1
|
Onwusereaka CO, Jalaludin J, Oluchi SE, Poh Choo VC. New generation sequencing: molecular approaches for the detection and monitoring of bioaerosols in an indoor environment: a systematic review. REVIEWS ON ENVIRONMENTAL HEALTH 2024; 0:reveh-2023-0004. [PMID: 38214730 DOI: 10.1515/reveh-2023-0004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 12/14/2023] [Indexed: 01/13/2024]
Abstract
INTRODUCTION The exposure of occupants to indoor air pollutants has increased in recent decades. The aim of this review is to discuss an overview of new approaches that are used to study fungal aerosols. Thus, this motivation was to compensate the gaps caused by the use of only traditional approaches in the study of fungal exposure. CONTENT The search involved various databases such as; Science Direct, PubMed, SAGE, Springer Link, EBCOHOST, MEDLINE, CINAHL, Cochrane library, Web of Science and Wiley Online Library. It was limited to full text research articles that reported the use of non-viable method in assessing bioaerosol, written in English Language, full text publications and published from year 2015-2022. SUMMARY AND OUTLOOK A total of 15 articles met the inclusion criteria and was included in this review. The use of next-generation sequencing, which is more commonly referred to as high-throughput sequencing (HTS) or molecular methods in microbial studies is based on the detection of genetic material of organisms present in a given sample. Applying these methods to different environments permitted the identification of the microorganisms present, and a better comprehension of the environmental impacts and ecological roles of microbial communities. Based on the reviewed articles, there is evidence that dust samples harbour a high diversity of human-associated bacteria and fungi. Molecular methods such as next generation sequencing are reliable tools for identifying and tracking the bacterial and fungal diversity in dust samples using 18S metagenomics approach.
Collapse
Affiliation(s)
- Cynthia Oluchi Onwusereaka
- Department of Environmental and Occupational Health, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia Serdang, Selangor, Malaysia
| | - Juliana Jalaludin
- Department of Environmental and Occupational Health, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia Serdang, Selangor, Malaysia
| | - Sampson Emilia Oluchi
- Department of Community Health, Faculty of Medicine and Health Science, Universiti Putra Malaysia Serdang, Selangor, Malaysia
| | | |
Collapse
|
2
|
Hama S, Kumar P, Tiwari A, Wang Y, Linden PF. The underpinning factors affecting the classroom air quality, thermal comfort and ventilation in 30 classrooms of primary schools in London. ENVIRONMENTAL RESEARCH 2023; 236:116863. [PMID: 37567379 DOI: 10.1016/j.envres.2023.116863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/04/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023]
Abstract
The health and academic performance of children are significantly impacted by air quality in classrooms. However, there is a lack of understanding of the relationship between classroom air pollutants and contextual factors such as physical characteristics of the classroom, ventilation and occupancy. We monitored concentrations of particulate matter (PM), CO2 and thermal comfort (relative humidity and temperature) across five schools in London. Results were compared between occupied and unoccupied hours to assess the impact of occupants and their activities, different floor coverings and the locations of the classrooms. In-classroom CO2 concentrations varied between 500 and 1500 ppm during occupancy; average CO2 (955 ± 365 ppm) during occupancy was ∼150% higher than non-occupancy. Average PM10 (23 ± 15 μgm-3), PM2.5 (10 ± 4 μgm-3) and PM1 (6 ± 3 μg m-3) during the occupancy were 230, 125 and 120% higher than non-occupancy. Average RH (29 ± 6%) was below the 40-60% comfort range in all classrooms. Average temperature (24 ± 2 °C) was >23 °C in 60% of classrooms. Reduction in PM10 concentration (50%) by dual ventilation (mechanical + natural) was higher than for PM2.5 (40%) and PM1 (33%) compared with natural ventilation (door + window). PM10 was higher in classrooms with wooden (33 ± 19 μg m-3) and vinyl (25 ± 20 μgm-3) floors compared with carpet (17 ± 12 μgm-3). Air change rate (ACH) and CO2 did not vary appreciably between the different floor levels and types. PM2.5/PM10 was influenced by different occupancy periods; highest value (∼0.87) was during non-occupancy compared with occupancy (∼0.56). Classrooms located on the ground floor had PM2.5/PM10 > 0.5, indicating an outdoor PM2.5 ingress compared with those located on the first and third floors (<0.5). The large-volume (>300 m3) classroom showed ∼33% lower ACH compared with small-volume (100-200 m3). These findings provide guidance for taking appropriate measures to improve classroom air quality.
Collapse
Affiliation(s)
- Sarkawt Hama
- Global Centre for Clean Air Research (GCARE), School of Sustainability, Civil and Environmental Engineering, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, GU2 7XH, United Kingdom; Department of Chemistry, School of Science, University of Sulaimani, Sulaimani, Kurdistan Region, Iraq
| | - Prashant Kumar
- Global Centre for Clean Air Research (GCARE), School of Sustainability, Civil and Environmental Engineering, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, GU2 7XH, United Kingdom; Institute for Sustainability, University of Surrey, Guildford, GU2 7XH, Surrey, United Kingdom.
| | - Arvind Tiwari
- Global Centre for Clean Air Research (GCARE), School of Sustainability, Civil and Environmental Engineering, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, GU2 7XH, United Kingdom
| | - Yan Wang
- UCL Institute for Environmental Design and Engineering, London, United Kingdom
| | - Paul F Linden
- Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, Wilberforce Road, Cambridge, CB3 0WA, United Kingdom
| |
Collapse
|
3
|
Prapamontol T, Norbäck D, Thongjan N, Suwannarin N, Somsunun K, Ponsawansong P, Radarit K, Kawichai S, Naksen W. Respiratory infections among junior high school students in upper northern Thailand: The role of building dampness and mould, biomass burning and outdoor relative air humidity (RH). ENVIRONMENTAL RESEARCH 2023; 231:116065. [PMID: 37149023 DOI: 10.1016/j.envres.2023.116065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/06/2023] [Accepted: 05/04/2023] [Indexed: 05/08/2023]
Abstract
BACKGROUND Few studies exist on environmental risk factors for respiratory infections in Thai school children. AIM To study associations between home and outdoor environment and respiratory infections among school children in Northern Thailand in dry and wet season. METHODS A repeated questionnaire survey among the children (N = 1159). Data on ambient temperature and relative air humidity (RH) and PM10 and ozone was collected from nearby monitoring stations. We used logistic regression to calculate odds ratios (OR). RESULTS 14.1% had current respiratory infections (last 7 days), 32.1% had any respiratory infection last 3 months, and 26.1% had any respiratory infection last 12 months with antibiotic treatment. Students with diagnosed allergy (7.7%) and diagnosed asthma (4.7%) had more often respiratory infections (ORs 1.40-5.40; p < 0.05). Current respiratory infections were more common in dry (18.1%) than in wet season (10.4%) (p < 0.001) and was associated with indoor mould (OR 2.16; p = 0.024) and outdoor RH (OR 1.34 per 10% RH; p = 0.004.) in the total material. In wet season, mould (OR 2.32; p = 0.016), window pane condensation (OR 1.79; p = 0.050), water leakage (OR 1.82; p = 0.018), environmental tobacco smoke (ETS) (OR 2.34; p = 0.003) and outdoor RH (OR 2.70 per 10% RH; p = 0.01) were risk factors for current respiratory infections. In dry season, mould (OR 2.64; p = 0.004) and outdoor RH (OR 1.34 per 10% RH; p = 0.046) were associated with current respiratory infections. Irrespectively of season, biomass burning inside or outside the home was a risk factor for respiratory infections (ORs 1.32-2.34; p < 0.05). Living in a wooden house decreased the risk of respiratory infections (OR 0.56: p = 0.006). CONCLUSIONS Dry season, high outdoor RH, household dampness, indoor mould and ETS can increase childhood respiratory infections. Living in a traditional wooden house can reduce respiratory infections, possibly due to better natural ventilation. Smoke from biomass burning can increase childhood respiratory infections in northern Thailand.
Collapse
Affiliation(s)
- Tippawan Prapamontol
- Research Institute for Health Sciences, Chiang Mai University, Chiang Mai, Thailand; Environmental and Occupational Health Sciences and Non-Communicable Diseases Center of Excellence, Chiang Mai University, Chiang Mai, Thailand
| | - Dan Norbäck
- Research Institute for Health Sciences, Chiang Mai University, Chiang Mai, Thailand; Department of Medical Sciences, Uppsala University, Uppsala, Sweden.
| | - Nathaporn Thongjan
- Research Institute for Health Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Neeranuch Suwannarin
- Research Institute for Health Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Kawinwut Somsunun
- Research Institute for Health Sciences, Chiang Mai University, Chiang Mai, Thailand
| | | | - Kesseya Radarit
- Research Institute for Health Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Sawaeng Kawichai
- Research Institute for Health Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Warangkana Naksen
- Faculty of Public Health, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
4
|
Determining ventilation strategies to relieve health symptoms among school occupants. FACILITIES 2023. [DOI: 10.1108/f-10-2021-0101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Purpose
Poor indoor air quality (IAQ) contributing to occupants’ health symptoms is a universal, typically ventilation-related, problem in schools. In cold climates, low-cost strategies to improve IAQ in a naturally ventilated school are rare since conventional methods, such as window opening, are often inappropriate. This paper aims to present an investigation of strategies to relieve health symptoms among school occupants in naturally ventilated school in Finland.
Design/methodology/approach
A case study approach is adopted to thoroughly investigate the process of generating the alternatives of ventilation redesign in a naturally ventilated school where there have been complaints of health symptoms. First, the potential sources of the occupants’ symptoms are identified. Then, the strategies aiming to reduce the symptoms are compared and evaluated.
Findings
In a naturally ventilated school, health symptoms that are significantly caused by insufficient ventilation can be potentially reduced by implementing a supply and exhaust ventilation system. Alternatively, it is possible to retain the natural ventilation with reduced number of occupants. The selected strategy would depend considerably on the desired number of users, the budget and the possibilities to combine the redesign of ventilation with other refurbishment actions. Furthermore, the risk of poorer indoor air caused by the refurbishment actions must also be addressed and considered.
Practical implications
This study may assist municipal authorities and school directors in decisions concerning improvement of classroom IAQ and elimination of building-related symptoms. This research provides economic aspects of alternative strategies and points out the risks related to major refurbishment actions.
Originality/value
Since this study presents a set of features related to indoor air that contribute to occupants’ health as well as matters to be considered when aiming to decrease occupants’ symptoms, it may be of assistance to municipal authorities and practitioners in providing a healthier indoor environment for pupils and teachers.
Collapse
|
5
|
Turner AL, Brokamp C, Wolfe C, Reponen T, Ryan PH. Impact of Personal, Subhourly Exposure to Ultrafine Particles on Respiratory Health in Adolescents with Asthma. Ann Am Thorac Soc 2022; 19:1516-1524. [PMID: 35315743 PMCID: PMC9447389 DOI: 10.1513/annalsats.202108-947oc] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 03/22/2022] [Indexed: 11/20/2022] Open
Abstract
Rationale: Ultrafine particle (UFP; particles <0.1 μm in diameter) concentrations exhibit high spatiotemporal variability; thus, individual-level exposures and health risks are difficult to estimate. Objectives: To determine the effects of recent UFP exposures on respiratory health outcomes in children and to determine if children with asthma are at increased risk. Methods: Personal sampling of UFPs was completed by adolescents in combination with repeated personal spirometry measurements and ecological momentary assessment of respiratory symptoms (wheeze, cough, and/or shortness of breath). We assessed the association between UFP exposures every 30 minutes up to 150 minutes before measuring forced expiratory volume in 1 second (FEV1), peak expiratory flow, and respiratory symptoms using mixed-effects models and interaction with asthma diagnosis. Results: Participants (N = 105; 43% with asthma) completed an average of 11 spirometry measurements and 16 symptom responses throughout sampling. After adjustments (maternal education, physical activity, season, and distance to nearest roadway), a 10-fold increase in UFP exposure was significantly associated with a 0.04-L decrease (95% confidence interval [CI], -0.07 to -0.001) in FEV1 90 minutes later. Asthma status modified this association in which participants with asthma had significantly lower FEV1 values in response to UFP exposures 30 minutes earlier than participants without asthma. We found a significant increase in the odds of reporting a respiratory symptom 30 minutes after increased UFP exposure (odds ratio, 1.8; 95% CI, 1.00 to 3.00). Conclusions: Greater UFP exposure conferred deleterious effects on lung function and respiratory symptoms within 90 minutes of exposure and was more pronounced among participants with asthma.
Collapse
Affiliation(s)
| | - Cole Brokamp
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, Ohio; and
- Division of Biostatistics and Epidemiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - Chris Wolfe
- Division of Biostatistics and Epidemiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - Tiina Reponen
- Department of Environmental and Public Health Sciences and
| | - Patrick H. Ryan
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, Ohio; and
- Division of Biostatistics and Epidemiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| |
Collapse
|
6
|
Juskiene I, Prokopciuk N, Franck U, Valiulis A, Valskys V, Mesceriakova V, Kvedariene V, Valiulyte I, Poluzioroviene E, Sauliene I, Valiulis A. Indoor air pollution effects on pediatric asthma are submicron aerosol particle-dependent. Eur J Pediatr 2022; 181:2469-2480. [PMID: 35312840 DOI: 10.1007/s00431-022-04443-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/08/2022] [Accepted: 03/12/2022] [Indexed: 02/01/2023]
Abstract
The school environment is crucial for the child's health and well-being. On the other hand, the data about the role of school's aerosol pollution on the etiology of chronic non-communicable diseases remain scarce. This study aims to evaluate the level of indoor aerosol pollution in primary schools and its relation to the incidence of doctor's diagnosed asthma among younger school-age children. The cross-sectional study was carried out in 11 primary schools of Vilnius during 1 year of education from autumn 2017 to spring 2018. Particle number (PNC) and mass (PMC) concentrations in the size range of 0.3-10 µm were measured using an Optical Particle Sizer (OPS, TSI model 3330). The annual incidence of doctor's diagnosed asthma in each school was calculated retrospectively from the data of medical records. The total number of 6-11 years old children who participated in the study was 3638. The incidence of asthma per school ranged from 1.8 to 6.0%. Mean indoor air pollution based on measurements in classrooms during the lessons was calculated for each school. Levels of PNC and PMC in schools ranged between 33.0 and 168.0 particles/cm3 and 1.7-6.8 µg/m3, respectively. There was a statistically significant correlation between the incidence of asthma and PNC as well as asthma and PMC in the particle size range of 0.3-1 µm (r = 0.66, p = 0.028) and (r = 0.71, p = 0.017) respectively. No significant correlation was found between asthma incidence and indoor air pollution in the particle size range of 0.3-2.5 and 0.3-10 µm. Conclusion: We concluded that the number and mass concentrations of indoor air aerosol pollution in primary schools in the particle size range of 0.3-1 µm are primarily associated with the incidence of doctor's diagnosed asthma among younger school-age children. What is Known: • Both indoor and outdoor aerosol pollution is associated with bronchial asthma in children. What is New: • The incidence of bronchial asthma among younger school age children is related to indoor air quality in primary schools. • Aerosol pollutants in the size range of 0.3-1 µm in contrast to larger size range particles can play major role in the etiology of bronchial asthma in children.
Collapse
Affiliation(s)
- Izabele Juskiene
- Clinic of Children's Diseases, Institute of Clinical Medicine, Vilnius University Faculty of Medicine, Antakalnio Str. 57, Vilnius, LT-10207, Lithuania
| | - Nina Prokopciuk
- Clinic of Children's Diseases, Institute of Clinical Medicine, Vilnius University Faculty of Medicine, Antakalnio Str. 57, Vilnius, LT-10207, Lithuania. .,Department of Pathology, Forensic Medicine and Pharmacology, Institute of Biomedical Sciences, Vilnius University Faculty of Medicine, Vilnius, Lithuania.
| | - Ulrich Franck
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Algirdas Valiulis
- Department of Rehabilitation, Physical and Sports Medicine, Institute of Health Sciences, Vilnius University Faculty of Medicine, Vilnius, Lithuania
| | - Vaidotas Valskys
- Center of Life Sciences, Institute of Biosciences, Vilnius University, Vilnius, Lithuania
| | | | - Violeta Kvedariene
- Department of Pathology, Forensic Medicine and Pharmacology, Institute of Biomedical Sciences, Vilnius University Faculty of Medicine, Vilnius, Lithuania.,Clinic of Chest Diseases and Allergology, Institute of Clinical Medicine, Vilnius University Faculty of Medicine, Vilnius, Lithuania
| | - Indre Valiulyte
- Vilnius University Faculty of Medicine, Vilnius, Lithuania.,Kantonsspital Thurgau, Frauenfeld, Switzerland
| | - Edita Poluzioroviene
- Clinic of Children's Diseases, Institute of Clinical Medicine, Vilnius University Faculty of Medicine, Antakalnio Str. 57, Vilnius, LT-10207, Lithuania
| | | | - Arunas Valiulis
- Clinic of Children's Diseases, Institute of Clinical Medicine, Vilnius University Faculty of Medicine, Antakalnio Str. 57, Vilnius, LT-10207, Lithuania.,Department of Public Health, Institute of Health Sciences, Vilnius University Faculty of Medicine, Vilnius, Lithuania
| |
Collapse
|
7
|
Low Level Carbon Dioxide Indoors—A Pollution Indicator or a Pollutant? A Health-Based Perspective. ENVIRONMENTS 2021. [DOI: 10.3390/environments8110125] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
With modern populations in developed countries spending approximately 90% of their time indoors, and with carbon dioxide (CO2) concentrations inside being able to accumulate to much greater concentrations than outdoors, it is important to identify the health effects associated with the exposure to low-level CO2 concentrations (<5000 ppm) typically seen in indoor environments in buildings (non-industrial environments). Although other reviews have summarised the effects of CO2 exposure on health, none have considered the individual study designs of investigations and factored that into the level of confidence with which CO2 and health effects can be associated, nor commented on how the reported health effects of exposure correspond to existing guideline concentrations. This investigation aimed to (a) evaluate the reported health effects and physiological responses associated with exposure to less than 5000 parts per million (ppm) of CO2 and (b) to assess the CO2 guideline and limit concentrations in the context of (a). Of the 51 human investigations assessed, many did not account for confounding factors, the prior health of participants or cross-over effects. Although there is some evidence linking CO2 exposures with health outcomes, such as reductions in cognitive performance or sick building syndrome (SBS) symptoms, much of the evidence is conflicting. Therefore, given the shortcomings in study designs and conflicting results, it is difficult to say with confidence whether low-level CO2 exposures indoors can be linked to health outcomes. To improve the epidemiological value of future investigations linking CO2 with health, studies should aim to control or measure confounding variables, collect comprehensive accounts of participants’ prior health and avoid cross-over effects. Although it is difficult to link CO2 itself with health effects at exposures less than 5000 ppm, the existing guideline concentrations (usually reported for 8 h, for schools and offices), which suggest that CO2 levels <1000 ppm represent good indoor air quality and <1500 ppm are acceptable for the general population, appear consistent with the current research.
Collapse
|
8
|
Prapamontol T, Norbäck D, Thongjan N, Suwannarin N, Somsunun K, Ponsawansong P, Khuanpan T, Kawichai S, Naksen W. Associations between indoor environment in residential buildings in wet and dry seasons and health of students in upper northern Thailand. INDOOR AIR 2021; 31:2252-2265. [PMID: 34121228 DOI: 10.1111/ina.12873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/30/2021] [Accepted: 05/27/2021] [Indexed: 06/12/2023]
Abstract
We performed a repeated questionnaire study on home environment and health (six medical symptoms) in 1159 junior high school students (age 12.8 ± 0.7 years) in upper northern Thailand in wet and dry seasons. Data on outdoor temperature, relative humidity (RH), and air pollution were collected from nearest monitoring station. Odds ratios (OR) were calculated by multi-level logistic regression. Most common symptoms were rhinitis (62.5%), headache (49.8%), throat (42.8%), and ocular symptoms (42.5%). Ocular symptoms were more common at lower RH and rhinitis more common in dry season. Water leakage (28.2%), indoor mold (7.1%), mold odor (4.1%), and windowpane condensation (13.6%) were associated with all six symptoms (ORs: 1.3-3.5). Other risk factors included cat keeping, environmental tobacco smoke (ETS), other odor than mold odor, gas cooking, and cooking with biomass fire. Biomass burning inside and outside the home for other reasons than cooking was associated with all six symptoms (ORs: 1.5-2.6). Associations between home environment exposure and rhinitis were stronger in wet season. In conclusion, dampness-related exposure, windowpane condensation, cat keeping, ETS, gas cooking, and biomass burning can impair adolescent health in upper northern Thailand. In subtropical areas, environmental health effects should be investigated in wet and dry seasons.
Collapse
Affiliation(s)
- Tippawan Prapamontol
- Research Institute for Health Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Dan Norbäck
- Research Institute for Health Sciences, Chiang Mai University, Chiang Mai, Thailand
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Nathaporn Thongjan
- Research Institute for Health Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Neeranuch Suwannarin
- Research Institute for Health Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Kawinwut Somsunun
- Research Institute for Health Sciences, Chiang Mai University, Chiang Mai, Thailand
| | | | - Tosabhorn Khuanpan
- Research Institute for Health Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Sawaeng Kawichai
- Research Institute for Health Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Warangkana Naksen
- Faculty of Public Health, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
9
|
Turner A, Brokamp C, Wolfe C, Reponen T, Ryan P. Personal exposure to average weekly ultrafine particles, lung function, and respiratory symptoms in asthmatic and non-asthmatic adolescents. ENVIRONMENT INTERNATIONAL 2021; 156:106740. [PMID: 34237487 PMCID: PMC8380734 DOI: 10.1016/j.envint.2021.106740] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/27/2021] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
An increasing amount of evidence suggests ultrafine particles (UFPs) are linked to adverse health effects, especially in those with chronic conditions such as asthma, due to their small size and physicochemical characteristics. Toxicological and experimental studies have demonstrated these properties, and the mechanisms by which they deposit and translocate in the body result in increased toxicity in comparison to other air pollutants. However, current epidemiological literature is limited due to exposure misclassification and thus identifying health outcomes associated with UFPs. The objective of this study was to investigate the association between weekly personal UFP exposure with lung function and respiratory symptoms in 117 asthmatic and non-asthmatic adolescents between 13 and 17 years of age in the Cincinnati area. Between 2017 and 2019, participants collected weekly UFP concentrations by sampling for 3 h a day in their home, school, and during transit. In addition, pulmonary function was evaluated at the end of the sampling week, and respiratory symptoms were logged on a mobile phone application. Multivariable linear regression and zero-inflated Poisson (ZIP) models were used to estimate the association between personal UFP and respiratory outcomes. The average median weekly UFP exposure of all participants was 4340 particles/cm3 (p/cc). Results of fully adjusted regression models revealed a negative association between UFPs and percent predicted forced expiratory volume/forced vital capacity ratio (%FEV1/FVC) (β:-0.03, 95% CI [-0.07, 0.02]). Prediction models estimated an association between UFPs and respiratory symptoms, which was greater in asthmatics compared to non-asthmatics. Our results indicate an interaction between asthma status and the likelihood of experiencing respiratory symptoms when exposed to UFPs, indicating an exacerbation of this chronic condition. More research is needed to determine the magnitude of the role UFPs play on respiratory health.
Collapse
Affiliation(s)
- Ashley Turner
- Department of Environmental Health, College of Medicine, University of Cincinnati, United States.
| | - Cole Brokamp
- Department of Pediatrics, College of Medicine, University of Cincinnati, United States; Division of Biostatistics and Epidemiology, Cincinnati Children's Hospital Medical Center, United States
| | - Chris Wolfe
- Division of Biostatistics and Epidemiology, Cincinnati Children's Hospital Medical Center, United States
| | - Tiina Reponen
- Department of Environmental Health, College of Medicine, University of Cincinnati, United States
| | - Patrick Ryan
- Department of Pediatrics, College of Medicine, University of Cincinnati, United States; Division of Biostatistics and Epidemiology, Cincinnati Children's Hospital Medical Center, United States
| |
Collapse
|
10
|
Lam J, Koustas E, Sutton P, Padula AM, Cabana MD, Vesterinen H, Griffiths C, Dickie M, Daniels N, Whitaker E, Woodruff TJ. Exposure to formaldehyde and asthma outcomes: A systematic review, meta-analysis, and economic assessment. PLoS One 2021; 16:e0248258. [PMID: 33788856 PMCID: PMC8011796 DOI: 10.1371/journal.pone.0248258] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 02/23/2021] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Every major federal regulation in the United States requires an economic analysis estimating its benefits and costs. Benefit-cost analyses related to regulations on formaldehyde exposure have not included asthma in part due to lack of clarity in the strength of the evidence. OBJECTIVES 1) To conduct a systematic review of evidence regarding human exposure to formaldehyde and diagnosis, signs, symptoms, exacerbations, or other measures of asthma in humans; and 2) quantify the annual economic benefit for decreases in formaldehyde exposure. METHODS We developed and registered a protocol in PROSPERO (Record ID #38766, CRD 42016038766). We conducted a comprehensive search of articles published up to April 1, 2020. We evaluated potential risk of bias for included studies, identified a subset of studies to combine in a meta-analysis, and rated the overall quality and strength of the evidence. We quantified economics benefit to children from a decrease in formaldehyde exposure using assumptions consistent with EPA's proposed formaldehyde rule. RESULTS We screened 4,821 total references and identified 150 human studies that met inclusion criteria; of these, we focused on 90 studies reporting asthma status of all participants with quantified measures of formaldehyde directly relevant to our study question. Ten studies were combinable in a meta-analysis for childhood asthma diagnosis and five combinable for exacerbation of childhood asthma (wheezing and shortness of breath). Studies had low to probably-low risk of bias across most domains. A 10-μg/m3 increase in formaldehyde exposure was associated with increased childhood asthma diagnosis (OR = 1.20, 95% CI: [1.02, 1.41]). We also found a positive association with exacerbation of childhood asthma (OR = 1.08, 95% CI: [0.92, 1.28]). The overall quality and strength of the evidence was rated as "moderate" quality and "sufficient" for asthma diagnosis and asthma symptom exacerbation in both children and adults. We estimated that EPA's proposed rule on pressed wood products would result in 2,805 fewer asthma cases and total economic benefit of $210 million annually. CONCLUSION We concluded there was "sufficient evidence of toxicity" for associations between exposure to formaldehyde and asthma diagnosis and asthma symptoms in both children and adults. Our research documented that when exposures are ubiquitous, excluding health outcomes from benefit-cost analysis can underestimate the true benefits to health from environmental regulations.
Collapse
Affiliation(s)
- Juleen Lam
- University of California San Francisco, Program on Reproductive Health and the Environment, San Francisco, California, United States of America
- Department of Health Sciences, California State University, East Bay, Hayward, California, United States of America
| | - Erica Koustas
- Scientific Consultant to the University of California, San Francisco, California, United States of America
| | - Patrice Sutton
- University of California San Francisco, Program on Reproductive Health and the Environment, San Francisco, California, United States of America
| | - Amy M. Padula
- University of California San Francisco, Program on Reproductive Health and the Environment, San Francisco, California, United States of America
| | - Michael D. Cabana
- University of California San Francisco, Philip R. Lee Institute for Health Policy Studies, San Francisco, California, United States of America
- University of California San Francisco, Schools of Medicine and Pharmacy, San Francisco, California, United States of America
| | - Hanna Vesterinen
- Scientific Consultant to the University of California, San Francisco, California, United States of America
| | - Charles Griffiths
- U.S. Environmental Protection Agency, National Center for Environmental Economics, Washington, DC, United States of America
| | - Mark Dickie
- Department of Economics, University of Central Florida, Orlando, Florida, United States of America
| | - Natalyn Daniels
- University of California San Francisco, Program on Reproductive Health and the Environment, San Francisco, California, United States of America
| | - Evans Whitaker
- University of California San Francisco, Schools of Medicine and Pharmacy, San Francisco, California, United States of America
| | - Tracey J. Woodruff
- University of California San Francisco, Program on Reproductive Health and the Environment, San Francisco, California, United States of America
| |
Collapse
|
11
|
Fu X, Norbäck D, Yuan Q, Li Y, Zhu X, Hashim JH, Hashim Z, Ali F, Hu Q, Deng Y, Sun Y. Association between indoor microbiome exposure and sick building syndrome (SBS) in junior high schools of Johor Bahru, Malaysia. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 753:141904. [PMID: 32890872 DOI: 10.1016/j.scitotenv.2020.141904] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/20/2020] [Accepted: 08/21/2020] [Indexed: 06/11/2023]
Abstract
Sick building syndrome (SBS) is a collection of nonspecific syndromes linked with the built environment. The occurrence of SBS is associated with humidity, ventilation, moulds and microbial compounds exposure. However, no study has reported the association between indoor microbiome and SBS. In this study, 308 students were surveyed for SBS symptoms from 21 classrooms of 7 junior high schools from Johor Bahru, Malaysia, and vacuum dust from floor, desks and chairs was collected. High throughput amplicon sequencing (16S rRNA gene and ITS region) and quantitative PCR were conducted to characterize the absolute concentration of bacteria and fungi taxa. In total, 326 bacterial and 255 fungal genera were detected in dust with large compositional variation among classrooms. Also, half of these samples showed low compositional similarity to microbiome data deposited in the public database. The number of observed OTUs in Gammaproteobacteria was positively associated with SBS (p = 0.004). Eight microbial genera were associated with SBS (p < 0.01). Bacterial genera, Rhodomicrobium, Scytonema and Microcoleus, were protectively (negatively) associated with ocular and throat symptoms and tiredness, and Izhakiella and an unclassified genus from Euzebyaceae were positively associated with the throat and ocular symptoms. Three fungal genera, Polychaeton, Gympopus and an unclassified genus from Microbotryaceae, were mainly positively associated with tiredness. The associations differed with our previous study in microbial compounds (endotoxin and ergosterol) and SBS in the same population, in which nasal and dermal symptoms were affected. A higher indoor relative humidity and visible dampness or mould in classrooms were associated with a higher concentration of potential risk bacteria and a lower concentration of potential protective bacteria (p < 0.01). This is the first study to characterize the SBS-associated microorganisms in the indoor environment, revealing complex interactions between microbiome, SBS symptoms and environmental characteristics.
Collapse
Affiliation(s)
- Xi Fu
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, 510642, PR China; Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, PR China
| | - Dan Norbäck
- Occupational and Environmental Medicine, Dept. of Medical Science, University Hospital, Uppsala University, 75237 Uppsala, Sweden
| | - Qianqian Yuan
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, 510642, PR China; Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, Guangdong 510642, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Yanling Li
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, 510642, PR China; Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, Guangdong 510642, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Xunhua Zhu
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, 510642, PR China; Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, Guangdong 510642, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | | | - Zailina Hashim
- Department of Environmental and Occupational Health, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM, Serdang, Selangor, Malaysia
| | - Faridah Ali
- Primary Care Unit, Johor State Health Department, Johor Bahru, Malaysia
| | - Qiansheng Hu
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, PR China
| | - Yiqun Deng
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, 510642, PR China; Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, Guangdong 510642, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Yu Sun
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, 510642, PR China; Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, Guangdong 510642, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642, China.
| |
Collapse
|
12
|
Yu L, Wang B, Cheng M, Yang M, Gan S, Fan L, Wang D, Chen W. Association between indoor formaldehyde exposure and asthma: A systematic review and meta-analysis of observational studies. INDOOR AIR 2020; 30:682-690. [PMID: 32080892 DOI: 10.1111/ina.12657] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 02/10/2020] [Accepted: 02/16/2020] [Indexed: 06/10/2023]
Abstract
About 339 million people worldwide are suffering from asthma. We aimed to investigate whether exposure to formaldehyde (FA) is associated with asthma, which could provide clues for preventive and mitigation actions. This article provides a systematic review and meta-analysis of observational studies to assess the association between indoor FA exposure and the risk of asthma in children and adults. An electronic search of PubMed, Embase, and Web of Science was performed to collect all relevant studies published before January 1, 2020, and a total of 13 papers were included in this meta-analysis. A random-effect model was conducted to calculate the pooled odds ratio (OR) between FA exposure and asthma. We found that each 10 µg/m3 increase in FA exposure was significantly associated with a 10% increase in the risk of asthma in children (OR = 1.10, 95% confidence interval = 1.00-1.21). We sorted the FA concentrations reported in the selected articles and categorized exposure variables into low (FA ≤ 22.5 µg/m3 ) and high exposure (FA > 22.5 µg/m3 ) according to the median concentration of FA. In the high-exposure adult group, FA exposure may also be associated with an increased risk of asthma (OR = 1.81, 95% CI = 1.18-2.78).
Collapse
Affiliation(s)
- Linling Yu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bin Wang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Man Cheng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Meng Yang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shiming Gan
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lieyang Fan
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dongming Wang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weihong Chen
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
13
|
Li Q, Yi Q, Tang L, Luo S, Tang Y, Zhang G, Luo Z. Influence of Ultrafine Particles Exposure on Asthma Exacerbation in Children: A Meta-Analysis. Curr Drug Targets 2020; 20:412-420. [PMID: 30156156 DOI: 10.2174/1389450119666180829114252] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 07/27/2018] [Accepted: 08/27/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND Air pollution is a major cause of asthma exacerbation. Most studies have shown that exposure to coarse and fine particulate matter is associated with asthma exacerbation. Ultrafine particles (UFPs, aerodynamic diameter ≤ 0.1 µm) are the smallest airborne particles, which are capable of penetrating deep into the lungs. Toxicological studies have suggested that exposure to UFPs may have serious effects on respiratory health. However, epidemiological evidence on the effects of UFPs exposure on asthma exacerbation in children remains unclear. OBJECTIVE We conducted a meta-analysis to quantitatively assess the effects of exposure to UFPs on childhood asthma exacerbation. METHODS We searched four databases for epidemiological studies published until March 20, 2018. Pooled Odds Ratios (OR) and 95% confidence intervals (95% CIs) per 10000 particles/cm3 were estimated using fixed-effect models. Subgroup analyses, sensitivity analyses, and Begg's and Egger's regression were also performed. RESULTS Eight moderate-high quality studies with 51542 events in total satisfied the inclusion criteria. Exposure to UFPs showed a positive association with childhood asthma exacerbation [OR (95% CI): 1.070 (1.037, 1.104)], increased asthma-associated emergency department visits [OR (95% CI): 1.111 (1.055, 1.170)], and asthma-associated hospital admissions [OR (95% CI): 1.045 (1.004, 1.088)] and had a stronger association with childhood asthma exacerbation at long lags [OR (95% CI):1.060 (1.039, 1.082)]. A low heterogeneity and no publication bias were detected. CONCLUSION Exposure to UFPs may increase the risk of asthma exacerbation and may be strongly associated with childhood asthma exacerbation at long lags.
Collapse
Affiliation(s)
- Qinyuan Li
- Key Laboratory of Pediatrics in Chongqing, Chongqing 401122, China.,Department of Children's Hospital of Chongqing Medical University of Education Key Laboratory of Child Development and Disorders, Chongqing 401122, China
| | - Qian Yi
- Key Laboratory of Pediatrics in Chongqing, Chongqing 401122, China.,Department of Children's Hospital of Chongqing Medical University of Education Key Laboratory of Child Development and Disorders, Chongqing 401122, China
| | - Lin Tang
- Key Laboratory of Pediatrics in Chongqing, Chongqing 401122, China.,Department of Children's Hospital of Chongqing Medical University of Education Key Laboratory of Child Development and Disorders, Chongqing 401122, China
| | - Siying Luo
- Key Laboratory of Pediatrics in Chongqing, Chongqing 401122, China.,Department of Children's Hospital of Chongqing Medical University of Education Key Laboratory of Child Development and Disorders, Chongqing 401122, China
| | - Yuan Tang
- Key Laboratory of Pediatrics in Chongqing, Chongqing 401122, China.,Department of Children's Hospital of Chongqing Medical University of Education Key Laboratory of Child Development and Disorders, Chongqing 401122, China
| | - Guangli Zhang
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Chongqing 401122, China
| | - Zhengxiu Luo
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Chongqing 401122, China
| |
Collapse
|
14
|
Lavigne E, Donelle J, Hatzopoulou M, Van Ryswyk K, van Donkelaar A, Martin RV, Chen H, Stieb DM, Gasparrini A, Crighton E, Yasseen AS, Burnett RT, Walker M, Weichenthal S. Spatiotemporal Variations in Ambient Ultrafine Particles and the Incidence of Childhood Asthma. Am J Respir Crit Care Med 2020; 199:1487-1495. [PMID: 30785782 DOI: 10.1164/rccm.201810-1976oc] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Rationale: Little is known regarding the impact of ambient ultrafine particles (UFPs; <0.1 μm) on childhood asthma development. Objectives: To examine the association between prenatal and early postnatal life exposure to UFPs and development of childhood asthma. Methods: A total of 160,641 singleton live births occurring in the City of Toronto, Canada between April 1, 2006, and March 31, 2012, were identified from a birth registry. Associations between exposure to ambient air pollutants and childhood asthma incidence (up to age 6) were estimated using random effects Cox proportional hazards models, adjusting for personal- and neighborhood-level covariates. We investigated both single-pollutant and multipollutant models accounting for coexposures to particulate matter ≤2.5 μm in aerodynamic diameter (PM2.5) and NO2. Measurements and Main Results: We identified 27,062 children with incident asthma diagnosis during the follow-up. In adjusted models, second-trimester exposure to UFPs (hazard ratio per interquartile range increase, 1.09; 95% confidence interval, 1.06-1.12) was associated with asthma incidence. In models additionally adjusted for PM2.5 and nitrogen dioxide, UFPs exposure during the second trimester of pregnancy remained positively associated with childhood asthma incidence (hazard ratio per interquartile range increase, 1.05; 95% confidence interval, 1.01-1.09). Conclusions: This is the first study to evaluate the association between perinatal exposure to UFPs and the incidence of childhood asthma. Exposure to UFPs during a critical period of lung development was linked to the onset of asthma in children, independent of PM2.5 and NO2.
Collapse
Affiliation(s)
- Eric Lavigne
- 1 Air Health Science Division and.,2 School of Epidemiology and Public Health
| | - Jessy Donelle
- 3 Institute for Clinical Evaluative Sciences, Ottawa, Ontario, Canada.,4 Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | | | | | - Aaron van Donkelaar
- 6 Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Randall V Martin
- 6 Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia, Canada.,7 Harvard-Smithsonian Centre for Astrophysics, Cambridge, Massachusetts
| | - Hong Chen
- 8 Population Studies Division, Health Canada, Ottawa, Ontario, Canada.,10 Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada.,9 Public Health Ontario, Toronto, Ontario, Canada.,11 Institute for Clinical Evaluative Sciences, Toronto, Ontario, Canada
| | - David M Stieb
- 2 School of Epidemiology and Public Health.,12 Population Studies Division, Health Canada, Vancouver, British Columbia, Canada
| | - Antonio Gasparrini
- 13 Department of Public Health, Environments and Society and.,14 Centre for Statistical Methodology, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Eric Crighton
- 15 Department of Geography, Environment and Geomatics, and.,3 Institute for Clinical Evaluative Sciences, Ottawa, Ontario, Canada
| | - Abdool S Yasseen
- 16 Better Outcomes Registry and Network Ontario, Ottawa, Ontario, Canada
| | - Richard T Burnett
- 8 Population Studies Division, Health Canada, Ottawa, Ontario, Canada
| | - Mark Walker
- 18 Department of Obstetrics and Gynecology, University of Ottawa, Ottawa, Ontario, Canada.,16 Better Outcomes Registry and Network Ontario, Ottawa, Ontario, Canada.,17 Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada; and
| | - Scott Weichenthal
- 1 Air Health Science Division and.,19 Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
15
|
Norback D, Li T, Bai X, Li C, Zhao Z, Zhang X. Onset and remission of rhinitis among students in relation to the home and school environment-A cohort study from Northern China. INDOOR AIR 2019; 29:527-538. [PMID: 30985976 DOI: 10.1111/ina.12559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 03/05/2019] [Accepted: 04/10/2019] [Indexed: 06/09/2023]
Abstract
Few prospective studies exist on indoor and outdoor air pollution in relation to adolescent rhinitis. We studied associations between onset and remission of rhinitis among junior high school students in relation to the home and school environment. A 2-year questionnaire cohort study was performed among 1325 students (11-15 years) in eight schools in Taiyuan, Northern China. Climate and air pollution were measured by direct reading instruments and passive samplers inside and outside the schools at baseline. Associations were calculated by multilevel logistic regression. Two-year onset of rhinitis and weekly rhinitis were 26.7% and 13.1%, respectively. RH (P < 0.001), CO2 (P < 0.01) and PM10 (P < 0.01) in the classrooms, PM10 (P < 0.01) and NO2 (P < 0.05) outside the schools, and redecoration (OR = 2.25) and dampness/indoor mold at home (OR = 2.04) were associated with onset of weekly rhinitis. RH (P < 0.05) and CO2 (P < 0.05) in the classroom and dampness/indoor mold (OR = 0.67) and environmental tobacco smoke (ETS) at home (OR = 0.63) reduced remission of rhinitis. In conclusion, dampness/mold and chemical emissions from new materials at home can increase onset of rhinitis and ETS and dampness/mold can reduce the remission. PM10 , RH, CO2 , and NO2 at school can increase the onset, and RH and CO2 can reduce the remission of rhinitis.
Collapse
Affiliation(s)
- Dan Norback
- Institute of Environmental Science, Shanxi University, Taiyuan, China
- Department of Medical Sciences, Occupational and Environmental Medicine, Uppsala University, Uppsala, Sweden
| | - Tian Li
- Institute of Environmental Science, Shanxi University, Taiyuan, China
| | - Xu Bai
- Institute of Environmental Science, Shanxi University, Taiyuan, China
| | - Chenghuan Li
- Institute of Environmental Science, Shanxi University, Taiyuan, China
| | - Zhuohui Zhao
- School of Public Health, Fudan University, Shanghai, China
| | - Xin Zhang
- Institute of Environmental Science, Shanxi University, Taiyuan, China
| |
Collapse
|
16
|
Li T, Zhang X, Li C, Bai X, Zhao Z, Norback D. Onset of respiratory symptoms among Chinese students: associations with dampness and redecoration, PM 10, NO 2, SO 2 and inadequate ventilation in the school. J Asthma 2019; 57:495-504. [PMID: 30907194 DOI: 10.1080/02770903.2019.1590591] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Objective: To study onset of respiratory symptoms among students in China in relation to the school and the home environment. Methods: A two-year prospective cohort study among 1325 students in eight schools. Air pollution was measured at baseline in the schools. Respiratory symptoms and the home environment were assessed by a questionnaire. Results: The 2-year onset was 14.3%, 23.2%, 15.4%, 4.7% and 37.3% for wheeze, daytime attacks of breathlessness, nocturnal cough, nocturnal wheeze/breathlessness and respiratory infections, respectively. The mean concentrations of PM10, SO2, NO2, ozone and CO2 in the classrooms were 129 µg/m3, 68.0 µg/m3, 43.2 µg/m3, 8.6 µg/m3 and 1208 ppm, respectively. Environmental tobacco smoke (ETS), dampness/mold at home and ozone in the classroom were associated with onset of wheeze. Onset of daytime breathlessness was associated with redecoration and dampness/mold at home and CO2 and relative air humidity (RH) in the classrooms. Dampness/mold at home, PM10, CO2 and RH in the classrooms and outdoor PM10, SO2 and NO2 were associated with onset of nocturnal cough. Onset of nocturnal wheeze/breathlessness was associated with dampness/mold at home and RH and PM10 in the classrooms. Respiratory infections were more common at higher levels of outdoor PM10. Conclusions: Air pollution (PM10, ozone, SO2 and NO2) and inadequate ventilation flow in the classrooms (indicated by CO2 > 1000 ppm) and ETS, dampness or mold and chemical emissions from redecoration at home can increase onset of respiratory symptoms.
Collapse
Affiliation(s)
- Tian Li
- Institute of Environmental Science, Shanxi University, Taiyuan, Shanxi, China
| | - Xin Zhang
- Institute of Environmental Science, Shanxi University, Taiyuan, Shanxi, China
| | - Chenghuan Li
- Institute of Environmental Science, Shanxi University, Taiyuan, Shanxi, China
| | - Xu Bai
- Institute of Environmental Science, Shanxi University, Taiyuan, Shanxi, China
| | - Zhuohui Zhao
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai, China
| | - Dan Norback
- Institute of Environmental Science, Shanxi University, Taiyuan, Shanxi, China.,Department of Medical Sciences, Occupational and Environmental Medicine, Uppsala University, Uppsala, Sweden
| |
Collapse
|
17
|
Meldrum K, Guo C, Marczylo EL, Gant TW, Smith R, Leonard MO. Mechanistic insight into the impact of nanomaterials on asthma and allergic airway disease. Part Fibre Toxicol 2017; 14:45. [PMID: 29157272 PMCID: PMC5697410 DOI: 10.1186/s12989-017-0228-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 11/10/2017] [Indexed: 01/02/2023] Open
Abstract
Asthma is a chronic respiratory disease known for its high susceptibility to environmental exposure. Inadvertent inhalation of engineered or incidental nanomaterials is a concern for human health, particularly for those with underlying disease susceptibility. In this review we provide a comprehensive analysis of those studies focussed on safety assessment of different nanomaterials and their unique characteristics on asthma and allergic airway disease. These include in vivo and in vitro approaches as well as human and population studies. The weight of evidence presented supports a modifying role for nanomaterial exposure on established asthma as well as the development of the condition. Due to the variability in modelling approaches, nanomaterial characterisation and endpoints used for assessment in these studies, there is insufficient information for how one may assign relative hazard potential to individual nanoscale properties. New developments including the adoption of standardised models and focussed in vitro and in silico approaches have the potential to more reliably identify properties of concern through comparative analysis across robust and select testing systems. Importantly, key to refinement and choice of the most appropriate testing systems is a more complete understanding of how these materials may influence disease at the cellular and molecular level. Detailed mechanistic insight also brings with it opportunities to build important population and exposure susceptibilities into models. Ultimately, such approaches have the potential to more clearly extrapolate relevant toxicological information, which can be used to improve nanomaterial safety assessment for human disease susceptibility.
Collapse
Affiliation(s)
- Kirsty Meldrum
- Toxicology Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, Harwell Campus, OX11 0RQ, UK
| | - Chang Guo
- Toxicology Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, Harwell Campus, OX11 0RQ, UK
| | - Emma L Marczylo
- Toxicology Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, Harwell Campus, OX11 0RQ, UK
| | - Timothy W Gant
- Toxicology Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, Harwell Campus, OX11 0RQ, UK
| | - Rachel Smith
- Toxicology Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, Harwell Campus, OX11 0RQ, UK
| | - Martin O Leonard
- Toxicology Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, Harwell Campus, OX11 0RQ, UK.
| |
Collapse
|
18
|
Fisk WJ. The ventilation problem in schools: literature review. INDOOR AIR 2017; 27:1039-1051. [PMID: 28683161 DOI: 10.1111/ina.12403] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 06/30/2017] [Indexed: 05/06/2023]
Abstract
Based on a review of literature published in refereed archival journals, ventilation rates in classrooms often fall far short of the minimum ventilation rates specified in standards. There is compelling evidence, from both cross-sectional and intervention studies, of an association of increased student performance with increased ventilation rates. There is evidence that reduced respiratory health effects and reduced student absence are associated with increased ventilation rates. Increasing ventilation rates in schools imposes energy costs and can increase heating, ventilating, and air-conditioning system capital costs. The net annual costs, ranging from a few dollars to about 10 dollars per person, are less than 0.1% of typical public spending on elementary and secondary education in the United States. Such expenditures seem like a small price to pay given the evidence of health and performance benefits.
Collapse
Affiliation(s)
- W J Fisk
- Indoor Environment Group, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| |
Collapse
|
19
|
Błaszczyk E, Rogula-Kozłowska W, Klejnowski K, Kubiesa P, Fulara I, Mielżyńska-Švach D. Indoor air quality in urban and rural kindergartens: short-term studies in Silesia, Poland. AIR QUALITY, ATMOSPHERE, & HEALTH 2017; 10:1207-1220. [PMID: 29308098 PMCID: PMC5741794 DOI: 10.1007/s11869-017-0505-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 08/09/2017] [Indexed: 05/19/2023]
Abstract
More than 80% of people living in urban areas who monitor air pollution are exposed to air quality levels that exceed limits defined by the World Health Organization (WHO). Although all regions of the world are affected, populations in low-income cities are the most impacted. According to average annual levels of fine particulate matter (PM2.5, ambient particles with aerodynamic diameter of 2.5 μm or less) presented in the urban air quality database issued by WHO in 2016, as many as 33 Polish cities are among the 50 most polluted cities in the European Union (EU), with Silesian cities topping the list. The aim of this study was to characterize the indoor air quality in Silesian kindergartens based on the concentrations of gaseous compounds (SO2, NO2), PM2.5, and the sum of 15 PM2.5-bound polycyclic aromatic hydrocarbons (PAHs), including PM2.5-bound benzo(a)pyrene (BaP), as well as the mutagenic activity of PM2.5 organic extracts in Salmonella assay (strains: TA98, YG1024). The assessment of the indoor air quality was performed taking into consideration the pollution of the atmospheric air (outdoor). I/O ratios (indoor/outdoor concentration) for each investigated parameter were also calculated. Twenty-four-hour samples of PM2.5, SO2, and NO2 were collected during spring in two sites in southern Poland (Silesia), representing urban and rural areas. Indoor samples were taken in naturally ventilated kindergartens. At the same time, in the vicinity of the kindergarten buildings, the collection of outdoor samples of PM2.5, SO2, and NO2 was carried out. The content of BaP and the sum of 15 studied PAHs was determined in each 24-h sample of PM2.5 (indoor and outdoor). In the urban site, statistically lower concentrations of SO2 and NO2 were detected indoors compared to outdoors, whereas in the rural site, such a relationship was observed only for NO2. No statistically significant differences in the concentrations of PM2.5, PM2.5-bound BaP, and Σ15 PAHs in kindergartens (indoor) versus atmospheric (outdoor) air in the two studied areas were identified. Mutagenic effect of indoor PM2.5 samples was twice as low as in outdoor samples. The I/O ratios indicated that all studied air pollutants in the urban kindergarten originated from the ambient air. In the rural site concentrations of SO2, PM2.5 and BaP in the kindergarten were influenced by internal sources (gas and coal stoves).
Collapse
Affiliation(s)
- Ewa Błaszczyk
- Environmental Toxicology Group, Institute for Ecology of Industrial Areas, 6, Kossutha St., 40-844 Katowice, Poland
| | - Wioletta Rogula-Kozłowska
- Department of Air Protection, Institute of Environmental Engineering, Polish Academy of Science, 34, Skłodowskiej-Curie St., 41-819 Zabrze, Poland
| | - Krzysztof Klejnowski
- Department of Air Protection, Institute of Environmental Engineering, Polish Academy of Science, 34, Skłodowskiej-Curie St., 41-819 Zabrze, Poland
| | - Piotr Kubiesa
- Environmental Toxicology Group, Institute for Ecology of Industrial Areas, 6, Kossutha St., 40-844 Katowice, Poland
| | - Izabela Fulara
- Central Laboratory, Institute for Ecology of Industrial Areas, 6, Kossutha St., 40-844 Katowice, Poland
| | - Danuta Mielżyńska-Švach
- Environmental Toxicology Group, Institute for Ecology of Industrial Areas, 6, Kossutha St., 40-844 Katowice, Poland
- Nursing Institute, Witold Pilecki State School of Higher Education, 8, Kolbego St., 32-600 Oświęcim, Poland
| |
Collapse
|
20
|
Norbäck D, Hashim JH, Hashim Z, Ali F. Volatile organic compounds (VOC), formaldehyde and nitrogen dioxide (NO 2) in schools in Johor Bahru, Malaysia: Associations with rhinitis, ocular, throat and dermal symptoms, headache and fatigue. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 592:153-160. [PMID: 28319702 DOI: 10.1016/j.scitotenv.2017.02.215] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 02/24/2017] [Accepted: 02/27/2017] [Indexed: 06/06/2023]
Abstract
This paper studied associations between volatile organic compounds (VOC), formaldehyde, nitrogen dioxide (NO2) and carbon dioxide (CO2) in schools in Malaysia and rhinitis, ocular, nasal and dermal symptoms, headache and fatigue among students. Pupils from eight randomly selected junior high schools in Johor Bahru, Malaysia (N=462), participated (96%). VOC, formaldehyde and NO2 were measured by diffusion sampling (one week) and VOC also by pumped air sampling during class. Associations were calculated by multi-level logistic regression adjusting for personal factors, the home environment and microbial compounds in the school dust. The prevalence of weekly rhinitis, ocular, throat and dermal symptoms were 18.8%, 11.6%, 15.6%, and 11.1%, respectively. Totally 20.6% had weekly headache and 22.1% fatigue. Indoor CO2 were low (range 380-690 ppm). Indoor median NO2 and formaldehyde concentrations over one week were 23μg/m3 and 2.0μg/m3, respectively. Median indoor concentration of toluene, ethylbenzene, xylene, and limonene over one week were 12.3, 1.6, 78.4 and 3.4μg/m3, respectively. For benzaldehyde, the mean indoor concentration was 2.0μg/m3 (median<1μg/m3). Median indoor levels during class of benzene and cyclohexane were 4.6 and 3.7μg/m3, respectively. NO2 was associated with ocular symptoms (p<0.001) and fatigue (p=0.01). Formaldehyde was associated with ocular (p=0.004), throat symptoms (p=0.006) and fatigue (p=0.001). Xylene was associated with fatigue (p<0.001) and benzaldehyde was associated with headache (p=0.03). In conclusion, xylene, benzaldehyde, formaldehyde and NO2 in schools can be risk factors for ocular and throat symptoms and fatigue among students in Malaysia. The indoor and outdoor levels of benzene were often higher than the EU standard of 5μg/m3.
Collapse
Affiliation(s)
- Dan Norbäck
- Uppsala University, Dept. of Medical Science, Occupational and Environmental Medicine, University Hospital, 75185 Uppsala, Sweden.
| | - Jamal Hisham Hashim
- United Nations University-International Institute for Global Health, 56000 Kuala Lumpur, Malaysia; Department of Community Health, National University of Malaysia, 56000 Kuala Lumpur, Malaysia
| | - Zailina Hashim
- Department of Environmental and Occupational Health, Faculty of Medicine and Health Sciences, University Putra Malaysia (UPM), 43400 Serdang, Selagor, Malaysia
| | - Faridah Ali
- Johor State Health Department, Johor Bahru, Malaysia
| |
Collapse
|
21
|
Takaoka M, Suzuki K, Norbäck D. Current asthma, respiratory symptoms and airway infections among students in relation to the school and home environment in Japan. J Asthma 2017. [PMID: 28635545 DOI: 10.1080/02770903.2016.1255957] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
OBJECTIVE To study associations between the school and home environment and current asthma, respiratory symptoms and airway infections among Japanese students. METHODS Japanese students (12-15 y) (N = 1048) in four schools responded to a questionnaire on respiratory health, allergy and the home environment. Temperature, relative air humidity (RH) and student density (students/m2 floor area) was measured in the classrooms: dust was collected from floors and in classroom air and analysed for cat (Fel d 1) and dog (Can f 1) allergens. Health associations were analysed by multi-level logistic regression. RESULTS Doctor's diagnosed asthma was common (13.4%), 8.8% reported cat allergy and 6.1% dog allergy. The median level in floor dust was 41 ng/g (IQR 23-92) for Fel d 1 and 101 ng/g (IQR 54-101) for Can f 1. The median level in air was 18.6 ng/ m2/ day (IQR5.9-25.1) for Fel d 1 and 18.6 ng/ m2/ day (IQR 6.0-13.3) for Can f 1. High RH, high student density and airborne cat allergen was associated with airway infections. In the home environment, recent indoor painting, new floor materials, odour, having cats as pets, window pane condensation in winter, and dampness in floor construction were associated with respiratory illness. CONCLUSION High relative air humidity, high student density and airborne cat allergens at school may increase the risk of airway infections. Having cats as pets, chemical emissions from paint and new floor materials, odour and dampness can constitute domestic risk factors for respiratory symptoms while having dogs as pets could be protective.
Collapse
Affiliation(s)
- Motoko Takaoka
- a Department of Biosphere Sciences , School of Human Sciences, Kobe College , Nishinomiya Hyogo , Japan
| | - Kyoko Suzuki
- a Department of Biosphere Sciences , School of Human Sciences, Kobe College , Nishinomiya Hyogo , Japan
| | - Dan Norbäck
- b Department of Medical Sciences , Occupational and Environmental Medicine, Uppsala University and University Hospital , Uppsala , Sweden
| |
Collapse
|
22
|
|
23
|
Norbäck D, Hashim JH, Markowicz P, Cai GH, Hashim Z, Ali F, Larsson L. Endotoxin, ergosterol, muramic acid and fungal DNA in dust from schools in Johor Bahru, Malaysia--Associations with rhinitis and sick building syndrome (SBS) in junior high school students. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 545-546:95-103. [PMID: 26745297 DOI: 10.1016/j.scitotenv.2015.12.072] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 12/07/2015] [Accepted: 12/16/2015] [Indexed: 06/05/2023]
Abstract
This paper studied associations between ocular symptoms, rhinitis, throat and dermal symptoms, headache and fatigue in students by ethnicity and in relation to exposure to chemical microbial markers and fungal DNA in vacuumed dust in schools in Malaysia. A total of 462 students from 8 randomly selected secondary schools in Johor Bahru, Malaysia, participated (96% response rate). Dust was vacuumed from 32 classrooms and analysed for levels of five types of endotoxin as 3-hydroxy fatty acids (C10, C12, C14, C16 and C18 3-OH), muramic acid, ergosterol and five sequences of fungal DNA. Multiple logistic regression was applied. Totally 11.9% reported weekly ocular symptoms, 18.8% rhinitis, 15.6% throat and 11.1% dermal symptoms, 20.6% headache and 22.1% tiredness. Totally 21.1% reported pollen or furry pet allergy (atopy) and 22.0% parental asthma or allergy. Chinese students had less headache than Malay and Indian had less rhinitis and less tiredness than Malay. Parental asthma/allergy was a risk factor for ocular (odds ratio=3.79) and rhinitis symptoms (OR=3.48). Atopy was a risk factor for throat symptoms (OR=2.66), headache (OR=2.13) and tiredness (OR=2.02). There were positive associations between amount of fine dust in the dust samples and ocular symptoms (p<0.001) and rhinitis (p=0.006). There were positive associations between C14 3-OH and rhinitis (p<0.001) and between C18 3-OH and dermal symptoms (p=0.007). There were negative (protective) associations between levels of total endotoxin (LPS) (p=0.004) and levels of ergosterol (p=0.03) and rhinitis and between C12 3-OH and throat symptoms (p=0.004). In conclusion, the amount of fine dust in the classroom was associated with rhinitis and other SBS symptoms and improved cleaning of the schools is important. Endotoxin in the school dust seems to be mainly protective for rhinitis and throat symptoms but different types of endotoxin could have different effects. The ethnic differences in symptoms among the students deserve further attention.
Collapse
Affiliation(s)
- Dan Norbäck
- Department of Medical Science, Occupational and Environmental Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| | - Jamal Hisham Hashim
- United Nations University-International Institute for Global Health, Kuala Lumpur, Malaysia; Department of Community Health, National University of Malaysia, Kuala Lumpur, Malaysia
| | - Pawel Markowicz
- Division of Medical Microbiology, Department of Laboratory Medicine, University of Lund, Lund, Sweden
| | - Gui-Hong Cai
- Department of Medical Science, Occupational and Environmental Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Zailina Hashim
- Department of Environmental and Occupational Health, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Faridah Ali
- Primary Care Unit, Johor State Health Department, Johor Bahru, Malaysia
| | - Lennart Larsson
- Division of Medical Microbiology, Department of Laboratory Medicine, University of Lund, Lund, Sweden
| |
Collapse
|
24
|
Rhinitis, Ocular, Throat and Dermal Symptoms, Headache and Tiredness among Students in Schools from Johor Bahru, Malaysia: Associations with Fungal DNA and Mycotoxins in Classroom Dust. PLoS One 2016; 11:e0147996. [PMID: 26829324 PMCID: PMC4734676 DOI: 10.1371/journal.pone.0147996] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 01/10/2016] [Indexed: 11/19/2022] Open
Abstract
There are few studies on rhinitis and sick building syndrome (SBS) among students in tropical countries. We studied associations between levels of five fungal DNA sequences, two mycotoxins (sterigmatocystin and verrucarol) and cat allergen (Fel d 1) levels in schools and rhinitis and other weekly SBS symptoms in the students. Fungal DNA was measured by quantitative PCR and cat allergen by ELISA. Pupils (N = 462) from eight randomly selected schools in Johor Bahru, Malaysia participated (96%). Dust samples were collected by cotton swabs and Petri dishes exposed for one week. None of the schools had a mechanical ventilation system, but all classrooms had openable windows that were kept open during lectures and indoor CO2 levels were low (mean 492 ppm; range 380-690 ppm). Weekly nasal symptoms (rhinitis) (18.8%), ocular (11.6%), throat (11.1%), dermal symptoms, headache (20.6%) and tiredness (22.1%) were common. Total fungal DNA in swab samples was associated with rhinitis (p = 0.02), ocular symptoms (p = 0.009) and tiredness (p = 0.001). There were positive associations between Aspergillus versicolor DNA in Petri dish samples, ocular symptoms (p = 0.02) and tiredness (p = 0.001). The level of the mycotoxin verrucarol (produced by Stachybotrys chartarum) in swab samples was positively associated with tiredness (p = 0.04). Streptomyces DNA in swab samples (p = 0.03) and Petri dish samples (p = 0.03) were negatively associated with tiredness. In conclusion, total fungal contamination, measured as total fungal DNA) in the classrooms, Aspergillus versicolor and verrucarol can be risk factors for rhinitis and SBS symptoms among students in the tropical country Malaysia.
Collapse
|
25
|
Heinzerling A, Hsu J, Yip F. Respiratory Health Effects of Ultrafine Particles in Children: A Literature Review. WATER, AIR, AND SOIL POLLUTION 2016; 227:32. [PMID: 26783373 PMCID: PMC4714792 DOI: 10.1007/s11270-015-2726-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
By convention, airborne particles ≤0.1 μm (100 nm) are defined as ultrafine particles (UFPs). UFPs can comprise a large number of particles in particulate matter with aerodynamic diameters ≤2.5 μm (PM2.5). Despite the documented respiratory health effects of PM2.5 and concerns that UFPs might be more toxic than larger particular matter, the effects of UFPs on the respiratory system are not well-described. Even less is known about the respiratory health effects of UFPs among particularly vulnerable populations including children. We reviewed studies examining respiratory health effects of UFPs in children and identified 12 relevant articles. Most (8/12) studies measured UFP exposure using central ambient monitors, and we found substantial heterogeneity in UFP definitions and study designs. No long-term studies were identified. In single pollutant models, UFPs were associated with incident wheezing, current asthma, lower spirometric values, and asthma-related emergency department visits among children. Also, higher exhaled nitric oxide levels were positively correlated with UFP dose among children with asthma or allergy to house dust mites in 1 study. Multivariate models accounting for potential co-pollutant confounding yielded no statistically significant results. Although evidence for a relationship between UFPs and children's respiratory is accumulating, the literature remains inconclusive. Interpretation of existing data is constrained by study heterogeneity, limited accounting for UFP spatial variation, and lack of significant findings from multi-pollutant models.
Collapse
Affiliation(s)
- Amy Heinzerling
- Department of Medicine, University of California, San Francisco, 505 Parnassus Ave, Moffitt Room 987, San Francisco, CA, 94143, USA
| | - Joy Hsu
- Epidemic Intelligence Service, Office of Public Health Scientific Services, Centers for Disease Control and Prevention, 4770 Buford Highway, Mailstop F-60, Atlanta, GA, 30341, USA
| | - Fuyuen Yip
- Air Pollution and Respiratory Health Branch, Division of Environmental Hazards and Health Effects, National Center for Environmental Health, Centers for Disease Control and Prevention, 4770 Buford Highway, Mailstop F-60, Atlanta, GA, 30341, USA
| |
Collapse
|
26
|
Wang J, Smedje G, Nordquist T, Norbäck D. Personal and demographic factors and change of subjective indoor air quality reported by school children in relation to exposure at Swedish schools: a 2-year longitudinal study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 508:288-296. [PMID: 25486639 DOI: 10.1016/j.scitotenv.2014.12.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 11/21/2014] [Accepted: 12/01/2014] [Indexed: 06/04/2023]
Abstract
This paper studies changes in subjective indoor air quality (SIAQ) among school children and relates these data to repeated exposure measurements during a two-year follow-up period. Data on SIAQ and demographic information were gathered by a questionnaire sent to 1476 primary and secondary school pupils in 39 randomly selected schools at baseline and after two years (follow-up). Exposure measurements were applied after questionnaire data were collected at baseline and follow-up in approximately 100 classrooms. The arithmetic mean values for baseline and follow-up were: for indoor air temperature 23.6°C and 21.8°C and for outdoor air flow rate 5.4 L/s and 7.9L/s. Older children, those with atopy at baseline, and those in larger schools reported impaired SIAQ during follow-up. Installation of new ventilation systems, higher personal air flow rate and air exchange rate, and better illumination were associated with improved SIAQ. Higher CO2 levels were associated with impaired SIAQ. In conclusion, sufficient ventilation and illumination in classrooms are essential for the perception of good indoor air quality.
Collapse
Affiliation(s)
- Juan Wang
- Department of Medical Sciences, Uppsala University, 75185 Uppsala, Sweden; University Hospital, 75185 Uppsala, Sweden.
| | - Greta Smedje
- Department of Medical Sciences, Uppsala University, 75185 Uppsala, Sweden; University Hospital, 75185 Uppsala, Sweden
| | - Tobias Nordquist
- Department of Medical Sciences, Uppsala University, 75185 Uppsala, Sweden; University Hospital, 75185 Uppsala, Sweden
| | - Dan Norbäck
- Department of Medical Sciences, Uppsala University, 75185 Uppsala, Sweden; University Hospital, 75185 Uppsala, Sweden
| |
Collapse
|
27
|
Rufo JC, Madureira J, Paciência I, Slezakova K, Pereira MDC, Pereira C, Teixeira JP, Pinto M, Moreira A, Fernandes EDO. Exposure of Children to Ultrafine Particles in Primary Schools in Portugal. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2015; 78:904-914. [PMID: 26167756 DOI: 10.1080/15287394.2015.1048866] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Children spend a large part of their time at schools, which might be reflected as chronic exposure. Ultrafine particles (UFP) are generally associated with a more severe toxicity compared to fine and coarse particles, due to their ability to penetrate cell membranes. In addition, children tend to be more susceptible to UFP-mediated toxicity compared to adults, due to various factors including undeveloped immune and respiratory systems and inhalation rates. Thus, the purpose of this study was to determine indoor UFP number concentrations in Portuguese primary schools. Ultrafine particles were sampled between January and March 2014 in 10 public primary schools (35 classrooms) located in Porto, Portugal. Overall, the average indoor UFP number concentrations were not significantly different from outdoor concentrations (8.69 × 10(3) vs. 9.25 × 10(3) pt/cm(3), respectively; considering 6.5 h of indoor occupancy). Classrooms with distinct characteristics showed different trends of indoor UFP concentrations. The levels of carbon dioxide were negatively correlated with indoor UFP concentrations. Occupational density was significantly and positively correlated with UFP concentrations. Although the obtained results need to be interpreted with caution since there are no guidelines for UFP levels, special attention needs to be given to source control strategies in order to reduce major particle emissions and ensure good indoor air quality.
Collapse
Affiliation(s)
- João Cavaleiro Rufo
- a Institute of Mechanical Engineering and Industrial Management , Porto , Portugal
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Slezakova K, Texeira C, Morais S, Pereira MDC. Children's Indoor Exposures to (Ultra)Fine Particles in an Urban Area: Comparison Between School and Home Environments. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2015; 78:886-896. [PMID: 26167754 DOI: 10.1080/15287394.2015.1051203] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Due to their detrimental effects on human health, scientific interest in ultrafine particles (UFP), has been increasing but available information is far from comprehensive. Children, who represent one of the most susceptible subpopulation, spend the majority of time in schools and homes. Thus, the aim of this study is to (1) assess indoor levels of particle number concentrations (PNC) in ultrafine and fine (20-1000 nm) range at school and home environments and (2) compare indoor respective dose rates for 3- to 5-yr-old children. Indoor particle number concentrations in range of 20-1000 nm were consecutively measured during 56 d at two preschools (S1 and S2) and three homes (H1-H3) situated in Porto, Portugal. At both preschools different indoor microenvironments, such as classrooms and canteens, were evaluated. The results showed that total mean indoor PNC as determined for all indoor microenvironments were significantly higher at S1 than S2. At homes, indoor levels of PNC with means ranging between 1.09 × 10(4) and 1.24 × 10(4) particles/cm(3) were 10-70% lower than total indoor means of preschools (1.32 × 10(4) to 1.84 × 10(4) particles/cm(3)). Nevertheless, estimated dose rates of particles were 1.3- to 2.1-fold higher at homes than preschools, mainly due to longer period of time spent at home. Daily activity patterns of 3- to 5-yr-old children significantly influenced overall dose rates of particles. Therefore, future studies focusing on health effects of airborne pollutants always need to account for children's exposures in different microenvironments such as homes, schools, and transportation modes in order to obtain an accurate representation of children overall exposure.
Collapse
Affiliation(s)
- Klara Slezakova
- a LEPABE, Departamento de Engenharia Química, Faculdade de Engenharia , Universidade do Porto , Porto , Portugal
| | | | | | | |
Collapse
|
29
|
Fonseca J, Slezakova K, Morais S, Pereira MC. Assessment of ultrafine particles in Portuguese preschools: levels and exposure doses. INDOOR AIR 2014; 24:618-628. [PMID: 24689947 DOI: 10.1111/ina.12114] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 03/26/2014] [Indexed: 06/03/2023]
Abstract
UNLABELLED The aim of this work was to assess ultrafine particles (UFP) number concentrations in different microenvironments of Portuguese preschools and to estimate the respective exposure doses of UFP for 3-5-year-old children (in comparison with adults). UFP were sampled both indoors and outdoors in two urban (US1, US2) and one rural (RS1) preschool located in north of Portugal for 31 days. Total levels of indoor UFP were significantly higher at the urban preschools (mean of 1.82 × 10(4) and 1.32 × 10(4) particles/cm(3) at US1 an US2, respectively) than at the rural one (1.15 × 10(4) particles/cm(3) ). Canteens were the indoor microenvironment with the highest UFP (mean of 5.17 × 10(4) , 3.28 × 10(4) , and 4.09 × 10(4) particles/cm(3) at US1, US2, and RS1), whereas the lowest concentrations were observed in classrooms (9.31 × 10(3) , 11.3 × 10(3) , and 7.14 × 10(3) particles/cm(3) at US1, US2, and RS1). Mean indoor/outdoor ratios (I/O) of UFP at three preschools were lower than 1 (0.54-0.93), indicating that outdoor emissions significantly contributed to UFP indoors. Significant correlations were obtained between temperature, wind speed, relative humidity, solar radiation, and ambient UFP number concentrations. The estimated exposure doses were higher in children attending urban preschools; 3-5-year-old children were exposed to 4-6 times higher UFP doses than adults with similar daily schedules. PRACTICAL IMPLICATIONS This study reports information on ultrafine particles (UFPs) in various indoor and outdoor microenvironments (canteens, classrooms, gymnasiums, and outdoor) of urban and rural preschools. It identifies the potential sources and origins, characterizes the influence of meteorological parameters on UFP levels, and performs a comparison with other existing international studies. To this date, relatively few studies have investigated UFP in preschools (none in Portugal) and none assessed exposure dose for different age-groups. The obtained findings showed that levels of UFP in various microenvironments of schools differed significantly. Therefore, to obtain an accurate representation of child’s overall preschool exposure profiles, the exposures occurring in these different microenvironments should be always accounted for.
Collapse
Affiliation(s)
- J Fonseca
- LEPABE, Departamento de Engenharia Química, Faculdade de Engenharia, Universidade do Porto, Porto, Portugal
| | | | | | | |
Collapse
|
30
|
Indoor air quality in Brazilian universities. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2014; 11:7081-93. [PMID: 25019268 PMCID: PMC4113862 DOI: 10.3390/ijerph110707081] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 05/04/2014] [Accepted: 05/05/2014] [Indexed: 11/18/2022]
Abstract
This study evaluated the indoor air quality in Brazilian universities by comparing thirty air-conditioned (AC) (n = 15) and naturally ventilated (NV) (n = 15) classrooms. The parameters of interest were indoor carbon dioxide (CO2), temperature, relative humidity (RH), wind speed, viable mold, and airborne dust levels. The NV rooms had larger concentration of mold than the AC rooms (1001.30 ± 125.16 and 367.00 ± 88.13 cfu/m3, respectively). The average indoor airborne dust concentration exceeded the Brazilian standards (<80 μg/m3) in both NV and AC classrooms. The levels of CO2 in the AC rooms were significantly different from the NV rooms (1433.62 ± 252.80 and 520.12 ± 37.25 ppm, respectively). The indoor air quality in Brazilian university classrooms affects the health of students. Therefore, indoor air pollution needs to be considered as an important public health problem.
Collapse
|
31
|
Favarato G, Anderson HR, Atkinson R, Fuller G, Mills I, Walton H. Traffic-related pollution and asthma prevalence in children. Quantification of associations with nitrogen dioxide. AIR QUALITY, ATMOSPHERE, & HEALTH 2014; 7:459-466. [PMID: 25431630 PMCID: PMC4239711 DOI: 10.1007/s11869-014-0265-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 04/28/2014] [Indexed: 05/26/2023]
Abstract
Ambient nitrogen dioxide is a widely available measure of traffic-related air pollution and is inconsistently associated with the prevalence of asthma symptoms in children. The use of this relationship to evaluate the health impact of policies affecting traffic management and traffic emissions is limited by the lack of a concentration-response function based on systematic review and meta-analysis of relevant studies. Using systematic methods, we identified papers containing quantitative estimates for nitrogen dioxide and the 12 month period prevalence of asthma symptoms in children in which the exposure contrast was within-community and dominated by traffic pollution. One estimate was selected from each study according to an a priori algorithm. Odds ratios were standardised to 10 μg/m3 and summary estimates were obtained using random- and fixed-effects estimates. Eighteen studies were identified. Concentrations of nitrogen dioxide were estimated for the home address (12) and/or school (8) using a range of methods; land use regression (6), study monitors (6), dispersion modelling (4) and interpolation (2). Fourteen studies showed positive associations but only two associations were statistically significant at the 5 % level. There was moderate heterogeneity (I2 = 32.8 %) and the random-effects estimate for the odds ratio was 1.06 (95 % CI 1.00 to 1.11). There was no evidence of small study bias. Individual studies tended to have only weak positive associations between nitrogen dioxide and asthma prevalence but the summary estimate bordered on statistical significance at the 5 % level. Although small, the potential impact on asthma prevalence could be considerable because of the high level of baseline prevalence in many cities. Whether the association is causal or indicates the effects of a correlated pollutant or other confounders, the estimate obtained by the meta-analysis would be appropriate for estimating impacts of traffic pollution on asthma prevalence.
Collapse
Affiliation(s)
- Graziella Favarato
- Respiratory Epidemiology, Occupational Medicine and Public Health and MRC-PHE Centre for Environment and Health, Imperial College, London, London, UK
| | - H. Ross Anderson
- MRC-PHE Centre for Environment and Health, King’s College London, London, UK
| | - Richard Atkinson
- MRC-PHE Centre for Environment and Health, Population Health Research Institute, St George’s, University of London, London, UK
| | - Gary Fuller
- MRC-PHE Centre for Environment and Health, King’s College London, London, UK
| | - Inga Mills
- Public Health England, Centre for Radiation, Chemical and Environmental Hazards, London, UK
| | - Heather Walton
- NIHR BRC at Guy’s & St Thomas’ NHS Foundation Trust and King’s College London, MRC-PHE Centre for Environment and Health, King’s College London, London, UK
| |
Collapse
|
32
|
Godoi RHM, Godoi AFL, Gonçalves Junior SJ, Paralovo SL, Borillo GC, Gonçalves Gregório Barbosa C, Arantes MG, Charello RC, Rosário Filho NA, Grassi MT, Yamamoto CI, Potgieter-Vermaak S, Rotondo GG, De Wael K, van Grieken R. Healthy environment--indoor air quality of Brazilian elementary schools nearby petrochemical industry. THE SCIENCE OF THE TOTAL ENVIRONMENT 2013; 463-464:639-646. [PMID: 23838057 DOI: 10.1016/j.scitotenv.2013.06.043] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 06/10/2013] [Accepted: 06/10/2013] [Indexed: 06/02/2023]
Abstract
The mitigation of pollution released to the environment originating from the industrial sector has been the aim of all policy-makers and its importance is evident if the adverse health effects on the world population are considered. Although this concern is controversial, petroleum refinery has been linked to some adverse health effects for people living nearby. Apart from home, school is the most important indoor environment for children and there is increasing concern about the school environment and its impact on health, also in developing countries where the prevalence of pollution is higher. As most of the children spend more than 40% of their time in schools, it is critical to evaluate the pollution level in such environment. In the metropolitan region of Curitiba, South Brazil, five schools nearby industries and highways with high density traffic, were selected to characterize the aerosol and gaseous compounds indoor and outdoor of the classrooms, during 2009-2011. Size segregated aerosol samples were collected for analyses of bulk and single particle elemental profiles. They were analyzed by electron probe X-ray micro-analysis (EPXMA), and by energy-dispersive X-ray fluorescence (EDXRF), to investigate the elemental composition of individual particles and bulk samples. The concentrations of benzene, toluene, ethylbenzene, and xylene (BTEX); NO2; SO2; acetic acid; and formic acid were assessed indoor and outdoor using passive diffusion tubes. BTEX were analyzed by GC-MS and other collected gasses by ion chromatography. Individual exposition of BTEX was assessed by personal passive diffusion tubes. Results are interpreted separately and as a whole with the specific aim of identifying compounds that could affect the health of the scholars. In view of the chemical composition and size distribution of the aerosol particles, local deposition efficiencies in the children's respiratory systems were calculated, revealing the deposition of particles at extrathoracic, tracheobronchial and pulmonary levels.
Collapse
Affiliation(s)
- Ricardo H M Godoi
- Department of Environmental Engineering, Federal University of Paran UFPR, Curitiba, PR, Brazil.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Nielsen GD, Larsen ST, Wolkoff P. Recent trend in risk assessment of formaldehyde exposures from indoor air. Arch Toxicol 2013; 87:73-98. [PMID: 23179754 PMCID: PMC3618407 DOI: 10.1007/s00204-012-0975-3] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 10/31/2012] [Indexed: 01/09/2023]
Abstract
Studies about formaldehyde (FA) published since the guideline of 0.1 mg/m(3) by the World Health Organization (WHO) in 2010 have been evaluated; critical effects were eye and nasal (portal-of-entry) irritation. Also, it was considered to prevent long-term effects, including all types of cancer. The majority of the recent toxicokinetic studies showed no exposure-dependent FA-DNA adducts outside the portal-of-entry area and FA-DNA adducts at distant sites were due to endogenously generated FA. The no-observed-adverse-effect level for sensory irritation was 0.5 ppm and recently reconfirmed in hypo- and hypersensitive individuals. Investigation of the relationship between FA exposure and asthma or other airway effects in children showed no convincing association. In rats, repeated exposures showed no point mutation in the p53 and K-Ras genes at ≤15 ppm neither increased cell proliferation, histopathological changes and changes in gene expression at 0.7 ppm. Repeated controlled exposures (0.5 ppm with peaks at 1 ppm) did not increase micronucleus formation in human buccal cells or nasal tissue (0.7 ppm) or in vivo genotoxicity in peripheral blood lymphocytes (0.7 ppm), but higher occupational exposures were associated with genotoxicity in buccal cells and cultivated peripheral blood lymphocytes. It is still valid that exposures not inducing nasal squamous cell carcinoma in rats will not induce nasopharyngeal cancer or lymphohematopoietic malignancies in humans. Reproductive and developmental toxicity are not considered relevant in the absence of sensory irritation. In conclusion, the WHO guideline has been strengthened.
Collapse
Affiliation(s)
- Gunnar Damgård Nielsen
- National Research Centre for the Working Environment, Lersø Parkallé 105, 2100 Copenhagen, Denmark.
| | | | | |
Collapse
|
34
|
Zhang X, Zhao Z, Nordquist T, Norback D. The prevalence and incidence of sick building syndrome in Chinese pupils in relation to the school environment: a two-year follow-up study. INDOOR AIR 2011; 21:462-471. [PMID: 21615503 DOI: 10.1111/j.1600-0668.2011.00726.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
UNLABELLED There are few incidence studies on sick building syndrome (SBS). We studied two-year change of SBS in Chinese pupils in relation to parental asthma/allergy (heredity), own atopy, classroom temperature, relative humidity (RH), absolute humidity (AH), crowdedness, CO₂, NO₂, and SO₂. A total of 1993 participated at baseline, and 1143 stayed in the same classrooms after two years. The prevalence of mucosal and general symptoms was 33% and 28% at baseline and increased during follow-up (P < 0.001). Twenty-seven percent reported at least one symptom improved when away from school. Heredity and own atopy were predictors of SBS at baseline and incidence of SBS. At baseline, SO₂ was associated with general symptoms (OR=1.10 per 100 μg/m³), mucosal symptoms (OR=1.12 per 100 μg/m³), and skin symptoms (OR=1.16 per 100 μg/m³). NO₂ was associated with mucosal symptoms (OR=1.13 per 10 μg/m³), and symptoms improved when away from school (OR=1.13 per 10 μg/m³). Temperature, RH, AH, and CO₂ were negatively associated with prevalence of SBS. Incidence or remission of SBS was not related to any exposure, except a negative association between SO₂ and new skin symptoms. In conclusion, heredity and atopy are related to incidence and prevalence of SBS, but the role of the measured exposures for SBS is more unclear. PRACTICAL IMPLICATIONS We found high levels of CO₂ indicating inadequate ventilation and high levels of SO₂ and NO₂, both indoors and outdoors. All schools had natural ventilation, only. Relying on window opening as a tool for ventilation in China is difficult because increased ventilation will decrease the level of CO₂ but increase the level of NO₂ and SO₂ indoors. Prevalence studies of sick building syndrome (SBS) might not be conclusive for causal relationships, and more longitudinal studies on SBS are needed both in China and other parts of the world. The concept of mechanical ventilation and air filtration should be introduced in the schools, and when planning new schools, locations close to heavily trafficked roads should be avoided.
Collapse
Affiliation(s)
- X Zhang
- Research Center for Environmental Science and Engineering, Shanxi University, Taiyuan, China.
| | | | | | | |
Collapse
|