1
|
Feleni U, Morare R, Masunga GS, Magwaza N, Saasa V, Madito MJ, Managa M. Recent developments in waterborne pathogen detection technologies. ENVIRONMENTAL MONITORING AND ASSESSMENT 2025; 197:233. [PMID: 39903332 PMCID: PMC11794368 DOI: 10.1007/s10661-025-13644-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 01/14/2025] [Indexed: 02/06/2025]
Abstract
Waterborne pathogens find their way into water bodies through contamination of fecal discharge, stormwater run-offs, agriculture and industrial activities, and poor water infrastructure. These organisms are responsible for causing diarrheal, gastroenteritis, cholera, and typhoid diseases which raise an alarming sense on public human health due to the high mortality rate, especially in children. Several studies have indicated that these waterborne diseases can be managed by monitoring pathogens in water using traditional culture-based and molecular techniques. However, these methods have shown several setbacks such as the longer duration for detection and the inability to detect pathogens at low concentrations. Effective management of these diseases requires rapid, sensitive, highly selective, fast, and efficient economic methods to monitor pathogens in water. Since the creation of biosensors, these tools have been applied and shown the ability to detect pathogens at low concentrations. The highlights of biosensor systems are that they are fast, portable, easy to use, highly sensitive, and specific. The capabilities of biosensors have given these tools exposure to be widely applied in detecting pharmaceutical pollutants, pesticides, toxins, residues of detergents, and cosmetics from household activities in soil and water. With such difficulties faced for detecting waterborne pathogens, this review evaluates the effectiveness of technologies for waterborne pathogens detection and their drawbacks. It further highlights biosensors as the current reliable method available for detecting pathogens in water and its future capabilities in sustaining safe potable water.
Collapse
Affiliation(s)
- Usisipho Feleni
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Florida Campus, Florida Park 1710, Johannesburg, South Africa.
| | - Rebotiloe Morare
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Florida Campus, Florida Park 1710, Johannesburg, South Africa
| | - Ginny S Masunga
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Florida Campus, Florida Park 1710, Johannesburg, South Africa
| | - Nontokozo Magwaza
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Florida Campus, Florida Park 1710, Johannesburg, South Africa
| | - Valentine Saasa
- Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa (UNISA), Florida Campus, Roodepoort, 1709, South Africa
| | - Moshawe J Madito
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Florida Campus, Florida Park 1710, Johannesburg, South Africa
| | - Muthumuni Managa
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Florida Campus, Florida Park 1710, Johannesburg, South Africa
| |
Collapse
|
2
|
Bucukovski J, Miller BL. Everything's under Control: Maximizing Biosensor Performance through Negative Control Probe Selection. Anal Chem 2025. [PMID: 39898999 DOI: 10.1021/acs.analchem.4c05854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
The rapid rise of label-free biosensing technologies has led to multiple creative strategies for the detection of macromolecules in complex biological solutions for disease state monitoring, drug discovery, and basic science research. A challenge with these techniques is that assays conducted in complex media such as serum suffer from nonspecific binding of matrix constituents. In label-free biosensors, it is virtually impossible to distinguish these nonspecific interactions without the use of a reference (negative control) probe. Only with reference subtraction can the specific binding signal be faithfully reported. To date, this has been a sparsely studied area in the biosensing field. Here, we report an FDA-inspired framework for optimum control probe selection and a systematic analysis for determining the optimal negative control probe given two monoclonal antibody capture probes on photonic ring resonator sensors. Briefly, while the differences in assay performance for IL-17A and CRP were found to be subtle, the best-scoring reference control based on the bioanalytical parameters of linearity, accuracy, and selectivity differed for each analyte. In the IL-17A assay, BSA scored the highest at 83%, while mouse IgG1 isotype control antibody placed a close second with 75%. With respect to the CRP assay, the rat IgG1 isotype control antibody scored the highest at 95%, while anti-FITC scored the second highest at 89%. These results suggest that although isotype-matching to the capture antibody may be tempting, the best on-chip reference control must be optimized on a case-by-case basis using the framework we report.
Collapse
Affiliation(s)
- Joseph Bucukovski
- Department of Biochemistry and Biophysics, University of Rochester, Rochester, New York 14627, United States
| | - Benjamin L Miller
- Department of Biochemistry and Biophysics, University of Rochester, Rochester, New York 14627, United States
- Institute of Optics, University of Rochester, Rochester, New York 14627, United States
- Department of Dermatology, University of Rochester, Rochester, New York 14627, United States
- Program in Materials Science, University of Rochester, Rochester, New York 14627, United States
- Department of Biomedical Engineering, University of Rochester, Rochester, New York 14627, United States
| |
Collapse
|
3
|
Saadh MJ, Muhammad FA, Albadr RJ, Bishoyi AK, Ballal S, Bareja L, Naidu KS, Rizaev J, Taher WM, Alwan M, Jawad MJ, Ali Al-Nuaimi AM. Nanoparticle biosensors for cardiovascular disease detection. Clin Chim Acta 2025; 567:120094. [PMID: 39681229 DOI: 10.1016/j.cca.2024.120094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/10/2024] [Accepted: 12/11/2024] [Indexed: 12/18/2024]
Abstract
Early detection and management of cardiovascular diseases (CVDs) are crucial for patient survival and long-term health. CVD biomarkers such as cardiac Troponin-I (cTnI), N-terminal pro-brain natriuretic peptide (NT-proBNP), creatine kinase MB (CK-MB), Galectin-3 (Gal-3), etc are released into the circulation following heart muscle injury, ie, acute myocardial infarction (AMI). Biosensor technology including the use of nanoparticles can be designed to target specific biomarkers associated with CVD, enabling early detection and more rapid intervention to decrease morbidity and mortality. To date, with the combination of developed nanoparticles, several optical and electrochemical-based biosensors have successfully been used detection of CVD biomarkers. Nanomaterials, when introduced as the modifiers of sensor surfaces like electrodes and gold chips, can result in the more comprehensive and more effective immobilization of capture molecules, ie, antibodies, aptamers and other ligands, due to their large surface area. In recent years, inorganic nanoparticles have regularly been used in the production of biosensors mostly due to their excellent response intensification, adaptable functionalization chemistry, shape control, good biocompatibility, and great stability. In this review, we discuss the application of different kinds of nanoparticles for the sensitive and specific detection of CVD biomarkers.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman 11831, Jordan.
| | | | | | - Ashok Kumar Bishoyi
- Marwadi University Research Center, Department of Microbiology, Faculty of Science Marwadi University, Rajkot 360003, Gujarat, India.
| | - Suhas Ballal
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India.
| | - Lakshay Bareja
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura 140401, Punjab, India.
| | - K Satyam Naidu
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra Pradesh-531162, India.
| | - Jasur Rizaev
- Department of Public health and Healthcare management, Rector, Samarkand State Medical University, 18, Amir Temur Street, Samarkand, Uzbekistan.
| | - Waam Mohammed Taher
- College of Nursing, National University of Science and Technology, Dhi Qar, Iraq.
| | - Mariem Alwan
- Pharmacy college, Al-Farahidi University, Baghdad, Iraq.
| | | | | |
Collapse
|
4
|
Vasudeva G, Sidhu C, Vaid K, Priyadarshini P, Kumar V, Krishnan M, Singh B, Pinnaka AK. Bioremediation of catecholic pollutants with novel oxygen-insensitive catechol 2,3-dioxygenase and its potential in biomonitoring of catechol in wastewater. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 367:125613. [PMID: 39761715 DOI: 10.1016/j.envpol.2024.125613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 12/16/2024] [Accepted: 12/30/2024] [Indexed: 01/13/2025]
Abstract
The oxygenases are essential in the bioremediation of xenobiotic pollutants. To overcome cultivability constraints, this study aims to identify new potential extradiol dioxygenases using the functional metagenomics approach. RW1-4CC, a novel catechol 2,3-dioxygenase, was isolated using functional metagenomics approach, expressed in a heterologous system, and characterized thoroughly using state-of-the-art techniques. The serial truncation mutations of the C-terminal tail increase the catalytic efficiency of truncated proteins against the 2,3-dihydroxybiphenyl (2,3-DHB). RW1-4CC lose its 50% of activity at 60 °C, with its optimum temperature at 15 °C, whereas the truncated proteins were found to be more stable at extended temperature range, i.e., both RW1-4CC-A and RW1-4CC-B retained 50% of their activity at 75 °C, with their temperature optima at 55 °C and 65 °C, respectively. The molecular docking studies further confirmed the high binding affinity of truncated proteins for the 2,3-DHB than catechol. The molecular modeling analysis revealed the difference in iron-binding and substrate interacting environment of RW1-4CC and its truncated proteins. The efficiency of purified RW1-4CC to detect catechol was evaluated using a gold screen-printed electrode by cyclic voltammetry. RW1-4CC detected catechol in wastewater and artificial seawater up to the concentration of 100 μm, which makes it reliable for catechol detection.
Collapse
Affiliation(s)
- Gunjan Vasudeva
- MTCC-Microbial Type Culture Collection & Gene Bank, CSIR-Institute of Microbial Technology, Chandigarh, 160036, India
| | - Chandni Sidhu
- MTCC-Microbial Type Culture Collection & Gene Bank, CSIR-Institute of Microbial Technology, Chandigarh, 160036, India
| | - Kalyan Vaid
- Centre for Nanoscience and Nanotechnology, Panjab University, Chandigarh, 160014, India; National Agri-Food Biotechnology Institute (NABI), S.A.S. Nagar, Punjab, 140306, India
| | - Pragya Priyadarshini
- G. N. Ramachandran Protein Centre, CSIR-Institute of Microbial Technology, Chandigarh, 160036, India
| | - Vanish Kumar
- National Agri-Food Biotechnology Institute (NABI), S.A.S. Nagar, Punjab, 140306, India
| | - Muthu Krishnan
- MTCC-Microbial Type Culture Collection & Gene Bank, CSIR-Institute of Microbial Technology, Chandigarh, 160036, India
| | - Balvinder Singh
- G. N. Ramachandran Protein Centre, CSIR-Institute of Microbial Technology, Chandigarh, 160036, India
| | - Anil Kumar Pinnaka
- MTCC-Microbial Type Culture Collection & Gene Bank, CSIR-Institute of Microbial Technology, Chandigarh, 160036, India.
| |
Collapse
|
5
|
Malecka-Baturo K, Grabowska I. Efficiency of electrochemical immuno- vs. apta(geno)sensors for multiple cancer biomarkers detection. Talanta 2025; 281:126870. [PMID: 39298804 DOI: 10.1016/j.talanta.2024.126870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024]
Abstract
The interest in biosensors technology has been constantly growing over the last few years. It is still the biggest challenge to design biosensors able to detect two or more analytes in a single measurement. Electrochemical methods are frequently used for this purpose, mainly due to the possibility of applying two or more different redox labels characterized by independent and distinguished electrochemical signals. In addition to antibodies, nucleic acids (aptamers) have been increasingly used as bioreceptors in the construction of such sensors. Within this review paper, we have collected the examples of electrochemical immuno- and geno(apta)sensors for simultaneous detection of multiple analytes. Based on many published literature examples, we have emphasized the recent application of multiplexed platforms for detection of cancer biomarkers. It has allowed us to compare the progress in design strategies, including novel nanomaterials and amplification of signals, to get as low as possible limits of detection. We have focused on multi-electrode and multi-label strategies based on redox-active labels, such as ferrocene, anthraquinone, methylene blue, thionine, hemin and quantum dots, or metal ions such as Ag+, Pb2+, Cd2+, Zn2+, Cu2+ and others. We have finally discussed the possible way of development, challenges and prospects in the area of multianalyte electrochemical immuno- and geno(apta)sensors.
Collapse
Affiliation(s)
- Kamila Malecka-Baturo
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima Str. 10, 10-748, Olsztyn, Poland
| | - Iwona Grabowska
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima Str. 10, 10-748, Olsztyn, Poland.
| |
Collapse
|
6
|
Zhang L, Ma D, Yu Y, Luo W, Jiang S, Feng S, Chen Z. Advances in biomacromolecule-functionalized magnetic particles for phytopathogen detection. Talanta 2025; 281:126876. [PMID: 39277940 DOI: 10.1016/j.talanta.2024.126876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 08/20/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
Due to the increasing crop losses caused by common and newly emerging phytopathogens, there is a pressing need for the development of rapid and reliable methods for phytopathogen detection and analysis. Leveraging advancements in biochemical engineering technologies and nanomaterial sciences, researchers have put considerable efforts on utilizing biofunctionalized magnetic micro- and nanoparticles (MPs) to develop rapid and reliable systems for phytopathogen detection. MPs facilitate the rapid, high-throughput analysis and in-field applications, while the biomacromolecules, which play key roles in the biorecognitions, interactions and signal amplification, determine the specificity, sensitivity, reliability, and portability of pathogen detection systems. The integration of MPs and biomacromolecules provides dimensionality- and composition-dependent properties, representing a novel approach to develop phytopathogen detection systems. In this review, we summarize and discuss the general properties, synthesis and characterization of MPs, and focus on biomacromolecule-functionalized MPs as well as their representative applications for phytopathogen detection and analysis reported over the past decade. Extensively studied bioreceptors, such as antibodies, phages and phage proteins, nucleic acids, and glycans that are involved in the recognitions and interactions, are covered and discussed. Additionally, the integration of MPs-based detection system with portable microfluidic devices to facilitate their in-field applications is also discussed. Overall, this review focuses on biomacromolecule-functionalized MPs and their applications for phytopathogen detection, aiming to highlight their potential in developing advanced biosensing systems for effective plant protection.
Collapse
Affiliation(s)
- Libo Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, Guizhou, 550025, China.
| | - Dumei Ma
- Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Youbo Yu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Wiewei Luo
- The Ninth Medical Center of Chinese PLA General Hospital, Chaoyang District, Beijing, 100101, China
| | - Shilong Jiang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Sheng Feng
- Department of Pathology and Laboratory Medicine, Boston University, Boston, MA, 02118, USA
| | - Zhuo Chen
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, Guizhou, 550025, China.
| |
Collapse
|
7
|
Cheng S, Chen H, Li H, Li L, Lu Y, Jin B, He X. Fast preparing bioelectrode with conductive bioink for nitrite detection in high sensitivity and stability. ENVIRONMENTAL RESEARCH 2024; 263:120093. [PMID: 39368596 DOI: 10.1016/j.envres.2024.120093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/12/2024] [Accepted: 09/29/2024] [Indexed: 10/07/2024]
Abstract
Electrochemically active biofilms (EABs) for nitrite detection have high specificity, rapid response, operational simplicity, and extended lifespan advantages. However, their scale production remains challenging due to time-consuming and uniform preparation. In this study, a novel approach was proposed to fast fabricate an EAB biosensor with a synthetic biofilm electrode for nitrite detection. The biofilm electrode was prepared by coating bioinks with varying conductive materials onto the surface of the graphite sheets, showing short incubation time and good reproducibility. Incorporating conductive materials into the bioinks remarkably enhanced the maximum voltage of the first cycle of bioelectrode incubation, with an increase of up to 633% for carbon nanofibers. The nitrite reduction current was amplified by a factor of 2.97, due to the enhancement of extracellular electron transfer (EET). The developed nitrite biosensor exhibited a detection range of 0.1-15 mg NO2--N L-1, with a high sensitivity of 610.8 μA mM-1 cm-2, and a stabilization operation time of at least 280 cycles. This study not only provided valuable insights into conductive materials for synthetic biofilms but also presented a practical approach for the rapid preparation, scale production, and optimization of highly sensitive and stable EAB sensors.
Collapse
Affiliation(s)
- Shaoan Cheng
- State Key Laboratory of Clean Energy, Department of Energy Engineering, Zhejiang University, Hangzhou, 310027, PR China.
| | - Hua Chen
- State Key Laboratory of Clean Energy, Department of Energy Engineering, Zhejiang University, Hangzhou, 310027, PR China
| | - Huahua Li
- State Key Laboratory of Clean Energy, Department of Energy Engineering, Zhejiang University, Hangzhou, 310027, PR China
| | - Longxin Li
- State Key Laboratory of Clean Energy, Department of Energy Engineering, Zhejiang University, Hangzhou, 310027, PR China
| | - Yi Lu
- State Key Laboratory of Clean Energy, Department of Energy Engineering, Zhejiang University, Hangzhou, 310027, PR China
| | - Beichen Jin
- State Key Laboratory of Clean Energy, Department of Energy Engineering, Zhejiang University, Hangzhou, 310027, PR China
| | - Xinyuan He
- State Key Laboratory of Clean Energy, Department of Energy Engineering, Zhejiang University, Hangzhou, 310027, PR China
| |
Collapse
|
8
|
Yang PJ, Hsu YC, Li JR, Luo SC. Quantitatively Elucidating the Trade-Off between Zwitterionic Antifouling Surfaces and Bioconjugation Performance. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:26259-26266. [PMID: 39570993 PMCID: PMC11636210 DOI: 10.1021/acs.langmuir.4c03827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 12/11/2024]
Abstract
Zwitterionic materials, known for their high hydrophilicity, are widely used to minimize the nonspecific adsorption of biomolecules in complex biological solutions. However, these materials can also reduce the capture efficiency between targets and peptide probes. To demonstrate how antifouling surfaces affect capture efficiency, we utilize a poly(3,4-ethylenedioxythiophene) (PEDOT)-based surface incorporating varying ratios of phosphorylcholine (PEDOT-PC) and maleimide functional groups to achieve both antifouling properties and peptide-protein binding. As a model system, the peptide YWDKIKDFIGGSSSSC, attached via maleimide groups, is used to capture the target protein, calmodulin (CaM). By systematically monitoring protein binding on both antifouling and peptide-immobilized PEDOT surfaces using a quartz crystal microbalance with dissipation, the results reveal that PEDOT-PC reduces both the specific binding between peptides and target proteins as well as the rate of protein fouling on the electrode surface. From these findings, we propose an equation for quantitative analysis. Furthermore, electrochemical impedance spectroscopy and differential pulse voltammetry are performed to measure the changes in the impedance in CaM solutions. The data indicate that impedance increases with protein adsorption, confirming the practical utility of the designed electrode surface.
Collapse
Affiliation(s)
- Pai-Jung Yang
- Department
of Materials Science and Engineering, National
Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Yu-Ching Hsu
- Department
of Chemistry, National Cheng Kung University, No.1, University Rd., Tainan 70101, Taiwan
| | - Jie-Ren Li
- Department
of Chemistry, National Cheng Kung University, No.1, University Rd., Tainan 70101, Taiwan
| | - Shyh-Chyang Luo
- Department
of Materials Science and Engineering, National
Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
- Institute
of Polymer Science and Engineering, National
Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| |
Collapse
|
9
|
Azuaje-Hualde E, Alonso-Cabrera JA, de Pancorbo MM, Benito-Lopez F, Basabe-Desmonts L. Integration of secreted signaling molecule sensing on cell monitoring platforms: a critical review. Anal Bioanal Chem 2024; 416:7249-7266. [PMID: 39048740 PMCID: PMC11584473 DOI: 10.1007/s00216-024-05435-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/10/2024] [Accepted: 06/28/2024] [Indexed: 07/27/2024]
Abstract
Monitoring cell secretion in complex microenvironments is crucial for understanding cellular behavior and advancing physiological and pathological research. While traditional cell culture methods, including organoids and spheroids, provide valuable models, real-time monitoring of cell secretion of signaling molecules remains challenging. Integrating advanced monitoring technologies into these systems often disrupts the delicate balance of the microenvironment, making it difficult to achieve sensitivity and specificity. This review explored recent strategies for integrating the monitoring of cell secretion of signaling molecules, crucial for understanding and replicating cell microenvironments, within cell culture platforms, addressing challenges such as non-adherent cell models and the focus on single-cell methodologies. We highlight advancements in biosensors, microfluidics, and three-dimensional culture methods, and discuss their potential to enhance real-time, multiplexed cell monitoring. By examining the advantages, limitations, and future prospects of these technologies, we aim to contribute to the development of integrated systems that facilitate comprehensive cell monitoring, ultimately advancing biological research and pharmaceutical development.
Collapse
Affiliation(s)
- Enrique Azuaje-Hualde
- Microfluidics Cluster UPV/EHU, BIOMICs Microfluidics Group, Lascaray Research Center, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | - Juncal A Alonso-Cabrera
- Microfluidics Cluster UPV/EHU, BIOMICs Microfluidics Group, Lascaray Research Center, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | - Marian M de Pancorbo
- BIOMICs Research Group, Lascaray Research Center, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | - Fernando Benito-Lopez
- Microfluidics Cluster UPV/EHU, Analytical Microsystems & Materials for Lab-on-a-Chip (AMMa-LOAC) Group, Analytical Chemistry Department, University of the Basque Country UPV/EHU, Leioa, Spain.
- Microfluidics Cluster UPV/EHU, Bioaraba Health Research Institute, Vitoria-Gasteiz, Spain.
- Basque Foundation of Science, IKERBASQUE, María Díaz Haroko Kalea, 3, 48013, Bilbao, Spain.
| | - Lourdes Basabe-Desmonts
- Microfluidics Cluster UPV/EHU, BIOMICs Microfluidics Group, Lascaray Research Center, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain.
- Microfluidics Cluster UPV/EHU, Bioaraba Health Research Institute, Vitoria-Gasteiz, Spain.
- Basque Foundation of Science, IKERBASQUE, María Díaz Haroko Kalea, 3, 48013, Bilbao, Spain.
| |
Collapse
|
10
|
Verma R, Gaba S, Chauhan N, Chandra R, Jain U. Biodetection Strategies for Selective Identification of Candidiasis. Indian J Microbiol 2024; 64:1461-1476. [PMID: 39678986 PMCID: PMC11645395 DOI: 10.1007/s12088-024-01288-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 04/18/2024] [Indexed: 12/17/2024] Open
Abstract
Fungi are among the predominant pathogens seen in a greater proportion of infections acquired in healthcare settings. A common fungus that causes infections in medical settings is Candida species. Hospitalized patients who suffer from fungal diseases such as candidiasis and candidemia often have elevated rates of mortality and morbidity. It is evident that longer hospital stays have the possibility of bacterial and fungal recurrence and also have a negative economic impact. If left untreated, a Candida infection can spread to other organs and cause a systemic infection that can result in sepsis. Clinicians can treat patients quickly when fungal infections are timely detected, this enhances the results of clinical trials. Developing novel, sensitive, and quick methods for detecting Candida species is imperative. Conventional detection techniques are unsuitable for clinical settings and point-of-care systems as they require expensive equipment and take a longer detection time. This review examines a few of the most widely used biosensor systems for the detection of Candida species, their sensitivity, and the limit of detection. It focuses on various biorecognition elements used and follows utilization and advances in nanotechnology in the context of sensing. In addition to enabling general analysis and quick real-time analysis, crucial for detecting Candida species, biosensors provide an intriguing alternative to more conventional techniques.
Collapse
Affiliation(s)
- Riya Verma
- School of Health Sciences and Technology, UPES, Dehradun, Uttarakhand 248007 India
| | - Smriti Gaba
- School of Health Sciences and Technology, UPES, Dehradun, Uttarakhand 248007 India
| | - Nidhi Chauhan
- School of Health Sciences and Technology, UPES, Dehradun, Uttarakhand 248007 India
| | - Ramesh Chandra
- Department of Chemistry, University of Delhi, Delhi, India
- Institute of Nanomedical Sciences (INMS), University of Delhi, Delhi, India
- Dr. B.R. Ambedkar Centre for Biomedical Research, University of Delhi, Delhi, India
- Maharaja Surajmal Brij University, Kumher, Bharatpur, 321201 India
| | - Utkarsh Jain
- School of Health Sciences and Technology, UPES, Dehradun, Uttarakhand 248007 India
| |
Collapse
|
11
|
Kelly T, Yang X. Application of Fluorescence- and Bioluminescence-Based Biosensors in Cancer Drug Discovery. BIOSENSORS 2024; 14:570. [PMID: 39727835 DOI: 10.3390/bios14120570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/19/2024] [Accepted: 11/21/2024] [Indexed: 12/28/2024]
Abstract
Recent advances in drug discovery have established biosensors as indispensable tools, particularly valued for their precision, sensitivity, and real-time monitoring capabilities. The review begins with a brief overview of cancer drug discovery, underscoring the pivotal role of biosensors in advancing cancer research. Various types of biosensors employed in cancer drug discovery are then explored, with particular emphasis on fluorescence- and bioluminescence-based technologies such as FRET, TR-FRET, BRET, NanoBRET, and NanoBiT. These biosensors have enabled breakthrough discoveries, including the identification of Celastrol as a novel YAP-TEAD inhibitor through NanoBiT-based screening, and the development of TR-FRET assays that successfully identified Ro-31-8220 as a SMAD4R361H/SMAD3 interaction inducer. The integration of biosensors in high throughput screening and validation for cancer drug compounds is examined, highlighting successful applications such as the development of LATS biosensors that revealed VEGFR as an upstream regulator of the Hippo signaling pathway. Real-time monitoring of cellular responses through biosensors has yielded invaluable insights into cancer cell signaling pathways, as demonstrated by NanoBRET assays detecting RAF dimerization and HiBiT systems monitoring protein degradation dynamics. The review addresses challenges linked to biosensor applications, such as maintaining stability in complex tumor microenvironments and achieving consistent sensitivity in HTS applications. Emerging trends are discussed, including integrating artificial intelligence and advanced nanomaterials for enhanced biosensor performance. In conclusion, this review offers a comprehensive analysis of fluorescence- and bioluminescence-based biosensor applications in the dynamic cancer drug discovery field, presenting quantitative evidence of their impact and highlighting their potential to revolutionize targeted cancer treatments.
Collapse
Affiliation(s)
- Tynan Kelly
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Xiaolong Yang
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON K7L 3N6, Canada
| |
Collapse
|
12
|
Wang Y, Duan H, Zhang Z, Chen L, Li J. Research Progress on the Application of Natural Medicines in Biomaterial Coatings. MATERIALS (BASEL, SWITZERLAND) 2024; 17:5607. [PMID: 39597430 PMCID: PMC11595593 DOI: 10.3390/ma17225607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/29/2024] [Accepted: 11/12/2024] [Indexed: 11/29/2024]
Abstract
With the continuous progress of biomedical technology, biomaterial coatings play an important role in improving the performance of medical devices and promoting tissue repair and regeneration. The application of natural medicine to biological materials has become a hot topic due to its diverse biological activity, low toxicity, and wide range of sources. This article introduces the definition and classification of natural medicines, lists some common natural medicines, such as curcumin, allicin, chitosan, tea polyphenols, etc., and lists some biological activities of some common natural medicines, such as antibacterial, antioxidant, antitumor, and other properties. According to the different characteristics of natural medicines, physical adsorption, chemical grafting, layer-by-layer self-assembly, sol-gel and other methods are combined with biomaterials, which can be used for orthopedic implants, cardiovascular and cerebrovascular stents, wound dressings, drug delivery systems, etc., to exert their biological activity. For example, improving antibacterial properties, promoting tissue regeneration, and improving biocompatibility promote the development of medical health. Although the development of biomaterials has been greatly expanded, it still faces some major challenges, such as whether the combination between the coating and the substrate is firm, whether the drug load is released sustainably, whether the dynamic balance will be disrupted, and so on; a series of problems affects the application of natural drugs in biomaterial coatings. In view of these problems, this paper summarizes some suggestions by evaluating the literature, such as optimizing the binding method and release system; carrying out more clinical application research; carrying out multidisciplinary cooperation; broadening the application of natural medicine in biomaterial coatings; and developing safer, more effective and multi-functional natural medicine coatings through continuous research and innovation, so as to contribute to the development of the biomedical field.
Collapse
Affiliation(s)
| | | | | | - Lan Chen
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China; (Y.W.); (H.D.); (Z.Z.)
| | - Jingan Li
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China; (Y.W.); (H.D.); (Z.Z.)
| |
Collapse
|
13
|
Chung YH, Oh JK. Research Trends in the Development of Block Copolymer-Based Biosensing Platforms. BIOSENSORS 2024; 14:542. [PMID: 39590001 PMCID: PMC11591610 DOI: 10.3390/bios14110542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/02/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024]
Abstract
Biosensing technology, which aims to measure and control the signals of biological substances, has recently been developed rapidly due to increasing concerns about health and the environment. Top-down technologies have been used mainly with a focus on reducing the size of biomaterials to the nano-level. However, bottom-up technologies such as self-assembly can provide more opportunities to molecular-level arrangements such as directionality and the shape of biomaterials. In particular, block copolymers (BCPs) and their self-assembly have been significantly explored as an effective means of bottom-up technologies to achieve recent advances in molecular-level fine control and imaging technology. BCPs have been widely used in various biosensing research fields because they can artificially control highly complex nano-scale structures in a directionally controlled manner, and future application research based on interactions with biomolecules according to the development and synthesis of new BCP structures is greatly anticipated. Here, we comprehensively discuss the basic principles of BCPs technology, the current status of their applications in biosensing technology, and their limitations and future prospects. Rather than discussing a specific field in depth, this study comprehensively covers the overall content of BCPs as a biosensing platform, and through this, we hope to increase researchers' understanding of adjacent research fields and provide research inspiration, thereby bringing about great advances in the relevant research fields.
Collapse
Affiliation(s)
- Yong-Ho Chung
- Department of Chemical Engineering, Hoseo University, Asan-si 31499, Republic of Korea
| | - Jung Kwon Oh
- Department of Chemistry and Biochemistry, Concordia University, Montreal, QC H4B 1R6, Canada
| |
Collapse
|
14
|
Mollarasouli F, Bahrani S, Amrollahimiyandeh Y, Paimard G. Nanomaterials-based immunosensors for avian influenza virus detection. Talanta 2024; 279:126591. [PMID: 39059066 DOI: 10.1016/j.talanta.2024.126591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 07/01/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024]
Abstract
Avian influenza viruses (AIV) are capable of infecting a considerable proportion of the world's population each year, leading to severe epidemics with high rates of morbidity and mortality. The methods now used to diagnose influenza virus A include the Western blot test (WB), hemagglutination inhibition (HI), and enzyme-linked immunosorbent assays (ELISAs). But because of their labor-intensiveness, lengthy procedures, need for costly equipment, and inexperienced staff, these approaches are considered inappropriate. The present review elucidates the recent advancements in the field of avian influenza detection through the utilization of nanomaterials-based immunosensors between 2014 and 2024. The classification of detection techniques has been taken into account to provide a comprehensive overview of the literature. The review encompasses a detailed illustration of the commonly employed detection mechanisms in immunosensors, namely, colorimetry, fluorescence assay, surface plasmon resonance (SPR), surface-enhanced Raman spectroscopy (SERS), electrochemical detection, quartz crystal microbalance (QCM) piezoelectric, and field-effect transistor (FET). Furthermore, the challenges and future prospects for the immunosensors have been deliberated upon. The present review aims to enhance the understanding of immunosensors-based sensing platforms for virus detection and to stimulate the development of novel immunosensors by providing novel ideas and inspirations. Therefore, the aim of this paper is to provide an updated information about biosensors, as a recent detection technique of influenza with its details regarding the various types of biosensors, which can be used for this review.
Collapse
Affiliation(s)
| | - Sonia Bahrani
- Borjobaru Fars Company, Nanotechnology Department, Fars Science and Technology Park, Shiraz, 7197687811, Iran; Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Yousef Amrollahimiyandeh
- Borjobaru Fars Company, Nanotechnology Department, Fars Science and Technology Park, Shiraz, 7197687811, Iran
| | - Giti Paimard
- Laboratory of Nanoscale Biosensing and Bioimaging (NBAB), School of Ophthalmology and Optometry, School of Biomedical Engineering, State Key Laboratory of Ophthalmology Optometry, and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| |
Collapse
|
15
|
Anzar N, Suleman S, Singh Y, Kumari S, Parvez S, Pilloton R, Narang J. The Evolution of Illicit-Drug Detection: From Conventional Approaches to Cutting-Edge Immunosensors-A Comprehensive Review. BIOSENSORS 2024; 14:477. [PMID: 39451690 PMCID: PMC11506482 DOI: 10.3390/bios14100477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/26/2024] [Accepted: 09/29/2024] [Indexed: 10/26/2024]
Abstract
The increasing use of illicit drugs has become a major global concern. Illicit drugs interact with the brain and the body altering an individual's mood and behavior. As the substance-of-abuse (SOA) crisis continues to spread across the world, in order to reduce trafficking and unlawful activity, it is important to use point-of-care devices like biosensors. Currently, there are certain conventional detection methods, which include gas chromatography (GC), mass spectrometry (MS), surface ionization, surface-enhanced Raman spectroscopy (SERS), surface plasmon resonance (SPR), electrochemiluminescence (ECL), high-performance liquid chromatography (HPLC), etc., for the detection of abused drugs. These methods have the advantage of high accuracy and sensitivity but are generally laborious, expensive, and require trained operators, along with high sample requirements, and they are not suitable for on-site drug detection scenarios. As a result, there is an urgent need for point-of-care technologies for a variety of drugs that can replace conventional techniques, such as a biosensor, specifically an immunosensor. An immunosensor is an analytical device that integrates an antibody-based recognition element with a transducer to detect specific molecules (antigens). In an immunosensor, the highly selective antigen-antibody interaction is used to identify and quantify the target analyte. The binding event between the antibody and antigen is converted by the transducer into a measurable signal, such as electrical, optical, or electrochemical, which corresponds to the presence and concentration of the analyte in the sample. This paper provides a comprehensive overview of various illicit drugs, the conventional methods employed for their detection, and the advantages of immunosensors over conventional techniques. It highlights the critical need for on-site detection and explores emerging point-of-care testing methods. The paper also outlines future research goals in this field, emphasizing the potential of advanced technologies to enhance the accuracy, efficiency, and convenience of drug detection.
Collapse
Affiliation(s)
- Nigar Anzar
- Department of Biotechnology, School of Chemical and Life Science, Jamia Hamdard University, New Delhi 110062, India; (N.A.); (S.S.); (Y.S.); (S.K.)
| | - Shariq Suleman
- Department of Biotechnology, School of Chemical and Life Science, Jamia Hamdard University, New Delhi 110062, India; (N.A.); (S.S.); (Y.S.); (S.K.)
| | - Yashda Singh
- Department of Biotechnology, School of Chemical and Life Science, Jamia Hamdard University, New Delhi 110062, India; (N.A.); (S.S.); (Y.S.); (S.K.)
| | - Supriya Kumari
- Department of Biotechnology, School of Chemical and Life Science, Jamia Hamdard University, New Delhi 110062, India; (N.A.); (S.S.); (Y.S.); (S.K.)
| | - Suhel Parvez
- Department of Toxicology, School of Chemical and Life Science, Jamia Hamdard University, New Delhi 110062, India;
| | - Roberto Pilloton
- National Research Council, Department of Chemical Sciences and Materials Technology, Institute of Crystallography, 00015 Rome, Italy
| | - Jagriti Narang
- Department of Biotechnology, School of Chemical and Life Science, Jamia Hamdard University, New Delhi 110062, India; (N.A.); (S.S.); (Y.S.); (S.K.)
| |
Collapse
|
16
|
Chaudhary S, Srivastava VK, Kumar M, Lakshmi GBVS, Agarwal DC, Ojha S, Kumar M, Kumar T, Pandey RK, Ghosh S, Avasthi DK, Yadav RP, Singh RS, Singh UB. Formation of partially embedded Au nanostructures: Ion beam irradiation on thin film. Microsc Res Tech 2024; 87:2301-2311. [PMID: 38747091 DOI: 10.1002/jemt.24598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/29/2024] [Accepted: 05/02/2024] [Indexed: 09/02/2024]
Abstract
The Au partially embedded nanostructure (PEN) is synthesized by ion irradiation on an Au thin film deposited on a glass substrate using a 50 keV Ar ion. Scanning electron microscopy results show ion beam-induced restructuring from irregularly shaped nanostructures (NSs) to spherical Au NSs, and further ion irradiation leads to the formation of well-separated spherical nanoparticles. Higuchi's algorithm of surface analysis is utilized to find the evolution of surface morphology with ion irradiation in terms of the Hurst exponent and fractal dimension. The Au PEN is evidenced by Rutherford backscattering spectrometry and optical studies. Also, the depth of the mechanism behind synthesized PEN is explained on the basis of theoretical simulations, namely, a unified thermal spike and a Monte Carlo simulation consisting of dynamic compositional changes (TRIDYN). Another set of plasmonic NSs was formed on the surface by thermal annealing of the Au film on the substrate. Glucose sensing has been studied on the two types of plasmonic layers: nanoparticles on the surface and PEN. The results reveal the sensing responses of both types of plasmonic layers. However, PEN retains its plasmonic behavior as the NSs are still present after washing with water, which demonstrates the potential for reusability. RESEARCH HIGHLIGHTS: Synthesis of PENs by ion irradiation Utilization of Higuchi's algorithm to explore the surface morphology. Unified thermal spike and TRIDYN simulations being used to explain the results. Glucose is only used as a test case for reusability of substrate.
Collapse
Affiliation(s)
- Shivani Chaudhary
- Department of Physics, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur, Uttar Pradesh, India
| | - Vinay K Srivastava
- Department of Physics, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur, Uttar Pradesh, India
| | - Mukesh Kumar
- Department of Physics, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur, Uttar Pradesh, India
| | - G B V S Lakshmi
- Special Center for Nanoscience, Jawaharlal Nehru University, New Delhi, India
| | - D C Agarwal
- Inter-University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi, India
- Department of Physics, Indian Institute of Technology Delhi, New Delhi, India
| | - Sunil Ojha
- Inter-University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi, India
| | - Manish Kumar
- Inter-University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi, India
| | - Tanuj Kumar
- Department of Nanosciences and Materials, Central University of Jammu, Jammu, India
| | - Ratnesh K Pandey
- Department of Physics, School of Engineering, UPES, Dehradun, India
| | - Santanu Ghosh
- Department of Physics, Indian Institute of Technology Delhi, New Delhi, India
| | - D K Avasthi
- Department of Physics, School of Engineering, UPES, Dehradun, India
| | - R P Yadav
- Department of Physics, Deen Dayal Upadhyay Govt. P.G. College, Prayagraj, India
| | - Ravi S Singh
- Department of Physics, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur, Uttar Pradesh, India
| | - Udai B Singh
- Department of Physics, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur, Uttar Pradesh, India
| |
Collapse
|
17
|
Obst M, Vos R, Steylaerts T, Ha S, Hanifa R, Mana L, Conard T, Hoflijk I, Jans K. Mixed Functional Siloxane Monolayers Prepared via Chemical Vapor Deposition. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:19731-19738. [PMID: 39231369 DOI: 10.1021/acs.langmuir.4c02447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Functionalizing surfaces with self-assembled monolayers (SAMs) allows to efficiently bind bioreceptors, for instance, by bio-orthogonal click reactions, which is useful in biosensor fabrication. Control of the bioreceptor concentration on the surface can be achieved by coating an SAM mixture consisting of a functional SAM, which binds the bioreceptor, and a nonfunctional SAM for dilution. In this work, a novel vapor-based coating approach for the preparation of mixed SAM coatings is presented. Sequential evaporation of the SAM precursors, i.e., fluoroalkyl and azidoalkyl silanes, by heating under reduced pressure leads to the formation of a two-dimensional siloxane monolayer network on silicon oxide. The presence of both SAMs in the mixed coatings is confirmed by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. As verified by atomic force microscopy, the morphologies of the coatings and the uncoated silicon oxide substrates are similar, indicating a conformal coating. Functionality of the SAM mixture is demonstrated by a reaction with a fluorescent dye, illustrating its potential application in biosensors.
Collapse
Affiliation(s)
| | - Rita Vos
- IMEC, Kapeldreef 75, 3001 Leuven, Belgium
| | | | | | | | - Luca Mana
- IMEC, Kapeldreef 75, 3001 Leuven, Belgium
| | | | | | | |
Collapse
|
18
|
Abbasi R, Hu X, Zhang A, Dummer I, Wachsmann-Hogiu S. Optical Image Sensors for Smart Analytical Chemiluminescence Biosensors. Bioengineering (Basel) 2024; 11:912. [PMID: 39329654 PMCID: PMC11428294 DOI: 10.3390/bioengineering11090912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/05/2024] [Accepted: 09/07/2024] [Indexed: 09/28/2024] Open
Abstract
Optical biosensors have emerged as a powerful tool in analytical biochemistry, offering high sensitivity and specificity in the detection of various biomolecules. This article explores the advancements in the integration of optical biosensors with microfluidic technologies, creating lab-on-a-chip (LOC) platforms that enable rapid, efficient, and miniaturized analysis at the point of need. These LOC platforms leverage optical phenomena such as chemiluminescence and electrochemiluminescence to achieve real-time detection and quantification of analytes, making them ideal for applications in medical diagnostics, environmental monitoring, and food safety. Various optical detectors used for detecting chemiluminescence are reviewed, including single-point detectors such as photomultiplier tubes (PMT) and avalanche photodiodes (APD), and pixelated detectors such as charge-coupled devices (CCD) and complementary metal-oxide-semiconductor (CMOS) sensors. A significant advancement discussed in this review is the integration of optical biosensors with pixelated image sensors, particularly CMOS image sensors. These sensors provide numerous advantages over traditional single-point detectors, including high-resolution imaging, spatially resolved measurements, and the ability to simultaneously detect multiple analytes. Their compact size, low power consumption, and cost-effectiveness further enhance their suitability for portable and point-of-care diagnostic devices. In the future, the integration of machine learning algorithms with these technologies promises to enhance data analysis and interpretation, driving the development of more sophisticated, efficient, and accessible diagnostic tools for diverse applications.
Collapse
Affiliation(s)
| | | | | | | | - Sebastian Wachsmann-Hogiu
- Department of Bioengineering, McGill University, Montreal, QC H3A 0E9, Canada; (R.A.); (X.H.); (A.Z.); (I.D.)
| |
Collapse
|
19
|
Hu L, Huang YC, Huang YJ, Lin PH, Wang HC, Lin CK, Lee KY. Hive-shaped carbon nanotubes coated with MoSe 2as an electrochemical sensor for cholesterol. NANOTECHNOLOGY 2024; 35:465502. [PMID: 39221963 DOI: 10.1088/1361-6528/ad7141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
The study utilized transition metal chalcogenide, molybdenum diselenide (MoSe2), for application in the field of bioelectrochemical sensing. The MoSe2was combined with carbon nanotubes (CNTs) by chemical vapor deposition to enhance the specific surface area and improve the detection sensitivity. To further increase the contact area between the electrolyte and the electrode, photolithography techniques were employed to fabricate hive-shaped CNTs, thereby enhancing the specific surface area. Next, cholesterol oxidase (ChOx) was coated onto the electrode material, creating a cholesterol biosensor. Cyclic voltammetry was utilized to detect the concentration of cholesterol. The experiment involved segmented testing for cholesterol concentrations ranging from 0μM to 10 mM. Excellent sensitivity, low detection limits, and high accuracy were achieved. In the cholesterol concentration range of 0μM-100μM, the experiment achieved the highest sensitivity of 4.44μAμM⋅cm-2. Consequently, all data indicated that ChOx/MoSe2/CNTs functioned as an excellent cholesterol sensor in the study.
Collapse
Affiliation(s)
- Lei Hu
- Department of Electronic and Computer Engineering, National Taiwan University of Science and Technology, Taipei 106335, Taiwan
| | - Yu-Chiao Huang
- Department of Electronic and Computer Engineering, National Taiwan University of Science and Technology, Taipei 106335, Taiwan
| | - Yung-Jui Huang
- Department of Electronic and Computer Engineering, National Taiwan University of Science and Technology, Taipei 106335, Taiwan
| | - Pao-Hung Lin
- Department of Electronic and Computer Engineering, National Taiwan University of Science and Technology, Taipei 106335, Taiwan
- Graduate Institute of Electro-Optical Engineering, National Taiwan University of Science and Technology, Taipei 106335, Taiwan
| | - Huan-Chun Wang
- Department of Electronic and Computer Engineering, National Taiwan University of Science and Technology, Taipei 106335, Taiwan
| | - Chung-Kuang Lin
- Department of Cardiovascular, Yang-Ming Branch, Taipei City Hospital, Taipei 111024, Taiwan
| | - Kuei-Yi Lee
- Department of Electronic and Computer Engineering, National Taiwan University of Science and Technology, Taipei 106335, Taiwan
- Graduate Institute of Electro-Optical Engineering, National Taiwan University of Science and Technology, Taipei 106335, Taiwan
| |
Collapse
|
20
|
Medina H, Farmer C. Current Challenges in Monitoring Low Contaminant Levels of Per- and Polyfluoroalkyl Substances in Water Matrices in the Field. TOXICS 2024; 12:610. [PMID: 39195712 PMCID: PMC11358922 DOI: 10.3390/toxics12080610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/12/2024] [Accepted: 08/18/2024] [Indexed: 08/29/2024]
Abstract
The Environmental Protection Agency (EPA) of the United States recently released the first-ever federal regulation on per- and polyfluoroalkyl substances (PFASs) for drinking water. While this represents an important landmark, it also brings about compliance challenges to the stakeholders in the drinking water industry as well as concerns to the general public. In this work, we address some of the most important challenges associated with measuring low concentrations of PFASs in drinking water in the field in real drinking water matrices. First, we review the "continuous monitoring for compliance" process laid out by the EPA and some of the associated hurdles. The process requires measuring, with some frequency, low concentrations (e.g., below 2 ppt or 2 ng/L) of targeted PFASs, in the presence of many other co-contaminants and in various conditions. Currently, this task can only (and it is expected to) be accomplished using specific protocols that rely on expensive, specialized, and laboratory-scale instrumentation, which adds time and increases cost. To potentially reduce the burden, portable, high-fidelity, low-cost, real-time PFAS sensors are desirable; however, the path to commercialization of some of the most promising technologies is confronted with many challenges, as well, and they are still at infant stages. Here, we provide insights related to those challenges based on results from ab initio and machine learning studies. These challenges are mainly due to the large amount and diversity of PFAS molecules and their multifunctional behaviors that depend strongly on the conditions of the media. The impetus of this work is to present relevant and timely insights to researchers and developers to accelerate the development of suitable PFAS monitoring systems. In addition, this work attempts to provide water system stakeholders, technicians, and even regulators guidelines to improve their strategies, which could ultimately translate in better services to the public.
Collapse
Affiliation(s)
- Hector Medina
- School of Engineering, Liberty University, Lynchburg, VA 24515, USA
| | | |
Collapse
|
21
|
Nisar S, Dastgeer G, Shazad ZM, Zulfiqar MW, Rasheed A, Iqbal MZ, Hussain K, Rabani I, Kim D, Irfan A, Chaudhry AR. 2D Materials in Advanced Electronic Biosensors for Point-of-Care Devices. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401386. [PMID: 38894575 PMCID: PMC11336981 DOI: 10.1002/advs.202401386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/18/2024] [Indexed: 06/21/2024]
Abstract
Since two-dimensionalal (2D) materials have distinct chemical and physical properties, they are widely used in various sectors of modern technologies. In the domain of diagnostic biodevices, particularly for point-of-care (PoC) biomedical diagnostics, 2D-based field-effect transistor biosensors (bio-FETs) demonstrate substantial potential. Here, in this review article, the operational mechanisms and detection capabilities of biosensing devices utilizing graphene, transition metal dichalcogenides (TMDCs), black phosphorus, and other 2D materials are addressed in detail. The incorporation of these materials into FET-based biosensors offers significant advantages, including low detection limits (LOD), real-time monitoring, label-free diagnosis, and exceptional selectivity. The review also highlights the diverse applications of these biosensors, ranging from conventional to wearable devices, underscoring the versatility of 2D material-based FET devices. Additionally, the review provides a comprehensive assessment of the limitations and challenges faced by these devices, along with insights into future prospects and advancements. Notably, a detailed comparison of FET-based biosensors is tabulated along with various other biosensing platforms and their working mechanisms. Ultimately, this review aims to stimulate further research and innovation in this field while educating the scientific community about the latest advancements in 2D materials-based biosensors.
Collapse
Affiliation(s)
- Sobia Nisar
- Department of Electrical EngineeringSejong UniversitySeoul05006Republic of Korea
- Department of Convergence Engineering for Intelligent DroneSejong UniversitySeoul05006Republic of Korea
| | - Ghulam Dastgeer
- Department of Physics & AstronomySejong UniversitySeoul05006Republic of Korea
| | - Zafar Muhammad Shazad
- SKKU Advanced Institute of Nanotechnology (SAINT)Sungkyunkwan UniversitySuwon16419Republic of Korea
- Department of Chemical Polymer and Composite EngineeringUniversity of Engineering & TechnologyFaisalabad CampusLahore38000Pakistan
| | - Muhammad Wajid Zulfiqar
- Department of Electrical EngineeringSejong UniversitySeoul05006Republic of Korea
- Department of Semiconductor EngineeringSejong UniversitySeoul05006Republic of Korea
| | - Amir Rasheed
- School of Materials Science and EngineeringAnhui UniversityHefeiAnhui230601China
| | - Muhammad Zahir Iqbal
- Renewable Energy Research LaboratoryFaculty of Engineering SciencesGhulam Ishaq Khan Institute of Engineering Sciences and TechnologyTopiKhyber Pakhtunkhwa23640Pakistan
| | - Kashif Hussain
- THz Technical Research Center; Shenzhen Key Laboratory of Micro‐Nano Photonic Information Technology; Key Laboratory of Optoelectronic Devices and Systems, College of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhenGuangdong Province518060China
- School of Materials Science and EngineeringCAPTPeking UniversityBeijing100871China
| | - Iqra Rabani
- Department of Nanotechnology and Advanced Materials EngineeringSejong UniversitySeoul05006Republic of Korea
| | - Deok‐kee Kim
- Department of Electrical EngineeringSejong UniversitySeoul05006Republic of Korea
- Department of Convergence Engineering for Intelligent DroneSejong UniversitySeoul05006Republic of Korea
- Department of Semiconductor EngineeringSejong UniversitySeoul05006Republic of Korea
| | - Ahmad Irfan
- Department of ChemistryCollege of ScienceKing Khalid UniversityP. O. Box 9004Abha61413Saudi Arabia
| | - Aijaz Rasool Chaudhry
- Department of PhysicsCollege of ScienceUniversity of BishaP.O. Box 551Bisha61922Saudi Arabia
| |
Collapse
|
22
|
Bharti A, Jain U, Chauhan N. From lab to field: Nano-biosensors for real-time plant nutrient tracking. PLANT NANO BIOLOGY 2024; 9:100079. [DOI: 10.1016/j.plana.2024.100079] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
23
|
Kim KW, Kim D, Kim BC, Hwang ET. Development of cross-linked glucose oxidase integrated Cu-nanoflower electrode for reusable and stable glucose sensing. Int J Biol Macromol 2024; 275:133605. [PMID: 38971285 DOI: 10.1016/j.ijbiomac.2024.133605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/10/2024] [Accepted: 06/30/2024] [Indexed: 07/08/2024]
Abstract
The demand for glucose-sensing devices has increased along with the increasing diabetic population. Here, we aimed to construct a system with a glucose oxidase (GOx)-integrated Cu-nanoflower (Cu-NF) as the underlying electrode. This novel system was successfully developed by creating a cross-linked GOx within a Cu-NF matrix, forming a c-GOx@Cu-NF-coated film on a carbon screen-printed electrode (CSPE). A comparison of the stabilities of the cross-linking methods demonstrated enhanced durability, with an activity level of >88 % maintained after approximately 35 days of storage in room temperature buffer. Regarding the ability of the c-GOx@Cu-NF modified CSPE to detect glucose via electrochemical methods, the redox potential gap (ΔE) and peak current increased in the presence of GOx. In comparison to that of glucose, the sensitivity of c-GOx@Cu-NF was approximately 8 times greater than that of GOx@Cu-NF, with a detection limit of 0.649 μM and a linear range of 5-500 μM. It sustained an average relative activity of 80 % over 20 days. After 10 cycles of repeated use, the activity remained above 75 %. In terms of evaluating the electrode's specificity for glucose, the detection rate for individual similar substances was approximately 1 %. The introduction of a crosslinking strategy to Cu-NF, leading to enhanced mechanical stability and conductivity, improved the detection capability. Furthermore, this approach led to increased long-term storage stability and reusability, allowing for specific glucose detection. To our knowledge, this report represents the first demonstration of a c-GOx@Cu-NF system for integrating electrochemical biosensing devices into digital healthcare pathways, offering enhanced sensing accuracy and mechanical stability.
Collapse
Affiliation(s)
- Keon Woo Kim
- Department of Food Biotechnology, Dong-A University, Busan 49315, Republic of Korea
| | - Dain Kim
- Department of Food Biotechnology, Dong-A University, Busan 49315, Republic of Korea
| | - Byoung Chan Kim
- Center for Sustainable Environment Research, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Division of Energy and Environment Technology, KIST School, University of Science and Technology (UST), Seoul 02792, Republic of Korea
| | - Ee Taek Hwang
- Department of Food Biotechnology, Dong-A University, Busan 49315, Republic of Korea.
| |
Collapse
|
24
|
Zhao J, Qin C, Shen Y, Xu C, Yao S, Liang C. A comprehensive review of chloropropanol analytical method in the context of food safety. Food Chem 2024; 446:138776. [PMID: 38417283 DOI: 10.1016/j.foodchem.2024.138776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/29/2023] [Accepted: 02/14/2024] [Indexed: 03/01/2024]
Abstract
Chloropropanols are among the major food contaminants, and quantifying their content in food is a key food-safety issue. In response to the demand for highly sensitive and selective analysis, the scientific community is committed to continuous innovation and optimization of various analytical techniques. This paper comprehensively reviews the latest developments in chloropropanol analysis technologies and systematically compares and analyzes the working principles, application conditions, advantages, and challenges of these methods. Gas chromatography-mass spectrometry is the preferred choice for chloropropanol analysis in complex sample matrices owing to its high resolution, sensitivity, and accuracy. Electrochemical methods provide strong support for the real-time monitoring of chloropropanols because of their high selectivity and sensitivity towards electrochemically active molecules. Other techniques offer innovative solutions for the rapid and accurate analysis of chloropropanol at different levels. Finally, innovative directions for the development of chloropropanol analysis methods for food safety are highlighted.
Collapse
Affiliation(s)
- Jinwei Zhao
- Guangxi University College of Light Industry and Food Engineering; Guangxi Key Laboratory of Clean Pulp and Paper and Pollution Control
| | - Chengrong Qin
- Guangxi University College of Light Industry and Food Engineering; Guangxi Key Laboratory of Clean Pulp and Paper and Pollution Control
| | - Yifan Shen
- Guangxi University College of Light Industry and Food Engineering; Guangxi Key Laboratory of Clean Pulp and Paper and Pollution Control
| | - Cheng Xu
- Guangxi University College of Light Industry and Food Engineering; Guangxi Key Laboratory of Clean Pulp and Paper and Pollution Control
| | - Shuangquan Yao
- Guangxi University College of Light Industry and Food Engineering; Guangxi Key Laboratory of Clean Pulp and Paper and Pollution Control
| | - Chen Liang
- Guangxi University College of Light Industry and Food Engineering; Guangxi Key Laboratory of Clean Pulp and Paper and Pollution Control.
| |
Collapse
|
25
|
Williams A, Aguilar MR, Pattiya Arachchillage KGG, Chandra S, Rangan S, Ghosal Gupta S, Artes Vivancos JM. Biosensors for Public Health and Environmental Monitoring: The Case for Sustainable Biosensing. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2024; 12:10296-10312. [PMID: 39027730 PMCID: PMC11253101 DOI: 10.1021/acssuschemeng.3c06112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 05/17/2024] [Accepted: 05/28/2024] [Indexed: 07/20/2024]
Abstract
Climate change is a profound crisis that affects every aspect of life, including public health. Changes in environmental conditions can promote the spread of pathogens and the development of new mutants and strains. Early detection is essential in managing and controlling this spread and improving overall health outcomes. This perspective article introduces basic biosensing concepts and various biosensors, including electrochemical, optical, mass-based, nano biosensors, and single-molecule biosensors, as important sustainability and public health preventive tools. The discussion also includes how the sustainability of a biosensor is crucial to minimizing environmental impacts and ensuring the long-term availability of vital technologies and resources for healthcare, environmental monitoring, and beyond. One promising avenue for pathogen screening could be the electrical detection of biomolecules at the single-molecule level, and some recent developments based on single-molecule bioelectronics using the Scanning Tunneling Microscopy-assisted break junctions (STM-BJ) technique are shown here. Using this technique, biomolecules can be detected with high sensitivity, eliminating the need for amplification and cell culture steps, thereby enhancing speed and efficiency. Furthermore, the STM-BJ technique demonstrates exceptional specificity, accurately detects single-base mismatches, and exhibits a detection limit essentially at the level of individual biomolecules. Finally, a case is made here for sustainable biosensors, how they can help, the paradigm shift needed to achieve them, and some potential applications.
Collapse
Affiliation(s)
- Ajoke Williams
- Department
of Chemistry, University of Massachusetts
Lowell, Lowell, Massachusetts 01854, United States
| | - Mauricio R. Aguilar
- Departament
de Química Inorgànica i Orgànica, Diagonal 645, 08028 Barcelona, Spain
- Institut
de Química Teòrica i Computacional, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain
| | | | - Subrata Chandra
- Department
of Chemistry, University of Massachusetts
Lowell, Lowell, Massachusetts 01854, United States
| | - Srijith Rangan
- Department
of Chemistry, University of Massachusetts
Lowell, Lowell, Massachusetts 01854, United States
| | - Sonakshi Ghosal Gupta
- Department
of Chemistry, University of Massachusetts
Lowell, Lowell, Massachusetts 01854, United States
| | - Juan M. Artes Vivancos
- Department
of Chemistry, University of Massachusetts
Lowell, Lowell, Massachusetts 01854, United States
| |
Collapse
|
26
|
Mansouri S. Recent developments of (bio)-sensors for detection of main microbiological and non-biological pollutants in plastic bottled water samples: A critical review. Talanta 2024; 274:125962. [PMID: 38537355 DOI: 10.1016/j.talanta.2024.125962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/27/2024] [Accepted: 03/20/2024] [Indexed: 05/04/2024]
Abstract
The importance of water in all biological processes is undeniable. Ensuring access to clean and safe drinking water is crucial for maintaining sustainable water resources. To elaborate, the consumption of water of inadequate quality can have a repercussion on human health. Furthermore, according to the instability of tap water quality, the consumption rate of bottled water is increasing every day at the global level. Although most people believe bottled water is safe, it can also be contaminated by microbiological or chemical pollution, which can increase the risk of disease. Over the last decades, several conventional analytical tools applied to analyze the contamination of bottled water. On the other hand, some limitations restrict their application in this field. Therefore, biosensors, as emerging analytical method, attract tremendous attention for detection both microbial and chemical contamination of bottled water. Biosensors enjoy several facilities including selectivity, affordability, and sensitivity. In this review, the developed biosensors for analyzing contamination of bottled water were highlighted, as along with working strategies, pros and cons of studies. Challenges and prospects were also examined.
Collapse
Affiliation(s)
- Sofiene Mansouri
- Department of Biomedical Technology, College of Applied Medical Sciences in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia; University of Tunis El Manar, Higher Institute of Medical Technologies of Tunis, Laboratory of Biophysics and Medical Technologies, Tunis, Tunisia.
| |
Collapse
|
27
|
Khaliq N, Ali G, Rasheed MA, Khan M, Xie Y, Schmuki P, Cho SO, Karim S. Multifunctional tunable Cu 2O and CuInS 2 quantum dots on TiO 2 nanotubes for efficient chemical oxidation of cholesterol and ibuprofen. NANOSCALE 2024; 16:12207-12227. [PMID: 38845383 DOI: 10.1039/d4nr00422a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
In this study, a CuInS2/Cu2O/TiO2 nanotube (TNT) heterojunction-based hybrid material is reported for the selective detection of cholesterol and ibuprofen. Anodic TNTs were co-decorated with Cu2O and CuInS2 quantum dots (QDs) using a modified chemical bath deposition (CBD) method. QDs help trigger the chemical oxidation of cholesterol by cathodically generating hydroxyl radicals (˙OH). The small size of QDs can be used to tune the energy levels of electrode materials to the effective redox potential of redox species, resulting in highly improved sensing characteristics. Under optimal conditions, CuInS2/Cu2O/TNTs show the highest sensitivity (∼12 530 μA mM-1 cm-2, i.e. up to 11-fold increase compared to pristine TNTs) for cholesterol detection with a low detection limit (0.013 μM) and a fast response time (1.3 s). The proposed biosensor was successfully employed for the detection of cholesterol in real blood samples. In addition, fast (4 s) and reliable detection of ibuprofen (with a sensitivity of ∼1293 μA mM-1 cm-2) as a water contaminant was achieved using CuInS2/Cu2O/TNTs. The long-term stability and favourable reproducibility of CuInS2/Cu2O/TNTs illustrate a unique concept for the rational design of a stable and high-performance multi-purpose electrochemical sensor.
Collapse
Affiliation(s)
- Nilem Khaliq
- Department of Physics and Applied Mathematics, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad 45650, Pakistan.
- Department of Physics, Women University Swabi, Swabi, Khyber Pakhtunkhwa, Pakistan
- Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Martensstrasse 7, D-91058 Erlangen, Germany.
| | - Ghafar Ali
- Nanomaterials Research Group (NRG), Physics Division, PINSTECH, Islamabad 44000, Pakistan.
| | - Muhammad Asim Rasheed
- Department of Physics and Applied Mathematics, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad 45650, Pakistan.
| | - Maaz Khan
- Nanomaterials Research Group (NRG), Physics Division, PINSTECH, Islamabad 44000, Pakistan.
| | - Yi Xie
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, No. 122, Luoshi Road, Wuhan 430070, China
| | - Patrik Schmuki
- Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Martensstrasse 7, D-91058 Erlangen, Germany.
| | - Sung Oh Cho
- Department of Nuclear and Quantum Engineering (NQe), Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Shafqat Karim
- Nanomaterials Research Group (NRG), Physics Division, PINSTECH, Islamabad 44000, Pakistan.
| |
Collapse
|
28
|
Alkhamis O, Canoura J, Wang L, Xiao Y. Nuclease-assisted selection of slow-off rate aptamers. SCIENCE ADVANCES 2024; 10:eadl3426. [PMID: 38865469 PMCID: PMC11168469 DOI: 10.1126/sciadv.adl3426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 05/09/2024] [Indexed: 06/14/2024]
Abstract
Conventional directed evolution methods offer the ability to select bioreceptors with high binding affinity for a specific target in terms of thermodynamic properties. However, there is a lack of analogous approaches for kinetic selection, which could yield affinity reagents that exhibit slow off-rates and thus remain tightly bound to targets for extended periods. Here, we describe an in vitro directed evolution methodology that uses the nuclease flap endonuclease 1 to achieve the efficient discovery of aptamers that have slow dissociation rates. Our nuclease-assisted selection strategy can yield specific aptamers for both small molecules and proteins with off-rates that are an order of magnitude slower relative to those obtained with conventional selection methods while still retaining excellent overall target affinity in terms of thermodynamics. This new methodology provides a generalizable approach for generating slow off-rate aptamers for diverse targets, which could, in turn, prove valuable for applications including molecular devices, bioimaging, and therapy.
Collapse
Affiliation(s)
- Obtin Alkhamis
- Department of Chemistry, North Carolina State University, Raleigh, NC 27607, USA
| | - Juan Canoura
- Department of Chemistry, North Carolina State University, Raleigh, NC 27607, USA
| | - Linlin Wang
- Department of Chemistry, North Carolina State University, Raleigh, NC 27607, USA
| | | |
Collapse
|
29
|
Ahmad S, Lohiya S, Taksande A, Meshram RJ, Varma A, Vagha K. A Comprehensive Review of Innovative Paradigms in Microbial Detection and Antimicrobial Resistance: Beyond Traditional Cultural Methods. Cureus 2024; 16:e61476. [PMID: 38952583 PMCID: PMC11216122 DOI: 10.7759/cureus.61476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 06/01/2024] [Indexed: 07/03/2024] Open
Abstract
Microbial detection and antimicrobial resistance (AMR) surveillance are critical components of public health efforts to combat infectious diseases and preserve the efficacy of antimicrobial agents. While foundational in microbial identification, traditional cultural methods are often laborious, time-consuming, and limited in their ability to detect AMR markers. In response to these challenges, innovative paradigms have emerged, leveraging advances in molecular biology, genomics, proteomics, nanotechnology, and bioinformatics. This comprehensive review provides an overview of innovative approaches beyond traditional cultural methods for microbial detection and AMR surveillance. Molecular-based techniques such as polymerase chain reaction (PCR) and next-generation sequencing (NGS) offer enhanced sensitivity and specificity, enabling the rapid identification of microbial pathogens and AMR determinants. Mass spectrometry-based methods provide rapid and accurate detection of microbial biomarkers, including matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) and biosensor technologies. Nanotechnology approaches, such as nanoparticle-based assays and nanopore sequencing, offer novel platforms for sensitive and label-free detection of pathogens and AMR markers. Embracing these innovative paradigms holds immense promise for improving disease diagnosis, antibiotic stewardship, and AMR containment efforts. However, challenges such as cost, standardization, and integration with existing healthcare systems must be addressed to realize the full potential of these technologies. By fostering interdisciplinary collaboration and innovation, we can strengthen our ability to detect, monitor, and combat AMR, safeguarding public health for generations.
Collapse
Affiliation(s)
- Shahzad Ahmad
- Pediatrics, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research (Deemed to be University), Wardha, IND
| | - Sham Lohiya
- Pediatrics, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research (Deemed to be University), Wardha, IND
- Pediatrics, Acharya Vinoba Bhave Rural Hospital, Wardha, IND
| | - Amar Taksande
- Pediatrics, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research (Deemed to be University), Wardha, IND
| | - Revat J Meshram
- Pediatrics, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research (Deemed to be University), Wardha, IND
| | - Ashish Varma
- Pediatrics, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research (Deemed to be University), Wardha, IND
| | - Keta Vagha
- Pediatrics, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research (Deemed to be University), Wardha, IND
| |
Collapse
|
30
|
Richardson KM, Schembre SM, da Silva V, Blew RM, Behrens N, Roe DJ, Marvasti FF, Hingle M. Adding a Brief Continuous Glucose Monitoring Intervention to the National Diabetes Prevention Program: A Multimethod Feasibility Study. J Diabetes Res 2024; 2024:7687694. [PMID: 38919262 PMCID: PMC11199067 DOI: 10.1155/2024/7687694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 02/26/2024] [Accepted: 03/27/2024] [Indexed: 06/27/2024] Open
Abstract
The National Diabetes Prevention Program (DPP) promotes lifestyle changes to prevent diabetes. However, only one-third of DPP participants achieve weight loss goals, and changes in diet are limited. Continuous glucose monitoring (CGM) has shown potential to raise awareness about the effects of diet and activity on glucose among people with diabetes, yet the feasibility of including CGM in behavioral interventions for people with prediabetes has not been explored. This study assessed the feasibility of adding a brief CGM intervention to the Arizona Cooperative Extension National DPP. Extension DPP participants were invited to participate in a single CGM-based education session and subsequent 10-day CGM wear period, during which participants reflected on diet and physical activity behaviors occurring prior to and after hyperglycemic events. Following the intervention, participants completed a CGM acceptability survey and participated in a focus group reflecting on facilitators and barriers to CGM use and its utility as a behavior change tool. A priori feasibility benchmarks included opt-in participation rates ≥ 50%, education session attendance ≥ 80%, acceptability scores ≥ 80%, and greater advantages than disadvantages of CGM emerging from focus groups, as analyzed using the Key Point Summary (KPS) method. Thirty-five DPP members were invited to participate; 27 (77%) consented, and 24 of 27 (89%) attended the brief CGM education session. Median survey scores indicated high acceptability of CGM (median = 5, range = 1-5), with nearly all (n = 23/24, 96%) participants believing that CGM should be offered as part of the DPP. In focus groups, participants described how CGM helped them make behavior changes to improve their glucose (e.g., reduced portion sizes, increased activity around eating events, and meditation). In conclusion, adding a single CGM-based education session and 10-day CGM wear to the DPP was feasible and acceptable. Future research will establish the efficacy of adding CGM to the DPP on participant health outcomes and behaviors.
Collapse
Affiliation(s)
- Kelli M. Richardson
- School of Nutritional Sciences and Wellness, College of Agriculture, Life and Environmental Sciences, University of Arizona, Tucson, Arizona, USA
| | - Susan M. Schembre
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Vanessa da Silva
- School of Nutritional Sciences and Wellness, College of Agriculture, Life and Environmental Sciences, University of Arizona, Tucson, Arizona, USA
| | - Robert M. Blew
- School of Nutritional Sciences and Wellness, College of Agriculture, Life and Environmental Sciences, University of Arizona, Tucson, Arizona, USA
| | - Nick Behrens
- Department of Ecology and Evolutionary Biology, College of Science, University of Arizona, Tucson, Arizona, USA
| | - Denise J. Roe
- Department of Epidemiology and Biostatistics, Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, Arizona, USA
| | - Farshad Fani Marvasti
- Department of Family, Community and Preventive Medicine, College of Medicine, University of Arizona, Phoenix, Arizona, USA
| | - Melanie Hingle
- School of Nutritional Sciences and Wellness, College of Agriculture, Life and Environmental Sciences, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
31
|
Hemmerová E, Homola J. Combining plasmonic and electrochemical biosensing methods. Biosens Bioelectron 2024; 251:116098. [PMID: 38359667 DOI: 10.1016/j.bios.2024.116098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/17/2024]
Abstract
The idea of combining electrochemical (EC) and plasmonic biosensor methods was introduced almost thirty years ago and the potential of electrochemical-plasmonic (EC-P) biosensors has been highlighted ever since. Despite that, the use of EC-P biosensors in analytics has been rather limited so far and the search for unique applications of the EC-P method continues. In this paper, we review the advances in the field of EC-P biosensors and discuss the features and benefits they can provide. In addition, we identify the main challenges for the development of EC-P biosensors and the limitations that prevent EC-P biosensors from more widespread use. Finally, we review applications of EC-P biosensors for the investigation and quantification of biomolecules, and for the study of biomolecular and cellular processes.
Collapse
Affiliation(s)
- Erika Hemmerová
- Institute of Photonics and Electronics, Czech Academy of Sciences, Chaberská 1014/57, 182 51, Prague, Czech Republic
| | - Jiří Homola
- Institute of Photonics and Electronics, Czech Academy of Sciences, Chaberská 1014/57, 182 51, Prague, Czech Republic.
| |
Collapse
|
32
|
Dias Neves MA, Mendes Pinto I. AptaShield: A Universal Signal-Transduction System for Fast and High-Throughput Optical Molecular Biosensing. ACS Sens 2024; 9:1756-1762. [PMID: 38620013 PMCID: PMC11059090 DOI: 10.1021/acssensors.3c02762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/11/2024] [Accepted: 03/22/2024] [Indexed: 04/17/2024]
Abstract
Biosensing technologies are often described to provide facile, sensitive, and minimally to noninvasive detection of molecular analytes across diverse scientific, environmental, and clinical diagnostic disciplines. However, commercialization has been very limited mostly due to the difficulty of biosensor reconfiguration for different analyte(s) and limited high-throughput capabilities. The immobilization of different biomolecular probes (e.g., antibodies, peptides, and aptamers) requires the sensor surface chemistry to be tailored to provide optimal probe coupling, orientation, and passivation and prevent nonspecific interactions. To overcome these challenges, here we report the development of a solution-phase biosensor consisting of an engineered aptamer, the AptaShield, capable of universally binding to any antigen recognition site (Fab') of fluorescently labeled immunoglobulins (IgG) produced in rabbits. The resulting AptaShield biosensor relies on a low affinity dynamic equilibrium between the fluorescently tagged aptamer and IgG to generate a specific Förster resonance energy transfer (FRET) signal. As the analyte binds to the IgG, the AptaShield DNA aptamer-IgG complex dissociates, leading to an analyte concentration-dependent decrease of the FRET signal. The biosensor demonstrates high selectivity, specificity, and reproducibility for analyte quantification in different biological fluids (e.g., urine and blood serum) in a one-step and low sample volume (0.5-6.25 μL) format. The AptaShield provides a universal signal transduction mechanism as it can be coupled to different rabbit antibodies without the need for aptamer modification, therefore representing a robust high-throughput solution-phase technology suitable for point-of-care applications, overcoming the current limitations of gold standard enzyme-linked immunosorbent assays (ELISA) for molecular profiling.
Collapse
Affiliation(s)
- Miguel António Dias Neves
- Institute
for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal
- Molecular
and Analytical Medicine Laboratory, Department of Biomedicine, Faculty
of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Inês Mendes Pinto
- Institute
for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal
- Molecular
and Analytical Medicine Laboratory, Department of Biomedicine, Faculty
of Medicine, University of Porto, 4200-319 Porto, Portugal
| |
Collapse
|
33
|
Han Y, You Y, Xu X, Li X, Liu G, Lai G. Amplified Assembly of G-Quadruplex-Decorated DNA Network Nanostructure toward AIE Signaling-Based Sensitive Biosensing. ACS Sens 2024; 9:1749-1755. [PMID: 38587118 DOI: 10.1021/acssensors.3c02594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Aggregation-induced emission (AIE) has offered a promising approach for developing low-background fluorescent methods; however, its applications often suffer from complex probe synthesis and poor biocompatibility. Herein, a novel AIE biosensing method for kanamycin antibiotic assays was developed by utilizing a DNA network nanostructure assembled from an aptamer recognition reaction to capture a large number of tetraphenylethylene fluorogen-labeled signal DNA (DTPE) probes. Due to the excellent hydrophilicity of the oligonucleotides, DTPE exhibited excellent water solubility without obvious background signal emission. Based on an ingenious nucleotide design, an abundance of G-quadruplex blocks neighboring the captured DTPE were formed on the DNA nanostructure. Because of the greatly restricted free motion of DTPE by this unique nanostructure, a strong AIE fluorescence signal response was produced to construct the signal transduction strategy. Together with target recycling and rolling circle amplification-based cascade nucleic acid amplification, this method exhibited a wide linear range from 75 fg mL-1 to 1 ng mL-1 and a detection limit down to 24 fg mL-1. The excellent analytical performance and effective manipulation improvement of the method over previous approaches determine its promising potential for various applications.
Collapse
Affiliation(s)
- Yicheng Han
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, PR China
| | - Yingying You
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, PR China
| | - Xiaoyue Xu
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, PR China
| | - Xin Li
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, PR China
| | - Guozhen Liu
- Integrated Devices and Intelligent Diagnosis Laboratory, CUHK(SZ)-Boyalife Joint Laboratory for Regenerative Medicine Engineering, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, PR China
- Ciechanover Institute of Precision and Regenerative Medicine, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, PR China
| | - Guosong Lai
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, PR China
| |
Collapse
|
34
|
Bilge S, Dogan-Topal B, Gürbüz MM, Ozkan SA, Sınağ A. Recent trends in core/shell nanoparticles: their enzyme-based electrochemical biosensor applications. Mikrochim Acta 2024; 191:240. [PMID: 38573400 PMCID: PMC10994877 DOI: 10.1007/s00604-024-06305-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 03/09/2024] [Indexed: 04/05/2024]
Abstract
Improving novel and efficient biosensors for determining organic/inorganic compounds is a challenge in analytical chemistry for clinical diagnosis and research in biomedical sciences. Electrochemical enzyme-based biosensors are one of the commercially successful groups of biosensors that make them highly appealing because of their low cost, high selectivity, and sensitivity. Core/shell nanoparticles have emerged as versatile platforms for developing enzyme-based electrochemical biosensors due to their unique physicochemical properties and tunable surface characteristics. This study provides a comprehensive review of recent trends and advancements in the utilization of core/shell nanoparticles for the development of enzyme-based electrochemical biosensors. Moreover, a statistical evaluation of the studies carried out in this field between 2007 and 2023 is made according to the preferred electrochemical techniques. The recent applications of core/shell nanoparticles in enzyme-based electrochemical biosensors were summarized to quantify environmental pollutants, food contaminants, and clinical biomarkers. Additionally, the review highlights recent innovations and strategies to improve the performance of enzyme-based electrochemical biosensors using core/shell nanoparticles. These include the integration of nanomaterials with specific functions such as hydrophilic character, chemical and thermal stability, conductivity, biocompatibility, and catalytic activity, as well as the development of new hybrid nanostructures and multifunctional nanocomposites.
Collapse
Affiliation(s)
- Selva Bilge
- Department of Chemistry, Ankara University, 06100, Besevler, Ankara, Turkey.
| | - Burcu Dogan-Topal
- Faculty of Pharmacy, Department of Analytical Chemistry, Ankara University, 06560, Ankara, Turkey
| | - Manolya Müjgan Gürbüz
- Faculty of Pharmacy, Department of Analytical Chemistry, Ankara University, 06560, Ankara, Turkey
| | - Sibel A Ozkan
- Faculty of Pharmacy, Department of Analytical Chemistry, Ankara University, 06560, Ankara, Turkey.
| | - Ali Sınağ
- Faculty of Engineering, Department of Food Engineering, Istanbul Aydın University, 34307, Kücükcekmece, Istanbul, Turkey
| |
Collapse
|
35
|
German N, Popov A, Ramanaviciene A. Reagentless Glucose Biosensor Based on Combination of Platinum Nanostructures and Polypyrrole Layer. BIOSENSORS 2024; 14:134. [PMID: 38534241 DOI: 10.3390/bios14030134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/22/2024] [Accepted: 02/29/2024] [Indexed: 03/28/2024]
Abstract
Two types of low-cost reagentless electrochemical glucose biosensors based on graphite rod (GR) electrodes were developed. The electrodes modified with electrochemically synthesized platinum nanostructures (PtNS), 1,10-phenanthroline-5,6-dione (PD), glucose oxidase (GOx) without and with a polypyrrole (Ppy) layer-(i) GR/PtNS/PD/GOx and (ii) GR/PtNS/PD/GOx/Ppy, respectively, were prepared and tested. Glucose biosensors based on GR/PtNS/PD/GOx and GR/PtNS/PD/GOx/Ppy electrodes were characterized by the sensitivity of 10.1 and 5.31 μA/(mM cm2), linear range (LR) up to 16.5 and 39.0 mM, limit of detection (LOD) of 0.198 and 0.561 mM, good reproducibility, and storage stability. The developed glucose biosensors based on GR/PtNS/PD/GOx/Ppy electrodes showed exceptional resistance to interfering compounds and proved to be highly efficient for the determination of glucose levels in blood serum.
Collapse
Affiliation(s)
- Natalija German
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre for Innovative Medicine, Santariskiu 5, LT-08406 Vilnius, Lithuania
| | - Anton Popov
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre for Innovative Medicine, Santariskiu 5, LT-08406 Vilnius, Lithuania
- NanoTechnas-Center of Nanotechnology and Materials Science, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko str. 243, LT-03225 Vilnius, Lithuania
| | - Almira Ramanaviciene
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre for Innovative Medicine, Santariskiu 5, LT-08406 Vilnius, Lithuania
- NanoTechnas-Center of Nanotechnology and Materials Science, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko str. 243, LT-03225 Vilnius, Lithuania
| |
Collapse
|
36
|
Zamudio Cañas R, Jaramillo Flores ME, Vallejo Ruiz V, Delgado Macuil RJ, López Gayou V. Detection of Sialic Acid to Differentiate Cervical Cancer Cell Lines Using a Sambucus nigra Lectin Biosensor. BIOSENSORS 2024; 14:34. [PMID: 38248411 PMCID: PMC10812977 DOI: 10.3390/bios14010034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/28/2023] [Accepted: 01/08/2024] [Indexed: 01/23/2024]
Abstract
Pap smear screening is a widespread technique used to detect premalignant lesions of cervical cancer (CC); however, it lacks sensitivity, leading to identifying biomarkers that improve early diagnosis sensitivity. A characteristic of cancer is the aberrant sialylation that involves the abnormal expression of α2,6 sialic acid, a specific carbohydrate linked to glycoproteins and glycolipids on the cell surface, which has been reported in premalignant CC lesions. This work aimed to develop a method to differentiate CC cell lines and primary fibroblasts using a novel lectin-based biosensor to detect α2,6 sialic acid based on attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) and chemometric. The biosensor was developed by conjugating gold nanoparticles (AuNPs) with 5 µg of Sambucus nigra (SNA) lectin as the biorecognition element. Sialic acid detection was associated with the signal amplification in the 1500-1350 cm-1 region observed by the surface-enhanced infrared absorption spectroscopy (SEIRA) effect from ATR-FTIR results. This region was further analyzed for the clustering of samples by applying principal component analysis (PCA) and confidence ellipses at a 95% interval. This work demonstrates the feasibility of employing SNA biosensors to discriminate between tumoral and non-tumoral cells, that have the potential for the early detection of premalignant lesions of CC.
Collapse
Affiliation(s)
- Ricardo Zamudio Cañas
- Laboratorio de Bionanotecnología, Centro de Investigación en Biotecnología Aplicada, Instituto Politécnico Nacional (IPN-CIBA), Tepetitla 90700, Mexico; (R.Z.C.); (R.J.D.M.)
| | - María Eugenia Jaramillo Flores
- Laboratorio de Biopolímeros, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (IPN-ENCB), Ciudad de México 07738, Mexico;
| | - Verónica Vallejo Ruiz
- Laboratorio de Biología Molecular, Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social, Metepec 74360, Mexico;
| | - Raúl Jacobo Delgado Macuil
- Laboratorio de Bionanotecnología, Centro de Investigación en Biotecnología Aplicada, Instituto Politécnico Nacional (IPN-CIBA), Tepetitla 90700, Mexico; (R.Z.C.); (R.J.D.M.)
| | - Valentín López Gayou
- Laboratorio de Bionanotecnología, Centro de Investigación en Biotecnología Aplicada, Instituto Politécnico Nacional (IPN-CIBA), Tepetitla 90700, Mexico; (R.Z.C.); (R.J.D.M.)
| |
Collapse
|
37
|
Cui J, Luo Q, Wei C, Deng X, Liang H, Wei J, Gong Y, Tang Q, Zhang K, Liao X. Electrochemical biosensing for E.coli detection based on triple helix DNA inhibition of CRISPR/Cas12a cleavage activity. Anal Chim Acta 2024; 1285:342028. [PMID: 38057050 DOI: 10.1016/j.aca.2023.342028] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/08/2023] [Accepted: 11/11/2023] [Indexed: 12/08/2023]
Abstract
BACKGROUND Escherichia coli (E.coli) is both a commensal and a foodborne pathogenic bacterium in the human gastrointestinal tract, posing significant potential risks to human health and food safety. However, one of the major challenges in E.coli detection lies in the preparation and storage of antibodies. In traditional detection methods, antibodies are indispensable, but their instability often leads to experimental complexity and increased false positives. This underscores the need for new technologies and novel sensors. Therefore, the development of a simple and sensitive method for analyzing E.coli would make significant contributions to human health and food safety. RESULTS We constructed an electrochemical biosensor based on triple-helical DNA and entropy-driven amplification reaction (EDC) to inhibit the cleavage activity of Cas12a, enabling high-specificity detection of E.coli. Replacing antibodies with nucleic acid aptamers (Apt) as recognition elements, we utilized the triple-helical DNA generated by the binding of DNA2 and DNA5/DNA6 double-helical DNA through the entropy-driven amplification reaction to inhibit the collateral cleavage activity of clustered regularly interspaced short palindromic repeats gene editing system (CRISPR) and its associated proteins (Cas). By converting E.coli into electrical signals and recording signal changes in the form of square wave voltammetry (SWV), rapid detection of E.coli was achieved. Optimization of experimental conditions and data detection under the optimal conditions provided high sensitivity, low detection limits, and high specificity. SIGNIFICANCE With a minimal detection limit of 5.02 CFU/mL and a linear range of 1 × 102 - 1 × 107 CFU/mL, the suggested approach was successfully verified to analyze E.coli at various concentrations. Additionally, after examining E.coli samples from pure water and pure milk, the recoveries ranged between 95.76 and 101.20%, demonstrating the method's applicability. Additionally, it provides a feasible research direction for the detection of pathogenic bacteria causing other diseases using the CRISPR/Cas gene editing system.
Collapse
Affiliation(s)
- Jiuying Cui
- Guangxi key laboratory of basic and translational research of Bone and joint Degenerative Disease, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China
| | - Qisheng Luo
- Guangxi key laboratory of basic and translational research of Bone and joint Degenerative Disease, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China
| | - Cheng Wei
- Guangxi key laboratory of basic and translational research of Bone and joint Degenerative Disease, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China
| | - Xiandong Deng
- Guangxi key laboratory of basic and translational research of Bone and joint Degenerative Disease, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China
| | - Hongqu Liang
- Guangxi key laboratory of basic and translational research of Bone and joint Degenerative Disease, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China
| | - Jihua Wei
- Guangxi key laboratory of basic and translational research of Bone and joint Degenerative Disease, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China
| | - Yuanxun Gong
- Guangxi key laboratory of basic and translational research of Bone and joint Degenerative Disease, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China
| | - Qianli Tang
- Guangxi key laboratory of basic and translational research of Bone and joint Degenerative Disease, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China.
| | - Kai Zhang
- School of Chemistry and Materials Science, Nanjing University of Information Science and Technology. Nanjing, 210044, P. R. China.
| | - Xianjiu Liao
- School of Pharmacy, Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China.
| |
Collapse
|
38
|
Ray R, Rakesh A, Singh S, Madhyastha H, Mani NK. Hair and Nail-On-Chip for Bioinspired Microfluidic Device Fabrication and Biomarker Detection. Crit Rev Anal Chem 2023:1-27. [PMID: 38133962 DOI: 10.1080/10408347.2023.2291825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
The advent of biosensors has tremendously increased our potential of identifying and solving important problems in various domains, ranging from food safety and environmental analysis, to healthcare and medicine. However, one of the most prominent drawbacks of these technologies, especially in the biomedical field, is to employ conventional samples, such as blood, urine, tissue extracts and other body fluids for analysis, which suffer from the drawbacks of invasiveness, discomfort, and high costs encountered in transportation and storage, thereby hindering these products to be applied for point-of-care testing that has garnered substantial attention in recent years. Therefore, through this review, we emphasize for the first time, the applications of switching over to noninvasive sampling techniques involving hair and nails that not only circumvent most of the aforementioned limitations, but also serve as interesting alternatives in understanding the human physiology involving minimal costs, equipment and human interference when combined with rapidly advancing technologies, such as microfluidics and organ-on-a-chip to achieve miniaturization on an unprecedented scale. The coalescence between these two fields has not only led to the fabrication of novel microdevices involving hair and nails, but also function as robust biosensors for the detection of biomarkers, chemicals, metabolites and nucleic acids through noninvasive sampling. Finally, we have also elucidated a plethora of futuristic innovations that could be incorporated in such devices, such as expanding their applications in nail and hair-based drug delivery, their potential in serving as next-generation wearable sensors and integrating these devices with machine-learning for enhanced automation and decentralization.
Collapse
Affiliation(s)
- Rohitraj Ray
- Department of Bioengineering (BE), Indian Institute of Science Bangalore, Bengaluru, Karnataka, India
| | - Amith Rakesh
- Microfluidics, Sensors and Diagnostics (μSenD) Laboratory, Centre for Microfluidics, Biomarkers, Photoceutics and Sensors (μBioPS), Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka 576 104, India
| | - Sheetal Singh
- Microfluidics, Sensors and Diagnostics (μSenD) Laboratory, Centre for Microfluidics, Biomarkers, Photoceutics and Sensors (μBioPS), Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka 576 104, India
| | - Harishkumar Madhyastha
- Department of Cardiovascular Physiology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Naresh Kumar Mani
- Microfluidics, Sensors and Diagnostics (μSenD) Laboratory, Centre for Microfluidics, Biomarkers, Photoceutics and Sensors (μBioPS), Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka 576 104, India
| |
Collapse
|
39
|
Shao P, Dong D, Huang Y, Wang Y, Pan L, Zhu Q, Wu Z, Jiang F, Wei W. Aptamer-Based Functionalized SERS Biosensor for Rapid and Ultrasensitive Detection of Gastric Cancer-Related Biomarkers. Int J Nanomedicine 2023; 18:7523-7532. [PMID: 38106450 PMCID: PMC10723598 DOI: 10.2147/ijn.s434854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/02/2023] [Indexed: 12/19/2023] Open
Abstract
Background Gastric cancer (GC) as is the second deadliest malignancy still lacks rapid, simple and economical detection and early clinical screening techniques. Surface-enhanced Raman spectroscopy (SERS) is a spectroscopic technique based on the surface plasmon resonance of precious metal nanoparticles, which can effectively detect low-abundance tumor markers. Combining SERS technology with sensors has high potential in the diagnosis and screening of GC. Methods A novel Au/Si nano-umbrella array (Au/SiNUA) was prepared as a SERS substrate and the substrate was functionalized using the corresponding tumor marker aptamers for the detection of clinical biological samples using a one-step recognition release mechanism. Optimization of aptamer and complementary chain concentrations and detection time for optimal sensor preparation. Results Au/SiNUA were tested to have good SERS enhancement activity. The proposed aptamer biosensor has good specificity and stability, with a low detection time of 18 min and a limit of detection (LOD) at the fM level, which is superior to most of the methods reported so far; and the accuracy of the clinical assay is comparable to that of the ELISA method. The expression levels of PDGF-B and thrombin in the serum of GC patients and healthy individuals can be effectively detected and differentiated. Conclusion The ultrasensitive and specific aptamer biosensor is highly feasible for the diagnosis and screening of GC and has good application prospects.
Collapse
Affiliation(s)
- Ping Shao
- Department of Spleen and Stomach Diseases, Yixing Traditional Chinese Medicine Hospital, Wuxi, 214200, People’s Republic of China
| | - Danyang Dong
- Department of Spleen and Stomach Diseases, Yixing Traditional Chinese Medicine Hospital, Wuxi, 214200, People’s Republic of China
| | - Yong Huang
- Department of General Surgery, Jiangdu People’s Hospital Affiliated to Yangzhou University, Yangzhou, 225200, People’s Republic of China
| | - Yan Wang
- Department of Spleen and Stomach Diseases, Yixing Traditional Chinese Medicine Hospital, Wuxi, 214200, People’s Republic of China
| | - Lian Pan
- Pathology Department, Yixing Traditional Chinese Medicine Hospital, Wuxi, 214200, People’s Republic of China
| | - Qunshan Zhu
- Department of General Surgery, Jiangdu People’s Hospital Affiliated to Yangzhou University, Yangzhou, 225200, People’s Republic of China
| | - Zheng Wu
- Department of General Surgery, Jiangdu People’s Hospital Affiliated to Yangzhou University, Yangzhou, 225200, People’s Republic of China
| | - Fengjuan Jiang
- Department of Gastroenterology, Jiangdu People’s Hospital Affiliated to Yangzhou University, Yangzhou, 225200, People’s Republic of China
| | - Wei Wei
- Department of General Surgery, Jiangdu People’s Hospital Affiliated to Yangzhou University, Yangzhou, 225200, People’s Republic of China
| |
Collapse
|
40
|
Zare AA, Naderi-Manesh H, Naghib SM, Shamsipur M, Molaabasi F. Label-free electrochemical cancer cell detection leveraging hemoglobin-encapsulated silver nanoclusters and Cu-MOF nanohybrids on a graphene-assisted dual-modal probe. Sci Rep 2023; 13:21980. [PMID: 38082024 PMCID: PMC10713537 DOI: 10.1038/s41598-023-49418-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 12/07/2023] [Indexed: 12/18/2023] Open
Abstract
Breast cancer detection at an early stage significantly increases the chances of successful treatment and survival. This study presents an electrochemical biosensor for detecting breast cancer cells, utilizing silver nanoclusters encapsulated by hemoglobin and Cu (II)-porphyrin-metal organic framework (BioMOF) in a graphene-incorporated nanohybrid probe. This Hb-AgNCs@MOF-G probe demonstrates high electrochemical activity, superior dispersity, porosity, and a large surface area for effective functionalization. Using a green ultrasonic-assisted stirring method, we fabricate ultra-small 5 nm particles that readily immobilize on a glassy carbon electrode, generating a detection signal when interacting with ferricyanide/ferrocyanide redox probes. The resulting immunosensor detects as few as 2 cells/mL using Electrochemical Impedance Spectroscopy (EIS) "signal on" and 16 cells/mL via Square Wave Voltammetry (SWV) "signal off", within a broad range of cell concentrations (102-5 × 104 cells/mL). Our designed sensor shows improved selectivity (5- to 16-fold) and robust detection in human blood with a recovery efficiency between 94.8-106% (EIS method) and 95.4-111% (SWV method). This sensor could streamline early cancer diagnosis and monitor patient treatment without requiring labelling or signal amplification. As a pioneering endeavor, we've utilized integrated porous MOFs with Hb-encapsulated silver nanoclusters in cancer detection, where these components collectively enhance the overall functionality.
Collapse
Affiliation(s)
- Ali-Akbar Zare
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hossein Naderi-Manesh
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Seyed Morteza Naghib
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran, Iran
| | | | - Fatemeh Molaabasi
- Biomaterials and Tissue Engineering Research Group, Department of Interdisciplinary Technologies, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran.
| |
Collapse
|
41
|
Lafi Z, Gharaibeh L, Nsairat H, Asha N, Alshaer W. Aptasensors: employing molecular probes for precise medical diagnostics and drug monitoring. Bioanalysis 2023; 15:1439-1460. [PMID: 37847048 DOI: 10.4155/bio-2023-0141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023] Open
Abstract
Accurate detection and monitoring of therapeutic drug levels are vital for effective patient care and treatment management. Aptamers, composed of single-stranded DNA or RNA molecules, are integral components of biosensors designed for both qualitative and quantitative detection of biological samples. Aptasensors play crucial roles in target identification, validation, detection of drug-target interactions and screening potential of drug candidates. This review focuses on the pivotal role of aptasensors in early disease detection, particularly in identifying biomarkers associated with various diseases such as cancer, infectious diseases and cardiovascular disorders. Aptasensors have demonstrated exceptional potential in enhancing disease diagnostics and monitoring therapeutic drug levels. Aptamer-based biosensors represent a transformative technology in the field of healthcare, enabling precise diagnostics, drug monitoring and disease detection.
Collapse
Affiliation(s)
- Zainab Lafi
- Pharmacological & Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, 19328, Jordan
| | - Lobna Gharaibeh
- Pharmacological & Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, 19328, Jordan
| | - Hamdi Nsairat
- Pharmacological & Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, 19328, Jordan
| | - Nisreen Asha
- Cell Therapy Center, The University of Jordan, Amman, 11942, Jordan
| | - Walhan Alshaer
- Cell Therapy Center, The University of Jordan, Amman, 11942, Jordan
| |
Collapse
|
42
|
Kloss EB, Givens A, Palombo L, Bernards J, Niederberger B, Bennett DW, Kelly KR. Validation of Polar Grit X Pro for Estimating Energy Expenditure during Military Field Training: A Pilot Study. J Sports Sci Med 2023; 22:658-666. [PMID: 38045749 PMCID: PMC10690511 DOI: 10.52082/jssm.2023.658] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/27/2023] [Indexed: 12/05/2023]
Abstract
Wearables are lightweight, portable technology devices that are traditionally used to monitor physical activity and workload as well as basic physiological parameters such as heart rate. However recent advances in monitors have enabled better algorithms for estimation of caloric expenditure from heart rate for use in weight loss as well as sport performance. can be used for estimating energy expenditure and nutritional demand. Recently, the military has adopted the use of personal wearables for utilization in field studies for ecological validity of training. With popularity of use, the need for validation of these devices for caloric estimates is needed to assist in work-rest cycles. Thus the purpose of this effort was to evaluate the Polar Grit X for energy expenditure (EE) for use in military training exercises. Polar Grit X Pro watches were worn by active-duty elite male operators (N = 16; age: 31.7 ± 5.0 years, height: 180.1 ± 6.2 cm, weight: 91.7 ± 9.4 kg). Metrics were measured against indirect calorimetry of a metabolic cart and heart rate via a Polar heart rate monitor chest strap while exercising on a treadmill. Participants each performed five 10-minute bouts of running at a self-selected speed and incline to maintain a heart rate within one of five heart rate zones, as ordered and defined by Polar. Polar Grit X Pro watch had a good to excellent interrater reliability to indirect calorimetry at estimating energy expenditure (ICC = 0.8, 95% CI = 0.61-0.89, F (74,17.3) = 11.76, p < 0.0001) and a fair to good interrater reliability in estimating macronutrient partitioning (ICC = 0.49, 95% CI = 0.3-0.65, F (74,74.54) = 2.98, p < 0.0001). There is a strong relationship between energy expenditure as estimated from the Polar Grit X Pro and measured through indirect calorimetry. The Polar Grit X Pro watch is a suitable tool for estimating energy expenditure in free-living participants in a field setting and at a range of exercise intensities.
Collapse
Affiliation(s)
- Emily B Kloss
- Applied Translational Exercise and Metabolic Physiology Team, Warfighter Performance Department, Naval Health Research Center, San Diego, CA, USA
- Leidos, Inc., San Diego, CA, USA
| | - Andrea Givens
- Applied Translational Exercise and Metabolic Physiology Team, Warfighter Performance Department, Naval Health Research Center, San Diego, CA, USA
- Leidos, Inc., San Diego, CA, USA
| | - Laura Palombo
- Applied Translational Exercise and Metabolic Physiology Team, Warfighter Performance Department, Naval Health Research Center, San Diego, CA, USA
- Leidos, Inc., San Diego, CA, USA
| | - Jake Bernards
- Applied Translational Exercise and Metabolic Physiology Team, Warfighter Performance Department, Naval Health Research Center, San Diego, CA, USA
- Leidos, Inc., San Diego, CA, USA
| | - Brenda Niederberger
- Applied Translational Exercise and Metabolic Physiology Team, Warfighter Performance Department, Naval Health Research Center, San Diego, CA, USA
| | - Daniel W Bennett
- Applied Translational Exercise and Metabolic Physiology Team, Warfighter Performance Department, Naval Health Research Center, San Diego, CA, USA
- Leidos, Inc., San Diego, CA, USA
| | - Karen R Kelly
- Applied Translational Exercise and Metabolic Physiology Team, Warfighter Performance Department, Naval Health Research Center, San Diego, CA, USA
| |
Collapse
|
43
|
Kumar A, Ramamoorthy S, Sundaramurthy A. Synthesis of Ag nanoparticles for selective dual detection of glutathione and dopamine using N, N-dimethyl-p-phenylenediamine mediated colorimetric probe. CHEMOSPHERE 2023; 342:140124. [PMID: 37709058 DOI: 10.1016/j.chemosphere.2023.140124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 08/08/2023] [Accepted: 09/07/2023] [Indexed: 09/16/2023]
Abstract
We report a simple and easy method to synthesize Ag nanoparticles (Ag NPs) and demonstrate its potential for the detection of glutathione (GSH) and dopamine (DA) via colorimetric assay. The Ag NPs were found to be monodispersed and spherical with a size of 5 ± 2 nm. The X-ray diffraction (XRD) and high resolution transmission electron microscopy (HR-TEM) investigations revealed the formation of crystalline Ag NPs. The colour of N, N-dimethyl-p-phenylenediamine assay changed from dark pink to colourless when the concentration of GSH was increased from 1 to 40 μM. Notably, the suspension colour changed from dark pink to blue when a similar set of experiments were performed with DA. The UV/Visible and interference experiments of Ag NPs exhibited excellent sensitivity and selectivity against both GSH and DA even after the addition of 40 μM of different interference biomolecules. The calculated limit of detection (LOD) was 141 and 245 nM for GSH and DA, respectively. The real-time analysis with serum samples showed satisfactory recovery percentages of >95 and 80-90% for GSH and DA, respectively. Hence, the Ag NPs reported here have huge potential to serve as a sensitive and selective colorimetric sensor for the detection of GSH and DA for diverse applications ranging from catalysis to cancer therapy and theranostics.
Collapse
Affiliation(s)
- Akash Kumar
- Department of Physics and Nanotechnology, College of Engineering and Technology, SRM Institute of Science and Technology, Chengalpattu 603203, Tamil Nadu, India
| | - Sharmiladevi Ramamoorthy
- Department of Physics and Nanotechnology, College of Engineering and Technology, SRM Institute of Science and Technology, Chengalpattu 603203, Tamil Nadu, India
| | - Anandhakumar Sundaramurthy
- Biomaterials Research Laboratory (BMRL), College of Engineering and Technology, Department of Chemical Engineering, SRM Institute of Science and Technology, Chengalpattu 603203, Tamil Nadu, India.
| |
Collapse
|
44
|
Ayati MH, Araj-Khodaei M, Haghgouei T, Ahmadalipour A, Mobed A, Sanaie S. Biosensors: The nanomaterial-based method in detection of human gut microbiota. MATERIALS CHEMISTRY AND PHYSICS 2023; 307:127854. [DOI: 10.1016/j.matchemphys.2023.127854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
|
45
|
Richardson KM, Jospe MR, Saleh AA, Clarke TN, Bedoya AR, Behrens N, Marano K, Cigan L, Liao Y, Scott ER, Guo JS, Aguinaga A, Schembre SM. Use of Biological Feedback as a Health Behavior Change Technique in Adults: Scoping Review. J Med Internet Res 2023; 25:e44359. [PMID: 37747766 PMCID: PMC10562972 DOI: 10.2196/44359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 07/26/2023] [Accepted: 08/03/2023] [Indexed: 09/26/2023] Open
Abstract
BACKGROUND Recent advancements in personal biosensing technology support the shift from standardized to personalized health interventions, whereby biological data are used to motivate health behavior change. However, the implementation of interventions using biological feedback as a behavior change technique has not been comprehensively explored. OBJECTIVE The purpose of this review was to (1) map the domains of research where biological feedback has been used as a behavior change technique and (2) describe how it is implemented in behavior change interventions for adults. METHODS A comprehensive systematic search strategy was used to query 5 electronic databases (Ovid MEDLINE, Elsevier Embase, Cochrane Central Register of Controlled Trials, EBSCOhost PsycINFO, and ProQuest Dissertations & Theses Global) in June 2021. Eligible studies were primary analyses of randomized controlled trials (RCTs) in adults that incorporated biological feedback as a behavior change technique. DistillerSR was used to manage the literature search and review. RESULTS After removing 49,500 duplicates, 50,287 articles were screened and 767 articles were included. The earliest RCT was published in 1972 with a notable increase in publications after 2000. Biological feedback was most used in RCTs aimed at preventing or managing diabetes (n=233, 30.4%), cardiovascular disease (n=175, 22.8%), and obesity (n=115, 15%). Feedback was often given on multiple biomarkers and targeted multiple health behaviors. The most common biomarkers used were anthropometric measures (n=297, 38.7%), blood pressure (n=238, 31%), and glucose (n=227, 29.6%). The most targeted behaviors were diet (n=472, 61.5%), physical activity (n=417, 54.4%), and smoking reduction (n=154, 20.1%). The frequency and type of communication by which biological feedback was provided varied by the method of biomarker measurement. Of the 493 (64.3%) studies where participants self-measured their biomarker, 476 (96.6%) received feedback multiple times over the intervention and 468 (94.9%) received feedback through a biosensing device. CONCLUSIONS Biological feedback is increasingly being used to motivate behavior change, particularly where relevant biomarkers can be readily assessed. Yet, the methods by which biological feedback is operationalized in intervention research varied, and its effectiveness remains unclear. This scoping review serves as the foundation for developing a guiding framework for effectively implementing biological feedback as a behavior change technique. TRIAL REGISTRATION Open Science Framework Registries; https://doi.org/10.17605/OSF.IO/YP5WAd. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID) RR2-10.2196/32579.
Collapse
Affiliation(s)
- Kelli M Richardson
- School of Nutritional Sciences and Wellness, College of Agriculture, Life and Environmental Sciences, University of Arizona, Tucson, AZ, United States
| | - Michelle R Jospe
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, United States
| | - Ahlam A Saleh
- Arizona Health Sciences Library, University of Arizona, Tucson, AZ, United States
| | - Thanatcha Nadia Clarke
- Department of Physiology, College of Medicine, University of Arizona, Tucson, AZ, United States
| | - Arianna R Bedoya
- Department of Internal Medicine, College of Medicine - Phoenix, University of Arizona, Tucson, AZ, United States
| | - Nick Behrens
- Department of Ecology and Evolutionary Biology, College of Science, University of Arizona, Tucson, AZ, United States
| | - Kari Marano
- College of Nursing, University of Arizona, Tucson, AZ, United States
| | - Lacey Cigan
- School of Nutritional Sciences and Wellness, College of Agriculture, Life and Environmental Sciences, University of Arizona, Tucson, AZ, United States
| | - Yue Liao
- Department of Kinesiology, College of Nursing and Health Innovation, University of Texas at Arlington, Arlington, TX, United States
| | - Eric R Scott
- Communications & Cyber Technologies, Arizona Experiment Station, University of Arizona, Tucson, AZ, United States
| | - Jessica S Guo
- Communications & Cyber Technologies, Arizona Experiment Station, University of Arizona, Tucson, AZ, United States
| | - April Aguinaga
- Arizona Health Sciences Library, University of Arizona, Tucson, AZ, United States
| | - Susan M Schembre
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, United States
| |
Collapse
|
46
|
Wang B, Huang D, Weng Z. Recent Advances in Polymer-Based Biosensors for Food Safety Detection. Polymers (Basel) 2023; 15:3253. [PMID: 37571147 PMCID: PMC10422505 DOI: 10.3390/polym15153253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/22/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
The excessive use of pesticides and drugs, coupled with environmental pollution, has resulted in the persistence of contaminants on food. These pollutants tend to accumulate in humans through the food chain, posing a significant threat to human health. Therefore, it is crucial to develop rapid, low-cost, portable, and on-site biosensors for detecting food contaminants. Among various biosensors, polymer-based biosensors have emerged as promising probes for detection of food contaminants in recent years, due to their various functions such as target binding, enrichment, and simple signal reading. This paper aims to discuss the characteristics of five types of food pollutants-heavy metals, pesticide residues, pathogenic bacteria, allergens, and antibiotics-and their adverse effects on human health. Additionally, this paper focuses on the principle of polymer-based biosensors and their latest applications in detecting these five types of food contaminants in actual food samples. Furthermore, this review briefly examines the future prospects and challenges of biosensors for food safety detection. The insights provided in this review will facilitate the development of biosensors for food safety detection.
Collapse
Affiliation(s)
- Binhui Wang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China;
| | - Da Huang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China;
| | - Zuquan Weng
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China;
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| |
Collapse
|
47
|
Shen Y, Wang L, Ding Y, Liu S, Li Y, Zhou Z, Liang Y. Trends in the Analysis and Exploration of per- and Polyfluoroalkyl Substances (PFAS) in Environmental Matrices: A Review. Crit Rev Anal Chem 2023; 54:3171-3195. [PMID: 37410543 DOI: 10.1080/10408347.2023.2231535] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) is an emerging class of organic pollutants of concern and is now prevalent in environmental matrices including water, soil, air, and biological. So far, several standard analytical methods have been developed to systematically analyze PFAS in different environmental matrices. However, the complexity of environmental matrices makes the effective extraction of PFAS difficult, and the legacy PFAS is gradually changing into a new PFAS with short chain and unknown structure in production, which makes the analysis of PFAS challenging. In this review, the following aspects are summarized: (1) the advances in standard analytical methods for PFAS in different environmental matrices, and further generalizes the updating novel extraction and detection methods; (2) the analysis of unknown PFAS, the suspect and non-targeted screening analysis method of PFAS based on high-resolution mass spectrometry (HRMS) is systematically described.
Collapse
Affiliation(s)
- Yunxiang Shen
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan, PR China
| | - Ling Wang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan, PR China
| | - Yi Ding
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan, PR China
| | - Shunman Liu
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan, PR China
| | - Yuan Li
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan, PR China
| | - Zhen Zhou
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan, PR China
- Department of Chemistry, Wuhan University, Wuhan, PR China
| | - Yong Liang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan, PR China
| |
Collapse
|
48
|
Zheng Y, Liu C, Lai NYG, Wang Q, Xia Q, Sun X, Zhang S. Current development of biosensing technologies towards diagnosis of mental diseases. Front Bioeng Biotechnol 2023; 11:1190211. [PMID: 37456720 PMCID: PMC10342212 DOI: 10.3389/fbioe.2023.1190211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 06/16/2023] [Indexed: 07/18/2023] Open
Abstract
The biosensor is an instrument that converts the concentration of biomarkers into electrical signals for detection. Biosensing technology is non-invasive, lightweight, automated, and biocompatible in nature. These features have significantly advanced medical diagnosis, particularly in the diagnosis of mental disorder in recent years. The traditional method of diagnosing mental disorders is time-intensive, expensive, and subject to individual interpretation. It involves a combination of the clinical experience by the psychiatrist and the physical symptoms and self-reported scales provided by the patient. Biosensors on the other hand can objectively and continually detect disease states by monitoring abnormal data in biomarkers. Hence, this paper reviews the application of biosensors in the detection of mental diseases, and the diagnostic methods are divided into five sub-themes of biosensors based on vision, EEG signal, EOG signal, and multi-signal. A prospective application in clinical diagnosis is also discussed.
Collapse
Affiliation(s)
- Yuhan Zheng
- Faculty of Science and Engineering, University of Nottingham Ningbo China, Ningbo, China
- Ningbo Research Center, Ningbo Innovation Center, Zhejiang University, Ningbo, China
- Robotics Institute, Ningbo University of Technology, Ningbo, China
| | - Chen Liu
- Faculty of Science and Engineering, University of Nottingham Ningbo China, Ningbo, China
- Ningbo Research Center, Ningbo Innovation Center, Zhejiang University, Ningbo, China
| | - Nai Yeen Gavin Lai
- Faculty of Science and Engineering, University of Nottingham Ningbo China, Ningbo, China
| | - Qingfeng Wang
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, Ningbo, China
| | - Qinghua Xia
- Ningbo Research Center, Ningbo Innovation Center, Zhejiang University, Ningbo, China
| | - Xu Sun
- Faculty of Science and Engineering, University of Nottingham Ningbo China, Ningbo, China
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, Ningbo, China
| | - Sheng Zhang
- Faculty of Science and Engineering, University of Nottingham Ningbo China, Ningbo, China
- Ningbo Research Center, Ningbo Innovation Center, Zhejiang University, Ningbo, China
- School of Mechanical Engineering, Zhejiang University, Hangzhou, China
| |
Collapse
|
49
|
Wang X, Mohsin A, Sun Y, Li C, Zhuang Y, Wang G. From Spatial-Temporal Multiscale Modeling to Application: Bridging the Valley of Death in Industrial Biotechnology. Bioengineering (Basel) 2023; 10:744. [PMID: 37370675 DOI: 10.3390/bioengineering10060744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/13/2023] [Accepted: 06/19/2023] [Indexed: 06/29/2023] Open
Abstract
The Valley of Death confronts industrial biotechnology with a significant challenge to the commercialization of products. Fortunately, with the integration of computation, automation and artificial intelligence (AI) technology, the industrial biotechnology accelerates to cross the Valley of Death. The Fourth Industrial Revolution (Industry 4.0) has spurred advanced development of intelligent biomanufacturing, which has evolved the industrial structures in line with the worldwide trend. To achieve this, intelligent biomanufacturing can be structured into three main parts that comprise digitalization, modeling and intellectualization, with modeling forming a crucial link between the other two components. This paper provides an overview of mechanistic models, data-driven models and their applications in bioprocess development. We provide a detailed elaboration of the hybrid model and its applications in bioprocess engineering, including strain design, process control and optimization, as well as bioreactor scale-up. Finally, the challenges and opportunities of biomanufacturing towards Industry 4.0 are also discussed.
Collapse
Affiliation(s)
- Xueting Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology (ECUST), Shanghai 200237, China
| | - Ali Mohsin
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology (ECUST), Shanghai 200237, China
| | - Yifei Sun
- Key Laboratory of Smart Manufacturing in Energy Chemical Process, Ministry of Education, East China University of Science and Technology (ECUST), Shanghai 200237, China
| | - Chao Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology (ECUST), Shanghai 200237, China
| | - Yingping Zhuang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology (ECUST), Shanghai 200237, China
| | - Guan Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology (ECUST), Shanghai 200237, China
| |
Collapse
|
50
|
Aliqab K, Dave K, Sorathiya V, Alsharari M, Armghan A. Numerical analysis of Phase change material and graphene-based tunable refractive index sensor for infrared frequency spectrum. Sci Rep 2023; 13:7653. [PMID: 37169848 PMCID: PMC10175499 DOI: 10.1038/s41598-023-34859-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 05/09/2023] [Indexed: 05/13/2023] Open
Abstract
Here, we present the findings of parametric analysis into a phase transition material Ge2Sb2Te5(GST)-based, graphene-based, with a wide dynamic range in the infrared and visible electromagnetic spectrum. The suggested structure is studied in multi-layered configurations, built up with layers of GST, graphene, silicon, and silver materials. These multilayer structures' reflectance behavior has been described for refractive indices between 1.3 and 2.5. The complete design is simulated using a computational process called the finite element method. Additionally, we have investigated the impact of material heights on the structure's performance in general. We have presented several resonating tracing curves in polynomial equations to determine the sensing behavior across a specific wavelength range and refractive index values. The proposed design is also investigated at various inclined angles of incidence to ascertain its wide-angle stability. A computational study of the proposed structure can assist in the evolution of biosensors to identify a wide range of biomolecules, including malignant, hemoglobin urine, saliva-cortisol, and glucose.
Collapse
Affiliation(s)
- Khaled Aliqab
- Department of Electrical Engineering. College of Engineering, Jouf University, Sakaka, 72388, Saudi Arabia.
| | - Kavan Dave
- Department of Information and Communication Technology, Marwadi University, Rajkot, India
| | - Vishal Sorathiya
- Faculty of Engineering and Technology, Parul Institute of Engineering and Technology, Parul University, Waghodia Road, Vadodara, 391 760, Gujarat, India
| | - Meshari Alsharari
- Department of Electrical Engineering. College of Engineering, Jouf University, Sakaka, 72388, Saudi Arabia
| | - Ammar Armghan
- Department of Electrical Engineering. College of Engineering, Jouf University, Sakaka, 72388, Saudi Arabia.
| |
Collapse
|