1
|
Nour I, Mohanty SK. Avian Reovirus: From Molecular Biology to Pathogenesis and Control. Viruses 2024; 16:1966. [PMID: 39772272 PMCID: PMC11728826 DOI: 10.3390/v16121966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/16/2024] [Accepted: 12/20/2024] [Indexed: 01/14/2025] Open
Abstract
Avian reoviruses (ARVs) represent a significant economic burden on the poultry industry due to their widespread prevalence and potential pathogenicity. These viruses, capable of infecting a diverse range of avian species, can lead to a variety of clinical manifestations, most notably tenosynovitis/arthritis. While many ARV strains are asymptomatic, pathogenic variants can cause severe inflammation and tissue damage in organs such as the tendons, heart, and liver. In broilers and turkeys, ARVs can induce severe arthritis/tenosynovitis, characterized by swollen hock joints and lesions in the gastrocnemius tendons. Additionally, ARVs have been implicated in other diseases, although their precise role in these conditions remains to be fully elucidated. In recent years, ARV cases have surged in the United States, emphasizing the need for effective control measures. Routine vaccination with commercial or autogenous vaccines is currently the primary strategy for mitigating ARV's impact. Future research efforts should focus on enhancing our understanding of ARV-induced pathogenesis, identifying host factors that influence disease severity, and developing novel vaccines based on ongoing surveillance of circulating ARV strains. This review aims to explore the molecular aspects of ARV, including virus structure, replication, molecular epidemiology, the roles of its encoded proteins in host pathogenesis, and the immune response to ARV infection. Furthermore, we discuss the diagnostic approaches of avian reovirus and the potential biosecurity measures and vaccination trials in combating ARV and developing effective antiviral strategies.
Collapse
Affiliation(s)
| | - Sujit K. Mohanty
- Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Athens, GA 30605, USA;
| |
Collapse
|
2
|
Rafique S, Rashid F, Wei Y, Zeng T, Xie L, Xie Z. Avian Orthoreoviruses: A Systematic Review of Their Distribution, Dissemination Patterns, and Genotypic Clustering. Viruses 2024; 16:1056. [PMID: 39066218 PMCID: PMC11281703 DOI: 10.3390/v16071056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/14/2024] [Accepted: 06/18/2024] [Indexed: 07/28/2024] Open
Abstract
Avian orthoreviruses have become a global challenge to the poultry industry, causing significant economic impacts on commercial poultry. Avian reoviruses (ARVs) are resistant to heat, proteolytic enzymes, a wide range of pH values, and disinfectants, so keeping chicken farms free of ARV infections is difficult. This review focuses on the global prevalence of ARVs and associated clinical signs and symptoms. The most common signs and symptoms include tenosynovitis/arthritis, malabsorption syndrome, runting-stunting syndrome, and respiratory diseases. Moreover, this review also focused on the characterization of ARVs in genotypic clusters (I-VI) and their relation to tissue tropism or viral distribution. The prevailing strains of ARV in Africa belong to all genotypic clusters (GCs) except for GC VI, whereas all GCs are present in Asia and the Americas. In addition, all ARV strains are associated with or belong to GC I-VI in Europe. Moreover, in Oceania, only GC V and VI are prevalent. This review also showed that, regardless of the genotypic cluster, tenosynovitis/arthritis was the predominant clinical manifestation, indicating its universal occurrence across all clusters. Globally, most avian reovirus infections can be prevented by vaccination against four major strains: S1133, 1733, 2408, and 2177. Nevertheless, these vaccines may not a provide sufficient defense against field isolates. Due to the increase in the number of ARV variants, classical vaccine approaches are being developed depending on the degree of antigenic similarity between the vaccine and field strains, which determines how successful the vaccination will be. Moreover, there is a need to look more closely at the antigenic and pathogenic properties of reported ARV strains. The information acquired will aid in the selection of more effective vaccine strains in combination with biosecurity and farm management methods to prevent ARV infections.
Collapse
Affiliation(s)
- Saba Rafique
- SB Diagnostic Laboratory, Sadiq Poultry Pvt. Ltd., Rawalpindi 46000, Pakistan;
| | - Farooq Rashid
- Department of Biotechnology, Guangxi Veterinary Research Institute, Nanning 530001, China; (F.R.); (Y.W.); (T.Z.); (L.X.)
- Guangxi Key Laboratory of Veterinary Biotechnology, Nanning 530001, China
- Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning 530001, China
| | - You Wei
- Department of Biotechnology, Guangxi Veterinary Research Institute, Nanning 530001, China; (F.R.); (Y.W.); (T.Z.); (L.X.)
- Guangxi Key Laboratory of Veterinary Biotechnology, Nanning 530001, China
- Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning 530001, China
| | - Tingting Zeng
- Department of Biotechnology, Guangxi Veterinary Research Institute, Nanning 530001, China; (F.R.); (Y.W.); (T.Z.); (L.X.)
- Guangxi Key Laboratory of Veterinary Biotechnology, Nanning 530001, China
- Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning 530001, China
| | - Liji Xie
- Department of Biotechnology, Guangxi Veterinary Research Institute, Nanning 530001, China; (F.R.); (Y.W.); (T.Z.); (L.X.)
- Guangxi Key Laboratory of Veterinary Biotechnology, Nanning 530001, China
- Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning 530001, China
| | - Zhixun Xie
- Department of Biotechnology, Guangxi Veterinary Research Institute, Nanning 530001, China; (F.R.); (Y.W.); (T.Z.); (L.X.)
- Guangxi Key Laboratory of Veterinary Biotechnology, Nanning 530001, China
- Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning 530001, China
| |
Collapse
|
3
|
de Matos TRA, Palka APG, de Souza C, Fragoso SP, Pavoni DP. Detection of avian reovirus (ARV) by ELISA based on recombinant σB, σC and σNS full-length proteins and protein fragments. J Med Microbiol 2024; 73. [PMID: 38935078 DOI: 10.1099/jmm.0.001836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024] Open
Abstract
Introduction. Avian reovirus (ARV) is associated with arthritis/tenosynovitis and malabsorption syndrome in chickens. The σC and σB proteins, both exposed to the virus capsid, are highly immunogenic and could form the basis for diagnostic devices designed to assess the immunological status of the flock.Gap Statement. Commercial ARV ELISAs cannot distinguish between vaccinated and infected animals and might not detect circulating ARV strains.Aim. We aimed to develop a customized test to detect the circulating field ARV strains as well as distinguish between vaccinated and unvaccinated animals.Methodology. We developed ELISA assays based on recombinant (r) σB, σC and the nonstructural protein σNS and tested them using antisera of vaccinated and unvaccinated chickens as well as negative controls. Fragments of σB and σC proteins were also used to study regions that could be further exploited in diagnostic tests.Results. Vaccinated and unvaccinated birds were positive by commercial ELISA, with no difference in optical density values. In contrast, samples of unvaccinated animals showed lower absorbance in the rσB and rσC ELISA tests and higher absorbance in the rσNS ELISA test than the vaccinated animals. Negative control samples were negative in all tests. Fragmentation of σB and σC proteins showed that some regions can differentiate between vaccinated and unvaccinated animals. For example, σB amino acids 128-179 (σB-F4) and σC amino acids 121-165 (σC-F4) exhibited 85 and 95% positivity among samples of vaccinated animals but only 5% and zero positivity among samples of unvaccinated animals, respectively.Conclusion. These data suggest that unvaccinated birds might have been exposed to field strains of ARV. The reduction in absorbance in the recombinant tests possibly reflects an increased specificity of our test since unvaccinated samples showed less cross-reactivity with the vaccine proteins immobilized on ELISAs. The discrepant results obtained with the protein fragment tests between vaccinated and unvaccinated animals are discussed in light of the diversity between ARV strains.
Collapse
Affiliation(s)
- Tatiana Reichert Assunção de Matos
- Fundação Oswaldo Cruz, Instituto Carlos Chagas, Fiocruz Paraná, Curitiba/PR, Brazil
- Programa de Pós-graduação em Biociências e Biotecnologia, Fundação Oswaldo Cruz, Instituto Carlos Chagas, Fiocruz Paraná, Curitiba/PR, Brazil
| | - Ana Paula Gori Palka
- Fundação Oswaldo Cruz, Instituto Carlos Chagas, Fiocruz Paraná, Curitiba/PR, Brazil
- Programa de Pós-graduação em Biologia Celular e Molecular, Universidade Federal do Paraná/UFPR, Curitiba/PR, Brazil
- Instituto de Tecnologia do Paraná/Tecpar, Curitiba/PR, Brazil
| | - Claudemir de Souza
- Fundação Oswaldo Cruz, Instituto Carlos Chagas, Fiocruz Paraná, Curitiba/PR, Brazil
- Programa de Pós-graduação em Biologia Celular e Molecular, Universidade Federal do Paraná/UFPR, Curitiba/PR, Brazil
| | - Stenio Perdigão Fragoso
- Fundação Oswaldo Cruz, Instituto Carlos Chagas, Fiocruz Paraná, Curitiba/PR, Brazil
- Programa de Pós-graduação em Biociências e Biotecnologia, Fundação Oswaldo Cruz, Instituto Carlos Chagas, Fiocruz Paraná, Curitiba/PR, Brazil
| | - Daniela Parada Pavoni
- Fundação Oswaldo Cruz, Instituto Carlos Chagas, Fiocruz Paraná, Curitiba/PR, Brazil
- Programa de Pós-graduação em Biociências e Biotecnologia, Fundação Oswaldo Cruz, Instituto Carlos Chagas, Fiocruz Paraná, Curitiba/PR, Brazil
- Programa de Pós-graduação em Biologia Celular e Molecular, Universidade Federal do Paraná/UFPR, Curitiba/PR, Brazil
| |
Collapse
|
4
|
Ren H, Wang S, Xie Z, Wan L, Xie L, Luo S, Li M, Xie Z, Fan Q, Zeng T, Zhang Y, Zhang M, Huang J, Wei Y. Analysis of Chicken IFITM3 Gene Expression and Its Effect on Avian Reovirus Replication. Viruses 2024; 16:330. [PMID: 38543696 PMCID: PMC10974799 DOI: 10.3390/v16030330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/18/2024] [Accepted: 02/18/2024] [Indexed: 05/23/2024] Open
Abstract
Interferon-inducible transmembrane protein 3 (IFITM3) is an antiviral factor that plays an important role in the host innate immune response against viruses. Previous studies have shown that IFITM3 is upregulated in various tissues and organs after avian reovirus (ARV) infection, which suggests that IFITM3 may be involved in the antiviral response after ARV infection. In this study, the chicken IFITM3 gene was cloned and analyzed bioinformatically. Then, the role of chicken IFITM3 in ARV infection was further explored. The results showed that the molecular weight of the chicken IFITM3 protein was approximately 13 kDa. This protein was found to be localized mainly in the cytoplasm, and its protein structure contained the CD225 domain. The homology analysis and phylogenetic tree analysis showed that the IFITM3 genes of different species exhibited great variation during genetic evolution, and chicken IFITM3 shared the highest homology with that of Anas platyrhynchos and displayed relatively low homology with those of birds such as Anser cygnoides and Serinus canaria. An analysis of the distribution of chicken IFITM3 in tissues and organs revealed that the IFITM3 gene was expressed at its highest level in the intestine and in large quantities in immune organs, such as the bursa of Fabricius, thymus and spleen. Further studies showed that the overexpression of IFITM3 in chicken embryo fibroblasts (DF-1) could inhibit the replication of ARV, whereas the inhibition of IFITM3 expression in DF-1 cells promoted ARV replication. In addition, chicken IFITM3 may exert negative feedback regulatory effects on the expression of TBK1, IFN-γ and IRF1 during ARV infection, and it is speculated that IFITM3 may participate in the innate immune response after ARV infection by negatively regulating the expression of TBK1, IFN-γ and IRF1. The results of this study further enrich the understanding of the role and function of chicken IFITM3 in ARV infection and provide a theoretical basis for an in-depth understanding of the antiviral mechanism of host resistance to ARV infection.
Collapse
Affiliation(s)
- Hongyu Ren
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning 530000, China; (H.R.); (S.W.); (L.W.); (L.X.); (S.L.); (M.L.); (Z.X.); (Q.F.); (T.Z.); (Y.Z.); (M.Z.); (J.H.); (Y.W.)
- Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning 530000, China
| | - Sheng Wang
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning 530000, China; (H.R.); (S.W.); (L.W.); (L.X.); (S.L.); (M.L.); (Z.X.); (Q.F.); (T.Z.); (Y.Z.); (M.Z.); (J.H.); (Y.W.)
- Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning 530000, China
| | - Zhixun Xie
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning 530000, China; (H.R.); (S.W.); (L.W.); (L.X.); (S.L.); (M.L.); (Z.X.); (Q.F.); (T.Z.); (Y.Z.); (M.Z.); (J.H.); (Y.W.)
- Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning 530000, China
| | - Lijun Wan
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning 530000, China; (H.R.); (S.W.); (L.W.); (L.X.); (S.L.); (M.L.); (Z.X.); (Q.F.); (T.Z.); (Y.Z.); (M.Z.); (J.H.); (Y.W.)
- Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning 530000, China
| | - Liji Xie
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning 530000, China; (H.R.); (S.W.); (L.W.); (L.X.); (S.L.); (M.L.); (Z.X.); (Q.F.); (T.Z.); (Y.Z.); (M.Z.); (J.H.); (Y.W.)
- Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning 530000, China
| | - Sisi Luo
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning 530000, China; (H.R.); (S.W.); (L.W.); (L.X.); (S.L.); (M.L.); (Z.X.); (Q.F.); (T.Z.); (Y.Z.); (M.Z.); (J.H.); (Y.W.)
- Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning 530000, China
| | - Meng Li
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning 530000, China; (H.R.); (S.W.); (L.W.); (L.X.); (S.L.); (M.L.); (Z.X.); (Q.F.); (T.Z.); (Y.Z.); (M.Z.); (J.H.); (Y.W.)
- Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning 530000, China
| | - Zhiqin Xie
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning 530000, China; (H.R.); (S.W.); (L.W.); (L.X.); (S.L.); (M.L.); (Z.X.); (Q.F.); (T.Z.); (Y.Z.); (M.Z.); (J.H.); (Y.W.)
- Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning 530000, China
| | - Qing Fan
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning 530000, China; (H.R.); (S.W.); (L.W.); (L.X.); (S.L.); (M.L.); (Z.X.); (Q.F.); (T.Z.); (Y.Z.); (M.Z.); (J.H.); (Y.W.)
- Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning 530000, China
| | - Tingting Zeng
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning 530000, China; (H.R.); (S.W.); (L.W.); (L.X.); (S.L.); (M.L.); (Z.X.); (Q.F.); (T.Z.); (Y.Z.); (M.Z.); (J.H.); (Y.W.)
- Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning 530000, China
| | - Yanfang Zhang
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning 530000, China; (H.R.); (S.W.); (L.W.); (L.X.); (S.L.); (M.L.); (Z.X.); (Q.F.); (T.Z.); (Y.Z.); (M.Z.); (J.H.); (Y.W.)
- Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning 530000, China
| | - Minxiu Zhang
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning 530000, China; (H.R.); (S.W.); (L.W.); (L.X.); (S.L.); (M.L.); (Z.X.); (Q.F.); (T.Z.); (Y.Z.); (M.Z.); (J.H.); (Y.W.)
- Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning 530000, China
| | - Jiaoling Huang
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning 530000, China; (H.R.); (S.W.); (L.W.); (L.X.); (S.L.); (M.L.); (Z.X.); (Q.F.); (T.Z.); (Y.Z.); (M.Z.); (J.H.); (Y.W.)
- Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning 530000, China
| | - You Wei
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning 530000, China; (H.R.); (S.W.); (L.W.); (L.X.); (S.L.); (M.L.); (Z.X.); (Q.F.); (T.Z.); (Y.Z.); (M.Z.); (J.H.); (Y.W.)
- Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning 530000, China
| |
Collapse
|
5
|
Farnoushi Y, Heller D, Lublin A. Genetic characterization of newly emerging avian reovirus variants in chickens with viral arthritis/tenosynovitis in Israel. Virology 2024; 589:109908. [PMID: 37952464 DOI: 10.1016/j.virol.2023.109908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/03/2023] [Accepted: 10/09/2023] [Indexed: 11/14/2023]
Abstract
In recent years, new avian reovirus (ARV) variants caused a variety of symptoms in chickens worldwide, the most important of which was Viral arthritis/tenosynovitis which caused substantial economic losses and has become a concern to the worldwide chicken industry. In this study, we characterized emerging ARV variants in Israel and analyzed their genetic relationship with reference strains. One hundred thirty-four ARV variants were isolated from tendons and synovial fluids of commercial broiler chickens with signs of arthritis/tenosynovitis. Phylogenetic analysis of the partial segment of the sigma C (σC) gene confirmed that these field isolates from Israel could be clustered into all six known clusters. The majority of ARV isolates in Israel belonged to the genotypic cluster 5 (GC5). The strains in this study had a low sequence identity when compared to the commercial vaccine (strain S1133). The findings of this study demonstrated the genetic diversity of ARV strains in Israel from 2015 to 2022. It is reasonable to conclude from the preliminary results of this investigation that Israel has not been subject to selection pressure or the emergence of new ARV variants since the introduction of the live vaccine (ISR-7585). Due to the ongoing emergence of ARV variants, a robust epidemiological monitoring program supported by molecular biology techniques is required to track ARV strains in Israeli poultry flocks.
Collapse
Affiliation(s)
- Yigal Farnoushi
- Department of Avian Diseases, Kimron Veterinary Institute, Beit Dagan, 5025001, Israel; Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 7610001, Israel.
| | - Dan Heller
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 7610001, Israel
| | - Avishai Lublin
- Department of Avian Diseases, Kimron Veterinary Institute, Beit Dagan, 5025001, Israel
| |
Collapse
|
6
|
Gál B, Varga-Kugler R, Ihász K, Kaszab E, Domán M, Farkas S, Bányai K. Marked Genotype Diversity among Reoviruses Isolated from Chicken in Selected East-Central European Countries. Animals (Basel) 2023; 13:2137. [PMID: 37443935 DOI: 10.3390/ani13132137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/22/2023] [Accepted: 06/25/2023] [Indexed: 07/15/2023] Open
Abstract
The concern that the vaccines currently used against Avian orthoreovirus (ARV) infections are less efficient in the field justifies the need for the close monitoring of circulating ARV strains. In this study, we collected necropsy samples from various chicken breeds and tested for ARV by virus isolation, RT-PCR assay and sequence analysis. ARVs were isolated from birds showing runting-stunting syndrome, uneven growth, lameness or increased mortality, with relative detection rates of 38%, 35%, 6% and 25%, respectively. Partial σC gene sequences were determined for nearly 90% of ARV isolates. The isolates could be classified into one of the major genetic clusters. Interestingly, cluster 2 and cluster 5 were isolated from vaccinated broiler breeders, while clusters 1 to 4 were isolated from unvaccinated broilers. The isolates shared less than 75% amino acid identities with the vaccine strains (range, 44.3-74.6%). This study reaffirms the global distribution of the major genetic clusters of ARVs in chicken. The diversity of ARV strains isolated from unvaccinated broilers was greater than those detected from vaccinated animals, however, the relative importance of passive and active immunity on the selection of novel strains in different chicken breeds needs to be better understood.
Collapse
Affiliation(s)
- Bence Gál
- Intervet Hungária Kft, Lechner Ödön fasor 10/b, H-1095 Budapest, Hungary
| | - Renáta Varga-Kugler
- Veterinary Medical Research Institute, Hungária krt. 21, H-1143 Budapest, Hungary
- National Laboratory for Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, Hungária krt. 21, H-1143, Budapest, Hungary
| | - Katalin Ihász
- Veterinary Medical Research Institute, Hungária krt. 21, H-1143 Budapest, Hungary
| | - Eszter Kaszab
- Veterinary Medical Research Institute, Hungária krt. 21, H-1143 Budapest, Hungary
- National Laboratory for Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, Hungária krt. 21, H-1143, Budapest, Hungary
| | - Marianna Domán
- Veterinary Medical Research Institute, Hungária krt. 21, H-1143 Budapest, Hungary
- National Laboratory for Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, Hungária krt. 21, H-1143, Budapest, Hungary
| | - Szilvia Farkas
- Department of Obstetrics and Food Animal Medicine Clinic, University of Veterinary Medicine, István utca 2, H-1078 Budapest, Hungary
| | - Krisztián Bányai
- Veterinary Medical Research Institute, Hungária krt. 21, H-1143 Budapest, Hungary
- National Laboratory for Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, Hungária krt. 21, H-1143, Budapest, Hungary
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, István utca 2, H-1078 Budapest, Hungary
| |
Collapse
|
7
|
Liu D, Zou Z, Song S, Liu H, Gong X, Li B, Liu P, Wang Q, Liu F, Luan D, Zhang X, Du Y, Jin M. Epidemiological Analysis of Avian Reovirus in China and Research on the Immune Protection of Different Genotype Strains from 2019 to 2020. Vaccines (Basel) 2023; 11:vaccines11020485. [PMID: 36851362 PMCID: PMC9960544 DOI: 10.3390/vaccines11020485] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/03/2023] [Accepted: 02/07/2023] [Indexed: 02/22/2023] Open
Abstract
Avian reovirus (ARV) is the primary pathogen responsible for viral arthritis. In this study, 2340 samples with suspected viral arthritis were collected from 2019 to 2020 in 16 provinces of China to investigate the prevalence of ARV in China and to characterize the molecular genetic evolution of epidemic strains. From 113 samples analyzed by RT-PCR, 46 strains of avian reovirus were successfully isolated and identified. The genetic evolution of the σC gene showed that 46 strains were distributed in 1-5 branches, with the largest number of strains in branches 1 and 2. The σC gene homology among the strains was low, with approximately 62% homology in branches 4 and 5 and about 55% in the remaining branches. The strains circulating during the ARV epidemic in different provinces were distributed in different branches. The SPF chickens were immunized with inactivated vaccines containing strains from branches 1 and 4 to analyze the cross-immune protection elicited by different branches of ARV strains. A challenge protection test was performed using strains in branches 1, 2, 4, and 5. Our results showed that inactivated vaccines containing strains from branches 1 and 4 could fully protect from strains in branches 1, 4, and 5. The results of this study revealed the genetic diversity among the endemic strains of ARV in China from 2019 to 2020. Each genotype strain elicited partial cross-protection, providing a scientific basis for the prevention and control of ARV.
Collapse
Affiliation(s)
- Dong Liu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Jiangxia Laboratory, Wuhan 430200, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Wuhan 430070, China
- YEBIO Bio-Engineering Co., Ltd. of Qingdao, Qingdao 266032, China
| | - Zhong Zou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Jiangxia Laboratory, Wuhan 430200, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Wuhan 430070, China
| | - Shanshan Song
- YEBIO Bio-Engineering Co., Ltd. of Qingdao, Qingdao 266032, China
| | - Hongxiang Liu
- YEBIO Bio-Engineering Co., Ltd. of Qingdao, Qingdao 266032, China
| | - Xiao Gong
- YEBIO Bio-Engineering Co., Ltd. of Qingdao, Qingdao 266032, China
| | - Bin Li
- YEBIO Bio-Engineering Co., Ltd. of Qingdao, Qingdao 266032, China
| | - Ping Liu
- YEBIO Bio-Engineering Co., Ltd. of Qingdao, Qingdao 266032, China
| | - Qunyi Wang
- YEBIO Bio-Engineering Co., Ltd. of Qingdao, Qingdao 266032, China
| | - Fengbo Liu
- YEBIO Bio-Engineering Co., Ltd. of Qingdao, Qingdao 266032, China
| | - Dongzu Luan
- YEBIO Bio-Engineering Co., Ltd. of Qingdao, Qingdao 266032, China
| | - Xiang Zhang
- YEBIO Bio-Engineering Co., Ltd. of Qingdao, Qingdao 266032, China
| | - Yuanzhao Du
- YEBIO Bio-Engineering Co., Ltd. of Qingdao, Qingdao 266032, China
| | - Meilin Jin
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Jiangxia Laboratory, Wuhan 430200, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Wuhan 430070, China
- Correspondence: ; Tel.: +86-027-87286905
| |
Collapse
|
8
|
Kovács E, Varga-Kugler R, Mató T, Homonnay Z, Tatár-Kis T, Farkas S, Kiss I, Bányai K, Palya V. Identification of the main genetic clusters of avian reoviruses from a global strain collection. Front Vet Sci 2023; 9:1094761. [PMID: 36713877 PMCID: PMC9878682 DOI: 10.3389/fvets.2022.1094761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 12/28/2022] [Indexed: 01/13/2023] Open
Abstract
Introduction Avian reoviruses (ARV), an important pathogen of poultry, have received increasing interest lately due to their widespread occurrence, recognized genetic diversity, and association to defined disease conditions or being present as co-infecting agents. The efficient control measures require the characterization of the available virus strains. Methods The present study describes an ARV collection comprising over 200 isolates from diagnostic samples collected over a decade from 34 countries worldwide. One hundred and thirty-six ARV isolates were characterized based on σC sequences. Results and discussion The samples represented not only arthritis/tenosynovitis and runting-stunting syndrome, but also respiratory symptoms, egg production problems, and undefined disease conditions accompanied with increased mortality, and were obtained from broiler, layer or breeder flocks. In 31 percent of the cases other viral or bacterial agents were demonstrated besides ARV. The most frequent co-infectious agent was infectious bronchitis virus followed by infectious bursal disease virus and adenoviruses. All isolates could be classified in one of the major genetic clusters, although we observed marked discrepancies in the genotyping systems currently in use, a finding that made genotype assignment challenging. Reovirus related clinical symptoms could not be unequivocally connected to any particular virus strains belonging to a specific genetic group, suggesting the lack of strict association between disease forms of ARV infection and the investigated genetic features of ARV strains. Also, large genetic differences were seen between field and vaccine strains. The presented findings reinforce the need to establish a uniform, widely accepted molecular classification scheme for ARV and further, highlight the need for ARV strain identification to support more efficient control measures.
Collapse
Affiliation(s)
| | | | | | | | | | - Szilvia Farkas
- Veterinary Medical Research Institute, Budapest, Hungary,Department of Obstetrics and Food Animal Medicine Clinic, University of Veterinary Medicine, Budapest, Hungary
| | - István Kiss
- Ceva-Phylaxia Ltd., Budapest, Hungary,*Correspondence: István Kiss ✉
| | - Krisztián Bányai
- Veterinary Medical Research Institute, Budapest, Hungary,Department of Pharmacology and Toxicology, University of Veterinary Medicine, Budapest, Hungary
| | | |
Collapse
|
9
|
Mosad SM, Elmahallawy EK, Alghamdi AM, El-Khayat F, El-Khadragy MF, Ali LA, Abdo W. Molecular and pathological investigation of avian reovirus (ARV) in Egypt with the assessment of the genetic variability of field strains compared to vaccine strains. Front Microbiol 2023; 14:1156251. [PMID: 37138631 PMCID: PMC10150020 DOI: 10.3389/fmicb.2023.1156251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/28/2023] [Indexed: 05/05/2023] Open
Abstract
Avian orthoreovirus (ARV) is among the important viruses that cause drastic economic losses in the Egyptian poultry industry. Despite regular vaccination of breeder birds, a high prevalence of ARV infection in broilers has been noted in recent years. However, no reports have revealed the genetic and antigenic characteristics of Egyptian field ARV and vaccines used against it. Thus, this study was conducted to detect the molecular nature of emerging ARV strains in broiler chickens suffering from arthritis and tenosynovitis in comparison to vaccine strains. Synovial fluid samples (n = 400) were collected from 40 commercial broiler flocks in the Gharbia governorate, Egypt, and then pooled to obtain 40 samples, which were then used to screen ARV using reverse transcriptase polymerase chain reaction (RT-PCR) with the partial amplification of ARV sigma C gene. The obtained RT-PCR products were then sequenced, and their nucleotide and deduced amino acid sequences were analyzed together with other ARV field and vaccine strains from GenBank. RT-PCR successfully amplified the predicted 940 bp PCR products from all tested samples. The phylogenetic tree revealed that the analyzed ARV strains were clustered into six genotypic clusters and six protein clusters, with high antigenic diversity between the genotypic clusters. Surprisingly, our isolates were genetically different from vaccine strains, which aligned in genotypic cluster I/protein cluster I, while our strains were aligned in genotypic cluster V/protein cluster V. More importantly, our strains were highly divergent from vaccine strains used in Egypt, with 55.09-56.23% diversity. Sequence analysis using BioEdit software revealed high genetic and protein diversity between our isolates and vaccine strains (397/797 nucleotide substitutions and 148-149/265 amino acid substitutions). This high genetic diversity explains the vaccination failure and recurrent circulation of ARV in Egypt. The present data highlight the need to formulate a new effective vaccine from locally isolated ARV strains after a thorough screening of the molecular nature of circulating ARV in Egypt.
Collapse
Affiliation(s)
- Samah M. Mosad
- Department of Virology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Ehab Kotb Elmahallawy
- Department of Zoonoses, Faculty of Veterinary Medicine, Sohag University, Sohag, Egypt
- *Correspondence: Ehab Kotb Elmahallawy
| | - Abeer M. Alghamdi
- Department of Biology, Faculty of Science, Al-Baha University, Al-Baha, Saudi Arabia
| | - Fares El-Khayat
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Manal F. El-Khadragy
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Lobna A. Ali
- Cell Biology and Histochemistry, Zoology Department, Faculty of Science, South Valley University, Qena, Egypt
| | - Walied Abdo
- Department of Pathology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
- Walied Abdo
| |
Collapse
|
10
|
Lunge VR, De Carli S, Fonseca ASK, Ikuta N. Avian Reoviruses in Poultry Farms from Brazil. Avian Dis 2022; 66:459-464. [PMID: 36715480 DOI: 10.1637/aviandiseases-d-22-99998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 07/13/2022] [Indexed: 01/11/2023]
Abstract
Avian reovirus (ARV) is highly disseminated in commercial Brazilian poultry farms, causing arthritis/tenosynovitis, runting-stunting syndrome, and malabsorption syndrome in different meat- and egg-type birds (breeders, broilers, grillers, and layers). In Brazil, ARV infection was first described in broilers in the 1970s but was not considered an important poultry health problem for decades. A more concerning outcome of field infections has been observed in recent years, including condemnations at slaughterhouses because of the unsightly appearance of chicken body parts, mainly the legs. Analyses of the performance of poultry flocks have further evidenced economic losses to farms. Genetic and antigenic characterization of ARV field strains from Brazil demonstrated a high diversity of lineages circulating in the entire country, including four of the five main phylogenetic groups previously described (I, II, III, and V). It is still unclear if all of them are associated with different diseases affecting flocks' performance in Brazilian poultry. ARV infections have been controlled in Brazilian poultry farms by immunization of breeders and young chicks with classical commercial live vaccine strains (S1133, 1733, 2408, and 2177) used elsewhere in the Western Hemisphere. However, genetic and antigenic variations of the field isolates have prevented adequate protection against associated diseases, so killed autogenous vaccines are being produced from isolates obtained on specific farms. In conclusion, ARV field variants are continuously challenging poultry farming in Brazil. Epidemiological surveillance combined with molecular biological analyses from the field samples, as well as the development of vaccine strains directed toward the ARV circulating variants, are necessary to control this economically important poultry pathogen.
Collapse
Affiliation(s)
- Vagner R Lunge
- Laboratório de Diagnóstico em Medicina Veterinária, Universidade de Caxias do Sul, Caxias do Sul, Rio Grande do Sul, Brazil, .,Laboratório de Diagnóstico Molecular, Universidade Luterana do Brasil, Canoas, Rio Grande do Sul, Brazil.,Simbios Biotecnologia, Cachoeirinha, Rio Grande do Sul, Brazil
| | - Silvia De Carli
- Laboratório de Diagnóstico Molecular, Universidade Luterana do Brasil, Canoas, Rio Grande do Sul, Brazil
| | | | - Nilo Ikuta
- Simbios Biotecnologia, Cachoeirinha, Rio Grande do Sul, Brazil
| |
Collapse
|
11
|
Sellers HS. Avian Reoviruses from Clinical Cases of Tenosynovitis: An Overview of Diagnostic Approaches and 10-Year Review of Isolations and Genetic Characterization. Avian Dis 2022; 66:420-426. [PMID: 36715473 DOI: 10.1637/aviandiseases-d-22-99990] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 09/02/2022] [Indexed: 01/24/2023]
Abstract
Reoviral-induced tenosynovitis/viral arthritis is an economically significant disease of poultry. Affected birds present with lameness, unilateral or bilateral swollen hock joints or shanks, and/or reluctance to move. In severe cases, rupture of the gastrocnemius or digital flexor tendons may occur, and significant culling may be necessary. Historically, vaccination with a combination of modified live and inactivated vaccines has successfully controlled disease. Proper vaccination reduced vertical transmission and provided maternal-derived antibodies to progeny to protect against disease, at an age when they were most susceptible. Starting in 2011-2012, an increased incidence of tenosynovitis/viral arthritis was observed in chickens and turkeys. In chickens, progeny from reovirus-vaccinated breeders were affected, suggesting commercial vaccines did not provide adequate protection against disease. In turkeys, clinical disease was primarily in males, although females can also be affected. The most significant signs were observed around 14-16 wks of age and include reluctance to move, lameness, and limping on one or both legs. The incidence of tenosynovitis/viral arthritis presently remains high. Reoviruses isolated from clinical cases are genetically and antigenically characterized as variants, meaning they are different from vaccine strains. Characterization of the field isolates reveals multiple new genotypes and serotypes that are significantly different from commercial vaccines and each other. In 2012, a single prevalent virus was isolated from a majority of the cases submitted to the Poultry Diagnostic and Research Center at the University of Georgia. Genetic characterization of the σC protein revealed the early isolates belonged to genetic cluster (GC) 5. Soon after the initial identification of the GC5 variant reovirus, many broiler companies incorporated these isolates from their farms into their autogenous vaccines and continue to do so today. The incidence of GC5 field isolates has decreased significantly, likely because of the widespread use of the isolates in autogenous vaccines. Unfortunately, variant reoviruses belonging to multiple GCs have emerged, despite inclusion of these isolates in autogenous vaccines. In this review, an overview of nomenclature, sample collection, and diagnostic testing will be covered, and a summary of variant reoviruses isolated from clinical cases of tenosynovitis/viral arthritis over the past 10 yrs will be provided.
Collapse
Affiliation(s)
- Holly S Sellers
- Poultry Diagnostic and Research Center, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA 30602,
| |
Collapse
|
12
|
Wang S, Wan L, Ren H, Xie Z, Xie L, Huang J, Deng X, Xie Z, Luo S, Li M, Zeng T, Zhang Y, Zhang M. Screening of interferon-stimulated genes against avian reovirus infection and mechanistic exploration of the antiviral activity of IFIT5. Front Microbiol 2022; 13:998505. [PMID: 36187980 PMCID: PMC9520478 DOI: 10.3389/fmicb.2022.998505] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 08/29/2022] [Indexed: 11/25/2022] Open
Abstract
Avian reovirus (ARV) infection can lead to severe immunosuppression, complications, and secondary diseases, causing immense economic losses to the poultry industry. In-depth study of the mechanism by which the innate immune system combats ARV infection, especially the antiviral effect mediated by interferon, is needed to prevent and contain ARV infection. In this study, ARV strain S1133 was used to artificially infect 7-day-old specific pathogen–free chickens. The results indicated that ARV rapidly proliferated in the immune organs, including the spleen, bursa of Fabricius, and thymus. The viral load peaked early in the infection and led to varying degrees of pathological damage to tissues and organs. Real-time quantitative PCR revealed that the mRNA levels of interferon and multiple interferon-stimulated genes (ISGs) in the spleen, bursa of Fabricius, and thymus were upregulated to varying degrees in the early stage of infection. Among the ISGs, IFIT5, and Mx were the most upregulated in various tissues and organs, suggesting that they are important ISGs for host resistance to ARV infection. Further investigation of the role of IFIT5 in ARV infection showed that overexpression of the IFIT5 gene inhibited ARV replication, whereas inhibition of the endogenously expressed IFIT5 gene by siRNA promoted ARV replication. IFIT5 may be a positive feedback regulator of the innate immune signaling pathways during ARV infection and may induce IFN-α production by promoting the expression of MAD5 and MAVS to exert its antiviral effect. The results of this study help explain the innate immune regulatory mechanism of ARV infection and reveal the important role of IFIT5 in inhibiting ARV replication, which has important theoretical significance and practical application value for the prevention and control of ARV infection.
Collapse
|
13
|
Choi YR, Kim SW, Shang K, Park JY, Zhang JF, Jang HK, Wei B, Cha SY, Kang M. Avian Reoviruses From Wild Birds Exhibit Pathogenicity to Specific Pathogen Free Chickens by Footpad Route. Front Vet Sci 2022; 9:844903. [PMID: 35280152 PMCID: PMC8907544 DOI: 10.3389/fvets.2022.844903] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
Avian reoviruses (ARVs) are ubiquitous in domestic poultry with 80% of them being non-pathogenic and they are frequently found in clinically healthy birds. ARVs have also been known to be the etiological agents of viral arthritis (VA), tenosynovitis, myocarditis, runting-stunting syndrome (RSS), and respiratory and enteric disease in chickens. Significant economic losses during the process of poultry husbandry are due, in part, to unmitigated ARV infections throughout the poultry industry. Recently, many isolates shared genetic similarities between those recovered from wild birds and those recovered from poultry. One explanation may be that there is a degree of spillover and spillback of ARVs between the two groups. However, studies on the role of wild birds in the epidemiology and pathogenicity of ARVs are insufficient. Here, we describe the pathogenicity in specific pathogen-free (SPF) chickens of ARV originating from wild birds. The challenge experiment was conducted in six groups including a negative control group, a positive control group (reference strain of S1133), and four groups (A15-157, A18-13, A18-205, A19-106) infected with ARVs from wild birds. The 7-day-old SPF chickens were inoculated with 106TCID50 ARV to evaluate the clinical signs, changes in weight gain, gross lesions, histological changes, virus replication, and serum antibody levels. The peak of clinical signs was from 3 to 5 days post infection (dpi). In addition, the death of one chicken was found in the group infected with the A18-13 isolate. Reduced body weight was also found in chickens infected with ARVs from wild birds compared to the negative control group. All the ARVs infection groups showed noticeable swelling of the footpad. In addition, ARVs were detected in the bursa, tendon, and hock joint by reverse transcription-polymerase chain reaction (RT-PCR) in all infected groups at 5 and 15 dpi. Histopathological observations revealed acute inflammatory responses on the synovium covering the joint surfaces (arthritis) and tendon sheaths (tenosynovitis), as well as bursa atrophy and lymphocyte depletion. The analysis of the humoral response was performed by ELISA assay, and chickens infected with ARVs showed seroconverted. In conclusion, this study described the typical severe disease of acute VA and tenosynovitis in SPF chickens infected with ARVs derived from wild birds. This study confirmed the pathogenicity of ARVs infection in SPF chickens for the first time, and these results enrich our understanding of the pathogenicity of ARVs derived from wild birds.
Collapse
|
14
|
De la Torre D, Astolfi-Ferreira CS, Chacón RD, Puga B, Piantino Ferreira AJ. Emerging new avian reovirus variants from cases of enteric disorders and arthritis/tenosynovitis in Brazilian poultry flocks. Br Poult Sci 2021; 62:361-372. [PMID: 33448227 DOI: 10.1080/00071668.2020.1864808] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
1. The objective of this study was to characterise circulating Brazilian avian reovirus (ARV) strains by genetic analysis of the σC protein encoded by segment 1 of the viral genome and compare these with those of viral strains used for immunising commercial poultry.2. The analysis detected the presence of ARV genomes by quantitative reverse transcriptase PCR (RT-qPCR) in the enteric samples and the joint tissues (JT) of birds with signs of viral arthritis/tenosynovitis. Nucleotide sequencing used 16 strains (three commercial vaccines, 10 from enteric tissues and three from JT). The results indicated high variability in the amino acid sequences of 13 wild strains, showing between 40% and 75% similarity compared with the vaccine strains (S1133 and 2177).3. The sequences were grouped into three well-defined clusters in a phylogenetic tree, two of these clusters together with previous Brazilian σC ARV sequences, and one cluster (VII) that was novel for Brazilian strains. Antigenic analysis showed that there were amino acids within putative epitopes located on the surface of the receptor-binding region of the σC protein with a high degree of variability.4. The study confirmed the presence of ARV genetic variants circulating in commercial birds in Brazil, and according to the antigenic prediction, the possibility of antigenic variants appears to be high.
Collapse
Affiliation(s)
- D De la Torre
- School of Veterinary Medicine, Institute for Research in Biomedicine, Central University of Ecuador, Quito, CP, Ecuador.,School of Veterinary Medicine, University of São Paulo, São Paulo, SP, Brazil
| | | | - R D Chacón
- School of Veterinary Medicine, University of São Paulo, São Paulo, SP, Brazil
| | - B Puga
- School of Veterinary Medicine, Institute for Research in Biomedicine, Central University of Ecuador, Quito, CP, Ecuador
| | | |
Collapse
|
15
|
Wang S, Xie L, Xie Z, Wan L, Huang J, Deng X, Xie ZQ, Luo S, Zeng T, Zhang Y, Zhang M, Zhou L. Dynamic Changes in the Expression of Interferon-Stimulated Genes in Joints of SPF Chickens Infected With Avian Reovirus. Front Vet Sci 2021; 8:618124. [PMID: 33614762 PMCID: PMC7892438 DOI: 10.3389/fvets.2021.618124] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 01/14/2021] [Indexed: 11/13/2022] Open
Abstract
Avian reovirus (ARV) can induce many diseases as well as immunosuppression in chickens, severely endangering the poultry industry. Interferons (IFNs) play an antiviral role by inducing the expression of interferon-stimulated genes (ISGs). The effect of ARV infection on the expression of host ISGs is unclear. Specific-pathogen-free (SPF) chickens were infected with ARV strain S1133 in this study, and real time quantitative PCR was used to detect changes in the dynamic expression of IFNs and common ISGs in joints of SPF chickens. The results showed that the transcription levels of IFNA, IFNB, and several ISGs, including myxovirus resistance (MX), interferon-induced transmembrane protein 3 (IFITM3), protein kinase R (PKR), oligoadenylate synthase (OAS), interferon-induced protein with tetratricopeptide repeats 5 (IFIT5), interferon-stimulated gene 12 (ISG12), virus inhibitory protein (VIPERIN), interferon-alpha-inducible protein 6 (IFI6), and integrin-associated protein (CD47), were upregulated in joints on days 1–7 of infection (the levels of increase of MX, IFIT5, OAS, VIPERIN, ISG12, and IFI6 were the most significant, at hundreds-fold). In addition, the expression levels of the ISGs encoding zinc finger protein 313 (ZFP313), and DNA damage–inducible transcript 4 (DDIT4) increased suddenly on the 1st or 2nd day, then decreased to control levels. The ARV viral load in chicken joints rapidly increased after 1 day of viral challenge, and the viral load remained high within 6 days of viral challenge. The ARV viral load sharply decreased starting on day 7. These results indicate that in SPF chicken joints, many ISGs have mRNA expression patterns that are basically consistent with the viral load in joints. IFNA, IFNB, and the ISGs MX, IFITM3, PKR, OAS, IFIT5, ISG12, VIPERIN, IFI6, and CD47 play important roles in defending against ARV invasion, inhibiting ARV replication and proliferation, and promoting virus clearance. These results enrich our understanding of the innate immune response mechanisms of hosts against ARV infection and provide a theoretical basis for prevention and control of ARV infection.
Collapse
Affiliation(s)
- Sheng Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China.,Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, China
| | - Liji Xie
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, China
| | - Zhixun Xie
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, China
| | - Lijun Wan
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, China
| | - Jiaoling Huang
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, China
| | - Xianwen Deng
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, China
| | - Zhi Qin Xie
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, China
| | - Sisi Luo
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, China
| | - Tingting Zeng
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, China
| | - Yanfang Zhang
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, China
| | - Minxiu Zhang
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, China
| | - Lei Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| |
Collapse
|
16
|
|
17
|
De Carli S, Wolf JM, Gräf T, Lehmann FKM, Fonseca ASK, Canal CW, Lunge VR, Ikuta N. Genotypic characterization and molecular evolution of avian reovirus in poultry flocks from Brazil. Avian Pathol 2020; 49:611-620. [PMID: 32746617 DOI: 10.1080/03079457.2020.1804528] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Avian reovirus (ARV) is one of the main causes of infectious arthritis/tenosynovitis and malabsorption syndrome (MAS) in poultry. ARVs have been disseminated in Brazilian poultry flocks in the last years. This study aimed to genotype ARVs and to evaluate the molecular evolution of the more frequent ARV lineages detected in Brazilian poultry-producing farms. A total of 100 poultry flocks with clinical signs of tenosynovitis/MAS, from all Brazilian poultry-producing regions were positive for ARV by PCR. Seventeen bird tissues were submitted to cell culture and ARV RNA detection/genotyping by two PCRs. The phylogenetic classification was based on σC gene alignment using a dataset with other Brazilian and worldwide ARVs sequences. ARVs were specifically detected by both PCRs from the 17 cell cultures, and σC gene partial fragments were sequenced. All these sequences were aligned with a total of 451 ARV σC gene data available in GenBank. Phylogenetic analysis demonstrated five well-defined clusters that were classified into lineages I, II, III, IV, and V. Three lineages could be further divided into sub-lineages: I (I vaccine, Ia, Ib), II (IIa, IIb, IIc) and IV (IVa and IVb). Brazilian ARVs were from four lineages/sub-lineages: Ib (48.2%), IIb (22.2%), III (3.7%) and V (25.9%). The Bayesian analysis demonstrated that the most frequent sub-lineage Ib emerged in the world around 1968 and it was introduced into Brazil in 2010, with increasing spread soon after. In conclusion, four different ARV lineages are circulating in Brazilian poultry flocks, all associated with clinical diseases. RESEARCH HIGHLIGHTS One-hundred ARV-positive flocks were detected in all main poultry-producing regions from Brazil. A large dataset of 468 S1 sequences was constructed and divided ARVs into five lineages. Four lineages/sub-lineages (Ib, IIb, III and V) were detected in commercial poultry flocks from Brazil. Brazilian lineages shared a low identity with the commercial vaccine lineage (I vaccine). Sub-lineage Ib emerged around 1968 and was introduced into Brazil in 2010.
Collapse
Affiliation(s)
- Silvia De Carli
- Laboratório de Diagnóstico Molecular, Programa de Pós-Graduação em Biologia Celular e Molecular aplicada à Saúde, Universidade Luterana do Brasil (ULBRA), Canoas, Brazil.,Laboratório de Virologia, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Jonas Michel Wolf
- Laboratório de Diagnóstico Molecular, Programa de Pós-Graduação em Biologia Celular e Molecular aplicada à Saúde, Universidade Luterana do Brasil (ULBRA), Canoas, Brazil
| | - Tiago Gräf
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
| | - Fernanda K M Lehmann
- Laboratório de Diagnóstico Molecular, Programa de Pós-Graduação em Biologia Celular e Molecular aplicada à Saúde, Universidade Luterana do Brasil (ULBRA), Canoas, Brazil
| | | | - Cláudio W Canal
- Laboratório de Virologia, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Vagner R Lunge
- Laboratório de Diagnóstico Molecular, Programa de Pós-Graduação em Biologia Celular e Molecular aplicada à Saúde, Universidade Luterana do Brasil (ULBRA), Canoas, Brazil.,Simbios Biotecnologia, Cachoeirinha, Brazil
| | - Nilo Ikuta
- Laboratório de Diagnóstico Molecular, Programa de Pós-Graduação em Biologia Celular e Molecular aplicada à Saúde, Universidade Luterana do Brasil (ULBRA), Canoas, Brazil.,Simbios Biotecnologia, Cachoeirinha, Brazil
| |
Collapse
|
18
|
Zhang X, Lei X, Ma L, Wu J, Bao E. Genetic and pathogenic characteristics of newly emerging avian reovirus from infected chickens with clinical arthritis in China. Poult Sci 2020; 98:5321-5329. [PMID: 31222278 DOI: 10.3382/ps/pez319] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 05/23/2019] [Indexed: 01/14/2023] Open
Abstract
In recent years, emerging avian reovirus (ARV) strains causing viral arthritis have become a challenge to the worldwide chicken industry, and were responsible for significant economic losses. In this study, we characterized emerging variant ARV strains and examined their genetic relationship and pathogenicity variation with reference strains. A total of 18 emerging variant ARV strains were isolated from tendon and capsular synovial fluid of broiler chickens with clinical cases of arthritis/tenosynovitis at commercial farms in China. Comparative analysis based on σC sequence showed that 4/18 isolates were in the same cluster (Cluster 1) as vaccine strains (S1133), whereas 14 of 18 isolates were in Clusters 2, 3, and 6. The field isolates shared a rather low identity (38.1 to 81.9%) with S1133 in Cluster 1, especially for those from Cluster 6 (38.1 to 67.2%). A higher ARV isolation rate was observed in chicken embryos (47/61) compared to cell culture (37/61) through PCR with a detection primer. A total of 3 isolates were selected to infect specific-pathogen-free (SPF) chickens, showing that the tested isolates, especially that from Cluster 6, displayed greater pathogenicity than S1133 strain, characterized by higher incidence. These findings suggest that the virulence of Chinese ARVs has been increasing rapidly in recent years, and the vaccine need to be updated correspondingly.
Collapse
Affiliation(s)
- Xiaohui Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiangdong Lei
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Lifang Ma
- Tianjin Ruipu Biotechnology Co. Ltd., Tianjin 300350, China
| | - Jiaxin Wu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Endong Bao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.,Tianjin Ruipu Biotechnology Co. Ltd., Tianjin 300350, China
| |
Collapse
|
19
|
Mirbagheri SA, Hosseini H, Ghalyanchilangeroudi A. Molecular characterization of avian reovirus causing tenosynovitis outbreaks in broiler flocks, Iran. Avian Pathol 2019; 49:15-20. [PMID: 31393165 DOI: 10.1080/03079457.2019.1654086] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Avian reoviruses (ARVs) cause arthritis, tenosynovitis, retarded growth, and malabsorption syndrome. After a long time of effective prevention and low rates of viral arthritis/ tenosynovitis in Iran, outbreaks of tenosynovitis in broiler flocks have increased in recent years. Lameness, splay legs, high rate of cull birds, poor performance, uneven birds at harvest, and condemnation at processing cause huge economic losses. In this study, ARVs from the tendons of birds from 23 broiler flocks with marked tenosynovitis were characterized, and their genetic relationship was examined. Analysis of the amino acid sequence of Sigma C protein revealed that all ARVs detected in affected broiler flocks shared genetic homogeneity and this suggests that a single genotype is involved in recent outbreaks. This genotype, so-called "Ardehal strain", is grouped in cluster I with vaccine strains. The amino acid sequence similarity between Ardehal and vaccine strains, including S1133, 1733, and 2408 was less than 80%. As the outbreaks have occurred in progenies of vaccinated flocks, it is proposed here that the difference between vaccine and field strains might contribute to the failure of currently available vaccines to induce protective immunity against Ardehal strain and this led to widespread viral tenosynovitis in Iran.
Collapse
Affiliation(s)
- Seyed Abed Mirbagheri
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - Hossein Hosseini
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - Arash Ghalyanchilangeroudi
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| |
Collapse
|
20
|
Amer MM, Mekky HM, Fedawy HS. Molecular identification of Mycoplasma synoviae from breeder chicken flock showing arthritis in Egypt. Vet World 2019; 12:535-541. [PMID: 31190708 PMCID: PMC6515820 DOI: 10.14202/vetworld.2019.535-541] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 02/20/2019] [Indexed: 11/17/2022] Open
Abstract
Aim: Arthritis is one of the most economic problems facing poultry industry worldwide. The study was done to detect possible causes of arthritis in breeder chicken flock with emphasis on molecular identification of Mycoplasma synoviae (MS). Materials and Methods: This study was carried on chicken from broiler breeder flock of 57 weeks’ age in Dakahlia, Egypt, suffered from arthritis with frequently 5-7% decrease in egg production, reduced fertility, and hatchability. Forty blood samples were randomly collected from individual birds in sterile tubes and used for serum separation. Serum samples were tested using serum plate agglutination (SPA) test against colored antigens for Mycoplasma gallisepticum (MG), MS, and Salmonella gallinarum-pullorum (SGP). On the other hand, 24 joint samples were collected. Of those 24 samples, 12 joint samples were subjected to bacteriological examination, while the other 12 were utilized for molecular diagnosis by polymerase chain reaction (PCR) for MS and avian reovirus (ARV). Results: SPA test results revealed the presence of antibodies against MG, MS, and SGP in tested sera in rates of 14/40 (35%), 35/40 (87.5%), and 9/40 (22.5%), respectively. Furthermore, 19 bacterial isolates were recognized from joint samples and identified as five Staphylococcus spp., nine Escherichia coli, three SGP, one Citrobacter, and one Proteus. The identified Staphylococcal isolates were three coagulase-positive staphylococci (two Staphylococcus aureus and one Staphylococcus hyicus) and two coagulase-negative staphylococci (one Staphylococcus epidermidis and one Staphylococcus lentus), while E. coli isolate serotypes were 1 O11, 2 O55, 3 O78, 1 O124, 1 O125, and 1 untyped. PCR proved that 12/12 (100%) samples were positive for MS variable lipoprotein hemagglutinin A (vlhA) gene, while ARV was not diagnosed in any of the examined samples. Four amplified vlhA gene of MS isolates (named MS-2018D1, MS-2018D2, MS-2018D3, and MS-2018D4) was successfully sequenced. Analysis of phylogenetic tree revealed the presence of 100% identity between each two sequenced isolates(isolates MS-2018D1 and MS-2018D4 and also isolates 2018D2 and MS-2018D3). However, the nucleotide similarity between four isolates was 88.6%. On the other hand, our field isolates MS-2018D1, MS-2018D4, MS-2018D2, and MS-2018D3 showed nucleotide identity with vaccine strain MS-H 98.4%, 98.4%, 88.1%, and 88.1%, respectively. Furthermore, the nucleotide similarities with field strains from Argentina ranged between 87.8% and 98.6%. Conclusion: Four field isolates of MS were identified in examined broiler breeder flock. A phylogenetic study of these isolates revealed the variation between isolated MS strains and vaccine strain. Therefore, further studies are required for evaluating the vaccine efficacy against the present field isolates of MS. In addition, application of MS immunization of breeder flocks is necessary for proper control of the disease.
Collapse
Affiliation(s)
- Mohamed M Amer
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Cairo University, P.O. 12211, Giza, Egypt
| | - Hoda M Mekky
- Poultry Diseases Department, Veterinary Research Division, National Research Centre, P.O. 12622, Giza, Egypt
| | - Hanaa S Fedawy
- Poultry Diseases Department, Veterinary Research Division, National Research Centre, P.O. 12622, Giza, Egypt
| |
Collapse
|