1
|
Khazaeel K, Sadeghi A, Khademi Moghaddam F, Mohammadi T. The impact of graphene quantum dots on osteogenesis potential of Wharton's jelly mesenchymal stem cells in fibrin hydrogel scaffolds. Cytotechnology 2025; 77:14. [PMID: 39665046 PMCID: PMC11628478 DOI: 10.1007/s10616-024-00672-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 11/26/2024] [Indexed: 12/13/2024] Open
Abstract
Bone tissue engineering is a promising approach to overcome the limitations of traditional autograft bone transplantation. Graphene quantum dots (GQDs) have been suggested as an enhancement for osteogenic differentiation. This study aimed to investigate the ability of the fibrin hydrogel scaffold in the presence of graphene quantum dots to promote osteogenic differentiation of human Wharton's jelly-derived mesenchymal stem cells (hWJ-MSCs). The hWJ-MSCs were isolated from the Wharton's jelly of the human umbilical cord using a mechanical method. Fibrin hydrogel scaffolds were prepared by mixing 15 µl of thrombin solution with fibrinogen solution. GQDs were incorporated into the scaffolds at concentrations of 0, 5, and 10 µg/ml. Cell viability was determined through DAPI staining and the MTT assay. Osteogenic differentiation was assessed by measuring alkaline phosphatase (ALP) activity, quantifying calcium deposition using Alizarin Red S staining, and analyzing the gene expression of BGLAP, COL1A1, Runx-2 and ALP via qPCR. Scanning electron microscopy (SEM) was employed to analyze the scaffold architecture. SEM analysis revealed that the fibrin hydrogel exhibited a suitable architecture for tissue engineering, and DAPI staining confirmed cell viability. The MTT results indicated that the GQDs and fibrin hydrogel scaffold exhibited no cytotoxic effects. Furthermore, the incorporation of GQDs at a concentration of 10 µg/ml significantly enhanced ALP activity, calcium deposition, and the expression of osteogenesis-related genes compared to the control. The findings suggest that the combination of fibrin hydrogel and GQDs can effectively promote the osteogenic differentiation of hWJ-MSCs, contributing to the advancement of bone tissue engineering.
Collapse
Affiliation(s)
- Kaveh Khazaeel
- Department of Basic Sciences, Division of Anatomy and Embryology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
- Stem Cells and Transgenic Technology Research Center (STTRC), Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Abbas Sadeghi
- Department of Basic Sciences, Division of Anatomy and Embryology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | | | - Tayebeh Mohammadi
- Department of Basic Sciences, Faculty of Veterinary Medicine, Razi University, Kermanshah, Iran
| |
Collapse
|
2
|
Zhou T, C. Cavalcante R, Ge C, Franceschi RT, Ma PX. Synthetic helical peptides on nanofibers to activate cell-surface receptors and synergistically enhance critical-sized bone defect regeneration. Bioact Mater 2025; 43:98-113. [PMID: 39381328 PMCID: PMC11458538 DOI: 10.1016/j.bioactmat.2024.08.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/15/2024] [Accepted: 08/17/2024] [Indexed: 10/10/2024] Open
Abstract
More than 500,000 bone grafting procedures are performed annually in the USA. Considering the significant limitations of available bone grafts, we previously invented a phase-separation technology to generate nanofibrous poly(l-lactic acid) (PLLA) scaffolds that mimic the bone matrix collagen in nanofiber geometry and enhance bone regeneration. Here we report the development of nanofibrous scaffolds with covalently attached synthetic peptides that mimic native collagen peptides to activate the two main collagen receptors in bone cells, discoidin domain receptor 2 (DDR2) and β1 integrins. We synthesized a PLLA-based graft-copolymer to enable covalent peptide conjugation via a click reaction. Using PLLA and the graft-copolymer, we developed 3D scaffolds with interconnected pores and peptides-containing nanofibers to activate DDR2 and β1 integrins of osteogenic cells. The degradation rate and mechanical properties of the scaffolds are tunable. The peptides-decorated nanofibrous scaffolds demonstrated 7.8 times more mineralized bone regeneration over the control scaffolds without the peptides in a critical-sized bone defect regeneration model after 8 weeks of implantation, showing a synergistic effect of the two peptides. This study demonstrates the power of scaffolds to mimic ECM at both nanometer and molecular levels, activating cell surface receptors to liberate the innate regenerative potential of host stem/progenitor cells.
Collapse
Affiliation(s)
- Tongqing Zhou
- Macromolecular Science and Engineering Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Rafael C. Cavalcante
- Department of Biologic and Materials Sciences & Prosthodontics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Chunxi Ge
- Department of Periodontics and Oral Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Renny T. Franceschi
- Department of Periodontics and Oral Medicine, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Peter X. Ma
- Macromolecular Science and Engineering Center, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Biologic and Materials Sciences & Prosthodontics, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
3
|
Zhang Y, Xu C, Huang Y, Tan D, Luo W, Zhang Y, Tan Y. Establishment of immortalized rabbit bone marrow mesenchymal stem cells and a preliminary study of their osteogenic differentiation capability. Animal Model Exp Med 2024; 7:824-834. [PMID: 39592420 DOI: 10.1002/ame2.12513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 10/23/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND A stable and standardized source of mesenchymal stem cells is a prerequisite for bone repair tissue engineering research and application. We aimed to establish a stable cell line of bone marrow mesenchymal stem cells from New Zealand rabbits and explore their osteogenic differentiation capacity. METHODS Primary rabbit bone marrow mesenchymal stem cells (RBMSCs) were isolated and immortalized via retroviral expression of SV40 Large T antigen (LTA). To assess the osteogenic differentiation capacity of the cells in vitro, we studied the alkaline phosphatase (ALP) expression level and calcium deposition in bone morphogenetic protein 9 (BMP9)-induced immortalized cells using ALP staining and quantification, as well as alizarin red staining. Ectopic bone formation by the cells was assessed using micro-computed tomography (μCT) and histological examination. RESULTS The immortalized cell line we established using SV40 LTA, which we termed iRBMSCs, was non-tumorigenic and maintained long-term proliferative activity. We further discovered that BMP9 (MOI = 30) effectively induced the osteogenic differentiation capacity of iRBMSCs in vitro, and there was a synergy with GelMA hydrogel in inducing osteogenic differentiation of the iRBMSCs in vivo. CONCLUSION We confirmed that iRBMSCs are promising as a stable cell line source for bone defect repair engineering.
Collapse
Affiliation(s)
- Yao Zhang
- Laboratory of Animal Center, Chongqing Medical University, Chongqing, China
| | - Chang Xu
- Laboratory of Animal Center, Chongqing Medical University, Chongqing, China
| | - Yun Huang
- Laboratory of Animal Center, Chongqing Medical University, Chongqing, China
| | - Dongmei Tan
- Laboratory of Animal Center, Chongqing Medical University, Chongqing, China
| | - Wenping Luo
- Laboratory of Animal Center, Southwest University, Chongqing, China
| | - Yan Zhang
- Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Yi Tan
- Laboratory of Animal Center, Chongqing Medical University, Chongqing, China
| |
Collapse
|
4
|
Guda T, Stukel Shah JM, Lundquist BD, Macaitis JM, Pérez ML, Pfau-Cloud MR, Beltran FO, Schmitt CW, Corbin EM, Grunlan MA, Lien W, Wang HC, Burdette AJ. An In Vivo Assessment of Different Mesenchymal Stromal Cell Tissue Types and Their Differentiation State on a Shape Memory Polymer Scaffold for Bone Regeneration. J Biomed Mater Res B Appl Biomater 2024; 112:e35516. [PMID: 39607370 DOI: 10.1002/jbm.b.35516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 10/16/2024] [Accepted: 11/16/2024] [Indexed: 11/29/2024]
Abstract
A combined biomaterial and cell-based solution to heal critical size bone defects in the craniomaxillofacial area is a promising alternative therapeutic option to improve upon autografting, the current gold standard. A shape memory polymer (SMP) scaffold, composed of biodegradable poly(ε-caprolactone) and coated with bioactive polydopamine, was evaluated with mesenchymal stromal cells (MSCs) derived from adipose (ADSC), bone marrow (BMSC), or umbilical cord (UCSC) tissue in their undifferentiated state or pre-differentiated toward osteoblasts for bone healing in a rat calvarial defect model. Pre-differentiating ADSCs and UCSCs resulted in higher new bone volume fraction (15.69% ± 1.64%) compared to empty (i.e., untreated) defects and scaffold-only (i.e., unseeded) groups (4.41% ± 1.11%). Notably, only differentiated UCSCs exhibited a significant increase in new bone volume, surpassing both undifferentiated UCSCs and unseeded scaffolds. Further, differentiated ADSCs and UCSCs had significantly higher trabecular numbers than their undifferentiated counterparts, unseeded scaffolds, and untreated defects. Although the mineral density regenerated within the unseeded scaffold surpassed that achieved with cell seeding, the connectivity of this bone was diminished, as the regenerated tissue confined itself to the spherical morphology of the scaffold pores. The SMP scaffold alone, with undifferentiated BMSCs, with undifferentiated and differentiated ADSCs, and differentiated UCSCs (29.72 ± 1.49 N) demonstrated significant osseointegration compared to empty defects (14.34 ± 2.21 N) after 12 weeks of healing when assessed by mechanical push-out testing. Based on these results and tissue availability to obtain the cells, pre-differentiated ADSCs and UCSCs emerge as particularly promising candidates when paired with the SMP scaffold for repairing critical size bone defects in the craniofacial skeleton.
Collapse
Affiliation(s)
- Teja Guda
- Department of Biomedical Engineering and Chemical Engineering, University of Texas San Antonio, San Antonio, Texas, USA
| | | | | | | | - Mística Lozano Pérez
- Department of Biomedical Engineering and Chemical Engineering, University of Texas San Antonio, San Antonio, Texas, USA
| | - Michaela R Pfau-Cloud
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA
| | - Felipe O Beltran
- Department of Materials Science & Engineering, Texas A&M University, College Station, Texas, USA
| | - Connie W Schmitt
- Air Force Research Laboratory, 711th Human Performance Wing, Airman Systems Directorate, Bioeffects Division, Veterinary Science Branch, San Antonio, Texas, USA
| | - Emily M Corbin
- Air Force Research Laboratory, 711th Human Performance Wing, Airman Systems Directorate, Bioeffects Division, Veterinary Science Branch, San Antonio, Texas, USA
| | - Melissa A Grunlan
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA
- Department of Materials Science & Engineering, Texas A&M University, College Station, Texas, USA
- Department of Chemistry, Texas A&M University, College Station, Texas, USA
| | - Wen Lien
- USAF Dental Research & Consultation Service, San Antonio, USA
| | - Heuy-Ching Wang
- Naval Medical Research Unit San Antonio, San Antonio, Texas, USA
| | | |
Collapse
|
5
|
Golebiowska AA, Intravaia JT, Sathe V, Kumbar SG, Nukavarapu SP. Engineered Osteochondral Scaffolds with Bioactive Cartilage Zone for Enhanced Articular Cartilage Regeneration. Ann Biomed Eng 2024:10.1007/s10439-024-03655-1. [PMID: 39602036 DOI: 10.1007/s10439-024-03655-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 11/18/2024] [Indexed: 11/29/2024]
Abstract
Despite progress, osteochondral (OC) tissue engineering strategies face limitations in terms of articular cartilage layer development and its integration with the underlying bone tissue. The main objective of this study is to develop a zonal OC scaffold with native biochemical signaling in the cartilage zone to promote articular cartilage development devoid of cells and growth factors. Herein, we report the development and in vivo assessment of a novel gradient and zonal-structured scaffold for OC defect regeneration. The scaffold system is composed of a mechanically supportive 3D-printed template containing decellularized cartilage extracellular matrix (ECM) biomaterial in the cartilage zone that possesses bioactive characteristics, such as chemotactic activity and native tissue biochemical composition. OC scaffolds with a bioactive cartilage zone were implanted in vivo in a rabbit osteochondral defect model and assessed for gross morphology, matrix deposition, cellular distribution, and overall tissue regeneration. The scaffold system supported recruitment and infiltration of host cells into the cartilage zone of the graft, which led to increased ECM deposition and physiologically relevant articular cartilage tissue formation. Semi-quantitative ICRS scoring (overall score double for OC scaffold with bioactive cartilage zone compared to PLA scaffold) further confirm the bioactive scaffold enhanced articular cartilage engineering. This strategy of designing bioactive scaffolds to promote endogenous cellular infiltration can be a much simpler and effective approach for OC tissue repair and regeneration.
Collapse
Affiliation(s)
- Aleksandra A Golebiowska
- Department of Biomedical Engineering, University of Connecticut, 260 Glenbrook Road, Unit 3247, Storrs, CT, 06269, USA
| | - Jonathon T Intravaia
- Department of Biomedical Engineering, University of Connecticut, 260 Glenbrook Road, Unit 3247, Storrs, CT, 06269, USA
| | - Vinayak Sathe
- Department of Orthopaedic Surgery, University of Connecticut Health, Farmington, CT, 06032, USA
| | - Sangamesh G Kumbar
- Department of Biomedical Engineering, University of Connecticut, 260 Glenbrook Road, Unit 3247, Storrs, CT, 06269, USA
- Department of Materials Science & Engineering, University of Connecticut, Storrs, CT, 06269, USA
- Department of Orthopaedic Surgery, University of Connecticut Health, Farmington, CT, 06032, USA
| | - Syam P Nukavarapu
- Department of Biomedical Engineering, University of Connecticut, 260 Glenbrook Road, Unit 3247, Storrs, CT, 06269, USA.
- Department of Materials Science & Engineering, University of Connecticut, Storrs, CT, 06269, USA.
- Department of Orthopaedic Surgery, University of Connecticut Health, Farmington, CT, 06032, USA.
| |
Collapse
|
6
|
Fan Y, Sun J, Fan W, Zhong X, Yin Z, Su B, Yao J, Hong X, Zhai J, Wang Z, Chen H, Guo F, Wen X, Ning C, Chen L, Yu P. Three-Dimensional Semiconductor Network as Regulators of Energy Metabolism Drives Angiogenesis in Bone Regeneration. ACS NANO 2024; 18:32602-32616. [PMID: 39530623 DOI: 10.1021/acsnano.4c09971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Insufficient vascularization is a primary cause of bone implantation failure. The management of energy metabolism is crucial for the achievement of vascularized osseointegration. In light of the bone semiconductor property and the electric property of semiconductor heterojunctions, a three-dimensional semiconductor heterojunction network (3D-NTBH) implant has been devised with the objective of regulating cellular energy metabolism, thereby driving angiogenesis for bone regeneration. The three-dimensional heterojunction interfaces facilitate electron transfer and establish internal electric fields at the nanoscale interfaces. The 3D-NTBH was found to noticeably accelerate glycolysis in endothelial cells, thereby rapidly providing energy to support cellular metabolic activities and ultimately driving angiogenesis within the bone tissue. Molecular dynamic simulations have demonstrated that the 3D-NTBH facilitates the exposure of fibronectin's Arg-Gly-Asp peptide binding site, thereby regulating the glycolysis of endothelial cells. Further evidence suggests that 3D-NTBH promotes early vascular network reconstruction and bone regeneration in vivo. The findings of this research offer a promising research perspective for the design of vascularizing implants.
Collapse
Affiliation(s)
- Youzhun Fan
- School of Materials Science and Engineering, Guangdong Engineering Technology Research Center of Metallic Materials Surface Functionalization, National Engineering Research Center for Tissue Restoration and Reconstruction, Medical Devices Research and Testing Center, South China University of Technology, Guangzhou 510641, China
| | - Jiwei Sun
- Department of Stomatology, School of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Wenjie Fan
- Department of Stomatology, School of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Xianwei Zhong
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, South China University of Technology, Guangzhou 510641, China
| | - Zhaoyi Yin
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Bin Su
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jing Yao
- Department of Stomatology, School of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Xinyu Hong
- Department of Stomatology, School of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Jinxia Zhai
- School of Materials Science and Engineering, Guangdong Engineering Technology Research Center of Metallic Materials Surface Functionalization, National Engineering Research Center for Tissue Restoration and Reconstruction, Medical Devices Research and Testing Center, South China University of Technology, Guangzhou 510641, China
| | - Zhengao Wang
- School of Materials Science and Engineering, Guangdong Engineering Technology Research Center of Metallic Materials Surface Functionalization, National Engineering Research Center for Tissue Restoration and Reconstruction, Medical Devices Research and Testing Center, South China University of Technology, Guangzhou 510641, China
| | - Haoyan Chen
- School of Materials Science and Engineering, Guangdong Engineering Technology Research Center of Metallic Materials Surface Functionalization, National Engineering Research Center for Tissue Restoration and Reconstruction, Medical Devices Research and Testing Center, South China University of Technology, Guangzhou 510641, China
| | - Fengyuan Guo
- Department of Stomatology, School of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Xiufang Wen
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, South China University of Technology, Guangzhou 510641, China
| | - Chengyun Ning
- School of Materials Science and Engineering, Guangdong Engineering Technology Research Center of Metallic Materials Surface Functionalization, National Engineering Research Center for Tissue Restoration and Reconstruction, Medical Devices Research and Testing Center, South China University of Technology, Guangzhou 510641, China
| | - Lili Chen
- Department of Stomatology, School of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Peng Yu
- School of Materials Science and Engineering, Guangdong Engineering Technology Research Center of Metallic Materials Surface Functionalization, National Engineering Research Center for Tissue Restoration and Reconstruction, Medical Devices Research and Testing Center, South China University of Technology, Guangzhou 510641, China
| |
Collapse
|
7
|
Li Y, Zhao Z, Huang Q, Luo C, Chen W, Gao X, Wang K, Li Z, Liu L. Preparation and properties of polydimethylsiloxane-regulated oriented microporous poly ( L-lactic acid) biomimetic bone repair materials. Int J Biol Macromol 2024; 280:136189. [PMID: 39362433 DOI: 10.1016/j.ijbiomac.2024.136189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/13/2024] [Accepted: 09/29/2024] [Indexed: 10/05/2024]
Abstract
Despite the exceptional biocompatibility and degradability of Poly (L-lactic acid) (PLLA), its brittleness, low melting strength, and poor bone induction makes it challenging to utilize for bone repair. This study used a simple, efficient solid hot drawing (SHD) method to produce high-strength PLLA, using supercritical CO2 (SC-CO2) foaming technology to give PLLA a bionic microporous structure to enhance its toughness, while precisely controlling micropore homogeneity and improving the melt strength by using Polydimethylsiloxane (PDMS). This PDMS-regulated oriented microporous structure resembled that of natural bone, displaying a maximum tensile strength of 165.9 MPa and a maximum elongation at break of 164.2 %. Furthermore, this bionic structure promoted the polarization of mouse bone marrow macrophages (iBMDM), exhibiting a simultaneous pro- and anti-inflammatory effect. This structure also contributed to the adhesion and growth of mouse embryonic fibroblasts (NIH-3 T3), promoting osteogenic differentiation, which paved the way for developing degradable PLLA bone-repair load-bearing materials.
Collapse
Affiliation(s)
- Yihong Li
- School of Material Science and Engineering of Xihua University, Chengdu 610039, China
| | - Zhixin Zhao
- School of Material Science and Engineering of Xihua University, Chengdu 610039, China
| | - Qingyi Huang
- School of Material Science and Engineering of Xihua University, Chengdu 610039, China
| | - Cenyi Luo
- School of Material Science and Engineering of Xihua University, Chengdu 610039, China
| | - Wei Chen
- School of Material Science and Engineering of Xihua University, Chengdu 610039, China
| | - Xiaoyan Gao
- Sichuan Institute for Drug Control, Chengdu 610017, China
| | - Kailong Wang
- FAW-Volkswagen Automotive Co. Ltd., Chengdu 610100, China
| | - Zhengqiu Li
- School of Material Science and Engineering of Xihua University, Chengdu 610039, China.
| | - Lei Liu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China.
| |
Collapse
|
8
|
Kanniyappan H, Sundaram MK, Ravikumar A, Chakraborty S, Gnanamani A, Mani U, Kumar N, Muthuvijayan V. Enhancing bone repair through improved angiogenesis and osteogenesis using mesoporous silica nanoparticle-loaded Konjac glucomannan-based interpenetrating network scaffolds. Int J Biol Macromol 2024; 279:135182. [PMID: 39216566 DOI: 10.1016/j.ijbiomac.2024.135182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/17/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
We have fabricated and characterized novel bioactive nanocomposite interpenetrating polymer network (IPN) scaffolds to treat bone defects by loading mesoporous silica nanoparticles (MSNs) into blends of Konjac glucomannan, polyvinyl alcohol, and polycaprolactone. By loading MSNs, we developed a porous nanocomposite scaffold with mechanical strengths comparable to cancellous bone. In vitro cell culture studies proved the cytocompatibility of the nanocomposite scaffolds. RT-PCR studies confirmed that these scaffolds significantly upregulated major osteogenic markers. The in vivo chick chorioallantoic membrane (CAM) assay confirmed the proangiogenic activity of the nanocomposite IPN scaffolds. In vivo studies were performed using Wistar rats to evaluate the scaffolds' compatibility, osteogenic activity, and proangiogenic properties. Liver and renal function tests confirmed that these scaffolds were nontoxic. X-ray and μ-CT results show that the bone defects treated with the nanocomposite scaffolds healed at a much faster rate compared to the untreated control and those treated with IPN scaffolds. H&E and Masson's trichrome staining showed angiogenesis near the newly formed bone and the presence of early-stage connective tissues, fibroblasts, and osteoblasts in the defect region at 8 weeks after surgery. Hence, these advantageous physicochemical and biological properties confirm that the nanocomposite IPN scaffolds are ideal for treating bone defects.
Collapse
Affiliation(s)
- Hemalatha Kanniyappan
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Manoj Kumar Sundaram
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Akhil Ravikumar
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Sudip Chakraborty
- School of Chemistry, The University of New South Wales, Sydney, NSW 2052, Australia
| | - A Gnanamani
- Microbiology Lab, CSIR-Central Leather Research Institute, Chennai 600020, India
| | - U Mani
- Animal House, CSIR-Central Leather Research Institute, Chennai 600020, India
| | - Naresh Kumar
- School of Chemistry, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Vignesh Muthuvijayan
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India.
| |
Collapse
|
9
|
Lu YC, Chang TK, Lin TC, Yeh ST, Lin HS, Cheng QP, Huang CH, Fang HW, Huang CH. Potential role of calcium sulfate/β-tricalcium phosphate/graphene oxide nanocomposite for bone graft application_mechanical and biological analyses. J Orthop Surg Res 2024; 19:644. [PMID: 39396014 PMCID: PMC11470679 DOI: 10.1186/s13018-024-05142-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 10/04/2024] [Indexed: 10/14/2024] Open
Abstract
BACKGROUND Bone grafts are extensively used for repairing bone defects and voids in orthopedics and dentistry. Moldable bone grafts offer a promising solution for treating irregular bone defects, which are often difficult to fill with traditional rigid grafts. However, practical applications have been limited by insufficient mechanical strength and rapid degradation. METHODS This study developed a ceramic composite bone graft composed of calcium sulfate (CS), β-tricalcium phosphate (β-TCP) with/without graphene oxide (GO) nano-particles. The biomechanical properties, degradation rate, and in-vitro cellular responses were investigated. In addition, the graft was implanted in-vivo in a critical-sized calvarial defect model. RESULTS The results showed that the compressive strength significantly improved by 135% and the degradation rate slowed by 25.5% in comparison to the control model. The addition of GO nanoparticles also improved cell compatibility and promoted osteogenic differentiation in the in-vitro cell culture study and was found to be effective at promoting bone repair in the in-vivo animal model. CONCLUSIONS The mixed ceramic composites presented in this study can be considered as a promising alternative for bone graft applications.
Collapse
Affiliation(s)
- Yung-Chang Lu
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
- Department of Orthopaedic Surgery, MacKay Memorial Hospital, Taipei, Taiwan
| | - Ting-Kuo Chang
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
- Department of Orthopaedic Surgery, MacKay Memorial Hospital, Taipei, Taiwan
| | - Tzu-Chiao Lin
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
| | - Shu-Ting Yeh
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
| | - Hung-Shih Lin
- Department of Neurosurgery, Show Chwan Memorial Hospital, Changhua, Taiwan
| | - Qiao-Ping Cheng
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, Taiwan
| | - Chun-Hsiung Huang
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
- Department of Orthopaedic Surgery, MacKay Memorial Hospital, Taipei, Taiwan
- Department of Orthopaedic Surgery, Changhua Christian Hospital, Changhua, Taiwan
| | - Hsu-Wei Fang
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, Taiwan.
| | - Chang-Hung Huang
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan.
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan.
- Department of Orthopaedic Surgery, MacKay Memorial Hospital, Taipei, Taiwan.
- School of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
10
|
Chow SKH, Gao Q, Pius A, Morita M, Ergul Y, Murayama M, Shinohara I, Cekuc MS, Ma C, Susuki Y, Goodman SB. The Advantages and Shortcomings of Stem Cell Therapy for Enhanced Bone Healing. Tissue Eng Part C Methods 2024; 30:415-430. [PMID: 39311464 DOI: 10.1089/ten.tec.2024.0252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024] Open
Abstract
This review explores the regenerative potential of key progenitor cell types and therapeutic strategies to improve healing of complex fractures and bone defects. We define, summarize, and discuss the differentiation potential of totipotent, pluripotent, and multipotent stem cells, emphasizing the advantages and shortcomings of cell therapy for bone repair and regeneration. The fundamental role of mesenchymal stem cells is highlighted due to their multipotency to differentiate into the key lineage cells including osteoblasts, osteocytes, and chondrocytes, which are crucial for bone formation and remodeling. Hematopoietic stem cells (HSCs) also play a significant role; immune cells such as macrophages and T-cells modulate inflammation and tissue repair. Osteoclasts are multinucleated cells that are important to bone remodeling. Vascular progenitor (VP) cells are critical to oxygen and nutrient supply. The dynamic interplay among these lineages and their microenvironment is essential for effective bone restoration. Therapies involving cells that are more than "minimally manipulated" are controversial and include embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs). ESCs, derived from early-stage embryos, possess pluripotent capabilities and have shown promise in preclinical studies for bone healing. iPSCs, reprogrammed from somatic cells, offer personalized medicine applications and can differentiate into various tissue-specific cell lines. Minimally manipulative cell therapy approaches such as the use of bone marrow aspirate concentrate (BMAC), exosomes, and various biomaterials for local delivery are explored for their effectiveness in bone regeneration. BMAC, which contains mostly immune cells but few mesenchymal and VPs, probably improves bone healing by facilitating paracrine-mediated intercellular communication. Exosome isolation harnesses the biological signals and cellular by-products that are a primary source for cell crosstalk and activation. Safe, efficacious, and cost-effective strategies to enhance bone healing using novel cellular therapies are part of a changing paradigm to modulate the inflammatory, repair, and regenerative pathways to achieve earlier more robust tissue healing and improved physical function. Impact Statement Stem cell therapy holds immense potential for bone healing due to its ability to regenerate damaged tissue. Nonmanipulated bone marrow aspirate contains mesenchymal stem cells that promote bone repair and reduce healing time. Induced pluripotent stem cells offer the advantage of creating patient-specific cells that can differentiate into osteoblasts, aiding in bone regeneration. Other delivery methods, such as scaffold-based techniques, enhance stem cell integration and function. Collectively, these approaches can improve treatment outcomes, reduce recovery periods, and advance our understanding of bone healing mechanisms, making them pivotal in orthopedic research and regenerative medicine.
Collapse
Affiliation(s)
- Simon Kwoon-Ho Chow
- Department of Orthopaedic Surgery, Stanford University, Stanford, California, USA
| | - Qi Gao
- Department of Orthopaedic Surgery, Stanford University, Stanford, California, USA
| | - Alexa Pius
- Department of Orthopaedic Surgery, Stanford University, Stanford, California, USA
| | - Mayu Morita
- Department of Orthopaedic Surgery, Stanford University, Stanford, California, USA
| | - Yasemin Ergul
- Department of Orthopaedic Surgery, Stanford University, Stanford, California, USA
| | - Masatoshi Murayama
- Department of Orthopaedic Surgery, Stanford University, Stanford, California, USA
| | - Issei Shinohara
- Department of Orthopaedic Surgery, Stanford University, Stanford, California, USA
| | - Mehmet Sertac Cekuc
- Department of Orthopaedic Surgery, Stanford University, Stanford, California, USA
| | - Chao Ma
- Department of Orthopaedic Surgery, Stanford University, Stanford, California, USA
| | - Yosuke Susuki
- Department of Orthopaedic Surgery, Stanford University, Stanford, California, USA
| | - Stuart B Goodman
- Department of Orthopaedic Surgery, Stanford University, Stanford, California, USA
- Department of Bioengineering, Stanford University, Stanford, California, USA
| |
Collapse
|
11
|
Todd EA, Mirsky NA, Silva BLG, Shinde AR, Arakelians ARL, Nayak VV, Marcantonio RAC, Gupta N, Witek L, Coelho PG. Functional Scaffolds for Bone Tissue Regeneration: A Comprehensive Review of Materials, Methods, and Future Directions. J Funct Biomater 2024; 15:280. [PMID: 39452579 PMCID: PMC11509029 DOI: 10.3390/jfb15100280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/13/2024] [Accepted: 09/16/2024] [Indexed: 10/26/2024] Open
Abstract
Bone tissue regeneration is a rapidly evolving field aimed at the development of biocompatible materials and devices, such as scaffolds, to treat diseased and damaged osseous tissue. Functional scaffolds maintain structural integrity and provide mechanical support at the defect site during the healing process, while simultaneously enabling or improving regeneration through amplified cellular cues between the scaffold and native tissues. Ample research on functionalization has been conducted to improve scaffold-host tissue interaction, including fabrication techniques, biomaterial selection, scaffold surface modifications, integration of bioactive molecular additives, and post-processing modifications. Each of these methods plays a crucial role in enabling scaffolds to not only support but actively participate in the healing and regeneration process in bone and joint surgery. This review provides a state-of-the-art, comprehensive overview of the functionalization of scaffold-based strategies used in tissue engineering, specifically for bone regeneration. Critical issues and obstacles are highlighted, applications and advances are described, and future directions are identified.
Collapse
Affiliation(s)
- Emily Ann Todd
- University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | | | - Bruno Luís Graciliano Silva
- Biomaterials Division, NYU Dentistry, New York, NY 10010, USA
- Department of Diagnosis and Surgery, School of Dentistry of Araraquara, São Paulo State University (UNESP), Araraquara 01049-010, Brazil
| | - Ankita Raja Shinde
- Biomaterials Division, NYU Dentistry, New York, NY 10010, USA
- Department of Mechanical and Aerospace Engineering, NYU Tandon School of Engineering, Brooklyn, NY 11201, USA
| | - Aris R. L. Arakelians
- Division of Plastic Surgery, DeWitt Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Vasudev Vivekanand Nayak
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | | | - Nikhil Gupta
- Department of Mechanical and Aerospace Engineering, NYU Tandon School of Engineering, Brooklyn, NY 11201, USA
| | - Lukasz Witek
- Biomaterials Division, NYU Dentistry, New York, NY 10010, USA
- Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn, NY 11201, USA
- Hansjörg Wyss Department of Plastic Surgery, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Paulo G. Coelho
- Division of Plastic Surgery, DeWitt Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
12
|
Shi Y, Peng J, Liu M, Qi X, Li S, Li Q, Jiang Q, Zheng L, Xu J, Zhao Y, Zhang Y. Nicotinamide mononucleotide enhances fracture healing by promoting skeletal stem cell proliferation. Theranostics 2024; 14:5999-6015. [PMID: 39346542 PMCID: PMC11426247 DOI: 10.7150/thno.98149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/04/2024] [Indexed: 10/01/2024] Open
Abstract
The process of skeletal regeneration initiated by stem cells following injury, especially in fractures, is significantly impaired by aging and adverse factors. Nicotinamide mononucleotide (NMN), a critical endogenous precursor of nicotinamide adenine dinucleotide (NAD), has garnered extensive attention for its multifaceted regulatory functions in living organisms and its wide-ranging therapeutic potential. However, whether NMN contributes to trauma-induced skeletal regeneration remains unclear. Methods: The transverse femoral shaft fracture model was employed to evaluate the potential advantages of NMN administration for overall repair during the initial fracture stages in male mice through micro-CT analysis, histochemistry, and biomechanical testing. The pro-proliferative function of NMN on skeletal stem cells (SSCs) was investigated through flow cytometry, qRT-PCR, NAD content measurement, and cell proliferation assay. Results: In this study, we observed that the administration of NMN during the initial phase of fracture in mice led to a larger callus and corresponding improvement in micro-CT parameters. NMN enhances the cartilaginous component of the callus by elevating the NAD content, consequently accelerating subsequent endochondral ossification and the fracture healing process. Subsequent analyses elucidated that NMN was beneficial in promoting the expansion of diverse stem cells in vivo and in vitro potentially via modulation of the Notch signaling pathway. Moreover, the depletion of macrophages profoundly obstructs the proliferation of SSCs. Conclusion: Our discoveries provide a potential strategy for enhancing fracture healing through stimulation of callus SSC proliferation at an early stage, shedding light on the translational value of NMN as an enhancer for skeletal regeneration and highlighting the pivotal role of macrophage-stem cell interactions in governing the regenerative influence of NMN on stem cells.
Collapse
Affiliation(s)
- Yitian Shi
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, PR China
| | - Jiayin Peng
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai 200031, PR China
| | - Mengfan Liu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, PR China
| | - Xiling Qi
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, PR China
| | - Siyu Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, PR China
| | - Qiangqiang Li
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, Jiangsu 210008, PR China
| | - Qing Jiang
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, Jiangsu 210008, PR China
| | - Liming Zheng
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310000, PR China
| | - Jiankun Xu
- Musculoskeletal Research Laboratory, Department of Orthopedics & Traumatology, The Chinese University of Hong Kong, Hong Kong 999077, PR China
| | - Yun Zhao
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai 200031, PR China
| | - Yifeng Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, PR China
- Shanghai Clinical Research and Trial Center, Shanghai 200000, PR China
| |
Collapse
|
13
|
Borciani G, Montalbano G, Perut F, Ciapetti G, Baldini N, Vitale-Brovarone C. Osteoblast and osteoclast activity on collagen-based 3D printed scaffolds enriched with strontium-doped bioactive glasses and hydroxyapatite nanorods for bone tissue engineering. Biomed Mater 2024; 19:065007. [PMID: 39173660 DOI: 10.1088/1748-605x/ad72c3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 08/22/2024] [Indexed: 08/24/2024]
Abstract
Bone tissue engineering (BTE) aims to promote bone regeneration by means of the synergistic effect of biomaterials, cells, and other factors, as potential alternative to conventional treatments for bone fractures. To this aim, a composite material was developed, based on collagen type I, strontium-enriched mesoporous bioactive glasses, and hydroxyapatite nanorods as bioactive and biomimetic components. Nanostructured scaffolds were 3D printed and subsequently chemically crosslinked with genipin to improve mechanical properties and stability. The developed nanostructured system was maintained in culture until 3 weeks with a co-culture of human bone cells to provide anex vivomodel of bone microenvironment and examine the cellular crosstalk and signaling pathways through paracrine cell activities. Human osteoblasts (OBs), derived from trabecular bone, and human osteoclast precursors (OCs), isolated from buffy coat samples were involved, with OBs seeded on the scaffold and OC precursors seeded in a transwell device. When compared to the material without inorganic components, the bioactive and biomimetic scaffold positively influenced cell proliferation and cell metabolic activity, boosting alkaline phosphatase activity of OBs, and reducing OC differentiation. Thus, the bioactive and biomimetic system promoted an enhanced cellular response, highlighting its potential application in BTE.
Collapse
Affiliation(s)
- Giorgia Borciani
- Biomedical Science and Technologies and Nanobiotechnology Lab, IRCCS Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136 Bologna, Italy
| | - Giorgia Montalbano
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Francesca Perut
- Biomedical Science and Technologies and Nanobiotechnology Lab, IRCCS Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136 Bologna, Italy
| | - Gabriela Ciapetti
- Biomedical Science and Technologies and Nanobiotechnology Lab, IRCCS Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136 Bologna, Italy
| | - Nicola Baldini
- Biomedical Science and Technologies and Nanobiotechnology Lab, IRCCS Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136 Bologna, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, via Massarenti 9, 40138 Bologna, Italy
| | - Chiara Vitale-Brovarone
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| |
Collapse
|
14
|
Kong Y, Yang Y, Hou Y, Wang Y, Li W, Song Y. Advance in the application of organoids in bone diseases. Front Cell Dev Biol 2024; 12:1459891. [PMID: 39291264 PMCID: PMC11406180 DOI: 10.3389/fcell.2024.1459891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 08/20/2024] [Indexed: 09/19/2024] Open
Abstract
Bone diseases such as osteoporosis and osteoarthritis have become important human health problems, requiring a deeper understanding of the pathogenesis of related diseases and the development of more effective treatments. Bone organoids are three-dimensional tissue masses that are useful for drug screening, regenerative medicine, and disease modeling because they may mimic the structure and physiological activities of organs. Here, we describe various potential methods for culturing bone-related organoids from different stem cells, detailing the construction processes and highlighting the main applications of these bone organoid models. The application of bone organoids in different skeletal diseases is highlighted, and current and promising bone organoids for drug screening and regenerative medicine as well as the latest technological advancements in bone organoids are discussed, while the future development of bone organoids is discussed. Looking forward, it will provide a reference for constructing bone organoids with more complete structures and functions and applying them to biomedical research.
Collapse
Affiliation(s)
- Yajie Kong
- Department of Orthopedics, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yujia Yang
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yu Hou
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yuzhong Wang
- Department of Orthopedics, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Wenjing Li
- Department of Oral Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yongzhou Song
- Department of Orthopedics, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Key Laboratory of Rare Disease, Shijiazhuang, Hebei, China
| |
Collapse
|
15
|
Siverino C, Metsemakers WJ, Sutter R, Della Bella E, Morgenstern M, Barcik J, Ernst M, D'Este M, Joeris A, Chittò M, Schwarzenberg P, Stoddart M, Vanvelk N, Richards G, Wehrle E, Weisemann F, Zeiter S, Zalavras C, Varga P, Moriarty TF. Clinical management and innovation in fracture non-union. Expert Opin Biol Ther 2024; 24:973-991. [PMID: 39126182 DOI: 10.1080/14712598.2024.2391491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/18/2024] [Accepted: 08/08/2024] [Indexed: 08/12/2024]
Abstract
INTRODUCTION With the introduction and continuous improvement in operative fracture fixation, even the most severe bone fractures can be treated with a high rate of successful healing. However, healing complications can occur and when healing fails over prolonged time, the outcome is termed a fracture non-union. Non-union is generally believed to develop due to inadequate fixation, underlying host-related factors, or infection. Despite the advancements in fracture fixation and infection management, there is still a clear need for earlier diagnosis, improved prediction of healing outcomes and innovation in the treatment of non-union. AREAS COVERED This review provides a detailed description of non-union from a clinical perspective, including the state of the art in diagnosis, treatment, and currently available biomaterials and orthobiologics.Subsequently, recent translational development from the biological, mechanical, and infection research fields are presented, including the latest in smart implants, osteoinductive materials, and in silico modeling. EXPERT OPINION The first challenge for future innovations is to refine and to identify new clinical factors for the proper definition, diagnosis, and treatment of non-union. However, integration of in vitro, in vivo, and in silico research will enable a comprehensive understanding of non-union causes and correlations, leading to the development of more effective treatments.
Collapse
Affiliation(s)
- C Siverino
- AO Research Institute Davos, Davos Platz, Switzerland
| | - W-J Metsemakers
- Department of Trauma Surgery, University Hospitals Leuven, Leuven, Belgium
- Department of Development and Regeneration, KU Leuven - University of Leuven, Leuven, Belgium
| | - R Sutter
- Radiology Department, Balgrist University Hospital, University of Zürich, Zürich, Switzerland
| | - E Della Bella
- AO Research Institute Davos, Davos Platz, Switzerland
| | - M Morgenstern
- Center for Musculoskeletal Infections, Department of Orthopaedic and Trauma Surgery, University Hospital Basel, Basel, Switzerland
| | - J Barcik
- AO Research Institute Davos, Davos Platz, Switzerland
| | - M Ernst
- AO Research Institute Davos, Davos Platz, Switzerland
| | - M D'Este
- AO Research Institute Davos, Davos Platz, Switzerland
| | - A Joeris
- AO Innovation Translation Center, Davos Platz, Switzerland
| | - M Chittò
- AO Research Institute Davos, Davos Platz, Switzerland
| | | | - M Stoddart
- AO Research Institute Davos, Davos Platz, Switzerland
| | - N Vanvelk
- Trauma Research Unit, Department of Surgery, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - G Richards
- AO Research Institute Davos, Davos Platz, Switzerland
| | - E Wehrle
- AO Research Institute Davos, Davos Platz, Switzerland
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - F Weisemann
- Department of Trauma Surgery, BG Unfallklinik Murnau, Murnau am Staffelsee, Germany
| | - S Zeiter
- AO Research Institute Davos, Davos Platz, Switzerland
| | - C Zalavras
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - P Varga
- AO Research Institute Davos, Davos Platz, Switzerland
| | - T F Moriarty
- AO Research Institute Davos, Davos Platz, Switzerland
- Center for Musculoskeletal Infections, Department of Orthopaedic and Trauma Surgery, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
16
|
Marecik S, Pudełko-Prażuch I, Balasubramanian M, Ganesan SM, Chatterjee S, Pielichowska K, Kandaswamy R, Pamuła E. Effect of the Addition of Inorganic Fillers on the Properties of Degradable Polymeric Blends for Bone Tissue Engineering. Molecules 2024; 29:3826. [PMID: 39202905 PMCID: PMC11356924 DOI: 10.3390/molecules29163826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/06/2024] [Accepted: 08/09/2024] [Indexed: 09/03/2024] Open
Abstract
Bone tissue exhibits self-healing properties; however, not all defects can be repaired without surgical intervention. Bone tissue engineering offers artificial scaffolds, which can act as a temporary matrix for bone regeneration. The aim of this study was to manufacture scaffolds made of poly(lactic acid), poly(ε-caprolactone), poly(propylene fumarate), and poly(ethylene glycol) modified with bioglass, beta tricalcium phosphate (TCP), and/or wollastonite (W) particles. The scaffolds were fabricated using a gel-casting method and observed with optical and scanning electron microscopes. Attenuated total reflectance-Fourier transform infrared (ATR-FTIR), differential scanning calorimetry (DSC), thermogravimetry (TG), wettability, and degradation tests were conducted. The highest content of TCP without W in the composition caused the highest hydrophilicity (water contact angle of 61.9 ± 6.3°), the fastest degradation rate (7% mass loss within 28 days), moderate ability to precipitate CaP after incubation in PBS, and no cytotoxicity for L929 cells. The highest content of W without TCP caused the highest hydrophobicity (water contact angle of 83.4 ± 1.7°), the lowest thermal stability, slower degradation (3% mass loss within 28 days), and did not evoke CaP precipitation. Moreover, some signs of cytotoxicity on day 1 were observed. The samples with both TCP and W showed moderate properties and the best cytocompatibility on day 4. Interestingly, they were covered with typical cauliflower-like hydroxyapatite deposits after incubation in phosphate-buffered saline (PBS), which might be a sign of their excellent bioactivity.
Collapse
Affiliation(s)
- Stanisław Marecik
- Department of Biomaterials and Composites, Faculty of Materials Science and Ceramics, AGH University of Krakow, Al. Mickiewicza 30, 30-059 Krakow, Poland; (S.M.); (I.P.-P.)
| | - Iwona Pudełko-Prażuch
- Department of Biomaterials and Composites, Faculty of Materials Science and Ceramics, AGH University of Krakow, Al. Mickiewicza 30, 30-059 Krakow, Poland; (S.M.); (I.P.-P.)
| | - Mareeswari Balasubramanian
- Department of Rubber and Plastics Technology, Madras Institute of Technology Campus, Anna University, Chromepet, Chennai 600 044, Tamil Nadu, India; (M.B.); (S.M.G.)
| | - Sundara Moorthi Ganesan
- Department of Rubber and Plastics Technology, Madras Institute of Technology Campus, Anna University, Chromepet, Chennai 600 044, Tamil Nadu, India; (M.B.); (S.M.G.)
| | - Suvro Chatterjee
- Department of Biotechnology, Golapbag Campus, University of Burdwan, Burdwan 713 104, West Bengal, India;
| | - Kinga Pielichowska
- Department of Biomaterials and Composites, Faculty of Materials Science and Ceramics, AGH University of Krakow, Al. Mickiewicza 30, 30-059 Krakow, Poland; (S.M.); (I.P.-P.)
| | - Ravichandran Kandaswamy
- Department of Rubber and Plastics Technology, Madras Institute of Technology Campus, Anna University, Chromepet, Chennai 600 044, Tamil Nadu, India; (M.B.); (S.M.G.)
| | - Elżbieta Pamuła
- Department of Biomaterials and Composites, Faculty of Materials Science and Ceramics, AGH University of Krakow, Al. Mickiewicza 30, 30-059 Krakow, Poland; (S.M.); (I.P.-P.)
| |
Collapse
|
17
|
Zou Y, Mei X, Wang X, Zhang X, Wang X, Xiang W, Lu N. Fibrin-konjac glucomannan-black phosphorus hydrogel scaffolds loaded with nasal ectodermal mesenchymal stem cells accelerated alveolar bone regeneration. BMC Oral Health 2024; 24:878. [PMID: 39095803 PMCID: PMC11297757 DOI: 10.1186/s12903-024-04649-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 07/23/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Effective treatments for the alveolar bone defect remain a major concern in dental therapy. The objectives of this study were to develop a fibrin and konjac glucomannan (KGM) composite hydrogel as scaffolds for the osteogenesis of nasal mucosa-derived ectodermal mesenchymal stem cells (EMSCs) for the regeneration of alveolar bone defect, and to investigate the osteogenesis-accelerating effects of black phosphorus nanoparticles (BPNs) embedded in the hydrogels. METHODS Primary EMSCs were isolated from rat nasal mucosa and used for the alveolar bone recovery. Fibrin and KGM were prepared in different ratios for osteomimetic hydrogel scaffolds, and the optimal ratio was determined by mechanical properties and biocompatibility analysis. Then, the optimal hydrogels were integrated with BPNs to obtain BPNs/fibrin-KGM hydrogels, and the effects on osteogenic EMSCs in vitro were evaluated. To explore the osteogenesis-enhancing effects of hydrogels in vivo, the BPNs/fibrin-KGM scaffolds combined with EMSCs were implanted to a rat model of alveolar bone defect. Micro-computed tomography (CT), histological examination, real-time quantitative polymerase chain reaction (RT-qPCR) and western blot were conducted to evaluate the bone morphology and expression of osteogenesis-related genes of the bone regeneration. RESULTS The addition of KGM improved the mechanical properties and biodegradation characteristics of the fibrin hydrogels. In vitro, the BPNs-containing compound hydrogel was proved to be biocompatible and capable of enhancing the osteogenesis of EMSCs by upregulating the mineralization and the activity of alkaline phosphatase. In vivo, the micro-CT analysis and histological evaluation demonstrated that rats implanted EMSCs-BPNs/fibrin-KGM hydrogels exhibited the best bone reconstruction. And compared to the model group, the expression of osteogenesis genes including osteopontin (Opn, p < 0.0001), osteocalcin (Ocn, p < 0.0001), type collagen (Col , p < 0.0001), bone morphogenetic protein-2 (Bmp2, p < 0.0001), Smad1 (p = 0.0006), and runt-related transcription factor 2 (Runx2, p < 0.0001) were all significantly upregulated. CONCLUSIONS EMSCs/BPNs-containing fibrin-KGM hydrogels accelerated the recovery of the alveolar bone defect in rats by effectively up-regulating the expression of osteogenesis-related genes, promoting the formation and mineralisation of bone matrix.
Collapse
Affiliation(s)
- Yin Zou
- Department of Stomatology, Affiliated Children's Hospital of Jiangnan University, Jiangnan University, Wuxi, Jiangsu Province, People's Republic of China
| | - Xue Mei
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, People's Republic of China
| | - Xinhe Wang
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, People's Republic of China
| | - Xuan Zhang
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, People's Republic of China
| | - Xun Wang
- Jiangnan University Medical Center, Wuxi, Jiangsu Province, People's Republic of China
| | - Wen Xiang
- Department of Hepatobiliary Surgery, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu Province, People's Republic of China
| | - Naiyan Lu
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, People's Republic of China.
| |
Collapse
|
18
|
Zhu D, Huang MF, Xu A, Gao X, Huang YW, Phan TTT, Lu L, Chi TY, Dai Y, Pang LK, Gingold JA, Tu J, Huo Z, Bazer DA, Shoemaker R, Wang J, Ambrose CG, Shen J, Kameoka J, Zhao Z, Wang LL, Zhang Y, Zhao R, Lee DF. Systematic transcriptome profiling of hPSC-derived osteoblasts unveils CORIN's mastery in governing osteogenesis through CEBPD modulation. J Biol Chem 2024; 300:107494. [PMID: 38925326 PMCID: PMC11301355 DOI: 10.1016/j.jbc.2024.107494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/21/2024] [Accepted: 06/09/2024] [Indexed: 06/28/2024] Open
Abstract
The commitment of stem cells to differentiate into osteoblasts is a highly regulated and complex process that involves the coordination of extrinsic signals and intrinsic transcriptional machinery. While rodent osteoblastic differentiation has been extensively studied, research on human osteogenesis has been limited by cell sources and existing models. Here, we systematically dissect human pluripotent stem cell-derived osteoblasts to identify functional membrane proteins and their downstream transcriptional networks involved in human osteogenesis. Our results reveal an enrichment of type II transmembrane serine protease CORIN in humans but not rodent osteoblasts. Functional analyses demonstrated that CORIN depletion significantly impairs osteogenesis. Genome-wide chromatin immunoprecipitation enrichment and mechanistic studies show that p38 MAPK-mediated CCAAT enhancer binding protein delta (CEBPD) upregulation is required for CORIN-modulated osteogenesis. Contrastingly, the type I transmembrane heparan sulfate proteoglycan SDC1 enriched in mesenchymal stem cells exerts a negative regulatory effect on osteogenesis through a similar mechanism. Chromatin immunoprecipitation-seq, bulk and single-cell transcriptomes, and functional validations indicated that CEBPD plays a critical role in controlling osteogenesis. In summary, our findings uncover previously unrecognized CORIN-mediated CEBPD transcriptomic networks in driving human osteoblast lineage commitment.
Collapse
Affiliation(s)
- Dandan Zhu
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Mo-Fan Huang
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA; The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, Texas, USA
| | - An Xu
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Xueqin Gao
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA; Linda and Mitch Hart Center for Regenerative and Personalized Medicine, Steadman Philippon Research Institute, Vail, Colorado, USA
| | - Yu-Wen Huang
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Trinh T T Phan
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Linchao Lu
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas, USA
| | - Ting-Yen Chi
- Department of Materials Science and Engineering, Texas A&M University, College Station, Texas, USA
| | - Yulin Dai
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Lon Kai Pang
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas, USA
| | - Julian A Gingold
- Department of Obstetrics & Gynecology and Women's Health, Einstein/Montefiore Medical Center, Bronx, New York, USA
| | - Jian Tu
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Zijun Huo
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Danielle A Bazer
- Department of Neurology, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York, USA
| | - Rachel Shoemaker
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA; The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, Texas, USA
| | - Jun Wang
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, Texas, USA; Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Catherine G Ambrose
- Department of Orthopedic Surgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Jingnan Shen
- Department of Musculoskeletal Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, PR China
| | - Jun Kameoka
- Department of Materials Science and Engineering, Texas A&M University, College Station, Texas, USA; Department of Electrical and Computer Engineering, Texas A&M University, College Station, College Station, Texas, USA
| | - Zhongming Zhao
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, Texas, USA; Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Lisa L Wang
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas, USA
| | - Yang Zhang
- College of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, China.
| | - Ruiying Zhao
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA.
| | - Dung-Fang Lee
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA; The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, Texas, USA; Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, Texas, USA; Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, The University of Texas Health Science Center at Houston, Houston, Texas, USA.
| |
Collapse
|
19
|
Ansari MAA, Makwana P, Dhimmar B, Vasita R, Jain PK, Nanda HS. Design and development of 3D printed shape memory triphasic polymer-ceramic bioactive scaffolds for bone tissue engineering. J Mater Chem B 2024; 12:6886-6904. [PMID: 38912967 DOI: 10.1039/d4tb00785a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Scaffolds for bone tissue engineering require considerable mechanical strength to repair damaged bone defects. In this study, we designed and developed mechanically competent composite shape memory triphasic bone scaffolds using fused filament fabrication (FFF) three dimensional (3D) printing. Wollastonite particles (WP) were incorporated into the poly lactic acid (PLA)/polycaprolactone (PCL) matrix as a reinforcing agent (up to 40 wt%) to harness osteoconductive and load-bearing properties from the 3D printed scaffolds. PCL as a minor phase (20 wt%) was added to enhance the toughening effect and induce the shape memory effect in the triphasic composite scaffolds. The 3D-printed composite scaffolds were studied for morphological, thermal, and mechanical properties, in vitro degradation, biocompatibility, and shape memory behaviour. The composite scaffold had interconnected pores of 550 μm, porosity of more than 50%, and appreciable compressive strength (∼50 MPa), which was over 90% greater than that of the pristine PLA scaffolds. The flexural strength was improved by 140% for 40 wt% of WP loading. The inclusion of WP did not affect the thermal property of the scaffolds; however, the inclusion of PCL reduced the thermal stability. An accelerated in vitro degradation was observed for WP incorporated composite scaffolds compared to pristine PLA scaffolds. The inclusion of WP improved the hydrophilic property of the scaffolds, and the result was significant for 40 wt% WP incorporated composite scaffolds having a water contact angle of 49.61°. The triphasic scaffold exhibited excellent shape recovery properties with a shape recovery ratio of ∼84%. These scaffolds were studied for their protein adsorption, cell proliferation, and bone mineralization potential. The incorporation of WP reduced the protein adsorption capacity of the composite scaffolds. The scaffold did not leach any toxic substance and demonstrated good cell viability, indicating its biocompatibility and growth-promoting behavior. The osteogenic potential of the WP incorporated scaffolds was observed in MC3T3-E1 cells, revealing early mineralization in pre-osteoblast cells cultured in different WP incorporated composite scaffolds. These results suggest that 3D-printed WP reinforced PLA/PCL composite bioactive scaffolds are promising for load bearing bone defect repair.
Collapse
Affiliation(s)
- Mohammad Aftab Alam Ansari
- Biomaterials and Biomanufacturing Laboratory (Formerly Biomedical Engineering and Technology Lab), Mechanical engineering discipline, PDPM Indian Institute of Information Technology, Design & Manufacturing Jabalpur, Jabalpur, India.
- Fused Filament Fabrication Laboratory, Mechanical engineering discipline, PDPM Indian Institute of Information Technology, Design & Manufacturing Jabalpur, Jabalpur, India.
- International Centre for Sustainable and Net Zero Technologies, PDPM-Indian Institute of Information Technology Design and Manufacturing (IIITDM) Jabalpur, Dumna Airport Road, Jabalpur-482005, MP, India
| | - Pooja Makwana
- School of Life Sciences, Central University of Gujarat, Gandhinagar, 382030, India
| | - Bindiya Dhimmar
- School of Life Sciences, Central University of Gujarat, Gandhinagar, 382030, India
| | - Rajesh Vasita
- School of Life Sciences, Central University of Gujarat, Gandhinagar, 382030, India
- Terasaki Institute for Biomedical Innovation (TIBI), 21100 Erwin St., Los Angeles, CA 91367, USA
| | - Prashant Kumar Jain
- Fused Filament Fabrication Laboratory, Mechanical engineering discipline, PDPM Indian Institute of Information Technology, Design & Manufacturing Jabalpur, Jabalpur, India.
| | - Himansu Sekhar Nanda
- Biomaterials and Biomanufacturing Laboratory (Formerly Biomedical Engineering and Technology Lab), Mechanical engineering discipline, PDPM Indian Institute of Information Technology, Design & Manufacturing Jabalpur, Jabalpur, India.
- International Centre for Sustainable and Net Zero Technologies, PDPM-Indian Institute of Information Technology Design and Manufacturing (IIITDM) Jabalpur, Dumna Airport Road, Jabalpur-482005, MP, India
- Terasaki Institute for Biomedical Innovation (TIBI), 21100 Erwin St., Los Angeles, CA 91367, USA
| |
Collapse
|
20
|
Zhong L, Sun Y, Wang C, Liu R, Ru W, Dai W, Xiong T, Zhong A, Li S. SP1 regulates BMSC osteogenic differentiation through the miR-133a-3p/MAPK3 axis : SP1 regulates osteogenic differentiation of BMSCs. J Orthop Surg Res 2024; 19:396. [PMID: 38982418 PMCID: PMC11232211 DOI: 10.1186/s13018-024-04889-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 06/29/2024] [Indexed: 07/11/2024] Open
Abstract
BACKGROUND The progression of osteoporosis (OP) can dramatically increase the risk of fractures, which seriously disturb the life of elderly individuals. Specific protein 1 (SP1) is involved in OP progression. However, the mechanism by which SP1 regulates OP progression remains unclear. OBJECTIVE This study investigated the mechanism underlying the function of SP1 in OP. METHODS SAMP6 mice were used to establish an in vivo model of age-dependent OP, and BALB/c mice were used as controls. BMSCs were extracted from two subtypes of mice. Hematoxylin and eosin staining were performed to mark the intramedullary trabecular bone structure to evaluate histological changes. ChIP assay was used to assess the targeted regulation between SP1 and miR-133a-3p. The binding sites between MAPK3 and miR-133a-3p were verified using a dual-luciferase reporter assay. The mRNA levels of miR-133a-3p and MAPK3 were detected using quantitative reverse transcription polymerase chain reaction (RT-qPCR). The protein expression of SP1, MAPK3, Colla1, OCN, and Runx2 was examined using Western blotting. Alkaline phosphatase (ALP) kit and Alizarin Red S staining were used to investigate ALP activity and mineralized nodules, respectively. RESULTS The levels of SP1 and miR-133a-3p were upregulated, whereas the expression of MAPK3 was downregulated in BMSCs from SAMP6 mice, and miR-133a-3p inhibitor accelerated osteogenic differentiation in BMSCs. SP1 directly targeted miR-133a-3p, and MAPK3 was the downstream mRNA of miR-133a-3p. Mechanically, SP1 accelerated osteogenic differentiation in BMSCs via transcriptional mediation of the miR-133a-3p/MAPK3 axis. CONCLUSION SP1 regulates osteogenic differentiation by mediating the miR-133a-3p/MAPK3 axis, which would shed new light on strategies for treating senile OP.
Collapse
Affiliation(s)
- Liying Zhong
- Department of Geriatrics, The Third Hospital of Changsha, No. 176 Laodongxi Road, Tianxin District, Changsha, Hunan Province, 410015, China
| | - Yehai Sun
- Department of Geriatrics, The Third Hospital of Changsha, No. 176 Laodongxi Road, Tianxin District, Changsha, Hunan Province, 410015, China
| | - Cong Wang
- Department of Geriatrics, The Third Hospital of Changsha, No. 176 Laodongxi Road, Tianxin District, Changsha, Hunan Province, 410015, China
| | - Runzhi Liu
- Department of Geriatrics, The Third Hospital of Changsha, No. 176 Laodongxi Road, Tianxin District, Changsha, Hunan Province, 410015, China
| | - Wenjuan Ru
- Department of Geriatrics, The Third Hospital of Changsha, No. 176 Laodongxi Road, Tianxin District, Changsha, Hunan Province, 410015, China
| | - Wei Dai
- Department of Geriatrics, The Third Hospital of Changsha, No. 176 Laodongxi Road, Tianxin District, Changsha, Hunan Province, 410015, China
| | - Ting Xiong
- Department of Geriatrics, The Third Hospital of Changsha, No. 176 Laodongxi Road, Tianxin District, Changsha, Hunan Province, 410015, China
| | - Aimin Zhong
- Department of Geriatrics, The Third Hospital of Changsha, No. 176 Laodongxi Road, Tianxin District, Changsha, Hunan Province, 410015, China
| | - Shundong Li
- Department of Geriatrics, The Third Hospital of Changsha, No. 176 Laodongxi Road, Tianxin District, Changsha, Hunan Province, 410015, China.
| |
Collapse
|
21
|
Chaverri D, Gallardo-Villares S, Pinto JA, Rodríguez L, Codinach M, García-López J, Querol S, Coll R, Vives J, Granell-Escobar F. Treatment of non-hypertrophic pseudoarthrosis of long bones with a Tissue Engineered Product loaded with autologous bone marrow-derived Mesenchymal Stromal Cells: Results from a phase IIa, prospective, randomized, parallel, pilot clinical trial comparing to iliac crest autograft. Injury 2024; 55:111596. [PMID: 38797000 DOI: 10.1016/j.injury.2024.111596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/10/2024] [Accepted: 04/27/2024] [Indexed: 05/29/2024]
Abstract
BACKGROUND Atrophic pseudoarthrosis is a serious complication with an incidence of 5-10 % of bone fractures located in the diaphysis of long bones. Standard treatments involve aggressive surgical procedures and re-interventions requiring the use of autografts from the iliac crest as a source of bone-forming biological activity (Standard of Care, SoC). In this context, regenerative ex vivo expanded osteogenic cell-based medicines could be of interest. Particularly, Mesenchymal Stromal Cells (MSC) offer new prospects to promote bone tissue repair in pseudoarthrosis by providing biological activity in an osteoconductive and osteoinductive environment. METHODS We conducted a phase IIa, prospective, randomised, parallel, two-arms, open-label with blinded assessor pilot clinical trial to compare SoC vs. a tissue-engineered product (TEP), composed of autologous bone marrow (BM)-derived MSCs loaded onto allogeneic decellularised, lyophilised spongy bone cubes, in a cohort of 20 patients with non-hypertrophic pseudoarthrosis of long bones. Patients were followed up for 12 months. Radiological bone healing was evaluated by standard X-ray and computed tomography (CT) scanning. Quality of life was measured using the EUROQOL-5D questionnaire. RESULTS Ten patients were randomized to TEP and 10 to SoC with iliac crest autograft. Manufacturing of TEP was feasible and reproducibly achieved. TEP implantation in the bone defect was successful in all cases and none of the 36 adverse events (AE) reported were related to the treatment. Efficacy analyses were performed in the Full Analysis Set (FAS) population, which included 17 patients after 3 patients withdrew from the study. The degree of consolidation, estimated by measuring Hounsfield units (HU) on CT, showed no significant differences between the two treatment groups at 12 months post treatment (main efficacy variable) (p = 0.4835) or at 6 months. CONCLUSIONS Although only a small number of patients were included in our study, it is notable that no significant differences were observed between the experimental treatment and SoC, thus suggesting TEP as an alternative where autograft is not available or contraindicated.
Collapse
Affiliation(s)
- Daniel Chaverri
- Department of Orthopaedic Surgery and Traumatology, ASEPEYO Sant Cugat Hospital, Avinguda Alcalde Barnils, 54-60, Sant Cugat del Vallès, Barcelona 08174, Spain
| | - Santiago Gallardo-Villares
- Department of Orthopaedic Surgery and Traumatology, ASEPEYO Sant Cugat Hospital, Avinguda Alcalde Barnils, 54-60, Sant Cugat del Vallès, Barcelona 08174, Spain
| | - Javier A Pinto
- Department of Diagnostic Radiology, ASEPEYO Sant Cugat Hospital, Avinguda Alcalde Barnils, 54-60, Sant Cugat del Vallès, Barcelona 08174, Spain
| | - Luciano Rodríguez
- Banc de Sang i Teixits, Edifici Dr. Frederic Duran i Jordà, Passeig Taulat, 116, 08005 Barcelona, Spain
| | - Margarita Codinach
- Banc de Sang i Teixits, Edifici Dr. Frederic Duran i Jordà, Passeig Taulat, 116, 08005 Barcelona, Spain
| | - Joan García-López
- Banc de Sang i Teixits, Edifici Dr. Frederic Duran i Jordà, Passeig Taulat, 116, 08005 Barcelona, Spain
| | - Sergi Querol
- Banc de Sang i Teixits, Edifici Dr. Frederic Duran i Jordà, Passeig Taulat, 116, 08005 Barcelona, Spain
| | - Ruth Coll
- Banc de Sang i Teixits, Edifici Dr. Frederic Duran i Jordà, Passeig Taulat, 116, 08005 Barcelona, Spain
| | - Joaquim Vives
- Banc de Sang i Teixits, Edifici Dr. Frederic Duran i Jordà, Passeig Taulat, 116, 08005 Barcelona, Spain; Musculoskeletal Tissue Engineering Group, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Passeig de la Vall d'Hebron 129-139, 08035 Barcelona, Spain; Department of Medicine, Universitat Autònoma de Barcelona, Passeig de la Vall d'Hebron 129-139, 08035 Barcelona, Spain.
| | - Fernando Granell-Escobar
- Department of Orthopaedic Surgery and Traumatology, ASEPEYO Sant Cugat Hospital, Avinguda Alcalde Barnils, 54-60, Sant Cugat del Vallès, Barcelona 08174, Spain
| |
Collapse
|
22
|
Eufrásio-da-Silva T, Erezuma I, Dolatshahi-Pirouz A, Orive G. Enhancing regenerative medicine with self-healing hydrogels: A solution for tissue repair and advanced cyborganic healthcare devices. BIOMATERIALS ADVANCES 2024; 161:213869. [PMID: 38718714 DOI: 10.1016/j.bioadv.2024.213869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/08/2024] [Accepted: 04/19/2024] [Indexed: 06/04/2024]
Abstract
Considering the global burden related to tissue and organ injuries or failures, self-healing hydrogels may be an attractive therapeutic alternative for the future. Self-healing hydrogels are highly hydrated 3D structures with the ability to self-heal after breaking, this property is attributable to a variety of dynamic non-covalent and covalent bonds that are able to re-linking within the matrix. Self-healing ability specially benefits minimal invasive medical treatments with cell-delivery support. Moreover, those tissue-engineered self-healing hydrogels network have demonstrated effectiveness for myriad purposes; for instance, they could act as delivery-platforms for different cargos (drugs, growth factors, cells, among others) in tissues such as bone, cartilage, nerve or skin. Besides, self-healing hydrogels have currently found their way into new and novel applications; for example, with the development of the self-healing adhesive hydrogels, by merely aiding surgical closing processes and by providing biomaterial-tissue adhesion. Furthermore, conductive hydrogels permit the stimuli and monitoring of natural electrical signals, which facilitated a better fitting of hydrogels in native tissue or the diagnosis of various health diseases. Lastly, self-healing hydrogels could be part of cyborganics - a merge between biology and machinery - which can pave the way to a finer healthcare devices for diagnostics and precision therapies.
Collapse
Affiliation(s)
| | - Itsasne Erezuma
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain
| | | | - Gorka Orive
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain; University Institute for Regenerative Medicine and Oral Implantology-UIRMI (UPV/EHU-Fundación Eduardo Anitua), 01007 Vitoria-Gasteiz, Spain; Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore 169856, Singapore.
| |
Collapse
|
23
|
Lau CS, Park SY, Ethiraj LP, Singh P, Raj G, Quek J, Prasadh S, Choo Y, Goh BT. Role of Adipose-Derived Mesenchymal Stem Cells in Bone Regeneration. Int J Mol Sci 2024; 25:6805. [PMID: 38928517 PMCID: PMC11204188 DOI: 10.3390/ijms25126805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Bone regeneration involves multiple factors such as tissue interactions, an inflammatory response, and vessel formation. In the event of diseases, old age, lifestyle, or trauma, bone regeneration can be impaired which could result in a prolonged healing duration or requiring an external intervention for repair. Currently, bone grafts hold the golden standard for bone regeneration. However, several limitations hinder its clinical applications, e.g., donor site morbidity, an insufficient tissue volume, and uncertain post-operative outcomes. Bone tissue engineering, involving stem cells seeded onto scaffolds, has thus been a promising treatment alternative for bone regeneration. Adipose-derived mesenchymal stem cells (AD-MSCs) are known to hold therapeutic value for the treatment of various clinical conditions and have displayed feasibility and significant effectiveness due to their ease of isolation, non-invasive, abundance in quantity, and osteogenic capacity. Notably, in vitro studies showed AD-MSCs holding a high proliferation capacity, multi-differentiation potential through the release of a variety of factors, and extracellular vesicles, allowing them to repair damaged tissues. In vivo and clinical studies showed AD-MSCs favoring better vascularization and the integration of the scaffolds, while the presence of scaffolds has enhanced the osteogenesis potential of AD-MSCs, thus yielding optimal bone formation outcomes. Effective bone regeneration requires the interplay of both AD-MSCs and scaffolds (material, pore size) to improve the osteogenic and vasculogenic capacity. This review presents the advances and applications of AD-MSCs for bone regeneration and bone tissue engineering, focusing on the in vitro, in vivo, and clinical studies involving AD-MSCs for bone tissue engineering.
Collapse
Affiliation(s)
- Chau Sang Lau
- National Dental Centre Singapore, National Dental Research Institute Singapore, Singapore 168938, Singapore; (C.S.L.); (S.Y.P.); (L.P.E.); (G.R.)
- Oral Health Academic Clinical Programme, Duke-NUS Medical School, Singapore 169857, Singapore
| | - So Yeon Park
- National Dental Centre Singapore, National Dental Research Institute Singapore, Singapore 168938, Singapore; (C.S.L.); (S.Y.P.); (L.P.E.); (G.R.)
| | - Lalith Prabha Ethiraj
- National Dental Centre Singapore, National Dental Research Institute Singapore, Singapore 168938, Singapore; (C.S.L.); (S.Y.P.); (L.P.E.); (G.R.)
- Oral Health Academic Clinical Programme, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Priti Singh
- National Dental Centre Singapore, National Dental Research Institute Singapore, Singapore 168938, Singapore; (C.S.L.); (S.Y.P.); (L.P.E.); (G.R.)
| | - Grace Raj
- National Dental Centre Singapore, National Dental Research Institute Singapore, Singapore 168938, Singapore; (C.S.L.); (S.Y.P.); (L.P.E.); (G.R.)
| | - Jolene Quek
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore; (J.Q.); (Y.C.)
| | - Somasundaram Prasadh
- Center for Clean Energy Engineering, University of Connecticut, Storrs, CT 06269, USA;
| | - Yen Choo
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore; (J.Q.); (Y.C.)
| | - Bee Tin Goh
- National Dental Centre Singapore, National Dental Research Institute Singapore, Singapore 168938, Singapore; (C.S.L.); (S.Y.P.); (L.P.E.); (G.R.)
- Oral Health Academic Clinical Programme, Duke-NUS Medical School, Singapore 169857, Singapore
| |
Collapse
|
24
|
Ehlen QT, Mirsky NA, Slavin BV, Parra M, Nayak VV, Cronstein B, Witek L, Coelho PG. Translational Experimental Basis of Indirect Adenosine Receptor Agonist Stimulation for Bone Regeneration: A Review. Int J Mol Sci 2024; 25:6104. [PMID: 38892291 PMCID: PMC11172580 DOI: 10.3390/ijms25116104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
Bone regeneration remains a significant clinical challenge, often necessitating surgical approaches when healing bone defects and fracture nonunions. Within this context, the modulation of adenosine signaling pathways has emerged as a promising therapeutic option, encouraging osteoblast activation and tempering osteoclast differentiation. A literature review of the PubMed database with relevant keywords was conducted. The search criteria involved in vitro or in vivo models, with clear methodological descriptions. Only studies that included the use of indirect adenosine agonists, looking at the effects of bone regeneration, were considered relevant according to the eligibility criteria. A total of 29 articles were identified which met the inclusion and exclusion criteria, and they were reviewed to highlight the preclinical translation of adenosine agonists. While preclinical studies demonstrate the therapeutic potential of adenosine signaling in bone regeneration, its clinical application remains unrealized, underscoring the need for further clinical trials. To date, only large, preclinical animal models using indirect adenosine agonists have been successful in stimulating bone regeneration. The adenosine receptors (A1, A2A, A2B, and A3) stimulate various pathways, inducing different cellular responses. Specifically, indirect adenosine agonists act to increase the extracellular concentration of adenosine, subsequently agonizing the respective adenosine receptors. The agonism of each receptor is dependent on its expression on the cell surface, the extracellular concentration of adenosine, and its affinity for adenosine. This comprehensive review analyzed the multitude of indirect agonists currently being studied preclinically for bone regeneration, discussing the mechanisms of each agonist, their cellular responses in vitro, and their effects on bone formation in vivo.
Collapse
Affiliation(s)
- Quinn T. Ehlen
- University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | | | - Blaire V. Slavin
- University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Marcelo Parra
- Center of Excellence in Morphological and Surgical Studies (CEMyQ), Faculty of Medicine, Universidad de la Frontera, Temuco 4811230, Chile
- Department of Comprehensive Adult Dentistry, Faculty of Dentistry, Universidad de la Frontera, Temuco 4811230, Chile
| | - Vasudev Vivekanand Nayak
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Bruce Cronstein
- Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Lukasz Witek
- Biomaterials Division, NYU Dentistry, New York, NY 10010, USA
- Department of Biomedical Engineering, New York University Tandon School of Engineering, Brooklyn, NY 11201, USA
- Hansjörg Wyss Department of Plastic Surgery, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Paulo G. Coelho
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- DeWitt Daughtry Family Department of Surgery, Division of Plastic Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
25
|
Wang X, Zhou Y, Luo C, Zhao J, Ji Y, Wang Z, Zheng P, Li D, Shi Y, Nishiura A, Matsumoto N, Honda Y, Xu B, Huang F. Senolytics ameliorate the failure of bone regeneration through the cell senescence-related inflammatory signalling pathway. Biomed Pharmacother 2024; 175:116606. [PMID: 38670048 DOI: 10.1016/j.biopha.2024.116606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 04/02/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Stress-induced premature senescent (SIPS) cells induced by various stresses deteriorate cell functions. Dasatinib and quercetin senolytics (DQ) can alleviate several diseases by eliminating senescent cells. α-tricalcium phosphate (α-TCP) is a widely used therapeutic approach for bone restoration but induces bone formation for a comparatively long time. Furthermore, bone infection exacerbates the detrimental prognosis of bone formation during material implant surgery due to oral cavity bacteria and unintentional contamination. It is essential to mitigate the inhibitory effects on bone formation during surgical procedures. Little is known that DQ improves bone formation in Lipopolysaccharide (LPS)-contaminated implants and its intrinsic mechanisms in the study of maxillofacial bone defects. This study aims to investigate whether the administration of DQ ameliorates the impairments on bone repair inflammation and contamination by eliminating SIPS cells. α-TCP and LPS-contaminated α-TCP were implanted into Sprague-Dawley rat calvaria bone defects. Simultaneously, bone formation in the bone defects was investigated with or without the oral administration of DQ. Micro-computed tomography and hematoxylin-eosin staining showed that senolytics significantly enhanced bone formation at the defect site. Histology and immunofluorescence staining revealed that the levels of p21- and p16-positive senescent cells, inflammation, macrophages, reactive oxygen species, and tartrate-resistant acid phosphatase-positive cells declined after administering DQ. DQ could partially alleviate the production of senescent markers and senescence-associated secretory phenotypes in vitro. This study indicates that LPS-contaminated α-TCP-based biomaterials can induce cellular senescence and hamper bone regeneration. Senolytics have significant therapeutic potential in reducing the adverse osteogenic effects of biomaterial-related infections and improving bone formation capacity.
Collapse
Affiliation(s)
- Xinchen Wang
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, Guangdong, China; Department of Orthodontics, Osaka Dental University, 8-1 Kuzuhahanazonocho, Hirakata, Osaka 573-1121, Japan
| | - Yue Zhou
- Department of Orthodontics, Osaka Dental University, 8-1 Kuzuhahanazonocho, Hirakata, Osaka 573-1121, Japan; Department of Stomatological Research Center, Affiliated Hospital of Yunnan University, Kunming, Yunnan, China
| | - Chuyi Luo
- Department of Orthodontics, Osaka Dental University, 8-1 Kuzuhahanazonocho, Hirakata, Osaka 573-1121, Japan
| | - Jianxin Zhao
- Department of Orthodontics, Osaka Dental University, 8-1 Kuzuhahanazonocho, Hirakata, Osaka 573-1121, Japan
| | - Yuna Ji
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zheng Wang
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Pengchao Zheng
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Dingji Li
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yuhan Shi
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Aki Nishiura
- Department of Orthodontics, Osaka Dental University, 8-1 Kuzuhahanazonocho, Hirakata, Osaka 573-1121, Japan
| | - Naoyuki Matsumoto
- Department of Orthodontics, Osaka Dental University, 8-1 Kuzuhahanazonocho, Hirakata, Osaka 573-1121, Japan
| | - Yoshitomo Honda
- Department of Oral Anatomy, Osaka Dental University, 8-1 Kuzuhahanazonocho, Hirakata, Osaka 573-1121, Japan.
| | - Baoshan Xu
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Fang Huang
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
26
|
Quek J, Vizetto-Duarte C, Teoh SH, Choo Y. Towards Stem Cell Therapy for Critical-Sized Segmental Bone Defects: Current Trends and Challenges on the Path to Clinical Translation. J Funct Biomater 2024; 15:145. [PMID: 38921519 PMCID: PMC11205181 DOI: 10.3390/jfb15060145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/18/2024] [Accepted: 05/24/2024] [Indexed: 06/27/2024] Open
Abstract
The management and reconstruction of critical-sized segmental bone defects remain a major clinical challenge for orthopaedic clinicians and surgeons. In particular, regenerative medicine approaches that involve incorporating stem cells within tissue engineering scaffolds have great promise for fracture management. This narrative review focuses on the primary components of bone tissue engineering-stem cells, scaffolds, the microenvironment, and vascularisation-addressing current advances and translational and regulatory challenges in the current landscape of stem cell therapy for critical-sized bone defects. To comprehensively explore this research area and offer insights for future treatment options in orthopaedic surgery, we have examined the latest developments and advancements in bone tissue engineering, focusing on those of clinical relevance in recent years. Finally, we present a forward-looking perspective on using stem cells in bone tissue engineering for critical-sized segmental bone defects.
Collapse
Affiliation(s)
- Jolene Quek
- Developmental Biology and Regenerative Medicine Programme, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore; (J.Q.); (C.V.-D.)
| | - Catarina Vizetto-Duarte
- Developmental Biology and Regenerative Medicine Programme, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore; (J.Q.); (C.V.-D.)
| | - Swee Hin Teoh
- Centre for Advanced Medical Engineering, College of Materials Science and Engineering, Hunan University, Changsha 410012, China
| | - Yen Choo
- Developmental Biology and Regenerative Medicine Programme, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore; (J.Q.); (C.V.-D.)
| |
Collapse
|
27
|
Huang H, Liu X, Wang J, Suo M, Zhang J, Sun T, Wang H, Liu C, Li Z. Strategies to improve the performance of polyetheretherketone (PEEK) as orthopedic implants: from surface modification to addition of bioactive materials. J Mater Chem B 2024; 12:4533-4552. [PMID: 38477504 DOI: 10.1039/d3tb02740f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Polyetheretherketone (PEEK), as a high-performance polymer, is widely used for bone defect repair due to its homogeneous modulus of elasticity of human bone, good biocompatibility, excellent chemical stability and projectability. However, the highly hydrophobic surface of PEEK is biologically inert, which makes it difficult for cells and proteins to attach, and is accompanied by the development of infections that ultimately lead to failure of PEEK implants. In order to further enhance the potential of PEEK as an orthopedic implant, researchers have explored modification methods such as surface modification by physical and chemical means and the addition of bioactive substances to PEEK-based materials to enhance the mechanical properties, osteogenic activity and antimicrobial properties of PEEK. However, these current modification methods still have obvious shortcomings in terms of cost, maneuverability, stability and cytotoxicity, which still need to be explored by researchers. This paper reviews some of the modification methods that have been used to improve the performance of PEEK over the last three years in anticipation of the need for researchers to design PEEK orthopedic implants that better meet clinical needs.
Collapse
Affiliation(s)
- Huagui Huang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, People's Republic of China.
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Liaoning Province, People's Republic of China
- Division of Energy Materials (DNL22), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.
| | - Xin Liu
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, People's Republic of China.
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Liaoning Province, People's Republic of China
| | - Jinzuo Wang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, People's Republic of China.
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Liaoning Province, People's Republic of China
| | - Moran Suo
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, People's Republic of China.
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Liaoning Province, People's Republic of China
| | - Jing Zhang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, People's Republic of China.
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Liaoning Province, People's Republic of China
| | - Tianze Sun
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, People's Republic of China.
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Liaoning Province, People's Republic of China
| | - Honghua Wang
- Division of Energy Materials (DNL22), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.
| | - Chengde Liu
- Department of Polymer Science & Materials, Dalian University of Technology, Dalian, People's Republic of China.
| | - Zhonghai Li
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, People's Republic of China.
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Liaoning Province, People's Republic of China
| |
Collapse
|
28
|
Wang X, Xiang C, Huang C, Cheng H, Zhou Z, Zhang J, Xie H. The treatment efficacy of bone tissue engineering strategy for repairing segmental bone defects under diabetic condition. Front Bioeng Biotechnol 2024; 12:1379679. [PMID: 38737542 PMCID: PMC11082311 DOI: 10.3389/fbioe.2024.1379679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/01/2024] [Indexed: 05/14/2024] Open
Abstract
Background Diabetes mellitus is a systematic disease which exert detrimental effect on bone tissue. The repair and reconstruction of bone defects in diabetic patients still remain a major clinical challenge. This study aims to investigate the potential of bone tissue engineering approach to improve bone regeneration under diabetic condition. Methods In the present study, decalcified bone matrix (DBM) scaffolds were seeded with allogenic fetal bone marrow-derived mesenchymal stem cells (BMSCs) and cultured in osteogenic induction medium to fabricate BMSC/DBM constructs. Then the BMSC/DBM constructs were implanted in both subcutaneous pouches and large femoral bone defects in diabetic (BMSC/DBM in DM group) and non-diabetic rats (BMSC/DBM in non-DM group), cell-free DBM scaffolds were implanted in diabetic rats to serve as the control group (DBM in DM group). X-ray, micro-CT and histological analyses were carried out to evaluate the bone regenerative potential of BMSC/DBM constructs under diabetic condition. Results In the rat subcutaneous implantation model, quantitative micro-CT analysis demonstrated that BMSC/DBM in DM group showed impaired bone regeneration activity compared with the BMSC/DBM in non-DM group (bone volume: 46 ± 4.4 mm3 vs 58.9 ± 7.15 mm3, *p < 0.05). In the rat femoral defect model, X-ray examination demonstrated that bone union was delayed in BMSC/DBM in DM group compared with BMSC/DBM in non-DM group. However, quantitative micro-CT analysis showed that after 6 months of implantation, there was no significant difference in bone volume and bone density between the BMSC/DBM in DM group (199 ± 63 mm3 and 593 ± 65 mg HA/ccm) and the BMSC/DBM in non-DM group (211 ± 39 mm3 and 608 ± 53 mg HA/ccm). Our data suggested that BMSC/DBM constructs could repair large bone defects in diabetic rats, but with delayed healing process compared with non-diabetic rats. Conclusion Our study suggest that biomaterial sacffolds seeded with allogenic fetal BMSCs represent a promising strategy to induce and improve bone regeneration under diabetic condition.
Collapse
Affiliation(s)
- Xiangsheng Wang
- Department of Plastic Surgery, Jingshan Union Hospital, Union Hospital, Huazhong University of Science and Technology, Hubei, China
- Department of Plastic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Can Xiang
- Department of Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chunhua Huang
- Department of Plastic Surgery, Jingshan Union Hospital, Union Hospital, Huazhong University of Science and Technology, Hubei, China
| | - Hanxiao Cheng
- Department of Plastic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhentao Zhou
- Department of Plastic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jufang Zhang
- Department of Plastic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Hui Xie
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
29
|
Wang Y, Cao X, Shen Y, Zhong Q, Huang Y, Zhang Y, Huang Q, Xu C. Osteogenic effect of low-intensity pulsed ultrasound on peri-implant bone: A systematic review and meta-analysis. J Prosthodont Res 2024; 68:215-226. [PMID: 37518333 DOI: 10.2186/jpr.jpr_d_23_00068] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Purpose This study aimed to evaluate the effect of low-intensity pulsed ultrasound (LIPUS) on promoting osseointegration around dental implants.Study selection A comprehensive search was performed on two databases, including MEDLINE (PubMed) and Web of Science to identify relevant studies published before June 1, 2022. Randomized controlled trials that met the inclusion criteria were selected for the study. The year of publication, study design, animal species, number of animals, number of implants, implant position, implant size, intervention, follow-up time, bone volume ratio (BV/TV), bone-implant contact ratio (BIC), and implant removal torque value (RTV) measurements, including mean and SD, were extracted.Results Ten randomized trials were included in this meta-analysis. The results showed that LIPUS significantly promoted osteogenesis around dental implants. Furthermore, in animal models of pre-existing diseases such as osteoporosis and diabetes, LIPUS had the same effect. The included data were divided into subgroups to explore the effects of different follow-up time, acoustic intensities, and frequencies. Results showed that higher acoustic intensities and frequencies significantly improve the osteogenic effects of LIPUS. There was some degree of heterogeneity owing to bias in the included studies. More high-quality randomized controlled trials are necessary in the future.Conclusions LIPUS can promote bone healing around dental implants and is an attractive option for edentulous patients, especially those with pre-existing diseases. Further clinical trials on the use of LIPUS in implant dentistry are warranted. Furthermore, future studies must pay more attention to acoustic intensity and frequency.
Collapse
Affiliation(s)
- Yingying Wang
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology and National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Ximeng Cao
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology and National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Yingyi Shen
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology and National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Qi Zhong
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology and National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Yujie Huang
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology and National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Yifan Zhang
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology and National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Qingfeng Huang
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology and National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Chun Xu
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology and National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| |
Collapse
|
30
|
Abbadessa A, Ronca A, Salerno A. Integrating bioprinting, cell therapies and drug delivery towards in vivo regeneration of cartilage, bone and osteochondral tissue. Drug Deliv Transl Res 2024; 14:858-894. [PMID: 37882983 DOI: 10.1007/s13346-023-01437-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2023] [Indexed: 10/27/2023]
Abstract
The biological and biomechanical functions of cartilage, bone and osteochondral tissue are naturally orchestrated by a complex crosstalk between zonally dependent cells and extracellular matrix components. In fact, this crosstalk involves biomechanical signals and the release of biochemical cues that direct cell fate and regulate tissue morphogenesis and remodelling in vivo. Three-dimensional bioprinting introduced a paradigm shift in tissue engineering and regenerative medicine, since it allows to mimic native tissue anisotropy introducing compositional and architectural gradients. Moreover, the growing synergy between bioprinting and drug delivery may enable to replicate cell/extracellular matrix reciprocity and dynamics by the careful control of the spatial and temporal patterning of bioactive cues. Although significant advances have been made in this direction, unmet challenges and open research questions persist. These include, among others, the optimization of scaffold zonality and architectural features; the preservation of the bioactivity of loaded active molecules, as well as their spatio-temporal release; the in vitro scaffold maturation prior to implantation; the pros and cons of each animal model and the graft-defect mismatch; and the in vivo non-invasive monitoring of new tissue formation. This work critically reviews these aspects and reveals the state of the art of using three-dimensional bioprinting, and its synergy with drug delivery technologies, to pattern the distribution of cells and/or active molecules in cartilage, bone and osteochondral engineered tissues. Most notably, this work focuses on approaches, technologies and biomaterials that are currently under in vivo investigations, as these give important insights on scaffold performance at the implantation site and its interaction/integration with surrounding tissues.
Collapse
Affiliation(s)
- Anna Abbadessa
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), IDIS Research Institute, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain.
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, School of Pharmacy, Universidade de Santiago de Compostela, Campus Vida, Santiago de Compostela, Spain.
| | - Alfredo Ronca
- Institute of Polymers, Composites and Biomaterials, National Research Council, 80125, Naples, Italy.
| | - Aurelio Salerno
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, 80125, Naples, Italy.
| |
Collapse
|
31
|
Ferraz MP. An Overview on the Big Players in Bone Tissue Engineering: Biomaterials, Scaffolds and Cells. Int J Mol Sci 2024; 25:3836. [PMID: 38612646 PMCID: PMC11012232 DOI: 10.3390/ijms25073836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/18/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
Presently, millions worldwide suffer from degenerative and inflammatory bone and joint issues, comprising roughly half of chronic ailments in those over 50, leading to prolonged discomfort and physical limitations. These conditions become more prevalent with age and lifestyle factors, escalating due to the growing elderly populace. Addressing these challenges often entails surgical interventions utilizing implants or bone grafts, though these treatments may entail complications such as pain and tissue death at donor sites for grafts, along with immune rejection. To surmount these challenges, tissue engineering has emerged as a promising avenue for bone injury repair and reconstruction. It involves the use of different biomaterials and the development of three-dimensional porous matrices and scaffolds, alongside osteoprogenitor cells and growth factors to stimulate natural tissue regeneration. This review compiles methodologies that can be used to develop biomaterials that are important in bone tissue replacement and regeneration. Biomaterials for orthopedic implants, several scaffold types and production methods, as well as techniques to assess biomaterials' suitability for human use-both in laboratory settings and within living organisms-are discussed. Even though researchers have had some success, there is still room for improvements in their processing techniques, especially the ones that make scaffolds mechanically stronger without weakening their biological characteristics. Bone tissue engineering is therefore a promising area due to the rise in bone-related injuries.
Collapse
Affiliation(s)
- Maria Pia Ferraz
- Departamento de Engenharia Metalúrgica e de Materiais, Faculdade de Engenharia, Universidade do Porto, 4200-465 Porto, Portugal;
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4099-002 Porto, Portugal
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, 4099-002 Porto, Portugal
| |
Collapse
|
32
|
Ranjbar FE, Ranjbar AE, Malekshahi ZV, Taghdiri-Nooshabadi Z, Faradonbeh DR, Youseflee P, Ghasemi S, Vatanparast M, Azim F, Nooshabadi VT. Bone tissue regeneration by 58S bioactive glass scaffolds containing exosome: an in vivo study. Cell Tissue Bank 2024; 25:389-400. [PMID: 38159136 DOI: 10.1007/s10561-023-10120-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 11/14/2023] [Indexed: 01/03/2024]
Abstract
Exosomes, the naturally secreted nanocarriers of cells, have recently been demonstrated to have therapeutic benefits in a variety of disease models where parent cells are not present. However, the use of exosomes in bone defect regeneration has been unusual, and little is documented about the underlying processes. In recent study we produced and characterized exosomes derived human endometrial mesenchymal stem stromal cells and 58S bioactive glass scaffolds; in following, in this research exosome loaded scaffolds synthetized and release of exosome, porosity and bioactivity of them were assessed. More over the effect of scaffolds on repair of critical-size bone defects in rat's calvaria was evaluated by histological examination and micro computed tomography (µ CT). The findings confirmed that constructed porous scaffolds consistently release exosomes; additionally, in vivo findings including Hematoxilin & Eosin staining, Immunohistochemistry, Masson's trichrome, histomorphometric analysis, and µ CT clarified that our implant has osteogenic properties. We discovered that Exo-treated scaffolds might promote osteogenesis especially compared to pure scaffolds, indicating that produced scaffolds containing exosomes could be a potential replacement in bone tissue engineering.
Collapse
Affiliation(s)
- Faezeh Esmaeili Ranjbar
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Afsaneh Esmaeili Ranjbar
- Emergency Department, Ali Ebn Abitaleb Hospital, Faculty of medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Ziba Veisi Malekshahi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Davood Rabiei Faradonbeh
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Pouya Youseflee
- Medical student, Student Research Committee, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Sahar Ghasemi
- Medical student, Student Research Committee, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Mahboubeh Vatanparast
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Fazli Azim
- Isolation Hospital & Infections Treatment Center (IHITC), MNHSR&C, Islamabad, Pakistan
| | | |
Collapse
|
33
|
Cady C, Nair K, Rodriguez HC, Rust B, Ghandour S, Potty A, Gupta A. Optimization of Polycaprolactone and Type I Collagen Scaffold for Tendon Tissue Regeneration. Cureus 2024; 16:e56930. [PMID: 38665704 PMCID: PMC11044072 DOI: 10.7759/cureus.56930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
Introduction Collagen synthesis is vital for restoring musculoskeletal tissues, particularly in tendon and ligamentous structures. Tissue engineering utilizes scaffolds for cell adhesion and differentiation. Although synthetic scaffolds offer initial strength, their long-term stability is surpassed by biological scaffolds. Combining polycaprolactone (PCL) toughness with collagen in scaffold design, this study refines fabrication via electrospinning, aiming to deliver enduring biomimetic matrices for widespread applications in musculoskeletal repair. Methods Electrospinning employed four solutions with varied collagen and PCL concentrations, dissolved in chloroform, methanol, and hexafluoro-2-propanol. Solutions were combined to yield 60 mg/mL concentrations with different collagen/PCL ratios. Electrospinning at 12-14kV voltage produced scaffolds, followed by vacuum-drying. Collagen coating was applied to PCL and 15% collagen/PCL scaffolds using a 0.1% collagen solution. SEM characterized fiber morphology, tensile testing was conducted to determine the mechanical properties of the scaffold, and Fourier-transform infrared (FTIR) spectroscopy analyzed scaffold composition. Atomic force microscopy (AFM) analyzed the stiffness properties of individual fibers, and a finite element model was developed to predict the mechanical properties. Cell culture involved seeding human bone marrow mesenchymal stem cells onto scaffolds, which were assessed through Alamar Blue assay and confocal imaging. Results Various scaffolds (100% PCL, PCL-15% collagen, PCL-25% collagen, PCL-35% collagen) were fabricated to emulate the extracellular matrix, revealing collagen's impact on fiber diameter reduction with increasing concentration. Tensile testing highlighted collagen's initial enhancement of mechanical strength, followed by a decline beyond PCL-15% collagen. FTIR spectroscopy detected potential hydrogen bonding between collagen and PCL. A finite element model predicted scaffold response to external forces which was validated by the tensile test data. Cell viability and proliferation assays demonstrated successful plating on all scaffolds, with optimal proliferation observed in PCL-25% collagen. Confocal imaging confirmed stem cell integration into the three-dimensional material. Collagen coating preserved nanofiber morphology, with no significant changes in diameter. Coating of collagen significantly altered the tensile strength of the scaffolds at the macro scale. AFM highlighted stiffness differences between PCL and collagen-coated PCL mats at the single fiber scale. The coating process did not significantly enhance initial cell attachment but promoted increased proliferation on collagen-coated PCL scaffolds. Conclusion The study reveals collagen-induced mechanical and morphological alterations, influencing fiber alignment, diameter, and chemical composition while emphasizing scaffolds' vital role in providing a controlled niche for stem cell proliferation and differentiation. The optimization of each of these scaffold characteristics and subsequent finite element modeling can lead to highly repeatable and ideal scaffold properties for stem cell integration and proliferation.
Collapse
Affiliation(s)
- Craig Cady
- Biology, Bradley University, Peoria, USA
| | - Kalyani Nair
- Mechanical Engineering, Bradley University, Peoria, USA
| | | | - Brandon Rust
- Medicine, Nova Southeastern University Dr. Kiran C. Patel College of Osteopathic Medicine, Fort Lauderdale, USA
| | | | - Anish Potty
- Orthopedics, South Texas Orthopaedic Research Institute, Laredo, USA
| | - Ashim Gupta
- Regenerative Medicine, Future Biologics, Lawrenceville, USA
- Orthopedics and Regenerative Medicine, Regenerative Orthopedics, Noida, IND
- Regenerative Medicine, BioIntegrate, Lawrenceville, USA
- Orthopedics, South Texas Orthopaedic Research Institute, Laredo, USA
| |
Collapse
|
34
|
Yadav S, Rawal G. Advances in Understanding and Managing Floating Knee Injuries: A Comprehensive Review. Cureus 2024; 16:e57122. [PMID: 38681444 PMCID: PMC11055540 DOI: 10.7759/cureus.57122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2024] [Indexed: 05/01/2024] Open
Abstract
Fractures of the ipsilateral tibia and femur, frequently combined with soft tissue damage and dislocations, describe floating knee injuries, a complicated orthopedic condition. Epidemiological data suggest that floating knee injuries account for a small but significant proportion of traumatic orthopedic injuries, with a higher incidence observed in younger males engaged in high-risk activities. Anatomically, floating knee injuries involve fractures of the femur and tibia, ligamentous disruptions, and soft tissue damage, contributing to the complexity and severity of these injuries. An extensive analysis of floating knee injuries is given in this paper, including information about epidemiology, anatomy, pathophysiology, categorization, management approaches, complications, prognosis, and current and upcoming developments.
Collapse
Affiliation(s)
- Sankalp Yadav
- Medicine, Shri Madan Lal Khurana Chest Clinic, New Delhi, IND
| | - Gautam Rawal
- Respiratory Medical Critical Care, Max Super Speciality Hospital, New Delhi, IND
| |
Collapse
|
35
|
Tang L, Wu T, Li J, Yu Y, Ma Z, Sun L, Ta D, Fan X. Study on Synergistic Effects of Nanohydroxyapatite/High-Viscosity Carboxymethyl Cellulose Scaffolds Stimulated by LIPUS for Bone Defect Repair of Rats. ACS Biomater Sci Eng 2024; 10:1018-1030. [PMID: 38289029 DOI: 10.1021/acsbiomaterials.3c01381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2024]
Abstract
Despite the self-healing capacity of bone, the regeneration of critical-size bone defects remains a major clinical challenge. In this study, nanohydroxyapatite (nHAP)/high-viscosity carboxymethyl cellulose (hvCMC, 6500 mPa·s) scaffolds and low-intensity pulsed ultrasound (HA-LIPUS) were employed to repair bone defects. First, hvCMC was prepared from ramie fiber, and the degree of substitution (DS), purity, and content of NaCl of hvCMC samples were 0.91, 99.93, and 0.017%, respectively. Besides, toxic metal contents were below the permissible limits for pharmaceutically used materials. Our results demonstrated that the hvCMC is suitable for pharmaceutical use. Second, nHAP and hvCMC were employed to prepare scaffolds by freeze-drying. The results indicated that the scaffolds were porous, and the porosity was 35.63 ± 3.52%. Subsequently, the rats were divided into four groups (n = 8) randomly: normal control (NC), bone defect (BD), bone defect treated with nHAP/hvCMC scaffolds (HA), and bone defect treated with nHAP/hvCMC scaffolds and stimulated by LIPUS (HA-LIPUS). After drilling surgery, nHAP/hvCMC scaffolds were implanted in the defect region of HA and HA-LIPUS rats. Meanwhile, HA-LIPUS rats were treated by LIPUS (1.5 MHz, 80 mW cm-2) irradiation for 2 weeks. Compared with BD rats, the maximum load and bone mineral density of HA-LIPUS rats were increased by 20.85 and 51.97%, respectively. The gene and protein results indicated that nHAP/hvCMC scaffolds and LIPUS promoted the bone defect repair and regeneration of rats significantly by activating Wnt/β-catenin and inhibiting OPG/RANKL signaling pathways. Overall, compared with BD rats, nHAP/hvCMC scaffolds and LIPUS promoted bone defect repair significantly. Furthermore, the research results also indicated that there are synergistic effects for bone defect repair between the nHAP/hvCMC scaffolds and LIPUS.
Collapse
Affiliation(s)
- Liang Tang
- Institute of Sports Biology, Shaanxi Normal University, Xi'an 710119, China
| | - Tianpei Wu
- Institute of Sports Biology, Shaanxi Normal University, Xi'an 710119, China
| | - Jiaxiang Li
- Institute of Sports Biology, Shaanxi Normal University, Xi'an 710119, China
| | - Yanan Yu
- Institute of Sports Biology, Shaanxi Normal University, Xi'an 710119, China
| | - Zhanke Ma
- Institute of Sports Biology, Shaanxi Normal University, Xi'an 710119, China
| | - Lijun Sun
- Institute of Sports Biology, Shaanxi Normal University, Xi'an 710119, China
| | - Dean Ta
- Center for Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai 200433, China
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Xiushan Fan
- Institute of Sports Biology, Shaanxi Normal University, Xi'an 710119, China
| |
Collapse
|
36
|
Ebrahimzadeh MH, Nakhaei M, Gharib A, Mirbagheri MS, Moradi A, Jirofti N. Investigation of background, novelty and recent advance of iron (II,III) oxide- loaded on 3D polymer based scaffolds as regenerative implant for bone tissue engineering: A review. Int J Biol Macromol 2024; 259:128959. [PMID: 38145693 DOI: 10.1016/j.ijbiomac.2023.128959] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/08/2023] [Accepted: 12/20/2023] [Indexed: 12/27/2023]
Abstract
Bone tissue engineering had crucial role in the bone defects regeneration, particularly when allograft and autograft procedures have limitations. In this regard, different types of scaffolds are used in tissue regeneration as fundamental tools. In recent years, magnetic scaffolds show promising applications in different biomedical applications (in vitro and in vivo). As superparamagnetic materials are widely considered to be among the most attractive biomaterials in tissue engineering, due to long-range stability and superior bioactivity, therefore, magnetic implants shows angiogenesis, osteoconduction, and osteoinduction features when they are combined with biomaterials. Furthermore, these scaffolds can be coupled with a magnetic field to enhance their regenerative potential. In addition, magnetic scaffolds can be composed of various combinations of magnetic biomaterials and polymers using different methods to improve the magnetic, biocompatibility, thermal, and mechanical properties of the scaffolds. This review article aims to explain the use of magnetic biomaterials such as iron (II,III) oxide (Fe2O3 and Fe3O4) in detail. So it will cover the research background of magnetic scaffolds, the novelty of using these magnetic implants in tissue engineering, and provides a future perspective on regenerative implants.
Collapse
Affiliation(s)
- Mohammad Hossein Ebrahimzadeh
- Orthopedic Research Center, Department of Orthopedic Surgery, Mashhad University of Medical Science, Mashhad, Iran; Bone and Joint Research Laboratory, Ghaem Hospital, Mashhad University of Medical Science, P.O.Box 91388-13944, Mashhad, Iran.
| | - Mehrnoush Nakhaei
- Orthopedic Research Center, Department of Orthopedic Surgery, Mashhad University of Medical Science, Mashhad, Iran; Bone and Joint Research Laboratory, Ghaem Hospital, Mashhad University of Medical Science, P.O.Box 91388-13944, Mashhad, Iran
| | - Azar Gharib
- Orthopedic Research Center, Department of Orthopedic Surgery, Mashhad University of Medical Science, Mashhad, Iran; Bone and Joint Research Laboratory, Ghaem Hospital, Mashhad University of Medical Science, P.O.Box 91388-13944, Mashhad, Iran
| | - Mahnaz Sadat Mirbagheri
- Orthopedic Research Center, Department of Orthopedic Surgery, Mashhad University of Medical Science, Mashhad, Iran; Bone and Joint Research Laboratory, Ghaem Hospital, Mashhad University of Medical Science, P.O.Box 91388-13944, Mashhad, Iran
| | - Ali Moradi
- Orthopedic Research Center, Department of Orthopedic Surgery, Mashhad University of Medical Science, Mashhad, Iran; Bone and Joint Research Laboratory, Ghaem Hospital, Mashhad University of Medical Science, P.O.Box 91388-13944, Mashhad, Iran.
| | - Nafiseh Jirofti
- Orthopedic Research Center, Department of Orthopedic Surgery, Mashhad University of Medical Science, Mashhad, Iran; Bone and Joint Research Laboratory, Ghaem Hospital, Mashhad University of Medical Science, P.O.Box 91388-13944, Mashhad, Iran.
| |
Collapse
|
37
|
Anthraper MSJ, Chandramouli A, Srinivasan S, Rangasamy J. Lyophilized platelet rich fibrin and gelatin incorporated bioadhesive bone cement composite for repair of mandibular continuity defects. Int J Biol Macromol 2024; 258:129086. [PMID: 38161027 DOI: 10.1016/j.ijbiomac.2023.129086] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/02/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
Mandibular continuity defects stem from conditions such as malignancies, trauma, cysts, osteomyelitis and osteoradionecrosis, presenting significant challenges. If mandibular reconstruction fails, it can result in facial collapse, causing significant aesthetic and functional concerns for the patient. In the present study we developed a bio-adhesive Bone Cement (BC) enriched with lyophilised PRF and gelatin to enhance bone repair and induce regeneration. The developed BC consisted of a mixture of Tetracalcium Phosphate (TTCP) and O-Phospho-l-serine (OPLS) in addition to lyophilised Platelet Rich Fibrin (PRF) for sustained growth factor release and gelatin (GE) for improved cement resorption. It is primarily designed for in-situ application, conforming to the shape and size of the defect for effective bone repair and regeneration. The study evaluated four groups: (i) BC (control), (ii) BC-GE (control), (iii) BC-PRF, and (iv) BC-GE-PRF. All the four groups were characterised using FTIR, SEM and XRD. The mechanical studies of the prepared beads exhibited a significant increase in the compressive strength of the PRF loaded bone cement composites. In vitro degradation study of the beads over a 60-day period revealed a significantly higher percentage of bone cement resorption in the gelatin-incorporated groups, BC-GE (44 ± 0.5 %), and BC-GE-PRF (45 ± 2 %). The assessment of growth factor release (TGF-β and VEGF) using ELISA revealed a prolonged and sustained release of both growth factors over a 28-day period. In vitro studies were performed on human Dental Follicle Stem Cells (DFSCs) to assess cell attachment, proliferation, mineralisation and osteogenic differentiation. These studies clearly depicted that BC-PRF and BC-GE-PRF showed significantly greater proliferation of DFSCs. Furthermore, BC-PRF and BC-GE-PRF samples exhibited notably elevated expression of Runx2 and OPN (osteogenic markers), as well as a higher intensity of alizarin red stain (mineralisation). Therefore, it was concluded that PRF incorporated bioadhesive bone cement composites greatly enhance the cell attachment, proliferation, mineralisation and osteogenic differentiation of the DFSCs. Thus, the PRF and gelatin incorporated bone cement composites is expected to facilitate effective and faster bone regeneration and healing in a wide range of dental and maxillofacial defects.
Collapse
Affiliation(s)
- Mary Susan J Anthraper
- Polymeric Biomaterials Lab, School of Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi 682041, India
| | - Arthi Chandramouli
- Polymeric Biomaterials Lab, School of Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi 682041, India
| | - Sowmya Srinivasan
- Department of Periodontics, Amrita School of Dentistry, Amrita Vishwa Vidyapeetham, Kochi 682041, Kerala, India
| | - Jayakumar Rangasamy
- Polymeric Biomaterials Lab, School of Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi 682041, India.
| |
Collapse
|
38
|
Cao Z, Qin Z, Duns GJ, Huang Z, Chen Y, Wang S, Deng R, Nie L, Luo X. Repair of Infected Bone Defects with Hydrogel Materials. Polymers (Basel) 2024; 16:281. [PMID: 38276689 PMCID: PMC10820481 DOI: 10.3390/polym16020281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/14/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
Infected bone defects represent a common clinical condition involving bone tissue, often necessitating surgical intervention and antibiotic therapy. However, conventional treatment methods face obstacles such as antibiotic resistance and susceptibility to postoperative infections. Hydrogels show great potential for application in the field of tissue engineering due to their advantageous biocompatibility, unique mechanical properties, exceptional processability, and degradability. Recent interest has surged in employing hydrogels as a novel therapeutic intervention for infected bone repair. This article aims to comprehensively review the existing literature on the anti-microbial and osteogenic approaches utilized by hydrogels in repairing infected bones, encompassing their fabrication techniques, biocompatibility, antimicrobial efficacy, and biological activities. Additionally, the potential opportunities and obstacles in their practical implementation will be explored. Lastly, the limitations presently encountered and the prospective avenues for further investigation in the realm of hydrogel materials for the management of infected bone defects will be deliberated. This review provides a theoretical foundation and advanced design strategies for the application of hydrogel materials in the treatment of infected bone defects.
Collapse
Affiliation(s)
- Zhenmin Cao
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China; (Z.C.); (Z.Q.); (Z.H.); (Y.C.); (S.W.); (R.D.)
- Hunan Engineering Technology Research Center for Comprehensive Development and Utilization of Biomass Resources, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425199, China;
| | - Zuodong Qin
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China; (Z.C.); (Z.Q.); (Z.H.); (Y.C.); (S.W.); (R.D.)
- Hunan Engineering Technology Research Center for Comprehensive Development and Utilization of Biomass Resources, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425199, China;
| | - Gregory J. Duns
- Hunan Engineering Technology Research Center for Comprehensive Development and Utilization of Biomass Resources, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425199, China;
| | - Zhao Huang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China; (Z.C.); (Z.Q.); (Z.H.); (Y.C.); (S.W.); (R.D.)
| | - Yao Chen
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China; (Z.C.); (Z.Q.); (Z.H.); (Y.C.); (S.W.); (R.D.)
| | - Sheng Wang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China; (Z.C.); (Z.Q.); (Z.H.); (Y.C.); (S.W.); (R.D.)
| | - Ruqi Deng
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China; (Z.C.); (Z.Q.); (Z.H.); (Y.C.); (S.W.); (R.D.)
| | - Libo Nie
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China; (Z.C.); (Z.Q.); (Z.H.); (Y.C.); (S.W.); (R.D.)
| | - Xiaofang Luo
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China; (Z.C.); (Z.Q.); (Z.H.); (Y.C.); (S.W.); (R.D.)
- Hunan Engineering Technology Research Center for Comprehensive Development and Utilization of Biomass Resources, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425199, China;
| |
Collapse
|
39
|
Sun Y, Li L, Wang J, Liu H, Wang H. Emerging Landscape of Osteogenesis Imperfecta Pathogenesis and Therapeutic Approaches. ACS Pharmacol Transl Sci 2024; 7:72-96. [PMID: 38230285 PMCID: PMC10789133 DOI: 10.1021/acsptsci.3c00324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/10/2023] [Accepted: 12/12/2023] [Indexed: 01/18/2024]
Abstract
Osteogenesis imperfecta (OI) is an uncommon genetic disorder characterized by shortness of stature, hearing loss, poor bone mass, recurrent fractures, and skeletal abnormalities. Pathogenic variations have been found in over 20 distinct genes that are involved in the pathophysiology of OI, contributing to the disorder's clinical and genetic variability. Although medications, surgical procedures, and other interventions can partially alleviate certain symptoms, there is still no known cure for OI. In this Review, we provide a comprehensive overview of genetic pathogenesis, existing treatment modalities, and new developments in biotechnologies such as gene editing, stem cell reprogramming, functional differentiation, and transplantation for potential future OI therapy.
Collapse
Affiliation(s)
- Yu Sun
- PET
Center, Chongqing University Three Gorges
Hospital, Chongqing 404000, China
| | - Lin Li
- PET
Center, Chongqing University Three Gorges
Hospital, Chongqing 404000, China
| | - Jiajun Wang
- Medical
School of Hubei Minzu University, Enshi 445000, China
| | - Huiting Liu
- PET
Center, Chongqing University Three Gorges
Hospital, Chongqing 404000, China
| | - Hu Wang
- Department
of Neurology, Johns Hopkins University School
of Medicine, Baltimore, Maryland 21205, United States
| |
Collapse
|
40
|
Zhang X, Nan K, Zhang Y, Song K, Geng Z, Shang D, Fan L. Lithium and cobalt co-doped mesoporous bioactive glass nanoparticles promote osteogenesis and angiogenesis in bone regeneration. Front Bioeng Biotechnol 2024; 11:1288393. [PMID: 38239917 PMCID: PMC10794388 DOI: 10.3389/fbioe.2023.1288393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 12/14/2023] [Indexed: 01/22/2024] Open
Abstract
Healing of severe fractures and bone defects involves many complex biological processes, including angiogenesis and osteogenesis, presenting significant clinical challenges. Biomaterials used for bone tissue engineering often possess multiple functions to meet these challenges, including proangiogenic, proosteogenic, and antibacterial properties. We fabricated lithium and cobalt co-doped mesoporous bioactive glass nanoparticles (Li-Co-MBGNs) using a modified sol-gel method. Physicochemical analysis revealed that the nanoparticles had high specific surface areas (>600 m2/g) and a mesoporous structure suitable for hydroxyapatite (HA) formation and sustained release of therapeutic ions. In vitro experiments with Li-Co-MBGNs showed that these promoted angiogenic properties in HUVECs and pro-osteogenesis abilities in BMSCs by releasing Co2+ and Li+ ions. We observed their antibacterial activity against Staphylococcus aureus and Escherichia coli, indicating their potential applications in bone tissue engineering. Overall, our findings indicate the feasibility of its application in bone tissue engineering.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Orthopaedics, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Department of Orthopaedics, The Second Affiliated Hospital of Air Force Medical University, Xi’an, Shaanxi, China
| | - Kai Nan
- Department of Osteonecrosis and Joint Reconstruction Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Yuankai Zhang
- Department of Orthopaedics, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Keke Song
- Department of Anesthesiology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Zilong Geng
- Department of Orthopaedics, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Donglong Shang
- Department of Orthopaedics, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Lihong Fan
- Department of Orthopaedics, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| |
Collapse
|
41
|
Zhang J, Zhuang Y, Sheng R, Tomás H, Rodrigues J, Yuan G, Wang X, Lin K. Smart stimuli-responsive strategies for titanium implant functionalization in bone regeneration and therapeutics. MATERIALS HORIZONS 2024; 11:12-36. [PMID: 37818593 DOI: 10.1039/d3mh01260c] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2023]
Abstract
With the increasing and aging of global population, there is a dramatic rise in the demand for implants or substitutes to rehabilitate bone-related disorders which can considerably decrease quality of life and even endanger lives. Though titanium and its alloys have been applied as the mainstream material to fabricate implants for load-bearing bone defect restoration or temporary internal fixation devices for bone fractures, it is far from rare to encounter failed cases in clinical practice, particularly with pathological factors involved. In recent years, smart stimuli-responsive (SSR) strategies have been conducted to functionalize titanium implants to improve bone regeneration in pathological conditions, such as bacterial infection, chronic inflammation, tumor and diabetes mellitus, etc. SSR implants can exert on-demand therapeutic and/or pro-regenerative effects in response to externally applied stimuli (such as photostimulation, magnetic field, electrical and ultrasound stimulation) or internal pathology-related microenvironment changes (such as decreased pH value, specific enzyme secreted by bacterial and excessive production of reactive oxygen species). This review summarizes recent progress on the material design and fabrication, responsive mechanisms, and in vitro and in vivo evaluations for versatile clinical applications of SSR titanium implants. In addition, currently existing limitations and challenges and further prospective directions of these strategies are also discussed.
Collapse
Affiliation(s)
- Jinkai Zhang
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology; Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai 200011, China.
| | - Yu Zhuang
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology; Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai 200011, China.
| | - Ruilong Sheng
- CQM-Centro de Quimica da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105, Funchal, Madeira, Portugal.
| | - Helena Tomás
- CQM-Centro de Quimica da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105, Funchal, Madeira, Portugal.
| | - João Rodrigues
- CQM-Centro de Quimica da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105, Funchal, Madeira, Portugal.
| | - Guangyin Yuan
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Xudong Wang
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology; Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai 200011, China.
| | - Kaili Lin
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology; Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai 200011, China.
| |
Collapse
|
42
|
Bharti S, Kumar A. Synergies in stem cell research: Integrating technologies, strategies, and bionanomaterial innovations. Acta Histochem 2024; 126:152119. [PMID: 38041895 DOI: 10.1016/j.acthis.2023.152119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/19/2023] [Accepted: 11/19/2023] [Indexed: 12/04/2023]
Abstract
Since the 1960 s, there has been a substantial amount of research directed towards investigating the biology of several types of stem cells, including embryonic stem cells, brain cells, and mesenchymal stem cells. In contemporary times, a wide array of stem cells has been utilized to treat several disorders, including bone marrow transplantation. In recent years, stem cell treatment has developed as a very promising and advanced field of scientific research. The progress of therapeutic methodologies has resulted in significant amounts of anticipation and expectation. Recently, there has been a notable proliferation of experimental methodologies aimed at isolating and developing stem cells, which have emerged concurrently. Stem cells possess significant vitality and exhibit vigorous proliferation, making them suitable candidates for in vitro modification. This article examines the progress made in stem cell isolation and explores several methodologies employed to promote the differentiation of stem cells. This study also explores the method of isolating bio-nanomaterials and discusses their viewpoint in the context of stem cell research. It also covers the potential for investigating stem cell applications in bioprinting and the usage of bionanomaterial in stem cell-related technologies and research. In conclusion, the review article concludes by highlighting the importance of incorporating state-of-the-art methods and technological breakthroughs into the future of stem cell research. Putting such an emphasis on constant innovation highlights the ever-changing character of science and the never-ending drive toward unlocking the maximum therapeutic potential of stem cells. This review would be a useful resource for researchers, clinicians, and policymakers in the stem cell research area, guiding the next steps in this fast-developing scientific concern.
Collapse
Affiliation(s)
- Sharda Bharti
- Department of Biotechnology, National Institute of Technology, Raipur, CG, India
| | - Awanish Kumar
- Department of Biotechnology, National Institute of Technology, Raipur, CG, India.
| |
Collapse
|
43
|
Chen CF, Wang PF, Liao HT. Platelet-Rich Plasma Lysate Enhances the Osteogenic Differentiation of Adipose-Derived Stem Cells. Ann Plast Surg 2024; 92:S12-S20. [PMID: 38285990 DOI: 10.1097/sap.0000000000003765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
ABSTRACT Adipose-derived stem cells (ADSCs) have become an accepted source of cells in bone tissue engineering. This study aimed to investigate whether platelet-rich plasma (PRP) lysate can replace traditional fetal bovine serum as a culture medium with the enhanced proliferation and osteogenic potential of ADSCs. We divided the experiment into 5 groups where the ADSCs were cultured in an osteogenic medium containing 2.5%, 5%, 7.5%, and 10% PRP lysate with 10% fetal bovine serum as the control group. The cell proliferation, alkaline phosphatase (ALP) activity, ALP stain, alizarin red stain, osteocalcin (OCN) protein expression, and osteogenic-specific gene expression were analyzed and compared among these groups. The outcome showed that all PRP lysate-treated groups had good ALP stain and ALP activity performance. Better alizarin red stains were found in the 2.5%, 5%, and 7.5% PRP lysate groups. The 2.5% and 5% PRP lysate groups showed superior results in OCN quantitative polymerase chain reaction, whereas the 5% and 7.5% PRP lysate groups showed higher OCN protein expressions. Early RUNX2 (Runt-related transcription factor 2 () genes were the most expressed in the 5% PRP lysate group, followed by the 2.5% PRP lysate group, and then the 7.5% PRP lysate group. Thus, we concluded that 5% PRP lysate seemed to provide the optimal effect on enhancing the osteogenic potential of ADSCs. Platelet-rich plasma lysate-treated ADSCs were considered to be a good cell source for application in treating nonunion or bone defects in the future.
Collapse
Affiliation(s)
- Chia-Fang Chen
- Division of Trauma Plastic Surgery, Department of Plastic and Reconstructive Surgery
| | | | | |
Collapse
|
44
|
Al Maruf DSA, Xin H, Cheng K, Garcia AG, Mohseni-Dargah M, Ben-Sefer E, Tomaskovic-Crook E, Crook JM, Clark JR. Bioengineered cartilaginous grafts for repairing segmental mandibular defects. J Tissue Eng 2024; 15. [DOI: 10.1177/20417314241267017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025] Open
Abstract
Reconstructing critical-sized craniofacial bone defects is a global healthcare challenge. Current methods, like autologous bone transplantation, face limitations. Bone tissue engineering offers an alternative to autologous bone, with traditional approaches focusing on stimulating osteogenesis via the intramembranous ossification (IMO) pathway. However, IMO falls short in addressing larger defects, particularly in clinical scenarios where there is insufficient vascularisation. This review explores redirecting bone regeneration through endochondral ossification (ECO), a process observed in long bone healing stimulated by hypoxic conditions. Despite its promise, gaps exist in applying ECO to bone tissue engineering experiments, requiring the elucidation of key aspects such as cell sources, biomaterials and priming protocols. This review discusses various scaffold biomaterials and cellular sources for chondrogenesis and hypertrophic chondrocyte priming, mirroring the ECO pathway. The review highlights challenges in current endochondral priming and proposes alternative approaches. Emphasis is on segmental mandibular defect repair, offering insights for future research and clinical application. This concise review aims to advance bone tissue engineering by addressing critical gaps in ECO strategies.
Collapse
Affiliation(s)
- D S Abdullah Al Maruf
- Integrated Prosthetics and Reconstruction, Department of Head and Neck Surgery, Chris O’Brien Lifehouse, Camperdown, NSW, Australia
- Central Clinical School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
| | - Hai Xin
- Central Clinical School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
| | - Kai Cheng
- Royal Prince Alfred Institute of Academic Surgery, Sydney Local Health District, Camperdown, NSW, Australia
| | - Alejandro Garcia Garcia
- Cell, Tissue and Organ Engineering Laboratory, Biomedical Centre (BMC), Department of Clinical Sciences Lund, Stem Cell Centre, Lund University, Lund, Sweden
| | - Masoud Mohseni-Dargah
- Integrated Prosthetics and Reconstruction, Department of Head and Neck Surgery, Chris O’Brien Lifehouse, Camperdown, NSW, Australia
| | - Eitan Ben-Sefer
- Integrated Prosthetics and Reconstruction, Department of Head and Neck Surgery, Chris O’Brien Lifehouse, Camperdown, NSW, Australia
- Arto Hardy Biomedical Innovation Hub, Chris O`Brien Lifehouse, Camperdown, NSW, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
| | - Eva Tomaskovic-Crook
- Arto Hardy Biomedical Innovation Hub, Chris O`Brien Lifehouse, Camperdown, NSW, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
- Sarcoma and Surgical Research Centre, Chris O’Brien Lifehouse, Camperdown, NSW, Australia
- ARC Centre of Excellence for Electromaterials Science, The University of Wollongong, Wollongong, NSW, Australia
- Intelligent Polymer Research Institute, AIIM Facility, The University of Wollongong, Wollongong, NSW, Australia
| | - Jeremy Micah Crook
- Arto Hardy Biomedical Innovation Hub, Chris O`Brien Lifehouse, Camperdown, NSW, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
- Sarcoma and Surgical Research Centre, Chris O’Brien Lifehouse, Camperdown, NSW, Australia
- ARC Centre of Excellence for Electromaterials Science, The University of Wollongong, Wollongong, NSW, Australia
- Intelligent Polymer Research Institute, AIIM Facility, The University of Wollongong, Wollongong, NSW, Australia
| | - Jonathan Robert Clark
- Integrated Prosthetics and Reconstruction, Department of Head and Neck Surgery, Chris O’Brien Lifehouse, Camperdown, NSW, Australia
- Central Clinical School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
- Royal Prince Alfred Institute of Academic Surgery, Sydney Local Health District, Camperdown, NSW, Australia
| |
Collapse
|
45
|
Mohanto S, Narayana S, Merai KP, Kumar JA, Bhunia A, Hani U, Al Fatease A, Gowda BHJ, Nag S, Ahmed MG, Paul K, Vora LK. Advancements in gelatin-based hydrogel systems for biomedical applications: A state-of-the-art review. Int J Biol Macromol 2023; 253:127143. [PMID: 37793512 DOI: 10.1016/j.ijbiomac.2023.127143] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/27/2023] [Accepted: 09/27/2023] [Indexed: 10/06/2023]
Abstract
A gelatin-based hydrogel system is a stimulus-responsive, biocompatible, and biodegradable polymeric system with solid-like rheology that entangles moisture in its porous network that gradually protrudes to assemble a hierarchical crosslinked arrangement. The hydrolysis of collagen directs gelatin construction, which retains arginyl glycyl aspartic acid and matrix metalloproteinase-sensitive degeneration sites, further confining access to chemicals entangled within the gel (e.g., cell encapsulation), modulating the release of encapsulated payloads and providing mechanical signals to the adjoining cells. The utilization of various types of functional tunable biopolymers as scaffold materials in hydrogels has become highly attractive due to their higher porosity and mechanical ability; thus, higher loading of proteins, peptides, therapeutic molecules, etc., can be further modulated. Furthermore, a stimulus-mediated gelatin-based hydrogel with an impaired concentration of gellan demonstrated great shear thinning and self-recovering characteristics in biomedical and tissue engineering applications. Therefore, this contemporary review presents a concise version of the gelatin-based hydrogel as a conceivable biomaterial for various biomedical applications. In addition, the article has recapped the multiple sources of gelatin and their structural characteristics concerning stimulating hydrogel development and delivery approaches of therapeutic molecules (e.g., proteins, peptides, genes, drugs, etc.), existing challenges, and overcoming designs, particularly from drug delivery perspectives.
Collapse
Affiliation(s)
- Sourav Mohanto
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, Karnataka, India.
| | - Soumya Narayana
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, Karnataka, India
| | - Khushboo Paresh Merai
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad 382481, Gujrat, India
| | - Jahanvee Ashok Kumar
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad 382481, Gujrat, India
| | - Adrija Bhunia
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, Karnataka, India
| | - Umme Hani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia
| | - Adel Al Fatease
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia
| | - B H Jaswanth Gowda
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, Karnataka, India; School of Pharmacy, Queen's University Belfast, Medical Biology Centre, Belfast BT9 7BL, UK.
| | - Sagnik Nag
- Department of Bio-Sciences, School of Biosciences & Technology, Vellore Institute of Technology (VIT), Tiruvalam Rd, 632014, Tamil Nadu, India
| | - Mohammed Gulzar Ahmed
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, Karnataka, India
| | - Karthika Paul
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Mysuru 570015, Karnataka, India
| | - Lalitkumar K Vora
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, Belfast BT9 7BL, UK
| |
Collapse
|
46
|
Hajiali H, Rotherham M, El Haj AJ. Remote Activation of Mechanotransduction via Integrin Alpha-5 via Aptamer-Conjugated Magnetic Nanoparticles Promotes Osteogenesis. Pharmaceutics 2023; 16:21. [PMID: 38258032 PMCID: PMC10821094 DOI: 10.3390/pharmaceutics16010021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 01/24/2024] Open
Abstract
Bone regeneration and repair are complex processes in the adult skeleton, and current research has focused on understanding and controlling these processes. Magnetic nanoparticle (MNP)-based platforms have shown potential in tissue engineering and regenerative medicine through the use of magnetic nanomaterials combined with remotely applied dynamic fields. Previous studies have demonstrated the ability of MNP-induced mechanoactivation to trigger downstream signaling and promote new bone formation. In this study, we aimed to compare the osteogenic induction achieved using the mechanoreceptor targets, Piezo1, Fzd1, Fzd2, and integrin alpha-5. We compared the binding efficacy of different types of agonists (antibodies vs. aptamers) to these receptors. Moreover, we optimized the aptamer concentration (2.5, 5, and 10 μg/mg) for the selected receptor to determine the optimum concentration for promoting bone formation. Our data demonstrated that the mechanoactivation of integrins (CD49e) significantly upregulated the RUNX2 and LEF1 genes compared to other selected receptors. Furthermore, comparing the mechanoactivation of cells using MNPs conjugated with CD49e antibodies and aptamers revealed that MNP-aptamers significantly enhanced the upregulation of LEF1 genes. This suggests that aptamer-mediated mechanoactivation is a promising alternative to antibody-mediated activation. Finally, our results showed that the concentration of the aptamer loaded onto the MNPs strongly influenced the mechanoactivation of the cells. These findings provide valuable insights into the use of MNP platforms for bone regeneration and highlight the potential of aptamers in promoting signaling pathways related to bone formation. The novelty of our study lies in elucidating the unique advantages of aptamers in mediating mechanoactivation, presenting a promising avenue for advancing bone regenerative strategies.
Collapse
Affiliation(s)
- Hadi Hajiali
- Healthcare Technologies Institute, Institute of Translational Medicine, School of Chemical Engineering, University of Birmingham, Birmingham B15 2TH, UK
| | | | - Alicia J. El Haj
- Healthcare Technologies Institute, Institute of Translational Medicine, School of Chemical Engineering, University of Birmingham, Birmingham B15 2TH, UK
| |
Collapse
|
47
|
Xu Y, Zhuo J, Wang Q, Xu X, He M, Zhang L, Liu Y, Wu X, Luo K, Chen Y. Site-specific periosteal cells with distinct osteogenic and angiogenic characteristics. Clin Oral Investig 2023; 27:7437-7450. [PMID: 37848582 DOI: 10.1007/s00784-023-05333-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 10/10/2023] [Indexed: 10/19/2023]
Abstract
OBJECTIVES This study aimed to investigate the site-specific characteristics of rat mandible periosteal cells (MPCs) and tibia periosteal cells (TPCs) to assess the potential application of periosteal cells (PCs) in bone tissue engineering (BTE). MATERIALS AND METHODS MPCs and TPCs were isolated and characterized. The potential of proliferation, migration, osteogenesis and adipogenesis of MPCs and TPCs were evaluated by CCK-8, scratch assay, Transwell assay, alkaline phosphatase staining and activity, Alizarin Red S staining, RT‒qPCR, and Western blot (WB) assays, respectively. Then, these cells were cocultured with human umbilical vein endothelial cells (HUVECs) to investigate their angiogenic capacity, which was assessed by scratch assay, Transwell assay, Matrigel tube formation assay, RT‒qPCR, and WB assays. RESULTS MPCs exhibited higher osteogenic potential, higher alkaline phosphatase activity, and more mineralized nodule formation, while TPCs showed a greater capability for proliferation, migration, and adipogenesis. MPCs showed higher expression of angiogenic factors, and the conditioned medium of MPCs accelerated the migration of HUVECs, while MPC- conditioned medium induced the formation of more tubular structure in HUVECs in vitro. These data suggest that compared to TPCs, MPCs exert more consequential proangiogenic effects on HUVECs. CONCLUSIONS PCs possess skeletal site-specific differences in biological characteristics. MPCs exhibit more eminent osteogenic and angiogenic potentials, which highlights the potential application of MPCs for BTE. CLINICAL RELEVANCE Autologous bone grafting as the main modality for maxillofacial bone defect repair has many limitations. Constituting an important cell type in bone repair and regeneration, MPCs show greater potential for application in BTE, which provides a promising treatment option for maxillofacial bone defect repair.
Collapse
Affiliation(s)
- Yanmei Xu
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, People's Republic of China
- Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, People's Republic of China
| | - Jin Zhuo
- Xuzhou Stomatological Hospital, Affiliated Stomatological Hospital of Xuzhou Medical University, Xuzhou, 221002, People's Republic of China
| | - Qisong Wang
- Longyan First Affiliated Hospital of Fujian Medical University, Longyan, 354000, People's Republic of China
| | - Xiongcheng Xu
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, People's Republic of China
- Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, People's Republic of China
| | - Mengjiao He
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, People's Republic of China
- Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, People's Republic of China
| | - Lu Zhang
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, People's Republic of China
- Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, People's Republic of China
| | - Yijuan Liu
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, People's Republic of China
- Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, People's Republic of China
| | - Xiaohong Wu
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, People's Republic of China
- Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, People's Republic of China
| | - Kai Luo
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, People's Republic of China.
- Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, People's Republic of China.
| | - Yuling Chen
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, People's Republic of China.
- Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, People's Republic of China.
| |
Collapse
|
48
|
Chaaban M, Moya A, García-García A, Paillaud R, Schaller R, Klein T, Power L, Buczak K, Schmidt A, Kappos E, Ismail T, Schaefer DJ, Martin I, Scherberich A. Harnessing human adipose-derived stromal cell chondrogenesis in vitro for enhanced endochondral ossification. Biomaterials 2023; 303:122387. [PMID: 37977007 DOI: 10.1016/j.biomaterials.2023.122387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/19/2023] [Accepted: 11/04/2023] [Indexed: 11/19/2023]
Abstract
Endochondral ossification (ECO), the major ossification process during embryogenesis and bone repair, involves the formation of a cartilaginous template remodelled into a functional bone organ. Adipose-derived stromal cells (ASC), non-skeletal multipotent progenitors from the stromal vascular fraction (SVF) of human adipose tissue, were shown to recapitulate ECO and generate bone organs in vivo when primed into a hypertrophic cartilage tissue (HCT) in vitro. However, the reproducibility of ECO was limited and the major triggers remain unknown. We studied the effect of the expansion of cells and maturation of HCT on the induction of the ECO process. SVF cells or expanded ASC were seeded onto collagen sponges, cultured in chondrogenic medium for 3-6 weeks and implanted ectopically in nude mice to evaluate their bone-forming capacities. SVF cells from all tested donors formed mature HCT in 3 weeks whereas ASC needed 4-5 weeks. A longer induction increased the degree of maturation of the HCT, with a gradually denser cartilaginous matrix and increased mineralization. This degree of maturation was highly predictive of their bone-forming capacity in vivo, with ECO achieved only for an intermediate maturation degree. In parallel, expanding ASC also resulted in an enrichment of the stromal fraction characterized by a rapid change of their proteomic profile from a quiescent to a proliferative state. Inducing quiescence rescued their chondrogenic potential. Our findings emphasize the role of monolayer expansion and chondrogenic maturation degree of ASC on ECO and provides a simple, yet reproducible and effective approach for bone formation to be tested in specific clinical models.
Collapse
Affiliation(s)
- Mansoor Chaaban
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Adrien Moya
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Andres García-García
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Robert Paillaud
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Romain Schaller
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland; Department of Plastic, Reconstructive, Aesthetic and Hand Surgery, University Hospital Basel, Basel, Switzerland
| | - Thibaut Klein
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Laura Power
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Katarzyna Buczak
- Proteomics Core Facility, Biozentrum, University of Basel, Basel, Switzerland
| | - Alexander Schmidt
- Proteomics Core Facility, Biozentrum, University of Basel, Basel, Switzerland
| | - Elisabeth Kappos
- Department of Plastic, Reconstructive, Aesthetic and Hand Surgery, University Hospital Basel, Basel, Switzerland
| | - Tarek Ismail
- Department of Plastic, Reconstructive, Aesthetic and Hand Surgery, University Hospital Basel, Basel, Switzerland
| | - Dirk J Schaefer
- Department of Plastic, Reconstructive, Aesthetic and Hand Surgery, University Hospital Basel, Basel, Switzerland
| | - Ivan Martin
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Arnaud Scherberich
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland; Department of Plastic, Reconstructive, Aesthetic and Hand Surgery, University Hospital Basel, Basel, Switzerland.
| |
Collapse
|
49
|
Cabrera-Pérez R, Ràfols-Mitjans A, Roig-Molina Á, Beltramone S, Vives J, Batlle-Morera L. Human Wharton's jelly-derived mesenchymal stromal cells promote bone formation in immunodeficient mice when administered into a bone microenvironment. J Transl Med 2023; 21:802. [PMID: 37950242 PMCID: PMC10638709 DOI: 10.1186/s12967-023-04672-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/29/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND Wharton's Jelly (WJ) Mesenchymal Stromal Cells (MSC) have emerged as an attractive allogeneic therapy for a number of indications, except for bone-related conditions requiring new tissue formation. This may be explained by the apparent recalcitrance of MSC,WJ to differentiate into the osteogenic lineage in vitro, as opposed to permissive bone marrow (BM)-derived MSCs (MSC,BM) that readily commit to bone cells. Consequently, the actual osteogenic in vivo capacity of MSC,WJ is under discussion. METHODS We investigated how physiological bone environments affect the osteogenic commitment of recalcitrant MSCs in vitro and in vivo. To this end, MSC of BM and WJ origin were co-cultured and induced for synchronous osteogenic differentiation in vitro using transwells. For in vivo experiments, immunodeficient mice were injected intratibially with a single dose of human MSC and bone formation was evaluated after six weeks. RESULTS Co-culture of MSC,BM and MSC,WJ resulted in efficient osteogenesis in both cell types after three weeks. However, MSC,WJ failed to commit to bone cells in the absence of MSC,BM's osteogenic stimuli. In vivo studies showed successful bone formation within the medullar cavity of tibias in 62.5% of mice treated with MSC, WJ. By contrast, new formed trabeculae were only observed in 25% of MSC,BM-treated mice. Immunohistochemical staining of human COXIV revealed the persistence of the infused cells at the site of injection. Additionally, cells of human origin were also identified in the brain, heart, spleen, kidney and gonads in some animals treated with engineered MSC,WJ (eMSC,WJ). Importantly, no macroscopic histopathological alterations, ectopic bone formation or any other adverse events were detected in MSC-treated mice. CONCLUSIONS Our findings demonstrate that in physiological bone microenvironment, osteogenic commitment of MSC,WJ is comparable to that of MSC,BM, and support the use of off-the-shelf allogeneic MSC,WJ products in bone repair and bone regeneration applications.
Collapse
Affiliation(s)
- Raquel Cabrera-Pérez
- Servei de Teràpia Cel·lular i Avançada, Blood and Tissue Bank (BST), 08005, Barcelona, Catalonia, Spain
- Musculoskeletal Tissue Engineering Group, Vall d'Hebron Research Institute (VHIR) and Universitat Autònoma de Barcelona (UAB), 08035, Barcelona, Catalonia, Spain
| | - Alexis Ràfols-Mitjans
- Centre for Genomic Regulation (CRG), Genomic Regulation, Stem Cells and Cancer Program, The Barcelona Institute of Science and Technology, 08003, Barcelona, Catalonia, Spain
| | - Ángela Roig-Molina
- Musculoskeletal Tissue Engineering Group, Vall d'Hebron Research Institute (VHIR) and Universitat Autònoma de Barcelona (UAB), 08035, Barcelona, Catalonia, Spain
| | - Silvia Beltramone
- Centre for Genomic Regulation (CRG), Genomic Regulation, Stem Cells and Cancer Program, The Barcelona Institute of Science and Technology, 08003, Barcelona, Catalonia, Spain
| | - Joaquim Vives
- Servei de Teràpia Cel·lular i Avançada, Blood and Tissue Bank (BST), 08005, Barcelona, Catalonia, Spain.
- Musculoskeletal Tissue Engineering Group, Vall d'Hebron Research Institute (VHIR) and Universitat Autònoma de Barcelona (UAB), 08035, Barcelona, Catalonia, Spain.
- Medicine Department, Universitat Autònoma de Barcelona (UAB), 08193, Barcelona, Catalonia, Spain.
| | - Laura Batlle-Morera
- Centre for Genomic Regulation (CRG), Genomic Regulation, Stem Cells and Cancer Program, The Barcelona Institute of Science and Technology, 08003, Barcelona, Catalonia, Spain.
| |
Collapse
|
50
|
De Leon-Oliva D, Boaru DL, Perez-Exposito RE, Fraile-Martinez O, García-Montero C, Diaz R, Bujan J, García-Honduvilla N, Lopez-Gonzalez L, Álvarez-Mon M, Saz JV, de la Torre B, Ortega MA. Advanced Hydrogel-Based Strategies for Enhanced Bone and Cartilage Regeneration: A Comprehensive Review. Gels 2023; 9:885. [PMID: 37998975 PMCID: PMC10670584 DOI: 10.3390/gels9110885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/25/2023] Open
Abstract
Bone and cartilage tissue play multiple roles in the organism, including kinematic support, protection of organs, and hematopoiesis. Bone and, above all, cartilaginous tissues present an inherently limited capacity for self-regeneration. The increasing prevalence of disorders affecting these crucial tissues, such as bone fractures, bone metastases, osteoporosis, or osteoarthritis, underscores the urgent imperative to investigate therapeutic strategies capable of effectively addressing the challenges associated with their degeneration and damage. In this context, the emerging field of tissue engineering and regenerative medicine (TERM) has made important contributions through the development of advanced hydrogels. These crosslinked three-dimensional networks can retain substantial amounts of water, thus mimicking the natural extracellular matrix (ECM). Hydrogels exhibit exceptional biocompatibility, customizable mechanical properties, and the ability to encapsulate bioactive molecules and cells. In addition, they can be meticulously tailored to the specific needs of each patient, providing a promising alternative to conventional surgical procedures and reducing the risk of subsequent adverse reactions. However, some issues need to be addressed, such as lack of mechanical strength, inconsistent properties, and low-cell viability. This review describes the structure and regeneration of bone and cartilage tissue. Then, we present an overview of hydrogels, including their classification, synthesis, and biomedical applications. Following this, we review the most relevant and recent advanced hydrogels in TERM for bone and cartilage tissue regeneration.
Collapse
Affiliation(s)
- Diego De Leon-Oliva
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (D.D.L.-O.); (D.L.B.); (R.E.P.-E.); (O.F.-M.); (C.G.-M.); (J.B.); (N.G.-H.); (L.L.-G.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.); (J.V.S.); (B.d.l.T.)
| | - Diego Liviu Boaru
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (D.D.L.-O.); (D.L.B.); (R.E.P.-E.); (O.F.-M.); (C.G.-M.); (J.B.); (N.G.-H.); (L.L.-G.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.); (J.V.S.); (B.d.l.T.)
| | - Roque Emilio Perez-Exposito
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (D.D.L.-O.); (D.L.B.); (R.E.P.-E.); (O.F.-M.); (C.G.-M.); (J.B.); (N.G.-H.); (L.L.-G.); (M.Á.-M.)
- Service of Traumatology of University Hospital Ramón y Cajal, 28034 Madrid, Spain
| | - Oscar Fraile-Martinez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (D.D.L.-O.); (D.L.B.); (R.E.P.-E.); (O.F.-M.); (C.G.-M.); (J.B.); (N.G.-H.); (L.L.-G.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.); (J.V.S.); (B.d.l.T.)
| | - Cielo García-Montero
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (D.D.L.-O.); (D.L.B.); (R.E.P.-E.); (O.F.-M.); (C.G.-M.); (J.B.); (N.G.-H.); (L.L.-G.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.); (J.V.S.); (B.d.l.T.)
| | - Raul Diaz
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.); (J.V.S.); (B.d.l.T.)
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
| | - Julia Bujan
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (D.D.L.-O.); (D.L.B.); (R.E.P.-E.); (O.F.-M.); (C.G.-M.); (J.B.); (N.G.-H.); (L.L.-G.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.); (J.V.S.); (B.d.l.T.)
| | - Natalio García-Honduvilla
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (D.D.L.-O.); (D.L.B.); (R.E.P.-E.); (O.F.-M.); (C.G.-M.); (J.B.); (N.G.-H.); (L.L.-G.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.); (J.V.S.); (B.d.l.T.)
| | - Laura Lopez-Gonzalez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (D.D.L.-O.); (D.L.B.); (R.E.P.-E.); (O.F.-M.); (C.G.-M.); (J.B.); (N.G.-H.); (L.L.-G.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.); (J.V.S.); (B.d.l.T.)
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
| | - Melchor Álvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (D.D.L.-O.); (D.L.B.); (R.E.P.-E.); (O.F.-M.); (C.G.-M.); (J.B.); (N.G.-H.); (L.L.-G.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.); (J.V.S.); (B.d.l.T.)
- Immune System Diseases-Rheumatology Service, Hospital Universitario Principe de Asturias, 28801 Alcala de Henares, Spain
| | - Jose V. Saz
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.); (J.V.S.); (B.d.l.T.)
- Department of Biomedicine and Biotechnology, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
| | - Basilio de la Torre
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.); (J.V.S.); (B.d.l.T.)
- Service of Traumatology of University Hospital Ramón y Cajal, 28034 Madrid, Spain
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
| | - Miguel A. Ortega
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (D.D.L.-O.); (D.L.B.); (R.E.P.-E.); (O.F.-M.); (C.G.-M.); (J.B.); (N.G.-H.); (L.L.-G.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.); (J.V.S.); (B.d.l.T.)
| |
Collapse
|