1
|
Yang M, Kim JA, Jo HS, Park JH, Ahn SY, Sung SI, Park WS, Cho HW, Kim JM, Park MH, Park HY, Jang JH, Chang YS. Diagnostic Utility of Whole Genome Sequencing After Negative Karyotyping/Chromosomal Microarray in Infants Born With Multiple Congenital Anomalies. J Korean Med Sci 2024; 39:e250. [PMID: 39315442 PMCID: PMC11419962 DOI: 10.3346/jkms.2024.39.e250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/14/2024] [Indexed: 09/25/2024] Open
Abstract
BACKGROUND Achieving a definitive genetic diagnosis of unexplained multiple congenital anomalies (MCAs) in neonatal intensive care units (NICUs) infants is challenging because of the limited diagnostic capabilities of conventional genetic tests. Although the implementation of whole genome sequencing (WGS) has commenced for diagnosing MCAs, due to constraints in resources and faculty, many NICUs continue to utilize chromosomal microarray (CMA) and/or karyotyping as the initial diagnostic approach. We aimed to evaluate the diagnostic efficacy of WGS in infants with MCAs who have received negative results from karyotyping and/or CMA. METHODS In this prospective study, we enrolled 80 infants with MCAs who were admitted to a NICU at a single center and had received negative results from CMA and/or karyotyping. The phenotypic characteristics were classified according to the International Classification of Diseases and the Human Phenotype Ontology. We assessed the diagnostic yield of trio-WGS in infants with normal chromosomal result and explored the process of diagnosing by analyzing both phenotype and genotype. Also, we compared the phenotype and clinical outcomes between the groups diagnosed with WGS and the undiagnosed group. RESULTS The diagnostic yield of WGS was 26% (21/80), of which 76% were novel variants. There was a higher diagnostic yield in cases of craniofacial abnormalities, including those of the eye and ear, and a lower diagnostic yield in cases of gastrointestinal and genitourinary abnormalities. In addition, higher rates of rehabilitation therapy and gastrostomy were observed in WGS-diagnosed infants than in undiagnosed infants. CONCLUSION This prospective cohort study assessed the usefulness of trio-WGS following chromosomal analysis for diagnosing MCAs in the NICU and revealed improvements in the diagnostic yield and clinical utility of WGS.
Collapse
Affiliation(s)
- Misun Yang
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- Cell and Gene Therapy Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jee Ah Kim
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- Department of Laboratory Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Heui Seung Jo
- Department of Pediatrics, Kangwon National University Hospital, Kangwon National University School of Medicine, Chuncheon, Korea
| | - Jong-Ho Park
- Clinical Genomics Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - So Yoon Ahn
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- Cell and Gene Therapy Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Se In Sung
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- Cell and Gene Therapy Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Won Soon Park
- Department of Pediatrics, CHA Gangnam Medical Center, CHA University, Seoul, Korea
| | - Hye-Won Cho
- Division of Genome Science, Department of Precision Medicine, National Institute of Health, Cheongju, Korea
| | - Jeong-Min Kim
- Division of Genome Science, Department of Precision Medicine, National Institute of Health, Cheongju, Korea
| | - Mi-Hyun Park
- Division of Genome Science, Department of Precision Medicine, National Institute of Health, Cheongju, Korea
| | | | - Ja-Hyun Jang
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.
| | - Yun Sil Chang
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- Cell and Gene Therapy Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University, Seoul, Korea.
| |
Collapse
|
2
|
Früh S, Boudkkazi S, Koppensteiner P, Sereikaite V, Chen LY, Fernandez-Fernandez D, Rem PD, Ulrich D, Schwenk J, Chen Z, Le Monnier E, Fritzius T, Innocenti SM, Besseyrias V, Trovò L, Stawarski M, Argilli E, Sherr EH, van Bon B, Kamsteeg EJ, Iascone M, Pilotta A, Cutrì MR, Azamian MS, Hernández-García A, Lalani SR, Rosenfeld JA, Zhao X, Vogel TP, Ona H, Scott DA, Scheiffele P, Strømgaard K, Tafti M, Gassmann M, Fakler B, Shigemoto R, Bettler B. Monoallelic de novo AJAP1 loss-of-function variants disrupt trans-synaptic control of neurotransmitter release. SCIENCE ADVANCES 2024; 10:eadk5462. [PMID: 38985877 PMCID: PMC11235169 DOI: 10.1126/sciadv.adk5462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 06/04/2024] [Indexed: 07/12/2024]
Abstract
Adherens junction-associated protein 1 (AJAP1) has been implicated in brain diseases; however, a pathogenic mechanism has not been identified. AJAP1 is widely expressed in neurons and binds to γ-aminobutyric acid type B receptors (GBRs), which inhibit neurotransmitter release at most synapses in the brain. Here, we show that AJAP1 is selectively expressed in dendrites and trans-synaptically recruits GBRs to presynaptic sites of neurons expressing AJAP1. We have identified several monoallelic AJAP1 variants in individuals with epilepsy and/or neurodevelopmental disorders. Specifically, we show that the variant p.(W183C) lacks binding to GBRs, resulting in the inability to recruit them. Ultrastructural analysis revealed significantly decreased presynaptic GBR levels in Ajap1-/- and Ajap1W183C/+ mice. Consequently, these mice exhibited reduced GBR-mediated presynaptic inhibition at excitatory and inhibitory synapses, along with impaired synaptic plasticity. Our study reveals that AJAP1 enables the postsynaptic neuron to regulate the level of presynaptic GBR-mediated inhibition, supporting the clinical relevance of loss-of-function AJAP1 variants.
Collapse
Affiliation(s)
- Simon Früh
- Department of Biomedicine, Pharmazentrum, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Sami Boudkkazi
- Institute of Physiology II, University of Freiburg, Hermann-Herderstrasse 7, 79104 Freiburg, Germany
| | - Peter Koppensteiner
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria
| | - Vita Sereikaite
- Center for Biopharmaceuticals, Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Li-Yuan Chen
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Rue du Bugnon 7, 1005 Lausanne, Switzerland
| | - Diego Fernandez-Fernandez
- Department of Biomedicine, Pharmazentrum, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Pascal D. Rem
- Department of Biomedicine, Pharmazentrum, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Daniel Ulrich
- Department of Biomedicine, Pharmazentrum, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Jochen Schwenk
- Institute of Physiology II, University of Freiburg, Hermann-Herderstrasse 7, 79104 Freiburg, Germany
| | - Ziyang Chen
- Center for Biopharmaceuticals, Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Elodie Le Monnier
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria
| | - Thorsten Fritzius
- Department of Biomedicine, Pharmazentrum, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | | | - Valérie Besseyrias
- Department of Biomedicine, Pharmazentrum, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Luca Trovò
- Department of Biomedicine, Pharmazentrum, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Michal Stawarski
- Department of Biomedicine, Pharmazentrum, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Emanuela Argilli
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
- Institute of Human Genetics and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Elliott H. Sherr
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
- Institute of Human Genetics and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Bregje van Bon
- Department of Human Genetics, Radboud University Medical Center, Nijmegen 6525, Netherlands
| | - Erik-Jan Kamsteeg
- Department of Human Genetics, Radboud University Medical Center, Nijmegen 6525, Netherlands
| | - Maria Iascone
- Laboratorio Genetica Medica, ASST Papa Giovanni XXIII, Bergamo, Italy
| | | | | | - Mahshid S. Azamian
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Andrés Hernández-García
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Seema R. Lalani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jill A. Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xiaonan Zhao
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Baylor Genetics, Houston, TX 77021, USA
| | - Tiphanie P. Vogel
- Division of Rheumatology, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Human Immunobiology, Texas Children's Hospital, Houston, TX 77030, USA
| | - Herda Ona
- Division of Rheumatology, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Human Immunobiology, Texas Children's Hospital, Houston, TX 77030, USA
| | - Daryl A. Scott
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Peter Scheiffele
- Biocenter, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland
| | - Kristian Strømgaard
- Center for Biopharmaceuticals, Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Mehdi Tafti
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Rue du Bugnon 7, 1005 Lausanne, Switzerland
| | - Martin Gassmann
- Department of Biomedicine, Pharmazentrum, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Bernd Fakler
- Institute of Physiology II, University of Freiburg, Hermann-Herderstrasse 7, 79104 Freiburg, Germany
| | - Ryuichi Shigemoto
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria
| | - Bernhard Bettler
- Department of Biomedicine, Pharmazentrum, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| |
Collapse
|
3
|
Tolmacheva E, Bolshakova AS, Shubina J, Rogacheva MS, Ekimov AN, Podurovskaya JL, Burov AA, Rebrikov DV, Bychenko VG, Trofimov DY, Sukhikh GT. Expanding phenotype of MED13-associated syndrome presenting novel de novo missense variant in a patient with multiple congenital anomalies. BMC Med Genomics 2024; 17:130. [PMID: 38745205 PMCID: PMC11094910 DOI: 10.1186/s12920-024-01857-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 03/29/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Whole exome sequencing allows rapid identification of causative single nucleotide variants and short insertions/deletions in children with congenital anomalies and/or intellectual disability, which aids in accurate diagnosis, prognosis, appropriate therapeutic interventions, and family counselling. Recently, de novo variants in the MED13 gene were described in patients with an intellectual developmental disorder that included global developmental delay, mild congenital heart anomalies, and hearing and vision problems in some patients. RESULTS Here we describe an infant who carried a de novo p.Pro835Ser missense variant in the MED13 gene, according to whole exome trio sequencing. He presented with congenital heart anomalies, dysmorphic features, hydrocephalic changes, hypoplastic corpus callosum, bilateral optic nerve atrophy, optic chiasm atrophy, brain stem atrophy, and overall a more severe condition compared to previously described patients. CONCLUSIONS Therefore, we propose to expand the MED13-associated phenotype to include severe complications that could end up with multiple organ failure and neonatal death.
Collapse
Affiliation(s)
- Ekaterina Tolmacheva
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Moscow, Russia
| | - Anna S Bolshakova
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Moscow, Russia
| | - Jekaterina Shubina
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Moscow, Russia.
| | - Margarita S Rogacheva
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Moscow, Russia
| | - Alexey N Ekimov
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Moscow, Russia
| | - Julia L Podurovskaya
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Moscow, Russia
| | - Artem A Burov
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Moscow, Russia
| | - Denis V Rebrikov
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Moscow, Russia
| | - Vladimir G Bychenko
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Moscow, Russia
| | - Dmitry Yu Trofimov
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Moscow, Russia
| | - Gennady T Sukhikh
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Moscow, Russia
| |
Collapse
|
4
|
Chen X, Jiang Y, Zeng S, Zhuang J, Lin N. Prenatal diagnosis of fetuses with absent/hypoplastic nasal bone in second-trimester using chromosomal microarray analysis. Birth Defects Res 2024; 116:e2351. [PMID: 38766695 DOI: 10.1002/bdr2.2351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/28/2024] [Accepted: 04/26/2024] [Indexed: 05/22/2024]
Abstract
BACKGROUND Pathogenic copy number variants (pCNVs) are associated with fetal ultrasound anomalies, which can be efficiently identified through chromosomal microarray analysis (CMA). The primary objective of the present study was to enhance understanding of the genotype-phenotype correlation in fetuses exhibiting absent or hypoplastic nasal bones using CMA. METHODS Enrolled in the present study were 94 cases of fetuses with absent/hypoplastic nasal bone, which were divided into an isolated absent/hypoplastic nasal bone group (n = 49) and a non-isolated group (n = 45). All pregnant women enrolled in the study underwent karyotype analysis and CMA to assess chromosomal abnormalities in the fetuses. RESULTS Karyotype analysis and CMA detection were successfully performed in all cases. The results of karyotype and CMA indicate the presence of 11 cases of chromosome aneuploidy, with trisomy 21 being the most prevalent among them. A small supernumerary marker chromosome (sSMC) detected by karyotype analysis was further interpreted as a pCNV by CMA. Additionally, CMA detection elicited three cases of pCNVs, despite normal findings in their karyotype analysis results. Among them, one case of Roche translocation was identified to be a UPD in chromosome 15 with a low proportion of trisomy 15. Further, a significant difference in the detection rate of pCNVs was observed between non-isolated and isolated absent/hypoplastic nasal bone (24.44% vs. 8.16%, p < .05). CONCLUSION The present study enhances the utility of CMA in diagnosing the etiology of absent or hypoplastic nasal bone in fetuses. Further, isolated cases of absent or hypoplastic nasal bone strongly suggest the presence of chromosomal abnormalities, necessitating genetic evaluation through CMA.
Collapse
Affiliation(s)
- Xinying Chen
- Fujian Medical University, Fuzhou, China
- Prenatal Diagnosis Center, Quanzhou Women's and Children's Hospital, Quanzhou, China
| | - Yuying Jiang
- Prenatal Diagnosis Center, Quanzhou Women's and Children's Hospital, Quanzhou, China
| | - Shuhong Zeng
- Prenatal Diagnosis Center, Quanzhou Women's and Children's Hospital, Quanzhou, China
| | - Jianlong Zhuang
- Prenatal Diagnosis Center, Quanzhou Women's and Children's Hospital, Quanzhou, China
| | - Na Lin
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fujian Provincial Key Laboratory of Prenatal Diagnosis and Birth Defect, Fuzhou, China
| |
Collapse
|
5
|
Tran DC, Phan MN, Dao HTT, Nguyen HDL, Nguyen DA, Le QT, Hoang DTT, Tran NT, Thi Ha TM, Dinh TL, Nguyen CC, Thi Doan KP, Thi Luong LA, Vo TS, Nhat Trinh TH, Nguyen VT, Vo PAN, Nguyen YN, Dinh MA, Doan PL, Do TTT, Nguyen QTT, Truong DK, Nguyen HN, Phan MD, Tang HS, Giang H. The genetic landscape of chromosomal aberrations in 3776 Vietnamese fetuses with clinical anomalies during pregnancy. Per Med 2024; 21:79-87. [PMID: 38573622 DOI: 10.2217/pme-2023-0113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 02/23/2024] [Indexed: 04/05/2024]
Abstract
Background: Copy number variation sequencing (CNV-seq) is a powerful tool to discover structural genomic variation, but limitations associated with its retrospective study design and inadequate diversity of participants can be impractical for clinical application. Aim: This study aims to use CNV-seq to assess chromosomal aberrations in pregnant Vietnamese women. Materials & methods: A large-scale study was conducted on 3776 pregnant Vietnamese women with abnormal ultrasound findings. Results: Chromosomal aberrations were found in 448 (11.86%) women. Of these, 274 (7.26%) had chromosomal aneuploidies and 174 (4.61%) carried pathogenic/likely pathogenic CNVs. Correlations were established between chromosomal aberrations and various phenotypic markers. Conclusion: This comprehensive clinical study illuminates the pivotal role of CNV-seq in prenatal diagnosis for pregnancies featuring fetal ultrasound anomalies.
Collapse
Affiliation(s)
- Danh-Cuong Tran
- National Hospital of Obstetrics & Gynecology, Ha Noi, Vietnam
| | - Minh Ngoc Phan
- Gene Solutions, Ho Chi Minh, Vietnam
- Medical Genetics Institutes, Ho Chi Minh, Vietnam
| | - Hong-Thuy Thi Dao
- Gene Solutions, Ho Chi Minh, Vietnam
- Medical Genetics Institutes, Ho Chi Minh, Vietnam
| | - Hong-Dang Luu Nguyen
- Gene Solutions, Ho Chi Minh, Vietnam
- Medical Genetics Institutes, Ho Chi Minh, Vietnam
| | | | | | | | - Nhat Thang Tran
- University Medical Center, Ho Chi Minh, Vietnam
- University of Medicine & Pharmacy at Ho Chi Minh City, Vietnam
| | | | | | | | | | | | | | | | | | - Phuong-Anh Ngoc Vo
- Gene Solutions, Ho Chi Minh, Vietnam
- Medical Genetics Institutes, Ho Chi Minh, Vietnam
| | - Yen-Nhi Nguyen
- Gene Solutions, Ho Chi Minh, Vietnam
- Medical Genetics Institutes, Ho Chi Minh, Vietnam
| | - My-An Dinh
- Gene Solutions, Ho Chi Minh, Vietnam
- Medical Genetics Institutes, Ho Chi Minh, Vietnam
| | - Phuoc-Loc Doan
- Gene Solutions, Ho Chi Minh, Vietnam
- Medical Genetics Institutes, Ho Chi Minh, Vietnam
| | | | | | | | - Hoai-Nghia Nguyen
- Medical Genetics Institutes, Ho Chi Minh, Vietnam
- University of Medicine & Pharmacy at Ho Chi Minh City, Vietnam
| | - Minh-Duy Phan
- Gene Solutions, Ho Chi Minh, Vietnam
- Medical Genetics Institutes, Ho Chi Minh, Vietnam
| | - Hung-Sang Tang
- Gene Solutions, Ho Chi Minh, Vietnam
- Medical Genetics Institutes, Ho Chi Minh, Vietnam
| | - Hoa Giang
- Gene Solutions, Ho Chi Minh, Vietnam
- Medical Genetics Institutes, Ho Chi Minh, Vietnam
| |
Collapse
|
6
|
Han JY, Cho YG, Jo DS, Park J. Diversity of Clinical and Molecular Characteristics in Korean Patients with 16p11.2 Microdeletion Syndrome. Int J Mol Sci 2023; 25:253. [PMID: 38203422 PMCID: PMC10779371 DOI: 10.3390/ijms25010253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/12/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
16p11.2 copy number variations (CNVs) are increasingly recognized as one of the most frequent genomic disorders, and the 16p11.2 microdeletion exhibits broad phenotypic variability and a diverse clinical phenotype. We describe the neurodevelopmental course and discordant clinical phenotypes observed within and between individuals with identical 16p11.2 microdeletions. An analysis with the CytoScan Dx Assay was conducted on a GeneChip System 3000Dx, and the sample signals were then compared to a reference set using the Chromosome Analysis Suite software version 3.1. Ten patients from six separate families were identified with 16p11.2 microdeletions. Nine breakpoints (BPs) 4-5 and one BP2-5 of the 16p11.2 microdeletion were identified. All patients with 16p11.2 microdeletions exhibited developmental delay and/or intellectual disability. Sixty percent of patients presented with neonatal hypotonia, but muscle weakness improved with age. Benign infantile epilepsy manifested between the ages of 7-10 months (a median of 8 months) in six patients (60%). Vertebral dysplasia was observed in two patients (20%), and mild scoliosis was noted in three patients. Sixty percent of patients were overweight. We present six unrelated Korean families, among which identical 16p11.2 microdeletions resulted in diverse developmental trajectories and discordant phenotypes. The clinical variability and incomplete penetrance observed in individuals with 16p11.2 microdeletions remain unclear, posing challenges to accurate clinical interpretation and diagnosis.
Collapse
Affiliation(s)
- Ji Yoon Han
- Department of Pediatrics, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea;
| | - Yong Gon Cho
- Department of Laboratory Medicine, Jeonbuk National University Medical School and Hospital, Jeonju 54907, Republic of Korea;
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea
| | - Dae Sun Jo
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea
- Department of Pediatrics, Jeonbuk National University Medical School and Hospital, Jeonju 54907, Republic of Korea
| | - Joonhong Park
- Department of Laboratory Medicine, Jeonbuk National University Medical School and Hospital, Jeonju 54907, Republic of Korea;
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea
| |
Collapse
|
7
|
Wu D, Wu Y, Lan Y, Lan S, Zhong Z, Li D, Zheng Z, Wang H, Ma L. Chromosomal Aberrations in Pediatric Patients With Moderate/Severe Developmental Delay/Intellectual Disability With Abundant Phenotypic Heterogeneities: A Single-Center Study. Pediatr Neurol 2023; 147:72-81. [PMID: 37566956 DOI: 10.1016/j.pediatrneurol.2023.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/26/2023] [Accepted: 06/06/2023] [Indexed: 08/13/2023]
Abstract
BACKGROUND This study aimed to examine the clinical usefulness of chromosome microarray (CMA) for selective implementation in patients with unexplained moderate or severe developmental delay/intellectual disability (DD/ID) and/or combined with different dysphonic features in the Han Chinese population. METHODS We retrospectively analyzed data on 122 pediatric patients with unexplained isolated moderate/severe DD/ID with or without autism spectrum disorders, epilepsy, dystonia, and congenital abnormalities from a single-center neurorehabilitation clinic in southern China. RESULTS A total of 46 probands (37.7%) had abnormal CMA results among the 122 study patients. With the exclusion of aneuploidies, uniparental disomies, and multiple homozygotes, 37 patients harbored 39 pathogenic copy number variations (pCNVs) (median [interquartile range] size: 3.57 [1.6 to 7.1] Mb; 33 deletions and 6 duplications), enriched in chromosomes 5, 7, 15, 17, and 22, with a markedly high prevalence of Angelman/Prader-Willi syndrome (24.3% [nine of 37]). Three rare deletions in the regions 5q33.2q34, 17p13.2, and 13q33.2 were reported, with specific delineation of clinical phenotypes. The frequencies of pCNVs were 18%, 33.3%, 38.89%, 41.67%, and 100% for patients with 1, 2, 3, 4, and 5 study phenotypes, respectively; patients with more concomitant abnormalities in the heart, brain, craniofacial region, and/or other organs had a higher CMA diagnostic yield and pCNV prevalence (P < 0.05). CONCLUSIONS Clinical application of CMA as a first-tier test among patients with moderate/severe DD/ID combined with congenital structural anomalies improved diagnostic yields and the quality of clinical management in this series of patients.
Collapse
Affiliation(s)
- Dan Wu
- Department of Pediatrics, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China; Centre for Precision Health, School of Medical and Health Sciences, Edith Cowan University, Perth, WA, Australia
| | - Yi Wu
- Department of Pediatrics, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Yulong Lan
- Centre for Precision Health, School of Medical and Health Sciences, Edith Cowan University, Perth, WA, Australia; Department of Cardiology, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Shaocong Lan
- Guangdong Medical College, Zhanjiang, Guangdong, China
| | - Zhiwei Zhong
- Department of Neurosurgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Duo Li
- Department of Pediatrics, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Zexin Zheng
- Department of Pediatrics, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Hongwu Wang
- Department of Pediatrics, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China.
| | - Lian Ma
- Department of Pediatrics, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China; Department of Hematology and Oncology, Shenzhen Children's Hospital of China Medical University, Shenzhen, Guangdong, China; Shenzhen Public Service Platform of Molecular Medicine in Pediatric Hematology and Oncology, Shenzhen, Guangdong, China; Department of Pediatrics, The Third Affiliated Hospital of Guangzhou Medical University (The Women and Children's Hospital of Guangzhou Medical University), Guangzhou, Guangdong, China.
| |
Collapse
|
8
|
Lawther AJ, Zieba J, Fang Z, Furlong TM, Conn I, Govindaraju H, Choong LLY, Turner N, Siddiqui KS, Bridge W, Merlin S, Hyams TC, Killingsworth M, Eapen V, Clarke RA, Walker AK. Antioxidant Behavioural Phenotype in the Immp2l Gene Knock-Out Mouse. Genes (Basel) 2023; 14:1717. [PMID: 37761857 PMCID: PMC10531238 DOI: 10.3390/genes14091717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/16/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
Mitochondrial dysfunction is strongly associated with autism spectrum disorder (ASD) and the Inner mitochondrial membrane protein 2-like (IMMP2L) gene is linked to autism inheritance. However, the biological basis of this linkage is unknown notwithstanding independent reports of oxidative stress in association with both IMMP2L and ASD. To better understand IMMP2L's association with behaviour, we developed the Immp2lKD knockout (KO) mouse model which is devoid of Immp2l peptidase activity. Immp2lKD -/- KO mice do not display any of the core behavioural symptoms of ASD, albeit homozygous Immp2lKD -/- KO mice do display increased auditory stimulus-driven instrumental behaviour and increased amphetamine-induced locomotion. Due to reports of increased ROS and oxidative stress phenotypes in an earlier truncated Immp2l mouse model resulting from an intragenic deletion within Immp2l, we tested whether high doses of the synthetic mitochondrial targeted antioxidant (MitoQ) could reverse or moderate the behavioural changes in Immp2lKD -/- KO mice. To our surprise, we observed that ROS levels were not increased but significantly lowered in our new Immp2lKD -/- KO mice and that these mice had no oxidative stress-associated phenotypes and were fully fertile with no age-related ataxia or neurodegeneration as ascertained using electron microscopy. Furthermore, the antioxidant MitoQ had no effect on the increased amphetamine-induced locomotion of these mice. Together, these findings indicate that the behavioural changes in Immp2lKD -/- KO mice are associated with an antioxidant-like phenotype with lowered and not increased levels of ROS and no oxidative stress-related phenotypes. This suggested that treatments with antioxidants are unlikely to be effective in treating behaviours directly resulting from the loss of Immp2l/IMMP2L activity, while any behavioural deficits that maybe associated with IMMP2L intragenic deletion-associated truncations have yet to be determined.
Collapse
Affiliation(s)
- Adam J. Lawther
- Laboratory of ImmunoPsychiatry, Neuroscience Research Australia, Randwick, NSW 2031, Australia
| | - Jerzy Zieba
- Laboratory of ImmunoPsychiatry, Neuroscience Research Australia, Randwick, NSW 2031, Australia
- Department of Psychology, University of Rzeszow, 35-310 Rzeszow, Poland
| | - Zhiming Fang
- Discipline of Psychiatry and Mental Health, University of New South Wales, Sydney, NSW 2052, Australia
- Ingham Institute for Applied Medical Research, Sydney, NSW 2170, Australia; (T.C.H.)
| | - Teri M. Furlong
- School of Biomedical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Illya Conn
- Laboratory of ImmunoPsychiatry, Neuroscience Research Australia, Randwick, NSW 2031, Australia
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Randwick, NSW 2031, Australia
| | - Hemna Govindaraju
- Department of Pharmacology, School of Biomedical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia
| | - Laura L. Y. Choong
- Department of Pharmacology, School of Biomedical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia
| | - Nigel Turner
- Department of Pharmacology, School of Biomedical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia
| | - Khawar Sohail Siddiqui
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Wallace Bridge
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Sam Merlin
- Medical Science, School of Science, Western Sydney University, Campbelltown, Sydney, NSW 2751, Australia
| | - Tzipi Cohen Hyams
- Ingham Institute for Applied Medical Research, Sydney, NSW 2170, Australia; (T.C.H.)
| | - Murray Killingsworth
- Ingham Institute for Applied Medical Research, Sydney, NSW 2170, Australia; (T.C.H.)
- NSW Health Pathology, Liverpool Hospital Campus, 1 Campbell Street, Liverpool, NSW 2107, Australia
| | - Valsamma Eapen
- Discipline of Psychiatry and Mental Health, University of New South Wales, Sydney, NSW 2052, Australia
- Ingham Institute for Applied Medical Research, Sydney, NSW 2170, Australia; (T.C.H.)
- Academic Unit of Infant Child and Adolescent Services (AUCS), South Western Sydney Local Health District, Liverpool, NSW 2170, Australia
| | - Raymond A. Clarke
- Discipline of Psychiatry and Mental Health, University of New South Wales, Sydney, NSW 2052, Australia
- Ingham Institute for Applied Medical Research, Sydney, NSW 2170, Australia; (T.C.H.)
- Academic Unit of Infant Child and Adolescent Services (AUCS), South Western Sydney Local Health District, Liverpool, NSW 2170, Australia
| | - Adam K. Walker
- Laboratory of ImmunoPsychiatry, Neuroscience Research Australia, Randwick, NSW 2031, Australia
- Discipline of Psychiatry and Mental Health, University of New South Wales, Sydney, NSW 2052, Australia
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| |
Collapse
|
9
|
Zhuang J, Liu S, Chen X, Jiang Y, Chen C. Identification of a novel isolated 4q35.2 microdeletion in a Chinese pediatric patient using chromosomal microarray analysis: a case report and literature review. Mol Cytogenet 2023; 16:18. [PMID: 37533110 PMCID: PMC10399047 DOI: 10.1186/s13039-023-00651-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/25/2023] [Indexed: 08/04/2023] Open
Abstract
BACKGROUND Isolated terminal 4q35.2 microdeletion is an extremely rare copy number variant affecting people all over the world. To date, researchers still have controversial opinions and results on its pathogenicity. Here, we aim to present a Chinese pediatric patient with terminal 4q35.2 microdeletion and use this case to clarify the underlying genotype-phenotype correlation. METHODS A 17-year-old boy from Quanzhou, South China, was recruited as the main subject in this study. Karyotype and single-nucleotide polymorphism (SNP) based microarray analysis were carried out to detect chromosomal abnormalities and copy number variants in this family. Trio whole exome sequencing (Trio-WES) was performed to investigate the potential pathogenic variant in this family. RESULTS During observation, we identified abnormal clinical phenotypes including upper eyelid ptosis, motor developmental delay, abnormal posturing, abnormality of coordination, attention deficit hyperactivity disorder, and involuntary movements in the patient. SNP array analysis results confirmed a case of 2.0 Mb 4q35.2 microdeletion and parental SNP array verification results indicated that the terminal 4q35.2 microdeletion was inherited from his mother. No copy number variants were detected in his father. In addition, the trio-WES results demonstrated none of pathogenic or likely pathogenic variants in the patient. CONCLUSIONS This study brings a novel analysis of a case of 2.0 Mb terminal 4q35.2 microdeletion affecting a Chinese individual. In addition, additional clinical symptoms such as upper eyelid ptosis and involuntary movements were first reported to affect a patient with terminal 4q35.2 microdeletion, which may broaden the phenotype spectrum of the condition.
Collapse
Affiliation(s)
- Jianlong Zhuang
- Prenatal Diagnosis Center, Quanzhou Women's and Children's Hospital, Quanzhou, 362000, Fujian Province, People's Republic of China.
| | - Shufen Liu
- Department of Neurology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, Fujian, People's Republic of China
| | - Xinying Chen
- Prenatal Diagnosis Center, Quanzhou Women's and Children's Hospital, Quanzhou, 362000, Fujian Province, People's Republic of China
| | - Yuying Jiang
- Prenatal Diagnosis Center, Quanzhou Women's and Children's Hospital, Quanzhou, 362000, Fujian Province, People's Republic of China.
| | - Chunnuan Chen
- Department of Neurology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, Fujian, People's Republic of China.
| |
Collapse
|
10
|
Brownstein CA, Douard E, Haynes RL, Koh HY, Haghighi A, Keywan C, Martin B, Alexandrescu S, Haas EA, Vargas SO, Wojcik MH, Jacquemont S, Poduri AH, Goldstein RD, Holm IA. Copy Number Variation and Structural Genomic Findings in 116 Cases of Sudden Unexplained Death between 1 and 28 Months of Age. ADVANCED GENETICS (HOBOKEN, N.J.) 2023; 4:2200012. [PMID: 36910592 PMCID: PMC10000288 DOI: 10.1002/ggn2.202200012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 08/31/2022] [Indexed: 11/09/2022]
Abstract
In sudden unexplained death in pediatrics (SUDP) the cause of death is unknown despite an autopsy and investigation. The role of copy number variations (CNVs) in SUDP has not been well-studied. Chromosomal microarray (CMA) data are generated for 116 SUDP cases with age at death between 1 and 28 months. CNVs are classified using the American College of Medical Genetics and Genomics guidelines and CNVs in our cohort are compared to an autism spectrum disorder (ASD) cohort, and to a control cohort. Pathogenic CNVs are identified in 5 of 116 cases (4.3%). Variants of uncertain significance (VUS) favoring pathogenic CNVs are identified in 9 cases (7.8%). Several CNVs are associated with neurodevelopmental phenotypes including seizures, ASD, developmental delay, and schizophrenia. The structural variant 47,XXY is identified in two cases (2/69 boys, 2.9%) not previously diagnosed with Klinefelter syndrome. Pathogenicity scores for deletions are significantly elevated in the SUDP cohort versus controls (p = 0.007) and are not significantly different from the ASD cohort. The finding of pathogenic or VUS favoring pathogenic CNVs, or structural variants, in 12.1% of cases, combined with the observation of higher pathogenicity scores for deletions in SUDP versus controls, suggests that CMA should be included in the genetic evaluation of SUDP.
Collapse
|
11
|
Evaluation of Individuals with Non-Syndromic Global Developmental Delay and Intellectual Disability. CHILDREN 2023; 10:children10030414. [PMID: 36979972 PMCID: PMC10047567 DOI: 10.3390/children10030414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/11/2023] [Accepted: 02/16/2023] [Indexed: 02/24/2023]
Abstract
Global Developmental Delay (GDD) and Intellectual Disability (ID) are two of the most common presentations encountered by physicians taking care of children. GDD/ID is classified into non-syndromic GDD/ID, where GDD/ID is the sole evident clinical feature, or syndromic GDD/ID, where there are additional clinical features or co-morbidities present. Careful evaluation of children with GDD and ID, starting with detailed history followed by a thorough examination, remain the cornerstone for etiologic diagnosis. However, when initial history and examination fail to identify a probable underlying etiology, further genetic testing is warranted. In recent years, genetic testing has been shown to be the single most important diagnostic modality for clinicians evaluating children with non-syndromic GDD/ID. In this review, we discuss different genetic testing currently available, review common underlying copy-number variants and molecular pathways, explore the recent evidence and recommendations for genetic evaluation and discuss an approach to the diagnosis and management of children with non-syndromic GDD and ID.
Collapse
|
12
|
Testard Q, Vanhoye X, Yauy K, Naud ME, Vieville G, Rousseau F, Dauriat B, Marquet V, Bourthoumieu S, Geneviève D, Gatinois V, Wells C, Willems M, Coubes C, Pinson L, Dard R, Tessier A, Hervé B, Vialard F, Harzallah I, Touraine R, Cogné B, Deb W, Besnard T, Pichon O, Laudier B, Mesnard L, Doreille A, Busa T, Missirian C, Satre V, Coutton C, Celse T, Harbuz R, Raymond L, Taly JF, Thevenon J. Exome sequencing as a first-tier test for copy number variant detection: retrospective evaluation and prospective screening in 2418 cases. J Med Genet 2022; 59:1234-1240. [PMID: 36137615 DOI: 10.1136/jmg-2022-108439] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 08/10/2022] [Indexed: 01/12/2023]
Abstract
BACKGROUND Despite the availability of whole exome (WES) and genome sequencing (WGS), chromosomal microarray (CMA) remains the first-line diagnostic test in most rare disorders diagnostic workup, looking for copy number variations (CNVs), with a diagnostic yield of 10%-20%. The question of the equivalence of CMA and WES in CNV calling is an organisational and economic question, especially when ordering a WGS after a negative CMA and/or WES. METHODS This study measures the equivalence between CMA and GATK4 exome sequencing depth of coverage method in detecting coding CNVs on a retrospective cohort of 615 unrelated individuals. A prospective detection of WES-CNV on a cohort of 2418 unrelated individuals, including the 615 individuals from the validation cohort, was performed. RESULTS On the retrospective validation cohort, every CNV detectable by the method (ie, a CNV with at least one exon not in a dark zone) was accurately called (64/64 events). In the prospective cohort, 32 diagnoses were performed among the 2418 individuals with CNVs ranging from 704 bp to aneuploidy. An incidental finding was reported. The overall increase in diagnostic yield was of 1.7%, varying from 1.2% in individuals with multiple congenital anomalies to 1.9% in individuals with chronic kidney failure. CONCLUSION Combining single-nucleotide variant (SNV) and CNV detection increases the suitability of exome sequencing as a first-tier diagnostic test for suspected rare Mendelian disorders. Before considering the prescription of a WGS after a negative WES, a careful reanalysis with updated CNV calling and SNV annotation should be considered.
Collapse
Affiliation(s)
- Quentin Testard
- Service de Génétique, Eurofins Biomnis, Lyon, France.,Service de Génétique et Procréation, CHU Grenoble Alpes, Grenoble, France.,CNRS UMR 5309, INSERM, U1209, Université Grenoble Alpes, Institute for Advanced Bioscience, Grenoble, France
| | | | - Kevin Yauy
- CNRS UMR 5309, INSERM, U1209, Université Grenoble Alpes, Institute for Advanced Bioscience, Grenoble, France.,SeqOne Genomics, Montpellier, France
| | | | - Gaelle Vieville
- Service de Génétique et Procréation, CHU Grenoble Alpes, Grenoble, France
| | | | - Benjamin Dauriat
- Service de Cytogénétique, Génétique Médicale et Biologie de la Reproduction, CHU Limoges, Limoges, France
| | - Valentine Marquet
- Service de Cytogénétique, Génétique Médicale et Biologie de la Reproduction, CHU Limoges, Limoges, France
| | - Sylvie Bourthoumieu
- Service de Cytogénétique, Génétique Médicale et Biologie de la Reproduction, CHU Limoges, Limoges, France
| | - David Geneviève
- Département de Génétique Médicale, Maladies Rares et Médecine Personnalisée, CHU Montpellier, Montpellier, France.,Unité INSERM U1183, University Montpellier 1, Montpellier, France
| | - Vincent Gatinois
- Département de Génétique Médicale, Maladies Rares et Médecine Personnalisée, CHU Montpellier, Montpellier, France
| | - Constance Wells
- Département de Génétique Médicale, Maladies Rares et Médecine Personnalisée, CHU Montpellier, Montpellier, France
| | - Marjolaine Willems
- Département de Génétique Médicale, Maladies Rares et Médecine Personnalisée, CHU Montpellier, Montpellier, France
| | - Christine Coubes
- Département de Génétique Médicale, Maladies Rares et Médecine Personnalisée, CHU Montpellier, Montpellier, France
| | - Lucile Pinson
- Département de Génétique Médicale, Maladies Rares et Médecine Personnalisée, CHU Montpellier, Montpellier, France
| | - Rodolphe Dard
- Département de Génétique, CHI Poissy-Saint-Germain-en-Laye, Saint-Germain-en-Laye, France
| | - Aude Tessier
- Département de Génétique, CHI Poissy-Saint-Germain-en-Laye, Saint-Germain-en-Laye, France
| | - Bérénice Hervé
- Département de Génétique, CHI Poissy-Saint-Germain-en-Laye, Saint-Germain-en-Laye, France
| | - François Vialard
- Département de Génétique, CHI Poissy-Saint-Germain-en-Laye, Saint-Germain-en-Laye, France
| | - Ines Harzallah
- Service de génétique clinique, chromosomique et moléculaire, CHU Saint-Étienne, Saint-Etienne, France
| | - Renaud Touraine
- Service de génétique clinique, chromosomique et moléculaire, CHU Saint-Étienne, Saint-Etienne, France
| | - Benjamin Cogné
- Service de Génétique Médicale, CHU Nantes, Nantes, France
| | - Wallid Deb
- Service de Génétique Médicale, CHU Nantes, Nantes, France
| | - Thomas Besnard
- Service de Génétique Médicale, CHU Nantes, Nantes, France
| | - Olivier Pichon
- Service de Génétique Médicale, CHU Nantes, Nantes, France
| | - Béatrice Laudier
- Laboratoire d'Immunologie et Neurogénétique Expérimentales et Moléculaires INEM UMR7355, CHR d'Orléans, Orléans, France
| | - Laurent Mesnard
- Sorbonne Université, Urgences Néphrologiques et Transplantation Rénale, APHP, Hôpital Tenon, Paris, France
| | - Alice Doreille
- Sorbonne Université, Urgences Néphrologiques et Transplantation Rénale, APHP, Hôpital Tenon, Paris, France
| | - Tiffany Busa
- Département de génétique médicale, AP HM, Hôpital de la Timone Enfant, Marseille, France
| | - Chantal Missirian
- Département de génétique médicale, AP HM, Hôpital de la Timone Enfant, Marseille, France
| | - Véronique Satre
- Service de Génétique et Procréation, CHU Grenoble Alpes, Grenoble, France.,CNRS UMR 5309, INSERM, U1209, Université Grenoble Alpes, Institute for Advanced Bioscience, Grenoble, France
| | - Charles Coutton
- Service de Génétique et Procréation, CHU Grenoble Alpes, Grenoble, France.,CNRS UMR 5309, INSERM, U1209, Université Grenoble Alpes, Institute for Advanced Bioscience, Grenoble, France
| | - Tristan Celse
- Service de Génétique et Procréation, CHU Grenoble Alpes, Grenoble, France
| | - Radu Harbuz
- Service de Génétique et Procréation, CHU Grenoble Alpes, Grenoble, France
| | - Laure Raymond
- Service de Génétique, Eurofins Biomnis, Lyon, France
| | | | - Julien Thevenon
- Service de Génétique et Procréation, CHU Grenoble Alpes, Grenoble, France .,CNRS UMR 5309, INSERM, U1209, Université Grenoble Alpes, Institute for Advanced Bioscience, Grenoble, France
| |
Collapse
|
13
|
Pham T, Patel A, Muquith M, Zimmern V, Goodspeed K. Abnormal Genetic Testing in Males With Concomitant Neurodevelopmental Disabilities and Genital Malformation. Pediatr Neurol 2022; 134:72-77. [PMID: 35841714 DOI: 10.1016/j.pediatrneurol.2022.06.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 06/06/2022] [Accepted: 06/21/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND Neurodevelopmental disorders (NDDs) affect 1:6 children in the United States and are often linked to genetic disorders. Because many genes are enriched in brain and testicular tissue, genital malformations identified early may be a predictor of genetic disorders in children with NDDs. However, few studies have evaluated the specific effects of genital malformations. This study assesses the association between genital malformations and abnormal genetic testing among male patients with NDD. METHODS A retrospective chart review was performed of 447 male patients seen at Children's Health Dallas (2009 to 2019) with concomitant genital malformations and NDDs. We assessed the strength of factors associated with obtaining a genetic test and having abnormal results. RESULTS We identified 447 patients with concomitant genital malformations and NDD. Fifty-six percent (251 of 447) received genetic testing, of which 68.5% (172 of 251) had abnormal results. Patients with mixed genitourinary malformations, global developmental delay (GDD), intellectual delay, or autism spectrum disorder were more likely to have a genetic test. Patients with bilateral testicular involvement, GDD, severe language delay, wheelchair dependence, or abnormal magnetic resonance imaging findings were more likely to have abnormal results. CONCLUSION The diagnostic yield of 68.5% in our cohort of male patients with genital malformations was higher than previous reports of 5% to 35% in NDD populations. More severe phenotypic features may be associated with increased yield. Identification of genital malformations during infancy may guide clinical surveillance, and copresentations with NDDs may support genetic testing.
Collapse
Affiliation(s)
- Tri Pham
- University of Texas Southwestern Medical School, Dallas, Texas
| | - Akshat Patel
- University of Texas Southwestern Medical School, Dallas, Texas
| | | | - Vincent Zimmern
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Kimberly Goodspeed
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas.
| |
Collapse
|
14
|
Cao J, Chen A, Tian L, Yan L, Li H, Zhou B. Application of whole exome sequencing in fetal cases with skeletal abnormalities. Heliyon 2022; 8:e09819. [PMID: 35855989 PMCID: PMC9287157 DOI: 10.1016/j.heliyon.2022.e09819] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 01/11/2022] [Accepted: 06/24/2022] [Indexed: 11/18/2022] Open
Abstract
Objectives To investigate the role of whole exome sequencing (WES) technology in fetuses with skeletal abnormalities (SKA) for establishing an appropriate clinical diagnosis and treatment path. Methods From April 2019 to August 2020, eight special families were enrolled into the study. Their fetuses showed abnormal SKA by ultrasonic testing during pregnancy, but it is inconsistent with the normal results identified by chromosomal microarray analysis (CMA) of amniotic fluid or abortion. For further diagnosis, WES was performed to detect the causative genes mutations followed by Sanger sequencing. Results Among of these eight fetuses with SKA, we found more than half of pathogenic mutations were in COL1A1/2 gene, except for a known hotspot mutation in FGFR3 gene (c.1138G>A). Three heterozygous mutations of COL1A1 gene, c.2885G>A p (Gly962Asp), c.994G>A p (Gly332Arg) and c.1002 + 5G>T, were de novo mutations. The c.1002 + 5G>T mutation in COL1A1 was firstly reported. In addition, one fetus carried a novel heterozygous mutation of COL1A1 c.644G>A p (Gly215Asp), which was inherited from the mother. Another novel heterozygous mutation c.2482G>T p (Val828Phe) in the COL1A2 gene was identified in another fetus and was inherited from the father. Among of these COL1A1 mutations, these results might involve in two novel splicing mutations. Conclusion Our study reported several novel heterozygous mutations which expands the COL1A1/2 mutation spectrum for prenatal diagnosis of SKA. Most importantly, WES technology is necessary as a routine step of the SKA diagnosis before or during pregnancy, combining with the detection of chromosome level.
Collapse
Affiliation(s)
- Juan Cao
- Ningbo Women and Children Healthcare Center, Ningbo Women and Children's Hospital, Ningbo, Zhejiang, 315-12, China
| | - An'er Chen
- Ningbo Women and Children Healthcare Center, Ningbo Women and Children's Hospital, Ningbo, Zhejiang, 315-12, China
| | - Liyun Tian
- Ningbo Women and Children Healthcare Center, Ningbo Women and Children's Hospital, Ningbo, Zhejiang, 315-12, China
| | - Lulu Yan
- Ningbo Women and Children Healthcare Center, Ningbo Women and Children's Hospital, Ningbo, Zhejiang, 315-12, China
| | - Haibo Li
- Ningbo Women and Children Healthcare Center, Ningbo Women and Children's Hospital, Ningbo, Zhejiang, 315-12, China
| | - Bihua Zhou
- Ningbo Women and Children Healthcare Center, Ningbo Women and Children's Hospital, Ningbo, Zhejiang, 315-12, China
| |
Collapse
|
15
|
Delea M, Massara LS, Espeche LD, Bidondo MP, Barbero P, Oliveri J, Brun P, Fabro M, Galain M, Fernández CS, Taboas M, Bruque CD, Kolomenski JE, Izquierdo A, Berenstein A, Cosentino V, Martinoli C, Vilas M, Rittler M, Mendez R, Furforo L, Liascovich R, Groisman B, Rozental S, Dain L. Genetic Analysis Algorithm for the Study of Patients with Multiple Congenital Anomalies and Isolated Congenital Heart Disease. Genes (Basel) 2022; 13:1172. [PMID: 35885957 PMCID: PMC9317700 DOI: 10.3390/genes13071172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/16/2022] [Accepted: 06/27/2022] [Indexed: 11/20/2022] Open
Abstract
Congenital anomalies (CA) affect 3-5% of newborns, representing the second-leading cause of infant mortality in Argentina. Multiple congenital anomalies (MCA) have a prevalence of 2.26/1000 births in newborns, while congenital heart diseases (CHD) are the most frequent CA with a prevalence of 4.06/1000 births. The aim of this study was to identify the genetic causes in Argentinian patients with MCA and isolated CHD. We recruited 366 patients (172 with MCA and 194 with isolated CHD) born between June 2015 and August 2019 at public hospitals. DNA from peripheral blood was obtained from all patients, while karyotyping was performed in patients with MCA. Samples from patients presenting conotruncal CHD or DiGeorge phenotype (n = 137) were studied using MLPA. Ninety-three samples were studied by array-CGH and 18 by targeted or exome next-generation sequencing (NGS). A total of 240 patients were successfully studied using at least one technique. Cytogenetic abnormalities were observed in 13 patients, while 18 had clinically relevant imbalances detected by array-CGH. After MLPA, 26 patients presented 22q11 deletions or duplications and one presented a TBX1 gene deletion. Following NGS analysis, 12 patients presented pathogenic or likely pathogenic genetic variants, five of them, found in KAT6B, SHH, MYH11, MYH7 and EP300 genes, are novel. Using an algorithm that combines molecular techniques with clinical and genetic assessment, we determined the genetic contribution in 27.5% of the analyzed patients.
Collapse
Affiliation(s)
- Marisol Delea
- Centro Nacional de Genética Médica “Dr. Eduardo Castilla”- ANLIS “Dr. Carlos G. Malbrán”, Avda. Las Heras 2670, Buenos Aires 1425, Argentina; (M.D.); (L.D.E.); (M.P.B.); (P.B.); (M.T.); (C.D.B.); (R.M.); (R.L.); (B.G.); (S.R.)
| | - Lucia S. Massara
- Hospital de Alta Complejidad en Red El Cruce—SAMIC. Av. Calchaquí 5401, Florencio Varela 1888, Argentina; (L.S.M.); (J.O.); (P.B.)
| | - Lucia D. Espeche
- Centro Nacional de Genética Médica “Dr. Eduardo Castilla”- ANLIS “Dr. Carlos G. Malbrán”, Avda. Las Heras 2670, Buenos Aires 1425, Argentina; (M.D.); (L.D.E.); (M.P.B.); (P.B.); (M.T.); (C.D.B.); (R.M.); (R.L.); (B.G.); (S.R.)
| | - María Paz Bidondo
- Centro Nacional de Genética Médica “Dr. Eduardo Castilla”- ANLIS “Dr. Carlos G. Malbrán”, Avda. Las Heras 2670, Buenos Aires 1425, Argentina; (M.D.); (L.D.E.); (M.P.B.); (P.B.); (M.T.); (C.D.B.); (R.M.); (R.L.); (B.G.); (S.R.)
- Unidad Académica de Histologia, Embriologia, Biologia Celular y Genética, Facultad de Medicina UBA, Paraguay 2155, Buenos Aires 1121, Argentina
| | - Pablo Barbero
- Centro Nacional de Genética Médica “Dr. Eduardo Castilla”- ANLIS “Dr. Carlos G. Malbrán”, Avda. Las Heras 2670, Buenos Aires 1425, Argentina; (M.D.); (L.D.E.); (M.P.B.); (P.B.); (M.T.); (C.D.B.); (R.M.); (R.L.); (B.G.); (S.R.)
| | - Jaen Oliveri
- Hospital de Alta Complejidad en Red El Cruce—SAMIC. Av. Calchaquí 5401, Florencio Varela 1888, Argentina; (L.S.M.); (J.O.); (P.B.)
| | - Paloma Brun
- Hospital de Alta Complejidad en Red El Cruce—SAMIC. Av. Calchaquí 5401, Florencio Varela 1888, Argentina; (L.S.M.); (J.O.); (P.B.)
| | - Mónica Fabro
- Novagen, Viamonte 1430, Buenos Aires 1055, Argentina; (M.F.); (M.G.); (C.S.F.)
| | - Micaela Galain
- Novagen, Viamonte 1430, Buenos Aires 1055, Argentina; (M.F.); (M.G.); (C.S.F.)
| | | | - Melisa Taboas
- Centro Nacional de Genética Médica “Dr. Eduardo Castilla”- ANLIS “Dr. Carlos G. Malbrán”, Avda. Las Heras 2670, Buenos Aires 1425, Argentina; (M.D.); (L.D.E.); (M.P.B.); (P.B.); (M.T.); (C.D.B.); (R.M.); (R.L.); (B.G.); (S.R.)
| | - Carlos D. Bruque
- Centro Nacional de Genética Médica “Dr. Eduardo Castilla”- ANLIS “Dr. Carlos G. Malbrán”, Avda. Las Heras 2670, Buenos Aires 1425, Argentina; (M.D.); (L.D.E.); (M.P.B.); (P.B.); (M.T.); (C.D.B.); (R.M.); (R.L.); (B.G.); (S.R.)
| | - Jorge E. Kolomenski
- Departamento de Fisiología, Biología Molecular y Celular, Instituto de Biociencias, Biotecnología y Biología Traslacional (iB3), Facultad de Ciencias Exactas y Naturales-UBA, Intendente Güiraldes 2160, Buenos Aires 1428, Argentina;
| | - Agustín Izquierdo
- Centro de Investigaciones Endocrinológicas “Dr. César Bergadá”. Gallo 1330, Buenos Aires 1425, Argentina;
| | - Ariel Berenstein
- Instituto Multidisciplinario de Investigaciones en Patologías Pediátricas, Gallo 1330, Buenos Aires 1425, Argentina;
| | - Viviana Cosentino
- Hospital Interzonal General de Agudos Luisa Cravenna de Gandulfo, Balcarce 351, Lomas de Zamora 1832, Argentina;
| | - Celeste Martinoli
- Hospital Sor Maria Ludovica, Calle 14 1631, La Plata 1904, Argentina;
| | - Mariana Vilas
- Hospital Materno Infantil Ramón Sardá, Esteban de Luca 2151, Buenos Aires 1246, Argentina; (M.V.); (M.R.); (L.F.)
| | - Mónica Rittler
- Hospital Materno Infantil Ramón Sardá, Esteban de Luca 2151, Buenos Aires 1246, Argentina; (M.V.); (M.R.); (L.F.)
| | - Rodrigo Mendez
- Centro Nacional de Genética Médica “Dr. Eduardo Castilla”- ANLIS “Dr. Carlos G. Malbrán”, Avda. Las Heras 2670, Buenos Aires 1425, Argentina; (M.D.); (L.D.E.); (M.P.B.); (P.B.); (M.T.); (C.D.B.); (R.M.); (R.L.); (B.G.); (S.R.)
| | - Lilian Furforo
- Hospital Materno Infantil Ramón Sardá, Esteban de Luca 2151, Buenos Aires 1246, Argentina; (M.V.); (M.R.); (L.F.)
| | - Rosa Liascovich
- Centro Nacional de Genética Médica “Dr. Eduardo Castilla”- ANLIS “Dr. Carlos G. Malbrán”, Avda. Las Heras 2670, Buenos Aires 1425, Argentina; (M.D.); (L.D.E.); (M.P.B.); (P.B.); (M.T.); (C.D.B.); (R.M.); (R.L.); (B.G.); (S.R.)
| | - Boris Groisman
- Centro Nacional de Genética Médica “Dr. Eduardo Castilla”- ANLIS “Dr. Carlos G. Malbrán”, Avda. Las Heras 2670, Buenos Aires 1425, Argentina; (M.D.); (L.D.E.); (M.P.B.); (P.B.); (M.T.); (C.D.B.); (R.M.); (R.L.); (B.G.); (S.R.)
| | - Sandra Rozental
- Centro Nacional de Genética Médica “Dr. Eduardo Castilla”- ANLIS “Dr. Carlos G. Malbrán”, Avda. Las Heras 2670, Buenos Aires 1425, Argentina; (M.D.); (L.D.E.); (M.P.B.); (P.B.); (M.T.); (C.D.B.); (R.M.); (R.L.); (B.G.); (S.R.)
| | - Liliana Dain
- Centro Nacional de Genética Médica “Dr. Eduardo Castilla”- ANLIS “Dr. Carlos G. Malbrán”, Avda. Las Heras 2670, Buenos Aires 1425, Argentina; (M.D.); (L.D.E.); (M.P.B.); (P.B.); (M.T.); (C.D.B.); (R.M.); (R.L.); (B.G.); (S.R.)
- Departamento de Fisiología, Biología Molecular y Celular, Instituto de Biociencias, Biotecnología y Biología Traslacional (iB3), Facultad de Ciencias Exactas y Naturales-UBA, Intendente Güiraldes 2160, Buenos Aires 1428, Argentina;
| | | |
Collapse
|
16
|
Two Genetic Mechanisms in Two Siblings with Intellectual Disability, Autism Spectrum Disorder, and Psychosis. J Pers Med 2022; 12:jpm12061013. [PMID: 35743796 PMCID: PMC9224546 DOI: 10.3390/jpm12061013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/08/2022] [Accepted: 06/17/2022] [Indexed: 12/04/2022] Open
Abstract
Intellectual disability (ID) and autism spectrum disorder (ASD) are complex neurodevelopmental disorders with high heritability. To search for the genetic deficits in two siblings affected with ID and ASD in a family, we first performed a genome-wide copy number variation (CNV) analysis using chromosomal microarray analysis (CMA). We found a 3.7 Mb microdeletion at 22q13.3 in the younger sister. This de novo microdeletion resulted in the haploinsufficiency of SHANK3 and several nearby genes involved in neurodevelopment disorders. Hence, she was diagnosed with Phelan–McDermid syndrome (PMS, OMIM#606232). We further performed whole-genome sequencing (WGS) analysis in this family. We did not detect pathogenic mutations with significant impacts on the phenotypes of the elder brother. Instead, we identified several rare, likely pathogenic variants in seven genes implicated in neurodevelopmental disorders: KLHL17, TDO2, TRRAP, EIF3F, ATP10A, DICER1, and CDH15. These variants were transmitted from his unaffected parents, indicating these variants have only moderate clinical effects. We propose that these variants worked together and led to the clinical phenotypes in the elder brother. We also suggest that the combination of multiple genes with moderate effects is part of the genetic mechanism of neurodevelopmental disorders.
Collapse
|
17
|
Mathew MT, Antoniou A, Ramesh N, Hu M, Gaither J, Mouhlas D, Hashimoto S, Humphrey M, Matthews T, Hunter JM, Reshmi S, Schultz M, Lee K, Pfau R, Cottrell C, McBride KL, Navin NE, Chaudhari BP, Leung ML. A Decade's Experience in Pediatric Chromosomal Microarray Reveals Distinct Characteristics Across Ordering Specialties. J Mol Diagn 2022; 24:1031-1040. [PMID: 35718094 DOI: 10.1016/j.jmoldx.2022.06.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 05/04/2022] [Accepted: 06/02/2022] [Indexed: 11/27/2022] Open
Abstract
Chromosomal microarray (CMA) is a testing modality frequently used in pediatric patients; however, previously published data on its utilization are limited to the genetic setting. Herein, we performed a database search for all CMA testing performed from 2010 to 2020, and delineated the diagnostic yield based on patient characteristics, including sex, age, clinical specialty of providers, indication of testing, and pathogenic finding. The indications for testing were further categorized into Human Phenotype Ontology categories for analysis. This study included a cohort of 14,541 patients from 29 different medical specialties, of whom 30% were from the genetics clinic. The clinical indications for testing suggested that neonatology patients demonstrated the greatest involvement of multiorgan systems, involving the most Human Phenotype Ontology categories, compared with developmental behavioral pediatrics and neurology patients being the least. The top pathogenic findings for each specialty differed, likely due to the varying clinical features and indications for testing. Deletions involving the 22q11.21 locus were the top pathogenic findings for patients presenting to genetics, neonatology, cardiology, and surgery. Our data represent the largest pediatric cohort published to date. This study is the first to demonstrate the diagnostic utility of this assay for patients seen in the setting of different specialties, and it provides normative data of CMA results among a general pediatric population referred for testing because of variable clinical presentations.
Collapse
Affiliation(s)
- Mariam T Mathew
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio; Department of Pathology, The Ohio State University College of Medicine, Columbus, Ohio; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio
| | - Austin Antoniou
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio
| | - Naveen Ramesh
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Min Hu
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jeffrey Gaither
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio
| | - Danielle Mouhlas
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio
| | - Sayaka Hashimoto
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio
| | - Maggie Humphrey
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio
| | - Theodora Matthews
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio
| | - Jesse M Hunter
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio; Department of Pathology, The Ohio State University College of Medicine, Columbus, Ohio; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio
| | - Shalini Reshmi
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio; Department of Pathology, The Ohio State University College of Medicine, Columbus, Ohio; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio
| | - Matthew Schultz
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio; Department of Pathology, The Ohio State University College of Medicine, Columbus, Ohio; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio
| | - Kristy Lee
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio; Department of Pathology, The Ohio State University College of Medicine, Columbus, Ohio; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio
| | - Ruthann Pfau
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio; Department of Pathology, The Ohio State University College of Medicine, Columbus, Ohio; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio
| | - Catherine Cottrell
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio; Department of Pathology, The Ohio State University College of Medicine, Columbus, Ohio; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio
| | - Kim L McBride
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio; Division of Genetics and Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio; Center for Cardiovascular Research, Nationwide Children's Hospital, Columbus, Ohio
| | - Nicholas E Navin
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas; Department of Bioinformatics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Bimal P Chaudhari
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio; Division of Genetics and Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio; Division of Neonatology, Nationwide Children's Hospital, Columbus, Ohio
| | - Marco L Leung
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio; Department of Pathology, The Ohio State University College of Medicine, Columbus, Ohio; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio.
| |
Collapse
|
18
|
Detection of copy number variants and genes by chromosomal microarray in an Emirati neurodevelopmental disorders cohort. Neurogenetics 2022; 23:137-149. [DOI: 10.1007/s10048-022-00689-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 03/06/2022] [Indexed: 10/18/2022]
|
19
|
Kim B, Park Y, Cho SI, Kim MJ, Chae JH, Kim JY, Seong MW, Park SS. Clinical Utility of Methylation-Specific Multiplex Ligation-Dependent Probe Amplification for the Diagnosis of Prader-Willi Syndrome and Angelman Syndrome. Ann Lab Med 2022; 42:79-88. [PMID: 34374352 PMCID: PMC8368237 DOI: 10.3343/alm.2022.42.1.79] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 11/17/2020] [Accepted: 07/06/2021] [Indexed: 12/17/2022] Open
Abstract
Background Prader–Willi syndrome (PWS) and Angelman syndrome (AS) are genomic imprinting disorders that are mainly caused by a deletion on 15q11-q13, the uniparental disomy of chromosome 15, or an imprinting defect. We evaluated the utility of methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA) as a diagnostic tool and for demonstrating the relationship between molecular mechanisms and clinical presentation. Methods We performed MS-MLPA using DNA samples from 93 subjects (45 PWS, 24 AS, and 24 non-PWS/AS controls) who had previously undergone MS-PCR for the diagnosis of PWS/AS. We compared the results of both assays, and patients’ clinical phenotypes were reviewed retrospectively. Results MS-MLPA showed a 100% concordance rate with MS-PCR. Among the 45 PWS patients, 26 (57.8%) had a deletion of 15q11-q13, and the others (42.2%) had uniparental disomy 15 or an imprinting defect. Among the 24 AS patients, 16 (66.7%) had a deletion of 15q11-q13, 7 AS patients (29.2%) had uniparental disomy 15 or an imprinting defect, and one AS patient (4.2%) showed an imprinting center deletion. Conclusions MS-MLPA has clinical utility for the diagnosis of PWS/AS, and it is superior to MS-PCR in that it can identify the molecular mechanism underlying the disease.
Collapse
Affiliation(s)
- Boram Kim
- Department of Laboratory Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Yongsook Park
- Department of Laboratory Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Sung Im Cho
- Department of Laboratory Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Man Jin Kim
- Department of Laboratory Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Jong-Hee Chae
- Department of Pediatrics, Seoul National University Children's Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Ji Yeon Kim
- Biomedical research Institute, Seoul National University Hospital, Seoul, Korea
| | - Moon-Woo Seong
- Department of Laboratory Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea.,Biomedical research Institute, Seoul National University Hospital, Seoul, Korea
| | - Sung Sup Park
- Department of Laboratory Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea.,Biomedical research Institute, Seoul National University Hospital, Seoul, Korea
| |
Collapse
|
20
|
Vaknin N, Azoulay N, Tsur E, Tripolszki K, Urzi A, Rolfs A, Bauer P, Achiron R, Lipitz S, Goldberg Y, Berger R, Shohat M. High rate of abnormal findings in Prenatal Exome Trio in low risk pregnancies and apparently normal fetuses. Prenat Diagn 2021; 42:725-735. [PMID: 34918830 DOI: 10.1002/pd.6077] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 11/02/2021] [Accepted: 12/06/2021] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Data on the value of exome sequencing in fetuses with no structural anomalies are limited, especially in the early stages of pregnancy and in low risk pregnancies. We investigated the yield of targeted clinical prenatal trio exome sequencing (pES) in pregnancies with and without fetal structural anomalies. METHODS We performed pES in 353 pregnancies: Group 1 included 143 pregnancies with high clinical suspicion for a genetic disease: pregnancies with increased nuchal translucency, ultrasound structural defects, intrauterine growth restriction, polyhydramnios, or effusion/nuchal edema. Group 2 included 210 pregnancies with no notable abnormal fetal ultrasound findings. 2a. Low risk pregnancies with minor ultrasound findings, referred to the geneticist due to mildly increased risk for genetic disease (50); and 2b. Normal pregnancy surveillance (160). RESULTS Overall, 26 (7.36%) fetal analyses had pathogenic (P)/likely pathogenic (LP) variants. In group 1, 20/143 (13.99%) cases had P/LP variants. In group 2, 6/210 (2.86%) cases were found to have P/LP variants [5/50 in (2a) and 1/160 in (2b)]. CONCLUSION These results show a high rate of abnormal findings on pES even in apparently normal pregnancies.
Collapse
Affiliation(s)
- Noam Vaknin
- The Genetic Institute of Maccabi Health Services, Rehovot, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Noy Azoulay
- The Genetic Institute of Maccabi Health Services, Rehovot, Israel.,Raphael Recanati Genetics Institute, Beilinson Hospital, Rabin Medical Center, Petach Tikva, Israel
| | - Erez Tsur
- The Genetic Institute of Maccabi Health Services, Rehovot, Israel
| | | | | | | | | | - Reuven Achiron
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,Department of Obstetrics and Gynecology, Chaim Sheba Medical Center, Tel-Hashomer, Israel
| | - Shlomo Lipitz
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,Department of Obstetrics and Gynecology, Chaim Sheba Medical Center, Tel-Hashomer, Israel
| | - Yael Goldberg
- The Genetic Institute of Maccabi Health Services, Rehovot, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,Raphael Recanati Genetics Institute, Beilinson Hospital, Rabin Medical Center, Petach Tikva, Israel
| | - Rachel Berger
- The Genetic Institute of Maccabi Health Services, Rehovot, Israel
| | - Mordechai Shohat
- The Genetic Institute of Maccabi Health Services, Rehovot, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,Bioinformatics Unit, Cancer Research Center, Chaim Sheba Medical Center, Tel-Hashomer, Israel
| |
Collapse
|
21
|
Dean DD, Agarwal S, Muthuswamy S, Asim A. Brain exosomes as minuscule information hub for Autism Spectrum Disorder. Expert Rev Mol Diagn 2021; 21:1323-1331. [PMID: 34720032 DOI: 10.1080/14737159.2021.2000395] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Autism spectrum disorder (ASD) is a neurodevelopmental disorder initiating in the first three years of life. Early initiation of management therapies can significantly improve the health and quality of life of ASD subjects. Thus, indicating the need for suitable biomarkers for the early identification of ASD. Various biological domains were investigated in the quest for reliable biomarkers. However, most biomarkers are in the preliminary stage, and clinical validation is yet to be defined. Exosome based research gained momentum in various Central Nervous System disorders for biomarker identification. However, the utility and prospect of exosomes in ASD is still underexplored. AREAS COVERED In the present review, we summarized the biomarker discovery current status and the future of brain-specific exosomes in understanding pathophysiology and its potential as a biomarker. The studies reviewed herein were identified via systematic search (dated: June 2021) of PubMed using variations related to autism (ASD OR autism OR Autism spectrum disorder) AND exosomes AND/OR biomarkers. EXPERT OPINION As exosomess are highly relevant in brain disorders like ASD, direct access to brain tissue for molecular assessment is ethically impossible. Thus investigating the brain-derived exosomes would undoubtedly answer many unsolved aspects of the pathogenesis and provide reliable biomarkers.
Collapse
Affiliation(s)
- Deepika Delsa Dean
- Deptartment of Medical Genetics, Sanjay Gandhi Post Graduate Institute of Medical Sciences (Sgpgims), Lucknow, India
| | - Sarita Agarwal
- Deptartment of Medical Genetics, Sanjay Gandhi Post Graduate Institute of Medical Sciences (Sgpgims), Lucknow, India
| | | | - Ambreen Asim
- Deptartment of Medical Genetics, Sanjay Gandhi Post Graduate Institute of Medical Sciences (Sgpgims), Lucknow, India
| |
Collapse
|
22
|
Han JY, Park J. A Recurrent De Novo Terminal Duplication of 14q32 in Korean Siblings Associated with Developmental Delay and Intellectual Disability, Growth Retardation, Facial Dysmorphism, and Cerebral Infarction: A Case Report and Literature Review. Genes (Basel) 2021; 12:1388. [PMID: 34573370 PMCID: PMC8472681 DOI: 10.3390/genes12091388] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/30/2021] [Accepted: 09/01/2021] [Indexed: 11/16/2022] Open
Abstract
The terminal 14q32 duplication has been reported often in association with other cytogenetic abnormalities, and individuals with this specific duplication showed varying degrees of developmental delay/intellectual disability (DD/ID) and growth retardation (GR), and distinct facial dysmorphisms. Herein, based on the limited cases of terminal duplication of 14q32 known to date, we present new affected siblings presenting with DD/ID, GR, and facial dysmorphism, as well as cerebral infarction caused by recurrent de novo der(14)t(14;14)(p11.2;q32.1) leading to terminal duplication of 14q32. We used coverage analysis generated via duo exome sequencing, performed chromosomal microarray (CMA) as a confirmatory test, and compared our findings with those reported previously. Coverage analysis generated via duo exome sequencing revealed a 17.2 Mb heterozygous duplication at chromosome 14q32.11-q32.33 with a Z ratio ranging between 0.5 and 1 in the proband and her elder brother. As a complementary method, CMA established a terminal duplication described as the arr[hg19]14q32.11q32.33(90,043,558_107,258,824)x3 in the proband and her elder brother; however, the parents and other siblings showed normal karyotyping and no abnormal gain or loss of CMA results. Five candidate genes, BCL11B, CCNK, YY1, DYNC1H1, and PACS2, were associated with the clinical phenotypes in our cases. Although the parents had normal chromosomes, two affected cases carrying terminal duplication of 14q32 can be explained by gonadal mosaicism. Further studies are needed to establish the association between cerebrovascular events and terminal duplication of chromosome 14q32, including investigation into the cytogenetics of patients with precise clinical descriptions.
Collapse
Affiliation(s)
- Ji Yoon Han
- Department of Pediatrics, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea;
| | - Joonhong Park
- Department of Laboratory Medicine, Jeonbuk National University Medical School and Hospital, Jeonju 54907, Korea
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju 54907, Korea
| |
Collapse
|
23
|
Kim SY, Shin CH, Lee YA, Shin CH, Yang SW, Cho TJ, Ko JM. Clinical Application of Sequential Epigenetic Analysis for Diagnosis of Silver-Russell Syndrome. Ann Lab Med 2021; 41:401-408. [PMID: 33536359 PMCID: PMC7884196 DOI: 10.3343/alm.2021.41.4.401] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/13/2020] [Accepted: 11/19/2020] [Indexed: 11/19/2022] Open
Abstract
Background Silver-Russell syndrome (SRS) is a pre- or post-natal growth retardation disorder caused by (epi)genetic alterations. We evaluated the molecular basis and clinical value of sequential epigenetic analysis in pediatric patients with SRS. Methods Twenty-eight patients who met≥3 Netchine-Harbison clinical scoring system (NH-CSS) criteria for SRS were enrolled;26 (92.9%) were born small for gestational age, and 25 (89.3%) showed postnatal growth failure. Relative macrocephaly, body asymmetry, and feeding difficulty were noted in 18 (64.3%), 13 (46.4%), and 9 (32.1%) patients, respectively. Methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA) on chromosome 11p15 was performed as the first diagnostic step. Subsequently, bisulfite pyrosequencing (BP) for imprinting center 1 and 2 (IC1 and IC2) at chromosome 11p15, MEST on chromosome 7q32.2, and MEG3 on chromosome 14q32.2 was performed. Results. Seventeen (60.7%) patients exhibited methylation defects, including loss of IC1 methylation (N=14; 11 detected by MS-MLPA and three detected by BP) and maternal uniparental disomy 7 (N=3). The diagnostic yield was comparable between patients who met three or four of the NH-CSS criteria (53.8% vs 50.0%). Patients with methylation defects responded better to growth hormone treatment. Conclusions NH-CSS is a powerful tool for SRS screening. However, in practice, genetic analysis should be considered even in patients with a low NH-CSS score. BP analysis detected additional methylation defects that were missed by MS-MLPA and might be considered as a first-line diagnostic tool for SRS.
Collapse
Affiliation(s)
- Soo Yeon Kim
- Pediatric Clinical Neuroscience Center, Department of Pediatrics, Seoul National University Children's Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Chang Ho Shin
- Division of Pediatric Orthopedics, Department of Orthopaedic Surgery, Seoul National University Children's Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Young Ah Lee
- Division of Endocrinology, Department Pediatrics, Seoul National University Children's Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Choong Ho Shin
- Division of Endocrinology, Department Pediatrics, Seoul National University Children's Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Sei Won Yang
- Division of Endocrinology, Department Pediatrics, Seoul National University Children's Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Tae-Joon Cho
- Division of Pediatric Orthopedics, Department of Orthopaedic Surgery, Seoul National University Children's Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Jung Min Ko
- Division of Clinical Genetics, Department of Pediatrics, Seoul National University Children's Hospital, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
24
|
Su M, Page S, Haag M, Swisshelm K, Hennerich D, Graw S, LeRoux J, Brzeskiewicz P, Svihovec S, Bao L. Clinical utility and cost-effectiveness analysis of chromosome testing concomitant with chromosomal microarray of patients with constitutional disorders in a U.S. academic medical center. J Genet Couns 2021; 31:364-374. [PMID: 34397147 DOI: 10.1002/jgc4.1496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 07/30/2021] [Accepted: 08/01/2021] [Indexed: 12/11/2022]
Abstract
Chromosomal microarray (CMA) is now widely used as first-tier testing for the detection of copy number variants (CNVs) and absence of heterozygosity (AOH) in patients with multiple congenital anomalies (MCA), autism spectrum disorder (ASD), developmental delay (DD), and/or intellectual disability (ID). Chromosome analysis is commonly used to complement CMA in the detection of balanced genomic aberrations. However, the cost-effectiveness and the impact on clinical management of chromosome analysis concomitant with CMA were not well studied, and there is no consensus on how to best utilize these two tests. To assess the clinical utility and cost-effectiveness of chromosome analysis concomitant with CMA in patients with MCA, ASD, DD, and/or ID, we retrospectively analyzed 3,360 postnatal cases for which CMA and concomitant chromosome analysis were performed in the Colorado Genetic Laboratory (CGL) at the University Of Colorado School Of Medicine. Chromosome analysis alone yielded a genetic diagnosis in two patients (0.06%) and contributed additional information to CMA results in 199 (5.92%) cases. The impact of abnormal chromosome results on patient management was primarily related to counseling for reproductive and recurrence risks assessment (101 cases, 3.01%) while a few (5 cases, 0.15%) led to changes in laboratory testing and specialist referral (25 cases, 0.74%). The incremental cost-effectiveness ratio (ICER) of combined testing demonstrated the cost of each informative chromosome finding was significantly higher for patients with clinically insignificant (CI) CMA findings versus clinically significant (CS) CMA results. Our results suggest that a stepwise approach with CMA testing with reflex to chromosome analysis on cases with CS CMA findings is a more cost-effective testing algorithm for patients with MCA, ASD, and/or DD/ID.
Collapse
Affiliation(s)
- Meng Su
- Colorado Genetics Laboratory, Department of Pathology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Stephanie Page
- Genetics Counseling Program, Department of Genetics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Mary Haag
- Colorado Genetics Laboratory, Department of Pathology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Karen Swisshelm
- Colorado Genetics Laboratory, Department of Pathology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Deborrah Hennerich
- Colorado Genetics Laboratory, Department of Pathology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Sharon Graw
- Colorado Genetics Laboratory, Department of Pathology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Jamie LeRoux
- Colorado Genetics Laboratory, Department of Pathology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Peter Brzeskiewicz
- Colorado Genetics Laboratory, Department of Pathology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Shayna Svihovec
- Clinical Genetics and Metabolism, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Liming Bao
- Colorado Genetics Laboratory, Department of Pathology, University of Colorado School of Medicine, Aurora, CO, USA
| |
Collapse
|
25
|
Trakadis Y, Accogli A, Qi B, Bloom D, Joober R, Levy E, Tabbane K. Next-generation gene panel testing in adolescents and adults in a medical neuropsychiatric genetics clinic. Neurogenetics 2021; 22:313-322. [PMID: 34363551 DOI: 10.1007/s10048-021-00664-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 07/21/2021] [Indexed: 01/04/2023]
Abstract
Intellectual disability (ID) encompasses a clinically and genetically heterogeneous group of neurodevelopmental disorders that may present with psychiatric illness in up to 40% of cases. Despite the evidence for clinical utility of genetic panels in pediatrics, there are no published studies in adolescents/adults with ID or autism spectrum disorder (ASD). This study was approved by our institutional research ethics board. We retrospectively reviewed the medical charts of all patients evaluated between January 2017 and December 2019 in our adult neuropsychiatric genetics clinic at the McGill University Health Centre (MUHC), who had undergone a comprehensive ID/ASD gene panel. Thirty-four patients aged > 16 years, affected by ID/ASD and/or other neuropsychiatric/behavioral disorders, were identified. Pathogenic or likely pathogenic variants were identified in one-third of our cohort (32%): 8 single-nucleotide variants in 8 genes (CASK, SHANK3, IQSEC2, CHD2, ZBTB20, TREX1, SON, and TUBB2A) and 3 copy number variants (17p13.3, 16p13.12p13.11, and 9p24.3p24.1). The presence of psychiatric/behavioral disorders, regardless of the co-occurrence of ID, and, at a borderline level, the presence of ID alone were associated with positive genetic findings (p = 0.024 and p = 0.054, respectively). Moreover, seizures were associated with positive genetic results (p = 0.024). One-third of individuals presenting with psychiatric illness who met our red flags for Mendelian diseases have pathogenic or likely pathogenic variants which can be identified using a comprehensive ID/ASD gene panel (~ 2500 genes) performed on an exome backbone.
Collapse
Affiliation(s)
- Y Trakadis
- Division of Medical Genetics, Department of Specialized Medicine, Montreal Children's Hospital, McGill University Health Centre (MUHC), Room A04.3140, 1001 Boul. Décarie, Montreal, QC, H4A 3J1, Canada. .,Department of Human Genetics, McGill University, Montreal, QC, Canada. .,Douglas Mental Health Institute/Hospital, Montreal, Canada. .,Department of Psychiatry, McGill University, Montreal, Canada.
| | - A Accogli
- Division of Medical Genetics, Department of Specialized Medicine, Montreal Children's Hospital, McGill University Health Centre (MUHC), Room A04.3140, 1001 Boul. Décarie, Montreal, QC, H4A 3J1, Canada
| | - B Qi
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - D Bloom
- Douglas Mental Health Institute/Hospital, Montreal, Canada.,Department of Psychiatry, McGill University, Montreal, Canada
| | - R Joober
- Department of Human Genetics, McGill University, Montreal, QC, Canada.,Douglas Mental Health Institute/Hospital, Montreal, Canada.,Department of Psychiatry, McGill University, Montreal, Canada
| | - E Levy
- Douglas Mental Health Institute/Hospital, Montreal, Canada.,Department of Psychiatry, McGill University, Montreal, Canada
| | - K Tabbane
- Douglas Mental Health Institute/Hospital, Montreal, Canada.,Department of Psychiatry, McGill University, Montreal, Canada
| |
Collapse
|
26
|
Exome and genome sequencing for pediatric patients with congenital anomalies or intellectual disability: an evidence-based clinical guideline of the American College of Medical Genetics and Genomics (ACMG). Genet Med 2021; 23:2029-2037. [PMID: 34211152 DOI: 10.1038/s41436-021-01242-6] [Citation(s) in RCA: 289] [Impact Index Per Article: 72.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 05/26/2021] [Accepted: 05/26/2021] [Indexed: 01/22/2023] Open
Abstract
PURPOSE To develop an evidence-based clinical practice guideline for the use of exome and genome sequencing (ES/GS) in the care of pediatric patients with one or more congenital anomalies (CA) with onset prior to age 1 year or developmental delay (DD) or intellectual disability (ID) with onset prior to age 18 years. METHODS The Pediatric Exome/Genome Sequencing Evidence-Based Guideline Work Group (n = 10) used the Grading of Recommendations Assessment, Development and Evaluation (GRADE) evidence to decision (EtD) framework based on the recent American College of Medical Genetics and Genomics (ACMG) systematic review, and an Ontario Health Technology Assessment to develop and present evidence summaries and health-care recommendations. The document underwent extensive internal and external peer review, and public comment, before approval by the ACMG Board of Directors. RESULTS The literature supports the clinical utility and desirable effects of ES/GS on active and long-term clinical management of patients with CA/DD/ID, and on family-focused and reproductive outcomes with relatively few harms. Compared with standard genetic testing, ES/GS has a higher diagnostic yield and may be more cost-effective when ordered early in the diagnostic evaluation. CONCLUSION We strongly recommend that ES/GS be considered as a first- or second-tier test for patients with CA/DD/ID.
Collapse
|
27
|
Han JY, Park J. Variable Phenotypes of Epilepsy, Intellectual Disability, and Schizophrenia Caused by 12p13.33-p13.32 Terminal Microdeletion in a Korean Family: A Case Report and Literature Review. Genes (Basel) 2021; 12:genes12071001. [PMID: 34210021 PMCID: PMC8303811 DOI: 10.3390/genes12071001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/23/2021] [Accepted: 06/28/2021] [Indexed: 12/20/2022] Open
Abstract
A simultaneous analysis of nucleotide changes and copy number variations (CNVs) based on exome sequencing data was demonstrated as a potential new first-tier diagnosis strategy for rare neuropsychiatric disorders. In this report, using depth-of-coverage analysis from exome sequencing data, we described variable phenotypes of epilepsy, intellectual disability (ID), and schizophrenia caused by 12p13.33–p13.32 terminal microdeletion in a Korean family. We hypothesized that CACNA1C and KDM5A genes of the six candidate genes located in this region were the best candidates for explaining epilepsy, ID, and schizophrenia and may be responsible for clinical features reported in cases with monosomy of the 12p13.33 subtelomeric region. On the background of microdeletion syndrome, which was described in clinical cases with mild, moderate, and severe neurodevelopmental manifestations as well as impairments, the clinician may determine whether the patient will end up with a more severe or milder end-phenotype, which in turn determines disease prognosis. In our case, the 12p13.33–p13.32 terminal microdeletion may explain the variable expressivity in the same family. However, further comprehensive studies with larger cohorts focusing on careful phenotyping across the lifespan are required to clearly elucidate the possible contribution of genetic modifiers and the environmental influence on the expressivity of 12p13.33 microdeletion and associated characteristics.
Collapse
Affiliation(s)
- Ji Yoon Han
- Department of Pediatrics, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea;
| | - Joonhong Park
- Department of Laboratory Medicine, Jeonbuk National University Medical School and Hospital, Jeonju 54907, Korea
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju 54907, Korea
- Correspondence: ; Tel.: +82-63-250-1218
| |
Collapse
|
28
|
Lee JM, Shin SY, Kim GW, Kim WJ, Wie JH, Hong S, Kang D, Choi H, Yim J, Kim Y, Kim M, Park IY. Optimizing the Diagnostic Strategy to Identify Genetic Abnormalities in Miscarriage. Mol Diagn Ther 2021; 25:351-359. [PMID: 33792848 PMCID: PMC8139896 DOI: 10.1007/s40291-021-00523-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2021] [Indexed: 12/25/2022]
Abstract
INTRODUCTION The single most common cause of miscarriage is genetic abnormality. OBJECTIVE We conducted a prospective cohort study to compare the performance of conventional karyotyping and chromosomal microarray analysis (CMA) using array comparative genomic hybridization (array-CGH) and single nucleotide polymorphism array (SNP-array) to identify genetic abnormalities in miscarriage specimens. METHODS A total of 63 miscarriage specimens were included. Conventional karyotyping, array-CGH, and SNP-array were performed and the results compared. RESULTS Genetic abnormalities were detected in 31 cases (49.2%) by at least one testing modality. Single autosomal trisomy was the most common defect (71.0%), followed by polyploidy (16.1%), multiple aneuploidy (9.7%), and monosomy X (3.2%). Mosaicisms were identified in four cases and confirmed by fluorescence in situ hybridization (FISH) using appropriate probes. SNP-array had a higher detection rate of genetic abnormalities than array-CGH (93.5 vs. 77.4%), and conventional karyotyping had the lowest detection rate (76.0%). SNP-array enabled the detection of all types of genetic abnormalities, including polyploidy. CONCLUSIONS Although conventional karyotyping and FISH are still needed, SNP-array represents the first choice for miscarriage because the technique showed excellent performance in the detection of genetic abnormalities and minimized the probability of testing failure as well as time, costs, and labor.
Collapse
Affiliation(s)
- Jong-Mi Lee
- Department of Laboratory Medicine, College of Medicine, The Catholic University of Korea, 222 Banpodaero, Seocho-gu, Seoul, 06591, South Korea
- Catholic Genetic Laboratory Center, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222 Banpodaero, Seocho-gu, Seoul, 06591, South Korea
| | - So Young Shin
- Department of Obstetrics and Gynecology, College of Medicine, Kyung Hee University Hospital, Kyung Hee University, 23, Kyung Hee Dae-ro, Dongdaemun-gu, Seoul, 02447, South Korea
| | - Guk Won Kim
- Department of Obstetrics and Gynecology, College of Medicine, The Catholic University of Korea, 222 Banpodaero, Seocho-gu, Seoul, 06591, South Korea
| | - Woo Jeng Kim
- Department of Obstetrics and Gynecology, College of Medicine, The Catholic University of Korea, 222 Banpodaero, Seocho-gu, Seoul, 06591, South Korea
| | - Jeong Ha Wie
- Department of Obstetrics and Gynecology, College of Medicine, The Catholic University of Korea, 222 Banpodaero, Seocho-gu, Seoul, 06591, South Korea
| | - Subeen Hong
- Department of Obstetrics and Gynecology, College of Medicine, The Catholic University of Korea, 222 Banpodaero, Seocho-gu, Seoul, 06591, South Korea
| | - Dain Kang
- Catholic Genetic Laboratory Center, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222 Banpodaero, Seocho-gu, Seoul, 06591, South Korea
| | - Hayoung Choi
- Catholic Genetic Laboratory Center, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222 Banpodaero, Seocho-gu, Seoul, 06591, South Korea
| | - Jisook Yim
- Department of Laboratory Medicine, College of Medicine, The Catholic University of Korea, 222 Banpodaero, Seocho-gu, Seoul, 06591, South Korea
- Catholic Genetic Laboratory Center, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222 Banpodaero, Seocho-gu, Seoul, 06591, South Korea
| | - Yonggoo Kim
- Department of Laboratory Medicine, College of Medicine, The Catholic University of Korea, 222 Banpodaero, Seocho-gu, Seoul, 06591, South Korea
- Catholic Genetic Laboratory Center, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222 Banpodaero, Seocho-gu, Seoul, 06591, South Korea
| | - Myungshin Kim
- Department of Laboratory Medicine, College of Medicine, The Catholic University of Korea, 222 Banpodaero, Seocho-gu, Seoul, 06591, South Korea.
- Catholic Genetic Laboratory Center, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222 Banpodaero, Seocho-gu, Seoul, 06591, South Korea.
| | - In Yang Park
- Department of Obstetrics and Gynecology, College of Medicine, The Catholic University of Korea, 222 Banpodaero, Seocho-gu, Seoul, 06591, South Korea.
| |
Collapse
|
29
|
Towards a Change in the Diagnostic Algorithm of Autism Spectrum Disorders: Evidence Supporting Whole Exome Sequencing as a First-Tier Test. Genes (Basel) 2021; 12:genes12040560. [PMID: 33921431 PMCID: PMC8068856 DOI: 10.3390/genes12040560] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/02/2021] [Accepted: 04/07/2021] [Indexed: 12/20/2022] Open
Abstract
Autism spectrum disorder (ASD) is a prevalent and extremely heterogeneous neurodevelopmental disorder (NDD) with a strong genetic component. In recent years, the clinical relevance of de novo mutations to the aetiology of ASD has been demonstrated. Current guidelines recommend chromosomal microarray (CMA) and a FMR1 testing as first-tier tests, but there is increasing evidence that support the use of NGS for the diagnosis of NDDs. Specifically in ASD, it has not been extensively evaluated and, thus, we performed and compared the clinical utility of CMA, FMR1 testing, and/or whole exome sequencing (WES) in a cohort of 343 ASD patients. We achieved a global diagnostic rate of 12.8% (44/343), the majority of them being characterised by WES (33/44; 75%) compared to CMA (9/44; 20.4%) or FMR1 testing (2/44; 4.5%). Taking into account the age at which genetic testing was carried out, we identified a causal genetic alteration in 22.5% (37/164) of patients over 5 years old, but only in 3.9% (7/179) of patients under this age. Our data evidence the higher diagnostic power of WES compared to CMA in the study of ASD and support the implementation of WES as a first-tier test for the genetic diagnosis of this disorder, when there is no suspicion of fragile X syndrome.
Collapse
|
30
|
Vinkšel M, Writzl K, Maver A, Peterlin B. Improving diagnostics of rare genetic diseases with NGS approaches. J Community Genet 2021; 12:247-256. [PMID: 33452619 PMCID: PMC8141085 DOI: 10.1007/s12687-020-00500-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 12/08/2020] [Indexed: 01/08/2023] Open
Abstract
According to a rough estimate, one in fifteen people worldwide is affected by a rare disease. Rare diseases are therefore common in clinical practice; however, timely diagnosis of rare diseases is still challenging. Introduction of novel methods based on next-generation sequencing (NGS) technology offers a successful diagnosis of genetically heterogeneous disorders, even in case of unclear clinical diagnostic hypothesis. However, the application of novel technology differs among the centres and health systems significantly. Our goal is to discuss the impact of the implementation of NGS in the diagnosis of rare diseases and present advantages along with challenges of diagnostic approach. Systematic implementation of NGS in health systems can significantly improve the access of patients with rare diseases to diagnosis and reduce the dependence of national health systems for cross-border collaboration.
Collapse
Affiliation(s)
- Mateja Vinkšel
- Clinical Institute of Genomic Medicine, University medical Centre Ljubljana, Zaloška cesta 7, Ljubljana, Slovenia
| | - Karin Writzl
- Clinical Institute of Genomic Medicine, University medical Centre Ljubljana, Zaloška cesta 7, Ljubljana, Slovenia
| | - Aleš Maver
- Clinical Institute of Genomic Medicine, University medical Centre Ljubljana, Zaloška cesta 7, Ljubljana, Slovenia
| | - Borut Peterlin
- Clinical Institute of Genomic Medicine, University medical Centre Ljubljana, Zaloška cesta 7, Ljubljana, Slovenia.
| |
Collapse
|
31
|
Comparison of the diagnostic yield of aCGH and genome-wide sequencing across different neurodevelopmental disorders. NPJ Genom Med 2021; 6:25. [PMID: 33767182 PMCID: PMC7994713 DOI: 10.1038/s41525-021-00188-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 02/26/2021] [Indexed: 02/07/2023] Open
Abstract
Most consensus recommendations for the genetic diagnosis of neurodevelopmental disorders (NDDs) do not include the use of next generation sequencing (NGS) and are still based on chromosomal microarrays, such as comparative genomic hybridization array (aCGH). This study compares the diagnostic yield obtained by aCGH and clinical exome sequencing in NDD globally and its spectrum of disorders. To that end, 1412 patients clinically diagnosed with NDDs and studied with aCGH were classified into phenotype categories: global developmental delay/intellectual disability (GDD/ID); autism spectrum disorder (ASD); and other NDDs. These categories were further subclassified based on the most frequent accompanying signs and symptoms into isolated forms, forms with epilepsy; forms with micro/macrocephaly and syndromic forms. Two hundred and forty-five patients of the 1412 were subjected to clinical exome sequencing. Diagnostic yield of aCGH and clinical exome sequencing, expressed as the number of solved cases, was compared for each phenotype category and subcategory. Clinical exome sequencing was superior than aCGH for all cases except for isolated ASD, with no additional cases solved by NGS. Globally, clinical exome sequencing solved 20% of cases (versus 5.7% by aCGH) and the diagnostic yield was highest for all forms of GDD/ID and lowest for Other NDDs (7.1% versus 1.4% by aCGH) and ASD (6.1% versus 3% by aCGH). In the majority of cases, diagnostic yield was higher in the phenotype subcategories than in the mother category. These results suggest that NGS could be used as a first-tier test in the diagnostic algorithm of all NDDs followed by aCGH when necessary.
Collapse
|
32
|
Yahia A, Stevanin G. The History of Gene Hunting in Hereditary Spinocerebellar Degeneration: Lessons From the Past and Future Perspectives. Front Genet 2021; 12:638730. [PMID: 33833777 PMCID: PMC8021710 DOI: 10.3389/fgene.2021.638730] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/02/2021] [Indexed: 01/02/2023] Open
Abstract
Hereditary spinocerebellar degeneration (SCD) encompasses an expanding list of rare diseases with a broad clinical and genetic heterogeneity, complicating their diagnosis and management in daily clinical practice. Correct diagnosis is a pillar for precision medicine, a branch of medicine that promises to flourish with the progressive improvements in studying the human genome. Discovering the genes causing novel Mendelian phenotypes contributes to precision medicine by diagnosing subsets of patients with previously undiagnosed conditions, guiding the management of these patients and their families, and enabling the discovery of more causes of Mendelian diseases. This new knowledge provides insight into the biological processes involved in health and disease, including the more common complex disorders. This review discusses the evolution of the clinical and genetic approaches used to diagnose hereditary SCD and the potential of new tools for future discoveries.
Collapse
Affiliation(s)
- Ashraf Yahia
- Department of Biochemistry, Faculty of Medicine, University of Khartoum, Khartoum, Sudan
- Department of Biochemistry, Faculty of Medicine, National University, Khartoum, Sudan
- Institut du Cerveau, INSERM U1127, CNRS UMR7225, Sorbonne Université, Paris, France
- Ecole Pratique des Hautes Etudes, EPHE, PSL Research University, Paris, France
| | - Giovanni Stevanin
- Institut du Cerveau, INSERM U1127, CNRS UMR7225, Sorbonne Université, Paris, France
- Ecole Pratique des Hautes Etudes, EPHE, PSL Research University, Paris, France
| |
Collapse
|
33
|
Abstract
Neurodevelopmental disorders are the most prevalent chronic medical conditions encountered in pediatric primary care. In addition to identifying appropriate descriptive diagnoses and guiding families to evidence-based treatments and supports, comprehensive care for individuals with neurodevelopmental disorders includes a search for an underlying etiologic diagnosis, primarily through a genetic evaluation. Identification of an underlying genetic etiology can inform prognosis, clarify recurrence risk, shape clinical management, and direct patients and families to condition-specific resources and supports. Here we review the utility of genetic testing in patients with neurodevelopmental disorders and describe the three major testing modalities and their yields - chromosomal microarray, exome sequencing (with/without copy number variant calling), and FMR1 CGG repeat analysis for fragile X syndrome. Given the diagnostic yield of genetic testing and the potential for clinical and personal utility, there is consensus that genetic testing should be offered to all patients with global developmental delay, intellectual disability, and/or autism spectrum disorder. Despite this recommendation, data suggest that a minority of children with autism spectrum disorder and intellectual disability have undergone genetic testing. To address this gap in care, we describe a structured but flexible approach to facilitate integration of genetic testing into clinical practice across pediatric specialties and discuss future considerations for genetic testing in neurodevelopmental disorders to prepare pediatric providers to care for patients with such diagnoses today and tomorrow.
Collapse
Affiliation(s)
- Juliann M. Savatt
- Autism & Developmental Medicine Institute, Geisinger, Danville, PA, United States
| | | |
Collapse
|
34
|
Lee J, Park JE, Lee C, Kim AR, Kim BJ, Park WY, Ki CS, Lee J. Genomic Analysis of Korean Patient With Microcephaly. Front Genet 2021; 11:543528. [PMID: 33584783 PMCID: PMC7876370 DOI: 10.3389/fgene.2020.543528] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 12/30/2020] [Indexed: 12/17/2022] Open
Abstract
Microcephaly is a prevalent phenotype in patients with neurodevelopmental problems, often with genetic causes. We comprehensively investigated the clinical phenotypes and genetic background of microcephaly in 40 Korean patients. We analyzed their clinical phenotypes and radiologic images and conducted whole exome sequencing (WES) and analysis of copy number variation (CNV). Infantile hypotonia and developmental delay were present in all patients. Thirty-four patients (85%) showed primary microcephaly. The diagnostic yield from the WES and CNV analyses was 47.5%. With WES, we detected pathogenic or likely pathogenic variants that were previously associated with microcephaly in 12 patients (30%); nine of these were de novo variants with autosomal dominant inheritance. Two unrelated patients had mutations in the KMT2A gene. In 10 other patients, we found mutations in the GNB1, GNAO1, TCF4, ASXL1, SMC1A, VPS13B, ACTG1, EP300, and KMT2D genes. Seven patients (17.5%) were diagnosed with pathogenic CNVs. Korean patients with microcephaly show a genetic spectrum that is different from that of patients with microcephaly of other ethnicities. WES along with CNV analysis represents an effective approach for diagnosis of the underlying causes of microcephaly.
Collapse
Affiliation(s)
- Jiwon Lee
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Jong Eun Park
- Department of Laboratory Medicine and Genetics, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri, South Korea
| | - Chung Lee
- Samsung Genome Institute, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Ah Reum Kim
- Samsung Genome Institute, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Byung Joon Kim
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Woong-Yang Park
- Samsung Genome Institute, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | | | - Jeehun Lee
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| |
Collapse
|
35
|
Huang H, Cai M, Wang Y, Liang B, Lin N, Xu L. SNP Array as a Tool for Prenatal Diagnosis of Congenital Heart Disease Screened by Echocardiography: Implications for Precision Assessment of Fetal Prognosis. Risk Manag Healthc Policy 2021; 14:345-355. [PMID: 33542665 PMCID: PMC7851374 DOI: 10.2147/rmhp.s286001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/30/2020] [Indexed: 12/21/2022] Open
Abstract
Objective This study aimed to examine the effectiveness of the SNP array for the prenatal diagnosis of congenital heart disease (CHD) screened by echocardiography. Patients and Methods A total of 356 pregnant women with fetal congenital heart malformations revealed by echocardiography at the Center for Prenatal Diagnosis of Fujian Maternal and Children Hospital during the period from November 2016 through July 2019 were recruited. The fetuses were assigned into three cohorts, including 142 with a single cardiac malformation, 106 with multiple cardiac malformations and 108 with cardiac and extracardiac malformations. All fetuses underwent chromosomal karyotyping and SNP array simultaneously, and the effectiveness of the SNP array for the prenatal diagnosis of CHD was evaluated. Results The overall prevalence of abnormal karyotypes was 9.3% among the 356 fetuses with CHD, and a higher proportion was found in fetuses with cardiac and extracardiac malformations (18.5%) than in those with single (5.6%) or multiple cardiac malformations (4.7%) (P<0.05). Consistent with karyotype analysis, SNP array detected an additional 25 fetuses with pathogenic copy number variations (CNVs), seven with variant of unknown significance (VOUS) and seven with benign CNVs, and a lower proportion of abnormal CNV was found in fetuses with a single cardiac malformation (4.2%) than in those with multiple cardiac malformations (9.4%) or cardiac and extracardiac malformations (14.8%) (P<0.05). Among the 33 fetuses with chromosomal abnormality, postnatal follow-up showed termination of pregnancy in 25 with pathogenic CNVs, one with VOUS, and six with normal karyotypes and SNP array findings but severe multiple malformations by ultrasonography. Conclusion SNP array increases the overall detection of abnormal CNVs by 9%, which improves the detection of CNVs associated with CHD. SNP array may serve as a tool for prenatal diagnosis of CHD that facilitates the discovery of pathogenic genes associated with CHD and provide valuable insights into the precision assessment of fetal prognosis during the prenatal counseling.
Collapse
Affiliation(s)
- Hailong Huang
- Center for Prenatal Diagnosis, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou 350001, Fujian Province, People's Republic of China.,Fujian Key Laboratory for Prenatal Diagnosis and Birth Defects, Fuzhou 350001, Fujian Province, People's Republic of China
| | - Meiying Cai
- Center for Prenatal Diagnosis, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou 350001, Fujian Province, People's Republic of China.,Fujian Key Laboratory for Prenatal Diagnosis and Birth Defects, Fuzhou 350001, Fujian Province, People's Republic of China
| | - Yan Wang
- Center for Prenatal Diagnosis, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou 350001, Fujian Province, People's Republic of China.,Fujian Key Laboratory for Prenatal Diagnosis and Birth Defects, Fuzhou 350001, Fujian Province, People's Republic of China
| | - Bin Liang
- Center for Prenatal Diagnosis, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou 350001, Fujian Province, People's Republic of China.,Fujian Key Laboratory for Prenatal Diagnosis and Birth Defects, Fuzhou 350001, Fujian Province, People's Republic of China
| | - Na Lin
- Center for Prenatal Diagnosis, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou 350001, Fujian Province, People's Republic of China.,Fujian Key Laboratory for Prenatal Diagnosis and Birth Defects, Fuzhou 350001, Fujian Province, People's Republic of China
| | - Liangpu Xu
- Center for Prenatal Diagnosis, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou 350001, Fujian Province, People's Republic of China.,Fujian Key Laboratory for Prenatal Diagnosis and Birth Defects, Fuzhou 350001, Fujian Province, People's Republic of China
| |
Collapse
|
36
|
Malinger G, Paladini D, Haratz KK, Monteagudo A, Pilu G, Timor-Tritsch IE. Reply. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2021; 57:174-175. [PMID: 33387405 DOI: 10.1002/uog.23564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Affiliation(s)
- G Malinger
- Division of Ob-Gyn Ultrasound, Lis Maternity Hospital, Tel-Aviv Sourasky Medical Center, Tel Aviv University, Tel Aviv, Israel
| | - D Paladini
- Fetal Medicine and Surgery Unit, Istituto G. Gaslini, Genoa, Italy
| | - K K Haratz
- Division of Ob-Gyn Ultrasound, Lis Maternity Hospital, Tel-Aviv Sourasky Medical Center, Tel Aviv University, Tel Aviv, Israel
| | - A Monteagudo
- Carnegie Imaging for Women, Obstetrics, Gynecology and Reproductive Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - G Pilu
- Obstetric Unit, Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - I E Timor-Tritsch
- Division of Obstetrical and Gynecological Ultrasound, NYU School of Medicine, New York, NY, USA
| |
Collapse
|
37
|
Chen S, Yu Y, Zhang H, Li L, Jiang Y, Liu R, Zhang H. Clinical characterization of chromosome 5q21.1-21.3 microduplication: A case report. Open Med (Wars) 2020; 15:1123-1127. [PMID: 33336067 PMCID: PMC7718637 DOI: 10.1515/med-2020-0199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 09/10/2020] [Accepted: 09/28/2020] [Indexed: 11/15/2022] Open
Abstract
Chromosomal microdeletions and microduplications likely represent the main genetic etiologies for children with developmental delay or intellectual disability. Through prenatal chromosomal microarray analysis, some microdeletions or microduplications can be detected before birth to avoid unnecessary abortions or birth defects. Although some microdeletions or microduplications of chromosome 5 have been reported, numerous microduplications remain undescribed. We describe herein a case of a 30-year-old woman carrying a fetus with a chromosome 5q21.1-q21.3 microduplication. Because noninvasive prenatal testing indicated a fetal chromosome 5 abnormality, the patient underwent amniocentesis at 22 weeks 4 days of gestation. Karyotyping and chromosomal microarray analysis were performed on amniotic fluid cells. Fetal behavioral and structural abnormalities were assessed by color and pulsed Doppler ultrasound. Clinical characteristics of the newborn were assessed during the follow-up. The left lateral ventricle appeared widened on ultrasound, but the infant appeared normal at birth. The 5q21.1-q21.3 microduplication in the fetus was inherited from his mother. There are seven genes in this duplication region, but their main functions are unclear. According to this case report, microduplication in this region could represent a benign mutation. Clinicians should pay attention to the breakpoints and the genes involved when counseling patients with microdeletions and microduplications.
Collapse
Affiliation(s)
- Shuang Chen
- Center for Reproductive Medicine and Center for Prenatal Diagnosis, First Hospital, Jilin University, 1 Xinmin Street, Chaoyang District, Changchun, Jilin Province, 130021, China
| | - Yang Yu
- Center for Reproductive Medicine and Center for Prenatal Diagnosis, First Hospital, Jilin University, 1 Xinmin Street, Chaoyang District, Changchun, Jilin Province, 130021, China
| | - Han Zhang
- Center for Reproductive Medicine and Center for Prenatal Diagnosis, First Hospital, Jilin University, 1 Xinmin Street, Chaoyang District, Changchun, Jilin Province, 130021, China
| | - Leilei Li
- Center for Reproductive Medicine and Center for Prenatal Diagnosis, First Hospital, Jilin University, 1 Xinmin Street, Chaoyang District, Changchun, Jilin Province, 130021, China
| | - Yuting Jiang
- Center for Reproductive Medicine and Center for Prenatal Diagnosis, First Hospital, Jilin University, 1 Xinmin Street, Chaoyang District, Changchun, Jilin Province, 130021, China
| | - Ruizhi Liu
- Center for Reproductive Medicine and Center for Prenatal Diagnosis, First Hospital, Jilin University, 1 Xinmin Street, Chaoyang District, Changchun, Jilin Province, 130021, China
| | - Hongguo Zhang
- Center for Reproductive Medicine and Center for Prenatal Diagnosis, First Hospital, Jilin University, 1 Xinmin Street, Chaoyang District, Changchun, Jilin Province, 130021, China
| |
Collapse
|
38
|
Zebolsky A, Vos D, Soares N. Awareness of genetic testing for children with autism spectrum disorder among caregivers in an autism support group. J Community Genet 2020; 11:405-411. [PMID: 32583164 PMCID: PMC7475150 DOI: 10.1007/s12687-020-00469-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 05/20/2020] [Indexed: 01/05/2023] Open
Abstract
Recent discoveries have improved our understanding of the complex genetic mechanisms underlying autism spectrum disorder (ASD). Despite current guidelines, genetic testing for children with ASD is largely underutilized. This has been attributed to a lack of public awareness regarding genetic testing. The role that autism support groups play in this awareness has not been previously described. A web-based survey was developed and distributed through a community support group to assess the awareness and utilization of genetic testing among caregivers for children with ASD. A total of 138 caregivers responded in total. Only 53.6% were aware that genetic testing exists for ASD. Genetic testing was completed in 17.4% of respondents. Rates of awareness were similar across demographic factors including race, family income, education level, and urban, suburban, or rural residence. This supports low awareness as a key factor in the underutilization of genetic testing for ASD, even among members in an organized autism support group. Targeting public awareness through these organizations may be a promising approach for improving the utilization of genetic testing in ASD.
Collapse
Affiliation(s)
- Aaron Zebolsky
- Western Michigan University Homer Stryker M.D. School of Medicine, 300 Portage Street, Kalamazoo, MI, 49007, USA.
| | - Duncan Vos
- Division of Epidemiology and Biostatistics, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, 49007, USA
| | - Neelkamal Soares
- Division of Developmental-Behavioral Pediatrics, Department of Pediatric and Adolescent Medicine, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, 49007, USA
| |
Collapse
|
39
|
Copy number variations in ultrasonically abnormal late pregnancy fetuses with normal karyotypes. Sci Rep 2020; 10:15094. [PMID: 32934329 PMCID: PMC7493916 DOI: 10.1038/s41598-020-72157-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 08/06/2020] [Indexed: 11/22/2022] Open
Abstract
Many fetuses are found to have ultrasonic abnormalities in the late pregnancy. The association of fetal ultrasound abnormalities in late pregnancy with copy number variations (CNVs) is unclear. We attempted to explore the relationship between types of ultrasonically abnormal late pregnancy fetuses and CNVs. Fetuses (n = 713) with ultrasound-detected abnormalities in late pregnancy and normal karyotypes were analyzed. Of these, 237 showed fetal sonographic structural malformations and 476 showed fetal non-structural abnormalities. Single nucleotide polymorphism (SNP)-based chromosomal microarray (CMA) was performed on the Affymetrix CytoScan HD platform. Using the SNP array, abnormal CNVs were detected in 8.0% (57/713) of the cases, with pathogenic CNVs in 32 cases and variants of uncertain clinical significance (VUS) in 25 cases. The detection rate of abnormal CNVs in fetuses with sonographic structural malformations (12.7%, 30/237) was significantly higher (P = 0.001) than that in the fetuses with non-structural abnormalities (5.7%, 27/476). Overall, we observed that when fetal sonographic structural malformations or non-structural abnormalities occurred in the third trimester of pregnancy, the use of SNP analysis could improve the accuracy of prenatal diagnosis and reduce the rate of pregnancy termination.
Collapse
|
40
|
Hu X, Guo R, Guo J, Qi Z, Li W, Hao C. Parallel Tests of Whole Exome Sequencing and Copy Number Variant Sequencing Increase the Diagnosis Yields of Rare Pediatric Disorders. Front Genet 2020; 11:473. [PMID: 32595695 PMCID: PMC7300249 DOI: 10.3389/fgene.2020.00473] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 04/16/2020] [Indexed: 12/23/2022] Open
Abstract
Background: Both whole exome sequencing and copy number variants sequencing were applied to identify the genetic cause of rare pediatric disorders. In our study, we aimed to investigate the diagnostic yield of parallel tests of trio whole exome sequencing and copy number variants sequencing and its clinical utility. Methods: After collecting detailed clinical information, a total of 60 patients were referred to parallel tests of whole exome sequencing and copy number variants sequencing, which used shared initial libraries. Results: 26 pathogenic or likely pathogenic single nucleotide variants and 11 copy number variants were identified in 32 patients. 65.4% (17/26) of the SNVs were novel. The overall diagnosis rate was 53.3%. For the patients with positive results, 22 (36.7%) patients were diagnosed by whole exome sequencing and 10 (16.7%) patients were diagnosed by copy number variants sequencing. We also reviewed clinical impact on selected cases. Conclusion: We adopted an approach by performing parallel tests of trio whole exome sequencing and copy number variants sequencing with shared initial libraries. This strategy is relatively efficient and cost-effective for the diagnosis of rare pediatric disorders with high heterogeneity.
Collapse
Affiliation(s)
- Xuyun Hu
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
- MOE Key Laboratory of Major Diseases in Children, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
- Henan Key Laboratory of Pediatric Inherited & Metabolic Diseases, Henan Children's Hospital, Zhengzhou Hospital of Beijing Children's Hospital, Zhengzhou, China
| | - Ruolan Guo
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
- MOE Key Laboratory of Major Diseases in Children, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
- Henan Key Laboratory of Pediatric Inherited & Metabolic Diseases, Henan Children's Hospital, Zhengzhou Hospital of Beijing Children's Hospital, Zhengzhou, China
| | - Jun Guo
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
- MOE Key Laboratory of Major Diseases in Children, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
- Henan Key Laboratory of Pediatric Inherited & Metabolic Diseases, Henan Children's Hospital, Zhengzhou Hospital of Beijing Children's Hospital, Zhengzhou, China
| | - Zhan Qi
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
- MOE Key Laboratory of Major Diseases in Children, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
- Henan Key Laboratory of Pediatric Inherited & Metabolic Diseases, Henan Children's Hospital, Zhengzhou Hospital of Beijing Children's Hospital, Zhengzhou, China
| | - Wei Li
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
- MOE Key Laboratory of Major Diseases in Children, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
- Henan Key Laboratory of Pediatric Inherited & Metabolic Diseases, Henan Children's Hospital, Zhengzhou Hospital of Beijing Children's Hospital, Zhengzhou, China
| | - Chanjuan Hao
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
- MOE Key Laboratory of Major Diseases in Children, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
- Henan Key Laboratory of Pediatric Inherited & Metabolic Diseases, Henan Children's Hospital, Zhengzhou Hospital of Beijing Children's Hospital, Zhengzhou, China
| |
Collapse
|
41
|
Malinowski J, Miller DT, Demmer L, Gannon J, Pereira EM, Schroeder MC, Scheuner MT, Tsai ACH, Hickey SE, Shen J. Systematic evidence-based review: outcomes from exome and genome sequencing for pediatric patients with congenital anomalies or intellectual disability. Genet Med 2020; 22:986-1004. [PMID: 32203227 PMCID: PMC7222126 DOI: 10.1038/s41436-020-0771-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 02/24/2020] [Accepted: 02/25/2020] [Indexed: 12/31/2022] Open
Abstract
Purpose Exome and genome sequencing (ES/GS) are performed frequently in patients with congenital anomalies, developmental delay, or intellectual disability (CA/DD/ID), but the impact of results from ES/GS on clinical management and patient outcomes is not well characterized. A systematic evidence review (SER) can support future evidence-based guideline development for use of ES/GS in this patient population. Methods We undertook an SER to identify primary literature from January 2007 to March 2019 describing health, clinical, reproductive, and psychosocial outcomes resulting from ES/GS in patients with CA/DD/ID. A narrative synthesis of results was performed. Results We retrieved 2654 publications for full-text review from 7178 articles. Only 167 articles met our inclusion criteria, and these were primarily case reports or small case series of fewer than 20 patients. The most frequently reported outcomes from ES/GS were changes to clinical management or reproductive decision-making. Two studies reported on the reduction of mortality or morbidity or impact on quality of life following ES/GS. Conclusion There is evidence that ES/GS for patients with CA/DD/ID informs clinical and reproductive decision-making, which could lead to improved outcomes for patients and their family members. Further research is needed to generate evidence regarding health outcomes to inform robust guidelines regarding ES/GS in the care of patients with CA/DD/ID.
Collapse
Affiliation(s)
| | - David T Miller
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA
| | - Laurie Demmer
- Atrium Health's Levine Children's Hospital, Charlotte, NC, USA
| | - Jennifer Gannon
- Division of Clinical Genetics, Children's Mercy Hospital, Kansas City, MO, USA.,Department of Pediatrics, University of Missouri, Kansas City, MO, USA
| | - Elaine Maria Pereira
- Division of Clinical Genetics, Department of Pediatrics, Columbia University Medical Center, New York, NY, USA
| | - Molly C Schroeder
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Maren T Scheuner
- Division of Medical Genetics, Department of Pediatrics and Division of Hematology-Oncology, Department of Medicine, University of California, San Francisco, CA, USA.,San Francisco VA Healthcare System, San Francisco, CA, USA
| | - Anne Chun-Hui Tsai
- Section of Clinical Genetics and Metabolism, Department of Pediatrics, University of Colorado, Aurora, CO, USA
| | - Scott E Hickey
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Jun Shen
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
42
|
Clarke RA, Furlong TM, Eapen V. Tourette Syndrome Risk Genes Regulate Mitochondrial Dynamics, Structure, and Function. Front Psychiatry 2020; 11:556803. [PMID: 33776808 PMCID: PMC7987655 DOI: 10.3389/fpsyt.2020.556803] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 11/23/2020] [Indexed: 11/13/2022] Open
Abstract
Gilles de la Tourette syndrome (GTS) is a neurodevelopmental disorder characterized by motor and vocal tics with an estimated prevalence of 1% in children and adolescents. GTS has high rates of inheritance with many rare mutations identified. Apart from the role of the neurexin trans-synaptic connexus (NTSC) little has been confirmed regarding the molecular basis of GTS. The NTSC pathway regulates neuronal circuitry development, synaptic connectivity and neurotransmission. In this study we integrate GTS mutations into mitochondrial pathways that also regulate neuronal circuitry development, synaptic connectivity and neurotransmission. Many deleterious mutations in GTS occur in genes with complementary and consecutive roles in mitochondrial dynamics, structure and function (MDSF) pathways. These genes include those involved in mitochondrial transport (NDE1, DISC1, OPA1), mitochondrial fusion (OPA1), fission (ADCY2, DGKB, AMPK/PKA, RCAN1, PKC), mitochondrial metabolic and bio-energetic optimization (IMMP2L, MPV17, MRPL3, MRPL44). This study is the first to develop and describe an integrated mitochondrial pathway in the pathogenesis of GTS. The evidence from this study and our earlier modeling of GTS molecular pathways provides compounding support for a GTS deficit in mitochondrial supply affecting neurotransmission.
Collapse
Affiliation(s)
- Raymond A Clarke
- School of Psychiatry, University of New South Wales, Sydney, NSW, Australia.,Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia
| | - Teri M Furlong
- School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Valsamma Eapen
- School of Psychiatry, University of New South Wales, Sydney, NSW, Australia.,Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia.,South West Sydney Local Health District, Liverpool Hospital, Liverpool, NSW, Australia
| |
Collapse
|
43
|
Al-Dewik N, Al-Jurf R, Styles M, Tahtamouni S, Alsharshani D, Alsharshani M, Ahmad AI, Khattab A, Al Rifai H, Walid Qoronfleh M. Overview and Introduction to Autism Spectrum Disorder (ASD). ADVANCES IN NEUROBIOLOGY 2020; 24:3-42. [PMID: 32006355 DOI: 10.1007/978-3-030-30402-7_1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder generally manifesting in the first few years of life and tending to persist into adolescence and adulthood. It is characterized by deficits in communication and social interaction and restricted, repetitive patterns of behavior, interests, and activities. It is a disorder with multifactorial etiology. In this chapter, we will focus on the most important and common epidemiological studies, pathogenesis, screening, and diagnostic tools along with an explication of genetic testing in ASD.
Collapse
Affiliation(s)
- Nader Al-Dewik
- Clinical and Metabolic Genetics Section, Pediatrics Department, Hamad General Hospital (HGH), Women's Wellness and Research Center (WWRC) and Interim Translational Research Institute (iTRI), Hamad Medical Corporation (HMC), Doha, Qatar. .,College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Doha, Qatar. .,Faculty of Health and Social Care Sciences, Kingston University, St. George's University of London, London, UK.
| | - Rana Al-Jurf
- Department of Biomedical Science, College of Health Science, Qatar University, Doha, Qatar
| | - Meghan Styles
- Health Profession Awareness Program, Health Facilities Development, Hamad Medical Corporation (HMC), Doha, Qatar
| | - Sona Tahtamouni
- Child Development Center, Hamad Medical Corporation, Doha, Qatar
| | - Dalal Alsharshani
- College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Doha, Qatar
| | - Mohammed Alsharshani
- Diagnostic Genetics Division (DGD), Department of Laboratory Medicine and Pathology (DLMP), Hamad Medical Corporation (HMC), Doha, Qatar
| | - Amal I Ahmad
- Qatar Rehabilitation Institute (QRI), Hamad Medical Corporation (HMC), Doha, Qatar
| | - Azhar Khattab
- Qatar Rehabilitation Institute (QRI), Hamad Medical Corporation (HMC), Doha, Qatar
| | - Hilal Al Rifai
- Department of Pediatrics and Neonatology, Newborn Screening Unit, Hamad Medical Corporation, Doha, Qatar
| | - M Walid Qoronfleh
- Research and Policy Department, World Innovation Summit for Health (WISH), Qatar Foundation, Doha, Qatar
| |
Collapse
|
44
|
Yusuf A, Peltekova I, Savion-Lemieux T, Frei J, Bruno R, Joober R, Howe J, Scherer SW, Elsabbagh M. Association between distress and knowledge among parents of autistic children. PLoS One 2019; 14:e0223119. [PMID: 31557237 PMCID: PMC6763195 DOI: 10.1371/journal.pone.0223119] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 09/13/2019] [Indexed: 12/26/2022] Open
Abstract
Understanding the overall utility of biological testing for autism spectrum disorder (ASD) is essential for the development and integration of biomarkers into routine care. One measure related to the overall utility of biological testing is the knowledge that a person has about the condition he/she suffers from. However, a major gap towards understanding the role of knowledge in overall utility is the absence of studies that have assessed knowledge of autism along with its predictors within a representative sample of families within the context of routine care. The objective of this study was to measure knowledge of ASD among families within the routine care pathway for biological testing in ASD by examining the association between knowledge with potential correlates of knowledge namely sociodemographic factors, parental stress and distress, and time since diagnosis among parents whose child with ASD is undergoing clinical genetic testing. Parents of a child diagnosed with ASD (n = 85, Mage = 39.0, SD = 7.7) participating in an ongoing prospective genomics study completed the ASD Quiz prior to undergoing genetic testing for clinical and research purposes. Parents also completed self-reported measures of stress and distress. Parent stress and distress was each independently correlated with knowledge of ASD, rs ≥ 0.26, ps < 0.05. Stepwise regression analysis revealed a significant model accounting for 7.8% of the variance in knowledge, F (1, 82) = 8.02, p = 0.006. The only factor significantly associated with knowledge was parental distress, β = 0.30, p = 0.006. Parental stress, time since diagnosis, and sociodemographic factors were not significant predictors in this model. We concluded that families require tailored support prior to undergoing genetic testing to address either knowledge gaps or high distress. Ongoing appraisal of the testing process among families of diverse backgrounds is essential in offering optimal care for families undergoing genetic testing.
Collapse
Affiliation(s)
- Afiqah Yusuf
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada
- * E-mail:
| | - Iskra Peltekova
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Tal Savion-Lemieux
- Autism Spectrum Disorders Research Program, Research-Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Jennifer Frei
- Autism Spectrum Disorders Research Program, Research-Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Ruth Bruno
- Autism Spectrum Disorders Research Program, Research-Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Ridha Joober
- Research Program on Psychotic and Neurodevelopmental Disorders, Douglas Mental Health University Institute, Montreal, Quebec, Canada
| | - Jennifer Howe
- The Centre for Applied Genomics, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Stephen W. Scherer
- The Centre for Applied Genomics, Hospital for Sick Children, Toronto, Ontario, Canada
- McLaughlin Centre and Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Mayada Elsabbagh
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
- Azrieli Centre for Autism Research, Montreal Neurological Institute, Montreal, Quebec, Canada
| |
Collapse
|
45
|
Srivastava S, Love-Nichols JA, Dies KA, Ledbetter DH, Martin CL, Chung WK, Firth HV, Frazier T, Hansen RL, Prock L, Brunner H, Hoang N, Scherer SW, Sahin M, Miller DT. Meta-analysis and multidisciplinary consensus statement: exome sequencing is a first-tier clinical diagnostic test for individuals with neurodevelopmental disorders. Genet Med 2019; 21:2413-2421. [PMID: 31182824 PMCID: PMC6831729 DOI: 10.1038/s41436-019-0554-6] [Citation(s) in RCA: 396] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 05/15/2019] [Indexed: 12/15/2022] Open
Abstract
Purpose For neurodevelopmental disorders (NDDs), etiological evaluation can
be a diagnostic odyssey involving numerous genetic tests, underscoring the need
to develop a streamlined algorithm maximizing molecular diagnostic yield for
this clinical indication. Our objective was to compare the yield of exome
sequencing (ES) with that of chromosomal microarray (CMA), the current
first-tier test for NDDs. Methods We performed a PubMed scoping review and meta-analysis investigating
the diagnostic yield of ES for NDDs as the basis of a consensus development
conference. We defined NDD as global developmental delay, intellectual
disability, and/or autism spectrum disorder. The consensus development
conference included input from genetics professionals, pediatric neurologists,
and developmental behavioral pediatricians. Results After applying strict inclusion/exclusion criteria, we identified 30
articles with data on molecular diagnostic yield in individuals with isolated
NDD, or NDD plus associated conditions (such as Rett-like features). Yield of ES
was 36% overall, 31% for isolated NDD, and 53% for the NDD plus associated
conditions. ES yield for NDDs is markedly greater than previous studies of CMA
(15–20%). Conclusion Our review demonstrates that ES consistently outperforms CMA for
evaluation of unexplained NDDs. We propose a diagnostic algorithm placing ES at
the beginning of the evaluation of unexplained NDDs.
Collapse
Affiliation(s)
- Siddharth Srivastava
- Translational Neuroscience Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jamie A Love-Nichols
- Translational Neuroscience Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kira A Dies
- Translational Neuroscience Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - David H Ledbetter
- Autism & Developmental Medicine Institute, Geisinger, Danville, PA, USA
| | - Christa L Martin
- Autism & Developmental Medicine Institute, Geisinger, Danville, PA, USA
| | - Wendy K Chung
- Departments of Pediatrics and Medicine, Columbia University, New York, NY, USA.,SFARI, Simons Foundation, New York, NY, USA
| | - Helen V Firth
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK.,East Anglian Medical Genetics Service, Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, UK
| | | | - Robin L Hansen
- MIND Institute, Department of Pediatrics, University of California Davis, Sacramento, CA, USA
| | - Lisa Prock
- Translational Neuroscience Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.,Developmental Medicine Center, Boston Children's Hospital, Boston, MA, USA
| | - Han Brunner
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.,Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands.,The Netherlands; Department of Clinical Genetics and GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Ny Hoang
- Department of Genetic Counselling, The Hospital for Sick Children, Toronto, ON, Canada.,Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Stephen W Scherer
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.,The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON, Canada.,McLaughlin Centre and Department of Molecular Genetics, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Mustafa Sahin
- Translational Neuroscience Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| | - David T Miller
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA
| | | |
Collapse
|