1
|
Liu Y, Yang Z, Zhou X, Li Z, Hideki N. Diacylglycerol Kinases and Its Role in Lipid Metabolism and Related Diseases. Int J Mol Sci 2024; 25:13207. [PMID: 39684917 DOI: 10.3390/ijms252313207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/13/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
Lipids are essential components of eukaryotic membranes, playing crucial roles in membrane structure, energy storage, and signaling. They are predominantly synthesized in the endoplasmic reticulum (ER) and subsequently transported to other organelles. Diacylglycerol kinases (DGKs) are a conserved enzyme family that phosphorylate diacylglycerol (DAG) to produce phosphatidic acid (PA), both of which are key intermediates in lipid metabolism and second messengers involved in numerous cellular processes. Dysregulation of DGK activity is associated with several diseases, including cancer and metabolic disorders. In this review, we provide a comprehensive overview of DGK types, functions, cellular localization, and their potential as therapeutic targets. We also discuss DGKs' roles in lipid metabolism and their physiological functions and related diseases.
Collapse
Affiliation(s)
- Yishi Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Zehui Yang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xiaoman Zhou
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Zijie Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Nakanishi Hideki
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
2
|
Sakane F, Murakami C, Sakai H. Upstream and downstream pathways of diacylglycerol kinase : Novel phosphatidylinositol turnover-independent signal transduction pathways. Adv Biol Regul 2024:101054. [PMID: 39368888 DOI: 10.1016/j.jbior.2024.101054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 09/24/2024] [Accepted: 09/30/2024] [Indexed: 10/07/2024]
Abstract
Diacylglycerol kinase (DGK) phosphorylates diacylglycerol (DG) to produce phosphatidic acid (PA). Mammalian DGK comprise ten isozymes (α-κ) that regulate a wide variety of physiological and pathological events. Recently, we revealed that DGK isozymes use saturated fatty acid (SFA)/monosaturated fatty acid (MUFA)-containing and docosahexaenoic acid (22:6)-containing DG species, but not phosphatidylinositol (PI) turnover-derived 18:0/20:4-DG. For example, DGKδ, which is involved in the pathogenesis of type 2 diabetes, preferentially uses SFA/MUFA-containing DG species, such as 16:0/16:0- and 16:0/18:1-DG species, in high glucose-stimulated skeletal muscle cells. Moreover, DGKδ, which destabilizes the serotonin transporter (SERT) and regulates the serotonergic system in the brain, primarily generates 18:0/22:6-PA. Furthermore, 16:0/16:0-PA is produced by DGKζ in Neuro-2a cells during neuronal differentiation. We searched for SFA/MUFA-PA- and 18:0/22:6-PA-selective binding proteins (candidate downstream targets of DGKδ) and found that SFA/MUFA-PA binds to and activates the creatine kinase muscle type, an energy-metabolizing enzyme, and that 18:0/22:6-PA interacts with and activates Praja-1, an E3 ubiquitin ligase acting on SERT, and synaptojanin-1, a key player in the synaptic vesicle cycle. Next, we searched for SFA/MUFA-DG-generating enzymes upstream of DGKδ. We found that sphingomyelin synthase (SMS)1, SMS2, and SMS-related protein (SMSr) commonly act as phosphatidylcholine (PC)-phospholipase C (PLC) and phosphatidylethanolamine (PE)-PLC, generating SFA/MUFA-DG species, in addition to SMS and ceramide phosphoethanolamine synthase. Moreover, the orphan phosphatase PHOSPHO1 showed PC- and PE-PLC activities that produced SFA/MUFA-DG. Although PC- and PE-PLC activities were first described 70-35 years ago, their proteins and genes were not identified for a long time. We found that DGKδ interacts with SMSr and PHOSPHO1, and that DGKζ binds to SMS1 and SMSr. Taken together, these results strongly suggest that there are previously unrecognized signal transduction pathways that include DGK isozymes and generate and utilize SFA/MUFA-DG/PA or 18:0/22:6-DG/PA but not PI-turnover-derived 18:0/20:4-DG/PA.
Collapse
Affiliation(s)
- Fumio Sakane
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba, Japan.
| | - Chiaki Murakami
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba, Japan; Institute for Advanced Academic Research, Chiba University, Chiba, Japan
| | - Hiromichi Sakai
- Department of Biosignaling and Radioisotope Experiment, Interdisciplinary Center for Science Research, Organization for Research and Academic Information, Shimane University, Izumo, Japan
| |
Collapse
|
3
|
Jollet M, Tramontana F, Jiang LQ, Borg ML, Savikj M, Kuefner MS, Massart J, de Castro Barbosa T, Mannerås-Holm L, Checa A, Pillon NJ, Chibalin AV, Björnholm M, Zierath JR. Diacylglycerol kinase delta overexpression improves glucose clearance and protects against the development of obesity. Metabolism 2024; 158:155939. [PMID: 38843995 DOI: 10.1016/j.metabol.2024.155939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/22/2024] [Accepted: 05/28/2024] [Indexed: 07/06/2024]
Abstract
BACKGROUND AND AIM Diacylglycerol kinase (DGK) isoforms catalyze an enzymatic reaction that removes diacylglycerol (DAG) and thereby terminates protein kinase C signaling by converting DAG to phosphatidic acid. DGKδ (type II isozyme) downregulation causes insulin resistance, metabolic inflexibility, and obesity. Here we determined whether DGKδ overexpression prevents these metabolic impairments. METHODS We generated a transgenic mouse model overexpressing human DGKδ2 under the myosin light chain promoter (DGKδ TG). We performed deep metabolic phenotyping of DGKδ TG mice and wild-type littermates fed chow or high-fat diet (HFD). Mice were also provided free access to running wheels to examine the effects of DGKδ overexpression on exercise-induced metabolic outcomes. RESULTS DGKδ TG mice were leaner than wild-type littermates, with improved glucose tolerance and increased skeletal muscle glycogen content. DGKδ TG mice were protected against HFD-induced glucose intolerance and obesity. DGKδ TG mice had reduced epididymal fat and enhanced lipolysis. Strikingly, DGKδ overexpression recapitulated the beneficial effects of exercise on metabolic outcomes. DGKδ overexpression and exercise had a synergistic effect on body weight reduction. Microarray analysis of skeletal muscle revealed common gene ontology signatures of exercise and DGKδ overexpression that were related to lipid storage, extracellular matrix, and glycerophospholipids biosynthesis pathways. CONCLUSION Overexpression of DGKδ induces adaptive changes in both skeletal muscle and adipose tissue, resulting in protection against HFD-induced obesity. DGKδ overexpression recapitulates exercise-induced adaptations on energy homeostasis and skeletal muscle gene expression profiles.
Collapse
Affiliation(s)
- Maxence Jollet
- Department of Molecular Medicine and Surgery, Section for Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| | - Flavia Tramontana
- Department of Physiology and Pharmacology, Section for Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| | - Lake Q Jiang
- Department of Physiology and Pharmacology, Section for Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| | - Melissa L Borg
- Department of Physiology and Pharmacology, Section for Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| | - Mladen Savikj
- Department of Molecular Medicine and Surgery, Section for Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| | - Michael S Kuefner
- Department of Molecular Medicine and Surgery, Section for Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| | - Julie Massart
- Department of Molecular Medicine and Surgery, Section for Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| | - Thais de Castro Barbosa
- Department of Physiology and Pharmacology, Section for Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| | - Louise Mannerås-Holm
- Department of Physiology and Pharmacology, Section for Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| | - Antonio Checa
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Nicolas J Pillon
- Department of Physiology and Pharmacology, Section for Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| | - Alexander V Chibalin
- Department of Molecular Medicine and Surgery, Section for Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| | - Marie Björnholm
- Department of Molecular Medicine and Surgery, Section for Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| | - Juleen R Zierath
- Department of Molecular Medicine and Surgery, Section for Integrative Physiology, Karolinska Institutet, Stockholm, Sweden; Department of Physiology and Pharmacology, Section for Integrative Physiology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
4
|
Tan J, Xiao A, Yang L, Tao YL, Shao Y, Zhou Q. Diabetes and high-glucose could upregulate the expression of receptor for activated C kinase 1 in retina. World J Diabetes 2024; 15:519-529. [PMID: 38591093 PMCID: PMC10999037 DOI: 10.4239/wjd.v15.i3.519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/08/2023] [Accepted: 01/18/2024] [Indexed: 03/15/2024] Open
Abstract
BACKGROUND Diabetic retinopathy (DR) is a major ocular complication of diabetes mellitus, leading to visual impairment. Retinal pigment epithelium (RPE) injury is a key component of the outer blood retinal barrier, and its damage is an important indicator of DR. Receptor for activated C kinase 1 (RACK1) activates protein kinase C-ε (PKC-ε) to promote the generation of reactive oxygen species (ROS) in RPE cells, leading to apoptosis. Therefore, we hypothesize that the activation of RACK1 under hypoxic/high-glucose conditions may promote RPE cell apoptosis by modulating PKC-ε/ROS, thereby disrupting the barrier effect of the outer blood retinal barrier and contributing to the progression of DR. AIM To investigate the role and associated underlying mechanisms of RACK1 in the development of early DR. METHODS In this study, Sprague-Dawley rats and adult RPE cell line-19 (ARPE-19) cells were used as in vivo and in vitro models, respectively, to explore the role of RACK1 in mediating PKC-ε in early DR. Furthermore, the impact of RACK1 on apoptosis and barrier function of RPE cells was also investigated in the former model. RESULTS Streptozotocin-induced diabetic rats showed increased apoptosis and up-regulated expression of RACK1 and PKC-ε proteins in RPE cells following a prolonged modeling. Similarly, ARPE-19 cells exposed to high glucose and hypoxia displayed elevated mRNA and protein levels of RACK1 and PKC-ε, accompanied by an increases in ROS production, apoptosis rate, and monolayer permeability. However, silencing RACK1 significantly downregulated the expression of PKC-ε and ROS, reduced cell apoptosis and permeability, and protected barrier function. CONCLUSION RACK1 plays a significant role in the development of early DR and might serve as a potential therapeutic target for DR by regulating RPE apoptosis and barrier function.
Collapse
Affiliation(s)
- Jian Tan
- Department of Ophthalmology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Ang Xiao
- Department of Ophthalmology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Lin Yang
- Department of Ophthalmology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Yu-Lin Tao
- Department of Ophthalmology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Yi Shao
- Department of Ophthalmology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Qiong Zhou
- Department of Ophthalmology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
| |
Collapse
|
5
|
Suzuki R, Murakami C, Dilimulati K, Atsuta-Tsunoda K, Kawai T, Sakane F. Human sphingomyelin synthase 1 generates diacylglycerol in the presence and absence of ceramide via multiple enzymatic activities. FEBS Lett 2023; 597:2672-2686. [PMID: 37715942 DOI: 10.1002/1873-3468.14735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/24/2023] [Accepted: 09/01/2023] [Indexed: 09/18/2023]
Abstract
Sphingomyelin (SM) synthase 1 (SMS1), which is involved in lipodystrophy, deafness, and thrombasthenia, generates diacylglycerol (DG) and SM using phosphatidylcholine (PC) and ceramide as substrates. Here, we found that SMS1 possesses DG-generating activities via hydrolysis of PC and phosphatidylethanolamine (PE) in the absence of ceramide and ceramide phosphoethanolamine synthase (CPES) activity. In the presence of the same concentration (4.7 mol%) of PC and ceramide, the amounts of DG produced by SMS and PC-phospholipase C (PLC) activities of SMS1 were approximately 65% and 35% of total DG production, respectively. PC-PLC activity showed substrate selectivity for saturated and/or monounsaturated fatty acid-containing PC species. A PC-PLC/SMS inhibitor, D609, inhibited only SMS activity. Mn2+ inhibited only PC-PLC activity. Intriguingly, DG attenuated SMS/CPES activities. Our study indicates that SMS1 is a unique enzyme with PC-PLC/PE-PLC/SMS/CPES activities.
Collapse
Affiliation(s)
- Rika Suzuki
- Department of Chemistry, Graduate School of Science, Chiba University, Japan
| | - Chiaki Murakami
- Department of Chemistry, Graduate School of Science, Chiba University, Japan
- Institute for Advanced Academic Research, Chiba University, Japan
| | - Kamila Dilimulati
- Department of Chemistry, Graduate School of Science, Chiba University, Japan
| | | | - Takuma Kawai
- Department of Chemistry, Graduate School of Science, Chiba University, Japan
| | - Fumio Sakane
- Department of Chemistry, Graduate School of Science, Chiba University, Japan
| |
Collapse
|
6
|
Mendez R, Shaikh M, Lemke MC, Yuan K, Libby AH, Bai DL, Ross MM, Harris TE, Hsu KL. Predicting small molecule binding pockets on diacylglycerol kinases using chemoproteomics and AlphaFold. RSC Chem Biol 2023; 4:422-430. [PMID: 37292058 PMCID: PMC10246554 DOI: 10.1039/d3cb00057e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 05/13/2023] [Indexed: 06/10/2023] Open
Abstract
Diacylglycerol kinases (DGKs) are metabolic kinases involved in regulating cellular levels of diacylglycerol and phosphatidic lipid messengers. The development of selective inhibitors for individual DGKs would benefit from discovery of protein pockets available for inhibitor binding in cellular environments. Here we utilized a sulfonyl-triazole probe (TH211) bearing a DGK fragment ligand for covalent binding to tyrosine and lysine sites on DGKs in cells that map to predicted small molecule binding pockets in AlphaFold structures. We apply this chemoproteomics-AlphaFold approach to evaluate probe binding of DGK chimera proteins engineered to exchange regulatory C1 domains between DGK subtypes (DGKα and DGKζ). Specifically, we discovered loss of TH211 binding to a predicted pocket in the catalytic domain when C1 domains on DGKα were exchanged that correlated with impaired biochemical activity as measured by a DAG phosphorylation assay. Collectively, we provide a family-wide assessment of accessible sites for covalent targeting that combined with AlphaFold revealed predicted small molecule binding pockets for guiding future inhibitor development of the DGK superfamily.
Collapse
Affiliation(s)
- Roberto Mendez
- Department of Chemistry, University of Virginia Charlottesville Virginia 22904 USA +1 434-297-4864
| | - Minhaj Shaikh
- Department of Chemistry, University of Virginia Charlottesville Virginia 22904 USA +1 434-297-4864
| | - Michael C Lemke
- Department of Pharmacology, University of Virginia School of Medicine Charlottesville Virginia 22908 USA
| | - Kun Yuan
- Department of Chemistry, University of Virginia Charlottesville Virginia 22904 USA +1 434-297-4864
| | - Adam H Libby
- Department of Chemistry, University of Virginia Charlottesville Virginia 22904 USA +1 434-297-4864
- University of Virginia Cancer Center, University of Virginia Charlottesville VA 22903 USA
| | - Dina L Bai
- Department of Chemistry, University of Virginia Charlottesville Virginia 22904 USA +1 434-297-4864
| | - Mark M Ross
- Department of Chemistry, University of Virginia Charlottesville Virginia 22904 USA +1 434-297-4864
| | - Thurl E Harris
- Department of Pharmacology, University of Virginia School of Medicine Charlottesville Virginia 22908 USA
| | - Ku-Lung Hsu
- Department of Chemistry, University of Virginia Charlottesville Virginia 22904 USA +1 434-297-4864
- Department of Pharmacology, University of Virginia School of Medicine Charlottesville Virginia 22908 USA
- Department of Molecular Physiology and Biological Physics, University of Virginia Charlottesville Virginia 22908 USA
- University of Virginia Cancer Center, University of Virginia Charlottesville VA 22903 USA
| |
Collapse
|
7
|
Kudek MR, Xin G, Alson D(T, Holzhauer S, Shen J, Kasmani MY, Riese M, Cui W. Lymphocytic Choriomeningitis Virus Clone 13 Infection Results in CD8 T Cell-Mediated Host Mortality in Diacylglycerol Kinase α-Deficient Mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:1281-1291. [PMID: 36920384 PMCID: PMC10121876 DOI: 10.4049/jimmunol.2101011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 02/21/2023] [Indexed: 03/16/2023]
Abstract
Diacylglycerol is a potent element of intracellular secondary signaling cascades whose production is enhanced by cell-surface receptor agonism and function is regulated by enzymatic degradation by diacylglycerol kinases (DGKs). In T cells, stringent regulation of the activity of this second messenger maintains an appropriate balance between effector function and anergy. In this article, we demonstrate that DGKα is an indispensable regulator of TCR-mediated activation of CD8 T cells in lymphocytic choriomeningitis virus Clone 13 viral infection. In the absence of DGKα, Clone 13 infection in a murine model results in a pathologic, proinflammatory state and a multicellular immunopathologic host death that is predominantly driven by CD8 effector T cells.
Collapse
Affiliation(s)
- Matthew R. Kudek
- Department of Pediatrics, Division of Pediatric Hematology, Oncology, and BMT. Medical College of Wisconsin, Milwaukee, WI, USA
- Versiti Blood Research Institute, Milwaukee, WI, USA
| | - Gang Xin
- Versiti Blood Research Institute, Milwaukee, WI, USA
- Current address: Department of Microbial Infection and Immunity. Ohio State University, Columbus, OH, USA
| | | | | | - Jian Shen
- Versiti Blood Research Institute, Milwaukee, WI, USA
- Department of Microbiology and Immunology. Medical College of Wisconsin, Milwaukee, WI USA
| | - Moujtaba Y. Kasmani
- Versiti Blood Research Institute, Milwaukee, WI, USA
- Department of Microbiology and Immunology. Medical College of Wisconsin, Milwaukee, WI USA
| | - Matthew Riese
- Versiti Blood Research Institute, Milwaukee, WI, USA
- Department of Medicine, Division of Oncology. Medical College of Wisconsin, Milwaukee, WI USA
| | - Weiguo Cui
- Versiti Blood Research Institute, Milwaukee, WI, USA
- Department of Microbiology and Immunology. Medical College of Wisconsin, Milwaukee, WI USA
| |
Collapse
|
8
|
Asad Samani L, Ghaedi K, Majd A, Peymani M, Etemadifar M. Coordinated modification in expression levels of HSPA1A/B, DGKH, and NOTCH2 in Parkinson's patients' blood and substantia nigra as a diagnostic sign: the transcriptomes' relationship. Neurol Sci 2023:10.1007/s10072-023-06738-4. [PMID: 36973590 DOI: 10.1007/s10072-023-06738-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 03/05/2023] [Indexed: 03/29/2023]
Abstract
BACKGROUND Diagnosis of Parkinson's disease (PD) is associated with a vast number of challenges. This study aimed to assess the overlap of PD patients' transcriptomes in the substantia nigra (SN) with peripheral blood mononuclear cells (PBMCs) to discover potential biomarkers for diagnosis. METHODS GEO data were used to select genes with significant changes in expression level in the SN region and eligible studies. Also, transcriptome data related to blood of PD patients with other neurodegenerative diseases (ND) was considered. Differential expression genes between PD and control were evaluated in the SN and blood, and RT-qPCR was applied to validate the findings. RESULTS At the expression level, no significant similarity in long non-coding RNA was found between the patients' SN and blood. While in silico results revealed 16 common mRNAs in SN and blood with significant expression levels. Among all overexpressed mRNAs, HSPA1A/B expression level had the highest expression difference between control and PD samples. Moreover, DGKH had the highest score of down-regulated genes in both blood and SN. The NOTCH pathway had the highest score pathway among up-regulated pathways, and the expression levels of NOTCH2, H4C8, and H2BC21 associated with this pathway had the most ability to separate the control and PD populations. Furthermore, RT-qPCR results revealed that HSPA1A/B, NOTCH2, and H4C8 were overexpressed in PD PBMCs, while DGKH expression levels were lower compared to controls. CONCLUSION Our findings indicate that expression levels of HSPA1A/B, DGKH, and NOTCH2 could be applied as candidate biomarkers to diagnose PD patients in the SN region and PBMCs.
Collapse
Affiliation(s)
- Leila Asad Samani
- Department of Cellular and Molecular Biology, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Kamran Ghaedi
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Azadi Sq., Hezar Jerib Ave, P.O. Code, Isfahan, 81746-73441, Iran.
| | - Ahmad Majd
- Department of Biology, North Tehran Branch, Islamic Azad University, Tehran, Iran.
| | - Maryam Peymani
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Masoud Etemadifar
- Department of Neurology and Isfahan Neurosurgery Research Center, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
9
|
Yachida N, Hoshino F, Murakami C, Ebina M, Miura Y, Sakane F. Saturated fatty acid- and/or monounsaturated fatty acid-containing phosphatidic acids selectively interact with heat shock protein 27. J Biol Chem 2023; 299:103019. [PMID: 36791913 PMCID: PMC10023972 DOI: 10.1016/j.jbc.2023.103019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 01/30/2023] [Accepted: 02/06/2023] [Indexed: 02/17/2023] Open
Abstract
Diacylglycerol kinase (DGK) α, which is a key enzyme in the progression of cancer and, in contrast, in T-cell activity attenuation, preferentially produces saturated fatty acid (SFA)- and/or monounsaturated fatty acid (MUFA)-containing phosphatidic acids (PAs), such as 16:0/16:0-, 16:0/18:0-, and 16:1/16:1-PA, in melanoma cells. In the present study, we searched for the target proteins of 16:0/16:0-PA in melanoma cells and identified heat shock protein (HSP) 27, which acts as a molecular chaperone and contributes to cancer progression. HSP27 more strongly interacted with PA than other phospholipids, including phosphatidylcholine, phosphatidylserine, phosphatidylglycerol, cardiolipin, phosphatidylinositol, phosphatidylinositol 4-monophosphate, and phosphatidylinositol 4,5-bisphosphate. Moreover, HSP27 is more preferentially bound to SFA- and/or MUFA-containing PAs, including 16:0/16:0- and 16:0/18:1-PAs, than PUFA-containing PAs, including 18:0/20:4- and 18:0/22:6-PA. Furthermore, HSP27 and constitutively active DGKα expressed in COS-7 cells colocalized in a DGK activity-dependent manner. Notably, 16:0/16:0-PA, but not phosphatidylcholine or 16:0/16:0-phosphatidylserine, induced oligomer dissociation of HSP27, which enhances its chaperone activity. Intriguingly, HSP27 protein was barely detectable in Jurkat T cells, while the protein band was intensely detected in AKI melanoma cells. Taken together, these results strongly suggest that SFA- and/or MUFA-containing PAs produced by DGKα selectively target HSP27 and regulate its cancer-progressive function in melanoma cells but not in T cells.
Collapse
Affiliation(s)
- Naoto Yachida
- Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, Japan
| | - Fumi Hoshino
- Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, Japan
| | - Chiaki Murakami
- Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, Japan; Institute for Advanced Academic Research, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, Japan
| | - Masayuki Ebina
- Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, Japan
| | - Yuri Miura
- Research Team for Mechanism of Aging, Tokyo Metropolitan Institute of Gerontology, Itabashi, Tokyo, Japan
| | - Fumio Sakane
- Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, Japan.
| |
Collapse
|
10
|
Centonze S, Baldanzi G. Diacylglycerol Kinases in Signal Transduction. Int J Mol Sci 2022; 23:ijms23158423. [PMID: 35955558 PMCID: PMC9369165 DOI: 10.3390/ijms23158423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 07/27/2022] [Indexed: 11/25/2022] Open
Affiliation(s)
- Sara Centonze
- Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy;
- Center for Translational Research on Allergic and Autoimmune Diseases (CAAD), University of Piemonte Orientale, 28100 Novara, Italy
| | - Gianluca Baldanzi
- Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy;
- Center for Translational Research on Allergic and Autoimmune Diseases (CAAD), University of Piemonte Orientale, 28100 Novara, Italy
- Correspondence: ; Tel.: +39-0321-660-527
| |
Collapse
|
11
|
Takahashi D, Yonezawa K, Okizaki Y, Caaveiro JMM, Ueda T, Shimada A, Sakane F, Shimizu N. Ca 2+ -induced structural changes and intramolecular interactions in N-terminal region of diacylglycerol kinase alpha. Protein Sci 2022; 31:e4365. [PMID: 35762720 PMCID: PMC9202544 DOI: 10.1002/pro.4365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 05/09/2022] [Accepted: 05/27/2022] [Indexed: 11/05/2022]
Abstract
Diacylglycerol kinases (DGKs) are multi-domain lipid kinases that modulate the levels of lipid messengers, diacylglycerol, and phosphatidic acid. Recently, increasing attention has been paid to its α isozyme (DGKα) as a potential target for cancer immunotherapy. However, little progress has been made on the structural biology of DGKs, and a detailed understanding of the Ca2+ -triggered activation of DGKα, for which the N-terminal domains likely play a critical role, remains unclear. We have recently shown that Ca2+ binding to DGKα-EF induces conformational changes from a protease-susceptible "open" conformation in the apo state to a well-folded one in its holo state. Here, we further studied the structural properties of DGKα N-terminal (RVH and EF) domains using a series of biophysical techniques. We first revealed that the N-terminal RVH domain is a novel Ca2+ -binding domain, but the Ca2+ -induced conformational changes mainly occur in the EF domain. This was corroborated by NMR experiments showing that the EF domain adopts a molten-globule like structure in the apo state. Further analyses using SEC-SAXS and NMR indicate that the partially unfolded EF domain interacts with RVH domain, likely via hydrophobic interactions in the absence of Ca2+ , and this interaction is modified in the presence of Ca2+ . Taken together, these results present novel insights into the structural rearrangement of DGKα N-terminal domains upon binding to Ca2+ , which is essential for the activation of the enzyme.
Collapse
Affiliation(s)
- Daisuke Takahashi
- Department of Protein Structure, Function, and Design, Graduate School of Pharmaceutical ScienceKyushu UniversityFukuokaJapan
| | - Kento Yonezawa
- Photon Factory, Institute of Materials Structure ScienceHigh Energy Accelerator Research Organization (KEK)TsukubaJapan
- Center for Digital Green‐Innovation (CDG)Nara Institute of Science and Technology (NAIST)IkomaJapan
| | - Yuki Okizaki
- Department of Protein Structure, Function, and Design, Graduate School of Pharmaceutical ScienceKyushu UniversityFukuokaJapan
| | - Jose M. M. Caaveiro
- Department of Global Healthcare, Graduate School of Pharmaceutical ScienceKyushu UniversityFukuokaJapan
| | - Tadashi Ueda
- Department of Protein Structure, Function, and Design, Graduate School of Pharmaceutical ScienceKyushu UniversityFukuokaJapan
| | - Atsushi Shimada
- Division of Structural Biology, Medical Institute of BioregulationKyushu UniversityFukuokaJapan
| | - Fumio Sakane
- Department of Chemistry, Graduate School of ScienceChiba UniversityChibaJapan
| | - Nobutaka Shimizu
- Photon Factory, Institute of Materials Structure ScienceHigh Energy Accelerator Research Organization (KEK)TsukubaJapan
| |
Collapse
|
12
|
Cooke M, Kazanietz MG. Overarching roles of diacylglycerol signaling in cancer development and antitumor immunity. Sci Signal 2022; 15:eabo0264. [PMID: 35412850 DOI: 10.1126/scisignal.abo0264] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Diacylglycerol (DAG) is a lipid second messenger that is generated in response to extracellular stimuli and channels intracellular signals that affect mammalian cell proliferation, survival, and motility. DAG exerts a myriad of biological functions through protein kinase C (PKC) and other effectors, such as protein kinase D (PKD) isozymes and small GTPase-regulating proteins (such as RasGRPs). Imbalances in the fine-tuned homeostasis between DAG generation by phospholipase C (PLC) enzymes and termination by DAG kinases (DGKs), as well as dysregulation in the activity or abundance of DAG effectors, have been widely associated with tumor initiation, progression, and metastasis. DAG is also a key orchestrator of T cell function and thus plays a major role in tumor immunosurveillance. In addition, DAG pathways shape the tumor ecosystem by arbitrating the complex, dynamic interaction between cancer cells and the immune landscape, hence representing powerful modifiers of immune checkpoint and adoptive T cell-directed immunotherapy. Exploiting the wide spectrum of DAG signals from an integrated perspective could underscore meaningful advances in targeted cancer therapy.
Collapse
Affiliation(s)
- Mariana Cooke
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Department of Medicine, Einstein Medical Center Philadelphia, Philadelphia, PA 19141, USA
| | - Marcelo G Kazanietz
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
13
|
Diacylglycerol kinase η regulates cell proliferation and its levels are elevated by glucocorticoids in undifferentiated neuroblastoma cells. Biochem Biophys Res Commun 2022; 602:41-48. [DOI: 10.1016/j.bbrc.2022.02.100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/21/2022] [Accepted: 02/24/2022] [Indexed: 11/18/2022]
|
14
|
Okada N, Sugiyama K, Shichi S, Shirai Y, Goto K, Sakane F, Kitamura H, Taketomi A. Combination therapy for hepatocellular carcinoma with diacylglycerol kinase alpha inhibition and anti-programmed cell death-1 ligand blockade. Cancer Immunol Immunother 2022; 71:889-903. [PMID: 34482409 PMCID: PMC10991887 DOI: 10.1007/s00262-021-03041-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 08/22/2021] [Indexed: 12/13/2022]
Abstract
Activation of diacylglycerol kinase alpha (DGKα) augments proliferation and suppresses apoptosis of cancer cells and induces T lymphocyte anergy. We investigated the dual effects of DGKα inhibition on tumorigenesis and anti-tumor immunity with the aim of establishing a novel therapeutic strategy for cancer. We examined the effects of a DGKα inhibitor (DGKAI) on liver cancer cell proliferation and cytokine production by immune cells in vitro and on tumorigenesis and host immunity in a hepatocellular carcinoma (HCC) mouse model. Oral DGKAI significantly suppressed tumor growth and prolonged survival in model mice. Tumor infiltration of T cells and dendritic cells was also enhanced in mice treated with DGKAI, and the production of cytokines and cytotoxic molecules by CD4+ and CD8+ T cells was increased. Depletion of CD8+ T cells reduced the effect of DGKAI. Furthermore, interferon-γ stimulation augmented the expression of programmed cell death-1 ligand (PD-L1) on cancer cells, and DGKAI plus an anti-PD-L1 antibody strongly suppressed the tumor growth. These results suggest that DGKα inhibition may be a promising new treatment strategy for HCC.
Collapse
Affiliation(s)
- Naoki Okada
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, N15 W7 Kita-ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Ko Sugiyama
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, N15 W7 Kita-ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Shunsuke Shichi
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, N15 W7 Kita-ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Yasuhito Shirai
- Department of Applied Chemistry in Bioscience, Graduate School of Agricultural Science, Faculty of Agriculture, Kobe University, Kobe, Japan
| | - Kaoru Goto
- Department of Anatomy and Cell Biology, Yamagata University School of Medicine, Yamagata, Japan
| | - Fumio Sakane
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba, Japan
| | - Hidemitsu Kitamura
- Division of Functional Immunology, Section of Disease Control, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Akinobu Taketomi
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, N15 W7 Kita-ku, Sapporo, Hokkaido, 060-8638, Japan.
| |
Collapse
|
15
|
Nakano T, Tanaka T, Sakane F, Kaneko MK, Kato Y, Goto K. Immunocytochemical Analysis of DGKη in Cultured Cells Using a Monoclonal Antibody DhMab-4. Monoclon Antib Immunodiagn Immunother 2021; 40:261-265. [PMID: 34958278 DOI: 10.1089/mab.2021.0034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Diacylglycerol kinase (DGK) is a lipid kinase that converts diacylglycerol (DG) to phosphatidic acid (PA). Since both DG and PA serve as intracellular second messenger molecules, DGK plays a pivotal role in balancing these two signaling pathways. Of the DGK family, DGKη is classified as a type II DGK. Reportedly, DGKη is expressed ubiquitously through mammalian tissues and cells. Previous studies using cDNA transfection methods reported cytoplasmic localization of DGKη in cultured human cells. However, subcellular localization of native protein is still unknown. Recently, we established a human DGKη-specific monoclonal antibody, DhMab-4. In this study, we examined subcellular localization of native protein of DGKη using DhMab-4 by immunocytochemistry in human cultured cells.
Collapse
Affiliation(s)
- Tomoyuki Nakano
- Department of Anatomy and Cell Biology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Toshiaki Tanaka
- Department of Anatomy and Cell Biology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Fumio Sakane
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba, Japan
| | - Mika K Kaneko
- Department of Antibody Drug Development and Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yukinari Kato
- Department of Antibody Drug Development and Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kaoru Goto
- Department of Anatomy and Cell Biology, Yamagata University Faculty of Medicine, Yamagata, Japan
| |
Collapse
|
16
|
Ware TB, Hsu KL. Advances in chemical proteomic evaluation of lipid kinases-DAG kinases as a case study. Curr Opin Chem Biol 2021; 65:101-108. [PMID: 34311404 PMCID: PMC8671151 DOI: 10.1016/j.cbpa.2021.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/24/2021] [Accepted: 06/18/2021] [Indexed: 10/20/2022]
Abstract
Advancements in chemical proteomics and mass spectrometry lipidomics are providing new opportunities to understand lipid kinase activity, specificity, and regulation on a global cellular scale. Here, we describe recent developments in chemical biology of lipid kinases with a focus on those members that phosphorylate diacylglycerols. We further discuss future implications of how these mass spectrometry-based approaches can be adapted for studies of additional lipid kinase members with the aim of bridging the gap between protein and lipid kinase-focused investigations.
Collapse
Affiliation(s)
- Timothy B Ware
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, United States
| | - Ku-Lung Hsu
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, United States; Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22908, United States; Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908, United States; University of Virginia Cancer Center, University of Virginia, Charlottesville, VA 22903, USA.
| |
Collapse
|
17
|
Sakane F, Hoshino F, Ebina M, Sakai H, Takahashi D. The Roles of Diacylglycerol Kinase α in Cancer Cell Proliferation and Apoptosis. Cancers (Basel) 2021; 13:cancers13205190. [PMID: 34680338 PMCID: PMC8534027 DOI: 10.3390/cancers13205190] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/14/2021] [Accepted: 10/14/2021] [Indexed: 02/02/2023] Open
Abstract
Simple Summary Diacylglycerol (DG) kinase (DGK) phosphorylates DG to generate phosphatidic acid (PA). DGKα is highly expressed in several refractory cancer cells, including melanoma, hepatocellular carcinoma, and glioblastoma cells, attenuates apoptosis, and promotes proliferation. In cancer cells, PA produced by DGKα plays an important role in proliferation/antiapoptosis. In addition to cancer cells, DGKα is highly abundant in T cells and induces a nonresponsive state (anergy), representing the main mechanism by which advanced cancers avoid immune action. In T cells, DGKα induces anergy through DG consumption. Therefore, a DGKα-specific inhibitor is expected to be a dual effective anticancer treatment that inhibits cancer cell proliferation and simultaneously activates T cell function. Moreover, the inhibition of DGKα synergistically enhances the anticancer effects of programmed cell death-1/programmed cell death ligand 1 blockade. Taken together, DGKα inhibition provides a promising new treatment strategy for refractory cancers. Abstract Diacylglycerol (DG) kinase (DGK) phosphorylates DG to generate phosphatidic acid (PA). The α isozyme is activated by Ca2+ through its EF-hand motifs and tyrosine phosphorylation. DGKα is highly expressed in several refractory cancer cells including melanoma, hepatocellular carcinoma, and glioblastoma cells. In melanoma cells, DGKα is an antiapoptotic factor that activates nuclear factor-κB (NF-κB) through the atypical protein kinase C (PKC) ζ-mediated phosphorylation of NF-κB. DGKα acts as an enhancer of proliferative activity through the Raf–MEK–ERK pathway and consequently exacerbates hepatocellular carcinoma progression. In glioblastoma and melanoma cells, DGKα attenuates apoptosis by enhancing the phosphodiesterase (PDE)-4A1–mammalian target of the rapamycin pathway. As PA activates PKCζ, Raf, and PDE, it is likely that PA generated by DGKα plays an important role in the proliferation/antiapoptosis of cancer cells. In addition to cancer cells, DGKα is highly abundant in T cells and induces a nonresponsive state (anergy), which represents the main mechanism by which advanced cancers escape immune action. In T cells, DGKα attenuates the activity of Ras-guanyl nucleotide-releasing protein, which is activated by DG and avoids anergy through DG consumption. Therefore, a DGKα-specific inhibitor is expected to be a dual effective anticancer treatment that inhibits cancer cell proliferation and simultaneously enhances T cell functions. Moreover, the inhibition of DGKα synergistically enhances the anticancer effects of programmed cell death-1/programmed cell death ligand 1 blockade. Taken together, DGKα inhibition provides a promising new treatment strategy for refractory cancers.
Collapse
Affiliation(s)
- Fumio Sakane
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba 263-8522, Japan; (F.H.); (M.E.)
- Correspondence: ; Tel.: +81-43-290-3695
| | - Fumi Hoshino
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba 263-8522, Japan; (F.H.); (M.E.)
| | - Masayuki Ebina
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba 263-8522, Japan; (F.H.); (M.E.)
| | - Hiromichi Sakai
- Department of Biosignaling and Radioisotope Experiment, Interdisciplinary Center for Science Research, Organization for Research and Academic Information, Shimane University, Izumo 693-8501, Japan;
| | - Daisuke Takahashi
- Department of Pharmaceutical Health Care and Sciences, Kyushu University, Fukuoka 812-8582, Japan;
| |
Collapse
|
18
|
Hoshino F, Sakane F. The SAC1 phosphatase domain of synaptojanin-1 is activated by interacting with polyunsaturated fatty acid-containing phosphatidic acids. FEBS Lett 2021; 595:2479-2492. [PMID: 34387861 DOI: 10.1002/1873-3468.14177] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/10/2021] [Accepted: 08/10/2021] [Indexed: 11/07/2022]
Abstract
Although there are many phosphatidic acid (PA) molecular species based on its fatty acyl compositions, their interacting partners have been poorly investigated. Here, we identified synaptojanin-1 (SYNJ1), Parkinson's disease-related protein that is essential for regulating clathrin-mediated synaptic vesicle endocytosis via dually dephosphorylating D5 and D4 position phosphates from phosphatidylinositol (PI) (4,5)-bisphosphate, as a 1-stearoyl-2-docosahexaenoyl (18:0/22:6)-PA-binding protein. SYNJ1 failed to substantially associate with other acidic phospholipids. Although SYNJ1 interacted with 18:0/20:4-PA in addition to 18:0/22:6-PA, the association of the enzyme with 16:0/16:0-, 16:0/18:1-, 18:0/18:0-, or 18:1/18:1-PA was not considerable. 18:0/20:4- and 18:0/22:6-PAs bound to SYNJ1 via its SAC1 domain, which preferentially hydrolyses D4 position phosphate. Moreover, 18:0/20:4- and 18:0/22:6-PA selectively enhanced the D4-phosphatase activity, but not the D5-phosphatase activity, of SYNJ1.
Collapse
Affiliation(s)
- Fumi Hoshino
- Department of Chemistry, Graduate School of Science, Chiba University, Japan
| | - Fumio Sakane
- Department of Chemistry, Graduate School of Science, Chiba University, Japan
| |
Collapse
|
19
|
Suzuki Y, Asami M, Takahashi D, Sakane F. Diacylglycerol kinase η colocalizes and interacts with apoptosis signal-regulating kinase 3 in response to osmotic shock. Biochem Biophys Rep 2021; 26:101006. [PMID: 33997319 PMCID: PMC8100535 DOI: 10.1016/j.bbrep.2021.101006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/13/2021] [Accepted: 04/20/2021] [Indexed: 11/29/2022] Open
Abstract
Diacylglycerol kinase (DGK) η translocates from the cytoplasm to punctate vehicles via osmotic shock. Apoptosis signal-regulating kinase (ASK) 3 (MAP kinase kinase kinase (MAPKKK) 15) is also reported to respond to osmotic shock. Therefore, in the present study, we examined the subcellular localization of DGKη and ASK3 expressed in COS-7 cells under osmotic stress. We found that DGKη was almost completely colocalized with ASK3 in punctate structures in response to osmotic shock. In contrast, DGKδ, which is closely related to DGKη structurally, was not colocalized with ASK3, and DGKη failed to colocalize with another MAPKKK, C-Raf, even under osmotic stress. The structures in which DGKη and ASK3 localized were not stained with stress granule makers. Notably, DGKη strongly interacted with ASK3 in an osmotic shock-dependent manner. These results indicate that DGKη and ASK3 undergo osmotic shock-dependent colocalization and associate with each other in specialized structures. DGKη translocates from the cytoplasm to punctate vehicles via osmotic stress. DGKη colocalizes with ASK3 in punctate vehicles in response to osmotic shock. DGKη interacts with ASK3 in response to osmotic shock. The punctate vesicles are unique and specialized for DGKη and ASK3.
Collapse
Affiliation(s)
- Yuji Suzuki
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba 263-8522, Japan
| | - Maho Asami
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba 263-8522, Japan
| | - Daisuke Takahashi
- Department of Pharmaceutical Health Care and Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Fumio Sakane
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba 263-8522, Japan
| |
Collapse
|
20
|
Bozelli JC, Aulakh SS, Epand RM. Membrane shape as determinant of protein properties. Biophys Chem 2021; 273:106587. [PMID: 33865153 DOI: 10.1016/j.bpc.2021.106587] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/26/2021] [Accepted: 03/26/2021] [Indexed: 11/30/2022]
Abstract
Membrane lipids play a role in the modulation of a variety of biological processes. This is often achieved through fine-tuned changes in membrane physical and chemical properties. While some membrane physical properties (e.g., curvature, lipid domains, fluidity) have received increased scientific attention over the years, only recently has membrane shape emerged as an active modulator of protein properties. Biological membranes are mostly found organized into a lipid bilayer arrangement, in which the spontaneous shape is an intrinsically flat, planar morphology (in relation to the size of proteins). However, it is known that many cells and organelles have non-planar morphologies. In addition, perturbations in membrane morphology occur in a variety of biological processes. Recent studies have shown that membrane shape can modulate a variety of biological processes by determining protein properties. While membrane shape generation modulates proteins via changes in membrane mechanical properties, membrane shape recognition regulates proteins by providing the optimal surface for interaction. Hence, membranes have evolved an elegant mechanism to couple mesoscopic perturbations to molecular properties and vice-versa. In this review, the regulation of the enzymatic properties of two isoforms of mammalian diacylglycerol kinase, which play important roles in cellular signal transductions, will be used to exemplify the recent advancements in the field of membrane shape recognition, as well as future challenges and perspectives.
Collapse
Affiliation(s)
- José Carlos Bozelli
- Department of Biochemistry and Biomedical Sciences, McMaster University, Health Sciences Centre, Hamilton, Ontario, Canada.
| | - Sukhvershjit S Aulakh
- Department of Biochemistry and Biomedical Sciences, McMaster University, Health Sciences Centre, Hamilton, Ontario, Canada
| | - Richard M Epand
- Department of Biochemistry and Biomedical Sciences, McMaster University, Health Sciences Centre, Hamilton, Ontario, Canada.
| |
Collapse
|
21
|
Asami M, Suzuki Y, Sakane F. Dopamine and the phosphorylated dopamine transporter are increased in the diacylglycerol kinase η-knockout mouse brain. FEBS Lett 2021; 595:1313-1321. [PMID: 33599293 DOI: 10.1002/1873-3468.14059] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/26/2021] [Accepted: 02/09/2021] [Indexed: 12/19/2022]
Abstract
The molecular mechanisms generating the mania-like abnormal behaviors caused by diacylglycerol (DG) kinase (DGK) η deficiency remain unclear. Here, we found that DGKη knockout markedly increased dopamine (DA) levels in the midbrain (DA-producing region, 2.8-fold) and cerebral cortex (DA projection region, 1.2-fold). Moreover, DGKη deficiency significantly augmented phosphorylated DA transporter (DAT) levels (1.4-fold increase), which induce DA efflux to the synaptic cleft, in the cerebral cortex. Moreover, phosphorylation levels of protein kinase C-β, which is activated by DG and involved in DAT phosphorylation, were also increased. DAT expressed in Neuro-2a cells recruited DGKη to the plasma membrane and colocalized with it. These results strongly suggest that dopaminergic hyperfunction caused by DGKη deficiency in the brain leads to mania-like behaviors.
Collapse
Affiliation(s)
- Maho Asami
- Department of Chemistry, Graduate School of Science, Chiba University, Japan
| | - Yuji Suzuki
- Department of Chemistry, Graduate School of Science, Chiba University, Japan
| | - Fumio Sakane
- Department of Chemistry, Graduate School of Science, Chiba University, Japan
| |
Collapse
|
22
|
Ishizaki A, Murakami C, Yamada H, Sakane F. Diacylglycerol Kinase η Activity in Cells Using Protein Myristoylation and Cellular Phosphatidic Acid Sensor. Lipids 2021; 56:449-458. [PMID: 33624314 DOI: 10.1002/lipd.12301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/02/2021] [Accepted: 02/09/2021] [Indexed: 12/26/2022]
Abstract
Diacylglycerol kinase (DGK) phosphorylates diacylglycerol to produce phosphatidic acid (PtdOH) and regulates the balance between two lipid second messengers: diacylglycerol and PtdOH. Several lines of evidence suggest that the η isozyme of DGK is involved in the pathogenesis of bipolar disorder. However, the detailed molecular mechanisms regulating the pathophysiological functions remain unclear. One reason is that it is difficult to detect the cellular activity of DGKη. To overcome this difficulty, we utilized protein myristoylation and a cellular PtdOH sensor, the N-terminal region of α-synuclein (α-Syn-N). Although DGKη expressed in COS-7 cells was broadly distributed in the cytoplasm, myristoylated (Myr)-AcGFP-DGKη and Myr-AcGFP-DGKη-KD (inactive (kinase-dead) mutant) were substantially localized in the plasma membrane. Moreover, DsRed monomer-α-Syn-N significantly colocalized with Myr-AcGFP-DGKη but not Myr-AcGFP-DGKη-KD at the plasma membrane. When COS-7 cells were osmotically shocked, all DGKη constructs were exclusively translocated to osmotic shock-responsive granules (OSRG). DsRed monomer-α-Syn-N markedly colocalized with only Myr-AcGFP-DGKη at OSRG and exhibited a higher signal/background ratio (3.4) than Myr-AcGFP-DGKη at the plasma membrane in unstimulated COS-7 cells (2.5), indicating that α-Syn-N more effectively detects Myr-AcGFP-DGKη activity in OSRG. Therefore, these results demonstrated that the combination of myristoylation and the PtdOH sensor effectively detects DGKη activity in cells and that this method is convenient to examine the molecular functions of DGKη. Moreover, this method will be useful for the development of drugs targeting DGKη. Furthermore, the combination of myristoylation (intensive accumulation in membranes) and α-Syn-N can be applicable to assays for various cytosolic PtdOH-generating enzymes.
Collapse
Affiliation(s)
- Ayuka Ishizaki
- Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan
| | - Chiaki Murakami
- Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan
| | - Haruka Yamada
- Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan
| | - Fumio Sakane
- Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan
| |
Collapse
|
23
|
Liu Y, Chang X, Qu HQ, Tian L, Glessner J, Qu J, Li D, Qiu H, Sleiman P, Hakonarson H. Rare Recurrent Variants in Noncoding Regions Impact Attention-Deficit Hyperactivity Disorder (ADHD) Gene Networks in Children of both African American and European American Ancestry. Genes (Basel) 2021; 12:310. [PMID: 33671795 PMCID: PMC7927037 DOI: 10.3390/genes12020310] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/12/2021] [Accepted: 02/17/2021] [Indexed: 11/16/2022] Open
Abstract
Attention-deficit hyperactivity disorder (ADHD) is a neurodevelopmental disorder with poorly understood molecular mechanisms that results in significant impairment in children. In this study, we sought to assess the role of rare recurrent variants in non-European populations and outside of coding regions. We generated whole genome sequence (WGS) data on 875 individuals, including 205 ADHD cases and 670 non-ADHD controls. The cases included 116 African Americans (AA) and 89 European Americans (EA), and the controls included 408 AA and 262 EA. Multiple novel rare recurrent variants were identified in exonic regions, functionally classified as stop-gains and frameshifts for known ADHD genes. Deletion in introns of the protocadherins families and the ncRNA HGB8P were identified in two independent EA ADHD patients. A meta-analysis of the two ethnicities for differential ADHD recurrent variants compared to controls shows a small number of overlaps. These results suggest that rare recurrent variants in noncoding regions may be involved in the pathogenesis of ADHD in children of both AA and EA ancestry; thus, WGS could be a powerful discovery tool for studying the molecular mechanisms of ADHD.
Collapse
Affiliation(s)
- Yichuan Liu
- Center for Applied Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA; (Y.L.); (X.C.); (H.-Q.Q.); (L.T.); (J.G.); (J.Q.); (D.L.); (H.Q.); (P.S.)
| | - Xiao Chang
- Center for Applied Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA; (Y.L.); (X.C.); (H.-Q.Q.); (L.T.); (J.G.); (J.Q.); (D.L.); (H.Q.); (P.S.)
| | - Hui-Qi Qu
- Center for Applied Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA; (Y.L.); (X.C.); (H.-Q.Q.); (L.T.); (J.G.); (J.Q.); (D.L.); (H.Q.); (P.S.)
| | - Lifeng Tian
- Center for Applied Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA; (Y.L.); (X.C.); (H.-Q.Q.); (L.T.); (J.G.); (J.Q.); (D.L.); (H.Q.); (P.S.)
| | - Joseph Glessner
- Center for Applied Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA; (Y.L.); (X.C.); (H.-Q.Q.); (L.T.); (J.G.); (J.Q.); (D.L.); (H.Q.); (P.S.)
| | - Jingchun Qu
- Center for Applied Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA; (Y.L.); (X.C.); (H.-Q.Q.); (L.T.); (J.G.); (J.Q.); (D.L.); (H.Q.); (P.S.)
| | - Dong Li
- Center for Applied Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA; (Y.L.); (X.C.); (H.-Q.Q.); (L.T.); (J.G.); (J.Q.); (D.L.); (H.Q.); (P.S.)
| | - Haijun Qiu
- Center for Applied Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA; (Y.L.); (X.C.); (H.-Q.Q.); (L.T.); (J.G.); (J.Q.); (D.L.); (H.Q.); (P.S.)
| | - Patrick Sleiman
- Center for Applied Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA; (Y.L.); (X.C.); (H.-Q.Q.); (L.T.); (J.G.); (J.Q.); (D.L.); (H.Q.); (P.S.)
- Division of Human Genetics, Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hakon Hakonarson
- Center for Applied Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA; (Y.L.); (X.C.); (H.-Q.Q.); (L.T.); (J.G.); (J.Q.); (D.L.); (H.Q.); (P.S.)
- Division of Human Genetics, Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| |
Collapse
|
24
|
Takao S, Akiyama R, Sakane F. Combined inhibition/silencing of diacylglycerol kinase α and ζ simultaneously and synergistically enhances interleukin-2 production in T cells and induces cell death of melanoma cells. J Cell Biochem 2021; 122:494-506. [PMID: 33399248 DOI: 10.1002/jcb.29876] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 11/13/2020] [Accepted: 11/18/2020] [Indexed: 12/16/2022]
Abstract
The α-isozyme of diacylglycerol kinase (DGK) enhances cancer cell proliferation and, conversely, it promotes the nonresponsive immune state known as T-cell anergy. Moreover, a DGKα-selective inhibitor, CU-3, induced cell death in cancer-derived cells and simultaneously enhanced T-cell interleukin-2 production. In addition to DGKα, DGKζ is also known to induce T-cell anergy. In the present study, we examined whether combined inhibition/silencing of DGKα and DGKζ synergistically enhanced T-cell activity. Combined treatment with CU-3 or DGKα-small interfering RNA (siRNA) and DGKζ-siRNA more potently enhanced T-cell receptor-crosslink-dependent interleukin-2 production in Jurkat T cells than treatment with either alone. Intriguingly, in addition to activating T cells, dual inhibition/silencing of DGKα and DGKζ synergistically reduced viability and increased caspase 3/7 activity in AKI melanoma cells. Taken together, these results indicate that combined inhibition/silencing of DGKα and DGKζ simultaneously and synergistically enhances interleukin-2 production in T cells and induces cell death in melanoma. Therefore, dual inhibition/silencing of these DGK isozymes represents an ideal therapy that potently attenuates cancer cell proliferation and simultaneously enhances immune responses that impact anticancer immunity.
Collapse
Affiliation(s)
- Saki Takao
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba, Japan
| | - Rino Akiyama
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba, Japan
| | - Fumio Sakane
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba, Japan
| |
Collapse
|
25
|
Beyond Lipid Signaling: Pleiotropic Effects of Diacylglycerol Kinases in Cellular Signaling. Int J Mol Sci 2020; 21:ijms21186861. [PMID: 32962151 PMCID: PMC7554708 DOI: 10.3390/ijms21186861] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/11/2020] [Accepted: 09/16/2020] [Indexed: 12/13/2022] Open
Abstract
The diacylglycerol kinase family, which can attenuate diacylglycerol signaling and activate phosphatidic acid signaling, regulates various signaling transductions in the mammalian cells. Studies on the regulation of diacylglycerol and phosphatidic acid levels by various enzymes, the identification and characterization of various diacylglycerol and phosphatidic acid-regulated proteins, and the overlap of different diacylglycerol and phosphatidic acid metabolic and signaling processes have revealed the complex and non-redundant roles of diacylglycerol kinases in regulating multiple biochemical and biological networks. In this review article, we summarized recent progress in the complex and non-redundant roles of diacylglycerol kinases, which is expected to aid in restoring dysregulated biochemical and biological networks in various pathological conditions at the bed side.
Collapse
|
26
|
New Era of Diacylglycerol Kinase, Phosphatidic Acid and Phosphatidic Acid-Binding Protein. Int J Mol Sci 2020; 21:ijms21186794. [PMID: 32947951 PMCID: PMC7555651 DOI: 10.3390/ijms21186794] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/11/2020] [Accepted: 09/14/2020] [Indexed: 12/12/2022] Open
Abstract
Diacylglycerol kinase (DGK) phosphorylates diacylglycerol (DG) to generate phosphatidic acid (PA). Mammalian DGK consists of ten isozymes (α–κ) and governs a wide range of physiological and pathological events, including immune responses, neuronal networking, bipolar disorder, obsessive-compulsive disorder, fragile X syndrome, cancer, and type 2 diabetes. DG and PA comprise diverse molecular species that have different acyl chains at the sn-1 and sn-2 positions. Because the DGK activity is essential for phosphatidylinositol turnover, which exclusively produces 1-stearoyl-2-arachidonoyl-DG, it has been generally thought that all DGK isozymes utilize the DG species derived from the turnover. However, it was recently revealed that DGK isozymes, except for DGKε, phosphorylate diverse DG species, which are not derived from phosphatidylinositol turnover. In addition, various PA-binding proteins (PABPs), which have different selectivities for PA species, were recently found. These results suggest that DGK–PA–PABP axes can potentially construct a large and complex signaling network and play physiologically and pathologically important roles in addition to DGK-dependent attenuation of DG–DG-binding protein axes. For example, 1-stearoyl-2-docosahexaenoyl-PA produced by DGKδ interacts with and activates Praja-1, the E3 ubiquitin ligase acting on the serotonin transporter, which is a target of drugs for obsessive-compulsive and major depressive disorders, in the brain. This article reviews recent research progress on PA species produced by DGK isozymes, the selective binding of PABPs to PA species and a phosphatidylinositol turnover-independent DG supply pathway.
Collapse
|
27
|
Polyunsaturated fatty acid-containing phosphatidic acids selectively interact with L-lactate dehydrogenase A and induce its secondary structural change and inactivation. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158768. [PMID: 32717303 DOI: 10.1016/j.bbalip.2020.158768] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 06/17/2020] [Accepted: 07/19/2020] [Indexed: 12/18/2022]
Abstract
Phosphatidic acid (PA) consists of various molecular species that have different fatty acyl chains at the sn-1 and sn-2 positions; and consequently, mammalian cells contain at least 50 structurally distinct PA molecular species. However, the different roles of each PA species are poorly understood. In the present study, we attempted to identify dipalmitoyl (16:0/16:0)-PA-binding proteins from mouse skeletal muscle using liposome precipitation and tandem mass spectrometry analysis. We identified L-lactate dehydrogenase (LDH) A, which catalyzes conversion of pyruvate to lactate and is a key checkpoint of anaerobic glycolysis critical for tumor growth, as a 16:0/16:0-PA-binding protein. LDHA did not substantially associate with other phospholipids, such as phosphatidylcholine, phosphatidylserine, phosphatidylglycerol, phosphatidylinositol, phosphoinositides and cardiolipin at physiological pH (7.4), indicating that LDHA specifically bound to PA. Interestingly, 18:0/18:0-, 18:0/20:4- and 18:0/22:6-PA also interacted with LDHA, and their binding activities were stronger than 16:0/16:0-PA at pH 7.4. Moreover, circular dichroism spectrometry showed that 18:0/20:4- and 18:0/22:6-PA, but not 16:0/16:0- or 18:0/18:0-PA, significantly reduced the α-helical structure of LDHA. Furthermore, 18:0/20:4- and 18:0/22:6-PA attenuated LDH activity. Taken together, we demonstrated for the first time that LDHA is a PA-binding protein and is a unique PA-binding protein that is structurally and functionally controlled by associating with 18:0/20:4- and 18:0/22:6-PA.
Collapse
|
28
|
Cellular phosphatidic acid sensor, α-synuclein N-terminal domain, detects endogenous phosphatidic acid in macrophagic phagosomes and neuronal growth cones. Biochem Biophys Rep 2020; 22:100769. [PMID: 32490215 PMCID: PMC7261706 DOI: 10.1016/j.bbrep.2020.100769] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 05/05/2020] [Indexed: 11/22/2022] Open
Abstract
Phosphatidic acid (PA) is the simplest phospholipid and is involved in the regulation of various cellular events. Recently, we developed a new PA sensor, the N-terminal region of α-synuclein (α-Syn-N). However, whether α-Syn-N can sense physiologically produced, endogenous PA remains unclear. We first established an inactive PA sensor (α-Syn-N-KQ) as a negative control by replacing all eleven lysine residues with glutamine residues. Using confocal microscopy, we next verified that α-Syn-N, but not α-Syn-N-KQ, detected PA in macrophagic phagosomes in which PA is known to be enriched, further indicating that α-Syn-N can be used as a reliable PA sensor in cells. Finally, because PA generated during neuronal differentiation is critical for neurite outgrowth, we investigated the subcellular distribution of PA using α-Syn-N. We found that α-Syn-N, but not α-Syn-N-KQ, accumulated at the peripheral regions (close to the plasma membrane) of neuronal growth cones. Experiments using a phospholipase D (PLD) inhibitor strongly suggested that PA in the peripheral regions of the growth cone was primarily produced by PLD. Our findings provide a reliable sensor of endogenous PA and novel insights into the distribution of PA during neuronal differentiation.
Collapse
Key Words
- DGK, diacylglycerol kinase
- DMEM, Dulbecco's modified Eagle's medium
- Diacylglycerol kinase
- F-actin, filamentous actin
- FIPI, 5-fluoro-2-indolyl deschlorohalopemide
- Growth cone
- LPA, lysophosphatidic acid
- LPAAT, LPA acyltransferase
- Lipid sensor
- Myr, myristoylated
- PA, phosphatidic acid
- PABD, phosphatidic acid-binding domain
- PC, phosphatidylcholine
- PLD, phospholipase D
- Phagosome
- Phosphatidic acid
- Phospholipase D
- α-Syn, α-synuclein
- α-Syn-N, N-terminal region of α-Syn
- α-Synuclein
Collapse
|
29
|
Palmitic acid- and/or palmitoleic acid-containing phosphatidic acids are generated by diacylglycerol kinase α in starved Jurkat T cells. Biochem Biophys Res Commun 2020; 525:1054-1060. [DOI: 10.1016/j.bbrc.2020.02.162] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 02/26/2020] [Indexed: 12/11/2022]
|
30
|
Tei R, Baskin JM. Spatiotemporal control of phosphatidic acid signaling with optogenetic, engineered phospholipase Ds. J Cell Biol 2020; 219:e201907013. [PMID: 31999306 PMCID: PMC7054994 DOI: 10.1083/jcb.201907013] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 11/09/2019] [Accepted: 12/17/2019] [Indexed: 12/21/2022] Open
Abstract
Phosphatidic acid (PA) is both a central phospholipid biosynthetic intermediate and a multifunctional lipid second messenger produced at several discrete subcellular locations. Organelle-specific PA pools are believed to play distinct physiological roles, but tools with high spatiotemporal control are lacking for unraveling these pleiotropic functions. Here, we present an approach to precisely generate PA on demand on specific organelle membranes. We exploited a microbial phospholipase D (PLD), which produces PA by phosphatidylcholine hydrolysis, and the CRY2-CIBN light-mediated heterodimerization system to create an optogenetic PLD (optoPLD). Directed evolution of PLD using yeast membrane display and IMPACT, a chemoenzymatic method for visualizing cellular PLD activity, yielded a panel of optoPLDs whose range of catalytic activities enables mimicry of endogenous, physiological PLD signaling. Finally, we applied optoPLD to elucidate that plasma membrane, but not intracellular, pools of PA can attenuate the oncogenic Hippo signaling pathway. OptoPLD represents a powerful and precise approach for revealing spatiotemporally defined physiological functions of PA.
Collapse
Affiliation(s)
| | - Jeremy M. Baskin
- Department of Chemistry and Chemical Biology and Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY
| |
Collapse
|
31
|
Velnati S, Massarotti A, Antona A, Talmon M, Fresu LG, Galetto AS, Capello D, Bertoni A, Mercalli V, Graziani A, Tron GC, Baldanzi G. Structure activity relationship studies on Amb639752: toward the identification of a common pharmacophoric structure for DGKα inhibitors. J Enzyme Inhib Med Chem 2020; 35:96-108. [PMID: 31690133 PMCID: PMC6844378 DOI: 10.1080/14756366.2019.1684911] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
A series of analogues of Amb639752, a novel diacylglycerol kinase (DGK) inhibitor recently discovered by us via virtual screening, have been tested. The compounds were evaluated as DGK inhibitors on α, θ, and ζ isoforms, and as antagonists on serotonin receptors. From these assays emerged two novel compounds, namely 11 and 20, which with an IC50 respectively of 1.6 and 1.8 µM are the most potent inhibitors of DGKα discovered to date. Both compounds demonstrated the ability to restore apoptosis in a cellular model of X-linked lymphoproliferative disease as well as the capacity to reduce the migration of cancer cells, suggesting their potential utility in preventing metastasis. Finally, relying on experimental biological data, molecular modelling studies allow us to set a three-point pharmacophore model for DGK inhibitors.
Collapse
Affiliation(s)
- Suresh Velnati
- Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy.,Institute for Research and Cure of Autoimmune Diseases, CAAD, University of Piemonte Orientale, Novara, Italy
| | - Alberto Massarotti
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Novara, Italy
| | - Annamaria Antona
- Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Maria Talmon
- Department of Health Sciences, School of Medicine, University of Piemonte Orientale, Novara, Italy
| | - Luigia Grazia Fresu
- Department of Health Sciences, School of Medicine, University of Piemonte Orientale, Novara, Italy
| | - Alessandra Silvia Galetto
- Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy.,Palliative Care Division, A.S.L., Vercelli, Italy
| | - Daniela Capello
- Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Alessandra Bertoni
- Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Valentina Mercalli
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Novara, Italy
| | - Andrea Graziani
- Università Vita-Salute San Raffaele, Milan, Italy.,Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Turin, Italy
| | - Gian Cesare Tron
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Novara, Italy
| | - Gianluca Baldanzi
- Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy.,Institute for Research and Cure of Autoimmune Diseases, CAAD, University of Piemonte Orientale, Novara, Italy
| |
Collapse
|
32
|
Arranz-Nicolás J, Mérida I. Biological regulation of diacylglycerol kinases in normal and neoplastic tissues: New opportunities for cancer immunotherapy. Adv Biol Regul 2020; 75:100663. [PMID: 31706704 DOI: 10.1016/j.jbior.2019.100663] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 09/20/2019] [Accepted: 09/30/2019] [Indexed: 06/10/2023]
Abstract
In the recent years, the arsenal of anti-cancer therapies has evolved to target T lymphocytes and restore their capacity to destroy tumor cells. However, the clinical success is limited, with a large number of patients that never responds and others that ultimately develop resistances. Overcoming the hypofunctional state imposed by solid tumors to T cells has revealed critical but challenging due to the complex strategies that tumors employ to evade the immune system. The Diacylglycerol kinases (DGK) limit DAG-dependent functions in T lymphocytes and their upregulation in tumor-infiltrating T lymphocytes contribute to limit T cell cytotoxic potential. DGK blockade could reinstate T cell attack on tumors, limiting at the same time tumor cell growth, thanks to the DGK positive input into several oncogenic pathways. In this review we summarize the latest findings regarding the regulation of specific DGK isoforms in healthy and anergic T lymphocytes, as well as their contribution to oncogenic phenotypes. We will also revise the latest advances in the search for pharmacological inhibitors and their potential as anti-cancer agents, either alone or in combination with immunomodulatory agents.
Collapse
Affiliation(s)
- Javier Arranz-Nicolás
- Department of Immunology and Oncology, National Center for Biotechnology (CNB-CSIC), Darwin 3, UAM Campus de Cantoblanco, 28049, Madrid, Spain
| | - Isabel Mérida
- Department of Immunology and Oncology, National Center for Biotechnology (CNB-CSIC), Darwin 3, UAM Campus de Cantoblanco, 28049, Madrid, Spain.
| |
Collapse
|
33
|
Yamada H, Mizuno S, Honda S, Takahashi D, Sakane F. Characterization of α-synuclein N-terminal domain as a novel cellular phosphatidic acid sensor. FEBS J 2019; 287:2212-2234. [PMID: 31722116 DOI: 10.1111/febs.15137] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 09/11/2019] [Accepted: 11/12/2019] [Indexed: 12/11/2022]
Abstract
Tracking the localization and dynamics of the intracellular bioactive lipid phosphatidic acid (PA) is important for understanding diverse biological phenomena. Although several PA sensors have been developed, better ones are still needed for comprehensive PA detection in cells. We recently found that α-synuclein (α-Syn) selectively and strongly bound to PA in vitro. Here, we revealed that the N-terminal region of α-Syn (α-Syn-N) specifically bound to PA, with a dissociation constant of 6.6 μm. α-Syn-N colocalized with PA-producing enzymes, diacylglycerol kinase (DGK) β at the plasma membrane (PM), myristoylated DGKζ at the Golgi apparatus, phorbol ester-stimulated DGKγ at the PM, and phospholipase D2 at the PM and Golgi but not with the phosphatidylinositol-4,5-bisphosphate-producing enzyme in COS-7 cells. However, α-Syn-N failed to colocalize with them in the presence of their inhibitors and/or their inactive mutants. These results indicate that α-Syn-N specifically binds to cellular PA and can be applied as an excellent PA sensor.
Collapse
Affiliation(s)
- Haruka Yamada
- Department of Chemistry, Graduate School of Science, Chiba University, Japan
| | - Satoru Mizuno
- Department of Chemistry, Graduate School of Science, Chiba University, Japan
| | - Shotaro Honda
- Department of Chemistry, Graduate School of Science, Chiba University, Japan
| | - Daisuke Takahashi
- Department of Pharmaceutical Health Care and Sciences, Kyushu University, Fukuoka, Japan
| | - Fumio Sakane
- Department of Chemistry, Graduate School of Science, Chiba University, Japan
| |
Collapse
|
34
|
Zhang X, Liu T, Li Z, Feng Y, Corpe C, Liu S, Zhang J, He X, Liu F, Xu L, Shen L, Li S, Xia Q, Peng X, Zhou X, Chen W, Zhang X, Xu J, Wang J. Hepatomas are exquisitely sensitive to pharmacologic ascorbate (P-AscH -). Am J Cancer Res 2019; 9:8109-8126. [PMID: 31754384 PMCID: PMC6857065 DOI: 10.7150/thno.35378] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 09/08/2019] [Indexed: 02/06/2023] Open
Abstract
Rationale: Ascorbate is an essential micronutrient known for redox functions at normal physiologic concentrations. In recent decades, pharmacological ascorbate has been found to selectively kill tumour cells. However, the dosing frequency of pharmacologic ascorbate in humans has not yet been defined. Methods: We determined that among five hepatic cell lines, Huh-7 cells were the most sensitive to ascorbate. The effects of high-dose ascorbate on hepatoma were therefore assessed using Huh-7 cells and xenograft tumour mouse model. Results: In Huh-7 cells, ascorbate induced a significant increase in the percentage of cells in the G0/G1 phase, apoptosis and intracellular levels of ROS. High doses of ascorbate (4.0 pmol cell-1), but not low doses of ascorbate (1.0 pmol cell-1), also served as a pro-drug that killed hepatoma cells by altering mitochondrial respiration. Furthermore, in a Huh-7 cell xenograft tumour mouse model, intraperitoneal injection of ascorbate (4.0 g/kg/3 days) but not a lower dose of ascorbate (2.0 g/kg/3 days) significantly inhibited tumour growth. Gene array analysis of HCC tumour tissue from xenograft mice given IP ascorbate (4.0 g/kg/3 days) identified changes in the transcript levels of 192 genes/ncRNAs involved in insulin receptor signalling, metabolism and mitochondrial respiration. Consistent with the array data, gene expression levels of AGER, DGKK, ASB2, TCP10L2, Lnc-ALCAM-3, and Lnc-TGFBR2-1 were increased 2.05-11.35 fold in HCC tumour tissue samples from mice treated with high-dose ascorbate, and IHC staining analysis also verified that AGER/RAGE and DGKK proteins were up-regulated, which implied that AGER/RAGE and DGKK activation might be related to oxidative stress, leading to hepatoma cell death. Conclusions: Our studies identified multiple mechanisms are responsible for the anti-tumour activity of ascorbate and suggest high doses of ascorbate with less frequency will act as a novel therapeutic agent for liver cancer in vivo.
Collapse
|
35
|
Bozelli JC, Yune J, Hou YH, Chatha P, Fernandes A, Cao Z, Tong Y, Epand RM. Regulation of DGKε Activity and Substrate Acyl Chain Specificity by Negatively Charged Phospholipids. Biophys J 2019; 118:957-966. [PMID: 31587830 DOI: 10.1016/j.bpj.2019.09.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/09/2019] [Accepted: 09/10/2019] [Indexed: 01/09/2023] Open
Abstract
Diacylglycerol kinase ε (DGKε) is a membrane-bound enzyme that catalyzes the ATP-dependent phosphorylation of diacylglycerol to form phosphatidic acid (PA) in the phosphatidylinositol cycle. DGKε lacks a putative regulatory domain and has recently been reported to be regulated by highly curved membranes. To further study the effect of other membrane properties as a regulatory mechanism of DGKε, our work reports the effect of negatively charged phospholipids on DGKε activity and substrate acyl chain specificity. These studies were conducted using purified DGKε and detergent-free phospholipid aggregates, which present a more suitable model system to access the impact of membrane physical properties on membrane-active enzymes. The structural properties of the different model membranes were studied by means of differential scanning calorimetry and 31P-NMR. It is shown that the enzyme is inhibited by a variety of negatively charged phospholipids. However, PA, which is a negatively charged phospholipid and the product of DGKε catalyzed reaction, showed a varied regulatory effect on the enzyme from being an activator to an inhibitor. The type of feedback regulation of DGKε by PA depends on the particular PA molecular species as well as the physical properties of the membrane that the enzyme binds to. In the presence of highly packed PA-rich domains, the enzyme is activated. However, its acyl chain specificity is only observed in liposomes containing 1,2-dioleoyl PA in the presence of Ca2+. It is proposed that to endow the enzyme with its substrate acyl chain specificity, a highly dehydrated (hydrophobic) membrane interface is needed. The presence of an overlap of mechanisms to regulate DGKε ensures proper phosphatidylinositol cycle function regardless of the trigged stimulus and represents a sophisticated and specialized manner of membrane-enzyme regulation.
Collapse
Affiliation(s)
- José Carlos Bozelli
- Department of Biochemistry and Biomedical Sciences, Health Sciences Centre, McMaster University, Hamilton, Ontario, Canada
| | - Jenny Yune
- Department of Biochemistry and Biomedical Sciences, Health Sciences Centre, McMaster University, Hamilton, Ontario, Canada
| | - You H Hou
- Department of Biochemistry and Biomedical Sciences, Health Sciences Centre, McMaster University, Hamilton, Ontario, Canada
| | - Preet Chatha
- Department of Biochemistry and Biomedical Sciences, Health Sciences Centre, McMaster University, Hamilton, Ontario, Canada
| | - Alexia Fernandes
- Department of Biochemistry and Biomedical Sciences, Health Sciences Centre, McMaster University, Hamilton, Ontario, Canada
| | - Zihao Cao
- Department of Biochemistry and Biomedical Sciences, Health Sciences Centre, McMaster University, Hamilton, Ontario, Canada
| | - Yufeng Tong
- Structural Genomics Consortium, Toronto, Ontario, Canada; Department of Chemistry and Biochemistry, University of Windsor, Ontario, Canada
| | - Richard M Epand
- Department of Biochemistry and Biomedical Sciences, Health Sciences Centre, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
36
|
Massart J, Zierath JR. Role of Diacylglycerol Kinases in Glucose and Energy Homeostasis. Trends Endocrinol Metab 2019; 30:603-617. [PMID: 31331711 DOI: 10.1016/j.tem.2019.06.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/20/2019] [Accepted: 06/21/2019] [Indexed: 01/22/2023]
Abstract
Diacylglycerol kinases (DGKs) catalyze a reaction that converts diacylglycerol (DAG) to phosphatidic acid (PA). DAG and PA act as intermediates of de novo lipid synthesis, cellular membrane constituents, and signaling molecules. DGK isoforms regulate a variety of intracellular processes by terminating DAG signaling and activating PA-mediated pathways. The ten DGK isoforms are unique, not only structurally, but also in tissue-specific expression profiles, subcellular localization, regulatory mechanisms, and DAG preferences, suggesting isoform-specific functions. DAG accumulation has been associated with insulin resistance; however, this concept is challenged by opposing roles of DGK isoforms in the development of type 2 diabetes and obesity despite elevated DAG levels. This review focuses on the tissue- and isoform-specific role of DGK in glucose and energy homeostasis.
Collapse
Affiliation(s)
- Julie Massart
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Juleen R Zierath
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden; Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
37
|
Borne AL, Huang T, McCloud RL, Pachaiyappan B, Bullock TNJ, Hsu KL. Deciphering T Cell Immunometabolism with Activity-Based Protein Profiling. Curr Top Microbiol Immunol 2019; 420:175-210. [PMID: 30128827 PMCID: PMC7134364 DOI: 10.1007/82_2018_124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
As a major sentinel of adaptive immunity, T cells seek and destroy diseased cells using antigen recognition to achieve molecular specificity. Strategies to block checkpoint inhibition of T cell activity and thus reawaken the patient's antitumor immune responses are rapidly becoming standard of care for treatment of diverse cancers. Adoptive transfer of patient T cells genetically engineered with tumor-targeting capabilities is redefining the field of personalized medicines. The diverse opportunities for exploiting T cell biology in the clinic have prompted new efforts to expand the scope of targets amenable to immuno-oncology. Given the complex spatiotemporal regulation of T cell function and fate, new technologies capable of global molecular profiling in vivo are needed to guide selection of appropriate T cell targets and subsets. In this chapter, we describe the use of activity-based protein profiling (ABPP) to illuminate different aspects of T cell metabolism and signaling as fertile starting points for investigation. We highlight the merits of ABPP methods to enable target, inhibitor, and biochemical pathway discovery of T cells in the burgeoning field of immuno-oncology.
Collapse
Affiliation(s)
- Adam L Borne
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Tao Huang
- Department of Chemistry, University of Virginia, McCormick Road, P.O. Box 400319, Charlottesville, VA, 22904, USA
| | - Rebecca L McCloud
- Department of Chemistry, University of Virginia, McCormick Road, P.O. Box 400319, Charlottesville, VA, 22904, USA
| | - Boobalan Pachaiyappan
- Department of Chemistry, University of Virginia, McCormick Road, P.O. Box 400319, Charlottesville, VA, 22904, USA
| | - Timothy N J Bullock
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Ku-Lung Hsu
- Department of Chemistry, University of Virginia, McCormick Road, P.O. Box 400319, Charlottesville, VA, 22904, USA.
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA.
| |
Collapse
|
38
|
Komenoi S, Suzuki Y, Asami M, Murakami C, Hoshino F, Chiba S, Takahashi D, Kado S, Sakane F. Microarray analysis of gene expression in the diacylglycerol kinase η knockout mouse brain. Biochem Biophys Rep 2019; 19:100660. [PMID: 31297456 PMCID: PMC6597918 DOI: 10.1016/j.bbrep.2019.100660] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 06/17/2019] [Accepted: 06/19/2019] [Indexed: 12/18/2022] Open
Abstract
We have revealed that diacylglycerol kinase η (DGKη)-knockout (KO) mice display bipolar disorder (BPD) remedy-sensitive mania-like behaviors. However, the molecular mechanisms causing the mania-like abnormal behaviors remain unclear. In the present study, microarray analysis was performed to determine global changes in gene expression in the DGKη-KO mouse brain. We found that the DGKη-KO brain had 43 differentially expressed genes and the following five affected biological pathways: "neuroactive ligand-receptor interaction", "transcription by RNA polymerase II", "cytosolic calcium ion concentration", "Jak-STAT signaling pathway" and "ERK1/2 cascade". Interestingly, mRNA levels of prolactin and growth hormone, which are augmented in BPD patients and model animals, were most strongly increased. Notably, all five biological pathways include at least one gene among prolactin, growth hormone, forkhead box P3, glucagon-like peptide 1 receptor and interleukin 1β, which were previously implicated in BPD. Consistent with the microarray data, phosphorylated ERK1/2 levels were decreased in the DGKη-KO brain. Microarray analysis showed that the expression levels of several glycerolipid metabolism-related genes were also changed. Liquid chromatography-mass spectrometry revealed that several polyunsaturated fatty acid (PUFA)-containing phosphatidic acid (PA) molecular species were significantly decreased as a result of DGKη deficiency, suggesting that the decrease affects PUFA metabolism. Intriguingly, the PUFA-containing lysoPA species were markedly decreased in DGKη-KO mouse blood. Taken together, our study provides not only key broad knowledge to gain novel insights into the underlying mechanisms for the mania-like behaviors but also information for developing BPD diagnostics.
Collapse
Key Words
- BPD, bipolar disorder
- Bipolar disorder
- DAVID, Database for AnnotationVisualization and Integrated Discovery
- DG, diacylglycerol
- DGK, diacylglycerol kinase
- Diacylglycerol kinase
- ERK, extracellular signal-regulated kinase
- Fpr2, N-formyl peptide receptor 2
- GO:BP, Gene Ontology: Biological Process
- GWAS, genome-wide association study
- Gh, growth hormone
- Glp1r, glucagon-like peptide 1 receptor
- Growth hormone
- Il1b, interleukin 1β
- KEGG, Kyoto Encyclopedia of Genes and Genomes
- KO, knockout
- LC-MS, liquid chromatography-mass spectrometry
- LPA, lysophosphatidic acid
- Lysophosphatidic acid
- MEK, mitogen-activated protein kinase/ERK kinase
- PA, phosphatidic acid
- PI, phosphatidylinositol
- PUFA, polyunsaturated fatty acid
- Phosphatidic acid
- Prl, prolactin
- Prolactin
- SERT, serotonin transporter
- WT, wild type
Collapse
Affiliation(s)
- Suguru Komenoi
- Department of Chemistry, Graduate School of Science, 1-33 Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan
| | - Yuji Suzuki
- Department of Chemistry, Graduate School of Science, 1-33 Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan
| | - Maho Asami
- Department of Chemistry, Graduate School of Science, 1-33 Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan
| | - Chiaki Murakami
- Department of Chemistry, Graduate School of Science, 1-33 Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan
| | - Fumi Hoshino
- Department of Chemistry, Graduate School of Science, 1-33 Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan
| | - Sohei Chiba
- Department of Chemistry, Graduate School of Science, 1-33 Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan
| | - Daisuke Takahashi
- Department of Chemistry, Graduate School of Science, 1-33 Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan
| | - Sayaka Kado
- Center for Analytical Instrumentation, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan
| | - Fumio Sakane
- Department of Chemistry, Graduate School of Science, 1-33 Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan
- Corresponding author. Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan.
| |
Collapse
|
39
|
Hoshino F, Murakami C, Sakai H, Satoh M, Sakane F. Creatine kinase muscle type specifically interacts with saturated fatty acid- and/or monounsaturated fatty acid-containing phosphatidic acids. Biochem Biophys Res Commun 2019; 513:1035-1040. [DOI: 10.1016/j.bbrc.2019.04.097] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/05/2019] [Accepted: 04/13/2019] [Indexed: 01/03/2023]
|
40
|
Alinaghi S, Alehabib E, Johari AH, Vafaei F, Salehi S, Darvish H, Ghaedi H. Expression analysis and genotyping of DGKZ: a GWAS-derived risk gene for schizophrenia. Mol Biol Rep 2019; 46:4105-4111. [PMID: 31087244 DOI: 10.1007/s11033-019-04860-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 05/06/2019] [Indexed: 11/30/2022]
Abstract
Schizophrenia (SCZ) is a disabling and severe mental illness characterized by abnormal social behavior and disrupted emotions. Similar to other neuropsychological disorders, both genetics and environmental factors interplay so as to develop SCZ. It is acknowledged that genes such as DGKZ are involved in lipid signaling pathways that are the basis of neural activities, memory, and learning and are considered as candidate loci for SCZ. The aim of the present study was to evaluate the expression level and genotypes of DGKZ in patients with SCZ and controls. We used q-PCR to measure the relative expression of DGKZ in blood. To determine DGKZ-rs7951870 genotypes, tetra-ARMS PCR was used. Our results showed a significant difference in DGKZ mRNA ratio between SCZ patients and healthy controls (P = 2 × 10-4). Also, we showed that rs7951870-TT genotype was strongly associated with increased DGKZ expression level (P = 0.038). In conclusion, our findings revealed dysregulation of DGKZ in SCZ patients and a significant correction between the gene expression and DGKZ variant rs7951870.
Collapse
Affiliation(s)
- Somayeh Alinaghi
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elham Alehabib
- Student Research Committee, Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Hossein Johari
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Vafaei
- The Cohort Lab for the Iran University of Medical Sciences Staffs, University of Medical Sciences, Tehran, Iran
| | - Shima Salehi
- The Cohort Lab for the Iran University of Medical Sciences Staffs, University of Medical Sciences, Tehran, Iran
| | - Hossein Darvish
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran. .,Department of Medical Genetics, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran.
| | - Hamid Ghaedi
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
41
|
Diacylglycerol kinase control of protein kinase C. Biochem J 2019; 476:1205-1219. [DOI: 10.1042/bcj20180620] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/29/2019] [Accepted: 04/01/2019] [Indexed: 12/27/2022]
Abstract
Abstract
The diacylglycerol kinases (DGK) are lipid kinases that transform diacylglycerol (DAG) into phosphatidic acid (PA) in a reaction that terminates DAG-based signals. DGK provide negative regulation to conventional and novel protein kinase C (PKC) enzymes, limiting local DAG availability in a tissue- and subcellular-restricted manner. Defects in the expression/activity of certain DGK isoforms contribute substantially to cognitive impairment and mental disorders. Abnormal DGK overexpression in tumors facilitates invasion and resistance to chemotherapy preventing tumor immune destruction by tumor-infiltrating lymphocytes. Effective translation of these findings into therapeutic approaches demands a better knowledge of the physical and functional interactions between the DGK and PKC families. DGKζ is abundantly expressed in the nervous and immune system, where physically and functionally interacts with PKCα. The latest discoveries suggest that PDZ-mediated interaction facilitates spatial restriction of PKCα by DGKζ at the cell–cell contact sites in a mechanism where the two enzymes regulate each other. In T lymphocytes, DGKζ interaction with Sorting Nexin 27 (SNX27) guarantees the basal control of PKCα activation. SNX27 is a trafficking component required for normal brain function whose deficit has been linked to Alzheimer's disease (AD) pathogenesis. The enhanced PKCα activation as the result of SNX27 silencing in T lymphocytes aligns with the recent correlation found between gain-of-function PKCα mutations and AD and suggests that disruption of the mechanisms that provides a correct spatial organization of DGKζ and PKCα may lie at the basis of immune and neuronal synapse impairment.
Collapse
|
42
|
Iwata K, Sakai H, Takahashi D, Sakane F. Myristic acid specifically stabilizes diacylglycerol kinase δ protein in C2C12 skeletal muscle cells. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:1031-1038. [PMID: 30980919 DOI: 10.1016/j.bbalip.2019.04.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 12/20/2018] [Accepted: 01/06/2019] [Indexed: 02/01/2023]
Abstract
Decreased levels of the δ isozyme of diacylglycerol kinase (DGK) in skeletal muscle attenuate glucose uptake and, consequently, are critical for the pathogenesis of type 2 diabetes. We recently found that free myristic acid (14:0), but not free palmitic acid (16:0), increased the DGKδ protein levels and enhanced glucose uptake in C2C12 myotube cells. However, it has been unclear how myristic acid regulates the level of DGKδ2 protein. In the present study, we characterized the myristic acid-dependent increase of DGKδ protein. A cycloheximide chase assay demonstrated that myristic acid, but not palmitic acid, markedly stabilized DGKδ protein. Moreover, other DGK isozymes, DGKη and ζ, as well as glucose uptake-related proteins, such as protein kinase C (PKC) α, PKCζ, Akt and glycogen synthase kinase 3β, failed to be stabilized by myristic acid. Furthermore, DGKδ was not stabilized in cultured hepatocellular carcinoma cells, pancreas carcinoma cells or neuroblastoma cells, and only a moderate stabilizing effect was observed in embryonic kidney cells. A proteasome inhibitor and a lysosome inhibitor, MG132 and chloroquine, respectively, partly inhibited DGKδ degradation, suggesting that myristic acid prevents, at least in part, the degradation of DGKδ by the ubiquitin-proteasome system and the autophagy-lysosome pathway. Overall, these results strongly suggest that myristic acid attenuates DGKδ protein degradation in skeletal muscle cells and that this attenuation is fatty acid-, protein- and cell line-specific. These new findings provide novel insights into the molecular mechanisms of the pathogenesis of type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Kai Iwata
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba 263-8522, Japan
| | - Hiromichi Sakai
- Department of Biosignaling and Radioisotope Experiment, Interdisciplinary Center for Science Research, Organization for Research and Academic Information, Shimane University, Izumo 693-8501, Japan
| | - Daisuke Takahashi
- Department of Pharmaceutical Health Care and Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Fumio Sakane
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba 263-8522, Japan.
| |
Collapse
|
43
|
Expression and localization of diacylglycerol kinase ζ in guinea pig cochlea and its functional implication under noise-exposure stress conditions. Histochem Cell Biol 2019; 151:461-474. [PMID: 30963236 DOI: 10.1007/s00418-019-01781-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2019] [Indexed: 12/31/2022]
Abstract
Cochlear hair cells are essential for the mechanotransduction of hearing. Sensorineural hearing loss can be irreversible because hair cells have a minimal ability to repair or regenerate themselves once damaged. In order to develop therapeutic interventions to prevent hair cell loss, it is necessary to understand the signaling pathway operating in cochlear hair cells and its alteration upon damage. Diacylglycerol kinase (DGK) regulates intracellular signal transduction through phosphorylation of lipidic second messenger diacylglycerol. We have previously reported characteristic expression and localization patterns of DGKs in various organs under pathophysiological conditions. Nevertheless, little is known about morphological and functional aspects of this enzyme family in the cochlea. First RT-PCR analysis reveals predominant mRNA expression of DGKα, DGKε and DGKζ. Immunohistochemical analysis shows that DGKζ localizes to the nuclei of inner hair cells (IHCs), outer hair cells (OHCs), supporting cells and spiral ganglion neurons in guinea pig cochlea under normal conditions. It is well known that loud noise exposure induces cochlear damage, thereby resulting in hair cell loss. In particular, OHCs are highly vulnerable to noise exposure than IHCs. We found that after 1 week of noise exposure DGKζ translocates from the nucleus to the cytoplasm in damage-sensitive OHCs and gradually disappears thereafter. In sharp contrast, DGKζ remains to the nucleus in damage-resistant IHCs. These results suggest that DGKζ cytoplasmic translocation is well correlated with cellular damage under noise-exposure stress conditions and is involved in delayed cell death in cochlear outer hair cells.
Collapse
|
44
|
Takahashi D, Suzuki K, Sakamoto T, Iwamoto T, Murata T, Sakane F. Crystal structure and calcium-induced conformational changes of diacylglycerol kinase α EF-hand domains. Protein Sci 2019; 28:694-706. [PMID: 30653270 DOI: 10.1002/pro.3572] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 01/10/2019] [Accepted: 01/10/2019] [Indexed: 01/07/2023]
Abstract
Diacylglycerol kinases (DGKs) are multi-domain lipid kinases that phosphorylate diacylglycerol into phosphatidic acid, modulating the levels of these key signaling lipids. Recently, increasing attention has been paid to DGKα isozyme as a potential target for cancer immunotherapy. We have previously shown that DGKα is positively regulated by Ca2+ binding to its N-terminal EF-hand domains (DGKα-EF). However, little progress has been made for the structural biology of mammalian DGKs and the molecular mechanism underlying the Ca2+ -triggered activation remains unclear. Here we report the first crystal structure of Ca2+ -bound DGKα-EF and analyze the structural changes upon binding to Ca2+ . DGKα-EF adopts a canonical EF-hand fold, but unexpectedly, has an additional α-helix (often called a ligand mimic [LM] helix), which is packed into the hydrophobic core. Biophysical and biochemical analyses reveal that DGKα-EF adopts a protease-susceptible "open" conformation without Ca2+ that tends to form a dimer. Cooperative binding of two Ca2+ ions dissociates the dimer into a well-folded monomer, which resists to proteolysis. Taken together, our results provide experimental evidence that Ca2+ binding induces substantial conformational changes in DGKα-EF, which likely regulates intra-molecular interactions responsible for the activation of DGKα and suggest a possible role of the LM helix for the Ca2+ -induced conformational changes. SIGNIFICANCE STATEMENT: Diacylglycerol kinases (DGKs), which modulates the levels of two lipid second messengers, diacylglycerol and phosphatidic acid, is still structurally enigmatic enzymes since its first identification in 1959. We here present the first crystal structure of EF-hand domains of diacylglycerol kinase α in its Ca2+ bound form and characterize Ca2+ -induced conformational changes, which likely regulates intra-molecular interactions. Our study paves the way for future studies to understand the structural basis of DGK isozymes.
Collapse
Affiliation(s)
- Daisuke Takahashi
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba, Japan
| | - Kano Suzuki
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba, Japan
| | - Taiichi Sakamoto
- Department of Life Science, Faculty of Advanced Engineering, Chiba Institute of Technology, Chiba, Japan
| | - Takeo Iwamoto
- Division of Molecular Cell Biology, Core Research Facilities for Basic Science, Research Center for Medical Sciences, The Jikei University School of Medicine, Chiba, Japan
| | - Takeshi Murata
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba, Japan.,Molecular Chirality Research Center, Chiba University, Chiba, Japan
| | - Fumio Sakane
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba, Japan
| |
Collapse
|
45
|
Velnati S, Ruffo E, Massarotti A, Talmon M, Varma KSS, Gesu A, Fresu LG, Snow AL, Bertoni A, Capello D, Tron GC, Graziani A, Baldanzi G. Identification of a novel DGKα inhibitor for XLP-1 therapy by virtual screening. Eur J Med Chem 2018; 164:378-390. [PMID: 30611057 PMCID: PMC6599760 DOI: 10.1016/j.ejmech.2018.12.061] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 12/11/2018] [Accepted: 12/24/2018] [Indexed: 11/24/2022]
Abstract
As part of an effort to identify druggable diacylglycerol kinase alpha (DGKα) inhibitors, we used an insilico approach based on chemical homology with the two commercially available DGKα inhibitors R59022 and R59949. Ritanserin and compound AMB639752 emerged from the screening of 127 compounds, showing an inhibitory activity superior to the two commercial inhibitors, being furthermore specific for the alpha isoform of diacylglycerol kinase. Interestingly, AMB639752 was also devoid of serotoninergic activity. The ability of both ritanserin and AMB639752, by inhibiting DGKα in intact cells, to restore restimulation induced cell death (RICD) in SAP deficient lymphocytes was also tested. Both compounds restored RICD at concentrations lower than the two previously available inhibitors, indicating their potential use for the treatment of X-Iinked lymphoproliferative disease 1 (XLP-1), a rare genetic disorder in which DGKα activity is deregulated.
Collapse
Affiliation(s)
- Suresh Velnati
- Department of Translational Medicine and Center for Translational Research on Autoimmune and Allergic Diseases (CAAD), University of Piemonte Orientale, 28100, Novara, Italy
| | - Elisa Ruffo
- School of Medicine, University Vita e Salute San Raffaele, 20132, Milan, Italy
| | - Alberto Massarotti
- Department of Pharmaceutical Science, University of Piemonte Orientale, 28100, Novara, Italy
| | - Maria Talmon
- Department of Health Sciences, School of Medicine, University of Piemonte Orientale, 28100, Novara, Italy
| | - Konduru Sai Sandeep Varma
- Department of Translational Medicine and Center for Translational Research on Autoimmune and Allergic Diseases (CAAD), University of Piemonte Orientale, 28100, Novara, Italy
| | - Alessandro Gesu
- Department of Pharmaceutical Science, University of Piemonte Orientale, 28100, Novara, Italy
| | - Luigia Grazia Fresu
- Department of Health Sciences, School of Medicine, University of Piemonte Orientale, 28100, Novara, Italy
| | - Andrew L Snow
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| | - Alessandra Bertoni
- Department of Translational Medicine and Center for Translational Research on Autoimmune and Allergic Diseases (CAAD), University of Piemonte Orientale, 28100, Novara, Italy
| | - Daniela Capello
- Department of Translational Medicine and Center for Translational Research on Autoimmune and Allergic Diseases (CAAD), University of Piemonte Orientale, 28100, Novara, Italy
| | - Gian Cesare Tron
- Department of Pharmaceutical Science, University of Piemonte Orientale, 28100, Novara, Italy
| | - Andrea Graziani
- School of Medicine, University Vita e Salute San Raffaele, 20132, Milan, Italy.
| | - Gianluca Baldanzi
- Department of Translational Medicine and Center for Translational Research on Autoimmune and Allergic Diseases (CAAD), University of Piemonte Orientale, 28100, Novara, Italy.
| |
Collapse
|
46
|
Yamaki A, Akiyama R, Murakami C, Takao S, Murakami Y, Mizuno S, Takahashi D, Kado S, Taketomi A, Shirai Y, Goto K, Sakane F. Diacylglycerol kinase α-selective inhibitors induce apoptosis and reduce viability of melanoma and several other cancer cell lines. J Cell Biochem 2018; 120:10043-10056. [PMID: 30536880 DOI: 10.1002/jcb.28288] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 10/24/2018] [Indexed: 02/02/2023]
Abstract
Diacylglycerol (DG) kinase (DGK), which phosphorylates DG to generate phosphatidic acid (PA), consists of ten isozymes (α-к). Recently, we identified a novel small molecule inhibitor, CU-3, that selectively inhibits the activity of the α isozyme. In addition, we newly obtained Compound A, which selectively and strongly inhibits type I DGKs (α, β, and γ). In the present study, we demonstrated that both CU-3 and Compound A induced apoptosis (caspase 3/7 activity and DNA fragmentation) and viability reduction of AKI melanoma cells. Liquid chromatography-mass spectrometry revealed that the production of 32:0- and 34:0-PA species was commonly attenuated by CU-3 and Compound A, suggesting that lower levels of these PA molecular species are involved in the apoptosis induction and viability reduction of AKI cells. We determined the effects of the DGKα inhibitors on several other cancer cell lines derived from refractory cancers. In addition to melanoma, the DGKα inhibitors enhanced caspase 3/7 activity and reduced the viability of hepatocellular carcinoma, glioblastoma, and pancreatic cancer cells, but not breast adenocarcinoma cells. Interestingly, Western blot analysis indicated that the DGKα expression levels were positively correlated with the sensitivity to the DGK inhibitors. Because both CU-3 and Compound A induced interleukin-2 production by T cells, it is believed that these two compounds can enhance cancer immunity. Taken together, our results suggest that DGKα inhibitors are promising anticancer drugs.
Collapse
Affiliation(s)
- Atsumi Yamaki
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba, Japan
| | - Rino Akiyama
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba, Japan
| | - Chiaki Murakami
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba, Japan
| | - Saki Takao
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba, Japan
| | - Yuki Murakami
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba, Japan
| | - Satoru Mizuno
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba, Japan
| | - Daisuke Takahashi
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba, Japan
| | - Sayaka Kado
- Center for Analytical Instrumentation, Chiba University, Chiba, Japan
| | - Akinobu Taketomi
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Yasuhito Shirai
- Department of Applied Chemistry in Bioscience, Graduate School of Agricultural Science, Faculty of Agriculture, Kobe University, Kobe, Japan
| | - Kaoru Goto
- Department of Anatomy and Cell Biology, Yamagata University School of Medicine, Yamagata, Japan
| | - Fumio Sakane
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba, Japan
| |
Collapse
|
47
|
Sadreddini S, Baradaran B, Aghebati-Maleki A, Sadreddini S, Shanehbandi D, Fotouhi A, Aghebati-Maleki L. Immune checkpoint blockade opens a new way to cancer immunotherapy. J Cell Physiol 2018; 234:8541-8549. [PMID: 30511409 DOI: 10.1002/jcp.27816] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 11/01/2018] [Indexed: 12/20/2022]
Abstract
Among the main promising systems to triggering therapeutic antitumor immunity is the blockade of immune checkpoints. Immune checkpoint pathways regulate the control and eradication of infections, malignancies, and resistance against a host of autoantigens. Initiation point of the immune response is T cells, which have a critical role in this pathway. As several immune checkpoints are initiated by ligand-receptor interactions, they can be freely blocked by antibodies or modulated by recombinant forms of ligands or receptors. Antibodies against cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) were the first immunotherapeutics that achieved the US Food and Drug Administration approval. Preliminary clinical results with the blockers of additional immune checkpoint proteins, such as programmed cell death protein 1 (PD-1) indicate extensive and different chances to boost antitumor immunity with the objective of conferring permanent clinical effects. This study provides an overview of the immune checkpoint pathways, including CTLA-4, PD-1, lymphocyte activation gene 3, T-cell immunoglobulin and mucin domain 3, B7-H3, and diacylglycerol kinase α and implications of their inhibition in the cancer therapy.
Collapse
Affiliation(s)
- Sanam Sadreddini
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Aghebati-Maleki
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sevil Sadreddini
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Dariush Shanehbandi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Fotouhi
- Department of Orthopedic Surgery, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
48
|
Takahashi D, Sakane F. Expression and purification of human diacylglycerol kinase α from baculovirus-infected insect cells for structural studies. PeerJ 2018; 6:e5449. [PMID: 30128205 PMCID: PMC6089211 DOI: 10.7717/peerj.5449] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 07/26/2018] [Indexed: 02/02/2023] Open
Abstract
Diacylglycerol kinases (DGKs) are lipid kinases that modulate the levels of lipid second messengers, diacylglycerol and phosphatidic acid. Recently, increasing attention has been paid to its α isozyme (DGKα) as a potential target for cancer immunotherapy. DGKα consists of the N-terminal regulatory domains including EF-hand motifs and C1 domains, and the C-terminal catalytic domain (DGKα-CD). To date, however, no structures of mammalian DGKs including their CDs have yet been reported, impeding our understanding on the catalytic mechanism of DGKs and the rational structure-based drug design. Here we attempted to produce DGKα-CD or a full-length DGKα using bacterial and baculovirus-insect cell expression system for structural studies. While several DGKα-CD constructs produced using both bacterial and insect cells formed insoluble or soluble aggregates, the full-length DGKα expressed in insect cells remained soluble and was purified to near homogeneity as a monomer with yields (1.3 mg/mL per one L cell culture) feasible for protein crystallization. Following enzymatic characterization showed that the purified DGKα is in fully functional state. We further demonstrated that the purified enzyme could be concentrated without any significant aggregation, and characterized its secondary structure by circular dichroism. Taken together, these results suggest that the presence of N-terminal regulatory domains suppress protein aggregation likely via their intramolecular interactions with DGKα-CD, and demonstrate that the baculovirus-insect cell expression of the full-length form of DGKα, not DGKα-CD alone, represents a promising approach to produce protein sample for structural studies of DGKα. Thus, our study will encourage future efforts to determine the crystal structure of DGK, which has not been determined since it was first identified in 1959.
Collapse
Affiliation(s)
- Daisuke Takahashi
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba, Japan
| | - Fumio Sakane
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba, Japan
| |
Collapse
|
49
|
Volpe CMO, Villar-Delfino PH, Dos Anjos PMF, Nogueira-Machado JA. Cellular death, reactive oxygen species (ROS) and diabetic complications. Cell Death Dis 2018; 9:119. [PMID: 29371661 PMCID: PMC5833737 DOI: 10.1038/s41419-017-0135-z] [Citation(s) in RCA: 705] [Impact Index Per Article: 100.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Revised: 09/29/2017] [Accepted: 11/02/2017] [Indexed: 12/13/2022]
Abstract
Chronic or intermittent hyperglycemia is associated with the development of diabetic complications. Several signaling pathways can be altered by having hyperglycemia in different tissues, producing oxidative stress, the formation of advanced glycation end products (AGEs), as well as the secretion of the pro-inflammatory cytokines and cellular death (pathological autophagy and/or apoptosis). However, the signaling pathways that are directly triggered by hyperglycemia appear to have a pivotal role in diabetic complications due to the production of reactive oxygen species (ROS), oxidative stress, and cellular death. The present review will discuss the role of cellular death in diabetic complications, and it will suggest the cause and the consequences between the hyperglycemia-induced signaling pathways and cell death. The signaling pathways discussed in this review are to be described step-by-step, together with their respective inhibitors. They involve diacylglycerol, the activation of protein kinase C (PKC) and NADPH-oxidase system, and the consequent production of ROS. This was initially entitled the “dangerous metabolic route in diabetes”. The historical usages and the recent advancement of new drugs in controlling possible therapeutical targets have been highlighted, in order to evaluate the evolution of knowledge in this sensitive area. It has recently been shown that the metabolic responses to stimuli (i.e., hyperglycemia) involve an integrated network of signaling pathways, in order to define the exact responses. Certain new drugs have been experimentally tested—or suggested and proposed—for their ability to modulate the possible biochemical therapeutical targets for the downregulation of retinopathy, nephropathy, neuropathy, heart disease, angiogenesis, oxidative stress, and cellular death. The aim of this study was to critically and didactically evaluate the exact steps of these signaling pathways and hence mark the indicated sites for the actions of such drugs and their possible consequences. This review will emphasize, besides others, the therapeutical targets for controlling the signaling pathways, when aimed at the downregulation of ROS generation, oxidative stress, and, consequently, cellular death—with all of these conditions being a problem in diabetes.
Collapse
Affiliation(s)
- Caroline Maria Oliveira Volpe
- Núcleo de Pós-Graduação e Pesquisa, Hospital Santa Casa de Belo Horizonte, Rua Domingos Vieira 590, Santa Efigênia, Belo Horizonte, MG30150-240, Brazil
| | - Pedro Henrique Villar-Delfino
- Núcleo de Pós-Graduação e Pesquisa, Hospital Santa Casa de Belo Horizonte, Rua Domingos Vieira 590, Santa Efigênia, Belo Horizonte, MG30150-240, Brazil
| | - Paula Martins Ferreira Dos Anjos
- Núcleo de Pós-Graduação e Pesquisa, Hospital Santa Casa de Belo Horizonte, Rua Domingos Vieira 590, Santa Efigênia, Belo Horizonte, MG30150-240, Brazil
| | - José Augusto Nogueira-Machado
- Núcleo de Pós-Graduação e Pesquisa, Hospital Santa Casa de Belo Horizonte, Rua Domingos Vieira 590, Santa Efigênia, Belo Horizonte, MG30150-240, Brazil.
| |
Collapse
|
50
|
McCloud RL, Franks CE, Campbell ST, Purow BW, Harris TE, Hsu KL. Deconstructing Lipid Kinase Inhibitors by Chemical Proteomics. Biochemistry 2018; 57:231-236. [PMID: 29155586 PMCID: PMC5771882 DOI: 10.1021/acs.biochem.7b00962] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Diacylglycerol kinases (DGKs) regulate lipid metabolism and cell signaling through ATP-dependent phosphorylation of diacylglycerol to biosynthesize phosphatidic acid. Selective chemical probes for studying DGKs are currently lacking and are needed to annotate isoform-specific functions of these elusive lipid kinases. Previously, we explored fragment-based approaches to discover a core fragment of DGK-α (DGKα) inhibitors responsible for selective binding to the DGKα active site. Here, we utilize quantitative chemical proteomics to deconstruct widely used DGKα inhibitors to identify structural regions mediating off-target activity. We tested the activity of a fragment (RLM001) derived from a nucleotide-like region found in the DGKα inhibitors R59022 and ritanserin and discovered that RLM001 mimics ATP in its ability to broadly compete at ATP-binding sites of DGKα as well as >60 native ATP-binding proteins (kinases and ATPases) detected in cell proteomes. Equipotent inhibition of activity-based probe labeling by RLM001 supports a contiguous ligand-binding site composed of C1, DAGKc, and DAGKa domains in the DGKα active site. Given the lack of available crystal structures of DGKs, our studies highlight the utility of chemical proteomics in revealing active-site features of lipid kinases to enable development of inhibitors with enhanced selectivity against the human proteome.
Collapse
Affiliation(s)
- Rebecca L. McCloud
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Caroline E. Franks
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Sean T. Campbell
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, Virginia 22908, United States
| | - Benjamin W. Purow
- Department of Neurology, University of Virginia School of Medicine, Charlottesville, Virginia 22908, United States
| | - Thurl E. Harris
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, Virginia 22908, United States
| | - Ku-Lung Hsu
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, Virginia 22908, United States
| |
Collapse
|