1
|
Cetin S, Sefer E. The significance of chromosome conformation capture in 3D genome architecture comprehension. Comput Biol Chem 2025; 119:108534. [PMID: 40513402 DOI: 10.1016/j.compbiolchem.2025.108534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2025] [Revised: 05/19/2025] [Accepted: 05/29/2025] [Indexed: 06/16/2025]
Abstract
Chromosomes are intricate macromolecules composed of chromatin that create three-dimensional structures within cells. The arrangement and interactions of chromosomes play a crucial role in shaping the genome's structure, function, and gene expression regulation. To fully grasp the architecture and adaptability of the genome, it is essential to understand the complex relationship between chromosomal structure and nucleotide sequences. Advances in our understanding of genome topology have been significantly driven by next-generation sequencing technologies designed for capturing chromatin conformation. The exploration of 3D genome organization has led to the development of high-throughput chromatin conformation capture (Hi-C) techniques. Hi-C is essential for revealing new aspects of genome architecture and for mapping genome-wide chromosomal interactions, both within individual chromosomes and between them. These interactions include chromosomal territories, topologically associating domains (TADs), and chromatin or gene loops. This review provides a comprehensive overview of the historical development and current state of 'C' technologies, in-depth insights into various Hi-C techniques, and the analysis of 3D genome structures. It concludes with a discussion on computational tools for analyzing high-resolution Hi-C data, the challenges in modeling 3D genome structures, and potential future advancements in the field.
Collapse
Affiliation(s)
- Selinay Cetin
- Ozyegin University Artificial Intelligence and Data Engineering Department, Nisantepe, Orman Sk. No:13, 34794, Istanbul, Türkiye
| | - Emre Sefer
- Ozyegin University Artificial Intelligence and Data Engineering Department, Nisantepe, Orman Sk. No:13, 34794, Istanbul, Türkiye.
| |
Collapse
|
2
|
Wu B, Tian F, Yang Y, Dai L, Zhang X. High Bendability of Short RNA-DNA Hybrid Duplex Revealed by Single-Molecule Cyclization and Molecular Dynamics Simulations. Biomolecules 2025; 15:724. [PMID: 40427616 PMCID: PMC12109412 DOI: 10.3390/biom15050724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2025] [Revised: 05/09/2025] [Accepted: 05/13/2025] [Indexed: 05/29/2025] Open
Abstract
R-loops are nucleic acid structures composed of an RNA-DNA hybrid (RDH) duplex and a displaced single-stranded DNA (ssDNA), which are fundamentally involved in key biological functions, including transcription and the preservation of genome stability. In an R-loop, the RDH duplex is bent by the folded secondary structures of the displaced ssDNA. Previous experiments and simulations indicated the high bendability of DNA below the persistence length. However, the bendability of a short RDH duplex remains unclear. Here, we report that an RDH duplex exhibits higher bendability than a DNA duplex on the short length scale using single-molecule cyclization experiments. Our molecular dynamics simulations show that an RDH duplex has larger intrinsic curvature and structural fluctuations and more easily forms kinks than DNA, which promote the bending flexibility of RDH from unlooped structures. Interestingly, we found that an RDH duplex composed of a C-rich DNA strand and a G-rich RNA strand shows significantly higher bendability than that composed of a G-rich DNA strand and a C-rich RNA strand in the same CpG island promoter regions, which may contribute to the formation of an R-loop. These findings shape our understanding towards biological processes involving R-loops through the high and sequence-dependent bendability of an RDH duplex.
Collapse
Affiliation(s)
- Bin Wu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China; (B.W.); (Y.Y.)
| | - Fujia Tian
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China; (B.W.); (Y.Y.)
| | - Yajun Yang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China; (B.W.); (Y.Y.)
| | - Liang Dai
- Department of Physics, City University of Hong Kong, Hong Kong, China;
| | - Xinghua Zhang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China; (B.W.); (Y.Y.)
| |
Collapse
|
3
|
Zhao S, Du X, Zhang Y, Bai J, Meng L, Li X, Ma J, Sheng H, Fu X, Guan Y, Yi Y, Yang L, Xia X, Yi X, Tan X, Zhou C. Development and application of a whole transcriptome sequencing assay for the detection of gene fusions in clinical cancer specimens. BMC Cancer 2025; 25:842. [PMID: 40340691 PMCID: PMC12063385 DOI: 10.1186/s12885-025-14186-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Accepted: 04/18/2025] [Indexed: 05/10/2025] Open
Abstract
BACKGROUND Gene fusions are an important driver of cancer and require rapid and accurate detection to guide clinical decisions. However, the performance characteristics of whole transcriptome sequencing (WTS) for the detection of gene fusions have not been thoroughly investigated. METHODS We developed a novel WTS-based assay for the detection of gene fusions, MET exon 14 skipping and EGFR VIII alterations in clinical samples. RESULTS We defined a DV200 value ≥ 30% as the threshold for RNA degradation, RNA input, fusion expression and number of mapped reads greater than 100 ng, 40 copies/ng and 80 Mb for optimal sensitivity of the WTS assay. Our assay successfully identified 62 out of 63 known gene fusions, achieving a sensitivity of 98.4%. The specificity of the assay was 100%, as no fusions were detected in the 21 fusion-negative samples. Good repeatability and reproducibility were observed in replicates, except for the TPM3::NTRK1 fusion, which was expressed below the threshold. Of all fusions identified in 101 NSCLC samples, 68.9% (20/29) were potentially actionable, compared to 20% in pan-cancer samples. In addition to actionable fusions, we also identified many fusions with potential diagnostic and prognostic value in pan-cancer. CONCLUSIONS We have developed a novel WTS assay with high sensitivity, specificity, repeatability and reproducibility. This assay can identify potentially actionable gene fusions and provides valuable insights into the fusion landscape in various cancers, which may help guide treatment decisions and aid in diagnosis and prognosis.
Collapse
Affiliation(s)
- Songchen Zhao
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xinhua Du
- Geneplus-Beijing Institute, Beijing, China
| | - Yan Zhang
- Geneplus-Beijing Institute, Beijing, China
| | - Jing Bai
- Geneplus-Beijing Institute, Beijing, China
- College of Future Technology, Peking University, Beijing, China
| | - Lu Meng
- Geneplus-Beijing Institute, Beijing, China
| | - Xuefei Li
- Department of Lung Cancer and Immunology, Tongji University Affiliated Shanghai Pulmonary Hospital, Shanghai, China
| | - Jiaxin Ma
- Geneplus-Beijing Institute, Beijing, China
| | - HeYu Sheng
- Geneplus-Beijing Institute, Beijing, China
| | - Xiaorui Fu
- Geneplus-Beijing Institute, Beijing, China
| | | | - Yuting Yi
- Geneplus-Beijing Institute, Beijing, China
| | - Ling Yang
- Geneplus-Beijing Institute, Beijing, China
| | | | - Xin Yi
- Geneplus-Beijing Institute, Beijing, China
| | - Xinxin Tan
- Geneplus-Shenzhen Clinical Laboratory, Shenzhen, Guangdong, China.
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China.
| | - Caicun Zhou
- Department of Medical Oncology, Shanghai East Hospital, Shanghai, China.
| |
Collapse
|
4
|
Piña JO, Raju R, Myo AC, Stipano E, Wright M, D’Souza RN. Leveraging Spatial Transcriptomics to Decode Craniofacial Development. Genes (Basel) 2025; 16:557. [PMID: 40428379 PMCID: PMC12111281 DOI: 10.3390/genes16050557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2025] [Revised: 04/26/2025] [Accepted: 04/28/2025] [Indexed: 05/29/2025] Open
Abstract
Understanding how intricate cellular networks and signaling pathways communicate during the formation of craniofacial tissues like the palate and tooth has been the subject of intense investigation for several decades. Both organ systems undergo patterning morphogenesis and the subsequent terminal differentiation of matrix-producing cells that form biomineralized matrices like bone, enamel, dentin, and cementum. Until recently, gene expression profiles could only be assessed for a select number of cells without the context of the entire milieu of genes expressed by neighboring cells and tissues. Today, the cutting-edge field of spatial transcriptomics offers a remarkable suite of innovative technologies of multiplex gene analyses and imaging that can assess the expression of a vast library of genes that are present in situ during normal and abnormal conditions. In this review, we summarize some key technologies which have in recent years enabled an unprecedented breadth and depth of transcriptomic analyses in craniofacial development. We focus in detail on select methods that our research group has applied to better understand the cellular and molecular events that drive palate and tooth development. Our overall goal is to unravel the complexities of these unique biological systems to provide meaningful biological insights into the cellular and molecular events that drive normal development. As a work-in-progress, we strive for a deeper understanding of the temporal and spatial gene expression profiles within cells and tissues during normal and abnormal palate and tooth development. Such knowledge provides the framework for further studies that can characterize the function of new or novel genes that have the potential of serving as therapeutic targets for correcting disorders like cleft palate and tooth agenesis.
Collapse
Affiliation(s)
- Jeremie Oliver Piña
- Section on Craniofacial Genetic Disorders, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD 20892, USA; (R.R.); (A.C.M.)
- National Institute of Dental and Craniofacial Research (NIDCR), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Resmi Raju
- Section on Craniofacial Genetic Disorders, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD 20892, USA; (R.R.); (A.C.M.)
- National Institute of Dental and Craniofacial Research (NIDCR), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Aye Chan Myo
- Section on Craniofacial Genetic Disorders, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD 20892, USA; (R.R.); (A.C.M.)
- National Institute of Dental and Craniofacial Research (NIDCR), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Evan Stipano
- Section on Craniofacial Genetic Disorders, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD 20892, USA; (R.R.); (A.C.M.)
- National Institute of Dental and Craniofacial Research (NIDCR), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Malachi Wright
- Section on Craniofacial Genetic Disorders, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD 20892, USA; (R.R.); (A.C.M.)
- National Institute of Dental and Craniofacial Research (NIDCR), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Rena N. D’Souza
- Section on Craniofacial Genetic Disorders, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD 20892, USA; (R.R.); (A.C.M.)
- National Institute of Dental and Craniofacial Research (NIDCR), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| |
Collapse
|
5
|
Sahajpal NS, Dean J, Hilton B, Fee T, Skinner C, Hastie A, DuPont BR, Chaubey A, Friez MJ, Stevenson RE. Optical genome mapping identifies rare structural variants in neural tube defects. Genome Res 2025; 35:798-809. [PMID: 40107724 PMCID: PMC12047250 DOI: 10.1101/gr.279318.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 02/06/2025] [Indexed: 03/22/2025]
Abstract
Neural tube defects (NTDs) are the most common birth defects of the central nervous system and occur as either isolated malformations or accompanied by anomalies of other systems. The genetic basis of NTDs remains poorly understood using karyotyping, chromosomal microarray, and short-read sequencing, with only a limited number of pathogenic variants identified. Collectively, these technologies may fail to detect rare structural variants (SVs) in the genome, which may cause these birth defects. Therefore, optical genome mapping (OGM) was applied to investigate 104 NTD cases, of which 74 were isolated NTDs and 30 were NTDs with other malformations. A stepwise approach was undertaken to ascertain candidate variants using population and internal databases and performing parental studies when possible. This analysis identifies diagnostic findings in 8% of cases (8/104) and candidate findings in an additional 22% of cases (23/104). Of the candidate findings, 9% of cases (9/104) have SVs impacting genes associated with NTDs in mouse, and 13% of cases (14/104) have SVs impacting genes implicated in the neural tube development pathways. This study identifies RMND5A, HNRNPC, FOXD4, and RBBP4 as strong candidate genes associated with NTDs, and expands the phenotypic spectrum of AMER1 and TGIF1 to include NTDs. This study constitutes the first systematic investigation of SVs using OGM to elucidate the genetic determinants of NTDs. The data provide key insights into the pathogenesis of NTDs and demonstrate the contribution of SVs in the genome to these birth defects.
Collapse
Affiliation(s)
| | - Jane Dean
- Greenwood Genetic Center, Greenwood, South Carolina 29646, USA
| | - Benjamin Hilton
- Greenwood Genetic Center, Greenwood, South Carolina 29646, USA
| | - Timothy Fee
- Greenwood Genetic Center, Greenwood, South Carolina 29646, USA
| | - Cindy Skinner
- Greenwood Genetic Center, Greenwood, South Carolina 29646, USA
| | - Alex Hastie
- Bionano Genomics, San Diego, California 92121, USA
| | | | - Alka Chaubey
- Bionano Genomics, San Diego, California 92121, USA
| | - Michael J Friez
- Greenwood Genetic Center, Greenwood, South Carolina 29646, USA
| | - Roger E Stevenson
- Greenwood Genetic Center, Greenwood, South Carolina 29646, USA;
- Equanimitas, Greenwood, South Carolina 29646, USA
| |
Collapse
|
6
|
Zhou Z, Qin P, Cheng X, Shao M, Ren Z, Zhao Y, Li Q, Liu L. ChatGPT in Oncology Diagnosis and Treatment: Applications, Legal and Ethical Challenges. Curr Oncol Rep 2025; 27:336-354. [PMID: 39998782 DOI: 10.1007/s11912-025-01649-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2025] [Indexed: 02/27/2025]
Abstract
PURPOSE OF REVIEW This study aims to systematically review the trajectory of artificial intelligence (AI) development in the medical field, with a particular emphasis on ChatGPT, a cutting-edge tool that is transforming oncology's diagnosis and treatment practices. RECENT FINDINGS Recent advancements have demonstrated that ChatGPT can be effectively utilized in various areas, including collecting medical histories, conducting radiological & pathological diagnoses, generating electronic medical record (EMR), providing nutritional support, participating in Multidisciplinary Team (MDT) and formulating personalized, multidisciplinary treatment plans. However, some significant challenges related to data privacy and legal issues that need to be addressed for the safe and effective integration of ChatGPT into clinical practice. ChatGPT, an emerging AI technology, opens up new avenues and viewpoints for oncology diagnosis and treatment. If current technological and legal challenges can be overcome, ChatGPT is expected to play a more significant role in oncology diagnosis and treatment in the future, providing better treatment options and improving the quality of medical services.
Collapse
Affiliation(s)
- Zihan Zhou
- The First Clinical Medical College of Nanjing Medical University, Nanjing, 211166, China
| | - Peng Qin
- The First Clinical Medical College of Nanjing Medical University, Nanjing, 211166, China
| | - Xi Cheng
- The First Clinical Medical College of Nanjing Medical University, Nanjing, 211166, China
| | - Maoxuan Shao
- The First Clinical Medical College of Nanjing Medical University, Nanjing, 211166, China
| | - Zhaozheng Ren
- The First Clinical Medical College of Nanjing Medical University, Nanjing, 211166, China
| | - Yiting Zhao
- Stomatological College of Nanjing Medical University, Nanjing, 211166, China
| | - Qiunuo Li
- The First Clinical Medical College of Nanjing Medical University, Nanjing, 211166, China
| | - Lingxiang Liu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China.
| |
Collapse
|
7
|
Farhat J, Alzyoud L, AlWahsh M, Acharjee A, Al‐Omari B. Advancing Precision Medicine: The Role of Genetic Testing and Sequencing Technologies in Identifying Biological Markers for Rare Cancers. Cancer Med 2025; 14:e70853. [PMID: 40249565 PMCID: PMC12007469 DOI: 10.1002/cam4.70853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/26/2025] [Accepted: 03/26/2025] [Indexed: 04/19/2025] Open
Abstract
BACKGROUND Genetic testing and sequencing technologies offer a comprehensive understanding of cancer genetics, providing rapid and cost-effective solutions. In particular, these advanced technologies play an important role in assessing the complexities of the rare cancer types affecting several systems including the bone, endocrine, digestive, vascular, and soft tissue. This review will explore how genetic testing and sequencing technologies have contributed to the identification of biomarkers across several rare cancer types in diagnostic, therapeutic, and prognostic stages, thereby advancing PM. METHODS A comprehensive literature search was conducted across PubMed (MEDLINE), EMBASE, and Web of Science using keywords related to sequencing technologies, genetic testing, and cancer. There were no restrictions on language, methodology, age, or publication date. Both primary and secondary research involving humans or animals were considered. RESULTS In practice, fluorescence in situ hybridization, karyotype, microarrays and other genetic tests are mainly applied to identify specific genetic alterations and mutations associated with cancer progression. Sequencing technologies, such as next generation sequencing, polymerase chain reaction, whole genome or exome sequencing, enable the rapid analysis of millions of DNA fragments. These techniques assess genome structure, genetic changes, gene expression profiles, and epigenetic variations. Consequently, they help detect main intrinsic markers that are crucial for personalizing diagnosis, treatment options, and prognostic assessments, leading to better patient prognosis. This highlights why these methods are now considered as primary tools in rare cancer research. However, these methods still face multiple limitations, including false positive results, limited precision, and high costs. CONCLUSION Genetic testing and sequencing technologies have significantly advanced the field of rare cancer research by enabling the identification of key biomarkers for precision diagnosis, treatment, and prognosis. Despite existing limitations, their integration into clinical and research fields continues to improve the development of personalized medicine strategies for rare and complex cancer types.
Collapse
Affiliation(s)
- Joviana Farhat
- Department of Epidemiology and Population Health, College of Medicine and Health SciencesKhalifa UniversityAbu DhabiUAE
| | - Lara Alzyoud
- College of PharmacyAl Ain UniversityAbu DhabiUAE
- Health and Biomedical Research CenterAl Ain UniversityAbu DhabiUAE
| | - Mohammad AlWahsh
- Leibniz‐Institut Für Analytische Wissenschaften‐ISAS e.V.DortmundGermany
- Institute of Pathology and Medical Research Center (ZMF) University Medical Center MannheimHeid Elberg UniversityMannheimGermany
- Department of Pharmacy, Faculty of PharmacyAlZaytoonah University of JordanAmmanJordan
| | - Animesh Acharjee
- Institute of Cancer and Genomic SciencesUniversity of BirminghamBirminghamUK
| | - Basem Al‐Omari
- Department of Epidemiology and Population Health, College of Medicine and Health SciencesKhalifa UniversityAbu DhabiUAE
| |
Collapse
|
8
|
Margalit S, Tulpová Z, Detinis Zur T, Michaeli Y, Deek J, Nifker G, Haldar R, Gnatek Y, Omer D, Dekel B, Baris Feldman H, Grunwald A, Ebenstein Y. Long-read structural and epigenetic profiling of a kidney tumor-matched sample with nanopore sequencing and optical genome mapping. NAR Genom Bioinform 2025; 7:lqae190. [PMID: 39781516 PMCID: PMC11704781 DOI: 10.1093/nargab/lqae190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 12/12/2024] [Accepted: 12/31/2024] [Indexed: 01/12/2025] Open
Abstract
Carcinogenesis often involves significant alterations in the cancer genome, marked by large structural variants (SVs) and copy number variations (CNVs) that are difficult to capture with short-read sequencing. Traditionally, cytogenetic techniques are applied to detect such aberrations, but they are limited in resolution and do not cover features smaller than several hundred kilobases. Optical genome mapping (OGM) and nanopore sequencing [Oxford Nanopore Technologies (ONT)] bridge this resolution gap and offer enhanced performance for cytogenetic applications. Additionally, both methods can capture epigenetic information as they profile native, individual DNA molecules. We compared the effectiveness of the two methods in characterizing the structural, copy number and epigenetic landscape of a clear cell renal cell carcinoma tumor. Both methods provided comparable results for basic karyotyping and CNVs, but differed in their ability to detect SVs of different sizes and types. ONT outperformed OGM in detecting small SVs, while OGM excelled in detecting larger SVs, including translocations. Differences were also observed among various ONT SV callers. Additionally, both methods provided insights into the tumor's methylome and hydroxymethylome. While ONT was superior in methylation calling, hydroxymethylation reports can be further optimized. Our findings underscore the importance of carefully selecting the most appropriate platform based on specific research questions.
Collapse
Affiliation(s)
- Sapir Margalit
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, 6997801 Tel Aviv, Israel
- Department of Biomedical Engineering, Tel Aviv University, 6997801 Tel Aviv, Israel
| | - Zuzana Tulpová
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, 6997801 Tel Aviv, Israel
- Department of Biomedical Engineering, Tel Aviv University, 6997801 Tel Aviv, Israel
- Institute of Experimental Botany of the Czech Academy of Sciences, Olomouc, Czech Republic
| | - Tahir Detinis Zur
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, 6997801 Tel Aviv, Israel
- Department of Biomedical Engineering, Tel Aviv University, 6997801 Tel Aviv, Israel
| | - Yael Michaeli
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, 6997801 Tel Aviv, Israel
- Department of Biomedical Engineering, Tel Aviv University, 6997801 Tel Aviv, Israel
| | - Jasline Deek
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, 6997801 Tel Aviv, Israel
- Department of Biomedical Engineering, Tel Aviv University, 6997801 Tel Aviv, Israel
| | - Gil Nifker
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, 6997801 Tel Aviv, Israel
- Department of Biomedical Engineering, Tel Aviv University, 6997801 Tel Aviv, Israel
| | - Rita Haldar
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, 6997801 Tel Aviv, Israel
- Department of Biomedical Engineering, Tel Aviv University, 6997801 Tel Aviv, Israel
| | - Yehudit Gnatek
- Pediatric Stem Cell Research Institute, Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, 52621 Ramat Gan, Israel
| | - Dorit Omer
- Pediatric Stem Cell Research Institute, Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, 52621 Ramat Gan, Israel
| | - Benjamin Dekel
- Pediatric Stem Cell Research Institute, Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, 52621 Ramat Gan, Israel
- Pediatric Nephrology Unit, The Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, 52621 Ramat Gan, Israel
- School of Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, 6997801 Tel Aviv, Israel
| | - Hagit Baris Feldman
- School of Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, 6997801 Tel Aviv, Israel
- The Genetics Institute and Genomics Center, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Assaf Grunwald
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, 6997801 Tel Aviv, Israel
- Department of Biomedical Engineering, Tel Aviv University, 6997801 Tel Aviv, Israel
| | - Yuval Ebenstein
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, 6997801 Tel Aviv, Israel
- Department of Biomedical Engineering, Tel Aviv University, 6997801 Tel Aviv, Israel
| |
Collapse
|
9
|
Bashiri Z, Afzali A, Koruji M, Torkashvand H, Ghorbanlou M, Sheibak N, Zandieh Z, Amjadi F. Advanced strategies for single embryo selection in assisted human reproduction: A review of clinical practice and research methods. Clin Exp Reprod Med 2025; 52:8-29. [PMID: 38853126 PMCID: PMC11900676 DOI: 10.5653/cerm.2023.06478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 03/27/2024] [Accepted: 03/29/2024] [Indexed: 06/11/2024] Open
Abstract
Among the primary objectives of contemporary assisted reproductive technology research are achieving the births of healthy singletons and improving overall fertility outcomes. Substantial advances have been made in refining the selection of single embryos for transfer, with the aim of maximizing the likelihood of successful implantation. The principal criterion for this selection is embryo morphology. Morphological evaluation systems are based on traditional parameters, including cell count and fragmentation, pronuclear morphology, cleavage rate, blastocyst formation, and various sequential embryonic assessments. To reduce the incidence of multiple pregnancies and to identify the single embryo with the highest potential for growth, invasive techniques such as preimplantation genetic screening are employed in in vitro fertilization clinics. However, new approaches have been suggested for clinical application that do not harm the embryo and that provide consistent, accurate results. Noninvasive technologies, such as time-lapse imaging and omics, leverage morphokinetic parameters and the byproducts of embryo metabolism, respectively, to identify noninvasive prognostic markers for competent single embryo selection. While these technologies have garnered considerable interest in the research community, they are not incorporated into routine clinical practice and still have substantial room for improvement. Currently, the most promising strategies involve integrating multiple methodologies, which together are anticipated to increase the likelihood of successful pregnancy.
Collapse
Affiliation(s)
- Zahra Bashiri
- Endometrium and Endometriosis Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Omid Fertility & Infertility Clinic, Hamedan, Iran
| | - Azita Afzali
- Hazrat Zahra Infertility Center, Hajar Hospital, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Morteza Koruji
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Stem Cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Hossein Torkashvand
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mehrdad Ghorbanlou
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Nadia Sheibak
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Zandieh
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Shahid Akbarabadi Clinical Research Development Unit (ShACRDU), Iran University of Medical Sciences, Tehran, Iran
| | - Fatemehsadat Amjadi
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Shahid Akbarabadi Clinical Research Development Unit (ShACRDU), Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Naghinejad M, Parvizpour S, Khaniani MS, Mehri M, Derakhshan SM, Amirfiroozy A. The known structural variations in hearing loss and their diagnostic approaches: a comprehensive review. Mol Biol Rep 2025; 52:131. [PMID: 39821465 DOI: 10.1007/s11033-025-10231-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 01/07/2025] [Indexed: 01/19/2025]
Abstract
Hearing loss (HL) is the most common sensory disorder, characterized by a wide range of causes, including both environmental and genetic factors. While single-nucleotide variants (SNVs) and small insertions/deletions have been extensively studied, the role of structural variations (SVs) in hearing impairment has gained increasing recognition. This review article aims to provide a comprehensive overview of the importance of SVs in HL, by exploring the SVs associated with HL and their underlying pathogenic mechanisms. Additionally, diagnostic methods of SVs have been briefly evaluated and compared in general. Three major mechanisms by which SVs can lead to HL are gene disruption, gene dosage imbalance, and position effect. Furthermore, to facilitate the detection of SVs in HL, this review presents a table highlighting the key genes and genomic regions implicated in SVs and their diagnostic approaches associated with HL patients. In the next step, indications for the use of SV diagnostic techniques are compiled in another table in this article, which will help experts in choosing the most appropriate technique. At last, the comprehensive review presented here underscores the significant role of SVs in HL. Further research is required to fully elucidate the spectrum of SVs in HL and optimize the clinical use of SV detection methods in routine diagnostic procedures.
Collapse
Affiliation(s)
- Maryam Naghinejad
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sepideh Parvizpour
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahmoud Shekari Khaniani
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maghsood Mehri
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sima Mansoori Derakhshan
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Akbar Amirfiroozy
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
11
|
Giefing M, Sawicz G, Siebert R. FISH and FICTION in Lymphoma Research. Methods Mol Biol 2025; 2865:221-240. [PMID: 39424726 DOI: 10.1007/978-1-0716-4188-0_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
Fluorescence in situ hybridization (FISH) is a powerful and robust technique allowing the visualization of target sequences like genes in interphase nuclei. It is widely used in routine diagnostics to identify cancer-specific aberrations including lymphoma-associated translocations or gene copy number changes in single tumor cells. By combining FISH with immunophenotyping-a technique called fluorescence immunophenotyping and interphase cytogenetic as a tool for investigation of neoplasia (FICTION)-it is moreover possible to identify a cell population of interest. Here we describe standard protocols for FISH and FICTION as used in our laboratories in diagnosis and research.
Collapse
Affiliation(s)
- Maciej Giefing
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland.
| | - Greta Sawicz
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | - Reiner Siebert
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, University Hospital, Ulm, Germany
| |
Collapse
|
12
|
Joshi S, Moody A, Budthapa P, Gurung A, Gautam R, Sanjel P, Gupta A, Aryal SP, Parajuli N, Bhattarai N. Advances in Natural-Product-Based Fluorescent Agents and Synthetic Analogues for Analytical and Biomedical Applications. Bioengineering (Basel) 2024; 11:1292. [PMID: 39768110 PMCID: PMC11727039 DOI: 10.3390/bioengineering11121292] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/09/2024] [Accepted: 12/16/2024] [Indexed: 01/16/2025] Open
Abstract
Fluorescence is a remarkable property exhibited by many chemical compounds and biomolecules. Fluorescence has revolutionized analytical and biomedical sciences due to its wide-ranging applications in analytical and diagnostic tools of biological and environmental importance. Fluorescent molecules are frequently employed in drug delivery, optical sensing, cellular imaging, and biomarker discovery. Cancer is a global challenge and fluorescence agents can function as diagnostic as well as monitoring tools, both during early tumor progression and treatment monitoring. Many fluorescent compounds can be found in their natural form, but recent developments in synthetic chemistry and molecular biology have allowed us to synthesize and tune fluorescent molecules that would not otherwise exist in nature. Naturally derived fluorescent compounds are generally more biocompatible and environmentally friendly. They can also be modified in cost-effective and target-specific ways with the help of synthetic tools. Understanding their unique chemical structures and photophysical properties is key to harnessing their full potential in biomedical and analytical research. As drug discovery efforts require the rigorous characterization of pharmacokinetics and pharmacodynamics, fluorescence-based detection accelerates the understanding of drug interactions via in vitro and in vivo assays. Herein, we provide a review of natural products and synthetic analogs that exhibit fluorescence properties and can be used as probes, detailing their photophysical properties. We have also provided some insights into the relationships between chemical structures and fluorescent properties. Finally, we have discussed the applications of fluorescent compounds in biomedical science, mainly in the study of tumor and cancer cells and analytical research, highlighting their pivotal role in advancing drug delivery, biomarkers, cell imaging, biosensing technologies, and as targeting ligands in the diagnosis of tumors.
Collapse
Affiliation(s)
- Soniya Joshi
- Central Department of Chemistry, Tribhuvan University, Kathmandu 44618, Nepal; (S.J.); (P.B.); (A.G.); (R.G.); (P.S.)
| | - Alexis Moody
- Department of Chemical, Biological, and Bioengineering, North Carolina A&T State University, Greensboro, NC 27411, USA;
| | - Padamlal Budthapa
- Central Department of Chemistry, Tribhuvan University, Kathmandu 44618, Nepal; (S.J.); (P.B.); (A.G.); (R.G.); (P.S.)
| | - Anita Gurung
- Central Department of Chemistry, Tribhuvan University, Kathmandu 44618, Nepal; (S.J.); (P.B.); (A.G.); (R.G.); (P.S.)
| | - Rachana Gautam
- Central Department of Chemistry, Tribhuvan University, Kathmandu 44618, Nepal; (S.J.); (P.B.); (A.G.); (R.G.); (P.S.)
| | - Prabha Sanjel
- Central Department of Chemistry, Tribhuvan University, Kathmandu 44618, Nepal; (S.J.); (P.B.); (A.G.); (R.G.); (P.S.)
| | - Aakash Gupta
- Department of Biomedical Engineering, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA;
| | - Surya P. Aryal
- Department of Chemistry, University of Kentucky, Lexington, KY 40506, USA;
| | - Niranjan Parajuli
- Central Department of Chemistry, Tribhuvan University, Kathmandu 44618, Nepal; (S.J.); (P.B.); (A.G.); (R.G.); (P.S.)
| | - Narayan Bhattarai
- Department of Chemical, Biological, and Bioengineering, North Carolina A&T State University, Greensboro, NC 27411, USA;
| |
Collapse
|
13
|
Predescu DN, Mokhlesi B, Predescu SA. X-inactive-specific transcript: a long noncoding RNA with a complex role in sex differences in human disease. Biol Sex Differ 2024; 15:101. [PMID: 39639337 PMCID: PMC11619133 DOI: 10.1186/s13293-024-00681-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 11/28/2024] [Indexed: 12/07/2024] Open
Abstract
In humans, the X and Y chromosomes determine the biological sex, XX specifying for females and XY for males. The long noncoding RNA X-inactive specific transcript (lncRNA XIST) plays a crucial role in the process of X chromosome inactivation (XCI) in cells of the female, a process that ensures the balanced expression of X-linked genes between sexes. Initially, it was believed that XIST can be expressed only from the inactive X chromosome (Xi) and is considered a typically female-specific transcript. However, accumulating evidence suggests that XIST can be detected in male cells as well, and it participates in the development of cancers and other human diseases by regulating gene expression at epigenetic, chromatin remodeling, transcriptional, and translational levels. XIST is abnormally expressed in many sexually dimorphic diseases, including autoimmune and neurological diseases, pulmonary arterial hypertension (PAH), and some types of cancers. However, the underlying mechanisms are not fully understood. Escape from XCI and skewed XCI also contributes to sex-biased diseases and their severity. Interestingly, in humans, similar to experimental animal models of human disease, the males with the XIST gene activated display the sex-biased disease condition at a rate close to females, and significantly greater than males who had not been genetically modified. For instance, the men with supernumerary X chromosomes, such as men with Klinefelter syndrome (47, XXY), are predisposed toward autoimmunity similar to females (46, XX), and have increased risk for strongly female biased diseases, compared to 46, XY males. Interestingly, chromosome X content has been linked to a longer life span, and the presence of two chromosome X contributes to increased longevity regardless of the hormonal status. In this review, we summarize recent knowledge about XIST structure/function correlation and involvement in human disease with focus on XIST abnormal expression in males. Many human diseases show differences between males and females in penetrance, presentation, progression, and survival. In humans, the X and Y sex chromosomes determine the biological sex, XX specifying for females and XY for males. This numeric imbalance, two X chromosomes in females and only one in males, known as sex chromosome dosage inequality, is corrected in the first days of embryonic development by inactivating one of the X chromosomes in females. While this "dosage compensation" should in theory solve the difference in the number of genes between sexes, the expressed doses of X genes are incompletely compensated by X chromosome inactivation in females. In this review we try to highlight how abnormal expression and function of XIST, a gene on the X chromosome responsible for this inactivation process, may explain the sex differences in human health and disease. A better understanding of the molecular mechanisms of XIST participation in the male-female differences in disease is highly relevant since it would allow for improving the personalization of diagnosis and sex-specific treatment of patients.
Collapse
Affiliation(s)
- Dan N Predescu
- Department of Internal Medicine, Pulmonary, Critical Care, and Sleep Medicine, Rush University Medical Center, Chicago, IL, 60612, USA.
| | - Babak Mokhlesi
- Department of Internal Medicine, Pulmonary, Critical Care, and Sleep Medicine, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Sanda A Predescu
- Department of Internal Medicine, Pulmonary, Critical Care, and Sleep Medicine, Rush University Medical Center, Chicago, IL, 60612, USA
| |
Collapse
|
14
|
Berney M, Fay EM, Doherty W, Deering JJ, Dürr EM, Ferguson S, McGouran JF. Zinc-Binding Oligonucleotide Backbone Modifications for Targeting a DNA-Processing Metalloenzyme. Chembiochem 2024; 25:e202400528. [PMID: 39023512 DOI: 10.1002/cbic.202400528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 07/17/2024] [Indexed: 07/20/2024]
Abstract
A series of chemically-modified oligonucleotides for targeting the DNA repair nuclease SNM1A have been designed and synthesised. Each oligonucleotide contains a modified internucleotide linkage designed to both mimic the native phosphodiester backbone and chelate to the catalytic zinc ion(s) in the SNM1A active site. Dinucleoside phosphoramidites containing urea, squaramide, sulfanylacetamide, and sulfinylacetamide linkages were prepared and employed successfully in solid-phase oligonucleotide synthesis. All the modified oligonucleotides were found to interact with SNM1A in a gel electrophoresis-based assay, demonstrating the first examples of inhibition of DNA damage repair enzymes for many of these groups in oligonucleotides. One strand containing a sulfinylacetamide-linkage was found to have the strongest interaction with SNM1A and was further tested in a real-time fluorescence assay. This allowed an IC50 value of 231 nM to be determined, significantly lower than previously reported substrate-mimics targeting this enzyme. It is expected that these modified oligonucleotides will serve as a scaffold for the future development of fluorescent or biotin-labelled probes for the in vivo study of DNA repair processes.
Collapse
Affiliation(s)
- Mark Berney
- National Institute for Bioprocess Research and Training, Foster Avenue, Mount Merrion, Dublin, Ireland
- School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, Dublin 4, Ireland
| | - Ellen M Fay
- School of Chemistry and Trinity Biomedical Sciences Institute, Trinity College Dublin, the University of Dublin, Dublin 2, Ireland
| | - William Doherty
- School of Chemistry and Trinity Biomedical Sciences Institute, Trinity College Dublin, the University of Dublin, Dublin 2, Ireland
| | - John J Deering
- School of Chemistry and Trinity Biomedical Sciences Institute, Trinity College Dublin, the University of Dublin, Dublin 2, Ireland
| | - Eva-Maria Dürr
- School of Chemistry and Trinity Biomedical Sciences Institute, Trinity College Dublin, the University of Dublin, Dublin 2, Ireland
| | - Steven Ferguson
- National Institute for Bioprocess Research and Training, Foster Avenue, Mount Merrion, Dublin, Ireland
- School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, Dublin 4, Ireland
- SSPC, The SFI Research Centre for Pharmaceuticals, Ireland
| | - Joanna F McGouran
- School of Chemistry and Trinity Biomedical Sciences Institute, Trinity College Dublin, the University of Dublin, Dublin 2, Ireland
- SSPC, The SFI Research Centre for Pharmaceuticals, Ireland
| |
Collapse
|
15
|
Ueda M. A brief clinical genetics review: stepwise diagnostic processes of a monogenic disorder-hypertriglyceridemia. Transl Pediatr 2024; 13:1828-1848. [PMID: 39524398 PMCID: PMC11543124 DOI: 10.21037/tp-24-131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 09/24/2024] [Indexed: 11/16/2024] Open
Abstract
The completion of the Human Genome Project and tremendous advances in automated high-throughput genetic analysis technologies have enabled explosive progress in the field of genetics, which resulted in countless discoveries of novel genes and pathways. Many phenotype- or disease-associated single nucleotide polymorphisms (SNPs) with a high statistical significance have been identified through numerous genome-wide association studies (GWAS), and various polygenic risk scoring (PRS) schemes have been proposed to identify individuals with a high risk for a certain trait or disorder. Meanwhile, medical education in genetics has lagged far behind, leaving many physicians and healthcare providers unprepared in the genomic era. Thus, there is an urgent need to educate physicians and healthcare providers with basic knowledge and skills in genetics. To facilitate this, some basic terminologies and concepts are discussed in this review. In addition, some important considerations in delineating and incorporating clinical genetic testing in the diagnosis and management of a monogenic disorder are illustrated in a stepwise fashion. Furthermore, the effects of disease-associated SNPs represented by a PRS scheme clearly demonstrated that even the phenotypes of a monogenic disorder due to the same pathogenic variant in family members are modulated by the polygenic background. In human genetics, despite these explosive advancements, we are still far from clearly deciphering the interplay of gene variants to effect unique characteristics in an individual. In addition, sophisticated genome or gene directed therapies are being investigated for numerous disorders. Therefore, evolution in the field of genetics is likely to continue into the foreseeable future. In the meantime, much emphasis should be placed on educating physicians and healthcare professionals to be well-versed and skillful in the clinical use of genetics so that they can fully embrace the new era of precision medicine.
Collapse
Affiliation(s)
- Masako Ueda
- Department of Medicine, The University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
16
|
Steinek C, Guirao-Ortiz M, Stumberger G, Tölke AJ, Hörl D, Carell T, Harz H, Leonhardt H. Generation of densely labeled oligonucleotides for the detection of small genomic elements. CELL REPORTS METHODS 2024; 4:100840. [PMID: 39137784 PMCID: PMC11384094 DOI: 10.1016/j.crmeth.2024.100840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/16/2024] [Accepted: 07/22/2024] [Indexed: 08/15/2024]
Abstract
The genome contains numerous regulatory elements that may undergo complex interactions and contribute to the establishment, maintenance, and change of cellular identity. Three-dimensional genome organization can be explored with fluorescence in situ hybridization (FISH) at the single-cell level, but the detection of small genomic loci remains challenging. Here, we provide a rapid and simple protocol for the generation of bright FISH probes suited for the detection of small genomic elements. We systematically optimized probe design and synthesis, screened polymerases for their ability to incorporate dye-labeled nucleotides, and streamlined purification conditions to yield nanoscopy-compatible oligonucleotides with dyes in variable arrays (NOVA probes). With these probes, we detect genomic loci ranging from genome-wide repetitive regions down to non-repetitive loci below the kilobase scale. In conclusion, we introduce a simple workflow to generate densely labeled oligonucleotide pools that facilitate detection and nanoscopic measurements of small genomic elements in single cells.
Collapse
Affiliation(s)
- Clemens Steinek
- Faculty of Biology and Center for Molecular Biosystems (BioSysM), Human Biology and BioImaging, Ludwig-Maximilians-Universität München, 81377 Munich, Germany.
| | - Miguel Guirao-Ortiz
- Faculty of Biology and Center for Molecular Biosystems (BioSysM), Human Biology and BioImaging, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Gabriela Stumberger
- Faculty of Biology and Center for Molecular Biosystems (BioSysM), Human Biology and BioImaging, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Annika J Tölke
- Department of Chemistry, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - David Hörl
- Faculty of Biology and Center for Molecular Biosystems (BioSysM), Human Biology and BioImaging, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Thomas Carell
- Department of Chemistry, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Hartmann Harz
- Faculty of Biology and Center for Molecular Biosystems (BioSysM), Human Biology and BioImaging, Ludwig-Maximilians-Universität München, 81377 Munich, Germany.
| | - Heinrich Leonhardt
- Faculty of Biology and Center for Molecular Biosystems (BioSysM), Human Biology and BioImaging, Ludwig-Maximilians-Universität München, 81377 Munich, Germany.
| |
Collapse
|
17
|
Ng GYQ, Hande MP. Use of peptide nucleic acid probe to determine telomere dynamics in improving chromosome analysis in genetic toxicology studies. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2024; 897:503773. [PMID: 39054004 DOI: 10.1016/j.mrgentox.2024.503773] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 05/01/2024] [Accepted: 05/22/2024] [Indexed: 07/27/2024]
Abstract
Genetic toxicology, strategically located at the intersection of genetics and toxicology, aims to demystify the complex interplay between exogenous agents and our genetic blueprint. Telomeres, the protective termini of chromosomes, play instrumental roles in cellular longevity and genetic stability. Traditionally karyotyping and fluorescence in situ hybridisation (FISH), have been indispensable tools for chromosomal analysis following exposure to genotoxic agents. However, their scope in discerning nuanced molecular dynamics is limited. Peptide Nucleic Acids (PNAs) are synthetic entities that embody characteristics of both proteins and nucleic acids and have emerged as potential game-changers. This perspective report comprehensively examines the vast potential of PNAs in genetic toxicology, with a specific emphasis on telomere research. PNAs' superior resolution and precision make them a favourable choice for genetic toxicological assessments. The integration of PNAs in contemporary analytical workflows heralds a promising evolution in genetic toxicology, potentially revolutionizing diagnostics, prognostics, and therapeutic avenues. In this timely review, we attempted to assess the limitations of current PNA-FISH methodology and recommend refinements.
Collapse
Affiliation(s)
- Gavin Yong Quan Ng
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Manoor Prakash Hande
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
18
|
Margalit S, Tulpová Z, Detinis Zur T, Michaeli Y, Deek J, Nifker G, Haldar R, Gnatek Y, Omer D, Dekel B, Feldman HB, Grunwald A, Ebenstein Y. Long-Read Structural and Epigenetic Profiling of a Kidney Tumor-Matched Sample with Nanopore Sequencing and Optical Genome Mapping. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.31.587463. [PMID: 38915648 PMCID: PMC11195078 DOI: 10.1101/2024.03.31.587463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Carcinogenesis often involves significant alterations in the cancer genome architecture, marked by large structural and copy number variations (SVs and CNVs) that are difficult to capture with short-read sequencing. Traditionally, cytogenetic techniques are applied to detect such aberrations, but they are limited in resolution and do not cover features smaller than several hundred kilobases. Optical genome mapping and nanopore sequencing are attractive technologies that bridge this resolution gap and offer enhanced performance for cytogenetic applications. These methods profile native, individual DNA molecules, thus capturing epigenetic information. We applied both techniques to characterize a clear cell renal cell carcinoma (ccRCC) tumor's structural and copy number landscape, highlighting the relative strengths of each method in the context of variant size and average read length. Additionally, we assessed their utility for methylome and hydroxymethylome profiling, emphasizing differences in epigenetic analysis applicability.
Collapse
Affiliation(s)
- Sapir Margalit
- Department of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, 6997801 Tel Aviv, Israel
- Department of Biomedical Engineering, Tel Aviv University, 6997801 Tel Aviv, Israel
| | - Zuzana Tulpová
- Department of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, 6997801 Tel Aviv, Israel
- Department of Biomedical Engineering, Tel Aviv University, 6997801 Tel Aviv, Israel
- Institute of Experimental Botany of the Czech Academy of Sciences, Olomouc, Czech Republic
| | - Tahir Detinis Zur
- Department of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, 6997801 Tel Aviv, Israel
- Department of Biomedical Engineering, Tel Aviv University, 6997801 Tel Aviv, Israel
| | - Yael Michaeli
- Department of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, 6997801 Tel Aviv, Israel
- Department of Biomedical Engineering, Tel Aviv University, 6997801 Tel Aviv, Israel
| | - Jasline Deek
- Department of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, 6997801 Tel Aviv, Israel
- Department of Biomedical Engineering, Tel Aviv University, 6997801 Tel Aviv, Israel
| | - Gil Nifker
- Department of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, 6997801 Tel Aviv, Israel
- Department of Biomedical Engineering, Tel Aviv University, 6997801 Tel Aviv, Israel
| | - Rita Haldar
- Department of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, 6997801 Tel Aviv, Israel
- Department of Biomedical Engineering, Tel Aviv University, 6997801 Tel Aviv, Israel
| | - Yehudit Gnatek
- Pediatric Stem Cell Research Institute, Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, 52621 Ramat Gan, Israel
| | - Dorit Omer
- Pediatric Stem Cell Research Institute, Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, 52621 Ramat Gan, Israel
| | - Benjamin Dekel
- Pediatric Stem Cell Research Institute, Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, 52621 Ramat Gan, Israel
- Pediatric Nephrology Unit, The Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, 52621 Ramat Gan, Israel
- School of Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, 6997801 Tel Aviv, Israel
| | - Hagit Baris Feldman
- School of Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, 6997801 Tel Aviv, Israel
- The Genetics Institute and Genomics Center, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Assaf Grunwald
- Department of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, 6997801 Tel Aviv, Israel
- Department of Biomedical Engineering, Tel Aviv University, 6997801 Tel Aviv, Israel
| | - Yuval Ebenstein
- Department of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, 6997801 Tel Aviv, Israel
- Department of Biomedical Engineering, Tel Aviv University, 6997801 Tel Aviv, Israel
| |
Collapse
|
19
|
Jourdy Y, Chatron N, Frétigny M, Zawadzki C, Lienhart A, Stieltjes N, Rohrlich PS, Thauvin-Robinet C, Volot F, Hamida YF, Hariti G, Leuci A, Dargaud Y, Sanlaville D, Vinciguerra C. Whole F8 gene sequencing identified pathogenic structural variants in the remaining unsolved patients with severe hemophilia A. J Thromb Haemost 2024; 22:1616-1626. [PMID: 38484912 DOI: 10.1016/j.jtha.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/19/2024] [Accepted: 03/04/2024] [Indexed: 04/01/2024]
Abstract
BACKGROUND No F8 genetic abnormality is detected in approximately 1% to 2% of patients with severe hemophilia A (HA) using conventional genetic approaches. In these patients, deep intronic variation or F8 disrupting genomic rearrangement could be causal. OBJECTIVES The study aimed to identify the causal variation in families with a history of severe HA for whom genetic investigations failed. METHODS We performed whole F8 gene sequencing in 8 propositi. Genomic rearrangements were confirmed by Sanger sequencing of breakpoint junctions and/or quantitative polymerase chain reaction. RESULTS A structural variant disrupting F8 was found in each propositus, so that all the 815 families with a history of severe HA registered in our laboratory received a conclusive genetic diagnosis. These structural variants consisted of 3 balanced inversions, 3 large insertions of gained regions, and 1 retrotransposition of a mobile element. The 3 inversions were 105 Mb, 1.97 Mb, and 0.362 Mb in size. Among the insertions of gained regions, one corresponded to the insertion of a 34 kb gained region from chromosome 6q27 in F8 intron 6, another was the insertion of a 447 kb duplicated region from chromosome 9p22.1 in F8 intron 14, and the last one was the insertion of an Xq28 349 kb gained in F8 intron 5. CONCLUSION All the genetically unsolved cases of severe HA in this cohort were due to structural variants disrupting F8. This study highlights the effectiveness of whole F8 sequencing to improve the molecular diagnosis of HA when the conventional approach fails.
Collapse
Affiliation(s)
- Yohann Jourdy
- Hospices Civils de Lyon, Groupe Hospitalier Est, Service d'hématologie biologique, Bron, France; Université Claude Bernard Lyon 1, UR4609 Hémostase et thrombose, Lyon, France.
| | - Nicolas Chatron
- Hospices Civils de Lyon, Groupe Hospitalier Est, Service de génétique, Bron, France; Université Claude Bernard Lyon 1 - CNRS UMR 5261 -INSERM U1315, Institute NeuroMyoGène, Laboratoire Physiopathologie et Génétique du Neurone et du Muscle, Lyon, France
| | - Mathilde Frétigny
- Hospices Civils de Lyon, Groupe Hospitalier Est, Service d'hématologie biologique, Bron, France
| | - Christophe Zawadzki
- Pôle de Biologie Pathologie Génétique, Institut d'Hématologie - Transfusion, CHU Lille, Lille, France
| | - Anne Lienhart
- Hospices Civils de Lyon, Lyon Hemophilia Center and Clinical Haemostasis Unit, Bron, France
| | | | | | - Christel Thauvin-Robinet
- Centre de Génétique, Centre de Référence, Déficiences Intellectuelles de Causes Rares, Hôpital d'Enfants, CHU Dijon Bourgogne, Dijon, France
| | | | | | - Ghania Hariti
- Laboratoire de recherche en hémostase, Université d'Alger 1, Alger, Algérie
| | - Alexandre Leuci
- Université Claude Bernard Lyon 1, UR4609 Hémostase et thrombose, Lyon, France
| | - Yesim Dargaud
- Université Claude Bernard Lyon 1, UR4609 Hémostase et thrombose, Lyon, France; Hospices Civils de Lyon, Lyon Hemophilia Center and Clinical Haemostasis Unit, Bron, France
| | - Damien Sanlaville
- Hospices Civils de Lyon, Groupe Hospitalier Est, Service de génétique, Bron, France; Université Claude Bernard Lyon 1 - CNRS UMR 5261 -INSERM U1315, Institute NeuroMyoGène, Laboratoire Physiopathologie et Génétique du Neurone et du Muscle, Lyon, France
| | - Christine Vinciguerra
- Hospices Civils de Lyon, Groupe Hospitalier Est, Service d'hématologie biologique, Bron, France; Université Claude Bernard Lyon 1, UR4609 Hémostase et thrombose, Lyon, France
| |
Collapse
|
20
|
Song P, Tian Y, Chen S, Zhang S, Li X, You Z, Fu J, Xu W, Li Z, Luan J, Zhao Q, Wang C, Pang F. A novel method for simultaneous detection of hematological tumors and infectious pathogens by metagenomic next generation sequencing of plasma. Clin Chim Acta 2024; 557:117874. [PMID: 38484907 DOI: 10.1016/j.cca.2024.117874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/23/2024] [Accepted: 03/11/2024] [Indexed: 03/21/2024]
Abstract
BACKGROUND Metagenomic next-generation sequencing (mNGS) is valuable for pathogen identification; however, distinguishing between infectious diseases and conditions with potentially similar clinical manifestations, including malignant tumors, is challenging. Therefore, we developed a method for simultaneous detection of infectious pathogens and cancer in blood samples. METHODS Plasma samples (n = 244) were collected from 150 and 94 patients with infections and hematological malignancies, respectively, and analyzed by mNGS for pathogen detection, alongside human tumor chromosomal copy number variation (CNV) analysis (≥5Mbp or 10Mbp CNV region). Further, an evaluation set, comprising 87 plasma samples, was analyzed by mNGS and human CNV analysis, to validate the feasibility of the method. RESULTS Among 94 patients with hematological malignancy, sensitivity values of CNV detection for tumor diagnosis were 69.15 % and 32.98 % for CNV region 5Mbp and 10Mbp, respectively, with corresponding specificities of 92.62 % and 100 % in the infection group. Area under the ROC curve (AUC) values for 5Mbp and 10Mbp region were 0.825 and 0.665, respectively, which was a significant difference of 0.160 (95 % CI: 0.110-0.210; p < 0.001), highlighting the superiority of 5Mbp output region data. Six patients with high-risk CNV results were identified in the validation study: three with history of tumor treatment, two eventually newly-diagnosed with hematological malignancies, and one with indeterminate final diagnosis. CONCLUSIONS Concurrent CNV analysis alongside mNGS for infection diagnosis is promising for detecting malignant tumors. We recommend adopting a CNV region of 10Mbp over 5Mbp for our model, because of the lower false-positive rate (FPR).
Collapse
Affiliation(s)
- Pingping Song
- Department of Clinical Laboratory, Liaocheng People's Hospital, Liaocheng, China
| | - Yaxian Tian
- Department of Central Laboratory, Liaocheng People's Hospital, Liaocheng, China
| | - Shuai Chen
- Department of Clinical Laboratory, Liaocheng Third People's Hospital, Liaocheng, China
| | - Sheng Zhang
- Department of Pathology, Liaocheng Third People's Hospital, Liaocheng, China
| | - Xuan Li
- The Key Laboratory of Molecular Pharmacology, Liaocheng People's Hospital, Liaocheng, China
| | - Zhiqing You
- Department of Clinical Laboratory, Liaocheng People's Hospital, Liaocheng, China
| | - Juanjuan Fu
- Department of Clinical Laboratory, Liaocheng People's Hospital, Liaocheng, China
| | - Wenbin Xu
- Department of Clinical Laboratory, Liaocheng People's Hospital, Liaocheng, China
| | - Zhen Li
- Department of Clinical Laboratory, Liaocheng People's Hospital, Liaocheng, China
| | - Jing Luan
- Department of Hematology, Liaocheng People's Hospital, Liaocheng, China
| | - Qigang Zhao
- Department of Clinical Laboratory, Liaocheng People's Hospital, Liaocheng, China
| | - Chengtan Wang
- Department of Clinical Laboratory, Liaocheng People's Hospital, Liaocheng, China.
| | - Feng Pang
- Department of Clinical Laboratory, Liaocheng People's Hospital, Liaocheng, China.
| |
Collapse
|
21
|
Sahoo R, Jadhav S, Nema V. Journey of technological advancements in the detection of antimicrobial resistance. J Formos Med Assoc 2024; 123:430-441. [PMID: 37598038 DOI: 10.1016/j.jfma.2023.08.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/19/2023] [Accepted: 08/07/2023] [Indexed: 08/21/2023] Open
Abstract
Increased uses rather an extensive misuse of antibiotics due to easy availability and easy access have resulted in antibiotic resistance as a global crisis. The speed of discovery of new antibiotics has slowed down recently. Therefore, there is a need to reduce the rate of increase in resistance against the presently available antibiotics, or else many infections may be left untreatable or difficult to be treated due to the high prevalence of resistance. The judicious use of broad-spectrum antibiotics can control the increase in resistance profile. Various techniques are presently being used for the detection of antibiotic resistance. Conventional phenotypic methods are preferred that are highly reliable but are much more time-consuming. The patients cannot spare more time as the infection keeps increasing. The results with genotypic methods are obtained within 24 h as compared to phenotypic methods. Hence, recent molecular methods like qPCR can be used for detection. In this review, we present an overview of various methods useful for the detection of antibiotic resistance, with emphasis on their advantages and limitations. The review also emphasizes qPCR to be the most preferred method out of all because of various advantageous factors.
Collapse
Affiliation(s)
- Rituparna Sahoo
- ICMR-National AIDS Research Institute, 73 G MIDC Bhosari, Pune, 411 026, India
| | - Sushama Jadhav
- ICMR-National AIDS Research Institute, 73 G MIDC Bhosari, Pune, 411 026, India
| | - Vijay Nema
- ICMR-National AIDS Research Institute, 73 G MIDC Bhosari, Pune, 411 026, India.
| |
Collapse
|
22
|
Yuan X, Wang H, Sun Z, Zhou C, Chu SC, Bu J, Shen N. Anchored-fusion enables targeted fusion search in bulk and single-cell RNA sequencing data. CELL REPORTS METHODS 2024; 4:100733. [PMID: 38503288 PMCID: PMC10985232 DOI: 10.1016/j.crmeth.2024.100733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/15/2024] [Accepted: 02/23/2024] [Indexed: 03/21/2024]
Abstract
Here, we present Anchored-fusion, a highly sensitive fusion gene detection tool. It anchors a gene of interest, which often involves driver fusion events, and recovers non-unique matches of short-read sequences that are typically filtered out by conventional algorithms. In addition, Anchored-fusion contains a module based on a deep learning hierarchical structure that incorporates self-distillation learning (hierarchical view learning and distillation [HVLD]), which effectively filters out false positive chimeric fragments generated during sequencing while maintaining true fusion genes. Anchored-fusion enables highly sensitive detection of fusion genes, thus allowing for application in cases with low sequencing depths. We benchmark Anchored-fusion under various conditions and found it outperformed other tools in detecting fusion events in simulated data, bulk RNA sequencing (bRNA-seq) data, and single-cell RNA sequencing (scRNA-seq) data. Our results demonstrate that Anchored-fusion can be a useful tool for fusion detection tasks in clinically relevant RNA-seq data and can be applied to investigate intratumor heterogeneity in scRNA-seq data.
Collapse
Affiliation(s)
- Xilu Yuan
- Zhejiang Provincial Key Laboratory of Service Robot, College of Computer Science, Zhejiang University, Hangzhou, China
| | - Haishuai Wang
- Zhejiang Provincial Key Laboratory of Service Robot, College of Computer Science, Zhejiang University, Hangzhou, China; Shanghai Artificial Intelligence Laboratory, Shanghai, China.
| | - Zhongquan Sun
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chunpeng Zhou
- Zhejiang Provincial Key Laboratory of Service Robot, College of Computer Science, Zhejiang University, Hangzhou, China
| | - Simon Chong Chu
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Jiajun Bu
- Zhejiang Provincial Key Laboratory of Service Robot, College of Computer Science, Zhejiang University, Hangzhou, China
| | - Ning Shen
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China.
| |
Collapse
|
23
|
Lee B, Chern A, Fu AY, Zhang A, Sha MY. A Highly Sensitive XNA-Based RT-qPCR Assay for the Identification of ALK, RET, and ROS1 Fusions in Lung Cancer. Diagnostics (Basel) 2024; 14:488. [PMID: 38472960 DOI: 10.3390/diagnostics14050488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
Lung cancer is often triggered by genetic alterations that result in the expression of oncogenic tyrosine kinases. Specifically, ALK, RET, and ROS1 chimeric receptor tyrosine kinases are observed in approximately 5-7%, 1-2%, and 1-2% of NSCLC patients, respectively. The presence of these fusion genes determines the response to tyrosine kinase inhibitors. Thus, accurate detection of these gene fusions is essential in cancer research and precision oncology. To address this need, we have developed a multiplexed RT-qPCR assay using xeno nucleic acid (XNA) molecular clamping technology to detect lung cancer fusions. This assay can quantitatively detect thirteen ALK, seven ROS1, and seven RET gene fusions in FFPE samples. The sensitivity of the assay was established at a limit of detection of 50 copies of the synthetic template. Our assay has successfully identified all fusion transcripts using 50 ng of RNA from both reference FFPE samples and cell lines. After validation, a total of 77 lung cancer patient FFPE samples were tested, demonstrating the effectiveness of the XNA-based fusion gene assay with clinical samples. Importantly, this assay is adaptable to highly degraded RNA samples with low input amounts. Future steps involve expanding the testing to include a broader range of clinical samples as well as cell-free RNAs to further validate its applicability and reliability.
Collapse
Affiliation(s)
- Bongyong Lee
- DiaCarta Inc., 4385 Hopyard Rd., Suite 100, Pleasanton, CA 94588, USA
| | - Andrew Chern
- DiaCarta Inc., 4385 Hopyard Rd., Suite 100, Pleasanton, CA 94588, USA
| | - Andrew Y Fu
- DiaCarta Inc., 4385 Hopyard Rd., Suite 100, Pleasanton, CA 94588, USA
| | - Aiguo Zhang
- DiaCarta Inc., 4385 Hopyard Rd., Suite 100, Pleasanton, CA 94588, USA
| | - Michael Y Sha
- DiaCarta Inc., 4385 Hopyard Rd., Suite 100, Pleasanton, CA 94588, USA
| |
Collapse
|
24
|
Remini L, Segers M, Palmeri J, Walter JC, Parmeggiani A, Carlon E. Chromatin structure from high resolution microscopy: Scaling laws and microphase separation. Phys Rev E 2024; 109:024408. [PMID: 38491617 DOI: 10.1103/physreve.109.024408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 01/11/2024] [Indexed: 03/18/2024]
Abstract
Recent advances in experimental fluorescence microscopy allow high accuracy determination (resolution of 50 nm) of the three-dimensional physical location of multiple (up to ∼10^{2}) tagged regions of the chromosome. We investigate publicly available microscopy data for two loci of the human Chr21 obtained from multiplexed fluorescence in situ hybridization (FISH) methods for different cell lines and treatments. Inspired by polymer physics models, our analysis centers around distance distributions between different tags with the aim being to unravel the chromatin conformational arrangements. We show that for any specific genomic site, there are (at least) two different conformational arrangements of chromatin, implying coexisting distinct topologies which we refer to as phase α and phase β. These two phases show different scaling behaviors: the former is consistent with a crumpled globule, while the latter indicates a confined, but more extended conformation, such as a looped domain. The identification of these distinct phases sheds light on the coexistence of multiple chromatin topologies and provides insights into the effects of cellular context and/or treatments on chromatin structure.
Collapse
Affiliation(s)
- Loucif Remini
- Laboratoire Charles Coulomb (L2C), Université de Montpellier, CNRS UMR5221, Montpellier, France
| | - Midas Segers
- Soft Matter and Biophysics, KU Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium
| | - John Palmeri
- Laboratoire Charles Coulomb (L2C), Université de Montpellier, CNRS UMR5221, Montpellier, France
| | - Jean-Charles Walter
- Laboratoire Charles Coulomb (L2C), Université de Montpellier, CNRS UMR5221, Montpellier, France
| | - Andrea Parmeggiani
- Laboratoire Charles Coulomb (L2C), Université de Montpellier, CNRS UMR5221, Montpellier, France
| | - Enrico Carlon
- Soft Matter and Biophysics, KU Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium
| |
Collapse
|
25
|
Jang HJ, Shim KS, Lee J, Park JH, Kang SJ, Shin YM, Lee JB, Baek W, Yoon JK. Engineering of Cell Derived-Nanovesicle as an Alternative to Exosome Therapy. Tissue Eng Regen Med 2024; 21:1-19. [PMID: 38066355 PMCID: PMC10764700 DOI: 10.1007/s13770-023-00610-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/24/2023] [Accepted: 10/27/2023] [Indexed: 01/04/2024] Open
Abstract
BACKGROUND Exosomes, nano-sized vesicles ranging between 30 and 150 nm secreted by human cells, play a pivotal role in long-range intercellular communication and have attracted significant attention in the field of regenerative medicine. Nevertheless, their limited productivity and cost-effectiveness pose challenges for clinical applications. These issues have recently been addressed by cell-derived nanovesicles (CDNs), which are physically synthesized exosome-mimetic nanovesicles from parent cells, as a promising alternative to exosomes. CDNs exhibit structural, physical, and biological properties similar to exosomes, containing intracellular protein and genetic components encapsulated by the cell plasma membrane. These characteristics allow CDNs to be used as regenerative medicine and therapeutics on their own, or as a drug delivery system. METHODS The paper reviews diverse methods for CDN synthesis, current analysis techniques, and presents engineering strategies to improve lesion targeting efficiency and/or therapeutic efficacy. RESULTS CDNs, with their properties similar to those of exosomes, offer a cost-effective and highly productive alternative due to their non-living biomaterial nature, nano-size, and readiness for use, allowing them to overcome several limitations of conventional cell therapy methods. CONCLUSION Ongoing research and enhancement of CDNs engineering, along with comprehensive safety assessments and stability analysis, exhibit vast potential to advance regenerative medicine by enabling the development of efficient therapeutic interventions.
Collapse
Affiliation(s)
- Hye-Jeong Jang
- Department of Systems Biotechnology, Chung-Ang University, Anseong-Si, Gyeonggi-Do, 17546, Republic of Korea
| | - Kyu-Sik Shim
- Department of Plastic and Reconstructive Surgery, Institute for Human Tissue Restoration, Severance Hospital, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Jinah Lee
- Department of Biological Science, Research Institute of Women's Health, Brain Korea 21 Project, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Joo Hyeon Park
- Department of Biological Science, Research Institute of Women's Health, Brain Korea 21 Project, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Seong-Jun Kang
- Department of Systems Biotechnology, Chung-Ang University, Anseong-Si, Gyeonggi-Do, 17546, Republic of Korea
| | - Young Min Shin
- Department of Biological Science, Research Institute of Women's Health, Brain Korea 21 Project, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Jung Bok Lee
- Department of Biological Science, Research Institute of Women's Health, Brain Korea 21 Project, Sookmyung Women's University, Seoul, 04310, Republic of Korea.
| | - Wooyeol Baek
- Department of Plastic and Reconstructive Surgery, Institute for Human Tissue Restoration, Severance Hospital, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.
| | - Jeong-Kee Yoon
- Department of Systems Biotechnology, Chung-Ang University, Anseong-Si, Gyeonggi-Do, 17546, Republic of Korea.
| |
Collapse
|
26
|
Eitan LA, Khair IY, Alahmad S. Drug Metabolizing Enzymes: An Exclusive Guide into Latest Research in Pharmaco-genetic Dynamics in Arab Countries. Curr Drug Metab 2024; 25:465-478. [PMID: 39377381 DOI: 10.2174/0113892002323910240924145310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/05/2024] [Accepted: 09/11/2024] [Indexed: 10/09/2024]
Abstract
Drug metabolizing enzymes play a crucial role in the pharmacokinetics and pharmacodynamics of therapeutic drugs, influencing their efficacy and safety. This review explores the impact of genetic polymorphisms in drug-metabolizing genes on drug response within Arab populations. We examine the genetic diversity specific to Arab countries, focusing on the variations in key drug-metabolizing enzymes such as CYP450, GST, and UGT families. The review highlights recent research on polymorphisms in these genes and their implications for drug metabolism, including variations in allele frequencies and their effects on therapeutic outcomes. Additionally, the paper discusses how these genetic variations contribute to the variability in drug response and adverse drug reactions among individuals in Arab populations. By synthesizing current findings, this review aims to provide a comprehensive understanding of the pharmacogenetic landscape in Arab countries and offer insights into personalized medicine approaches tailored to genetic profiles. The findings underscore the importance of incorporating pharmacogenetic data into clinical practice to enhance drug efficacy and minimize adverse effects, ultimately paving the way for more effective and individualized treatment strategies in the region.
Collapse
Affiliation(s)
- Laith Al Eitan
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Iliya Yacoub Khair
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Saif Alahmad
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid, 22110, Jordan
| |
Collapse
|
27
|
Zhao K, Bai Y, Zhang Q, Zhao Z, Cao Y, Yang L, Wang N, Xu J, Wang B, Wu L, Gong X, Lin T, Wang Y, Wang W, Cai X, Yin Y, Xiong Z. Karyotyping of aneuploid and polyploid plants from low coverage whole-genome resequencing. BMC PLANT BIOLOGY 2023; 23:630. [PMID: 38062348 PMCID: PMC10704825 DOI: 10.1186/s12870-023-04650-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/30/2023] [Indexed: 12/18/2023]
Abstract
BACKGROUND Karyotype, as a basic characteristic of species, provides valuable information for fundamental theoretical research and germplasm resource innovation. However, traditional karyotyping techniques, including fluorescence in situ hybridization (FISH), are challenging and low in efficiency, especially when karyotyping aneuploid and polyploid plants. The use of low coverage whole-genome resequencing (lcWGR) data for karyotyping was explored, but existing methods are complicated and require control samples. RESULTS In this study, a new protocol for molecular karyotype analysis was provided, which proved to be a simpler, faster, and more accurate method, requiring no control. Notably, our method not only provided the copy number of each chromosome of an individual but also an accurate evaluation of the genomic contribution from its parents. Moreover, we verified the method through FISH and published resequencing data. CONCLUSIONS This method is of great significance for species evolution analysis, chromosome engineering, crop improvement, and breeding.
Collapse
Affiliation(s)
- Kanglu Zhao
- Key Laboratory of Herbage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Yanbo Bai
- Key Laboratory of Herbage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Qingyu Zhang
- Key Laboratory of Herbage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Zhen Zhao
- Key Laboratory of Herbage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Yao Cao
- Key Laboratory of Herbage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Lu Yang
- Key Laboratory of Herbage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Ni Wang
- Key Laboratory of Herbage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Junxiong Xu
- Key Laboratory of Herbage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Bo Wang
- Key Laboratory of Herbage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Lei Wu
- Key Laboratory of Herbage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Xiufeng Gong
- Key Laboratory of Herbage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Tuanrong Lin
- Institute of Ulanqab Agricultural and Forestry Sciences, Inner Mongolia, Ulanqab, 012000, China
| | - Yufeng Wang
- Institute of Ulanqab Agricultural and Forestry Sciences, Inner Mongolia, Ulanqab, 012000, China
| | - Wei Wang
- Institute of Ulanqab Agricultural and Forestry Sciences, Inner Mongolia, Ulanqab, 012000, China
| | - Xingkui Cai
- Key Laboratory of Horticultural Plant Biology, Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, College of Horticulture and Forestry Sciences, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yuhe Yin
- Institute of Ulanqab Agricultural and Forestry Sciences, Inner Mongolia, Ulanqab, 012000, China
| | - Zhiyong Xiong
- Key Laboratory of Herbage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China.
| |
Collapse
|
28
|
Greenstreet L, Afanassiev A, Kijima Y, Heitz M, Ishiguro S, King S, Yachie N, Schiebinger G. DNA-GPS: A theoretical framework for optics-free spatial genomics and synthesis of current methods. Cell Syst 2023; 14:844-859.e4. [PMID: 37751737 DOI: 10.1016/j.cels.2023.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 04/19/2023] [Accepted: 08/25/2023] [Indexed: 09/28/2023]
Abstract
While single-cell sequencing technologies provide unprecedented insights into genomic profiles at the cellular level, they lose the spatial context of cells. Over the past decade, diverse spatial transcriptomics and multi-omics technologies have been developed to analyze molecular profiles of tissues. In this article, we categorize current spatial genomics technologies into three classes: optical imaging, positional indexing, and mathematical cartography. We discuss trade-offs in resolution and scale, identify limitations, and highlight synergies between existing single-cell and spatial genomics methods. Further, we propose DNA-GPS (global positioning system), a theoretical framework for large-scale optics-free spatial genomics that combines ideas from mathematical cartography and positional indexing. DNA-GPS has the potential to achieve scalable spatial genomics for multiple measurement modalities, and by eliminating the need for optical measurement, it has the potential to position cells in three-dimensions (3D).
Collapse
Affiliation(s)
- Laura Greenstreet
- Department of Mathematics, The University of British Columbia, Vancouver, BC, Canada
| | - Anton Afanassiev
- Department of Mathematics, The University of British Columbia, Vancouver, BC, Canada
| | - Yusuke Kijima
- School of Biomedical Engineering, The University of British Columbia, Vancouver, BC, Canada; Department of Aquatic Bioscience, The University of Tokyo, Tokyo, Japan
| | - Matthieu Heitz
- Department of Mathematics, The University of British Columbia, Vancouver, BC, Canada
| | - Soh Ishiguro
- School of Biomedical Engineering, The University of British Columbia, Vancouver, BC, Canada
| | - Samuel King
- School of Biomedical Engineering, The University of British Columbia, Vancouver, BC, Canada
| | - Nozomu Yachie
- School of Biomedical Engineering, The University of British Columbia, Vancouver, BC, Canada; Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan; Premium Research Institute for Human Metaverse Medicine (WPI-PRIMe), Osaka University, Suita, Osaka, Japan; Graduate School of Media and Governance, Keio University, Fujisawa, Japan.
| | - Geoffrey Schiebinger
- Department of Mathematics, The University of British Columbia, Vancouver, BC, Canada; School of Biomedical Engineering, The University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
29
|
Rao H, Zhang H, Zou Y, Ma P, Huang T, Yuan H, Zhou J, Lu W, Li Q, Huang S, Liu Y, Yang B. Analysis of chromosomal structural variations in patients with recurrent spontaneous abortion using optical genome mapping. Front Genet 2023; 14:1248755. [PMID: 37732322 PMCID: PMC10507169 DOI: 10.3389/fgene.2023.1248755] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/21/2023] [Indexed: 09/22/2023] Open
Abstract
Background and aims: Certain chromosomal structural variations (SVs) in biological parents can lead to recurrent spontaneous abortions (RSAs). Unequal crossing over during meiosis can result in the unbalanced rearrangement of gamete chromosomes such as duplication or deletion. Unfortunately, routine techniques such as karyotyping, fluorescence in situ hybridization (FISH), chromosomal microarray analysis (CMA), and copy number variation sequencing (CNV-seq) cannot detect all types of SVs. In this study, we show that optical genome mapping (OGM) quickly and accurately detects SVs for RSA patients with a high resolution and provides more information about the breakpoint regions at gene level. Methods: Seven couples who had suffered RSA with unbalanced chromosomal rearrangements of aborted embryos were recruited, and ultra-high molecular weight (UHMW) DNA was isolated from their peripheral blood. The consensus genome map was created by de novo assembly on the Bionano Solve data analysis software. SVs and breakpoints were identified via alignments of the reference genome GRCh38/hg38. The exact breakpoint sequences were verified using either Oxford Nanopore sequencing or Sanger sequencing. Results: Various SVs in the recruited couples were successfully detected by OGM. Also, additional complex chromosomal rearrangement (CCRs) and four cryptic balanced reciprocal translocations (BRTs) were revealed, further refining the underlying genetic causes of RSA. Two of the disrupted genes identified in this study, FOXK2 [46,XY,t(7; 17)(q31.3; q25)] and PLXDC2 [46,XX,t(10; 16)(p12.31; q23.1)], had been previously shown to be associated with male fertility and embryo transit. Conclusion: OGM accurately detects chromosomal SVs, especially cryptic BRTs and CCRs. It is a useful complement to routine human genetic diagnostics, such as karyotyping, and detects cryptic BRTs and CCRs more accurately than routine genetic diagnostics.
Collapse
Affiliation(s)
- Huihua Rao
- Department of Medical Genetics, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, China
- Jiangxi Key Laboratory of Birth Defect Prevention and Control, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, China
| | - Haoyi Zhang
- School of Public Health, Nanchang University, Nanchang, Jiangxi, China
| | - Yongyi Zou
- Department of Medical Genetics, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, China
- Jiangxi Key Laboratory of Birth Defect Prevention and Control, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, China
| | - Pengpeng Ma
- Department of Medical Genetics, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, China
- Jiangxi Key Laboratory of Birth Defect Prevention and Control, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, China
| | - Tingting Huang
- Department of Medical Genetics, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, China
- Jiangxi Key Laboratory of Birth Defect Prevention and Control, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, China
| | - Huizhen Yuan
- Department of Medical Genetics, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, China
- Jiangxi Key Laboratory of Birth Defect Prevention and Control, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, China
| | - Jihui Zhou
- Department of Medical Genetics, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, China
- Jiangxi Key Laboratory of Birth Defect Prevention and Control, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, China
| | - Wan Lu
- Department of Medical Genetics, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, China
- Jiangxi Key Laboratory of Birth Defect Prevention and Control, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, China
| | - Qiao Li
- Department of Medical Genetics, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, China
- Jiangxi Key Laboratory of Birth Defect Prevention and Control, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, China
| | - Shuhui Huang
- Department of Medical Genetics, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, China
- Jiangxi Key Laboratory of Birth Defect Prevention and Control, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, China
| | - Yanqiu Liu
- Department of Medical Genetics, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, China
- Jiangxi Key Laboratory of Birth Defect Prevention and Control, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, China
| | - Bicheng Yang
- Department of Medical Genetics, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, China
- Jiangxi Key Laboratory of Birth Defect Prevention and Control, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, China
| |
Collapse
|
30
|
Boen JRA, Pintelon I, Gevaert AB, Segers VFM, van Craenenbroeck EM. Fluorescent In Situ Hybridization for miRNA Combined with Staining of Proteins. Curr Protoc 2023; 3:e880. [PMID: 37728252 DOI: 10.1002/cpz1.880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
The last decades have illustrated the importance of microRNAs (miRNAs) in various biological and pathological processes. The combined visualization of miRNAs using fluorescent in situ hybridization (FISH) and proteins using immunofluorescence (IF) can reveal their spatiotemporal distribution in relation to the cell and tissue morphology and can provide interesting insights into miRNA-protein interactions. However, standardized protocols for co-localization of miRNAs and proteins are currently lacking, and substantial technical obstacles still need to be addressed. In particular, the incompatibility of protein IF protocols with steps required for miRNA FISH, such as proteolytic pretreatments and ethylcarbodiimide post-fixation, as well as hurdles related to low signal intensity of low-copy miRNAs, remains challenging. Our technique may considerably enhance miRNA-based research, as current detection techniques lack the ability to elucidate cellular and subcellular localization. Here, we describe an optimized 2-day protocol for combined detection of low-abundant miRNAs and proteins in cryosections of cardiac tissue, without the need for protease-dependent pretreatment or post-fixation treatment. We successfully demonstrate endothelial-specific localization of low-abundant miR-181c-5p in cardiac tissue. © 2023 Wiley Periodicals LLC. Basic Protocol: Fluorescent in situ hybridization for miRNA combined with staining of proteins.
Collapse
Affiliation(s)
- Jente R A Boen
- Research Group Cardiovascular Diseases, GENCOR Department, Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| | - Isabel Pintelon
- Laboratory of Cellular Biology and Histology, Antwerp Centre for Advanced Microscopy, University of Antwerp, Antwerp, Belgium
| | - Andreas B Gevaert
- Research Group Cardiovascular Diseases, GENCOR Department, Department of Cardiology, Antwerp University Hospital (UZA), University of Antwerp, Antwerp, Belgium
| | - Vincent F M Segers
- Laboratory of Physiopharmacology, GENCOR Department, Department of Cardiology, Antwerp University Hospital (UZA), University of Antwerp, Antwerp, Belgium
| | - Emeline M van Craenenbroeck
- Research Group Cardiovascular Diseases, GENCOR Department, Department of Cardiology, Antwerp University Hospital (UZA), University of Antwerp, Antwerp, Belgium
| |
Collapse
|
31
|
Senapati S, Irshad IU, Sharma AK, Kumar H. Fundamental insights into the correlation between chromosome configuration and transcription. Phys Biol 2023; 20:051002. [PMID: 37467757 DOI: 10.1088/1478-3975/ace8e5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/19/2023] [Indexed: 07/21/2023]
Abstract
Eukaryotic chromosomes exhibit a hierarchical organization that spans a spectrum of length scales, ranging from sub-regions known as loops, which typically comprise hundreds of base pairs, to much larger chromosome territories that can encompass a few mega base pairs. Chromosome conformation capture experiments that involve high-throughput sequencing methods combined with microscopy techniques have enabled a new understanding of inter- and intra-chromosomal interactions with unprecedented details. This information also provides mechanistic insights on the relationship between genome architecture and gene expression. In this article, we review the recent findings on three-dimensional interactions among chromosomes at the compartment, topologically associating domain, and loop levels and the impact of these interactions on the transcription process. We also discuss current understanding of various biophysical processes involved in multi-layer structural organization of chromosomes. Then, we discuss the relationships between gene expression and genome structure from perturbative genome-wide association studies. Furthermore, for a better understanding of how chromosome architecture and function are linked, we emphasize the role of epigenetic modifications in the regulation of gene expression. Such an understanding of the relationship between genome architecture and gene expression can provide a new perspective on the range of potential future discoveries and therapeutic research.
Collapse
Affiliation(s)
- Swayamshree Senapati
- School of Basic Sciences, Indian Institute of Technology, Bhubaneswar, Argul, Odisha 752050, India
| | - Inayat Ullah Irshad
- Department of Physics, Indian Institute of Technology, Jammu, Jammu 181221, India
| | - Ajeet K Sharma
- Department of Physics, Indian Institute of Technology, Jammu, Jammu 181221, India
- Department of Biosciences and Bioengineering, Indian Institute of Technology Jammu, Jammu 181221, India
| | - Hemant Kumar
- School of Basic Sciences, Indian Institute of Technology, Bhubaneswar, Argul, Odisha 752050, India
| |
Collapse
|
32
|
Patterson B, Yang B, Tanaka Y, Kim KY, Cakir B, Xiang Y, Kim J, Wang S, Park IH. Female naïve human pluripotent stem cells carry X chromosomes with Xa-like and Xi-like folding conformations. SCIENCE ADVANCES 2023; 9:eadf2245. [PMID: 37540754 PMCID: PMC10403202 DOI: 10.1126/sciadv.adf2245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 07/06/2023] [Indexed: 08/06/2023]
Abstract
Three-dimensional (3D) genomics shows immense promise for studying X chromosome inactivation (XCI) by interrogating changes to the X chromosomes' 3D states. Here, we sought to characterize the 3D state of the X chromosome in naïve and primed human pluripotent stem cells (hPSCs). Using chromatin tracing, we analyzed X chromosome folding conformations in these cells with megabase genomic resolution. X chromosomes in female naïve hPSCs exhibit folding conformations similar to the active X chromosome (Xa) and the inactive X chromosome (Xi) in somatic cells. However, naïve X chromosomes do not exhibit the chromatin compaction typically associated with these somatic X chromosome states. In H7 naïve human embryonic stem cells, XIST accumulation observed on damaged X chromosomes demonstrates the potential for naïve hPSCs to activate XCI-related mechanisms. Overall, our findings provide insight into the X chromosome status of naïve hPSCs with a single-chromosome resolution and are critical in understanding the unique epigenetic regulation in early embryonic cells.
Collapse
Affiliation(s)
- Benjamin Patterson
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06520, USA
| | - Bing Yang
- Department of Genetics, and Department of Cell Biology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Yoshiaki Tanaka
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06520, USA
| | - Kun-Yong Kim
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06520, USA
| | - Bilal Cakir
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06520, USA
| | - Yangfei Xiang
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06520, USA
| | - Jonghun Kim
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06520, USA
| | - Siyuan Wang
- Department of Genetics, and Department of Cell Biology, Yale School of Medicine, New Haven, CT 06520, USA
| | - In-Hyun Park
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
33
|
Kim MJ, Li Y, Junge JA, Kim NK, Fraser SE, Zhang C. Development of Highly Fluorogenic Styrene Probes for Visualizing RNA in Live Cells. ACS Chem Biol 2023; 18:1523-1533. [PMID: 37200527 PMCID: PMC10367048 DOI: 10.1021/acschembio.3c00141] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/05/2023] [Indexed: 05/20/2023]
Abstract
Styrene dyes are useful imaging probes and fluorescent sensors due to their strong fluorogenic responses to environmental changes or binding macromolecules. Previously, indole-containing styrene dyes have been reported to selectively bind RNA in the nucleolus and cytoplasm. However, the application of these indole-based dyes in cell imaging is limited by their moderate fluorescence enhancement and quantum yields, as well as relatively high background associated with these green-emitting dyes. In this work, we have investigated the positional and electronic effects of the electron donor by generating regioisomeric and isosteric analogues of the indole ring. Select probes exhibited large Stokes shifts, enhanced molar extinction coefficients, and bathochromic shifts in their absorption and fluorescence wavelengths. In particular, the indolizine analogues displayed high membrane permeability, strong fluorogenic responses upon binding RNA, compatibility with fluorescence lifetime imaging microscopy (FLIM), low cytotoxicity, and excellent photostability. These indolizine dyes not only give rise to rapid, sensitive, and intense staining of nucleoli in live cells but can also resolve subnucleolar structures enabling highly detailed studies of nucleolar morphology. Furthermore, our dyes can partition into RNA coacervates and resolve the formation of multiphase complex coacervate droplets. These indolizine-containing styrene probes offer the highest fluorescence enhancement among the RNA-selective dyes reported in the literature; thus, these new dyes are excellent alternatives to the commercially available RNA dye, SYTO RNASelect, for visualizing RNA in live cells and in vitro.
Collapse
Affiliation(s)
- Moon Jung Kim
- Department
of Chemistry & Loker Hydrocarbon Research Institute, University of Southern California, Los Angeles, California 90089, United States
| | - Yida Li
- Department
of Chemistry & Loker Hydrocarbon Research Institute, University of Southern California, Los Angeles, California 90089, United States
| | - Jason A. Junge
- Department
of Biological Sciences, Division of Molecular and Computational Biology, University of Southern California, Los Angeles, California 90089, United States
- Translational
Imaging Center, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, California 90089, United States
| | - Nathan K. Kim
- Department
of Chemistry & Loker Hydrocarbon Research Institute, University of Southern California, Los Angeles, California 90089, United States
| | - Scott E. Fraser
- Department
of Biological Sciences, Division of Molecular and Computational Biology, University of Southern California, Los Angeles, California 90089, United States
- Translational
Imaging Center, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, California 90089, United States
| | - Chao Zhang
- Department
of Chemistry & Loker Hydrocarbon Research Institute, University of Southern California, Los Angeles, California 90089, United States
- Department
of Biological Sciences, Division of Molecular and Computational Biology, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
34
|
Poisson W, Bastien A, Gilbert I, Carrier A, Prunier J, Robert C. Cytogenetic screening of a Canadian swine breeding nucleus using a newly developed karyotyping method named oligo-banding. Genet Sel Evol 2023; 55:47. [PMID: 37430194 DOI: 10.1186/s12711-023-00819-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 06/23/2023] [Indexed: 07/12/2023] Open
Abstract
BACKGROUND The frequency of chromosomal rearrangements in Canadian breeding boars has been estimated at 0.91 to 1.64%. These abnormalities are widely recognized as a potential cause of subfertility in livestock production. Since artificial insemination is practiced in almost all intensive pig production systems, the use of elite boars carrying cytogenetic defects that have an impact on fertility can lead to major economic losses. To avoid keeping subfertile boars in artificial insemination centres and spreading chromosomal defects within populations, cytogenetic screening of boars is crucial. Different techniques are used for this purpose, but several issues are frequently encountered, i.e. environmental factors can influence the quality of results, the lack of genomic information outputted by these techniques, and the need for prior cytogenetic skills. The aim of this study was to develop a new pig karyotyping method based on fluorescent banding patterns. RESULTS The use of 207,847 specific oligonucleotides generated 96 fluorescent bands that are distributed across the 18 autosomes and the sex chromosomes. Tested alongside conventional G-banding, this oligo-banding method allowed us to identify four chromosomal translocations and a rare unbalanced chromosomal rearrangement that was not detected by conventional banding. In addition, this method allowed us to investigate chromosomal imbalance in spermatozoa. CONCLUSIONS The use of oligo-banding was found to be appropriate for detecting chromosomal aberrations in a Canadian pig nucleus and its convenient design and use make it an interesting tool for livestock karyotyping and cytogenetic studies.
Collapse
Affiliation(s)
- William Poisson
- Département des sciences animales, Faculté des sciences de l'agriculture et de l'alimentation, Université Laval, Québec, QC, Canada
- Centre de recherche en reproduction, développement et santé intergénérationnelle, Québec, QC, Canada
| | - Alexandre Bastien
- Plateforme d'imagerie et microscopie, Institut de biologie intégrative et des systèmes, Université Laval, Québec, QC, Canada
| | - Isabelle Gilbert
- Département des sciences animales, Faculté des sciences de l'agriculture et de l'alimentation, Université Laval, Québec, QC, Canada
- Centre de recherche en reproduction, développement et santé intergénérationnelle, Québec, QC, Canada
| | - Alexandra Carrier
- Département des sciences animales, Faculté des sciences de l'agriculture et de l'alimentation, Université Laval, Québec, QC, Canada
- Centre de recherche en reproduction, développement et santé intergénérationnelle, Québec, QC, Canada
| | - Julien Prunier
- Département de médecine moléculaire, Faculté de médecine, Université Laval, Québec, QC, Canada
| | - Claude Robert
- Département des sciences animales, Faculté des sciences de l'agriculture et de l'alimentation, Université Laval, Québec, QC, Canada.
- Centre de recherche en reproduction, développement et santé intergénérationnelle, Québec, QC, Canada.
| |
Collapse
|
35
|
Vijg J, Schumacher B, Abakir A, Antonov M, Bradley C, Cagan A, Church G, Gladyshev VN, Gorbunova V, Maslov AY, Reik W, Sharifi S, Suh Y, Walsh K. Mitigating age-related somatic mutation burden. Trends Mol Med 2023; 29:530-540. [PMID: 37121869 PMCID: PMC11816329 DOI: 10.1016/j.molmed.2023.04.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/05/2023] [Accepted: 04/06/2023] [Indexed: 05/02/2023]
Abstract
Genomes are inherently unstable and require constant DNA repair to maintain their genetic information. However, selective pressure has optimized repair mechanisms in somatic cells only to allow transmitting genetic information to the next generation, not to maximize sequence integrity long beyond the reproductive age. Recent studies have confirmed that somatic mutations, due to errors during genome repair and replication, accumulate in tissues and organs of humans and model organisms. Here, we describe recent advances in the quantitative analysis of somatic mutations in vivo. We also review evidence for or against a possible causal role of somatic mutations in aging. Finally, we discuss options to prevent, delay or eliminate de novo, random somatic mutations as a cause of aging.
Collapse
Affiliation(s)
- Jan Vijg
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Center for Single-Cell Omics, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Björn Schumacher
- Institute for Genome Stability in Aging and Disease, University and University Hospital of Cologne, Cologne, Germany; Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.
| | - Abdulkadir Abakir
- Altos Labs Cambridge Institute of Science, Granta Park, Cambridge, UK
| | | | | | - Alex Cagan
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - George Church
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Vadim N Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Vera Gorbunova
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| | - Alexander Y Maslov
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Wolf Reik
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK; Epigenetics Programme, Babraham Institute, Cambridge, CB22 3AT, UK; Altos Labs Cambridge Institute of Science, Granta Park, Cambridge, UK; Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, UK; Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| | | | - Yousin Suh
- Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, NY, USA; Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, USA
| | - Kenneth Walsh
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| |
Collapse
|
36
|
Raymond WS, Ghaffari S, Aguilera LU, Ron E, Morisaki T, Fox ZR, May MP, Stasevich TJ, Munsky B. Using mechanistic models and machine learning to design single-color multiplexed nascent chain tracking experiments. Front Cell Dev Biol 2023; 11:1151318. [PMID: 37325568 PMCID: PMC10267835 DOI: 10.3389/fcell.2023.1151318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 05/09/2023] [Indexed: 06/17/2023] Open
Abstract
mRNA translation is the ubiquitous cellular process of reading messenger-RNA strands into functional proteins. Over the past decade, large strides in microscopy techniques have allowed observation of mRNA translation at a single-molecule resolution for self-consistent time-series measurements in live cells. Dubbed Nascent chain tracking (NCT), these methods have explored many temporal dynamics in mRNA translation uncaptured by other experimental methods such as ribosomal profiling, smFISH, pSILAC, BONCAT, or FUNCAT-PLA. However, NCT is currently restricted to the observation of one or two mRNA species at a time due to limits in the number of resolvable fluorescent tags. In this work, we propose a hybrid computational pipeline, where detailed mechanistic simulations produce realistic NCT videos, and machine learning is used to assess potential experimental designs for their ability to resolve multiple mRNA species using a single fluorescent color for all species. Our simulation results show that with careful application this hybrid design strategy could in principle be used to extend the number of mRNA species that could be watched simultaneously within the same cell. We present a simulated example NCT experiment with seven different mRNA species within the same simulated cell and use our ML labeling to identify these spots with 90% accuracy using only two distinct fluorescent tags. We conclude that the proposed extension to the NCT color palette should allow experimentalists to access a plethora of new experimental design possibilities, especially for cell Signaling applications requiring simultaneous study of multiple mRNAs.
Collapse
Affiliation(s)
- William S Raymond
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO, United States
| | - Sadaf Ghaffari
- Department of Computer Science, Colorado State University, Fort Collins, CO, United States
| | - Luis U Aguilera
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, CO, United States
| | - Eric Ron
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO, United States
| | - Tatsuya Morisaki
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, United States
| | - Zachary R Fox
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO, United States
- Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Michael P May
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO, United States
| | - Timothy J Stasevich
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, United States
- World Research Hub Initiative and Cell Biology Unit, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Brian Munsky
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO, United States
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
37
|
Arnould B, Quillin AL, Heemstra JM. Tracking the Message: Applying Single Molecule Localization Microscopy to Cellular RNA Imaging. Chembiochem 2023; 24:e202300049. [PMID: 36857087 PMCID: PMC10192057 DOI: 10.1002/cbic.202300049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/02/2023]
Abstract
RNA function is increasingly appreciated to be more complex than merely communicating between DNA sequence and protein structure. RNA localization has emerged as a key contributor to the intricate roles RNA plays in the cell, and the link between dysregulated spatiotemporal localization and disease warrants an exploration beyond sequence and structure. However, the tools needed to visualize RNA with precise resolution are lacking in comparison to methods available for studying proteins. In the past decade, many techniques have been developed for imaging RNA, and in parallel super resolution and single-molecule techniques have enabled imaging of single molecules in cells. Of these methods, single molecule localization microscopy (SMLM) has shown significant promise for probing RNA localization. In this review, we highlight current approaches that allow super resolution imaging of specific RNA transcripts and summarize challenges and future opportunities for developing innovative RNA labeling methods that leverage the power of SMLM.
Collapse
Affiliation(s)
- Benoît Arnould
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Alexandria L Quillin
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Jennifer M Heemstra
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
| |
Collapse
|
38
|
Salataj E, Spilianakis CG, Chaumeil J. Single-cell detection of primary transcripts, their genomic loci and nuclear factors by 3D immuno-RNA/DNA FISH in T cells. Front Immunol 2023; 14:1156077. [PMID: 37215121 PMCID: PMC10193148 DOI: 10.3389/fimmu.2023.1156077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/12/2023] [Indexed: 05/24/2023] Open
Abstract
Over the past decades, it has become increasingly clear that higher order chromatin folding and organization within the nucleus is involved in the regulation of genome activity and serves as an additional epigenetic mechanism that modulates cellular functions and gene expression programs in diverse biological processes. In particular, dynamic allelic interactions and nuclear locations can be of functional importance during the process of lymphoid differentiation and the regulation of immune responses. Analyses of the proximity between chromatin and/or nuclear regions can be performed on populations of cells with high-throughput sequencing approaches such as chromatin conformation capture ("3C"-based) or DNA adenine methyltransferase identification (DamID) methods, or, in individual cells, by the simultaneous visualization of genomic loci, their primary transcripts and nuclear compartments within the 3-dimensional nuclear space using Fluorescence In Situ Hybridization (FISH) and immunostaining. Here, we present a detailed protocol to simultaneously detect nascent RNA transcripts (3D RNA FISH), their genomic loci (3D DNA FISH) and/or their chromosome territories (CT paint DNA FISH) combined with the antibody-based detection of various nuclear factors (immunofluorescence). We delineate the application and effectiveness of this robust and reproducible protocol in several murine T lymphocyte subtypes (from differentiating thymic T cells, to activated splenic and peripheral T cells) as well as other murine cells, including embryonic stem cells, B cells, megakaryocytes and macrophages.
Collapse
Affiliation(s)
- Eralda Salataj
- Université Paris Cité, Institut Cochin, INSERM, CNRS, Paris, France
- Institute of Molecular Biology and Biotechnology-Foundation for Research and Technology Hellas, Heraklion, Crete, Greece
| | - Charalampos G. Spilianakis
- Institute of Molecular Biology and Biotechnology-Foundation for Research and Technology Hellas, Heraklion, Crete, Greece
- Department of Biology, University of Crete, Heraklion, Crete, Greece
| | - Julie Chaumeil
- Université Paris Cité, Institut Cochin, INSERM, CNRS, Paris, France
| |
Collapse
|
39
|
Kikuchi S, Sakamoto T, Matsunaga S, Iwamoto A. Novel whole-mount FISH analysis for intact root of Arabidopsis thaliana with spatial reference to 3D visualization. JOURNAL OF PLANT RESEARCH 2023; 136:423-428. [PMID: 36719512 DOI: 10.1007/s10265-023-01438-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 01/22/2023] [Indexed: 06/18/2023]
Abstract
Whole-mount fluorescent in situ hybridization (WM-FISH) is an effective tool to observe chromosome behavior in tissues or organs. However, it is difficult to obtain a precise spatial profile of fluorescent signals in roots using conventional WM-FISH mainly because of the severe damage caused during the processing. To address this problem, we established a novel WM-FISH analysis for intact roots of Arabidopsis thaliana and successfully obtained a precise spatial profile of nuclear size and centromere signals. The two main improvements in the novel WM-FISH analysis are: (i) hybridization was performed directly on MAS-coated glass slides covered with silicon wells and (ii) conditions for enzyme treatment were optimized (37 °C, 45 s). After the WM-FISH using a centromere probe, we analyzed the results by 3D data processing to quantify the nuclear volume and number of centromere signals of the obtained cortical cell files and determined the position of each nucleus in intact roots. Then we plotted the nuclear volume and number of centromere signals versus distance from the quiescent center to evaluate the precise spatial profile of each parameter.
Collapse
Affiliation(s)
- Suzuka Kikuchi
- Department of Biological Sciences, Graduate School of Science, Kanagawa University, 2946, 259-1293, Tsuchiya, Hiratsuka, Kanagawa, Japan.
| | - Takuya Sakamoto
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, 278-8510, Noda, Chiba, Japan
| | - Sachihiro Matsunaga
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, 5-1-5 Kashiwanoha, 277-8561, Kashiwa, Chiba, Japan
| | - Akitoshi Iwamoto
- Department of Biological Sciences, Graduate School of Science, Kanagawa University, 2946, 259-1293, Tsuchiya, Hiratsuka, Kanagawa, Japan
- Department of Biological Science, Faculty of Science, Kanagawa University, 2946, 259-1293, Tsuchiya, Hiratsuka, Kanagawa, Japan
| |
Collapse
|
40
|
Pecciarini L, Brunetto E, Grassini G, De Pascali V, Ogliari FR, Talarico A, Marra G, Magliacane G, Redegalli M, Arrigoni G, Lazzari C, Gregorc V, Bulotta A, Doglioni C, Cangi MG. Gene Fusion Detection in NSCLC Routine Clinical Practice: Targeted-NGS or FISH? Cells 2023; 12:cells12081135. [PMID: 37190044 DOI: 10.3390/cells12081135] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/05/2023] [Accepted: 04/10/2023] [Indexed: 05/17/2023] Open
Abstract
The ability to identify the broadest range of targetable gene fusions is crucial to facilitate personalized therapy selection for advanced lung adenocarcinoma (LuADs) patients harboring targetable receptor tyrosine kinase (RTK) genomic alterations. In order to evaluate the most effective testing approach for LuAD targetable gene fusion detection, we analyzed 210 NSCLC selected clinical samples, comparing in situ (Fluorescence In Situ Hybridization, FISH, and ImmunoHistoChemistry, IHC) and molecular (targeted RNA Next-Generation Sequencing, NGS, and RealTime-PCR, RT-PCR) approaches. The overall concordance among these methods was high (>90%), and targeted RNA NGS was confirmed to be the most efficient technique for gene fusion identification in clinical practice, allowing the simultaneous analysis of a large set of genomic rearrangements at the RNA level. However, we observed that FISH was useful to detect targetable fusions in those samples with inadequate tissue material for molecular testing as well as in those few cases whose fusions were not identified by the RNA NGS panel. We conclude that the targeted RNA NGS analysis of LuADs allows accurate RTK fusion detection; nevertheless, standard methods such as FISH should not be dismissed, as they can crucially contribute to the completion of the molecular characterization of LuADs and, most importantly, the identification of patients as candidates for targeted therapies.
Collapse
Affiliation(s)
- Lorenza Pecciarini
- Pathology Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Emanuela Brunetto
- Pathology Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Greta Grassini
- Pathology Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Valeria De Pascali
- Pathology Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | | | - Anna Talarico
- Pathology Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Giovanna Marra
- Pathology Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Gilda Magliacane
- Pathology Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Miriam Redegalli
- Pathology Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Gianluigi Arrigoni
- Pathology Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Chiara Lazzari
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Turin, Italy
| | - Vanesa Gregorc
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Turin, Italy
| | - Alessandra Bulotta
- Department of Oncology, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Claudio Doglioni
- Pathology Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Maria Giulia Cangi
- Pathology Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| |
Collapse
|
41
|
Optical Genome Mapping for Cytogenetic Diagnostics in AML. Cancers (Basel) 2023; 15:cancers15061684. [PMID: 36980569 PMCID: PMC10046241 DOI: 10.3390/cancers15061684] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 02/24/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023] Open
Abstract
The classification and risk stratification of acute myeloid leukemia (AML) is based on reliable genetic diagnostics. A broad and expanding variety of relevant aberrations are structural variants beyond single-nucleotide variants. Optical Genome Mapping is an unbiased, genome-wide, amplification-free method for the detection of structural variants. In this review, the current knowledge of Optical Genome Mapping (OGM) with regard to diagnostics in hematological malignancies in general, and AML in specific, is summarized. Furthermore, this review focuses on the ability of OGM to expand the use of cytogenetic diagnostics in AML and perhaps even replace older techniques such as chromosomal-banding analysis, fluorescence in situ hybridization, or copy number variation microarrays. Finally, OGM is compared to amplification-based techniques and a brief outlook for future directions is given.
Collapse
|
42
|
Zhang S, Pei Z, Lei C, Zhu S, Deng K, Zhou J, Yang J, Lu D, Sun X, Xu C, Xu C. Detection of cryptic balanced chromosomal rearrangements using high-resolution optical genome mapping. J Med Genet 2023; 60:274-284. [PMID: 35710108 DOI: 10.1136/jmedgenet-2022-108553] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/28/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Chromosomal rearrangements have profound consequences in diverse human genetic diseases. Currently, the detection of balanced chromosomal rearrangements (BCRs) mainly relies on routine cytogenetic G-banded karyotyping. However, cryptic BCRs are hard to detect by karyotyping, and the risk of miscarriage or delivering abnormal offspring with congenital malformations in carrier couples is significantly increased. In the present study, we aimed to investigate the potential of single-molecule optical genome mapping (OGM) in unravelling cryptic chromosomal rearrangements. METHODS Eleven couples with normal karyotypes that had abortions/affected offspring with unbalanced rearrangements were enrolled. Ultra-high-molecular-weight DNA was isolated from peripheral blood cells and processed via OGM. The genome assembly was performed followed by variant calling and annotation. Meanwhile, multiple detection strategies, including FISH, long-range-PCR amplicon-based next-generation sequencing and Sanger sequencing were implemented to confirm the results obtained from OGM. RESULTS High-resolution OGM successfully detected cryptic reciprocal translocation in all recruited couples, which was consistent with the results of FISH and sequencing. All high-confidence cryptic chromosomal translocations detected by OGM were confirmed by sequencing analysis of rearrangement breakpoints. Moreover, OGM revealed additional complex rearrangement events such as inverted aberrations, further refining potential genetic interpretation. CONCLUSION To the best of our knowledge, this is the first study wherein OGM facilitate the rapid and robust detection of cryptic chromosomal reciprocal translocations in clinical practice. With the excellent performance, our findings suggest that OGM is well qualified as an accurate, comprehensive and first-line method for detecting cryptic BCRs in routine clinical testing.
Collapse
Affiliation(s)
- Shuo Zhang
- Shanghai Ji Ai Genetics & IVF Institute, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Zhenle Pei
- Shanghai Ji Ai Genetics & IVF Institute, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Caixia Lei
- Shanghai Ji Ai Genetics & IVF Institute, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Saijuan Zhu
- Shanghai Ji Ai Genetics & IVF Institute, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Ke Deng
- Shanghai Ji Ai Genetics & IVF Institute, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Jing Zhou
- Shanghai Ji Ai Genetics & IVF Institute, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Jingmin Yang
- State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai, China.,NHC Key Laboratory of Birth Defects and Reproductive Health, Chongqing Key Laboratory of Birth Defects and Reproductive Health, Chongqing Population and Family Planning, Science and Technology Research Institute, Chongqing, China
| | - Daru Lu
- State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai, China.,NHC Key Laboratory of Birth Defects and Reproductive Health, Chongqing Key Laboratory of Birth Defects and Reproductive Health, Chongqing Population and Family Planning, Science and Technology Research Institute, Chongqing, China
| | - Xiaoxi Sun
- Shanghai Ji Ai Genetics & IVF Institute, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Chenming Xu
- Shanghai Ji Ai Genetics & IVF Institute, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Congjian Xu
- Shanghai Ji Ai Genetics & IVF Institute, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| |
Collapse
|
43
|
Brakta S, Hawkins ZA, Sahajpal N, Seman N, Kira D, Chorich LP, Kim HG, Xu H, Phillips JA, Kolhe R, Layman LC. Rare structural variants, aneuploidies, and mosaicism in individuals with Mullerian aplasia detected by optical genome mapping. Hum Genet 2023; 142:483-494. [PMID: 36797380 DOI: 10.1007/s00439-023-02522-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 01/06/2023] [Indexed: 02/18/2023]
Abstract
The molecular basis of Mayer-Rokitansky-Kuster-Hauser (MRKH) syndrome remains largely unknown. Pathogenic variants in WNT4 and HNF1B have been confirmed in a small percent of individuals. A variety of copy number variants have been reported, but causal gene(s) remain to be identified. We hypothesized that rare structural variants (SVs) would be present in some individuals with MRKH, which could explain the genetic basis of the syndrome. Large molecular weight DNA was extracted from lymphoblastoid cells from 87 individuals with MRKH and available parents. Optical genome mapping (OGM) was performed to identify SVs, which were confirmed by another method (quantitative PCR, chromosomal microarray, karyotype, or fluorescent in situ hybridization) when possible. Thirty-four SVs that overlapped coding regions of genes with potential involvement in MRKH were identified, 14 of which were confirmed by a second method. These 14 SVs were present in 17/87 (19.5%) of probands with MRKH and included seven deletions, three duplications, one new translocation in 5/50 cells-t(7;14)(q32;q32), confirmation of a previously identified translocation-t(3;16)(p22.3;p13.3), and two aneuploidies. Of interest, three cases of mosaicism (3.4% of probands) were identified-25% mosaicism for trisomy 12, 45,X(75%)/46,XX (25%), and 10% mosaicism for a 7;14 translocation. Our study constitutes the first systematic investigation of SVs by OGM in individuals with MRKH. We propose that OGM is a promising method that enables a comprehensive investigation of a variety of SVs in a single assay including cryptic translocations and mosaic aneuploidies. These observations suggest that mosaicism could play a role in the genesis of MRKH.
Collapse
Affiliation(s)
- Soumia Brakta
- Section of Reproductive Endocrinology, Infertility, & Genetics, Department of Obstetrics & Gynecology, Medical College of Georgia, Augusta University, Augusta, Georgia.
| | - Zoe A Hawkins
- Section of Reproductive Endocrinology, Infertility, & Genetics, Department of Obstetrics & Gynecology, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Nikhil Sahajpal
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, Georgia.,Department of Genetics, Greenwood Genetics Center, Greenwood, SC, USA
| | - Natalie Seman
- Section of Reproductive Endocrinology, Infertility, & Genetics, Department of Obstetrics & Gynecology, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Dina Kira
- Section of Reproductive Endocrinology, Infertility, & Genetics, Department of Obstetrics & Gynecology, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Lynn P Chorich
- Section of Reproductive Endocrinology, Infertility, & Genetics, Department of Obstetrics & Gynecology, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Hyung-Goo Kim
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Doha, Qatar
| | - Hongyan Xu
- Department of Population Health Sciences, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - John A Phillips
- Division of Medical Genetics and Genomic Medicine, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ravindra Kolhe
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Lawrence C Layman
- Section of Reproductive Endocrinology, Infertility, & Genetics, Department of Obstetrics & Gynecology, Medical College of Georgia, Augusta University, Augusta, Georgia. .,Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia. .,Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia.
| |
Collapse
|
44
|
Molnar A, Monroe H, Basri Aydin H, Arslan ME, Lightle A, Lee H, El Jabbour T. Tumors of the Digestive System: Comprehensive Review of Ancillary Testing and Biomarkers in the Era of Precision Medicine. Curr Oncol 2023; 30:2388-2404. [PMID: 36826143 PMCID: PMC9954843 DOI: 10.3390/curroncol30020182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 02/18/2023] Open
Abstract
Immunotherapy has remained at the vanguard of promising cancer therapeutic regimens due to its exceptionally high specificity for tumor cells and potential for significantly improved treatment-associated quality of life compared to other therapeutic approaches such as surgery and chemoradiation. This is especially true in the digestive system, where high rates of mutation give rise to a host of targetable tumor-specific antigens. Many patients, however, do not exhibit measurable improvements under immunotherapy due to intrinsic or acquired resistance, making predictive biomarkers necessary to determine which patients will benefit from this line of treatment. Many of these biomarkers are assessed empirically by pathologists according to nuanced scoring criteria and algorithms. This review serves to inform clinicians and pathologists of extant and promising upcoming biomarkers predictive of immunotherapeutic efficacy among digestive system malignancies and the ancillary testing required for interpretation by pathologists according to tumor site of origin.
Collapse
Affiliation(s)
- Attila Molnar
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY 10025, USA
| | - Hunter Monroe
- Department of Pathology, West Virginia University, Morgantown, WV 26506, USA
| | - Hasan Basri Aydin
- Department of Pathology, Albany Medical Center, Albany, NY 12208, USA
| | - Mustafa Erdem Arslan
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Andrea Lightle
- Department of Pathology, Albany Medical Center, Albany, NY 12208, USA
| | - Hwajeong Lee
- Department of Pathology, Albany Medical Center, Albany, NY 12208, USA
| | - Tony El Jabbour
- Department of Pathology, West Virginia University, Morgantown, WV 26506, USA
- Correspondence:
| |
Collapse
|
45
|
Stopar A, Nicholson AW. Multivalent forms of the ribonuclease H1 hybrid binding domain are high-affinity binders of RNA-DNA hybrids. FEBS Lett 2023; 597:472-482. [PMID: 36443824 DOI: 10.1002/1873-3468.14541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 10/18/2022] [Accepted: 10/22/2022] [Indexed: 11/30/2022]
Abstract
The hybrid binding domain (HBD) is a conserved fold present in ribonucleases H1 that selectively recognizes RNA-DNA hybrids, which are structures present in cellular R-loops and participate in diverse biological processes. We engineered multivalent HBD proteins to create high-affinity hybrid binders. Using EMSA- and SPR-based analyses, we showed that the triple-HBD protein exhibits a ~ 22 000-fold increase in hybrid affinity (KD 370 pm) relative to the single HBD (KD 8.29 μm), with the length and sequence of the linkers enabling optimal function. These findings provide a framework for testing models that correlate multivalency and affinity to understand how multivalent proteins function and also can serve to guide applications that exploit multivalency as a strategy to enhance binding affinity.
Collapse
Affiliation(s)
- Alex Stopar
- Department of Biology, Temple University, Philadelphia, PA, USA
| | | |
Collapse
|
46
|
Methods and Advances in the Design, Testing and Development of In Vitro Diagnostic Instruments. Processes (Basel) 2023. [DOI: 10.3390/pr11020403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
With the continuous improvement of medical testing and instrumentation engineering technologies, the design, testing and development methods of in vitro diagnostic instruments are developing rapidly. In vitro diagnostic instruments are also gradually developing into a class of typical high-end medical equipment. The design of in vitro diagnostic instruments involves a variety of medical diagnostic methods and biochemical, physical and other related technologies, and its development process involves complex system engineering. This paper systematically organizes and summarizes the design, testing and development methods of in vitro diagnostic instruments and their development in recent years, focusing on summarizing the related technologies and core aspects of the R&D process, and analyzes the development trend of the in vitro diagnostic instrument market.
Collapse
|
47
|
Abstract
The options for prenatal genetic testing have evolved rapidly in the past decade, and advances in sequencing technology now allow genetic diagnoses to be made down to the single-base-pair level, even before the birth of the child. This offers women the opportunity to obtain information regarding the foetus, thereby empowering them to make informed decisions about their pregnancy. As genetic testing becomes increasingly available to women, clinician knowledge and awareness of the options available to women is of great importance. Additionally, comprehensive pretest and posttest genetic counselling about the advantages, pitfalls and limitations of genetic testing should be provided to all women. This review article aims to cover the range of genetic tests currently available in prenatal screening and diagnosis, their current applications and limitations in clinical practice as well as what the future holds for prenatal genetics.
Collapse
Affiliation(s)
- Karen Mei Xian Lim
- Department of Obstetrics and Gynaecology, National University Health System, Singapore
| | - Aniza Puteri Mahyuddin
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | - Mahesh Choolani
- Department of Obstetrics and Gynaecology, National University Health System, Singapore,Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore,Correspondence: A/Prof Mahesh Choolani, Head and Senior Consultant, Department of Obstetrics and Gynaecology, National University Health System, NUHS Tower Block, Level 12, 1E Kent Ridge Road, 119228, Singapore. E-mail:
| |
Collapse
|
48
|
Xu H, Zheng Y, Chen D, Cheng Y, Fang X, Zhong C, Huang X, Huang Q, Xu J, Xu J, Xue C. Branch-Shaped Trapping Device Regulates Accelerated Catalyzed Hairpin Assembly and Its Application for MicroRNA In Situ Imaging. Anal Chem 2023; 95:1210-1218. [PMID: 36583970 DOI: 10.1021/acs.analchem.2c03956] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Enzyme-free DNA strand displacement process is often practical when detecting miRNAs expressed at low levels in living cells. However, the poor kinetics, tedious reaction period, and multicomponent system hamper its in vivo applications to a great extent. Herein, we design a branch-shaped trapping device (BTD)-based spatial confinement reactor and applied it for accelerated miRNA in situ imaging. The reactor consists of a pair of trapped probe-based catalyzed hairpin assembly (T-CHA) reactions attached around the BTD. The trapping device naturally offered CHA reactions a good spatial-confinement effect by integrating the metastable probes (MHPa and MHPb) of the traditional CHA with the four-branched arm of BTD, which greatly improved the localized concentration of probes and shortened their physical distance. The autonomous and progressive walk of miRNA on the four-arm nanoprobes via T-CHA can rapidly tie numerous four-arm nanoprobes into figure-of-eight nanoknots (FENs), yielding strong fluorescence that is proportional to the miRNA expression level. The unique nanoarchitecture of the FEN also benefits the restricted freedom of movement (FOM) in a confined cellular environment, which makes the system ideally suitable for in situ imaging of intracellular miRNAs. In vitro and in situ analyses also demonstrated that the T-CHA overall outperformed the dissociative probe-based CHA (D-CHA) in stability, reaction speed, and amplification sensitivity. The final application of the T-CHA-based four-arm nanoprobe for imagings of both cancer cells and normal cells shows the potential of the platform for accurately and timely revealing miRNA in biological systems.
Collapse
Affiliation(s)
- Huo Xu
- College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, Fujian, China
| | - Yanhui Zheng
- College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, Fujian, China
| | - Danlong Chen
- College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, Fujian, China
| | - Yinghao Cheng
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, and Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Xiaojun Fang
- College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, Fujian, China
| | - Chunlian Zhong
- College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, Fujian, China
| | - Xinmei Huang
- College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, Fujian, China
| | - Qi Huang
- College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, Fujian, China
| | - Jiawei Xu
- College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, Fujian, China
| | - Jianguo Xu
- Engineering Research Center of Bio-process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Chang Xue
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, and Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| |
Collapse
|
49
|
Tutty MA, Holmes S, Prina-Mello A. Cancer Cell Culture: The Basics and Two-Dimensional Cultures. Methods Mol Biol 2023; 2645:3-40. [PMID: 37202610 DOI: 10.1007/978-1-0716-3056-3_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Despite significant advances in investigative and therapeutic methodologies for cancer, 2D cell culture remains an essential and evolving competency in this fast-paced industry. From basic monolayer cultures and functional assays to more recent and ever-advancing cell-based cancer interventions, 2D cell culture plays a crucial role in cancer diagnosis, prognosis, and treatment. Research and development in this field call for a great deal of optimization, while the heterogenous nature of cancer itself demands personalized precision for its intervention. In this way, 2D cell culture is ideal, providing a highly adaptive and responsive platform, where skills can be honed and techniques modified. Furthermore, it is arguably the most efficient, economical, and sustainable methodology available to researchers and clinicians alike.In this chapter, we discuss the history of cell culture and the varying types of cell and cell lines used today, the techniques used to characterize and authenticate them, the applications of 2D cell culture in cancer diagnosis and prognosis, and more recent developments in the area of cell-based cancer interventions and vaccines.
Collapse
Affiliation(s)
- Melissa Anne Tutty
- Laboratory of Biological Characterization of Advanced Materials (LBCAM), Trinity Translational Medicine Institute, Trinity College, Dublin, Ireland
| | - Sarah Holmes
- Laboratory of Biological Characterization of Advanced Materials (LBCAM), Trinity Translational Medicine Institute, Trinity College, Dublin, Ireland.
| | - Adriele Prina-Mello
- Laboratory of Biological Characterization of Advanced Materials (LBCAM), Trinity Translational Medicine Institute, Trinity College, Dublin, Ireland
- Nanomedicine and Molecular Imaging Group, Trinity Translational Medicine Institute (TTMI), School of Medicine, Trinity College Dublin, Dublin, Ireland
- Trinity St. James's Cancer Institute, St. James's Hospital, Trinity College Dublin, Dublin, Ireland
- Advanced Materials and Bioengineering Research (AMBER) Centre, CRANN Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
50
|
Maloshenok LG, Abushinova GA, Ryazanova AY, Bruskin SA, Zherdeva VV. Visualizing the Nucleome Using the CRISPR–Cas9 System: From in vitro to in vivo. BIOCHEMISTRY (MOSCOW) 2023; 88:S123-S149. [PMID: 37069118 PMCID: PMC9940691 DOI: 10.1134/s0006297923140080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
One of the latest methods in modern molecular biology is labeling genomic loci in living cells using fluorescently labeled Cas protein. The NIH Foundation has made the mapping of the 4D nucleome (the three-dimensional nucleome on a timescale) a priority in the studies aimed to improve our understanding of chromatin organization. Fluorescent methods based on CRISPR-Cas are a significant step forward in visualization of genomic loci in living cells. This approach can be used for studying epigenetics, cell cycle, cellular response to external stimuli, rearrangements during malignant cell transformation, such as chromosomal translocations or damage, as well as for genome editing. In this review, we focused on the application of CRISPR-Cas fluorescence technologies as components of multimodal imaging methods for in vivo mapping of chromosomal loci, in particular, attribution of fluorescence signal to morphological and anatomical structures in a living organism. The review discusses the approaches to the highly sensitive, high-precision labeling of CRISPR-Cas components, delivery of genetically engineered constructs into cells and tissues, and promising methods for molecular imaging.
Collapse
Affiliation(s)
- Liliya G Maloshenok
- Bach Institute of Biochemistry, Federal Research Center for Biotechnology of the Russian Academy of Sciences, Moscow, 119071, Russia
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Gerel A Abushinova
- Bach Institute of Biochemistry, Federal Research Center for Biotechnology of the Russian Academy of Sciences, Moscow, 119071, Russia
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Alexandra Yu Ryazanova
- Bach Institute of Biochemistry, Federal Research Center for Biotechnology of the Russian Academy of Sciences, Moscow, 119071, Russia
| | - Sergey A Bruskin
- Bach Institute of Biochemistry, Federal Research Center for Biotechnology of the Russian Academy of Sciences, Moscow, 119071, Russia
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Victoria V Zherdeva
- Bach Institute of Biochemistry, Federal Research Center for Biotechnology of the Russian Academy of Sciences, Moscow, 119071, Russia.
| |
Collapse
|