1
|
Marcano VC, Susta L, Diel DG, Cardenas-Garcia S, Miller PJ, Afonso CL, Brown CC. Evaluation of chickens infected with a recombinant virulent NDV clone expressing chicken IL4. Microb Pathog 2021; 159:105116. [PMID: 34339794 DOI: 10.1016/j.micpath.2021.105116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 07/25/2021] [Accepted: 07/26/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND There is evidence that chicken IL4 (chIL4) functions similarly to its mammalian analogue by enhancing type 2 T helper (Th2) humoral immunity and promoting protection against parasitic infections; however, no studies have been performed to assess the effect of chIL4 on the pathogenesis of Newcastle disease (ND). To assess the role of chIL4 in velogenic NDV pathogenesis we created a vNDV infectious clone expressing chIL4. We hypothesized that co-expression of chIL4 during virus replication would result in decreased inflammation caused by the Th1 response and thereby increasing survival to challenge with vNDV. METHODS To evaluate the effect of chIL4 during early infection with velogenic Newcastle disease virus (NDV) in chickens, recombinant NDV clones expressing either chIL4 (rZJ1-IL4) or a control expressing green fluorescent protein (rZJ1-GFP) were created by inserting an expression cassette in an intergenic region of the NDV genome. The pathogenesis of rZJ1-IL4 was assessed in 4-week-old specific pathogen free chickens. The extent of virus replication was evaluated by titration in mucosal secretions and immunohistochemistry in multiple tissues. Expression of chIL4 was confirmed in tissues using immunohistochemistry. RESULTS Infection of birds with the rZJ1-IL4 resulted in successful viral replication in vivo and in vitro and generation of the chIL4 in tissues. All birds were clinically normal 2 DPI, with one bird in each group showing conjunctival swelling and enlarged spleens grossly. At 5 DPI, moderate or severe depression was observed in birds infected with rZJ1-GFP or rZJ1-IL4, respectively. Neurological signs and thymic atrophy were observed in one bird infected with rZJ1-IL4. Grossly, conjunctival swelling, mottled spleen and proventricular hemorrhages were observed at 5 DPI in one bird from each group. At 5 DPI, severe necrosis in the spleen, bursa and cecal tonsils were observed in birds infected with rZJ1-GFP, along with minimal evidence of chIL4 expression. In contrast, splenic atrophy, and moderate necrosis in the bursa and cecal tonsils were observed in birds infected with rZJ1-IL4. In addition, chIL4 signal was found in all tissues of rZJ1-IL4 birds at 5DPI. CONCLUSIONS The production of chIL4 by a recombinant NDV strain resulted in the activation of the positive feedback loop associated with IL4 production. Insertion of chIL4 into NDV may decrease necrosis to lymphoid organs while increasing the severity of lymphoid atrophy and prolonged disease. However, with a low number of birds it is difficult to determine whether these results are significant to disease outcome.
Collapse
Affiliation(s)
- V C Marcano
- Southeast Poultry Research Laboratory, Agricultural Research Service, US Department of Agriculture, Athens, GA, USA; Department of Pathology, College of Veterinary Medicine, The University of Georgia, Athens, GA, 30602-7388, United States.
| | - L Susta
- Southeast Poultry Research Laboratory, Agricultural Research Service, US Department of Agriculture, Athens, GA, USA; Department of Pathology, College of Veterinary Medicine, The University of Georgia, Athens, GA, 30602-7388, United States
| | - D G Diel
- Southeast Poultry Research Laboratory, Agricultural Research Service, US Department of Agriculture, Athens, GA, USA
| | - S Cardenas-Garcia
- Southeast Poultry Research Laboratory, Agricultural Research Service, US Department of Agriculture, Athens, GA, USA; Department of Pathology, College of Veterinary Medicine, The University of Georgia, Athens, GA, 30602-7388, United States
| | - P J Miller
- Southeast Poultry Research Laboratory, Agricultural Research Service, US Department of Agriculture, Athens, GA, USA
| | - C L Afonso
- Southeast Poultry Research Laboratory, Agricultural Research Service, US Department of Agriculture, Athens, GA, USA
| | - C C Brown
- Department of Pathology, College of Veterinary Medicine, The University of Georgia, Athens, GA, 30602-7388, United States
| |
Collapse
|
2
|
Huo C, Tian J, Cheng J, Xiao J, Chen M, Zou S, Tian H, Wang M, Sun H, Hu Y. Safety, Immunogenicity, and Effectiveness of Defective Viral Particles Arising in Mast Cells Against Influenza in Mice. Front Immunol 2020; 11:585254. [PMID: 33304349 PMCID: PMC7693459 DOI: 10.3389/fimmu.2020.585254] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 10/20/2020] [Indexed: 12/25/2022] Open
Abstract
Mast cells play pivotal roles in the pathogenesis of influenza A virus (IAV) infections. Defective viral particles (DPs) often arise during IAV replication, which can interfere with the replication of infectious viruses and stimulate the antiviral response of host cells. Therefore, DPs are expected to have immune-protective functions in clinic. However, the potent immunogenicity and effectiveness of DPs arising in mast cells during IAV replication have not been reported. In the present study, we showed that DPs generated in the human mastocytoma cell line HMC-1 following H1N1 infection were safe to mice after vaccination. Compared with lung adenocarcinoma cells, A549, DPs generated in infected mast cells had much better immunostimulatory activity, enhancing both humoral and cellular immunity of hosts. Notably, they could significantly increase the expression of immune-associated cytokines, especially the IFN-γ. Due to the robust immunogenicity, thus DPs generated in infected mast cells could stimulate the robust protective immune reaction effectively to fight against lethal IAV re-challenge after vaccination, which result in the high survival, decreased lung injury as well as inhibition of viral replication and inflammatory response in lungs. This study is the first to illustrate and explore the safety, immunogenicity, and effectiveness of DPs arising in mast cells against influenza as favorable potential vaccination. The results provide insight into the advances of new prophylactic strategies to fight influenza by focusing on DPs generated in mast cells.
Collapse
Affiliation(s)
- Caiyun Huo
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China.,Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jijing Tian
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jinlong Cheng
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jin Xiao
- Key Laboratory of Veterinary Bioproduction and Chemical Medicine of the Ministry of Agriculture, Zhongmu Institutes of China Animal Husbandry Industry Co., Ltd., Beijing, China
| | - Mingyong Chen
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Shumei Zou
- National Institute for Viral Disease Control and Prevention, Collaboration Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing, China
| | - Haiyan Tian
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Ming Wang
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Huiling Sun
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Yanxin Hu
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
3
|
Huo C, Cheng J, Xiao J, Chen M, Zou S, Tian H, Wang M, Sun L, Hao Z, Hu Y. Defective Viral Particles Produced in Mast Cells Can Effectively Fight Against Lethal Influenza A Virus. Front Microbiol 2020; 11:553274. [PMID: 33250863 PMCID: PMC7671969 DOI: 10.3389/fmicb.2020.553274] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 10/12/2020] [Indexed: 01/05/2023] Open
Abstract
Mast cells play an important role in the pathogenesis of highly pathogenic H5N1 avian influenza virus (H5N1-HPAIV) infection. Defective viral particles (DPs) can interfere with the replication of infectious viruses and stimulate the innate immune response of host cells. However, DPs arising from mast cells during HPAIV replication and their potent antiviral actions has not been reported. Here, we showed that the human mastocytoma cell line, HMC-1, allowed for the productive replication of the H5N1-HPAIV. Compared with alveolar cell line A549, DPs were propagated preferentially and abundantly in mast cells following IAV infection, which can be attributed to the wide existence of Argonaute 2 (AGO2) in HMC-1 cells. In addition, DPs generated in H5N1-infected cells could provide great therapeutic protection on mice to fight against various influenza A viruses, which included not only homologous H5N1-HPAIV, but also heterologous H1N1, H3N2, H7N2, and H9N2. Importantly, DPs generated in H5N1-infected HMC-1 cells could diminish viral virulence in vivo and in vitro by triggering a robust antiviral response through type II interferon signaling pathways. This study is the first to illustrate the arising of DPs in H5N1-HPAIV infected mast cells and explore their favorable ability to protect mice from influenza A viruses infection, which provides a novel insight and valuable information for the progress of new strategies to fight influenza A viruses infection, especially highly pathogenic avian influenza virus infection by focusing on the DPs generated in mast cells.
Collapse
Affiliation(s)
- Caiyun Huo
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jinlong Cheng
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jin Xiao
- Key Laboratory of Veterinary Bioproduction and Chemical Medicine of the Ministry of Agriculture, Zhongmu Institutes of China Animal Husbandry Industry Co., Ltd., Beijing, China
| | - Mingyong Chen
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Shumei Zou
- National Institute for Viral Disease Control and Prevention, Collaboration Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing, China
| | - Haiyan Tian
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Ming Wang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Lunquan Sun
- Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Zhihui Hao
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yanxin Hu
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
4
|
Abdin SM, Elgendy SM, Alyammahi SK, Alhamad DW, Omar HA. Tackling the cytokine storm in COVID-19, challenges and hopes. Life Sci 2020; 257:118054. [PMID: 32663575 PMCID: PMC7832727 DOI: 10.1016/j.lfs.2020.118054] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/26/2020] [Accepted: 07/01/2020] [Indexed: 02/06/2023]
Abstract
The outbreak of Coronavirus disease 2019 (COVID-19) is the current world health concern, presenting a public health dilemma with ascending morbidity and mortality rates exceeding any previous viral spread, without a standard effective treatment yet. SARS-CoV-2 infection is distinguished with multiple epidemiological and pathological features, one of them being the elevated levels of cytokine release, which in turn trigger an aberrant uncontrolled response known as "cytokine storm". This phenomenon contributes to severe acute respiratory distress syndrome (ARDS), leading to pneumonia and respiratory failure, which is considered a major contributor to COVID-19-associated fatality rates. Taking into account that the vast majority of the COVID-19 cases are aggravated by the respiratory and multiorgan failure triggered by the sustained release of cytokines, implementing therapeutics that alleviate or diminish the upregulated inflammatory response would provide a therapeutic advantage to COVID-19 patients. Indeed, dexamethasone, a widely available and inexpensive corticosteroid with anti-inflammatory effects, has shown a great promise in reducing mortality rates in COVID-19 patients. In this review, we have critically compared the clinical impact of several potential therapeutic agents that could block or interfere with the cytokine storm, such as IL-1 inhibitors, IL-6 inhibitors, mast cell targeting agents, and corticosteroids. This work focused on highlighting and contrasting the current success and limitations towards the involvement of these agents in future treatment protocols.
Collapse
Affiliation(s)
- Shifaa M Abdin
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates; College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Sara M Elgendy
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates; College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Shatha K Alyammahi
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates; College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Dima W Alhamad
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates; College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Hany A Omar
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates; College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates; Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt.
| |
Collapse
|
5
|
Mokhtar DM, Hussien MM. Cellular elements organization in the trachea of mallard (Anas platyrhynchos) with a special reference to its local immunological role. PROTOPLASMA 2020; 257:407-420. [PMID: 31724070 DOI: 10.1007/s00709-019-01444-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 10/01/2019] [Indexed: 06/10/2023]
Abstract
Many studies have been carried out to investigate the histological structure of the trachea in many species of birds. However, the cellular organization of the trachea in the mallard duck is still unclear. This study was performed on 12 sexually mature male Mallard duck to demonstrate the cellular organization of the trachea using light and electron microscopy. The tracheal epithelium is considered the first line of defense against airborne pathogens. The mallard trachea was lined by a pseudostratified ciliated columnar epithelium that contained many morphologically distinct cell types: ciliated, non-ciliated, basal cells that encircled by a population of sub-epithelial immune cells, fibroblasts, and telocytes (TCs). Telocytes were first recorded in duck trachea in this study and showed a wide variety of staining affinity. They presented two long telopodes that made up frequent close contacts with epithelium, tracheal cartilages, and other neighboring TCs, immune cells, blood capillaries, and nerve fibers. TCs express VEGF and S-100 protein. The immune cells include mast cells, eosinophils, basophils, lymphocytes, plasma cells, and dendritic reticular cells. The ciliated tracheal epithelium was interrupted by numerous intraepithelial mucous glands and solitary goblet cells. This mucociliary apparatus constitutes the major defense mechanism against inhaled foreign materials. The cellular organization of the duck trachea and its relation to the immunity was discussed.
Collapse
Affiliation(s)
- Doaa M Mokhtar
- Department of Anatomy and Histology, Faculty of Vet. Medicine, Assiut University, Asyut, 71526, Egypt.
| | - Marwa M Hussien
- Department of Anatomy and Histology, Faculty of Vet. Medicine, Assiut University, Asyut, 71526, Egypt
| |
Collapse
|
6
|
Liu P, Yin Y, Gong Y, Qiu X, Sun Y, Tan L, Song C, Liu W, Liao Y, Meng C, Ding C. In Vitro and In Vivo Metabolomic Profiling after Infection with Virulent Newcastle Disease Virus. Viruses 2019; 11:v11100962. [PMID: 31635316 PMCID: PMC6832399 DOI: 10.3390/v11100962] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/14/2019] [Accepted: 10/15/2019] [Indexed: 12/26/2022] Open
Abstract
Newcastle disease (ND) is an acute, febrile, highly contagious disease caused by the virulent Newcastle disease virus (vNDV). The disease causes serious economic losses to the poultry industry. However, the metabolic changes caused by vNDV infection remain unclear. The objective of this study was to determine the metabolomic profiling after infection with vNDV. DF-1 cells infected with the vNDV strain Herts/33 and the lungs from Herts/33-infected specific pathogen-free (SPF) chickens were analyzed via ultra-high-performance liquid chromatography/quadrupole time-of-flight tandem mass spectrometry (UHPLC-QTOF-MS) in combination with multivariate statistical analysis. A total of 305 metabolites were found to have changed significantly after Herts/33 infection, and most of them belong to the amino acid and nucleotide metabolic pathway. It is suggested that the increased pools of amino acids and nucleotides may benefit viral protein synthesis and genome amplification to promote NDV infection. Similar results were also confirmed in vivo. Identification of these metabolites will provide information to further understand the mechanism of vNDV replication and pathogenesis.
Collapse
Affiliation(s)
- Panrao Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China.
| | - Yuncong Yin
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China.
| | - Yabin Gong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China.
| | - Xusheng Qiu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China.
| | - Yingjie Sun
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China.
| | - Lei Tan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China.
| | - Cuiping Song
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China.
| | - Weiwei Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China.
| | - Ying Liao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China.
| | - Chunchun Meng
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China.
| | - Chan Ding
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China.
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China.
| |
Collapse
|
7
|
|
8
|
Mast Cells and Natural Killer Cells-A Potentially Critical Interaction. Viruses 2019; 11:v11060514. [PMID: 31167464 PMCID: PMC6631774 DOI: 10.3390/v11060514] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 05/31/2019] [Accepted: 06/02/2019] [Indexed: 12/16/2022] Open
Abstract
Natural killer (NK) cells play critical roles in host defense against infectious agents or neoplastic cells. NK cells provide a rapid innate immune response including the killing of target cells without the need for priming. However, activated NK cells can show improved effector functions. Mast cells are also critical for early host defense against a variety of pathogens and are predominately located at mucosal surfaces and close to blood vessels. Our group has recently shown that virus-infected mast cells selectively recruit NK cells and positively modulate their functions through mechanisms dependent on soluble mediators, such as interferons. Here, we review the possible consequences of this interaction in both host defense and pathologies involving NK cell and mast cell activation.
Collapse
|
9
|
Tachibana T, Ueoka W, Khan MSI, Makino R, Cline MA. Compound 48/80 reduces the crop-emptying rate, likely through a histamine-associated pathway in chicks. Domest Anim Endocrinol 2019; 66:57-63. [PMID: 30472035 DOI: 10.1016/j.domaniend.2018.10.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 08/31/2018] [Accepted: 10/11/2018] [Indexed: 11/15/2022]
Abstract
Infectious conditions are associated with reduced food passage through the digestive tract in both mammals and chicks; however, the precise mechanism mediating this response in chicks remains unclear. The purpose of the present study was to determine if mast cells, a blood cell type which plays an important role in the immune system, might affect food passage through the digestive tract in chicks. Specifically, we performed intraperitoneal (IP) injections of compound 48/80, an inducer of mast cell degranulation, and measured crop emptying. The IP injection of compound 48/80 significantly reduced the crop-emptying rate, but it did not affect the proventriculus to small intestine transit rate or the number of defecations. We also found that IP-injected histamine, which is secreted by mast cells, also reduced the crop-emptying rate. In addition, IP injection of 2-pyridylethylamine (histamine H1 receptor agonist), but not dimaprit, (R)-(-)-α-methylhistamine, and VUF8430 (histamine H2, H3, and H4 receptor agonists, respectively), reduced the crop-emptying rate, implying that histamine reduces the crop emptying rate via the histamine H1 receptor. Finally, we found that IP injection of compound 48/80 reduced mRNA expression of histidine decarboxylase, a rate-limiting enzyme for histamine synthesis, in the esophagus and proventriculus at 1 h and the proventriculus and duodenum at 3 h after the injection. In sum, the present study suggests that the degranulation of mast cells causes a reduction in the crop-emptying rate, possibly via the histamine pathway in chicks.
Collapse
Affiliation(s)
- Tetsuya Tachibana
- Department of Agrobiological Science, Faculty of Agriculture, Ehime University, Matsuyama 790-8566, Japan.
| | - Wataru Ueoka
- Department of Agrobiological Science, Faculty of Agriculture, Ehime University, Matsuyama 790-8566, Japan
| | - Md Sakirul Islam Khan
- Department of Anatomy and Embryology, Ehime University, Graduate School of Medicine, Toon, Ehime 791-0295, Japan
| | - Ryosuke Makino
- Department of Agrobiological Science, Faculty of Agriculture, Ehime University, Matsuyama 790-8566, Japan
| | - Mark A Cline
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| |
Collapse
|
10
|
Ertugrul T, Tutuncu S, Kabak M, Onuk B. The distribution and heterogeneity of mast cells in tongue from five different avian species. Anat Histol Embryol 2018; 47:306-312. [PMID: 29492994 DOI: 10.1111/ahe.12353] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 12/29/2017] [Indexed: 11/28/2022]
Abstract
This study was conducted with the aim of determining the morphology, distribution and heterogeneity of mast cells in the tongues of seagull (Larus fuscus), common buzzard (Buteo buteo), goose (Anser anser), white stork (Ciconia ciconia) and Gerze rooster. The study used five samples of tongue material from each of the healthy adult avian species. The samples were fixed in 10% neutral-buffered formalin (NBF) solution, then, after routine tissue follow-up, the samples blocked with paraplast. Cross-sections with 5-6 μm of thickness were stained with the 0.5% toluidine blue and alcian blue/safranin O (AB/SO). In all five avian species, it was found that the mast cells were in different sizes and round, oval or spindle-shaped based on their place of distribution. Mast cell numbers were determined in stained with toluidine blue, examined ×40 objectives in a 1 mm2 area. It was observed that mast cell density in subepithelial lamina propria and microscopic papilla was higher in the tongues of all species. Mast cell distribution and heterogeneity varied through the tongue, and there were more mast cells in the dorsal side of the tongue than the ventral side. The highest amount of mast cells was found in the tongue of the Gerze rooster among all five species. In the tongue cross-sections stained with the combined method of alcian blue/safranin O (AB/SO), the mast cells were stained as AB (+), SO (+) and AB/SO (+) (mixed).
Collapse
Affiliation(s)
- T Ertugrul
- Faculty of Veterinary Medicine, Department of Histology and Embryology, University of Ondokuz Mayıs, Samsun, Turkey
| | - S Tutuncu
- Faculty of Veterinary Medicine, Department of Histology and Embryology, University of Ondokuz Mayıs, Samsun, Turkey
| | - M Kabak
- Faculty of Veterinary Medicine, Department Anatomy, University of Ondokuz Mayıs, Samsun, Turkey
| | - B Onuk
- Faculty of Veterinary Medicine, Department Anatomy, University of Ondokuz Mayıs, Samsun, Turkey
| |
Collapse
|
11
|
Igawa S, Di Nardo A. Skin microbiome and mast cells. Transl Res 2017; 184:68-76. [PMID: 28390799 PMCID: PMC5538027 DOI: 10.1016/j.trsl.2017.03.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 03/14/2017] [Accepted: 03/16/2017] [Indexed: 12/30/2022]
Abstract
Microbiotas in the skin have high levels of diversity at the species level, but low phylum-level diversity. The human skin microbiota is composed predominantly of Gram-positive bacteria especially Actinobacteria, which are the dominant bacterial phylum on the skin. Lipoteichoic acid (LTA) is a major constituent of the cell wall of Gram-positive bacteria and is therefore abundant in the skin microbiome. Recent studies have shown that LTA, and other bacterial products, permeates the whole skin and comes into contact with epidermal and dermal cells, including mast cells (MCs), with the potential of stimulating MC toll-like receptors (TLRs). MCs express a variety of pattern recognition receptors, including TLRs, on their cell surface in order to detect bacteria. Recent publications suggest that the skin microbiome has influence on MC migration, localization and maturation in the skin. Germ free (no microbiome) animals possess an underdeveloped immune system and immature MCs. Despite much research done on skin microbiota and many papers describing skin interaction with "the good microbiota", there is still controversy regarding how mast cells, communicate with surface bacteria. The present review intends to quell the controversy by illuminating the communication mechanism between bacteria and MCs.
Collapse
Affiliation(s)
- Satomi Igawa
- Department of Dermatology, Asahikawa Medical University, Asahikawa, Japan; Department of Dermatology, University of California, San Diego, La Jolla, Calif
| | - Anna Di Nardo
- Department of Dermatology, University of California, San Diego, La Jolla, Calif.
| |
Collapse
|
12
|
Korsch E, Pieper M, Schildgen V, Schildgen O, Brockmann M. Unusual rash accompanied by enterovirus infection and human bocavirus co-infection in a 9-week-old infant in Cologne, Germany. JMM Case Rep 2015. [DOI: 10.1099/jmmcr.0.005012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Eckhard Korsch
- Kliniken der Stadt Köln gGmbH, Kinderklinik Amsterdamer Straße, 59, D-50735 Köln, Germany
| | - Monika Pieper
- Kliniken der Stadt Köln gGmbH, Klinikum der Privaten Universität Witten/Herdecke mit Sitz in Köln, Institut für Pathologie, Ostmerheimer Straße 200, D-51109 Köln, Germany
| | - Verena Schildgen
- Kliniken der Stadt Köln gGmbH, Klinikum der Privaten Universität Witten/Herdecke mit Sitz in Köln, Institut für Pathologie, Ostmerheimer Straße 200, D-51109 Köln, Germany
| | - Oliver Schildgen
- Kliniken der Stadt Köln gGmbH, Klinikum der Privaten Universität Witten/Herdecke mit Sitz in Köln, Institut für Pathologie, Ostmerheimer Straße 200, D-51109 Köln, Germany
| | - Michael Brockmann
- Kliniken der Stadt Köln gGmbH, Klinikum der Privaten Universität Witten/Herdecke mit Sitz in Köln, Institut für Pathologie, Ostmerheimer Straße 200, D-51109 Köln, Germany
| |
Collapse
|
13
|
The Role of Mast Cell Specific Chymases and Tryptases in Tumor Angiogenesis. BIOMED RESEARCH INTERNATIONAL 2015; 2015:142359. [PMID: 26146612 PMCID: PMC4471246 DOI: 10.1155/2015/142359] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 02/13/2015] [Indexed: 01/24/2023]
Abstract
An association between mast cells and tumor angiogenesis is known to exist, but the exact role that mast cells play in this process is still unclear. It is thought that the mediators released by mast cells are important in neovascularization. However, it is not known how individual mediators are involved in this process. The major constituents of mast cell secretory granules are the mast cell specific proteases chymase, tryptase, and carboxypeptidase A3. Several previous studies aimed to understand the way in which specific mast cell granule constituents act to induce tumor angiogenesis. A body of evidence indicates that mast cell proteases are the pivotal players in inducing tumor angiogenesis. In this review, the likely mechanisms by which tryptase and chymase can act directly or indirectly to induce tumor angiogenesis are discussed. Finally, information presented here in this review indicates that mast cell proteases significantly influence angiogenesis thus affecting tumor growth and progression. This also suggests that these proteases could serve as novel therapeutic targets for the treatment of various types of cancer.
Collapse
|
14
|
Graham AC, Temple RM, Obar JJ. Mast cells and influenza a virus: association with allergic responses and beyond. Front Immunol 2015; 6:238. [PMID: 26042121 PMCID: PMC4435071 DOI: 10.3389/fimmu.2015.00238] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 05/01/2015] [Indexed: 12/07/2022] Open
Abstract
Influenza A virus (IAV) is a widespread infectious agent commonly found in mammalian and avian species. In humans, IAV is a respiratory pathogen that causes seasonal infections associated with significant morbidity in young and elderly populations, and has a large economic impact. Moreover, IAV has the potential to cause both zoonotic spillover infection and global pandemics, which have significantly greater morbidity and mortality across all ages. The pathology associated with these pandemic and spillover infections appear to be the result of an excessive inflammatory response leading to severe lung damage, which likely predisposes the lungs for secondary bacterial infections. The lung is protected from pathogens by alveolar epithelial cells, endothelial cells, tissue resident alveolar macrophages, dendritic cells, and mast cells. The importance of mast cells during bacterial and parasitic infections has been extensively studied; yet, the role of these hematopoietic cells during viral infections is only beginning to emerge. Recently, it has been shown that mast cells can be directly activated in response to IAV, releasing mediators such histamine, proteases, leukotrienes, inflammatory cytokines, and antiviral chemokines, which participate in the excessive inflammatory and pathological response observed during IAV infections. In this review, we will examine the relationship between mast cells and IAV, and discuss the role of mast cells as a potential drug target during highly pathological IAV infections. Finally, we proposed an emerging role for mast cells in other viral infections associated with significant host pathology.
Collapse
Affiliation(s)
- Amy C Graham
- Department of Microbiology and Immunology, Montana State University , Bozeman, MT , USA
| | - Rachel M Temple
- Department of Microbiology and Immunology, Montana State University , Bozeman, MT , USA
| | - Joshua J Obar
- Department of Microbiology and Immunology, Montana State University , Bozeman, MT , USA
| |
Collapse
|
15
|
Sun Q, Shang Y, She R, Jiang T, Wang D, Ding Y, Yin J. Detection of intestinal intraepithelial lymphocytes, goblet cells and secretory IgA in the intestinal mucosa during Newcastle disease virus infection. Avian Pathol 2013; 42:541-5. [PMID: 24087844 DOI: 10.1080/03079457.2013.845292] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Newcastle disease, which is caused by Newcastle disease virus (NDV), is a highly contagious viral disease of poultry and other bird species. The mucosa is the first line of defence to invading pathogens, including NDV, and it has been confirmed that the mucosa can contribute to host protection. This study was conducted to evaluate the intestinal mucosal immunology in NDV infection. Forty specific-pathogen-free chickens were divided into two groups, 20 birds in each group. Group 1 was inoculated with NDV by the intravenous route. Group 2 was used as the control group and was given sterile phosphate-buffered saline by the same route. At 24, 48, 72, and 96 h post infection (h.p.i.), five chickens from each treatment were killed. Samples of the duodenum, jejunum, and ileum were collected to quantify intestinal intraepithelial lymphocytes (IEL), goblet cells and secretory IgA (sIgA) by cytochemistry and immunohistochemistry analysis. The results indicated that IEL were increased from 24 to 72 h.p.i. in the infected tissues, and were significantly higher than in the control group at 48 h.p.i. (P < 0.01). In contrast to IEL, goblet cell numbers were reduced dramatically from 24 to 96 h.p.i. in the infected birds (P < 0.01) Furthermore, the content of sIgA was significantly higher at 48 and 72 h.p.i. in the infected tissues (P < 0.01). sIgA positivity was observed in the epithelial lining of the intestinal mucosa. These data suggest that IEL, goblet cells, and sIgA were involved in the intestinal mucosal immunity against NDV infection.
Collapse
Affiliation(s)
- Quan Sun
- a Department of Laboratory Animal Science, School of Basic Medical Science , Capital Medical University , Beijing , China
| | | | | | | | | | | | | |
Collapse
|
16
|
Woldemeskel MW, Saliki JT, Blas-Machado U, Whittington L. Mast Cells in Canine Parvovirus-2–Associated Enteritis With Crypt Abscess. Vet Pathol 2013; 50:989-93. [DOI: 10.1177/0300985813485097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- M. W. Woldemeskel
- Department of Pathology, College of Veterinary Medicine, Tifton Veterinary Diagnostic and Investigational Laboratory, University of Georgia, Tifton, GA, USA
| | - J. T. Saliki
- Athens Veterinary Diagnostic Laboratory, Athens, GA, USA
| | | | - L. Whittington
- Department of Pathology, College of Veterinary Medicine, Tifton Veterinary Diagnostic and Investigational Laboratory, University of Georgia, Tifton, GA, USA
| |
Collapse
|
17
|
Changes in fat metabolism of black-bone chickens during early stages of infection with Newcastle disease virus. Animal 2013; 6:1246-52. [PMID: 23217228 DOI: 10.1017/s1751731112000365] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Experiments were conducted to determine the effects of Newcastle disease on chicken fat metabolism. Thirty black-bone chickens were infected intraocularly with the Newcastle disease virus (NDV). Six birds were killed at 0, 12, 24, 48 and 72 h post infection, respectively. Results showed that the NDV infection decreased concentration of high-density lipoprotein cholesterol and increased concentrations of total cholesterol and low-density lipoprotein cholesterol in the plasma. Concentrations of triglycerides and free fatty acid were decreased after their initial increase. NDV infection also dramatically raised the activities of lipoprotein lipase (LPL), hepatic lipase and lipases in the serum. Furthermore, PCR results showed that the incipient infection up-regulated mRNA expression of LPL, adipose triglyceride lipase and nuclear factor peroxisome proliferator-activated receptor alpha (PPARα), but down-regulated them at later stage. Similarly, mRNA expression of fatty acid synthase, acetyl-CoA carboxylase and nuclear factor PPARγ, fatty acid transport protein 1 (FATP1), and 4(FATP4) decreased, whereas fatty acid translocase and fatty acid-binding protein increased initially. Data from Western blotting analysis showed that the changes in protein levels were consistent with mRNA expression. These results indicated that fat metabolism of the chicken was affected by the NDV infection. At the beginning of NDV infection, lipogenesis was inhibited, whereas lipolysis was strengthened. After lipolysis was strengthened, fat metabolism was found to be maximally depressed.
Collapse
|
18
|
Terrin G, Passariello A, De Curtis M, Manguso F, Salvia G, Lega L, Messina F, Paludetto R, Canani RB. Ranitidine is associated with infections, necrotizing enterocolitis, and fatal outcome in newborns. Pediatrics 2012; 129:e40-5. [PMID: 22157140 DOI: 10.1542/peds.2011-0796] [Citation(s) in RCA: 159] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Gastric acidity is a major nonimmune defense mechanism against infections. The objective of this study was to investigate whether ranitidine treatment in very low birth weight (VLBW) infants is associated with an increased risk of infections, necrotizing enterocolitis (NEC), and fatal outcome. METHODS Newborns with birth weight between 401 and 1500 g or gestational age between 24 and 32 weeks, consecutively observed in neonatal intensive care units, were enrolled in a multicenter prospective observational study. The rates of infectious diseases, NEC, and death in enrolled subjects exposed or not to ranitidine were recorded. RESULTS We evaluated 274 VLBW infants: 91 had taken ranitidine and 183 had not. The main clinical and demographic characteristics did not differ between the 2 groups. Thirty-four (37.4%) of the 91 children exposed to ranitidine and 18 (9.8%) of the 183 not exposed to ranitidine had contracted infections (odds ratio 5.5, 95% confidence interval 2.9-10.4, P < .001). The risk of NEC was 6.6-fold higher in ranitidine-treated VLBW infants (95% confidence interval 1.7-25.0, P = .003) than in control subjects. Mortality rate was significantly higher in newborns receiving ranitidine (9.9% vs 1.6%, P = .003). CONCLUSIONS Ranitidine therapy is associated with an increased risk of infections, NEC, and fatal outcome in VLBW infants. Caution is advocated in the use of this drug in neonatal age.
Collapse
Affiliation(s)
- Gianluca Terrin
- Department of Women’s Health and Territorial Medicine, University La Sapienza, Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Wang Z, Lai Y, Bernard JJ, Macleod DT, Cogen AL, Moss B, Di Nardo A. Skin mast cells protect mice against vaccinia virus by triggering mast cell receptor S1PR2 and releasing antimicrobial peptides. THE JOURNAL OF IMMUNOLOGY 2011; 188:345-57. [PMID: 22140255 DOI: 10.4049/jimmunol.1101703] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Mast cells (MCs) are well-known effectors of allergic reactions and are considered sentinels in the skin and mucosa. In addition, through their production of cathelicidin, MCs have the capacity to oppose invading pathogens. We therefore hypothesized that MCs could act as sentinels in the skin against viral infections using antimicrobial peptides. In this study, we demonstrate that MCs react to vaccinia virus (VV) and degranulate using a membrane-activated pathway that leads to antimicrobial peptide discharge and virus inactivation. This finding was supported using a mouse model of viral infection. MC-deficient (Kit(wsh-/-)) mice were more susceptible to skin VV infection than the wild type animals, whereas Kit(wsh-/-) mice reconstituted with MCs in the skin showed a normal response to VV. Using MCs derived from mice deficient in cathelicidin antimicrobial peptide, we showed that antimicrobial peptides are one important antiviral granule component in in vivo skin infections. In conclusion, we demonstrate that MC presence protects mice from VV skin infection, MC degranulation is required for protecting mice from VV, neutralizing Ab to the L1 fusion entry protein of VV inhibits degranulation apparently by preventing S1PR2 activation by viral membrane lipids, and antimicrobial peptide release from MC granules is necessary to inactivate VV infectivity.
Collapse
Affiliation(s)
- Zhenping Wang
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Baccari GC, Pinelli C, Santillo A, Minucci S, Rastogi RK. Mast Cells in Nonmammalian Vertebrates. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2011; 290:1-53. [DOI: 10.1016/b978-0-12-386037-8.00006-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|