, Division of Hematology/Oncology, University of Alabama at Birmingham, Birmingham, AL
| | | | - Nobuko Hijiya
- Division of Hematology/Oncology/Stem Cell Transplant, Columbia University Medical Center, New York, NY
| | - James Feusner
- Division of Pediatric Hematology Oncology, Children’s Hospital & Research Center Oakland, Benioff Children’s Hospital Oakland, Oakland, CA
| |
Collapse
|
16
|
Tsilingiris D, Nasiri-Ansari N, Spyrou N, Magkos F, Dalamaga M. Management of Hematologic Malignancies in the Era of COVID-19 Pandemic: Pathogenetic Mechanisms, Impact of Obesity, Perspectives, and Challenges. Cancers (Basel) 2022; 14:2494. [PMID: 35626099 PMCID: PMC9139192 DOI: 10.3390/cancers14102494] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/14/2022] [Accepted: 05/16/2022] [Indexed: 02/04/2023] Open
Abstract
The COVID-19 pandemic brought about an unprecedented societal and healthcare system crisis, considerably affecting healthcare workers and patients, particularly those with chronic diseases. Patients with hematologic malignancies faced a variety of challenges, pertinent to the nature of an underlying hematologic disorder itself as well as its therapy as a risk factor for severe SARS-CoV-2 infection, suboptimal vaccine efficacy and the need for uninterrupted medical observation and continued therapy. Obesity constitutes another factor which was acknowledged since the early days of the pandemic that predisposed people to severe COVID-19, and shares a likely causal link with the pathogenesis of a broad spectrum of hematologic cancers. We review here the epidemiologic and pathogenetic features that obesity and hematologic malignancies share, as well as potential mutual pathophysiological links predisposing people to a more severe SARS-CoV-2 course. Additionally, we attempt to present the existing evidence on the multi-faceted crucial challenges that had to be overcome in this diverse patient group and discuss further unresolved questions and future challenges for the management of hematologic malignancies in the era of COVID-19.
Collapse
Affiliation(s)
- Dimitrios Tsilingiris
- First Department of Propaedeutic Internal Medicine, School of Medicine, National and Kapodistrian University of Athens, Laiko General Hospital, 17 St Thomas Street, 11527 Athens, Greece
| | - Narjes Nasiri-Ansari
- Department of Biological Chemistry, School of Medicine, National and Kapodistrian University of Athens, 75 Mikras Asias, 11527 Athens, Greece
| | - Nikolaos Spyrou
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Faidon Magkos
- Department of Nutrition, Exercise, and Sports, University of Copenhagen, DK-2200 Frederiksberg, Denmark
| | - Maria Dalamaga
- Department of Biological Chemistry, School of Medicine, National and Kapodistrian University of Athens, 75 Mikras Asias, 11527 Athens, Greece
| |
Collapse
|
17
|
Kansal R. Fructose Metabolism and Acute Myeloid Leukemia. EXPLORATORY RESEARCH AND HYPOTHESIS IN MEDICINE 2022; 7:25-38. [DOI: 10.14218/erhm.2021.00042] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
18
|
Gurnari C, Divona M, Voso MT. What are the considerations for the pharmacotherapeutic management of acute promyelocytic leukemia in children? Expert Opin Pharmacother 2021; 23:289-294. [PMID: 34842028 DOI: 10.1080/14656566.2021.2006182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Carmelo Gurnari
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy.,Translational Hematology and Oncology Research Department, Taussig Cancer Center, Cleveland Clinic, OH, USA
| | - Mariadomenica Divona
- Laboratory of Advanced Diagnostics in Oncohematology, Hematology Department, Tor Vergata Hospital, Rome, Italy
| | - Maria Teresa Voso
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy.,Department of Neuro-Oncohematology, Rome, Italy
| |
Collapse
|
19
|
Kolur V, Vastrad B, Vastrad C, Kotturshetti S, Tengli A. Identification of candidate biomarkers and therapeutic agents for heart failure by bioinformatics analysis. BMC Cardiovasc Disord 2021; 21:329. [PMID: 34218797 PMCID: PMC8256614 DOI: 10.1186/s12872-021-02146-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 06/14/2021] [Indexed: 02/07/2023] Open
Abstract
INTRODUCTION Heart failure (HF) is a heterogeneous clinical syndrome and affects millions of people all over the world. HF occurs when the cardiac overload and injury, which is a worldwide complaint. The aim of this study was to screen and verify hub genes involved in developmental HF as well as to explore active drug molecules. METHODS The expression profiling by high throughput sequencing of GSE141910 dataset was downloaded from the Gene Expression Omnibus (GEO) database, which contained 366 samples, including 200 heart failure samples and 166 non heart failure samples. The raw data was integrated to find differentially expressed genes (DEGs) and were further analyzed with bioinformatics analysis. Gene ontology (GO) and REACTOME enrichment analyses were performed via ToppGene; protein-protein interaction (PPI) networks of the DEGs was constructed based on data from the HiPPIE interactome database; modules analysis was performed; target gene-miRNA regulatory network and target gene-TF regulatory network were constructed and analyzed; hub genes were validated; molecular docking studies was performed. RESULTS A total of 881 DEGs, including 442 up regulated genes and 439 down regulated genes were observed. Most of the DEGs were significantly enriched in biological adhesion, extracellular matrix, signaling receptor binding, secretion, intrinsic component of plasma membrane, signaling receptor activity, extracellular matrix organization and neutrophil degranulation. The top hub genes ESR1, PYHIN1, PPP2R2B, LCK, TP63, PCLAF, CFTR, TK1, ECT2 and FKBP5 were identified from the PPI network. Module analysis revealed that HF was associated with adaptive immune system and neutrophil degranulation. The target genes, miRNAs and TFs were identified from the target gene-miRNA regulatory network and target gene-TF regulatory network. Furthermore, receiver operating characteristic (ROC) curve analysis and RT-PCR analysis revealed that ESR1, PYHIN1, PPP2R2B, LCK, TP63, PCLAF, CFTR, TK1, ECT2 and FKBP5 might serve as prognostic, diagnostic biomarkers and therapeutic target for HF. The predicted targets of these active molecules were then confirmed. CONCLUSION The current investigation identified a series of key genes and pathways that might be involved in the progression of HF, providing a new understanding of the underlying molecular mechanisms of HF.
Collapse
Affiliation(s)
- Vijayakrishna Kolur
- Vihaan Heart Care & Super Specialty Centre, Vivekananda General Hospital, Deshpande Nagar, Hubli, Karnataka, 580029, India
| | - Basavaraj Vastrad
- Department of Biochemistry, Basaveshwar College of Pharmacy, Gadag, Karnataka, 582103, India
| | - Chanabasayya Vastrad
- Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad, 580001, Karnataka, India.
| | - Shivakumar Kotturshetti
- Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad, 580001, Karnataka, India
| | - Anandkumar Tengli
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, Mysuru and JSS Academy of Higher Education & Research, Mysuru, Karnataka, 570015, India
| |
Collapse
|
20
|
Yu D, Yu X, Ye A, Xu C, Li X, Geng W, Zhu L. Profiling of gut microbial dysbiosis in adults with myeloid leukemia. FEBS Open Bio 2021; 11:2050-2059. [PMID: 33993646 PMCID: PMC8406483 DOI: 10.1002/2211-5463.13193] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/25/2021] [Accepted: 05/12/2021] [Indexed: 11/24/2022] Open
Abstract
Dysregulation of gut microbiota is implicated in the pathogenesis of various diseases, including metabolic diseases, inflammatory diseases, and cancer. To date, the link between gut microbiota and myeloid leukemia (ML) remains largely unelucidated. Herein, a total of 29 patients with acute myeloid leukemia (AML), 17 patients with chronic myeloid leukemia (CML), and 33 healthy subjects were enrolled, and gut microbiota were profiled via Illumina sequencing of the 16S rRNA. We evaluated the correlation between ML and gut microbiota. The microbial α‐diversity and β‐diversity exhibited significant differences between ML patients and healthy controls (HCs). Compared to healthy subjects, we found that at the phylum level, the relative abundance of Actinobacteria, Acidobacteria, and Chloroflexi was increased, while that of Tenericutes was decreased. Correspondingly, at the genus level in ML, Streptococcus were increased, especially in AML patients, while Megamonas (P = 0.02), Lachnospiraceae NC2004 group, and Prevotella 9 (P = 0.007) were decreased. Moreover, ML‐enriched species, including Sphingomonas, Lysobacyer, Helicobacter, Lactobacillus, Enterococcus, and Clostridium sensu stricto 1, were identified. Our results indicate that the gut microbiota was altered in ML patients compared to that of healthy subjects, which could contribute to the elucidation of microbiota‐related pathogenesis of ML, and the development of novel therapeutic strategies in the treatment of ML.
Collapse
Affiliation(s)
- Dandan Yu
- Department of Clinical Laboratory Sciences, The First Affiliated Hospital of Wenzhou Medical University, China
| | - Xiaomin Yu
- Department of Clinical Laboratory Sciences, The First Affiliated Hospital of Wenzhou Medical University, China
| | - Aifang Ye
- Department of Translational Medicine Center, The First Affiliated Hospital of Wenzhou Medical University, China
| | - Chunquan Xu
- Department of Clinical Laboratory Sciences, The First Affiliated Hospital of Wenzhou Medical University, China
| | - Xiaolong Li
- Department of Clinical Laboratory Sciences, The First Affiliated Hospital of Wenzhou Medical University, China
| | - Wujun Geng
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, China
| | - Liqing Zhu
- Department of Clinical Laboratory Sciences, The First Affiliated Hospital of Wenzhou Medical University, China
| |
Collapse
|
21
|
Benevolo G, Elli EM, Bartoletti D, Latagliata R, Tiribelli M, Heidel FH, Cavazzini F, Bonifacio M, Crugnola M, Binotto G, D'Addio A, Tieghi A, Bergamaschi M, Caocci G, Polverelli N, Bossi E, Auteri G, Carmosino I, Catani L, Cuneo A, Krampera M, Lanza F, Lemoli RM, Vianelli N, Breccia M, Palumbo GA, Cavo M, Palandri F. Impact of comorbidities and body mass index on the outcome of polycythemia vera patients. Hematol Oncol 2021; 39:409-418. [PMID: 33590502 DOI: 10.1002/hon.2843] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 01/12/2021] [Accepted: 02/08/2021] [Indexed: 11/10/2022]
Abstract
In 816 patients with 2016 World Health Organization-defined polycythemia vera (PV) enrolled in a multicenter retrospective study, we investigated the predictive value of Charlson comorbidity index (CCI) and body mass index (BMI) on thrombosis, progression to post-PV myelofibrosis (PPV-MF) and survival. Patients were subgrouped according to CCI = 0 (58.1%, no comorbidities) or CCI ≥ 1 (41.9%) and according to normal/underweight (BMI < 25, 54.5%) or overweight/obesity (BMI ≥ 25, 45.5%) at PV diagnosis. BMI was available for 529 patients. Patients with CCI ≥ 1 were older and more frequently presented cardiovascular risk factors compared to patients with CCI = 0 (p < 0.001), while overweight/obese patients were more frequently males (p < 0.001). Cumulative incidence of thromboses with death as competing risk was 13.3% at 10 years. Multivariable analysis with death as competing risk showed that previous thromboses (subdistribution hazard ratio [SHR]: 2.1, p = 0.01) and hypertension (SHR: 1.77, p = 0.04) were significantly associated with a higher thrombotic risk, while BMI ≥ 25 lost statistical significance (SHR: 1.69, p = 0.05) and CCI ≥ 1 was excluded after evaluation of goodness of fit. After a median follow-up of 6.1 years, progression to PPV-MF occurred in 44 patients, and 75 patients died. BMI ≥ 25 was associated with a lower probability of progression to PPV-MF (SHR: 0.38, CI95%: 0.15-0.94, p = 0.04) and better survival (hazard ratio [HR]: 0.42, CI95%: 0.18-0.97, p = 0.04). CCI ≥ 1 did not affect progression to PPV-MF (p = 0.44) or survival (p = 0.71). The evaluation of CCI and BMI may improve the prognostic definition of PV. In patients with hypertension an accurate evaluation of thrombotic risk is warranted.
Collapse
Affiliation(s)
- Giulia Benevolo
- Division of Hematology, Città della Salute e della Scienza Hospital, Torino, Italy
| | - Elena M Elli
- Hematology Division, San Gerardo Hospital, ASST Monza, Monza, Italy
| | - Daniela Bartoletti
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "Seràgnoli", Bologna, Italy.,Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale, Università di Bologna Bologna, Italy
| | - Roberto Latagliata
- Division of Cellular Biotechnologies and Hematology, University Sapienza, Rome, Italy
| | - Mario Tiribelli
- Division of Hematology and BMT, Azienda Sanitaria Universitaria Integrata di Udine, Italy
| | - Florian H Heidel
- Department of Hematology and Oncology, Friedrich-Schiller-University Medical Center, Jena, Germany
| | | | | | - Monica Crugnola
- Division of Hematology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Gianni Binotto
- Unit of Hematology and Clinical Immunology, University of Padova, Padova, Italy
| | - Alessandra D'Addio
- Division of Hematology, Onco-Hematologic Department, AUSL della Romagna, Ravenna, Italy
| | - Alessia Tieghi
- Department of Hematology, Azienda USL - IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Micaela Bergamaschi
- Department of Internal Medicine (DiMI), Clinic of Hematology, University of Genoa, Genova, Italy
| | - Giovanni Caocci
- Hematology Unit, Department of Medical Sciences, University of Cagliari, Cagliari, Italy
| | - Nicola Polverelli
- Unit of Blood Diseases and Stem Cell Transplantation, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Elisa Bossi
- Hematology Division, San Gerardo Hospital, ASST Monza, Monza, Italy
| | - Giuseppe Auteri
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "Seràgnoli", Bologna, Italy.,Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale, Università di Bologna Bologna, Italy
| | - Ida Carmosino
- Division of Cellular Biotechnologies and Hematology, University Sapienza, Rome, Italy
| | - Lucia Catani
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "Seràgnoli", Bologna, Italy
| | - Antonio Cuneo
- Division of Hematology, University of Ferrara, Ferrara, Italy
| | - Mauro Krampera
- Department of Hematology, University of Verona, Verona, Italy
| | - Francesco Lanza
- Division of Hematology, Onco-Hematologic Department, AUSL della Romagna, Ravenna, Italy
| | - Roberto M Lemoli
- Department of Internal Medicine (DiMI), Clinic of Hematology, University of Genoa, Genova, Italy.,IRCCS Policlinico San Martino, Genova, Italy
| | - Nicola Vianelli
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "Seràgnoli", Bologna, Italy
| | - Massimo Breccia
- Division of Cellular Biotechnologies and Hematology, University Sapienza, Rome, Italy
| | - Giuseppe A Palumbo
- Department of Scienze Mediche, Chirurgiche e Tecnologie Avanzate "G.F. Ingrassia", University of Catania, Catania, Italy
| | - Michele Cavo
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "Seràgnoli", Bologna, Italy
| | - Francesca Palandri
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "Seràgnoli", Bologna, Italy
| |
Collapse
|
22
|
Yang X, Chen H, Man J, Zhang T, Yin X, He Q, Lu M. Secular trends in the incidence and survival of all leukemia types in the United States from 1975 to 2017. J Cancer 2021; 12:2326-2335. [PMID: 33758609 PMCID: PMC7974881 DOI: 10.7150/jca.52186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 02/13/2021] [Indexed: 12/24/2022] Open
Abstract
Background: Various studies have indicated that the prognosis of leukemia has been improved in recent years, but the secular trends of incidence and long-term survival of all leukemia have not been thoroughly examined. Methods: We estimated the leukemia incidence and 5-year survival rate along with the temporal trends by sex, race, age, and subtype in the United States over the past four decades using Surveillance, Epidemiology, and End Results (SEER) database. Results: The overall incidence of leukemia steadily increased from 12.39/100 000 in 1975 to 14.65/100 000 in 2011, and then began to decline in recent years (13.73/100 000 in 2017), with average annual percent changes (APC) of 0.350 (P<0.001). The 5-year relative survival rate of leukemia patients significantly improved from 33.2% in 1975 to 66.1% in 2012 (APC=1.980, P<0.001). The main subtypes of leukemia, including acute lymphoblastic leukemia, acute myeloid leukemia, chronic lymphocytic leukemia, and chronic myeloid leukemia, increased in most age groups; conversely, the incidences of all other subtypes were gradually declined during the monitoring period. The incremental advancement in leukemia prognosis had been achieved in almost all histological subtypes, especially among young patients. Conclusions: Based on SEER data, the leukemia incidence increased gradually over the past decades, and then began to decline in recent years in the United States. The 5-year relative survival rate increased incrementally over time, especially among young patients. However, the huge disparities among different sexes, races, histological subtypes, and age groups, emphasize that precise causes control and innovative treatments need to be developed to reduce the incidence and improve the prognosis, especially among specific populations.
Collapse
Affiliation(s)
- Xiaorong Yang
- Clinical Epidemiology Unit, Qilu Hospital of Shandong University, Jinan, China.,Clinical Research Center of Shandong University, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Hui Chen
- Clinical Epidemiology Unit, Qilu Hospital of Shandong University, Jinan, China.,Clinical Research Center of Shandong University, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jinyu Man
- Department of Epidemiology and Health Statistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Tongchao Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiaolin Yin
- Department of Epidemiology and Health Statistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qiufeng He
- Department of Epidemiology and Health Statistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ming Lu
- Clinical Epidemiology Unit, Qilu Hospital of Shandong University, Jinan, China.,Clinical Research Center of Shandong University, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Epidemiology and Health Statistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
23
|
Gurnari C, Voso MT, Girardi K, Mastronuzzi A, Strocchio L. Acute Promyelocytic Leukemia in Children: A Model of Precision Medicine and Chemotherapy-Free Therapy. Int J Mol Sci 2021; 22:ijms22020642. [PMID: 33440683 PMCID: PMC7826974 DOI: 10.3390/ijms22020642] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 12/12/2022] Open
Abstract
Acute promyelocytic leukemia (APL) represents a paradigm of precision medicine. Indeed, in the last decades, the introduction of all-trans retinoic acid (ATRA) and arsenic trioxide (ATO) completely revolutionized the therapeutic approach to this previously highly fatal disorder. This entirely chemotherapy-free treatment, which provided excellent survival rates, has been initially validated in adults and, recently, translated in the pediatric setting. This review summarizes currently available data on the use of ATRA and ATO combination in pediatric APL, providing a particular focus on peculiar issues and challenges, such as the occurrence of pseudotumor cerebri and death during induction (early death), as well as the advantage offered by the ATO/ATRA combination in sparing long-term sequelae.
Collapse
Affiliation(s)
- Carmelo Gurnari
- Department of Pediatric Hemato-Oncology and Cell and Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico Bambino Gesù Children’s Hospital, 00165 Rome, Italy; (C.G.); (K.G.); (A.M.)
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy;
- Immunology, Molecular Medicine and Applied Biotechnology, University of Rome Tor Vergata, 00133 Rome, Italy
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Maria Teresa Voso
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy;
- Laboratorio di Neuro-Oncoematologia, Fondazione Santa Lucia, 00179 Rome, Italy
| | - Katia Girardi
- Department of Pediatric Hemato-Oncology and Cell and Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico Bambino Gesù Children’s Hospital, 00165 Rome, Italy; (C.G.); (K.G.); (A.M.)
| | - Angela Mastronuzzi
- Department of Pediatric Hemato-Oncology and Cell and Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico Bambino Gesù Children’s Hospital, 00165 Rome, Italy; (C.G.); (K.G.); (A.M.)
| | - Luisa Strocchio
- Department of Pediatric Hemato-Oncology and Cell and Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico Bambino Gesù Children’s Hospital, 00165 Rome, Italy; (C.G.); (K.G.); (A.M.)
- Correspondence:
| |
Collapse
|
24
|
Jeong S, Savino AM, Chirayil R, Barin E, Cheng Y, Park SM, Schurer A, Mullarky E, Cantley LC, Kharas MG, Keshari KR. High Fructose Drives the Serine Synthesis Pathway in Acute Myeloid Leukemic Cells. Cell Metab 2021; 33:145-159.e6. [PMID: 33357456 PMCID: PMC8168776 DOI: 10.1016/j.cmet.2020.12.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 09/16/2020] [Accepted: 12/04/2020] [Indexed: 12/31/2022]
Abstract
A significant increase in dietary fructose consumption has been implicated as a potential driver of cancer. Metabolic adaptation of cancer cells to utilize fructose confers advantages for their malignant growth, but compelling therapeutic targets have not been identified. Here, we show that fructose metabolism of leukemic cells can be inhibited by targeting the de novo serine synthesis pathway (SSP). Leukemic cells, unlike their normal counterparts, become significantly dependent on the SSP in fructose-rich conditions as compared to glucose-rich conditions. This metabolic program is mediated by the ratio of redox cofactors, NAD+/NADH, and the increased SSP flux is beneficial for generating alpha-ketoglutarate from glutamine, which allows leukemic cells to proliferate even in the absence of glucose. Inhibition of PHGDH, a rate-limiting enzyme in the SSP, dramatically reduces leukemia engraftment in mice in the presence of high fructose, confirming the essential role of the SSP in the metabolic plasticity of leukemic cells.
Collapse
Affiliation(s)
- Sangmoo Jeong
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Angela Maria Savino
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Rachel Chirayil
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ersilia Barin
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Yuanming Cheng
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Sun-Mi Park
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Alexandra Schurer
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Edouard Mullarky
- Meyer Cancer Center, Weill Cornell Medical College, New York, NY 10065, USA; Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Lewis C Cantley
- Meyer Cancer Center, Weill Cornell Medical College, New York, NY 10065, USA; Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Michael G Kharas
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| | - Kayvan R Keshari
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
25
|
Sun J, Lou Y, Zhu J, Shen H, Zhou D, Zhu L, Yang X, Xie M, Li L, Huang X, Zhu M, Zheng Y, Xie W, Ye X, Jin J, Zhu HH. Hypertriglyceridemia in Newly Diagnosed Acute Promyelocytic Leukemia. Front Oncol 2020; 10:577796. [PMID: 33324553 PMCID: PMC7724081 DOI: 10.3389/fonc.2020.577796] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 10/26/2020] [Indexed: 01/12/2023] Open
Abstract
The primary aim of the present retrospective study was to investigate lipid profiles and kinetics in acute promyelocytic leukemia (APL) patients. We analyzed 402 newly diagnosed APL patients and 201 non-APL patients with acute myeloid leukemia (as control). Incidence of hypertriglyceridemia in APL patients and non-APL patients was 55.82% and 28.4% (p = 0.0003). The initial levels of triglycerides, total cholesterol, high-density lipoprotein cholesterol and low-density lipoprotein cholesterol were higher in APL patients than in control (all p < 0.0001). In APL patients, triglyceride levels were significantly increased during induction treatment with all-trans retinoic acid and arsenic. Multivariable analysis showed that age, being overweight (body mass index ≥25) and APL were independent risk factors for hypertriglyceridemia in all patients before treatment. High triglyceride levels were not significantly associated with disease-free survival or overall survival in the APL patients. In summary, in the current study triglyceride levels were significantly elevated in APL patients before treatment, and they increased during induction treatment, but there were no significant corresponding effects on survival.
Collapse
Affiliation(s)
- Jianai Sun
- Department of Hematology, The First Affiliated Hospital of Medical School of Zhejiang University, Hangzhou, Zhejiang, China.,Zhejiang Province Key Laboratory of Hematology Oncology Diagnosis and Treatment, Hangzhou, China
| | - Yinjun Lou
- Department of Hematology, The First Affiliated Hospital of Medical School of Zhejiang University, Hangzhou, Zhejiang, China.,Zhejiang Province Key Laboratory of Hematology Oncology Diagnosis and Treatment, Hangzhou, China
| | - Jingjing Zhu
- Department of Hematology, The First Affiliated Hospital of Medical School of Zhejiang University, Hangzhou, Zhejiang, China.,Zhejiang Province Key Laboratory of Hematology Oncology Diagnosis and Treatment, Hangzhou, China
| | - Huafei Shen
- Department of Hematology, The First Affiliated Hospital of Medical School of Zhejiang University, Hangzhou, Zhejiang, China.,Zhejiang Province Key Laboratory of Hematology Oncology Diagnosis and Treatment, Hangzhou, China
| | - De Zhou
- Department of Hematology, The First Affiliated Hospital of Medical School of Zhejiang University, Hangzhou, Zhejiang, China.,Zhejiang Province Key Laboratory of Hematology Oncology Diagnosis and Treatment, Hangzhou, China
| | - Lixia Zhu
- Department of Hematology, The First Affiliated Hospital of Medical School of Zhejiang University, Hangzhou, Zhejiang, China.,Zhejiang Province Key Laboratory of Hematology Oncology Diagnosis and Treatment, Hangzhou, China
| | - Xiudi Yang
- Department of Hematology, The First Affiliated Hospital of Medical School of Zhejiang University, Hangzhou, Zhejiang, China.,Zhejiang Province Key Laboratory of Hematology Oncology Diagnosis and Treatment, Hangzhou, China
| | - Mixue Xie
- Department of Hematology, The First Affiliated Hospital of Medical School of Zhejiang University, Hangzhou, Zhejiang, China.,Zhejiang Province Key Laboratory of Hematology Oncology Diagnosis and Treatment, Hangzhou, China
| | - Li Li
- Department of Hematology, The First Affiliated Hospital of Medical School of Zhejiang University, Hangzhou, Zhejiang, China.,Zhejiang Province Key Laboratory of Hematology Oncology Diagnosis and Treatment, Hangzhou, China
| | - Xianbo Huang
- Department of Hematology, The First Affiliated Hospital of Medical School of Zhejiang University, Hangzhou, Zhejiang, China.,Zhejiang Province Key Laboratory of Hematology Oncology Diagnosis and Treatment, Hangzhou, China
| | - Mingyu Zhu
- Department of Hematology, The First Affiliated Hospital of Medical School of Zhejiang University, Hangzhou, Zhejiang, China.,Zhejiang Province Key Laboratory of Hematology Oncology Diagnosis and Treatment, Hangzhou, China
| | - Yanlong Zheng
- Department of Hematology, The First Affiliated Hospital of Medical School of Zhejiang University, Hangzhou, Zhejiang, China.,Zhejiang Province Key Laboratory of Hematology Oncology Diagnosis and Treatment, Hangzhou, China
| | - Wanzhuo Xie
- Department of Hematology, The First Affiliated Hospital of Medical School of Zhejiang University, Hangzhou, Zhejiang, China.,Zhejiang Province Key Laboratory of Hematology Oncology Diagnosis and Treatment, Hangzhou, China
| | - Xiujin Ye
- Department of Hematology, The First Affiliated Hospital of Medical School of Zhejiang University, Hangzhou, Zhejiang, China.,Zhejiang Province Key Laboratory of Hematology Oncology Diagnosis and Treatment, Hangzhou, China
| | - Jie Jin
- Department of Hematology, The First Affiliated Hospital of Medical School of Zhejiang University, Hangzhou, Zhejiang, China.,Zhejiang Province Key Laboratory of Hematology Oncology Diagnosis and Treatment, Hangzhou, China
| | - Hong-Hu Zhu
- Department of Hematology, The First Affiliated Hospital of Medical School of Zhejiang University, Hangzhou, Zhejiang, China.,Zhejiang Province Key Laboratory of Hematology Oncology Diagnosis and Treatment, Hangzhou, China
| |
Collapse
|
26
|
Establishment and Evaluation of a 6-Gene Survival Risk Assessment Model Related to Lung Adenocarcinoma Microenvironment. BIOMED RESEARCH INTERNATIONAL 2020; 2020:6472153. [PMID: 32337264 PMCID: PMC7157809 DOI: 10.1155/2020/6472153] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 02/28/2020] [Accepted: 03/04/2020] [Indexed: 12/11/2022]
Abstract
Objective A survival risk assessment model associated with a lung adenocarcinoma (LUAD) microenvironment was established and evaluated to identify effective independent prognostic factors for LUAD. Methods The public data were downloaded from the TCGA database, and ESTIMATE prediction software was used to score immune cells and stromal cells for tumor purity prediction. The samples were divided into the high-score group and the low-score group by the median value of the immune score (or stromal score). The Wilcoxon test was used for differential analysis. GO and KEGG enrichment analysis of differentially expressed genes (DEGs) was performed using “clusterProfiler” of R package. Meanwhile, univariate and multivariate regression analysis was performed on DEGs to construct a multivariate Cox risk regression model with variable gene expression levels as independent prognostic factors affecting a tumor microenvironment (TME) and tumor immunity. Results This study found that LUAD patients with high immune cell (stromal cell) infiltration had better prognosis and were in earlier staging. Functional enrichment analysis revealed that most DEGs were related to the proliferation and activation of immune cells or stromal cells. A survival prediction model composed of 6 TME-related genes (CLEC17A, TAGAP, ABCC8, BCAN, FLT3, and CCR2) was established, and finally, the 6 feature genes closely related to the prognosis of LUAD were proved. The AUC value of the ROC curve in this model was 0.7, indicating that the model was reliable. Conclusion Six genes related to the LUAD microenvironment have a predictive prognostic value in LUAD.
Collapse
|
27
|
Conneely SE, Stevens AM. Advances in Pediatric Acute Promyelocytic Leukemia. CHILDREN-BASEL 2020; 7:children7020011. [PMID: 32024232 PMCID: PMC7072343 DOI: 10.3390/children7020011] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 01/25/2020] [Accepted: 01/27/2020] [Indexed: 02/07/2023]
Abstract
Acute promyelocytic leukemia (APL) is a rare disease accounting for only 5%-10% of pediatric acute myeloid leukemia (AML) and fewer than 1000 cases occur annually in the United States across all age groups. Characterized by t (15; 17), with a resultant PML-RARA gene fusion driving leukemia development, advances in therapy have improved outcomes for APL significantly in the past several decades, now making APL the most curable form of AML in both children and adults. Cure rates in APL are now comparable to pediatric B-lymphoid leukemias. The success of APL treatment is due, in part, to the breadth of understanding of the driver PML-RARA mutation as well as collaborative efforts to quickly introduce and maximize the benefit of new therapies. Here, we review the presentation, clinical features, pathogenesis, and treatment advances in pediatric APL.
Collapse
|