1
|
Singh R, Bajpai S, Singh A, Sharma P, Kumar Y, Kumar N. Metabolomics of Chinese Hamster Ovary Cells. Methods Mol Biol 2025; 2853:205-234. [PMID: 39460923 DOI: 10.1007/978-1-0716-4104-0_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2024]
Abstract
Increasing demand of protein biotherapeutics produced using Chinese hamster ovary (CHO) cell lines necessitates improvement in the production yield of the bioprocess. Various cell engineering, improved media formulation and process-design based approaches utilizing the power of OMICS technologies, specifically, genomics and proteomics, have been employed; however, the potential of metabolomics largely remains unexplored. Metabolomics enables the detection, identification, and/or quantitation of small molecules, commonly known as metabolites, in and around the cells and may help to unlock the cellular molecular mechanism(s) that regulates cell growth and productivity in the bioprocess and improves cellular performance during the bioprocess. Currently, liquid chromatography (LC)/gas chromatography (CG)- coupled with mass-spectrometry (MS) and nuclear magnetic resonance (NMR) spectroscopy are the most commonly used approaches for metabolomics. Therefore, in this chapter, we have discussed the standard procedures of investigating CHO metabolites using LC/GC-MS and/or NMR-based approaches.
Collapse
Affiliation(s)
- Rita Singh
- Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, Faridabad, Haryana, India
- Jawaharlal Nehru University (JNU), Delhi, India
| | - Sneh Bajpai
- Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Amardeep Singh
- Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Phulwanti Sharma
- Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Yashwant Kumar
- Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Niraj Kumar
- Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, Faridabad, Haryana, India.
| |
Collapse
|
2
|
Liu LH, Guo Y, Yang M, Zhang Y, Wu YR, Jiang A, Zhang Z. Screening microorganisms with robust and stable protein expression and secretion capacity. Protein Sci 2025; 34:e70007. [PMID: 39688309 DOI: 10.1002/pro.70007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/17/2024] [Accepted: 12/08/2024] [Indexed: 12/18/2024]
Abstract
Robust and stable protein secretion is crucial for efficient recombinant protein production. Here, a novel and powerful platform using split GFP activated droplet sorting (SGADS) has been developed to significantly boost the yields of the protein of interest (POI). The SGADS platform leverages solubilizing peptide P17 and secretory expression in Bacillus subtilis to optimize two split GFP sensors: the P17-GFP1-9/GFP10-POI-GFP11 sensor for assessing protease activity and the P17-GFP1-10/GFP11-POI sensor for measuring secretion capacity. This innovative platform has demonstrated its effectiveness by successfully screening high-performance mutant strains capable of producing collagen, amylase, and protein glutaminase across a range of host organisms, including Escherichia coli, Bacillus subtilis, and Pichia pastoris. The substantial increases in production achieved with the SGADS platform highlight its broad applicability and potential in enhancing recombinant protein production.
Collapse
Affiliation(s)
- Li-Hua Liu
- Tidetron Bioworks Technology (Guangzhou) Co., Ltd., Guangzhou Qianxiang Bioworks Co., Ltd., Guangzhou, Guangdong, People's Republic of China
| | - Yu Guo
- Tidetron Bioworks Technology (Guangzhou) Co., Ltd., Guangzhou Qianxiang Bioworks Co., Ltd., Guangzhou, Guangdong, People's Republic of China
| | - Min Yang
- Tidetron Bioworks Technology (Guangzhou) Co., Ltd., Guangzhou Qianxiang Bioworks Co., Ltd., Guangzhou, Guangdong, People's Republic of China
| | - Yang Zhang
- Tidetron Bioworks Technology (Guangzhou) Co., Ltd., Guangzhou Qianxiang Bioworks Co., Ltd., Guangzhou, Guangdong, People's Republic of China
| | - Yi-Rui Wu
- Tidetron Bioworks Technology (Guangzhou) Co., Ltd., Guangzhou Qianxiang Bioworks Co., Ltd., Guangzhou, Guangdong, People's Republic of China
| | - Ao Jiang
- Tidetron Bioworks Technology (Guangzhou) Co., Ltd., Guangzhou Qianxiang Bioworks Co., Ltd., Guangzhou, Guangdong, People's Republic of China
| | - Zhiqian Zhang
- Tidetron Bioworks Technology (Guangzhou) Co., Ltd., Guangzhou Qianxiang Bioworks Co., Ltd., Guangzhou, Guangdong, People's Republic of China
| |
Collapse
|
3
|
Cremelie E, Vázquez R, Briers Y. A comparative guide to expression systems for phage lysin production. Essays Biochem 2024; 68:645-659. [PMID: 39290148 DOI: 10.1042/ebc20240019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/19/2024]
Abstract
Phage lysins, bacteriophage-encoded enzymes tasked with degrading their host's cell wall, are increasingly investigated and engineered as novel antibacterials across diverse applications. Their rapid action, tuneable specificity, and low likelihood of resistance development make them particularly interesting. Despite numerous application-focused lysin studies, the art of their recombinant production remains relatively undiscussed. Here, we provide an overview of the available expression systems for phage lysin production and discuss key considerations guiding the choice of a suitable recombinant host. We systematically surveyed recent literature to evaluate the hosts used in the lysin field and cover various recombinant systems, including the well-known bacterial host Escherichia coli or yeast Saccharomyces cerevisiae, as well as plant, mammalian, and cell-free systems. Careful analysis of the limited studies expressing lysins in various hosts suggests a host-dependent effect on activity. Nonetheless, the multitude of available expression systems should be further leveraged to accommodate the growing interest in phage lysins and their expanding range of applications.
Collapse
Affiliation(s)
- Emma Cremelie
- Laboratory of Applied Biotechnology, Department of Biotechnology, Ghent University, Ghent, Belgium
| | - Roberto Vázquez
- Laboratory of Applied Biotechnology, Department of Biotechnology, Ghent University, Ghent, Belgium
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Yves Briers
- Laboratory of Applied Biotechnology, Department of Biotechnology, Ghent University, Ghent, Belgium
| |
Collapse
|
4
|
Kaur D, Singh RP, Gupta S. Construction of Pseudomonas aeruginosa SDK-6 with synthetic lipase gene cassette and optimization of different parameters using response surface methodology for over-expression of recombinant lipase. Folia Microbiol (Praha) 2024; 69:1279-1290. [PMID: 38700831 DOI: 10.1007/s12223-024-01167-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/13/2024] [Indexed: 10/17/2024]
Abstract
Lipases are industrially important enzymes having vast applications in various fields. Cloning and expression of lipase enzyme-encoding genes in suitable host lead to their widespread use in different fields. The present study represents the first attempt towards the expression of the synthetic lipase gene in Pseudomonas aeruginosa. An alkalophilic lipase gene (GenBank accession number: NP_388152) from Bacillus subtilis was synthetically designed and introduced in the pJN105 vector and subsequently cloned in Pseudomonas aeruginosa SDK-6. Agarose gel electrophoresis confirmed the transformation of SDK-6, exhibiting a band difference of ~ 700 bp between native and recombinant pJN105. Further amplification of cloned lipase gene was confirmed using PCR amplification with Lip 1 and Lip 2 primers respectively, followed by restriction analysis. Approximately 15-fold increase in lipase production was observed in recombinant Pseudomonas as compared to the native strain. One factor at a time (OFAT) analysis revealed L-arabinose, inoculum size (0.5%; v/v), and agitation (120 rpm) as significant factors affecting the over-expression of lipase enzyme. Optimization of enzyme induction conditions by central composite design (CCD) led to 1.60-fold increase in the production of lipase at 0.65% (w/v) inducer concentration, OD600-1.075 before induction and 35 °C post induction temperature with overall lipase production of 50.50 IU/mL. Statistical validation of observed value via ANOVA showed an F-value of 138.70 at p < 0.01 with R2 of 0.9921.
Collapse
Affiliation(s)
- Damanjeet Kaur
- Department of Microbiology, Mata Gujri College, Fatehgarh Sahib-140406, Punjab, India
- Department of Biotechnology and Food Technology, Punjabi University, Patiala-147002, Punjab, India
| | - Rupinder Pal Singh
- Department of Food Processing Technology, Sri Guru Granth Sahib World University, Fatehgarh Sahib-140406, Punjab, India
| | - Saurabh Gupta
- Department of Microbiology, Mata Gujri College, Fatehgarh Sahib-140406, Punjab, India.
| |
Collapse
|
5
|
Pang F, Long Q, Liang S. Designing a multi-epitope subunit vaccine against Orf virus using molecular docking and molecular dynamics. Virulence 2024; 15:2398171. [PMID: 39258802 PMCID: PMC11404621 DOI: 10.1080/21505594.2024.2398171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/04/2024] [Accepted: 05/19/2024] [Indexed: 09/12/2024] Open
Abstract
Orf virus (ORFV) is an acute contact, epitheliotropic, zoonotic, and double-stranded DNA virus that causes significant economic losses in the livestock industry. The objective of this study is to design an immunoinformatics-based multi-epitope subunit vaccine against ORFV. Various immunodominant cytotoxic T lymphocytes (CTL), helper T lymphocytes (HTL), and B-cell epitopes from the B2L, F1L, and 080 protein of ORFV were selected and linked by short connectors to construct a multi-epitope subunit vaccine. Immunogenicity was enhanced by adding an adjuvant β-defensin to the N-terminal of the vaccine using the EAAAK linker. The vaccine exhibited a significant degree of antigenicity and solubility, without allergenicity or toxicity. The 3D formation of the vaccine was subsequently anticipated, improved, and verified. The optimized model exhibited a lower Z-score of -4.33, indicating higher quality. Molecular docking results demonstrated that the vaccine strongly binds to TLR2 and TLR4. Molecular dynamics results indicated that the docked vaccine-TLR complexes were stable. Immune simulation analyses further confirmed that the vaccine can induce a marked increase in IgG and IgM antibody titers, and elevated levels of IFN-γ and IL-2. Finally, the optimized DNA sequence of the vaccine was cloned into the vector pET28a (+) for high expression in the E.coli expression system. Overall, the designed multi-epitope subunit vaccine is highly stable and can induce robust humoral and cellular immunity, making it a promising vaccine candidate against ORFV.
Collapse
MESH Headings
- Vaccines, Subunit/immunology
- Vaccines, Subunit/genetics
- Vaccines, Subunit/chemistry
- Molecular Docking Simulation
- Animals
- Orf virus/immunology
- Orf virus/genetics
- Viral Vaccines/immunology
- Viral Vaccines/chemistry
- Viral Vaccines/genetics
- Molecular Dynamics Simulation
- Mice
- Epitopes, B-Lymphocyte/immunology
- Epitopes, B-Lymphocyte/genetics
- Epitopes, B-Lymphocyte/chemistry
- Epitopes, T-Lymphocyte/immunology
- Epitopes, T-Lymphocyte/genetics
- Epitopes, T-Lymphocyte/chemistry
- Antibodies, Viral/immunology
- Antibodies, Viral/blood
- Toll-Like Receptor 4/immunology
- Toll-Like Receptor 4/chemistry
- Ecthyma, Contagious/prevention & control
- Ecthyma, Contagious/immunology
- Ecthyma, Contagious/virology
- Mice, Inbred BALB C
- Female
- T-Lymphocytes, Cytotoxic/immunology
- Immunoglobulin G/blood
- Immunoglobulin G/immunology
Collapse
Affiliation(s)
- Feng Pang
- Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang, China
| | - Qinqin Long
- Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang, China
| | - Shaobo Liang
- Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang, China
| |
Collapse
|
6
|
Su SY, Zheng YS, Mao H, Zhao LB, Zhu MY, Yang YF, Li LT, Wang ZR, He C. Soluble expression of hMYDGF was improved by strain engineering and optimizations of fermentation strategies in Escherichia coli. Protein Expr Purif 2024; 224:106565. [PMID: 39111350 DOI: 10.1016/j.pep.2024.106565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/04/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
Myeloid-derived growth factor (MYDGF) is a cytokine that exhibits a variety of biological functions. This study focused on utilizing BL21(DE3) strain engineering and fermentation strategies to achieve high-level expression of soluble human MYDGF (hMYDGF) in Escherichia coli. Initially, the E. coli expressing strain BL21(DE3) was engineered by deleting the IpxM gene and inserting the GROEL/S and Trigger factor genes. The engineered E. coli strain BL21(TG)/pT-MYDGF accumulated 3557.3 ± 185.6 μg/g and 45.7 ± 6.7 mg/L of soluble hMYDGF in shake flask fermentation, representing a 15.6-fold increase compared to the control strain BL21(DE3)/pT-MYDGF. Furthermore, the yield of hMYDGF was significantly enhanced by optimizing the fermentation conditions. Under optimized conditions, the 5L bioreactor yielded up to 2665.8 ± 164.3 μg/g and 407.6 ± 42.9 mg/L of soluble hMYDGF. The results indicate that the implementation of these optimization strategies could enhance the ratio and yield of soluble proteins expressed by E.coli, thereby meeting the demands of industrial production. This study employed sophisticated strategies to lay a solid foundation for the industrial application of hMYDGF.
Collapse
Affiliation(s)
- Si-Yuan Su
- Shanghai Institute of Biological Products Co., Ltd., Shanghai, China
| | - Yong-Shan Zheng
- Shanghai Institute of Biological Products Co., Ltd., Shanghai, China; Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Hui Mao
- Shanghai Institute of Biological Products Co., Ltd., Shanghai, China
| | - Li-Bing Zhao
- Shanghai Institute of Biological Products Co., Ltd., Shanghai, China
| | - Man-Yi Zhu
- Shanghai Institute of Biological Products Co., Ltd., Shanghai, China
| | - Yu-Feng Yang
- Shanghai Institute of Biological Products Co., Ltd., Shanghai, China
| | - Ling-Ting Li
- Shanghai Institute of Biological Products Co., Ltd., Shanghai, China
| | - Zi-Ru Wang
- Shanghai Institute of Biological Products Co., Ltd., Shanghai, China
| | - Cheng He
- Shanghai Institute of Biological Products Co., Ltd., Shanghai, China.
| |
Collapse
|
7
|
Rauer SB, Stüwe L, Steinbeck L, de Toledo MAS, Fischer G, Wennemaring S, Marschick J, Koschmieder S, Wessling M, Linkhorst J. Cell Adhesion and Local Cytokine Control on Protein-Functionalized PNIPAM-co-AAc Hydrogel Microcarriers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2404183. [PMID: 39535368 DOI: 10.1002/smll.202404183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 10/16/2024] [Indexed: 11/16/2024]
Abstract
Achieving adequate cell densities remains a major challenge in establishing economic biotechnological and biomedical processes. A possible remedy is microcarrier-based cultivation in stirred-tank bioreactors (STBR), which offers a high surface-to-volume ratio, appropriate process control, and scalability. However, despite their potential, commercial microcarriers are currently limited to material systems featuring unnatural mechanical properties and low adaptability. Because matrix stiffness and ligand presentation impact phenotypical attributes, differentiation potential, and genetic stability, biotechnological processes can significantly benefit from microcarrier systems tailorable toward cell-type specific requirements. This study introduces hydrogel particles co-polymerized from poly(N-isopropylacrylamide) (PNIPAM) and acrylic acid (AAc) as a platform technology for cell expansion. The resulting microcarriers exhibit an adjustable extracellular matrix-like softness, an adaptable gel charge, and functional carboxyl groups, allowing electrostatic and covalent coupling of cell adhesive and cell fate-modulating proteins. These features enable the attachment and growth of L929 mouse fibroblast cells in static microtiter plates and dynamic STBR cultivations while also providing vital growth factors, such as interleukin-3, to myeloblast-like 32D cells over 20 days of cultivation. The study explores the effects of different educt compositions on cell-particle interactions and reveals that PNIPAM-co-AAc microcarriers can provide both covalently coupled and diffusively released cytokine to adjacent cells.
Collapse
Affiliation(s)
- Sebastian Bernhard Rauer
- Chemical Process Engineering, RWTH Aachen University, Forckenbeckstr. 51, 52074, Aachen, Germany
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52074, Aachen, Germany
| | - Lucas Stüwe
- Chemical Process Engineering, RWTH Aachen University, Forckenbeckstr. 51, 52074, Aachen, Germany
| | - Lea Steinbeck
- Chemical Process Engineering, RWTH Aachen University, Forckenbeckstr. 51, 52074, Aachen, Germany
| | - Marcelo Augusto Szymanski de Toledo
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, 52074, Aachen, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), 52074, Aachen, Germany
| | - Gereon Fischer
- Chemical Process Engineering, RWTH Aachen University, Forckenbeckstr. 51, 52074, Aachen, Germany
| | - Simon Wennemaring
- Chemical Process Engineering, RWTH Aachen University, Forckenbeckstr. 51, 52074, Aachen, Germany
| | - Jonas Marschick
- Chemical Process Engineering, RWTH Aachen University, Forckenbeckstr. 51, 52074, Aachen, Germany
| | - Steffen Koschmieder
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, 52074, Aachen, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), 52074, Aachen, Germany
| | - Matthias Wessling
- Chemical Process Engineering, RWTH Aachen University, Forckenbeckstr. 51, 52074, Aachen, Germany
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52074, Aachen, Germany
| | - John Linkhorst
- Chemical Process Engineering, RWTH Aachen University, Forckenbeckstr. 51, 52074, Aachen, Germany
- Process Engineering of Electrochemical Systems, Department of Mechanical Engineering, Technical University of Darmstadt, Otto-Berndt-Str. 2, 64287, Darmstadt, Germany
| |
Collapse
|
8
|
Fanaee S, Austin W, Filiaggi M, Adibnia V. External Bleeding and Advanced Biomacromolecules for Hemostasis. Biomacromolecules 2024; 25:6936-6966. [PMID: 39463174 DOI: 10.1021/acs.biomac.4c00952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Hemorrhage is a significant medical problem that has been an active area of research over the past few decades. The human body has a complex response to bleeding that leads to blood clot formation and hemostasis. Many biomaterials based on various biomacromolecules have been developed to either accelerate or improve the body's natural response to bleeding. This review examines the mechanisms of hemostasis, types of bleeding, and the in vitro or in vivo models and techniques used to study bleeding and hemostatic materials. It provides a detailed overview of the diverse hemostatic materials, including those that are highly absorbent, wet adhesives, and those that accelerate the biochemical cascade of blood clotting. These materials are currently marketed, under preclinical testing, or being researched. In exploring the latest advancements in hemostatic technologies, this paper highlights the potential of these materials to significantly improve bleeding control in clinical and emergency situations.
Collapse
Affiliation(s)
- Sajjad Fanaee
- School of Biomedical Engineering, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - William Austin
- School of Biomedical Engineering, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Mark Filiaggi
- School of Biomedical Engineering, Dalhousie University, Halifax, NS B3H 4R2, Canada
- Department of Biomaterials & Applied Oral Sciences, Faculty of Dentistry, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Vahid Adibnia
- School of Biomedical Engineering, Dalhousie University, Halifax, NS B3H 4R2, Canada
- Department of Biomaterials & Applied Oral Sciences, Faculty of Dentistry, Dalhousie University, Halifax, NS B3H 4R2, Canada
- Department of Chemistry, Dalhousie University, Halifax, NS B3H 4R2, Canada
| |
Collapse
|
9
|
Zimna M, Krol E. Leishmania tarentolae as a platform for the production of vaccines against viral pathogens. NPJ Vaccines 2024; 9:212. [PMID: 39505865 PMCID: PMC11541885 DOI: 10.1038/s41541-024-01005-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 10/23/2024] [Indexed: 11/08/2024] Open
Abstract
Infectious diseases remain a persistent public health problem and a leading cause of morbidity and mortality in both humans and animals. The most effective method of combating viral infections is the widespread use of prophylactic vaccinations, which are administered to both people at risk of disease and animals that may serve as significant sources of infection. Therefore, it is crucial to develop technologies for the production of vaccines that are highly effective, easy to transport and store, and cost-effective. The protein expression system based on the protozoan Leishmania tarentolae offers several advantages, validated by numerous studies, making it a good platform for producing vaccine antigens. This review provides a comprehensive overview into the potential applications of L. tarentolae for the safe production of effective viral antigens.
Collapse
Affiliation(s)
- Marta Zimna
- Department of Recombinant Vaccines, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307, Gdansk, Poland
| | - Ewelina Krol
- Department of Recombinant Vaccines, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307, Gdansk, Poland.
| |
Collapse
|
10
|
Omole AO, Zhao Z, Chang-Liao S, de Oliveira JFA, Boone CE, Sutorus L, Sack M, Varner J, Fiering SN, Steinmetz NF. Virus nanotechnology for intratumoural immunotherapy. NATURE REVIEWS BIOENGINEERING 2024; 2:916-929. [PMID: 39698315 PMCID: PMC11655125 DOI: 10.1038/s44222-024-00231-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/22/2024] [Indexed: 12/20/2024]
Abstract
Viruses can be designed to be tools and carrier vehicles for intratumoural immunotherapy. Their nanometre-scale size and shape allow for functionalization with or encapsulation of medical cargoes and tissue-specific ligands. Importantly, immunotherapies may particularly benefit from the inherent immunomodulatory properties of viruses. For example, mammalian viruses have already been tested for oncolytic virotherapy, and bacteriophages and plant viruses can be engineered for immunotherapeutic treatment approaches. In this Review, we discuss how viruses - including oncolytic viruses, immunomodulatory plant viruses and bacteriophages - and virus-like particles can be designed for intratumoural immunotherapy to elicit anti-tumour immunity and induce systemic anti-tumour responses at distant non-injected sites. We further highlight the engineering of viruses and virus-like particles as drug-delivery systems, and outline key translational challenges and clinical opportunities.
Collapse
Affiliation(s)
- Anthony O. Omole
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California, San Diego, La Jolla, CA, USA
- Shu and K. C. Chien and Peter Farrell Collaboratory, University of California, San Diego, La Jolla, CA, USA
- Center for Nano-ImmunoEngineering, University of California, San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Zhongchao Zhao
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California, San Diego, La Jolla, CA, USA
- Shu and K. C. Chien and Peter Farrell Collaboratory, University of California, San Diego, La Jolla, CA, USA
- Center for Nano-ImmunoEngineering, University of California, San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Sabrina Chang-Liao
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California, San Diego, La Jolla, CA, USA
- Shu and K. C. Chien and Peter Farrell Collaboratory, University of California, San Diego, La Jolla, CA, USA
- Center for Nano-ImmunoEngineering, University of California, San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Jessica Fernanda Affonso de Oliveira
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California, San Diego, La Jolla, CA, USA
- Shu and K. C. Chien and Peter Farrell Collaboratory, University of California, San Diego, La Jolla, CA, USA
- Center for Nano-ImmunoEngineering, University of California, San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Christine E. Boone
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Lucas Sutorus
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California, San Diego, La Jolla, CA, USA
- Shu and K. C. Chien and Peter Farrell Collaboratory, University of California, San Diego, La Jolla, CA, USA
- Center for Nano-ImmunoEngineering, University of California, San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | | | - Judith Varner
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
- Center for Engineering in Cancer, Institute of Engineering Medicine, University of California, San Diego, La Jolla, CA, USA
- Department of Pathology, University of California, San Diego, La Jolla, CA, USA
| | - Steven N. Fiering
- Department of Microbiology and Immunology, Dartmouth Cancer Center, Dartmouth Geisel School of Medicine and Dartmouth-Hitchock Health, Lebanon, NH, USA
| | - Nicole F. Steinmetz
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California, San Diego, La Jolla, CA, USA
- Shu and K. C. Chien and Peter Farrell Collaboratory, University of California, San Diego, La Jolla, CA, USA
- Center for Nano-ImmunoEngineering, University of California, San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
- Center for Engineering in Cancer, Institute of Engineering Medicine, University of California, San Diego, La Jolla, CA, USA
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA
- Institute for Materials Discovery and Design, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
11
|
Bodiou V, Kumar AA, Massarelli E, van Haaften T, Post MJ, Moutsatsou P. Attachment promoting compounds significantly enhance cell proliferation and purity of bovine satellite cells grown on microcarriers in the absence of serum. Front Bioeng Biotechnol 2024; 12:1443914. [PMID: 39553395 PMCID: PMC11563957 DOI: 10.3389/fbioe.2024.1443914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 10/16/2024] [Indexed: 11/19/2024] Open
Abstract
Introduction To bring cultivated beef to the market, a scalable system that can support growth of bovine satellite cells (bSCs) in a serum-free and preferably also animal-free medium is of utmost importance. The use of microcarriers (MCs) is, at the moment, one of the most promising technologies for scaling up. MCs offer a large surface to volume ratio, they can be used in scalable stirred tank bioreactors, where the culture conditions can be tightly controlled to meet the cells' requirements (temperature, pH, dissolved oxygen). The inherent capacity of the cells to migrate from one MC to another, also known as bead-to-bead transfer, facilitates a scale-up strategy involving MCs. Previous studies have shown growth of bSCs on three commercially available MCs in serum containing media. Unfortunately there is currently no information available regarding their growth on MCs in serum-free conditions. Methods In this study, we aimed to find suitable serum-free media, MCs and attachment promoting compounds (APCs) supporting the growth of bSCs. Initially, six commercial MCs and three serum-free media were evaluated. The effects of three APCs were compared (vitronectin, laminin and fibronectin). Subsequently, the effects of different concentrations and modes of addition of the best performing APC were investigated. Results and Discussion Our results showed that Cytodex 1, Synthemax II and CellBIND supported bSCs' growth in all serum-free media. Overall, better growth was observed with Cytodex 1 in serum-free proliferation media. We showed that the use of laminin or vitronectin with Cytodex 1 can significantly improve cell growth and purity. Laminin also allowed attachment and growth of bSCs on Plastic MCs which had been previously unsuccessful without APCs. Finally, we optimized the use of vitronectin from a sustainability and process perspective, and showed that it can be used solely as a coating for Cytodex 1 (16-100 ng/cm2) MCs, instead of as a medium supplement, enhancing cell attachment and proliferation.
Collapse
Affiliation(s)
- Vincent Bodiou
- Mosa Meat BV, Maastricht, Netherlands
- CARIM (The Cardiovascular Research Institute Maastricht), Faculty of Health, Medicine and Life Sciences, School for Cardiovascular Diseases, Maastricht University, Maastricht, Netherlands
| | | | | | | | - Mark J. Post
- Mosa Meat BV, Maastricht, Netherlands
- CARIM (The Cardiovascular Research Institute Maastricht), Faculty of Health, Medicine and Life Sciences, School for Cardiovascular Diseases, Maastricht University, Maastricht, Netherlands
| | | |
Collapse
|
12
|
Lee J, Lee KR, Kim NS, Lee J, Lee SK, Lee S. High-Level Production of a Recombinant Protein in Nicotiana benthamiana Leaves Through Transient Expression Using a Double Terminator. Int J Mol Sci 2024; 25:11573. [PMID: 39519125 PMCID: PMC11547012 DOI: 10.3390/ijms252111573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/22/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
Various bio-based recombinant proteins have been produced for industrial, medical, and research purposes. Plants are potential platforms for recombinant protein production because of several advantages. Therefore, establishing a system with high target gene expression to compensate for the low protein yield of plant systems is crucial. In particular, selecting and combining strong terminators is essential because the expression of target genes can be substantially enhanced. Here, we aimed to quantify the enhancement in the fluorescence intensity of the turbo green fluorescence protein (tGFP) caused by the best double-terminator combinations compared to that of the control vector using agroinfiltration in Nicotiana benthamiana leaves. tGFP fluorescence increased by 4.1-fold in leaf samples infiltrated with a vector containing a double terminator and markedly increased by a maximum of 23.7-fold when co-infiltrated with the geminiviral vector and P19 compared to that in constructs containing an octopine synthase terminator. Polyadenylation site analysis in leaf tissues expressing single or dual terminators showed that the first terminator influenced the polyadenylation site determination of the second terminator, resulting in different polyadenylation sites compared with when the terminator is located first. The combination of the high-expression terminators and geminiviral vectors can increase the production of target proteins.
Collapse
|
13
|
Chen A, Dong Y, Jiang H, Yang S, Zhang J, Wei D. Identification and analysis of the key genes for Escherichia coli heterologous protein expression by transcriptomic profiling. Mol Biol Rep 2024; 51:1074. [PMID: 39425817 DOI: 10.1007/s11033-024-10011-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 10/10/2024] [Indexed: 10/21/2024]
Abstract
BACKGROUND Escherichia coli is a frequently used host for heterologous protein expression, but its expression efficiency is hindered by several limitations, such as formation of inclusion bodies and proteolytic degradation. METHODS AND RESULTS In this study, we employed high-density fermentation of heterologous protein production in a 5-L bioreactor, resulting in a yield 2.25 times higher than that of the control group. Transcriptional analysis was conducted at three time points after induction for 0 h, 4 h, and 12 h, revealing 420, 301, and 570 upregulated differentially expressed genes, as well as 424, 202, and 525 downregulated genes, respectively. By conducting enrichment analysis, we constructed strains that relieved without iron limitation, exhibiting a 36% increase in biomass and a 32% increase in protein expression. Furthermore, no overflow metabolism of acetic acid was detected during the protein expression process when utilizing chemostat culture, which indicated that the utilization efficiency of glucose was significantly enhanced without iron limitation. CONCLUSIONS This study presents a novel approach to better comprehend the mechanism of high-yield production of heterologous proteins in Escherichia coli.
Collapse
Affiliation(s)
- Anxiang Chen
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Yuguo Dong
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Huaigu Jiang
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Shengli Yang
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Jian Zhang
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| | - Dongzhi Wei
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| |
Collapse
|
14
|
Skeeters S, Bagale K, Stepanyuk G, Thieker D, Aguhob A, Chan KK, Dutzar B, Shalygin S, Shajahan A, Yang X, DaRosa PA, Frazier E, Sauer MM, Bogatzki L, Byrnes-Blake KA, Song Y, Azadi P, Tarcha E, Zhang L, Procko E. Modulation of the pharmacokinetics of soluble ACE2 decoy receptors through glycosylation. Mol Ther Methods Clin Dev 2024; 32:101301. [PMID: 39185275 PMCID: PMC11342882 DOI: 10.1016/j.omtm.2024.101301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 07/16/2024] [Indexed: 08/27/2024]
Abstract
The Spike of SARS-CoV-2 recognizes a transmembrane protease, angiotensin-converting enzyme 2 (ACE2), on host cells to initiate infection. Soluble derivatives of ACE2, in which Spike affinity is enhanced and the protein is fused to Fc of an immunoglobulin, are potent decoy receptors that reduce disease in animal models of COVID-19. Mutations were introduced into an ACE2 decoy receptor, including adding custom N-glycosylation sites and a cavity-filling substitution together with Fc modifications, which increased the decoy's catalytic activity and provided small to moderate enhancements of pharmacokinetics following intravenous and subcutaneous administration in humanized FcRn mice. Most prominently, sialylation of native glycans increases exposures by orders of magnitude, and the optimized decoy is therapeutically efficacious in a mouse COVID-19 model. Ultimately, an engineered and highly sialylated decoy receptor produced using methods suitable for manufacture of representative drug substance has high exposure with a 5- to 9-day half-life. Finally, peptide epitopes at mutated sites in the decoys generally have low binding to common HLA class II alleles and the predicted immunogenicity risk is low. Overall, glycosylation is a critical molecular attribute of ACE2 decoy receptors and modifications that combine tighter blocking of Spike with enhanced pharmacokinetics elevate this class of molecules as viable drug candidates.
Collapse
Affiliation(s)
| | - Kamal Bagale
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | | | | | | | | | | | - Sergei Shalygin
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Asif Shajahan
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Xu Yang
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | | | | | | | | | | | - Yifan Song
- Cyrus Biotechnology, Seattle, WA 98121, USA
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | | | - Lianghui Zhang
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Vascular Medicine Institute, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Erik Procko
- Cyrus Biotechnology, Seattle, WA 98121, USA
- Department of Biochemistry, University of Illinois, Urbana, IL 61801, USA
| |
Collapse
|
15
|
İncir İ, Kaplan Ö. Escherichia coli in the production of biopharmaceuticals. Biotechnol Appl Biochem 2024. [PMID: 39245907 DOI: 10.1002/bab.2664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 08/23/2024] [Indexed: 09/10/2024]
Abstract
Escherichia coli has shouldered a massive workload with the discovery of recombinant DNA technology. A new era began in the biopharmaceutical industry with the production of insulin, the first recombinant protein, in E. coli and its use in treating diabetes. After insulin, many biopharmaceuticals produced from E. coli have been approved by the US Food and Drug Administration and the European Medicines Agency to treat various human diseases. Although E. coli has some disadvantages, such as lack of post-translational modifications and toxicity, it is an important host with advantages such as being a well-known bacterium in recombinant protein production, cheap, simple production system, and high yield. This study examined biopharmaceuticals produced and approved in E. coli under the headings of peptides, hormones, enzymes, fusion proteins, antibody fragments, vaccines, and other pharmaceuticals. The topics on which these biopharmaceuticals were approved for treating human diseases, when and by which company they were produced, and their use and development in the field are included.
Collapse
Affiliation(s)
- İbrahim İncir
- Kazım Karabekir Vocational School, Department of Medical Services and Techniques, Environmental Health Program, Karamanoğlu Mehmetbey University, Karaman, Turkey
| | - Özlem Kaplan
- Rafet Kayış Faculty of Engineering, Department of Genetics and Bioengineering, Alanya Alaaddin Keykubat University, Antalya, Turkey
| |
Collapse
|
16
|
Raja A, Kasana A, Verma V. Next-Generation Therapeutic Antibodies for Cancer Treatment: Advancements, Applications, and Challenges. Mol Biotechnol 2024:10.1007/s12033-024-01270-y. [PMID: 39222285 DOI: 10.1007/s12033-024-01270-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/24/2024] [Indexed: 09/04/2024]
Abstract
The field of cancer treatment has evolved significantly over the last decade with the emergence of next-generation therapeutic antibodies. Conventional treatments like chemotherapy pose significant challenges, including adverse side effects. Monoclonal antibodies have paved the way for more targeted and effective interventions. The evolution from chimeric to humanized and fully human antibodies has led to a reduction in immunogenicity and enhanced tolerance in vivo. The advent of next-generation antibodies, including bispecific antibodies, nanobodies, antibody-drug conjugates, glyco-engineered antibodies, and antibody fragments, represents a leap forward in cancer therapy. These innovations offer increased potency, adaptability, and reduced drug resistance. Challenges such as target validation, immunogenicity, and high production costs exist. However, technological advancements in antibody engineering techniques provide optimism for addressing these issues. The future promises a paradigm shift, where ongoing research will propel these powerful antibodies to the forefront, revolutionizing the fight against cancer and creating new preventive and curative treatments. This review provides an overview of three next-generation antibody-based molecules, namely bispecific antibodies, antibody-drug conjugates, and nanobodies that have shown promising results in cancer treatment. It discusses the evolution of antibodies from conventional forms to next-generation molecules, along with their applications in cancer treatment, production methods, and associated challenges. The review aims to offer researchers insights into the evolving landscape of next-generation antibody-based cancer therapeutics and their potential to revolutionize treatment strategies.
Collapse
Affiliation(s)
- Abhavya Raja
- Department of Biotechnology, School of Engineering and Applied Sciences, Bennett University, Greater Noida, 201310, Uttar Pradesh, India
| | - Abhishek Kasana
- Department of Biotechnology, School of Engineering and Applied Sciences, Bennett University, Greater Noida, 201310, Uttar Pradesh, India
| | - Vaishali Verma
- Department of Biotechnology, School of Engineering and Applied Sciences, Bennett University, Greater Noida, 201310, Uttar Pradesh, India.
| |
Collapse
|
17
|
Biel TG, Faison T, Matthews AM, Ortega‐Rodriguez U, Falkowski VM, Meek E, Bush X, Flores M, Johnson S, Wu WW, Lehtimaki M, Shen R, Agarabi C, Rao VA, Chambers JE, Ju T. Model acetylcholinesterase-Fc fusion glycoprotein biotechnology system for the manufacture of an organophosphorus toxicant bioscavenging countermeasure. Bioeng Transl Med 2024; 9:e10666. [PMID: 39553427 PMCID: PMC11561780 DOI: 10.1002/btm2.10666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/18/2024] [Accepted: 03/22/2024] [Indexed: 11/19/2024] Open
Abstract
Organophosphate (OP) toxicants remain an active threat to public health and to warfighters in the military. Current countermeasures require near immediate administration following OP exposure and are reported to have controversial efficacies. Acetylcholinesterase (AChE) fused to the human immunoglobulin 1 (IgG1) Fc domain (AChE-Fc) is a potential bioscavenger for OP toxicants, but a reproducible AChE-Fc biomanufacturing strategy remains elusive. This report is the first to establish a comprehensive laboratory-scale bioprocessing strategy that can reproducibly produce AChE-Fc and AChE(W86A)-Fc which is a mutated AChE protein with reduced enzymatic activity. Characterization studies revealed that AChE-Fc and AChE(W86A)-Fc are N-glycosylated dimeric fusion glycoproteins but only AChE-Fc had the capability to bind to paraoxon (a model OP). This AChE-Fc fusion glycoprotein bioprocessing strategy can be leveraged during industrial biomanufacturing development, while the research-grade AChE-Fc proteins can be used to determine the potential clinical relevance of the countermeasure against OP toxicants.
Collapse
Affiliation(s)
- Thomas G. Biel
- Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug AdministrationSilver SpringMarylandUSA
| | - Talia Faison
- Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug AdministrationSilver SpringMarylandUSA
| | - Alicia M. Matthews
- Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug AdministrationSilver SpringMarylandUSA
| | - Uriel Ortega‐Rodriguez
- Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug AdministrationSilver SpringMarylandUSA
| | - Vincent M. Falkowski
- Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug AdministrationSilver SpringMarylandUSA
| | - Edward Meek
- Department of Comparative Biomedical Sciences, Center for Environmental Health SciencesCollege of Veterinary Medicine, Mississippi State UniversityMississippi StateMississippiUSA
| | - Xin Bush
- Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug AdministrationSilver SpringMarylandUSA
- Department of Biomedical and Pharmaceutical SciencesCollege of Pharmacy, University of Rhode IslandKingstonRhode IslandUSA
| | - Matthew Flores
- Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug AdministrationSilver SpringMarylandUSA
| | - Sarah Johnson
- Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug AdministrationSilver SpringMarylandUSA
| | - Wells W. Wu
- Facility for Biotechnology ResourcesCenter for Biologics Evaluation and Research, United States Food and Drug AdministrationSilver SpringMarylandUSA
| | - Mari Lehtimaki
- Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug AdministrationSilver SpringMarylandUSA
| | - Rong‐Fong Shen
- Facility for Biotechnology ResourcesCenter for Biologics Evaluation and Research, United States Food and Drug AdministrationSilver SpringMarylandUSA
| | - Cyrus Agarabi
- Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug AdministrationSilver SpringMarylandUSA
| | - V. Ashutosh Rao
- Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug AdministrationSilver SpringMarylandUSA
| | - Janice E. Chambers
- Department of Comparative Biomedical Sciences, Center for Environmental Health SciencesCollege of Veterinary Medicine, Mississippi State UniversityMississippi StateMississippiUSA
| | - Tongzhong Ju
- Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug AdministrationSilver SpringMarylandUSA
| |
Collapse
|
18
|
Fogaça MBT, Lopes-Luz L, Saavedra DP, de Oliveira NKAB, Jesus Sousa MBD, Perez JDP, de Andrade IA, Crispim GJB, Pinto LDS, Ferreira MRA, Ribeiro BM, Nagata T, Conceição FR, Stefani MMDA, Bührer-Sékula S. Production of antigens expressed in Nicotiana benthamiana plant and Escherichia coli for the SARS-CoV-2 IgG antibody detection by ELISA. J Virol Methods 2024; 329:114969. [PMID: 38834144 DOI: 10.1016/j.jviromet.2024.114969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 05/06/2024] [Accepted: 05/28/2024] [Indexed: 06/06/2024]
Abstract
The recent COVID-19 pandemic disclosed a critical shortage of diagnostic kits worldwide, emphasizing the urgency of utilizing all resources available for the development and production of diagnostic tests. Different heterologous protein expression systems can be employed for antigen production. This study assessed novel SARS-CoV-2 proteins produced by a transient expression system in Nicotiana benthamiana utilizing an infectious clone vector based on pepper ringspot virus (PepRSV). These proteins included the truncated S1-N protein (spike protein N-terminus residues 12-316) and antigen N (nucleocapsid residues 37-402). Two other distinct SARS-CoV-2 antigens expressed in Escherichia coli were evaluated: QCoV9 chimeric antigen protein (spike protein residues 449-711 and nucleocapsid protein residues 160-406) and QCoV7 truncated antigen (nucleocapsid residues 37-402). ELISAs using the four antigens individually and the same panel of samples were performed for the detection of anti-SARS-CoV-2 IgG antibodies. Sensitivity was evaluated using 816 samples from 351 COVID-19 patients hospitalized between 5 and 65 days after symptoms onset; specificity was tested using 195 samples collected before 2018, from domiciliary contacts of leprosy patients. Our findings demonstrated consistent test sensitivity, ranging from 85 % to 88 % with specificity of 97.5 %, regardless of the SARS-CoV2 antigen and the expression system used for production. Our results highlight the potential of plant expression systems as useful alternative platforms to produce recombinant antigens and for the development of diagnostic tests, particularly in resource-constrained settings.
Collapse
Affiliation(s)
- Matheus Bernardes Torres Fogaça
- Laboratório de Produção e Desenvolvimento de Testes Rápidos, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás, Brazil; Innovation Hub in Point of Care Technologies, Universidade Federal de Goiás-Merck S/A. Alliance, Goiânia, Goiás 74690-900, Brazil
| | - Leonardo Lopes-Luz
- Laboratório de Produção e Desenvolvimento de Testes Rápidos, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás, Brazil; Innovation Hub in Point of Care Technologies, Universidade Federal de Goiás-Merck S/A. Alliance, Goiânia, Goiás 74690-900, Brazil
| | - Djairo Pastor Saavedra
- Laboratório de Produção e Desenvolvimento de Testes Rápidos, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás, Brazil; Innovation Hub in Point of Care Technologies, Universidade Federal de Goiás-Merck S/A. Alliance, Goiânia, Goiás 74690-900, Brazil
| | - Nicolle Kathlen Alves Belem de Oliveira
- Laboratório de Produção e Desenvolvimento de Testes Rápidos, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Maria Beatris de Jesus Sousa
- Laboratório de Produção e Desenvolvimento de Testes Rápidos, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Julio Daniel Pacheco Perez
- Laboratório de Produção e Desenvolvimento de Testes Rápidos, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Ikaro Alves de Andrade
- Departamento de Biologia Celular, Campus Darcy Ribeiro, Universidade de Brasília, Brasília, DF 70910-900, Brazil
| | - Gildemar José Bezerra Crispim
- Departamento de Biologia Celular, Campus Darcy Ribeiro, Universidade de Brasília, Brasília, DF 70910-900, Brazil; Hospital Regional de Santa Maria, Brasília, DF 72502-100, Brazil
| | - Luciano da Silva Pinto
- Centro de Desenvolvimento Tecnológico, Núcleo de Biotecnologia, Universidade Federal de Pelotas, CP 354, Pelotas, RS CEP 96160-000, Brazil
| | - Marcos Roberto Alves Ferreira
- Centro de Desenvolvimento Tecnológico, Núcleo de Biotecnologia, Universidade Federal de Pelotas, CP 354, Pelotas, RS CEP 96160-000, Brazil
| | - Bergmann Morais Ribeiro
- Departamento de Biologia Celular, Campus Darcy Ribeiro, Universidade de Brasília, Brasília, DF 70910-900, Brazil
| | - Tatsuya Nagata
- Departamento de Biologia Celular, Campus Darcy Ribeiro, Universidade de Brasília, Brasília, DF 70910-900, Brazil
| | - Fabricio Rochedo Conceição
- Centro de Desenvolvimento Tecnológico, Núcleo de Biotecnologia, Universidade Federal de Pelotas, CP 354, Pelotas, RS CEP 96160-000, Brazil
| | - Mariane Martins de Araújo Stefani
- Laboratório de Produção e Desenvolvimento de Testes Rápidos, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Samira Bührer-Sékula
- Laboratório de Produção e Desenvolvimento de Testes Rápidos, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás, Brazil; Innovation Hub in Point of Care Technologies, Universidade Federal de Goiás-Merck S/A. Alliance, Goiânia, Goiás 74690-900, Brazil.
| |
Collapse
|
19
|
Jang J, Kwon DH, Jang JH, Lee DG, Chang SH, Jeon MY, Jeong YS, Song DH, Min JK, Park JG, Lee MS, Han BS, Yang W, Lee NK, Lee J. Development of a novel sandwich immunoassay based on targeting recombinant Francisella outer membrane protein A for the diagnosis of tularemia. Front Cell Infect Microbiol 2024; 14:1455259. [PMID: 39228894 PMCID: PMC11368854 DOI: 10.3389/fcimb.2024.1455259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/01/2024] [Indexed: 09/05/2024] Open
Abstract
Introduction Tularemia, caused by the bacterium Francisella tularensis, poses health risks to humans and can spread through a variety of routes. It has also been classified as a Tier 1 Select agent by the CDC, highlighting its potential as a bioterrorism agent. Moreover, it is difficult to diagnose in a timely fashion, owing to the non-specific nature of tularemia infections. Rapid, sensitive, and accurate detection methods are required to reduce mortality rates. We aimed to develop antibodies directed against the outer membrane protein A of F. tularensis (FopA) for rapid and accurate diagnosis of tularemia. Methods We used a baculovirus insect cell expression vector system to produce the FopA antigen and generate anti-FopA antibodies through immunization of BALB/c mice. We then employed hybridoma and phage display technologies to screen for antibodies that could recognize unique epitopes on FopA. Result Two monoclonal antibodies, 6B12 and 3C1, identified through phage display screening specifically bound to recombinant FopA in a dose-dependent manner. The binding affinity of the anti-FopA 6B12 and 3C1 antibodies was observed to have an equilibrium dissociation constant of 1.76 × 10-10 M and 1.32 × 10-9 M, respectively. These antibodies were used to develop a sandwich ELISA system for the diagnosis of tularemia. This assay was found to be highly specific and sensitive, with detection limits ranging from 0.062 ng/mL in PBS to 0.064 ng/mL in skim milk matrices. Discussion Our findings demonstrate the feasibility of a novel diagnostic approach for detecting F. tularensis based on targeting FopA, as opposed to existing tests that target the bacterial lipopolysaccharide.
Collapse
Affiliation(s)
- Jieun Jang
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Department of Biomolecular Science, Korea Research Institute of Bioscience and Biotechnology, School of Bioscience, Korea University of Science and Technology, Daejeon, Republic of Korea
| | - Do Hyung Kwon
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Department of Biomolecular Science, Korea Research Institute of Bioscience and Biotechnology, School of Bioscience, Korea University of Science and Technology, Daejeon, Republic of Korea
| | - Ju-Hong Jang
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Dong-Gwang Lee
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Seo-Hyuk Chang
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Min-Young Jeon
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Young-Su Jeong
- Chem-Bio Technology Center, Agency for Defense Development, Daejeon, Republic of Korea
| | - Dong-Hyun Song
- Chem-Bio Technology Center, Agency for Defense Development, Daejeon, Republic of Korea
| | - Jeong-Ki Min
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Jong-Gil Park
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Department of Biomolecular Science, Korea Research Institute of Bioscience and Biotechnology, School of Bioscience, Korea University of Science and Technology, Daejeon, Republic of Korea
| | - Moo-Seung Lee
- Environmental Diseases Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Baek-Soo Han
- Biodefense Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Wonjun Yang
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Nam-Kyung Lee
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Jangwook Lee
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Department of Biomolecular Science, Korea Research Institute of Bioscience and Biotechnology, School of Bioscience, Korea University of Science and Technology, Daejeon, Republic of Korea
| |
Collapse
|
20
|
Panda C, Kumar S, Gupta S, Pandey LM. Insulin fibrillation under physicochemical parameters of bioprocessing and intervention by peptides and surface-active agents. Crit Rev Biotechnol 2024:1-22. [PMID: 39142855 DOI: 10.1080/07388551.2024.2387167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/23/2023] [Accepted: 06/17/2023] [Indexed: 08/16/2024]
Abstract
Even after the centenary celebration of insulin discovery, there prevail challenges concerning insulin aggregation, not only after repeated administration but also during industrial production, storage, transport, and delivery, significantly impacting protein quality, efficacy, and effectiveness. The aggregation reduces insulin bioavailability, increasing the risk of heightened immunogenicity, posing a threat to patient health, and creating a dent in the golden success story of insulin therapy. Insulin experiences various physicochemical and mechanical stresses due to modulations in pH, temperature, ionic strength, agitation, shear, and surface chemistry, during the upstream and downstream bioprocessing, resulting in insulin unfolding and subsequent fibrillation. This has fueled research in the pharmaceutical industry and academia to unveil the mechanistic insights of insulin aggregation in an attempt to devise rational strategies to regulate this unwanted phenomenon. The present review briefly describes the impacts of environmental factors of bioprocessing on the stability of insulin and correlates with various intermolecular interactions, particularly hydrophobic and electrostatic forces. The aggregation-prone regions of insulin are identified and interrelated with biophysical changes during stress conditions. The quest for novel additives, surface-active agents, and bioderived peptides in decelerating insulin aggregation, which results in overall structural stability, is described. We hope this review will help tackle the real-world challenges of insulin aggregation encountered during bioprocessing, ensuring safer, stable, and globally accessible insulin for efficient management of diabetes.
Collapse
Affiliation(s)
- Chinmaya Panda
- Bio-interface & Environmental Engineering Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India
| | - Sachin Kumar
- Viral Immunology Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India
| | - Sharad Gupta
- Neurodegeneration and Peptide Engineering Research Lab, Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, India
| | - Lalit M Pandey
- Bio-interface & Environmental Engineering Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India
| |
Collapse
|
21
|
Li D, Wang Y, Zhu S, Hu X, Liang R. Recombinant fibrous protein biomaterials meet skin tissue engineering. Front Bioeng Biotechnol 2024; 12:1411550. [PMID: 39205856 PMCID: PMC11349559 DOI: 10.3389/fbioe.2024.1411550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024] Open
Abstract
Natural biomaterials, particularly fibrous proteins, are extensively utilized in skin tissue engineering. However, their application is impeded by batch-to-batch variance, limited chemical or physical versatility, and environmental concerns. Recent advancements in gene editing and fermentation technology have catalyzed the emergence of recombinant fibrous protein biomaterials, which are gaining traction in skin tissue engineering. The modular and highly customizable nature of recombinant synthesis enables precise control over biomaterial design, facilitating the incorporation of multiple functional motifs. Additionally, recombinant synthesis allows for a transition from animal-derived sources to microbial sources, thereby reducing endotoxin content and rendering recombinant fibrous protein biomaterials more amenable to scalable production and clinical use. In this review, we provide an overview of prevalent recombinant fibrous protein biomaterials (collagens, elastin, silk proteins and their chimeric derivatives) used in skin tissue engineering (STE) and compare them with their animal-derived counterparts. Furthermore, we discuss their applications in STE, along with the associated challenges and future prospects.
Collapse
Affiliation(s)
- Dipeng Li
- Hangzhou Ninth People’s Hospital, Hangzhou, China
| | - Yirong Wang
- Hangzhou Singclean Medical Products Co., Ltd., Hangzhou, China
| | - Shan Zhu
- Hangzhou Singclean Medical Products Co., Ltd., Hangzhou, China
| | - Xuezhong Hu
- Affiliated Cixi Hospital, Wenzhou Medical University, Ningbo, China
| | - Renjie Liang
- Hangzhou Ninth People’s Hospital, Hangzhou, China
- Hangzhou Singclean Medical Products Co., Ltd., Hangzhou, China
- School of Medicine, Southeast University, Nanjing, China
| |
Collapse
|
22
|
Kamoshida G, Yamaguchi D, Kaya Y, Yamakado T, Yamashita K, Aoyagi M, Nagai S, Yamada N, Kawagishi Y, Sugano M, Sakairi Y, Ueno M, Takemoto N, Morita Y, Ishizaka Y, Yahiro K. Development of a novel bacterial production system for recombinant bioactive proteins completely free from endotoxin contamination. PNAS NEXUS 2024; 3:pgae328. [PMID: 39161731 PMCID: PMC11331542 DOI: 10.1093/pnasnexus/pgae328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 07/29/2024] [Indexed: 08/21/2024]
Abstract
Endotoxins, or lipopolysaccharides (LPS), are potent immunostimulatory molecules of critical concern in bacterial recombinant protein expression systems. The gram-negative bacterium Acinetobacter baumannii exhibits an interesting and unique phenotype characterized by the complete loss of LPS. In this study, we developed a novel system for producing recombinant proteins completely devoid of endotoxin contamination using LPS-deficient A. baumannii. We purified endotoxin-free functional green fluorescent protein, which reduced endotoxin contamination by approximately three orders of magnitude, and also purified the functional cytokine tumor necrosis factor (TNF)-α. Additionally, utilization of the Omp38 signal peptide of A. baumannii enabled the extracellular production of variable domain of heavy chain of heavy chain (VHH) antibodies. With these advantages, mNb6-tri-20aa, a multivalent VHH that specifically binds to the spike protein of severe acute respiratory syndrome coronavirus 2, was purified from the culture supernatant, and endotoxin contamination was reduced by a factor of approximately 2 × 105 compared with that in conventional expression systems. A virus neutralization assay demonstrated the functionality of the purified antibody in suppressing viral infections. Moreover, we applied our system to produce ozoralizumab, a multispecific VHH that binds to human TNF-α and albumin and are marketed as a rheumatoid arthritis drug. We successfully purified a functional antibody from endotoxin contamination. This system establishes a new, completely endotoxin-free platform for the expression of recombinant proteins, which distinguishes it from other bacterial expression systems, and holds promise for future applications.
Collapse
Affiliation(s)
- Go Kamoshida
- Department of Infection Control Science, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan
- Laboratory of Microbiology and Infection Control, Kyoto Pharmaceutical University, 5 Misasagi-Nakauchi-cho, Yamashina-ku, Kyoto 607-8414, Japan
| | - Daiki Yamaguchi
- Laboratory of Microbiology and Infection Control, Kyoto Pharmaceutical University, 5 Misasagi-Nakauchi-cho, Yamashina-ku, Kyoto 607-8414, Japan
| | - Yuki Kaya
- Laboratory of Microbiology and Infection Control, Kyoto Pharmaceutical University, 5 Misasagi-Nakauchi-cho, Yamashina-ku, Kyoto 607-8414, Japan
| | - Toshiki Yamakado
- Laboratory of Microbiology and Infection Control, Kyoto Pharmaceutical University, 5 Misasagi-Nakauchi-cho, Yamashina-ku, Kyoto 607-8414, Japan
| | - Kenta Yamashita
- Laboratory of Microbiology and Infection Control, Kyoto Pharmaceutical University, 5 Misasagi-Nakauchi-cho, Yamashina-ku, Kyoto 607-8414, Japan
| | - Moe Aoyagi
- Laboratory of Microbiology and Infection Control, Kyoto Pharmaceutical University, 5 Misasagi-Nakauchi-cho, Yamashina-ku, Kyoto 607-8414, Japan
| | - Saaya Nagai
- Laboratory of Microbiology and Infection Control, Kyoto Pharmaceutical University, 5 Misasagi-Nakauchi-cho, Yamashina-ku, Kyoto 607-8414, Japan
| | - Noriteru Yamada
- Laboratory of Microbiology and Infection Control, Kyoto Pharmaceutical University, 5 Misasagi-Nakauchi-cho, Yamashina-ku, Kyoto 607-8414, Japan
| | - Yu Kawagishi
- Laboratory of Microbiology and Infection Control, Kyoto Pharmaceutical University, 5 Misasagi-Nakauchi-cho, Yamashina-ku, Kyoto 607-8414, Japan
| | - Mizuki Sugano
- Department of Infection Control Science, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan
| | - Yoshiaki Sakairi
- Department of Infection Control Science, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan
| | - Mikako Ueno
- Department of Intractable Diseases, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjyuku-ku, Tokyo 162-8655, Japan
| | - Norihiko Takemoto
- Pathogenic Microbe Laboratory, Research Institute, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjyuku-ku, Tokyo 162-8655, Japan
| | - Yuji Morita
- Department of Infection Control Science, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan
| | - Yukihito Ishizaka
- Department of Intractable Diseases, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjyuku-ku, Tokyo 162-8655, Japan
| | - Kinnosuke Yahiro
- Laboratory of Microbiology and Infection Control, Kyoto Pharmaceutical University, 5 Misasagi-Nakauchi-cho, Yamashina-ku, Kyoto 607-8414, Japan
| |
Collapse
|
23
|
Zhang X, Hu X, Zhang T, Yang L, Liu C, Xu N, Wang H, Sun W. PLM_Sol: predicting protein solubility by benchmarking multiple protein language models with the updated Escherichia coli protein solubility dataset. Brief Bioinform 2024; 25:bbae404. [PMID: 39179250 PMCID: PMC11343611 DOI: 10.1093/bib/bbae404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/19/2024] [Accepted: 08/07/2024] [Indexed: 08/26/2024] Open
Abstract
Protein solubility plays a crucial role in various biotechnological, industrial, and biomedical applications. With the reduction in sequencing and gene synthesis costs, the adoption of high-throughput experimental screening coupled with tailored bioinformatic prediction has witnessed a rapidly growing trend for the development of novel functional enzymes of interest (EOI). High protein solubility rates are essential in this process and accurate prediction of solubility is a challenging task. As deep learning technology continues to evolve, attention-based protein language models (PLMs) can extract intrinsic information from protein sequences to a greater extent. Leveraging these models along with the increasing availability of protein solubility data inferred from structural database like the Protein Data Bank holds great potential to enhance the prediction of protein solubility. In this study, we curated an Updated Escherichia coli protein Solubility DataSet (UESolDS) and employed a combination of multiple PLMs and classification layers to predict protein solubility. The resulting best-performing model, named Protein Language Model-based protein Solubility prediction model (PLM_Sol), demonstrated significant improvements over previous reported models, achieving a notable 6.4% increase in accuracy, 9.0% increase in F1_score, and 11.1% increase in Matthews correlation coefficient score on the independent test set. Moreover, additional evaluation utilizing our in-house synthesized protein resource as test data, encompassing diverse types of enzymes, also showcased the good performance of PLM_Sol. Overall, PLM_Sol exhibited consistent and promising performance across both independent test set and experimental set, thereby making it well suited for facilitating large-scale EOI studies. PLM_Sol is available as a standalone program and as an easy-to-use model at https://zenodo.org/doi/10.5281/zenodo.10675340.
Collapse
Affiliation(s)
- Xuechun Zhang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, China
- University of Chinese Academy of Sciences, No. 1 Yanqihu East Rd, Huairou District, Beijing 101408, China
| | - Xiaoxuan Hu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, China
- University of Chinese Academy of Sciences, No. 1 Yanqihu East Rd, Huairou District, Beijing 101408, China
| | - Tongtong Zhang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, China
- University of Chinese Academy of Sciences, No. 1 Yanqihu East Rd, Huairou District, Beijing 101408, China
| | - Ling Yang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, China
- University of Chinese Academy of Sciences, No. 1 Yanqihu East Rd, Huairou District, Beijing 101408, China
| | - Chunhong Liu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, China
- University of Chinese Academy of Sciences, No. 1 Yanqihu East Rd, Huairou District, Beijing 101408, China
| | - Ning Xu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, China
- University of Chinese Academy of Sciences, No. 1 Yanqihu East Rd, Huairou District, Beijing 101408, China
| | - Haoyi Wang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, China
- University of Chinese Academy of Sciences, No. 1 Yanqihu East Rd, Huairou District, Beijing 101408, China
- Beijing Institute for Stem Cell and Regenerative Medicine, A 3 Datun Road, Chaoyang District, Beijing 100100, China
| | - Wen Sun
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, A 3 Datun Road, Chaoyang District, Beijing 100100, China
| |
Collapse
|
24
|
Forsberg J, Rasmussen CT, van den Berg FWJ, Engelsen SB, Aru V. Fermentation Analytical Technology (FAT): Monitoring industrial E. coli fermentations using absolute quantitative 1H NMR spectroscopy. Anal Chim Acta 2024; 1311:342722. [PMID: 38816156 DOI: 10.1016/j.aca.2024.342722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/09/2024] [Accepted: 05/12/2024] [Indexed: 06/01/2024]
Abstract
BACKGROUND To perform fast, reproducible, and absolute quantitative measurements in an automated manner has become of paramount importance when monitoring industrial processes, including fermentations. Due to its numerous advantages - including its inherent quantitative nature - Proton Nuclear Magnetic Resonance (1H NMR) spectroscopy provides an ideal tool for the time-resolved monitoring of fermentations. However, analytical conditions, including non-automated sample preparation and long relaxation times (T1) of some metabolites, can significantly lengthen the experimental time and make implementation in an industrial set up unfeasible. RESULTS We present a high throughput method based on Standard Operating Procedures (SOPs) and 1H NMR, which lays the foundation for what we call Fermentation Analytical Technology (FAT). Our method was developed for the accurate absolute quantification of metabolites produced during Escherichia coli industrial fermentations. The method includes: (1) a stopped flow system for non-invasive sample collection followed by sample quenching, (2) automatic robot-assisted sample preparation, (3) fast 1H NMR measurements, (4) metabolites quantification using multivariate curve resolution (MCR), and (5) metabolites absolute quantitation using a novel correction factor (k) to compensate for the short recycle delay (D1) employed in the 1H NMR measurements. The quantification performance was tested using two sample types: buffer solutions of chemical standards and real fermentation samples. Five metabolites - glucose, acetate, alanine, phenylalanine and betaine - were quantified. Absolute quantitation ranged between 0.64 and 3.40 mM in pure buffer, and 0.71-7.76 mM in real samples. SIGNIFICANCE The proposed method is generic and can be straight forward implemented to other types of fermentations, such as lactic acid, ethanol and acetic acid fermentations. It provides a high throughput automated solution for monitoring fermentation processes and for quality control through absolute quantification of key metabolites in fermentation broth. It can be easily implemented in an at-line industrial setting, facilitating the optimization of the manufacturing process towards higher yields and more efficient and sustainable use of resources.
Collapse
Affiliation(s)
- Jakob Forsberg
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958, Frederiksberg C, Denmark; Novo Nordisk A/S, Hagedornsvej 1, 2820, Gentofte, Denmark.
| | | | - Frans W J van den Berg
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958, Frederiksberg C, Denmark
| | - Søren Balling Engelsen
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958, Frederiksberg C, Denmark
| | - Violetta Aru
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958, Frederiksberg C, Denmark.
| |
Collapse
|
25
|
Yahyaee Z, Shahpari M, Mousavi Ghahfarrokhi SS, Shakoori M, Hashemi S, Sepahi AA, Faramarzi MA, Amin M. Cloning and expression of recombinant arazyme with anti-inflammatory and anti-breast cancer potential. Arch Microbiol 2024; 206:319. [PMID: 38907853 DOI: 10.1007/s00203-024-04051-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/28/2024] [Accepted: 06/14/2024] [Indexed: 06/24/2024]
Abstract
Arazyme is an extracellular metalloprotease which is secreted by a Gram-negative symbiotic bacterium called Serratia proteomaculans. There are limited studies on various biological activities of arazyme. This preliminary study was designed to investigate the anti-cancer and anti-inflammatory capacities of recombinant arazyme (rAra) in vitro and in vivo. Arazyme gene, araA was cloned and expressed in E. coli BL21 (DE3) using pET-28a as a vector. Nickel column purification was used to obtain pure rAra. SDS-PAGE and protein assay were used to identify the product and to measure protein content, respectively. Skimmed milk test and casein assay were carried out to assess protease activity. MCF7 cells as a breast cancer cell model were exposed to different concentrations of rAra to study anti-breast cancer potentials using MTT assay. The anti-inflammatory property of rAra was investigated using a murine air-pouch model. PCR and SDS-PAGE data showed that cloning and expression of rAra was successful and the enzyme of interest was observed at 52 KDa. Protein assay indicated that 1 mg/ml of rAra was obtained through purification. A clear zone around the enzyme on skimmed milk agar confirmed the proteolytic activity of rAra and the enzymatic activity was 320 U/mg protein in the casein assay. Cytotoxic effects of rAra reported as IC50 were 16.2 µg/ml and 13.2 mg/ml after 24 h and 48 h, respectively. In the air-pouch model, both the neutrophil count and myeloperoxidase activity, which are measures of inflammation, were significantly reduced. The results showed that rAra can be used in future mechanistic studies and R&D activities in the pharmaceutical industry to investigate the safety and efficacy of the recombinant arazyme.
Collapse
Affiliation(s)
- Zahra Yahyaee
- Department of Drug and Food Control, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mona Shahpari
- Department of Microbiology, Faculty of Biological Sciences, North Tehran Islamic Azad University, Tehran, Iran
| | - Seyed Sadeq Mousavi Ghahfarrokhi
- Department of Drug and Food Control, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Pharmaceutical Microbiology Group, Pharmaceutical Quality Assurance Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
- Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Marzieh Shakoori
- Department of Drug and Food Control, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Saba Hashemi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Akhavan Sepahi
- Department of Microbiology, Faculty of Biological Sciences, North Tehran Islamic Azad University, Tehran, Iran
| | - Mohammad Ali Faramarzi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Amin
- Department of Drug and Food Control, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
- Pharmaceutical Microbiology Group, Pharmaceutical Quality Assurance Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran.
- Faculty of Pharmacy, Tehran University of Medical Sciences, Room No. 1-221, 16th Azar Street, Tehran, Iran.
| |
Collapse
|
26
|
Yu X, Zhong G, Zhao G, Zhou T, Yu J, Zhang X, Gai Z, Xu Z, Lei H, Shen X. Enantioselectivity regulation of antibody against chiral herbicide metolachlor based on interaction at chiral center. Int J Biol Macromol 2024; 270:132471. [PMID: 38763235 DOI: 10.1016/j.ijbiomac.2024.132471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/29/2024] [Accepted: 05/15/2024] [Indexed: 05/21/2024]
Abstract
Enantioselective antibodies have emerged as great potential biomaterials in the fields of immunoassays and chiral separation. However, cross-reactivity of antibodies to the distomer may severely restrict the application. Comprehending the interaction mechanism between antibodies and enantiomers could be beneficial to produce superior enantioselective antibodies. In this study, a pair of recombinant antibodies (RAbs) against metolachlor enantiomers at chiral carbon (αSS-MET and αSR-MET) were generated and characterized. The αSS-MET-RAb and αSR-MET-RAb showed comparable sensitivity and specificity to the parental monoclonal antibodies by icELISA, with IC50 values of 3.45 and 223.77 ng/mL, respectively. Moreover, the complex structures of RAbs and corresponding eutomer were constructed and analyzed, and site-specific mutagenesis was utilized to verify the reliability of the enantioselective mechanism elucidated. It demonstrated that the strength of the interaction between the chiral center region of eutomer and the antibody was the key factor for the enantioselectivity of antibody. Increasing this interaction could limit the conformational adjustment of the distomer in a specific chiral recognition cavity, thus decreasing the affinity of the antibody to the distomer. This work provided the in-depth analysis of enantioselective mechanism for two RAbs and paved the way to regulate antibody enantioselective performance for immunoassays of chiral compounds.
Collapse
Affiliation(s)
- Xiaoting Yu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Guohua Zhong
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China
| | - Gang Zhao
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Tao Zhou
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Jiayi Yu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Xu Zhang
- College of Life Science and Engineering, Foshan University, Foshan 528225, China; Guangzhou Editgene Co., Ltd., Guangzhou 510642, China
| | - Zuoqi Gai
- College of Life Science and Engineering, Foshan University, Foshan 528225, China; Guangzhou Editgene Co., Ltd., Guangzhou 510642, China
| | - Zhenlin Xu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Hongtao Lei
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| | - Xing Shen
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
27
|
Britton D, Katsara O, Mishkit O, Wang A, Pandya N, Liu C, Mao H, Legocki J, Jia S, Xiao Y, Aristizabal O, Paul D, Deng Y, Schneider R, Wadghiri YZ, Montclare JK. Engineered coiled-coil HIF1α protein domain mimic. Biomater Sci 2024; 12:2951-2959. [PMID: 38656316 PMCID: PMC11191652 DOI: 10.1039/d4bm00354c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
The development of targeted anti-cancer therapeutics offers the potential for increased efficacy of drugs and diagnostics. Utilizing modalities agnostic to tumor type, such as the hypoxic tumor microenvironment (TME), may assist in the development of universal tumor targeting agents. The hypoxia-inducible factor (HIF), in particular HIF1, plays a key role in tumor adaptation to hypoxia, and inhibiting its interaction with p300 has been shown to provide therapeutic potential. Using a multivalent assembled protein (MAP) approach based on the self-assembly of the cartilage oligomeric matrix protein coiled-coil (COMPcc) domain fused to the critical residues of the C-terminal transactivation domain (C-TAD) of the α subunit of HIF1 (HIF1α), we generate HIF1α-MAP (H-MAP). The resulting H-MAP demonstrates picomolar binding affinity to p300, the ability to downregulate hypoxia-inducible genes, and in vivo tumor targeting capability.
Collapse
Affiliation(s)
- Dustin Britton
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York, 11201, USA.
| | - Olga Katsara
- Department of Microbiology, New York University School of Medicine, New York, New York, 10016, USA
| | - Orin Mishkit
- Center for Advanced Imaging Innovation and Research (CAI2R), New York University School of Medicine, New York, New York, 10016, USA
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, 10016, USA
| | - Andrew Wang
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York, 11201, USA.
- Department of Biomedical Engineering, State University of New York Downstate Medical Center, Brooklyn, New York, 11203, USA
- College of Medicine, State University of New York Downstate Medical Center, Brooklyn, New York, 11203, USA
| | - Neelam Pandya
- Center for Advanced Imaging Innovation and Research (CAI2R), New York University School of Medicine, New York, New York, 10016, USA
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, 10016, USA
| | - Chengliang Liu
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York, 11201, USA.
| | - Heather Mao
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York, 11201, USA.
- Center for Advanced Imaging Innovation and Research (CAI2R), New York University School of Medicine, New York, New York, 10016, USA
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, 10016, USA
| | - Jakub Legocki
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York, 11201, USA.
| | - Sihan Jia
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York, 11201, USA.
| | - Yingxin Xiao
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York, 11201, USA.
| | - Orlando Aristizabal
- Center for Advanced Imaging Innovation and Research (CAI2R), New York University School of Medicine, New York, New York, 10016, USA
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, 10016, USA
| | - Deven Paul
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York, 11201, USA.
| | - Yan Deng
- Microscopy Laboratory, New York University Langone Health, New York, NY, 10016, USA
| | - Robert Schneider
- Department of Microbiology, New York University School of Medicine, New York, New York, 10016, USA
- Department of Radiation Oncology, New York University School of Medicine, New York, New York, 10016, USA
| | - Youssef Z Wadghiri
- Center for Advanced Imaging Innovation and Research (CAI2R), New York University School of Medicine, New York, New York, 10016, USA
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, 10016, USA
| | - Jin Kim Montclare
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York, 11201, USA.
- Center for Advanced Imaging Innovation and Research (CAI2R), New York University School of Medicine, New York, New York, 10016, USA
- Department of Chemistry, New York University, New York, New York, 10012, USA
- Department of Biomaterials, New York University College of Dentistry, New York, New York, 10010, USA
- Department of Biomedical Engineering, New York University, New York, NY, 11201, USA
| |
Collapse
|
28
|
Torres-Acosta MA, Olivares-Molina A, Kent R, Leitão N, Gershater M, Parker B, Lye GJ, Dikicioglu D. Practical deployment of automation to expedite aqueous two-phase extraction. J Biotechnol 2024; 387:32-43. [PMID: 38555021 DOI: 10.1016/j.jbiotec.2024.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/15/2024] [Accepted: 03/26/2024] [Indexed: 04/02/2024]
Abstract
The feasibility of bioprocess development relies heavily on the successful application of primary recovery and purification techniques. Aqueous two-phase extraction (ATPE) disrupts the definition of "unit operation" by serving as an integrative and intensive technique that combines different objectives such as the removal of biomass and integrated recovery and purification of the product of interest. The relative simplicity of processing large samples renders this technique an attractive alternative for industrial bioprocessing applications. However, process development is hindered by the lack of easily predictable partition behaviours, the elucidation of which necessitates a large number of experiments to be conducted. Liquid handling devices can assist to address this problem; however, they are configured to operate using low viscosity fluids such as water and water-based solutions as opposed to highly viscous polymeric solutions, which are typically required in ATPE. In this work, an automated high throughput ATPE process development framework is presented by constructing phase diagrams and identifying the binodal curves for PEG6000, PEG3000, and PEG2000. Models were built to determine viscosity- and volume-independent transfer parameters. The framework provided an appropriate strategy to develop a very precise and accurate operation by exploiting the relationship between different liquid transfer parameters and process error. Process accuracy, measured by mean absolute error, and device precision, evaluated by the coefficient of variation, were both shown to be affected by the mechanical properties, particularly viscosity, of the fluids employed. For PEG6000, the mean absolute error improved by six-fold (from 4.82% to 0.75%) and the coefficient of variation improved by three-fold (from 0.027 to 0.008) upon optimisation of the liquid transfer parameters accounting for the viscosity effect on the PEG-salt buffer utilising ATPE operations. As demonstrated here, automated liquid handling devices can serve to streamline process development for APTE enabling wide adoption of this technique in large scale bioprocess applications.
Collapse
Affiliation(s)
- Mario A Torres-Acosta
- The Advanced Centre for Biochemical Engineering, Department of Biochemical Engineering, University College London, London WC1E 6BT, United Kingdom; Tecnologico de Monterrey, School of Engineering and Science, Av. Eugenio Garza Sada 2501 Sur, Monterrey, N.L. 64849, México
| | - Alex Olivares-Molina
- The Advanced Centre for Biochemical Engineering, Department of Biochemical Engineering, University College London, London WC1E 6BT, United Kingdom
| | - Ross Kent
- Synthace Ltd., The Westworks 4th Floor, 195 Wood Lane, W12 7FQ, United Kingdom
| | - Nuno Leitão
- Synthace Ltd., The Westworks 4th Floor, 195 Wood Lane, W12 7FQ, United Kingdom
| | - Markus Gershater
- Synthace Ltd., The Westworks 4th Floor, 195 Wood Lane, W12 7FQ, United Kingdom
| | - Brenda Parker
- The Advanced Centre for Biochemical Engineering, Department of Biochemical Engineering, University College London, London WC1E 6BT, United Kingdom
| | - Gary J Lye
- The Advanced Centre for Biochemical Engineering, Department of Biochemical Engineering, University College London, London WC1E 6BT, United Kingdom
| | - Duygu Dikicioglu
- The Advanced Centre for Biochemical Engineering, Department of Biochemical Engineering, University College London, London WC1E 6BT, United Kingdom.
| |
Collapse
|
29
|
Gregorio NE, DeForest CA. PhoCoil: An Injectable and Photodegradable Single-component Recombinant Protein Hydrogel for Localized Therapeutic Cell Delivery. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.07.592971. [PMID: 38766128 PMCID: PMC11100756 DOI: 10.1101/2024.05.07.592971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Hydrogel biomaterials offer great promise for 3D cell culture and therapeutic delivery. Despite many successes, challenges persist in that gels formed from natural proteins are only marginally tunable while those derived from synthetic polymers lack intrinsic bioinstructivity. Towards the creation of biomaterials with both excellent biocompatibility and customizability, recombinant protein-based hydrogels have emerged as molecularly defined and user-programmable platforms that mimic the proteinaceous nature of the extracellular matrix. Here, we introduce PhoCoil, a dynamically tunable recombinant hydrogel formed from a single protein component with unique multi-stimuli responsiveness. Physical crosslinking through coiled-coil interactions promotes rapid shear-thinning and self-healing behavior, rendering the gel injectable, while an included photodegradable motif affords on-demand network dissolution via visible light. PhoCoil gel photodegradation can be spatiotemporally and lithographically controlled in a dose-dependent manner, through complex tissue, and without harm to encapsulated cells. We anticipate that PhoCoil will enable new applications in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
| | - Cole A. DeForest
- Department of Bioengineering, University of Washington
- Department of Chemical Engineering, University of Washington
- Department of Chemistry, University of Washington
- Institute for Stem Cell & Regenerative Medicine, University of Washington
- Molecular Engineering & Sciences Institute, University of Washington
- Institute for Protein Design, University of Washington
| |
Collapse
|
30
|
Turanli B, Gulfidan G, Aydogan OO, Kula C, Selvaraj G, Arga KY. Genome-scale metabolic models in translational medicine: the current status and potential of machine learning in improving the effectiveness of the models. Mol Omics 2024; 20:234-247. [PMID: 38444371 DOI: 10.1039/d3mo00152k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
The genome-scale metabolic model (GEM) has emerged as one of the leading modeling approaches for systems-level metabolic studies and has been widely explored for a broad range of organisms and applications. Owing to the development of genome sequencing technologies and available biochemical data, it is possible to reconstruct GEMs for model and non-model microorganisms as well as for multicellular organisms such as humans and animal models. GEMs will evolve in parallel with the availability of biological data, new mathematical modeling techniques and the development of automated GEM reconstruction tools. The use of high-quality, context-specific GEMs, a subset of the original GEM in which inactive reactions are removed while maintaining metabolic functions in the extracted model, for model organisms along with machine learning (ML) techniques could increase their applications and effectiveness in translational research in the near future. Here, we briefly review the current state of GEMs, discuss the potential contributions of ML approaches for more efficient and frequent application of these models in translational research, and explore the extension of GEMs to integrative cellular models.
Collapse
Affiliation(s)
- Beste Turanli
- Marmara University, Faculty of Engineering, Department of Bioengineering, Istanbul, Turkey.
- Health Biotechnology Joint Research and Application Center of Excellence, Istanbul, Turkey
| | - Gizem Gulfidan
- Marmara University, Faculty of Engineering, Department of Bioengineering, Istanbul, Turkey.
| | - Ozge Onluturk Aydogan
- Marmara University, Faculty of Engineering, Department of Bioengineering, Istanbul, Turkey.
| | - Ceyda Kula
- Marmara University, Faculty of Engineering, Department of Bioengineering, Istanbul, Turkey.
- Health Biotechnology Joint Research and Application Center of Excellence, Istanbul, Turkey
| | - Gurudeeban Selvaraj
- Concordia University, Centre for Research in Molecular Modeling & Department of Chemistry and Biochemistry, Quebec, Canada
- Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Dental College and Hospital, Department of Biomaterials, Bioinformatics Unit, Chennai, India
| | - Kazim Yalcin Arga
- Marmara University, Faculty of Engineering, Department of Bioengineering, Istanbul, Turkey.
- Health Biotechnology Joint Research and Application Center of Excellence, Istanbul, Turkey
- Marmara University, Genetic and Metabolic Diseases Research and Investigation Center, Istanbul, Turkey
| |
Collapse
|
31
|
Lei X, Li P, Abd El-Aty AM, Zhao J, Xu L, Gao S, Li J, Zhao Y, She Y, Jin F, Wang J, Zheng L, Hammock BD, Jin M. Generation of a highly specific recombinant full-length antibody for detecting ethirimol in fruit and environmental water. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:134067. [PMID: 38513441 PMCID: PMC11062638 DOI: 10.1016/j.jhazmat.2024.134067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/03/2024] [Accepted: 03/16/2024] [Indexed: 03/23/2024]
Abstract
High-performance antibodies are core reagents for highly sensitive immunoassays. Herein, based on a novel hapten, a hybridoma secreting the high-affinity anti-ethirimol monoclonal antibody (mAb-14G5F6) was isolated with an IC50 value of 1.35 μg/L and cross-reactivity below 0.20% for 13 analogs. To further address the challenge of hybridoma preservation and antibody immortalization, a recombinant full-length antibody (rAb-14G5F6) was expressed using the HEK293(F) expression system based on the mAb-14G5F6 gene. The affinity, specificity, and tolerance of rAb-14G5F6, as characterized by indirect competitive enzyme-linked immunosorbent assay and noncompetitive surface plasmon resonance, exhibited high concordance with those of mAb-14G5F6. Further immunoassays based on rAb-14G5F6 were developed for irrigation water and strawberry fruit with limits of detection of 0.0066 and 0.036 mg/kg, respectively, recoveries of 80100%, and coefficients of variation below 10%. Furthermore, homology simulation and molecular docking revealed that GLU(L40), GLY(L107), GLY(H108), and ASP(H114) play important roles in forming hydrogen bonds and pi-anion ionic bonds between rAb-14G5F6 and ethirimol, resulting in the high specificity and affinity of rAb-14G5F6 for ethirimol, with a KD of 5.71 × 10-10 mol/L. Overall, a rAb specific for ethirimol was expressed successfully in this study, laying the groundwork for rAb-based immunoassays for monitoring fungicide residues in agricultural products and the environment.
Collapse
Affiliation(s)
- Xingmei Lei
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Peipei Li
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - A M Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt; Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum 25240, Turkey
| | - Jing Zhao
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Lingyuan Xu
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Song Gao
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jia Li
- Jinhua Miaozhidizhi Agricultural Technology Co., Ltd., Jinhua, Zhejiang 321000, China
| | - Yun Zhao
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yongxin She
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Fen Jin
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jing Wang
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Lufei Zheng
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Bruce D Hammock
- Department of Entomology & Nematology and the UC Davis Comprehensive Cancer Center, University of California, Davis, CA 95616, USA
| | - Maojun Jin
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Research Center of Quality Standards for Agro-Products, Ministry of Agriculture and Rural Affairs, Beijing 100081, China.
| |
Collapse
|
32
|
Liu Y, Zhou X, Wang T, Luo A, Jia Z, Pan X, Cai W, Sun M, Wang X, Wen Z, Zhou G. Genetic algorithm-based semisupervised convolutional neural network for real-time monitoring of Escherichia coli fermentation of recombinant protein production using a Raman sensor. Biotechnol Bioeng 2024; 121:1583-1595. [PMID: 38247359 DOI: 10.1002/bit.28661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/02/2024] [Accepted: 01/08/2024] [Indexed: 01/23/2024]
Abstract
As a non-destructive sensing technique, Raman spectroscopy is often combined with regression models for real-time detection of key components in microbial cultivation processes. However, achieving accurate model predictions often requires a large amount of offline measurement data for training, which is both time-consuming and labor-intensive. In order to overcome the limitations of traditional models that rely on large datasets and complex spectral preprocessing, in addition to the difficulty of training models with limited samples, we have explored a genetic algorithm-based semi-supervised convolutional neural network (GA-SCNN). GA-SCNN integrates unsupervised process spectral labeling, feature extraction, regression prediction, and transfer learning. Using only an extremely small number of offline samples of the target protein, this framework can accurately predict protein concentration, which represents a significant challenge for other models. The effectiveness of the framework has been validated in a system of Escherichia coli expressing recombinant ProA5M protein. By utilizing the labeling technique of this framework, the available dataset for glucose, lactate, ammonium ions, and optical density at 600 nm (OD600) has been expanded from 52 samples to 1302 samples. Furthermore, by introducing a small component of offline detection data for recombinant proteins into the OD600 model through transfer learning, a model for target protein detection has been retrained, providing a new direction for the development of associated models. Comparative analysis with traditional algorithms demonstrates that the GA-SCNN framework exhibits good adaptability when there is no complex spectral preprocessing. Cross-validation results confirm the robustness and high accuracy of the framework, with the predicted values of the model highly consistent with the offline measurement results.
Collapse
Affiliation(s)
- Yuan Liu
- Department of Pharmaceutical Engineering, Beijing Institute of Petrochemical Technology, Beijing, China
| | - Xiaotian Zhou
- Department of Pharmaceutical Engineering, Beijing Institute of Petrochemical Technology, Beijing, China
| | - Teng Wang
- Department of Pharmaceutical Engineering, Beijing Institute of Petrochemical Technology, Beijing, China
- Beijing Key Laboratory of Enze Biomass and Fine Chemicals, Beijing Institute of Petrochemical Technology, Beijing, China
- Beijing Institute of Petrochemical Technology, College of New Materials and Chemical Engineering, Beijing, China
| | - An Luo
- Department of Pharmaceutical Engineering, Beijing Institute of Petrochemical Technology, Beijing, China
- Beijing Institute of Petrochemical Technology, College of New Materials and Chemical Engineering, Beijing, China
| | - Zhaojun Jia
- Department of Pharmaceutical Engineering, Beijing Institute of Petrochemical Technology, Beijing, China
- Beijing Institute of Petrochemical Technology, College of New Materials and Chemical Engineering, Beijing, China
| | - Xingquan Pan
- Department of Pharmaceutical Engineering, Beijing Institute of Petrochemical Technology, Beijing, China
- Beijing Institute of Petrochemical Technology, College of New Materials and Chemical Engineering, Beijing, China
| | - Weiqi Cai
- Department of Pharmaceutical Engineering, Beijing Institute of Petrochemical Technology, Beijing, China
- Beijing Institute of Petrochemical Technology, College of New Materials and Chemical Engineering, Beijing, China
| | - Mengge Sun
- Department of Pharmaceutical Engineering, Beijing Institute of Petrochemical Technology, Beijing, China
- Beijing Institute of Petrochemical Technology, College of New Materials and Chemical Engineering, Beijing, China
| | - Xuezhong Wang
- Department of Pharmaceutical Engineering, Beijing Institute of Petrochemical Technology, Beijing, China
- Beijing Key Laboratory of Enze Biomass and Fine Chemicals, Beijing Institute of Petrochemical Technology, Beijing, China
- Beijing Institute of Petrochemical Technology, College of New Materials and Chemical Engineering, Beijing, China
| | - Zhenguo Wen
- Department of Pharmaceutical Engineering, Beijing Institute of Petrochemical Technology, Beijing, China
- Beijing Key Laboratory of Enze Biomass and Fine Chemicals, Beijing Institute of Petrochemical Technology, Beijing, China
- Beijing Institute of Petrochemical Technology, College of New Materials and Chemical Engineering, Beijing, China
| | - Guangzheng Zhou
- Beijing Key Laboratory of Enze Biomass and Fine Chemicals, Beijing Institute of Petrochemical Technology, Beijing, China
- Beijing Institute of Petrochemical Technology, College of New Materials and Chemical Engineering, Beijing, China
| |
Collapse
|
33
|
Kumar DS, Prasanth K, Bhandari A, Kumar Jha V, Naveen A, Prasanna M. Innovations and Challenges in the Development of COVID-19 Vaccines for a Safer Tomorrow. Cureus 2024; 16:e60015. [PMID: 38854201 PMCID: PMC11162516 DOI: 10.7759/cureus.60015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/09/2024] [Indexed: 06/11/2024] Open
Abstract
Vaccination, a historically effective public health intervention, has shielded millions from various diseases. Lessons from severe acute respiratory syndrome coronavirus (SARS-CoV) have improved COVID-19 vaccine development. Despite mRNA vaccines' efficacy, emerging variants pose challenges, exhibiting increased transmissibility, infectivity, and severity. Developing COVID-19 vaccines has faced hurdles due to urgency, limited virus understanding, and the need for safe solutions. Genetic variability necessitates continuous vaccine adjustments and production challenges demand scaling up manufacturing with stringent quality control. This review explores SARS-CoV-2's evolution, upcoming mutations that challenge vaccines, and strategies such as structure-based, T cell-based, respiratory mucosal-based, and nanotechnology approaches for vaccine development. This review insight provides a roadmap for navigating virus evolution and improving vaccine development.
Collapse
Affiliation(s)
- Devika S Kumar
- Research, Panimalar Medical College Hospital and Research Institute, Chennai, IND
| | - Krishna Prasanth
- Department of Community Medicine, Sree Balaji Medical College and Hospital, Chennai, IND
| | - Ashni Bhandari
- Department of Community Medicine, Sree Balaji Medical College and Hospital, Chennai, IND
| | - Vivek Kumar Jha
- Department of Audiology and Speech Language Pathology, Shree Guru Gobind Singh Tricentenary (SGT) University, Haryana, IND
| | - Avula Naveen
- Pharmacology and Therapeutics, All India Institute Of Medical Science Bilaspur, Bilaspur, IND
| | - Muthu Prasanna
- Pharmaceutics, Pharmaceutical Biotechnology, Surya School of Pharmacy, Surya Group of Institutions, Villupuram, IND
| |
Collapse
|
34
|
Mittra D, Mahalik S. Improving the production of recombinant L-Asparaginase-II in Escherichia coli by co-expressing catabolite repressor activator ( cra) gene. Prep Biochem Biotechnol 2024; 54:709-719. [PMID: 38692288 DOI: 10.1080/10826068.2023.2279097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Identification of a single genetic target for microbial strain improvement is difficult due to the complexity of the genetic regulatory network. Hence, a more practical approach is to identify bottlenecks in the regulatory networks that control critical metabolic pathways. The present work focuses on enhancing cellular physiology by increasing the metabolic flux through the central carbon metabolic pathway. Global regulator cra (catabolite repressor activator), a DNA-binding transcriptional dual regulator was selected for the study as it controls the expression of a large number of operons that modulate central carbon metabolism. To upregulate the activity of central carbon metabolism, the cra gene was co-expressed using a plasmid-based system. Co-expression of cra led to a 17% increase in the production of model recombinant protein L-Asparaginase-II. A pulse addition of 0.36% of glycerol every two hours post-induction, further increased the production of L-Asparaginase-II by 35% as compared to the control strain expressing only recombinant protein. This work exemplifies that upregulating the activity of central carbon metabolism by tuning the expression of regulatory genes like cra can relieve the host from cellular stress and thereby promote the growth as well as expression of recombinant hosts.
Collapse
Affiliation(s)
- Debashrita Mittra
- Post Graduate Department of Biosciences & Biotechnology, Fakir Mohan University, Nuapadhi, Balasore, India
| | - Shubhashree Mahalik
- Post Graduate Department of Biosciences & Biotechnology, Fakir Mohan University, Nuapadhi, Balasore, India
| |
Collapse
|
35
|
Lee JY, Huh HD, Lee DK, Park SY, Shin JE, Gee HY, Park HW. Reprogramming anchorage dependency to develop cell lines for recombinant protein expression. Biotechnol J 2024; 19:e2400104. [PMID: 38700448 DOI: 10.1002/biot.202400104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/25/2024] [Accepted: 04/01/2024] [Indexed: 05/05/2024]
Abstract
As the biopharmaceutical industry continues to mature in its cost-effectiveness and productivity, many companies have begun employing larger-scale biomanufacturing and bioprocessing protocols. While many of these protocols require cells with anchorage-independent growth, it remains challenging to induce the necessary suspension adaptations in many different cell types. In addition, although transfection efficiency is an important consideration for all cells, especially for therapeutic protein production, cells in suspension are generally more difficult to transfect than adherent cells. Thus, much of the biomanufacturing industry is focused on the development of new human cell lines with properties that can support more efficient biopharmaceutical production. With this in mind, we identified a set of "Adherent-to-Suspension Transition" (AST) factors, IKZF1, BTG2 and KLF1, the expression of which induces adherent cells to acquire anchorage-independent growth. Working from the HEK293A cell line, we established 293-AST cells and 293-AST-TetR cells for inducible and reversible reprogramming of anchorage dependency. Surprisingly, we found that the AST-TetR system induces the necessary suspension adaptations with an accompanying increase in transfection efficiency and protein expression rate. Our AST-TetR system therefore represents a novel technological platform for the development of cell lines used for generating therapeutic proteins.
Collapse
Affiliation(s)
- Ju Young Lee
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Hyunbin D Huh
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Dong Ki Lee
- Department of Pharmacology, Graduate School of Medical Science, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - So Yeon Park
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Ji Eun Shin
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Heon Yung Gee
- Department of Pharmacology, Graduate School of Medical Science, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyun Woo Park
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| |
Collapse
|
36
|
Cowan DA, Albers SV, Antranikian G, Atomi H, Averhoff B, Basen M, Driessen AJM, Jebbar M, Kelman Z, Kerou M, Littlechild J, Müller V, Schönheit P, Siebers B, Vorgias K. Extremophiles in a changing world. Extremophiles 2024; 28:26. [PMID: 38683238 PMCID: PMC11058618 DOI: 10.1007/s00792-024-01341-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 04/02/2024] [Indexed: 05/01/2024]
Abstract
Extremophiles and their products have been a major focus of research interest for over 40 years. Through this period, studies of these organisms have contributed hugely to many aspects of the fundamental and applied sciences, and to wider and more philosophical issues such as the origins of life and astrobiology. Our understanding of the cellular adaptations to extreme conditions (such as acid, temperature, pressure and more), of the mechanisms underpinning the stability of macromolecules, and of the subtleties, complexities and limits of fundamental biochemical processes has been informed by research on extremophiles. Extremophiles have also contributed numerous products and processes to the many fields of biotechnology, from diagnostics to bioremediation. Yet, after 40 years of dedicated research, there remains much to be discovered in this field. Fortunately, extremophiles remain an active and vibrant area of research. In the third decade of the twenty-first century, with decreasing global resources and a steadily increasing human population, the world's attention has turned with increasing urgency to issues of sustainability. These global concerns were encapsulated and formalized by the United Nations with the adoption of the 2030 Agenda for Sustainable Development and the presentation of the seventeen Sustainable Development Goals (SDGs) in 2015. In the run-up to 2030, we consider the contributions that extremophiles have made, and will in the future make, to the SDGs.
Collapse
Affiliation(s)
- D A Cowan
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, 0002, South Africa.
| | - S V Albers
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - G Antranikian
- Institute of Technical Biocatalysis, Hamburg University of Technology, 21073, Hamburg, Germany
| | - H Atomi
- Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - B Averhoff
- Department of Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Goethe University Frankfurt, Frankfurt Am Main, Germany
| | - M Basen
- Department of Microbiology, Institute of Biological Sciences, University of Rostock, Rostock, Germany
| | - A J M Driessen
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - M Jebbar
- Univ. Brest, CNRS, Ifremer, Laboratoire de Biologie Et d'Écologie Des Écosystèmes Marins Profonds (BEEP), IUEM, Rue Dumont d'Urville, 29280, Plouzané, France
| | - Z Kelman
- Institute for Bioscience and Biotechnology Research and the National Institute of Standards and Technology, Rockville, MD, USA
| | - M Kerou
- Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - J Littlechild
- Henry Wellcome Building for Biocatalysis, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - V Müller
- Department of Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Goethe University Frankfurt, Frankfurt Am Main, Germany
| | - P Schönheit
- Institute of General Microbiology, Christian Albrechts University, Kiel, Germany
| | - B Siebers
- Molecular Enzyme Technology and Biochemistry (MEB), Environmental Microbiology and Biotechnology (EMB), Centre for Water and Environmental Research (CWE), University of Duisburg-Essen, 45117, Essen, Germany
| | - K Vorgias
- Biology Department and RI-Bio3, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
37
|
Weiss F, Requena-Moreno G, Pichler C, Valero F, Glieder A, Garcia-Ortega X. Scalable protein production by Komagataella phaffii enabled by ARS plasmids and carbon source-based selection. Microb Cell Fact 2024; 23:116. [PMID: 38643119 PMCID: PMC11031860 DOI: 10.1186/s12934-024-02368-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 03/18/2024] [Indexed: 04/22/2024] Open
Abstract
BACKGROUND Most recombinant Komagataella phaffii (Pichia pastoris) strains for protein production are generated by genomic integration of expression cassettes. The clonal variability in gene copy numbers, integration loci and consequently product titers limit the aptitude for high throughput applications in drug discovery, enzyme engineering or most comparative analyses of genetic elements such as promoters or secretion signals. Circular episomal plasmids with an autonomously replicating sequence (ARS), an alternative which would alleviate some of these limitations, are inherently unstable in K. phaffii. Permanent selection pressure, mostly enabled by antibiotic resistance or auxotrophy markers, is crucial for plasmid maintenance and hardly scalable for production. The establishment and use of extrachromosomal ARS plasmids with key genes of the glycerol metabolism (glycerol kinase 1, GUT1, and triosephosphate isomerase 1, TPI1) as selection markers was investigated to obtain a system with high transformation rates that can be directly used for scalable production processes in lab scale bioreactors. RESULTS In micro-scale deep-well plate experiments, ARS plasmids employing the Ashbya gossypii TEF1 (transcription elongation factor 1) promoter to regulate transcription of the marker gene were found to deliver high transformation efficiencies and the best performances with the reporter protein (CalB, lipase B of Candida antarctica) for both, the GUT1- and TPI1-based, marker systems. The GUT1 marker-bearing strain surpassed the reference strain with integrated expression cassette by 46% upon re-evaluation in shake flask cultures regarding CalB production, while the TPI1 system was slightly less productive compared to the control. In 5 L bioreactor methanol-free fed-batch cultivations, the episomal production system employing the GUT1 marker led to 100% increased CalB activity in the culture supernatant compared to integration construct. CONCLUSIONS For the first time, a scalable and methanol-independent expression system for recombinant protein production for K. phaffii using episomal expression vectors was demonstrated. Expression of the GUT1 selection marker gene of the new ARS plasmids was refined by employing the TEF1 promoter of A. gossypii. Additionally, the antibiotic-free marker toolbox for K. phaffii was expanded by the TPI1 marker system, which proved to be similarly suited for the use in episomal plasmids as well as integrative expression constructs for the purpose of recombinant protein production.
Collapse
Affiliation(s)
- Florian Weiss
- Christian Doppler Laboratory for Innovative Pichia pastoris host and vector systems, Institute of Molecular Biotechnology, Graz University of Technology, Graz, A-8010, Austria
| | - Guillermo Requena-Moreno
- Christian Doppler Laboratory for Innovative Pichia Pastoris Host and Vector Systems, Department of Chemical, Biological and Environmental Engineering, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Bellaterra, 08193, Spain
| | - Carsten Pichler
- Christian Doppler Laboratory for Innovative Pichia pastoris host and vector systems, Institute of Molecular Biotechnology, Graz University of Technology, Graz, A-8010, Austria
| | - Francisco Valero
- Christian Doppler Laboratory for Innovative Pichia Pastoris Host and Vector Systems, Department of Chemical, Biological and Environmental Engineering, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Bellaterra, 08193, Spain
| | - Anton Glieder
- Christian Doppler Laboratory for Innovative Pichia pastoris host and vector systems, Institute of Molecular Biotechnology, Graz University of Technology, Graz, A-8010, Austria.
| | - Xavier Garcia-Ortega
- Christian Doppler Laboratory for Innovative Pichia Pastoris Host and Vector Systems, Department of Chemical, Biological and Environmental Engineering, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Bellaterra, 08193, Spain
| |
Collapse
|
38
|
Kumar V, Barwal A, Sharma N, Mir DS, Kumar P, Kumar V. Therapeutic proteins: developments, progress, challenges, and future perspectives. 3 Biotech 2024; 14:112. [PMID: 38510462 PMCID: PMC10948735 DOI: 10.1007/s13205-024-03958-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 02/13/2024] [Indexed: 03/22/2024] Open
Abstract
Proteins are considered magic molecules due to their enormous applications in the health sector. Over the past few decades, therapeutic proteins have emerged as a promising treatment option for various diseases, particularly cancer, cardiovascular disease, diabetes, and others. The formulation of protein-based therapies is a major area of research, however, a few factors still hinder the large-scale production of these therapeutic products, such as stability, heterogenicity, immunogenicity, high cost of production, etc. This review provides comprehensive information on various sources and production of therapeutic proteins. The review also summarizes the challenges currently faced by scientists while developing protein-based therapeutics, along with possible solutions. It can be concluded that these proteins can be used in combination with small molecular drugs to give synergistic benefits in the future.
Collapse
Affiliation(s)
- Vimal Kumar
- University Institute of Biotechnology, Chandigarh University, Gharuan, Mohali, Punjab 140413 India
| | - Arti Barwal
- Department of Microbial Biotechnology, Panjab University, South Campus, Sector-25, Chandigarh, 160014 India
| | - Nitin Sharma
- Department of Biotechnology, Chandigarh Group of Colleges, Mohali, Punjab 140307 India
| | - Danish Shafi Mir
- University Institute of Biotechnology, Chandigarh University, Gharuan, Mohali, Punjab 140413 India
| | - Pradeep Kumar
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, 173229 India
| | - Vikas Kumar
- University Institute of Biotechnology, Chandigarh University, Gharuan, Mohali, Punjab 140413 India
| |
Collapse
|
39
|
Mustafa MI, Mohammed A. Developing recombinant antibodies by phage display technology to neutralize viral infectious diseases. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2024; 29:100140. [PMID: 38182043 DOI: 10.1016/j.slasd.2024.01.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/30/2023] [Accepted: 01/02/2024] [Indexed: 01/07/2024]
Abstract
The use of recombinant antibodies developed through phage display technology offers a promising approach for combating viral infectious diseases. By specifically targeting antigens on viral surfaces, these antibodies have the potential to reduce the severity of infections or even prevent them altogether. With the emergence of new and more virulent strains of viruses, it is crucial to develop innovative methods to counteract them. Phage display technology has proven successful in generating recombinant antibodies capable of targeting specific viral antigens, thereby providing a powerful tool to fight viral infections. In this mini-review article, we examine the development of these antibodies using phage display technology, and discuss the associated challenges and opportunities in developing novel treatments for viral infectious diseases. Furthermore, we provide an overview of phage display technology. As these methods continue to evolve and improve, novel and sophisticated tools based on phage display and peptide display systems are constantly emerging, offering exciting prospects for solving scientific, medical, and technological problems related to viral infectious diseases in the near future.
Collapse
Affiliation(s)
- Mujahed I Mustafa
- Department of Biotechnology, College of Applied and Industrial Sciences, University of Bahri, Khartoum, Sudan.
| | - Ahmed Mohammed
- Department of Biotechnology, School of Life Sciences and Technology, Omdurman Islamic university, Omdurman, Sudan
| |
Collapse
|
40
|
Zarei M, Ferdosi-Shahandashti E, Badalzadeh M, Kardar GA. Increased Expression Level of Human Blood Clotting Factor VIII Using NS0 Cell Line as a Host Cells. IRANIAN JOURNAL OF BIOTECHNOLOGY 2024; 22:e3772. [PMID: 39220334 PMCID: PMC11364927 DOI: 10.30498/ijb.2024.409915.3772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Background Coagulation factor VIII (FVIII) is applied for spontaneous hemorrhaging inhibition and excessive bleeding after trauma in patients with hemophilia A. High-quality human recombinant factor VIII (rFVIII) has been produced relatively in large quantities in cultured mammalian cells. NS0 is one of the most common mammalian cell lines for therapeutic protein production. Production of rFVIII has increased due to low FVIII expression levels and rising demand for hemophilia A prophylactic treatment. Several methods have been developed to prevent cell cycle progression in mammalian cells for increased recombinant protein yields. Objective The aim of the study was to investigate the level of recombinant BDD-FVIII expression in NS0 mouse myeloma cells. Additionally, the study aimed to determine the effects of chemical drugs, Mitomycin C, Lovastatin, and Metformin on the secretion of FVIII through cell cycle arrest. Materials and Methods We cultured NS0 cells and transfected them with the 2 μg pcDNA3-hBDDFVIII plasmid by Lipofectamine 3000. The cells were treated with 10 μg.mL-1 Mitomycin C, 20 μM Lovastatin, and 20 mM Metformin separately. After 24 and 48 hours, the samples were collected and, protein expression was analyzed using RT-PCR, Dot blot, and ELISA. Results A higher protein expression level was observed in treated cells 24h and 48h after treatment with all three drugs. According to real-time PCR, Metformin treatment resulted in the highest expression level within 24 h (P=0.0026), followed by Mitomycin C treatment within 48 h (P=0.0030). Conclusion The NS0 cell line can be regarded as a suitable host for FVIII production. FVIII protein expression level was increased by using Lovastatin, Metformin, and Mitomycin C drugs. Further investigations are suggested, and the potential application of these drugs to increase recombinant protein yield can be used to produce therapeutic proteins in the industry.
Collapse
Affiliation(s)
- Mahboobeh Zarei
- Student Research Committee, Babol University of Medical Sciences, Babol, I.R. Iran
| | - Elaheh Ferdosi-Shahandashti
- Biomedical and Microbial Advanced Technologies (BMAT) Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, I.R. Iran
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, I.R. Iran
| | - Mohsen Badalzadeh
- Immunology, Asthma and Allergy Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Gholam Ali Kardar
- Immunology, Asthma and Allergy Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
41
|
Pham DN, Linova MY, Smith WK, Brown H, Elhanafi D, Fan J, Lavoie J, Woodley JM, Carbonell RG. Novel multimodal cation-exchange membrane for the purification of a single-chain variable fragment from Pichia pastoris supernatant. J Chromatogr A 2024; 1718:464682. [PMID: 38341900 DOI: 10.1016/j.chroma.2024.464682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/22/2024] [Accepted: 01/25/2024] [Indexed: 02/13/2024]
Abstract
A novel salt-tolerant cation-exchange membrane, prepared with a multimodal ligand, 2-mercaptopyridine-3-carboxylic acid (MMC-MPCA), was examined for its purification properties in a bind-and-elute mode from the high conductivity supernatant of a Pichia pastoris fermentation producing and secreting a single-chain variable fragment (scFv). If successful, this approach would eliminate the need for a buffer exchange prior to product capture by ion-exchange. Two fed-batch fermentations of Pichia pastoris resulted in fermentation supernatants reaching an scFv titer of 395.0 mg/L and 555.7 mg/L, both with a purity of approximately 83 %. The MMC-MPCA membrane performance was characterized in terms of pH, residence time (RT), scFv load, and scFv concentration to identify the resulting dynamic binding capacity (DBC), yield, and purity achieved under optimal conditions. The MMC-MPCA membrane exhibited the highest DBC of 39.06 mg/mL at pH 5.5, with a residence time of 1 min, while reducing the pH below 5.0 resulted in a significant decrease of the DBC to around 2.5 mg/mL. With almost no diffusional limitations, reducing the RT from 2 to 0.2 min did not negatively impact the DBC of the MMC-MPCA membrane, resulting in a significant improvement in productivity of up to 180 mg/mL/min at 0.2 min RT. Membrane fouling was observed when reusing the membranes at 0.2 and 0.5 min RT, likely due to the enhanced adsorption of impurities on the membrane. Changing the amount of scFv loaded onto the membrane column did not show any changes in yield, instead a 10-20 % loss of scFv was observed, which suggested that some of the produced scFv were fragmented or had aggregated. When performing the purification under the optimized conditions, the resulting purity of the product improved from 83 % to approximately 92-95 %.
Collapse
Affiliation(s)
- Dan N Pham
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Marina Y Linova
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - William K Smith
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA
| | - Hunter Brown
- Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, NC 27695-7905, USA
| | - Driss Elhanafi
- Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, NC 27695-7905, USA
| | - Jinxin Fan
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA.
| | - Joseph Lavoie
- Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, NC 27695-7905, USA
| | - John M Woodley
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.
| | - Ruben G Carbonell
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA; Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, NC 27695-7905, USA.
| |
Collapse
|
42
|
Eskandari A, Nezhad NG, Leow TC, Rahman MBA, Oslan SN. Essential factors, advanced strategies, challenges, and approaches involved for efficient expression of recombinant proteins in Escherichia coli. Arch Microbiol 2024; 206:152. [PMID: 38472371 DOI: 10.1007/s00203-024-03871-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 12/31/2023] [Accepted: 01/25/2024] [Indexed: 03/14/2024]
Abstract
Producing recombinant proteins is a major accomplishment of biotechnology in the past century. Heterologous hosts, either eukaryotic or prokaryotic, are used for the production of these proteins. The utilization of microbial host systems continues to dominate as the most efficient and affordable method for biotherapeutics and food industry productions. Hence, it is crucial to analyze the limitations and advantages of microbial hosts to enhance the efficient production of recombinant proteins on a large scale. E. coli is widely used as a host for the production of recombinant proteins. Researchers have identified certain obstacles with this host, and given the growing demand for recombinant protein production, there is an immediate requirement to enhance this host. The following review discusses the elements contributing to the manifestation of recombinant protein. Subsequently, it sheds light on innovative approaches aimed at improving the expression of recombinant protein. Lastly, it delves into the obstacles and optimization methods associated with translation, mentioning both cis-optimization and trans-optimization, producing soluble recombinant protein, and engineering the metal ion transportation. In this context, a comprehensive description of the distinct features will be provided, and this knowledge could potentially enhance the expression of recombinant proteins in E. coli.
Collapse
Affiliation(s)
- Azadeh Eskandari
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- Department of Biochemistry, FacultyofBiotechnologyand BiomolecularSciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Nima Ghahremani Nezhad
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Thean Chor Leow
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- Enzyme Technology and X-Ray Crystallography Laboratory, VacBio 5, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | | | - Siti Nurbaya Oslan
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
- Department of Biochemistry, FacultyofBiotechnologyand BiomolecularSciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
- Enzyme Technology and X-Ray Crystallography Laboratory, VacBio 5, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
| |
Collapse
|
43
|
Ganesan V, Ulgekar G, Ramalingam A, Sen Sharma S, Ganguli N, Majumdar SS. Goat mammary epithelial cells provide a better expression system for production of recombinant human bone morphogenetic protein 2 compared to Chinese hamster ovarian cells. Cell Biochem Funct 2024; 42:e3982. [PMID: 38488412 DOI: 10.1002/cbf.3982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/13/2024] [Accepted: 03/06/2024] [Indexed: 03/19/2024]
Abstract
Bone Morphogenetic Protein 2 (BMP2), a member of the Transforming Growth Factor-β (TGF-β) super family of proteins and is instrumental in the repair of fractures. The synthesis of BMP2 involves extensive post-translational processing and several studies have demonstrated the abysmally low production of rhBMP2 in eukaryotic systems, which may be due to the short half-life of the bioactive protein. Consequently, production costs of rhBMP2 are quite high, limiting its availability to the general populace. Therefore, there is an urgent need to identify better in-vitro systems for large scale production of rhBMP2. In the present study, we have carried out a comparative analysis of rhBMP2 production by the conventionally used Chinese Hamster ovarian cells (CHO) and goat mammary epithelial cells (GMEC), upon transfection with appropriate construct. Udder gland cells are highly secretory, and we reasoned that such cells may serve as a better in-vitro model for large scale production of rhBMP2. Our results indicated that the synthesis and secretion of bioactive rhBMP2 by goat mammary epithelial cells was significantly higher as compared to that by CHO-K1 cells. Our results provide strong evidence that GMECs may serve as a better alternative to other mammalian cells used for therapeutic protein production.
Collapse
Affiliation(s)
- Venkateswaran Ganesan
- National Institute of Animal Biotechnology, Hyderabad, Telangana, India
- Regional Centre for Biotechnology, Faridabad, Haryana, India
| | - Goutam Ulgekar
- National Institute of Animal Biotechnology, Hyderabad, Telangana, India
- Regional Centre for Biotechnology, Faridabad, Haryana, India
| | | | - Souvik Sen Sharma
- National Institute of Animal Biotechnology, Hyderabad, Telangana, India
| | - Nirmalya Ganguli
- National Institute of Animal Biotechnology, Hyderabad, Telangana, India
- Adjunct Faculty, Regional Centre for Biotechnology, Faridabad, Haryana, India
| | - Subeer S Majumdar
- National Institute of Animal Biotechnology, Hyderabad, Telangana, India
- Adjunct Faculty, Regional Centre for Biotechnology, Faridabad, Haryana, India
| |
Collapse
|
44
|
Eweje F, Walsh ML, Ahmad K, Ibrahim V, Alrefai A, Chen J, Chaikof EL. Protein-based nanoparticles for therapeutic nucleic acid delivery. Biomaterials 2024; 305:122464. [PMID: 38181574 PMCID: PMC10872380 DOI: 10.1016/j.biomaterials.2023.122464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 12/25/2023] [Accepted: 12/31/2023] [Indexed: 01/07/2024]
Abstract
To realize the full potential of emerging nucleic acid therapies, there is a need for effective delivery agents to transport cargo to cells of interest. Protein materials exhibit several unique properties, including biodegradability, biocompatibility, ease of functionalization via recombinant and chemical modifications, among other features, which establish a promising basis for therapeutic nucleic acid delivery systems. In this review, we highlight progress made in the use of non-viral protein-based nanoparticles for nucleic acid delivery in vitro and in vivo, while elaborating on key physicochemical properties that have enabled the use of these materials for nanoparticle formulation and drug delivery. To conclude, we comment on the prospects and unresolved challenges associated with the translation of protein-based nucleic acid delivery systems for therapeutic applications.
Collapse
Affiliation(s)
- Feyisayo Eweje
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA; Harvard and MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA; Harvard/MIT MD-PhD Program, Boston, MA, USA, 02115; Wyss Institute of Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - Michelle L Walsh
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA; Harvard and MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA; Harvard/MIT MD-PhD Program, Boston, MA, USA, 02115
| | - Kiran Ahmad
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Vanessa Ibrahim
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Assma Alrefai
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Jiaxuan Chen
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA; Wyss Institute of Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA.
| | - Elliot L Chaikof
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA; Wyss Institute of Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA.
| |
Collapse
|
45
|
Melchor-Moncada JJ, García-Barco A, Zuluaga-Vélez A, Veloza LA, Sepúlveda-Arias JC. Scale-Up of the Fermentation Process for the Production and Purification of Serratiopeptidase Using Silkworm Pupae as a Substrate. Methods Protoc 2024; 7:19. [PMID: 38525777 PMCID: PMC10961818 DOI: 10.3390/mps7020019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/16/2024] [Accepted: 02/23/2024] [Indexed: 03/26/2024] Open
Abstract
Serratiopeptidase, a bacterial metalloprotease known for its pain-relieving and anti-inflammatory properties, can be produced through fermentation with S. marcescens. This study aimed to identify key factors related to nutrient composition and physicochemical conditions for production in Erlenmeyer flasks and to scale up the mixture to a bioreactor to obtain the maximum proteolytic activity. A Plackett-Burman design was used to determine whether the presence of silkworm pupae (at 1.5%) was a significant parameter for serratiopeptidase production. Along with the variables pH, temperature, and time, they were optimized using a Taguchi experimental design, resulting in values of 7, 25 °C, and 36 h, respectively. Scaling up with a kLa of 25.45 ± 3.12 h-1 showed the highest serratiopeptidase production at 24 h. A factorial design was used for ultrafiltration, resulting in an LMH (liters per square meter per hour) of 960 L/m2h, a TMP (transmembrane pressure) of 15 psi, and a concentration factor of five, with a specific activity of 24,325.81 ± 1515.69 U/mg. Afterward, the retentate was purified using strong anion exchange chromatography and ultrafiltration, yielding a 19.94 ± 3.07% recovery and a purification factor of 1.59 ± 0.31. In conclusion, waste from the sericulture industry can be used for serratiopeptidase production.
Collapse
Affiliation(s)
- Jhon Jairo Melchor-Moncada
- Grupo Infección e Inmunidad, Departamento de Ciencias Básicas, Facultad de Ciencias de la Salud, Universidad Tecnológica de Pereira, Pereira 660003, Colombia; (J.J.M.-M.); (A.G.-B.); (A.Z.-V.)
| | - Alejandra García-Barco
- Grupo Infección e Inmunidad, Departamento de Ciencias Básicas, Facultad de Ciencias de la Salud, Universidad Tecnológica de Pereira, Pereira 660003, Colombia; (J.J.M.-M.); (A.G.-B.); (A.Z.-V.)
| | - Augusto Zuluaga-Vélez
- Grupo Infección e Inmunidad, Departamento de Ciencias Básicas, Facultad de Ciencias de la Salud, Universidad Tecnológica de Pereira, Pereira 660003, Colombia; (J.J.M.-M.); (A.G.-B.); (A.Z.-V.)
| | - Luz Angela Veloza
- Grupo Polifenoles, Facultad de Tecnología, Escuela de Tecnología Química, Universidad Tecnológica de Pereira, Pereira 660003, Colombia;
| | - Juan Carlos Sepúlveda-Arias
- Grupo Infección e Inmunidad, Departamento de Ciencias Básicas, Facultad de Ciencias de la Salud, Universidad Tecnológica de Pereira, Pereira 660003, Colombia; (J.J.M.-M.); (A.G.-B.); (A.Z.-V.)
| |
Collapse
|
46
|
Puccinelli RR, Sama SS, Worthington CM, Puschnik AS, Pak JE, Gómez-Sjöberg R. Open-source milligram-scale, four channel, automated protein purification system. PLoS One 2024; 19:e0297879. [PMID: 38394072 PMCID: PMC10889886 DOI: 10.1371/journal.pone.0297879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 01/10/2024] [Indexed: 02/25/2024] Open
Abstract
Liquid chromatography purification of multiple recombinant proteins, in parallel, could catalyze research and discovery if the processes are fast and approach the robustness of traditional, "one-protein-at-a-time" purification. Here, we report an automated, four channel chromatography platform that we have designed and validated for parallelized protein purification at milligram scales. The device can purify up to four proteins (each with its own single column), has inputs for up to eight buffers or solvents that can be directed to any of the four columns via a network of software-driven valves, and includes an automated fraction collector with ten positions for 1.5 or 5.0 mL collection tubes and four positions for 50 mL collection tubes for each column output. The control software can be accessed either via Python scripting, giving users full access to all steps of the purification process, or via a simple-to-navigate touch screen graphical user interface that does not require knowledge of the command line or any programming language. Using our instrument, we report milligram-scale, parallelized, single-column purification of a panel of mammalian cell expressed coronavirus (SARS-CoV-2, HCoV-229E, HCoV-OC43, HCoV-229E) trimeric Spike and monomeric Receptor Binding Domain (RBD) antigens, and monoclonal antibodies targeting SARS-CoV-2 Spike (S) and Influenza Hemagglutinin (HA). We include a detailed hardware build guide, and have made the controlling software open source, to allow others to build and customize their own protein purifier systems.
Collapse
Affiliation(s)
- Robert R. Puccinelli
- Chan Zuckerberg Biohub - San Francisco, San Francisco, California, United States of America
| | - Samia S. Sama
- Chan Zuckerberg Biohub - San Francisco, San Francisco, California, United States of America
| | | | - Andreas S. Puschnik
- Chan Zuckerberg Biohub - San Francisco, San Francisco, California, United States of America
| | - John E. Pak
- Chan Zuckerberg Biohub - San Francisco, San Francisco, California, United States of America
| | - Rafael Gómez-Sjöberg
- Chan Zuckerberg Biohub - San Francisco, San Francisco, California, United States of America
| |
Collapse
|
47
|
Tatarūnas V, Čiapienė I, Giedraitienė A. Precise Therapy Using the Selective Endogenous Encapsidation for Cellular Delivery Vector System. Pharmaceutics 2024; 16:292. [PMID: 38399346 PMCID: PMC10893373 DOI: 10.3390/pharmaceutics16020292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/13/2024] [Accepted: 02/16/2024] [Indexed: 02/25/2024] Open
Abstract
Interindividual variability in drug response is a major problem in the prescription of pharmacological treatments. The therapeutic effect of drugs can be influenced by human genes. Pharmacogenomic guidelines for individualization of treatment have been validated and used for conventional dosage forms. However, drugs can often target non-specific areas and produce both desired and undesired pharmacological effects. The use of nanoparticles, liposomes, or other available forms for drug formulation could help to overcome the latter problem. Virus-like particles based on retroviruses could be a potential envelope for safe and efficient drug formulations. Human endogenous retroviruses would make it possible to overcome the host immune response and deliver drugs to the desired target. PEG10 is a promising candidate that can bind to mRNA because it is secreted like an enveloped virus-like extracellular vesicle. PEG10 is a retrotransposon-derived gene that has been domesticated. Therefore, formulations with PEG10 may have a lower immunogenicity. The use of existing knowledge can lead to the development of suitable drug formulations for the precise treatment of individual diseases.
Collapse
Affiliation(s)
- Vacis Tatarūnas
- Institute of Cardiology, Lithuanian University of Health Sciences, Sukileliu 15, LT 50103 Kaunas, Lithuania; (V.T.); (I.Č.)
| | - Ieva Čiapienė
- Institute of Cardiology, Lithuanian University of Health Sciences, Sukileliu 15, LT 50103 Kaunas, Lithuania; (V.T.); (I.Č.)
| | - Agnė Giedraitienė
- Institute of Microbiology and Virology, Lithuanian University of Health Sciences, Eiveniu 4, LT 50161 Kaunas, Lithuania
| |
Collapse
|
48
|
Zeng YJ, Hsu MK, Cai JR, Wang HY. A strategy of novel molecular hydrogen-producing antioxidative auxiliary system improves virus production in cell bioreactor. Sci Rep 2024; 14:4092. [PMID: 38374429 PMCID: PMC10876984 DOI: 10.1038/s41598-024-54847-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/17/2024] [Indexed: 02/21/2024] Open
Abstract
In the increasing demand for virus vaccines, large-scale production of safe, efficient, and economical viral antigens has become a significant challenge. High-cell-density manufacturing processes are the most commonly used to produce vaccine antigens and protein drugs. However, the cellular stress response in large-scale cell culture may directly affect host cell growth and metabolism, reducing antigen production and increasing production costs. This study provided a novel strategy of the antioxidant auxiliary system (AAS) to supply molecular hydrogen (H2) into the cell culture media via proton exchange membrane (PEM) electrolysis. Integrated with a high-density cell bioreactor, the AAS aims to alleviate cellular stress response and increase viral vaccine production. In the results, the AAS stably maintained H2 concentration in media even in the high-air exposure tiding cell bioreactor. H2 treatment was shown safe to cell culture and effectively alleviated oxidative stress. In two established virus cultures models, bovine epidemic fever virus (BEFV) and porcine circovirus virus type 2 (PCV-2), were employed to verify the efficacy of AAS. The virus yield was increased by 3.7 and 2.5 folds in BEFV and PCV-2 respectively. In conclusion, the AAS-connected bioreactor effectively alleviated cellular oxidative stress and enhanced virus production in high-density cell culture.
Collapse
Affiliation(s)
- Yu-Jing Zeng
- International Degree Program in Animal Vaccine Technology, International College, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan
| | - Min-Kung Hsu
- International Degree Program in Animal Vaccine Technology, International College, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan
- General Research Service Center, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan
- Animal Biologics Pilot Production Center, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan
- Innovative Bioproducts Technical Service Center, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan
| | - Jia-Rong Cai
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan
| | - Hsian-Yu Wang
- International Degree Program in Animal Vaccine Technology, International College, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan.
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan.
| |
Collapse
|
49
|
Rebnegger C, Coltman BL, Kowarz V, Peña DA, Mentler A, Troyer C, Hann S, Schöny H, Koellensperger G, Mattanovich D, Gasser B. Protein production dynamics and physiological adaptation of recombinant Komagataella phaffii at near-zero growth rates. Microb Cell Fact 2024; 23:43. [PMID: 38331812 PMCID: PMC10851509 DOI: 10.1186/s12934-024-02314-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/23/2024] [Indexed: 02/10/2024] Open
Abstract
BACKGROUND Specific productivity (qP) in yeast correlates with growth, typically peaking at intermediate or maximum specific growth rates (μ). Understanding the factors limiting productivity at extremely low μ might reveal decoupling strategies, but knowledge of production dynamics and physiology in such conditions is scarce. Retentostats, a type of continuous cultivation, enable the well-controlled transition to near-zero µ through the combined retention of biomass and limited substrate supply. Recombinant Komagataella phaffii (syn Pichia pastoris) secreting a bivalent single domain antibody (VHH) was cultivated in aerobic, glucose-limited retentostats to investigate recombinant protein production dynamics and broaden our understanding of relevant physiological adaptations at near-zero growth conditions. RESULTS By the end of the retentostat cultivation, doubling times of approx. two months were reached, corresponding to µ = 0.00047 h-1. Despite these extremely slow growth rates, the proportion of viable cells remained high, and de novo synthesis and secretion of the VHH were observed. The average qP at the end of the retentostat was estimated at 0.019 mg g-1 h-1. Transcriptomics indicated that genes involved in protein biosynthesis were only moderately downregulated towards zero growth, while secretory pathway genes were mostly regulated in a manner seemingly detrimental to protein secretion. Adaptation to near-zero growth conditions of recombinant K. phaffii resulted in significant changes in the total protein, RNA, DNA and lipid content, and lipidomics revealed a complex adaptation pattern regarding the lipid class composition. The higher abundance of storage lipids as well as storage carbohydrates indicates that the cells are preparing for long-term survival. CONCLUSIONS In conclusion, retentostat cultivation proved to be a valuable tool to identify potential engineering targets to decouple growth and protein production and gain important insights into the physiological adaptation of K. phaffii to near-zero growth conditions.
Collapse
Affiliation(s)
- Corinna Rebnegger
- CD-Laboratory for Growth-Decoupled Protein Production in Yeast at Department of Biotechnology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
- Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology (IMMB), University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190, Vienna, Austria
- Austrian Centre of Industrial Biotechnology (ACIB GmbH), Muthgasse 11, 1190, Vienna, Austria
| | - Benjamin L Coltman
- CD-Laboratory for Growth-Decoupled Protein Production in Yeast at Department of Biotechnology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
- Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology (IMMB), University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190, Vienna, Austria
| | - Viktoria Kowarz
- CD-Laboratory for Growth-Decoupled Protein Production in Yeast at Department of Biotechnology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
- Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology (IMMB), University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190, Vienna, Austria
| | - David A Peña
- Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology (IMMB), University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190, Vienna, Austria
| | - Axel Mentler
- Department of Forest- and Soil Sciences, Institute of Soil Research, University of Natural Resources and Life Sciences, Vienna, Peter-Jordan-Straße 82, 1190, Vienna, Austria
| | - Christina Troyer
- Department of Chemistry, Institute of Analytical Chemistry, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190, Vienna, Austria
| | - Stephan Hann
- Department of Chemistry, Institute of Analytical Chemistry, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190, Vienna, Austria
| | - Harald Schöny
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Straße 38, 1090, Vienna, Austria
| | - Gunda Koellensperger
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Straße 38, 1090, Vienna, Austria
- Vienna Metabolomics Center (VIME), University of Vienna, Althanstraße 14, 1090, Vienna, Austria
| | - Diethard Mattanovich
- CD-Laboratory for Growth-Decoupled Protein Production in Yeast at Department of Biotechnology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
- Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology (IMMB), University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190, Vienna, Austria
- Austrian Centre of Industrial Biotechnology (ACIB GmbH), Muthgasse 11, 1190, Vienna, Austria
| | - Brigitte Gasser
- CD-Laboratory for Growth-Decoupled Protein Production in Yeast at Department of Biotechnology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria.
- Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology (IMMB), University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190, Vienna, Austria.
- Austrian Centre of Industrial Biotechnology (ACIB GmbH), Muthgasse 11, 1190, Vienna, Austria.
| |
Collapse
|
50
|
Che Hussian CHA, Leong WY. Factors affecting therapeutic protein purity and yield during chromatographic purification. Prep Biochem Biotechnol 2024; 54:150-158. [PMID: 37233514 DOI: 10.1080/10826068.2023.2217507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Therapeutic proteins are recombinant proteins generated through recombinant DNA technology and have attracted a great deal of interest in numerous applications, including pharmaceutical, cosmetic, human and animal health, agriculture, food, and bioremediation. Producing therapeutic proteins on a large scale, mainly in the pharmaceutical industry, necessitates a cost-effective, straightforward, and adequate manufacturing process. In industry, a protein separation technique based mainly on protein characteristics and modes of chromatography will be applied to optimize the purification process. Typically, the downstream process of biopharmaceutical operations may involve multiple chromatography phases that require the use of large columns pre-packed with resins that must be inspected before use. Approximately 20% of the proteins are assumed to be lost at each purification stage during the production of biotherapeutic products. Hence, to produce a high quality product, particularly in the pharmaceutical industry, the correct approach and understanding of the factors influencing purity and yield during purification are necessary.
Collapse
Affiliation(s)
| | - Wai Yie Leong
- INTI International University & Colleges, Nilai, Negeri Sembilan, Malaysia
| |
Collapse
|