1
|
Onukwufor JO, Kamunde C. Interactive effects of temperature, cadmium, and hypoxia on rainbow trout (Oncorhynchus mykiss) liver mitochondrial bioenergetics. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 289:117450. [PMID: 39632330 DOI: 10.1016/j.ecoenv.2024.117450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 11/22/2024] [Accepted: 11/29/2024] [Indexed: 12/07/2024]
Abstract
Fish in their natural environments possess elaborate mechanisms that regulate physiological function to mitigate the adverse effects of multiple environmental stressors such as temperature, metals, and hypoxia. We investigated how warm acclimation affects mitochondrial responses to Cd, hypoxia, and acute temperature shifts (heat shock and cold snap) in rainbow trout. We observed that state 3 respiration driven by complex I (CI) was resistant to the stressors while warm acclimation and Cd reduced complex I +II (CI + II) driven state 3 respiration. In contrast, state 4 (leak) respirations for both CI and CI + II were consistently stimulated by warm acclimation resulting in reduced mitochondrial coupling efficiency (respiratory control ratio [RCR]). Warm acclimation and Cd exacerbated their individual effect on leak respiration to further reduce the RCR. Moreover, the effect of warm acclimation on mitochondrial bioenergetics aligned with its inhibitory effect on activities of citrate synthase and both CI and CII. Unlike the Cd and warm acclimation combined exposure, hypoxia alone and in combination with warm acclimation and/or Cd abolished the stimulation of CI and CI + II powered leak respirations resulting in partial recovery of RCR. The response to acute temperature shifts indicated that while state 3 respiration returned to pre-acclimation level, the leak respiration did not. Overall, our findings suggest a complex in vivo interaction of multiple stressors on mitochondrial function that are not adequately predicted by their individual effects.
Collapse
Affiliation(s)
- John O Onukwufor
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY 14642, USA; Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada.
| | - Collins Kamunde
- Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada.
| |
Collapse
|
2
|
Tamargo‐Azpilicueta J, Casado‐Combreras MÁ, Giner‐Arroyo RL, Velázquez‐Campoy A, Márquez I, Olloqui‐Sariego JL, De la Rosa MA, Diaz‐Moreno I. Phosphorylation of cytochrome c at tyrosine 48 finely regulates its binding to the histone chaperone SET/TAF-Iβ in the nucleus. Protein Sci 2024; 33:e5213. [PMID: 39548742 PMCID: PMC11568366 DOI: 10.1002/pro.5213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/09/2024] [Accepted: 10/22/2024] [Indexed: 11/18/2024]
Abstract
Post-translational modifications (PTMs) of proteins are ubiquitous processes present in all life kingdoms, involved in the regulation of protein stability, subcellular location and activity. In this context, cytochrome c (Cc) is an excellent case study to analyze the structural and functional changes induced by PTMS as Cc is a small, moonlighting protein playing different roles in different cell compartments at different cell-cycle stages. Cc is actually a key component of the mitochondrial electron transport chain (ETC) under homeostatic conditions but is translocated to the cytoplasm and even the nucleus under apoptotic conditions and/or DNA damage. Phosphorylation does specifically alter the Cc redox activity in the mitochondria and the Cc non-redox interaction with apoptosis-related targets in the cytoplasm. However, little is known on how phosphorylation alters the interaction of Cc with histone chaperones in the nucleus. Here, we report the effect of Cc Tyr48 phosphorylation by examining the protein interaction with SET/TAF-Iβ in the nuclear compartment using a combination of molecular dynamics simulations, biophysical and structural approaches such as isothermal titration calorimetry (ITC) and nuclear magnetic resonance (NMR) and in cell proximity ligation assays. From these experiments, we infer that Tyr48 phosphorylation allows a fine-tuning of the Cc-mediated inhibition of SET/TAF-Iβ histone chaperone activity in vitro. Our findings likewise reveal that phosphorylation impacts the nuclear, stress-responsive functions of Cc, and provide an experimental framework to explore novel aspects of Cc post-translational regulation in the nucleus.
Collapse
Affiliation(s)
- Joaquin Tamargo‐Azpilicueta
- Institute for Chemical Research (IIQ), Scientific Research Center “Isla de la Cartuja” (cicCartuja)University of Seville – CSICSevilleSpain
| | - Miguel Á. Casado‐Combreras
- Institute for Chemical Research (IIQ), Scientific Research Center “Isla de la Cartuja” (cicCartuja)University of Seville – CSICSevilleSpain
| | - Rafael L. Giner‐Arroyo
- Institute for Chemical Research (IIQ), Scientific Research Center “Isla de la Cartuja” (cicCartuja)University of Seville – CSICSevilleSpain
| | - Adrián Velázquez‐Campoy
- Institute for Biocomputation and Physic of Complex Systems (BIFI), Joint Unit GBsC‐CSIC‐BIFIUniversity of ZaragozaZaragozaSpain
- Department of Biochemistry and Molecular and Cellular BiologyUniversity of ZaragozaZaragozaSpain
- Institute for Health Research Aragón (IIS Aragon)ZaragozaSpain
- Centre for Biomedical Research Network of Hepatic and Digestive Diseases (CIBERehd)MadridSpain
| | | | | | - Miguel A. De la Rosa
- Institute for Chemical Research (IIQ), Scientific Research Center “Isla de la Cartuja” (cicCartuja)University of Seville – CSICSevilleSpain
| | - Irene Diaz‐Moreno
- Institute for Chemical Research (IIQ), Scientific Research Center “Isla de la Cartuja” (cicCartuja)University of Seville – CSICSevilleSpain
| |
Collapse
|
3
|
Wu Y, Yang Y, Qin X, Zhang Z, Ullah M, Li Y, Zhang Z. Unfolded proteins in the mitochondria activate HRI and inhibit mitochondrial protein translation. Cell Signal 2024; 123:111353. [PMID: 39168261 DOI: 10.1016/j.cellsig.2024.111353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 08/04/2024] [Accepted: 08/17/2024] [Indexed: 08/23/2024]
Abstract
The mitochondrial unfolded protein response (UPRmt) is triggered through eIF2α phosphorylation in mammals. However, the mechanisms of UPRmt activation and the influence of eIF2α phosphorylation on mitochondrial protein translation remain unclear. In this study, we confirmed that the UPRmt is a rapid and specific stress response that occurs through pharmacological induction of eIF2α phosphorylation, along with the phosphorylation of eIF2α, ATF4, and CHOP. Moreover, with the upregulation of the expression of some chaperones, cytochrome P450 enzymes, and DDIT4, as determined by RNA-Seq and ribosome profiling, eIF2α phosphorylation was found to be essential for the expression of ATF4 and CHOP, after which ATF4 trafficked into the nucleus and initiated CHOP expression. In addition, the generation of ROS and mitochondrial morphology were not affected by the GTPP-induced UPRmt. Furthermore, we investigated the mechanism by which HRI kinase-mediated UPRmt is induced by mitochondrial unfolded proteins via CRISPR-Cas9 technology, mitochondrial recruitment of HRI and interaction with other proteins. Moreover, we confirmed that mitochondrial protein translation and mitochondrial protein import were inhibited through eIF2α phosphorylation with the accumulation of unfolded mitochondrial proteins. These findings reveal the molecular mechanism of the UPRmt and its impact on cellular protein translation, which will offer novel insights into the functions of the UPRmt, including its implications for human disease and pathobiology.
Collapse
Affiliation(s)
- Yongshu Wu
- College of Animal Science and Technology College of Veterinary Medicine/Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province/Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology/Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management/China-Australia Joint Laboratory for Animal Health Big Data Analytics, Zhejiang A&F University, Hangzhou 311300, China
| | - Yang Yang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, Gansu, China
| | - Xiaodong Qin
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, Gansu, China
| | - Zhixiong Zhang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, Gansu, China
| | - Munib Ullah
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, Gansu, China
| | - Yanmin Li
- College of Animal Science and Veterinary Medicine, Southwest Minzu University, Chengdu, Sichuan 610041, China.
| | - Zhidong Zhang
- College of Animal Science and Veterinary Medicine, Southwest Minzu University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
4
|
Xu K, Saaoud F, Shao Y, Lu Y, Yang Q, Jiang X, Wang H, Yang X. A new paradigm in intracellular immunology: Mitochondria emerging as leading immune organelles. Redox Biol 2024; 76:103331. [PMID: 39216270 PMCID: PMC11402145 DOI: 10.1016/j.redox.2024.103331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/23/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024] Open
Abstract
Mitochondria, traditionally recognized as cellular 'powerhouses' due to their pivotal role in energy production, have emerged as multifunctional organelles at the intersection of bioenergetics, metabolic signaling, and immunity. However, the understanding of their exact contributions to immunity and inflammation is still developing. This review first introduces the innovative concept of intracellular immunity, emphasizing how mitochondria serve as critical immune signaling hubs. They are instrumental in recognizing and responding to pathogen and danger signals, and in modulating immune responses. We also propose mitochondria as the leading immune organelles, drawing parallels with the broader immune system in their functions of antigen presentation, immune regulation, and immune response. Our comprehensive review explores mitochondrial immune signaling pathways, their therapeutic potential in managing inflammation and chronic diseases, and discusses cutting-edge methodologies for mitochondrial research. Targeting a broad readership of both experts in mitochondrial functions and newcomers to the field, this review sets forth new directions that could transform our understanding of intracellular immunity and the integrated immune functions of intracellular organelles.
Collapse
Affiliation(s)
- Keman Xu
- Lemole Center for Integrated Lymphatics and Vascular Research, USA
| | - Fatma Saaoud
- Lemole Center for Integrated Lymphatics and Vascular Research, USA
| | - Ying Shao
- Lemole Center for Integrated Lymphatics and Vascular Research, USA
| | - Yifan Lu
- Lemole Center for Integrated Lymphatics and Vascular Research, USA
| | | | - Xiaohua Jiang
- Lemole Center for Integrated Lymphatics and Vascular Research, USA; Metabolic Disease Research and Thrombosis Research Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Hong Wang
- Metabolic Disease Research and Thrombosis Research Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Xiaofeng Yang
- Lemole Center for Integrated Lymphatics and Vascular Research, USA; Metabolic Disease Research and Thrombosis Research Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA.
| |
Collapse
|
5
|
Nikolic A, Fahlbusch P, Riffelmann NK, Wahlers N, Jacob S, Hartwig S, Kettel U, Schiller M, Dille M, Al-Hasani H, Kotzka J, Knebel B. Chronic stress alters hepatic metabolism and thermodynamic respiratory efficiency affecting epigenetics in C57BL/6 mice. iScience 2024; 27:109276. [PMID: 38450153 PMCID: PMC10915629 DOI: 10.1016/j.isci.2024.109276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 02/01/2024] [Accepted: 02/15/2024] [Indexed: 03/08/2024] Open
Abstract
Chronic stress episodes increase metabolic disease risk even after recovery. We propose that persistent stress detrimentally impacts hepatic metabolic reprogramming, particularly mitochondrial function. In male C57BL/6 mice chronic variable stress (Cvs) reduced energy expenditure (EE) and body mass despite increased energy intake versus controls. This coincided with decreased glucose metabolism and increased lipid β-oxidation, correlating with EE. After Cvs, mitochondrial function revealed increased thermodynamic efficiency (ƞ-opt) of complex CI, positively correlating with blood glucose and NEFA and inversely with EE. After Cvs recovery, the metabolic flexibility of hepatocytes was lost. Reduced CI-driving NAD+/NADH ratio, and diminished methylation-related one-carbon cycle components hinted at epigenetic regulation. Although initial DNA methylation differences were minimal after Cvs, they diverged during the recovery phase. Here, the altered enrichment of mitochondrial DNA methylation and linked transcriptional networks were observed. In conclusion, Cvs rapidly initiates the reprogramming of hepatic energy metabolism, supported by lasting epigenetic modifications.
Collapse
Affiliation(s)
- Aleksandra Nikolic
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center at the Heinrich-Heine-University Duesseldorf, Leibniz Center for Diabetes Research, 40225 Duesseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Duesseldorf, 40225 Duesseldorf, Germany
| | - Pia Fahlbusch
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center at the Heinrich-Heine-University Duesseldorf, Leibniz Center for Diabetes Research, 40225 Duesseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Duesseldorf, 40225 Duesseldorf, Germany
| | - Nele-Kathrien Riffelmann
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center at the Heinrich-Heine-University Duesseldorf, Leibniz Center for Diabetes Research, 40225 Duesseldorf, Germany
| | - Natalie Wahlers
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center at the Heinrich-Heine-University Duesseldorf, Leibniz Center for Diabetes Research, 40225 Duesseldorf, Germany
| | - Sylvia Jacob
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center at the Heinrich-Heine-University Duesseldorf, Leibniz Center for Diabetes Research, 40225 Duesseldorf, Germany
| | - Sonja Hartwig
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center at the Heinrich-Heine-University Duesseldorf, Leibniz Center for Diabetes Research, 40225 Duesseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Duesseldorf, 40225 Duesseldorf, Germany
| | - Ulrike Kettel
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center at the Heinrich-Heine-University Duesseldorf, Leibniz Center for Diabetes Research, 40225 Duesseldorf, Germany
| | - Martina Schiller
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center at the Heinrich-Heine-University Duesseldorf, Leibniz Center for Diabetes Research, 40225 Duesseldorf, Germany
| | - Matthias Dille
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center at the Heinrich-Heine-University Duesseldorf, Leibniz Center for Diabetes Research, 40225 Duesseldorf, Germany
| | - Hadi Al-Hasani
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center at the Heinrich-Heine-University Duesseldorf, Leibniz Center for Diabetes Research, 40225 Duesseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Duesseldorf, 40225 Duesseldorf, Germany
- Medical Faculty Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany
| | - Jörg Kotzka
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center at the Heinrich-Heine-University Duesseldorf, Leibniz Center for Diabetes Research, 40225 Duesseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Duesseldorf, 40225 Duesseldorf, Germany
| | - Birgit Knebel
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center at the Heinrich-Heine-University Duesseldorf, Leibniz Center for Diabetes Research, 40225 Duesseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Duesseldorf, 40225 Duesseldorf, Germany
| |
Collapse
|
6
|
Pearah A, Ramatchandirin B, Liu T, Wolf RM, Ikeda A, Radovick S, Sesaki H, Wondisford FE, O'Rourke B, He L. Blocking AMPKαS496 phosphorylation improves mitochondrial dynamics and hyperglycemia in aging and obesity. Cell Chem Biol 2023; 30:1585-1600.e6. [PMID: 37890479 PMCID: PMC10841824 DOI: 10.1016/j.chembiol.2023.09.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 08/23/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023]
Abstract
Impaired mitochondrial dynamics causes aging-related or metabolic diseases. Yet, the molecular mechanism responsible for the impairment of mitochondrial dynamics is still not well understood. Here, we report that elevated blood insulin and/or glucagon levels downregulate mitochondrial fission through directly phosphorylating AMPKα at S496 by AKT or PKA, resulting in the impairment of AMPK-MFF-DRP1 signaling and mitochondrial dynamics and activity. Since there are significantly increased AMPKα1 phosphorylation at S496 in the liver of elderly mice, obese mice, and obese patients, we, therefore, designed AMPK-specific targeting peptides (Pa496m and Pa496h) to block AMPKα1S496 phosphorylation and found that these targeting peptides can increase AMPK kinase activity, augment mitochondrial fission and oxidation, and reduce ROS, leading to the rejuvenation of mitochondria. Furthermore, these AMPK targeting peptides robustly suppress liver glucose production in obese mice. Our data suggest these targeting peptides are promising therapeutic agents for improving mitochondrial dynamics and activity and alleviating hyperglycemia in elderly and obese patients.
Collapse
Affiliation(s)
- Alexia Pearah
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | | | - Ting Liu
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Risa M Wolf
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Arisa Ikeda
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Sally Radovick
- Departments of Pediatrics and Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| | - Hiromi Sesaki
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Fredric E Wondisford
- Departments of Pediatrics and Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| | - Brian O'Rourke
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Ling He
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Departments of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| |
Collapse
|
7
|
Chernyavskij DA, Galkin II, Pavlyuchenkova AN, Fedorov AV, Chelombitko MA. Role of Mitochondria in Intestinal Epithelial Barrier Dysfunction in Inflammatory Bowel Disease. Mol Biol 2023; 57:1024-1037. [DOI: 10.1134/s0026893323060043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/26/2023] [Accepted: 05/29/2023] [Indexed: 01/05/2025]
Abstract
Abstract
Inflammatory bowel disease (IBD) is widespread in industrial countries with every 20th citizen being affected. Dysregulation of the epithelial barrier function is considered to play a key role in IBD. Permeability of the intestinal epithelium depends mostly on its self-renewal potential and the condition of intercellular junctions. Mitochondria are involved in regulating various intracellular processes in addition to their energy function. Recent data implicate mitochondria in intestinal epithelial barrier regulation and IBD. Mitochondrial dysfunction is possibly one of the factors that underlie the structural abnormalities of tight junctions and the cytoskeleton in intestinal epithelial cells and decrease the self-renewal capacity of the epithelium. The barrier function of the intestinal epithelium is consequently distorted, and IBD develops. The mechanisms of these processes are still unclear and require further research.
Collapse
|
8
|
González-Arzola K, Díaz-Quintana A. Mitochondrial Factors in the Cell Nucleus. Int J Mol Sci 2023; 24:13656. [PMID: 37686461 PMCID: PMC10563088 DOI: 10.3390/ijms241713656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/31/2023] [Accepted: 08/31/2023] [Indexed: 09/10/2023] Open
Abstract
The origin of eukaryotic organisms involved the integration of mitochondria into the ancestor cell, with a massive gene transfer from the original proteobacterium to the host nucleus. Thus, mitochondrial performance relies on a mosaic of nuclear gene products from a variety of genomes. The concerted regulation of their synthesis is necessary for metabolic housekeeping and stress response. This governance involves crosstalk between mitochondrial, cytoplasmic, and nuclear factors. While anterograde and retrograde regulation preserve mitochondrial homeostasis, the mitochondria can modulate a wide set of nuclear genes in response to an extensive variety of conditions, whose response mechanisms often merge. In this review, we summarise how mitochondrial metabolites and proteins-encoded either in the nucleus or in the organelle-target the cell nucleus and exert different actions modulating gene expression and the chromatin state, or even causing DNA fragmentation in response to common stress conditions, such as hypoxia, oxidative stress, unfolded protein stress, and DNA damage.
Collapse
Affiliation(s)
- Katiuska González-Arzola
- Centro Andaluz de Biología Molecular y Medicina Regenerativa—CABIMER, Consejo Superior de Investigaciones Científicas—Universidad de Sevilla—Universidad Pablo de Olavide, 41092 Seville, Spain
- Departamento de Bioquímica Vegetal y Biología Molecular, Universidad de Sevilla, 41012 Seville, Spain
| | - Antonio Díaz-Quintana
- Departamento de Bioquímica Vegetal y Biología Molecular, Universidad de Sevilla, 41012 Seville, Spain
- Instituto de Investigaciones Químicas—cicCartuja, Universidad de Sevilla—C.S.I.C, 41092 Seville, Spain
| |
Collapse
|
9
|
Lubawy J, Chowański SP, Colinet H, Słocińska M. Mitochondrial metabolism and oxidative stress in the tropical cockroach under fluctuating thermal regimes. J Exp Biol 2023; 226:jeb246287. [PMID: 37589559 DOI: 10.1242/jeb.246287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/08/2023] [Indexed: 08/18/2023]
Abstract
The cockroach Gromphadorhina coquereliana can survive at low temperatures under extensive periods of cold stress. To assess energy management and insect adaptation in response to cold, we measured mitochondrial activity and oxidative stress in muscle and fat body tissues from G. coquereliana under a fluctuating thermal regime (FTR; stressed at 4°C for 3 h on 3 consecutive days, with or without 24 h recovery). Compared with our earlier work showing that a single exposure to cold significantly affects mitochondrial parameters, here, repeated exposure to cold triggered an acclimatory response, resulting in unchanged mitochondrial bioenergetics. Immediately after cold exposure, we observed an increase in the overall pool of ATP and a decrease in typical antioxidant enzyme activity. We also observed decreased activity of uncoupling protein 4 in muscle mitochondria. After 24 h of recovery, we observed an increase in expression of antioxidant enzymes in muscles and the fat body and a significant increase in the expression of UCP4 and HSP70 in the latter. This indicates that processes related to energy conversion and disturbance under cold stress may trigger different protective mechanisms in these tissues, and that these mechanisms must be activated to restore insect homeostasis. The mitochondrial parameters and enzymatic assays suggest that mitochondria are not affected during FTR but oxidative stress markers are decreased, and a 24 h recovery period allows for the restoration of redox and energy homeostasis, especially in the fat body. This confirms the crucial role of the fat body in intermediary metabolism and energy management in insects and in the response to repeated thermal stress.
Collapse
Affiliation(s)
- Jan Lubawy
- Department of Animal Physiology and Developmental Biology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznań, Poland
| | - Szymon P Chowański
- Department of Animal Physiology and Developmental Biology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznań, Poland
| | - Hervé Colinet
- ECOBIO - UMR 6553, Université de Rennes 1, CNRS, Rennes 35042, France
| | - Małgorzata Słocińska
- Department of Animal Physiology and Developmental Biology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznań, Poland
| |
Collapse
|
10
|
Park D, Yu Y, Kim JH, Lee J, Park J, Hong K, Seo JK, Lim C, Min KT. Suboptimal Mitochondrial Activity Facilitates Nuclear Heat Shock Responses for Proteostasis and Genome Stability. Mol Cells 2023; 46:374-386. [PMID: 37077029 PMCID: PMC10258458 DOI: 10.14348/molcells.2023.2181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 04/21/2023] Open
Abstract
Thermal stress induces dynamic changes in nuclear proteins and relevant physiology as a part of the heat shock response (HSR). However, how the nuclear HSR is fine-tuned for cellular homeostasis remains elusive. Here, we show that mitochondrial activity plays an important role in nuclear proteostasis and genome stability through two distinct HSR pathways. Mitochondrial ribosomal protein (MRP) depletion enhanced the nucleolar granule formation of HSP70 and ubiquitin during HSR while facilitating the recovery of damaged nuclear proteins and impaired nucleocytoplasmic transport. Treatment of the mitochondrial proton gradient uncoupler masked MRP-depletion effects, implicating oxidative phosphorylation in these nuclear HSRs. On the other hand, MRP depletion and a reactive oxygen species (ROS) scavenger non-additively decreased mitochondrial ROS generation during HSR, thereby protecting the nuclear genome from DNA damage. These results suggest that suboptimal mitochondrial activity sustains nuclear homeostasis under cellular stress, providing plausible evidence for optimal endosymbiotic evolution via mitochondria-to-nuclear communication.
Collapse
Affiliation(s)
- Dongkeun Park
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
| | - Youngim Yu
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
| | - Ji-hyung Kim
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
| | - Jongbin Lee
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
| | - Jongmin Park
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
| | - Kido Hong
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
| | - Jeong-Kon Seo
- UNIST Central Research Facilities (UCRF), Ulsan National Institute of Science and Technology, Ulsan 44919, Korea
| | - Chunghun Lim
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
| | - Kyung-Tai Min
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
| |
Collapse
|
11
|
Stefano GB, Büttiker P, Weissenberger S, Esch T, Anders M, Raboch J, Kream RM, Ptacek R. Independent and sensory human mitochondrial functions reflecting symbiotic evolution. Front Cell Infect Microbiol 2023; 13:1130197. [PMID: 37389212 PMCID: PMC10302212 DOI: 10.3389/fcimb.2023.1130197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 05/31/2023] [Indexed: 07/01/2023] Open
Abstract
The bacterial origin of mitochondria has been a widely accepted as an event that occurred about 1.45 billion years ago and endowed cells with internal energy producing organelle. Thus, mitochondria have traditionally been viewed as subcellular organelle as any other - fully functionally dependent on the cell it is a part of. However, recent studies have given us evidence that mitochondria are more functionally independent than other organelles, as they can function outside the cells, engage in complex "social" interactions, and communicate with each other as well as other cellular components, bacteria and viruses. Furthermore, mitochondria move, assemble and organize upon sensing different environmental cues, using a process akin to bacterial quorum sensing. Therefore, taking all these lines of evidence into account we hypothesize that mitochondria need to be viewed and studied from a perspective of a more functionally independent entity. This view of mitochondria may lead to new insights into their biological function, and inform new strategies for treatment of disease associated with mitochondrial dysfunction.
Collapse
Affiliation(s)
- George B. Stefano
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czechia
| | - Pascal Büttiker
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czechia
| | | | - Tobias Esch
- Institute for Integrative Health Care and Health Promotion, School of Medicine, Witten/Herdecke University, Witten, Germany
| | - Martin Anders
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czechia
| | - Jiri Raboch
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czechia
| | - Richard M. Kream
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czechia
| | - Radek Ptacek
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czechia
| |
Collapse
|
12
|
Watson DC, Bayik D, Storevik S, Moreino SS, Sprowls SA, Han J, Augustsson MT, Lauko A, Sravya P, Røsland GV, Troike K, Tronstad KJ, Wang S, Sarnow K, Kay K, Lunavat TR, Silver DJ, Dayal S, Joseph JV, Mulkearns-Hubert E, Ystaas LAR, Deshpande G, Guyon J, Zhou Y, Magaut CR, Seder J, Neises L, Williford SE, Meiser J, Scott AJ, Sajjakulnukit P, Mears JA, Bjerkvig R, Chakraborty A, Daubon T, Cheng F, Lyssiotis CA, Wahl DR, Hjelmeland AB, Hossain JA, Miletic H, Lathia JD. GAP43-dependent mitochondria transfer from astrocytes enhances glioblastoma tumorigenicity. NATURE CANCER 2023; 4:648-664. [PMID: 37169842 PMCID: PMC10212766 DOI: 10.1038/s43018-023-00556-5] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 04/06/2023] [Indexed: 05/13/2023]
Abstract
The transfer of intact mitochondria between heterogeneous cell types has been confirmed in various settings, including cancer. However, the functional implications of mitochondria transfer on tumor biology are poorly understood. Here we show that mitochondria transfer is a prevalent phenomenon in glioblastoma (GBM), the most frequent and malignant primary brain tumor. We identified horizontal mitochondria transfer from astrocytes as a mechanism that enhances tumorigenesis in GBM. This transfer is dependent on network-forming intercellular connections between GBM cells and astrocytes, which are facilitated by growth-associated protein 43 (GAP43), a protein involved in neuron axon regeneration and astrocyte reactivity. The acquisition of astrocyte mitochondria drives an increase in mitochondrial respiration and upregulation of metabolic pathways linked to proliferation and tumorigenicity. Functionally, uptake of astrocyte mitochondria promotes cell cycle progression to proliferative G2/M phases and enhances self-renewal and tumorigenicity of GBM. Collectively, our findings reveal a host-tumor interaction that drives proliferation and self-renewal of cancer cells, providing opportunities for therapeutic development.
Collapse
Affiliation(s)
- Dionysios C Watson
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Case Comprehensive Cancer Center, Cleveland, OH, USA
- University Hospitals Cleveland Medical Center, Cleveland, OH, USA
- School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Defne Bayik
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Case Comprehensive Cancer Center, Cleveland, OH, USA
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Simon Storevik
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Department of Neurology, Haukeland University Hospital, Bergen, Norway
| | | | | | - Jianhua Han
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | | | - Adam Lauko
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Medical Scientist Training Program, Case Western Reserve University, Cleveland, OH, USA
| | - Palavalasa Sravya
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | | | - Katie Troike
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | | | - Sabrina Wang
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | | | - Kristen Kay
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Taral R Lunavat
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Department of Neurology, Molecular Neurogenetics Unit-West, Massachusetts General Hospital, Boston, MA, USA
| | - Daniel J Silver
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Sahil Dayal
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | | | - Erin Mulkearns-Hubert
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | | | | | - Joris Guyon
- University of Bordeaux, INSERM, BRIC, Pessac, France
| | - Yadi Zhou
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | | | - Juliana Seder
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Laura Neises
- Cancer Metabolism Group, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | | | - Johannes Meiser
- Cancer Metabolism Group, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Andrew J Scott
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | | | - Jason A Mears
- Case Comprehensive Cancer Center, Cleveland, OH, USA
- School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Rolf Bjerkvig
- Department of Biomedicine, University of Bergen, Bergen, Norway
- NorLux Neuro-Oncology Laboratory, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Abhishek Chakraborty
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Case Comprehensive Cancer Center, Cleveland, OH, USA
| | - Thomas Daubon
- University of Bordeaux, CNRS, IBGC, Bordeaux, France
| | - Feixiong Cheng
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Case Comprehensive Cancer Center, Cleveland, OH, USA
| | - Costas A Lyssiotis
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Michigan, Ann Arbor, MI, USA
| | - Daniel R Wahl
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | | | | | - Hrvoje Miletic
- Department of Biomedicine, University of Bergen, Bergen, Norway.
- Department of Pathology, Haukeland University Hospital, Bergen, Norway.
| | - Justin D Lathia
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.
- Case Comprehensive Cancer Center, Cleveland, OH, USA.
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
13
|
Sokolova IM. Ectotherm mitochondrial economy and responses to global warming. Acta Physiol (Oxf) 2023; 237:e13950. [PMID: 36790303 DOI: 10.1111/apha.13950] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/24/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023]
Abstract
Temperature is a key abiotic factor affecting ecology, biogeography, and evolution of species. Alterations of energy metabolism play an important role in adaptations and plastic responses to temperature shifts on different time scales. Mitochondrial metabolism affects cellular bioenergetics and redox balance making these organelles an important determinant of organismal performances such as growth, locomotion, or development. Here I analyze the impacts of environmental temperature on the mitochondrial functions (including oxidative phosphorylation, proton leak, production of reactive oxygen species(ROS), and ATP synthesis) of ectotherms and discuss the mechanisms underlying negative shifts in the mitochondrial energy economy caused by supraoptimal temperatures. Owing to the differences in the thermal sensitivity of different mitochondrial processes, elevated temperatures (beyond the species- and population-specific optimal range) cause reallocation of the electron flux and the protonmotive force (Δp) in a way that decreases ATP synthesis efficiency, elevates the relative cost of the mitochondrial maintenance, causes excessive production of ROS and raises energy cost for antioxidant defense. These shifts in the mitochondrial energy economy might have negative consequences for the organismal fitness traits such as the thermal tolerance or growth. Correlation between the thermal sensitivity indices of the mitochondria and the whole organism indicate that these traits experience similar selective pressures but further investigations are needed to establish whether there is a cause-effect relationship between the mitochondrial failure and loss of organismal performance during temperature change.
Collapse
Affiliation(s)
- Inna M Sokolova
- Department of Marine Biology, Institute of Biological Sciences, University of Rostock, Rostock, Germany
- Department of Maritime Systems, Interdisciplinary Faculty, University of Rostock, Rostock, Germany
| |
Collapse
|
14
|
Nikolic A, Fahlbusch P, Wahlers N, Riffelmann NK, Jacob S, Hartwig S, Kettel U, Dille M, Al-Hasani H, Kotzka J, Knebel B. Chronic stress targets mitochondrial respiratory efficiency in the skeletal muscle of C57BL/6 mice. Cell Mol Life Sci 2023; 80:108. [PMID: 36988756 PMCID: PMC10060325 DOI: 10.1007/s00018-023-04761-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/10/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023]
Abstract
Episodes of chronic stress can result in psychic disorders like post-traumatic stress disorder, but also promote the development of metabolic syndrome and type 2 diabetes. We hypothesize that muscle, as main regulator of whole-body energy expenditure, is a central target of acute and adaptive molecular effects of stress in this context. Here, we investigate the immediate effect of a stress period on energy metabolism in Musculus gastrocnemius in our established C57BL/6 chronic variable stress (Cvs) mouse model. Cvs decreased lean body mass despite increased energy intake, reduced circadian energy expenditure (EE), and substrate utilization. Cvs altered the proteome of metabolic components but not of the oxidative phosphorylation system (OXPHOS), or other mitochondrial structural components. Functionally, Cvs impaired the electron transport chain (ETC) capacity of complex I and complex II, and reduces respiratory capacity of the ETC from complex I to ATP synthase. Complex I-OXPHOS correlated to diurnal EE and complex II-maximal uncoupled respiration correlated to diurnal and reduced nocturnal EE. Bioenergetics assessment revealed higher optimal thermodynamic efficiencies (ƞ-opt) of mitochondria via complex II after Cvs. Interestingly, transcriptome and methylome were unaffected by Cvs, thus excluding major contributions to supposed metabolic adaptation processes. In summary, the preclinical Cvs model shows that metabolic pressure by Cvs is initially compensated by adaptation of mitochondria function associated with high thermodynamic efficiency and decreased EE to manage the energy balance. This counter-regulation of mitochondrial complex II may be the driving force to longitudinal metabolic changes of muscle physiological adaptation as the basis of stress memory.
Collapse
Affiliation(s)
- Aleksandra Nikolic
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center at the Heinrich-Heine-University Duesseldorf, Leibniz Center for Diabetes Research, 40225, Duesseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Duesseldorf, 40225, Duesseldorf, Germany
| | - Pia Fahlbusch
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center at the Heinrich-Heine-University Duesseldorf, Leibniz Center for Diabetes Research, 40225, Duesseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Duesseldorf, 40225, Duesseldorf, Germany
| | - Natalie Wahlers
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center at the Heinrich-Heine-University Duesseldorf, Leibniz Center for Diabetes Research, 40225, Duesseldorf, Germany
| | - Nele-Kathrien Riffelmann
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center at the Heinrich-Heine-University Duesseldorf, Leibniz Center for Diabetes Research, 40225, Duesseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Duesseldorf, 40225, Duesseldorf, Germany
| | - Sylvia Jacob
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center at the Heinrich-Heine-University Duesseldorf, Leibniz Center for Diabetes Research, 40225, Duesseldorf, Germany
| | - Sonja Hartwig
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center at the Heinrich-Heine-University Duesseldorf, Leibniz Center for Diabetes Research, 40225, Duesseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Duesseldorf, 40225, Duesseldorf, Germany
| | - Ulrike Kettel
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center at the Heinrich-Heine-University Duesseldorf, Leibniz Center for Diabetes Research, 40225, Duesseldorf, Germany
| | - Matthias Dille
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center at the Heinrich-Heine-University Duesseldorf, Leibniz Center for Diabetes Research, 40225, Duesseldorf, Germany
| | - Hadi Al-Hasani
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center at the Heinrich-Heine-University Duesseldorf, Leibniz Center for Diabetes Research, 40225, Duesseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Duesseldorf, 40225, Duesseldorf, Germany
- Medical Faculty Heinrich-Heine-University Düsseldorf, 40225, Düsseldorf, Germany
| | - Jörg Kotzka
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center at the Heinrich-Heine-University Duesseldorf, Leibniz Center for Diabetes Research, 40225, Duesseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Duesseldorf, 40225, Duesseldorf, Germany
| | - Birgit Knebel
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center at the Heinrich-Heine-University Duesseldorf, Leibniz Center for Diabetes Research, 40225, Duesseldorf, Germany.
- German Center for Diabetes Research (DZD), Partner Duesseldorf, 40225, Duesseldorf, Germany.
| |
Collapse
|
15
|
Berezin AA, Obradovic Z, Berezina TA, Boxhammer E, Lichtenauer M, Berezin AE. Cardiac Hepatopathy: New Perspectives on Old Problems through a Prism of Endogenous Metabolic Regulations by Hepatokines. Antioxidants (Basel) 2023; 12:antiox12020516. [PMID: 36830074 PMCID: PMC9951884 DOI: 10.3390/antiox12020516] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/12/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Cardiac hepatopathy refers to acute or chronic liver damage caused by cardiac dysfunction in the absence of any other possible causative reasons of liver injury. There is a large number of evidence of the fact that cardiac hepatopathy is associated with poor clinical outcomes in patients with acute or actually decompensated heart failure (HF). However, the currently dominated pathophysiological background does not explain a role of metabolic regulative proteins secreted by hepatocytes in progression of HF, including adverse cardiac remodeling, kidney injury, skeletal muscle dysfunction, osteopenia, sarcopenia and cardiac cachexia. The aim of this narrative review was to accumulate knowledge of hepatokines (adropin; fetuin-A, selenoprotein P, fibroblast growth factor-21, and alpha-1-microglobulin) as adaptive regulators of metabolic homeostasis in patients with HF. It is suggested that hepatokines play a crucial, causative role in inter-organ interactions and mediate tissue protective effects counteracting oxidative stress, inflammation, mitochondrial dysfunction, apoptosis and necrosis. The discriminative potencies of hepatokines for HF and damage of target organs in patients with known HF is under on-going scientific discussion and requires more investigations in the future.
Collapse
Affiliation(s)
- Alexander A. Berezin
- Internal Medicine Department, Zaporozhye Medical Academy of Postgraduate Education, 69000 Zaporozhye, Ukraine
- Klinik Barmelweid, Department of Psychosomatic Medicine and Psychotherapy, 5017 Barmelweid, Switzerland
| | - Zeljko Obradovic
- Klinik Barmelweid, Department of Psychosomatic Medicine and Psychotherapy, 5017 Barmelweid, Switzerland
| | - Tetiana A. Berezina
- Department of Internal Medicine & Nephrology, VitaCenter, 69000 Zaporozhye, Ukraine
| | - Elke Boxhammer
- Department of Internal Medicine II, Division of Cardiology, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria
| | - Michael Lichtenauer
- Department of Internal Medicine II, Division of Cardiology, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria
| | - Alexander E. Berezin
- Department of Internal Medicine II, Division of Cardiology, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria
- Internal Medicine Department, Zaporozhye State Medical University, 69035 Zaporozhye, Ukraine
- Correspondence:
| |
Collapse
|
16
|
He L, Tronstad KJ, Maheshwari A. Mitochondrial Dynamics during Development. NEWBORN (CLARKSVILLE, MD.) 2023; 2:19-44. [PMID: 37206581 PMCID: PMC10193651 DOI: 10.5005/jp-journals-11002-0053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Mitochondria are dynamic membrane-bound organelles in eukaryotic cells. These are important for the generation of chemical energy needed to power various cellular functions and also support metabolic, energetic, and epigenetic regulation in various cells. These organelles are also important for communication with the nucleus and other cellular structures, to maintain developmental sequences and somatic homeostasis, and for cellular adaptation to stress. Increasing information shows mitochondrial defects as an important cause of inherited disorders in different organ systems. In this article, we provide an extensive review of ontogeny, ultrastructural morphology, biogenesis, functional dynamics, important clinical manifestations of mitochondrial dysfunction, and possibilities for clinical intervention. We present information from our own clinical and laboratory research in conjunction with information collected from an extensive search in the databases PubMed, EMBASE, and Scopus.
Collapse
Affiliation(s)
- Ling He
- Department of Pediatrics and Pharmacology, Johns Hopkins University, Baltimore, United States of America
| | | | - Akhil Maheshwari
- Founding Chairman, Global Newborn Society, Clarksville, Maryland, United States of America
| |
Collapse
|
17
|
Kashiwagi S, Morita A, Yokomizo S, Ogawa E, Komai E, Huang PL, Bragin DE, Atochin DN. Photobiomodulation and nitric oxide signaling. Nitric Oxide 2023; 130:58-68. [PMID: 36462596 PMCID: PMC9808891 DOI: 10.1016/j.niox.2022.11.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/05/2022] [Accepted: 11/27/2022] [Indexed: 12/05/2022]
Abstract
Nitric oxide (NO) is a well-known gaseous mediator that maintains vascular homeostasis. Extensive evidence supports that a hallmark of endothelial dysfunction, which leads to cardiovascular diseases, is endothelial NO deficiency. Thus, restoring endothelial NO represents a promising approach to treating cardiovascular complications. Despite many therapeutic agents having been shown to augment NO bioavailability under various pathological conditions, success in resulting clinical trials has remained elusive. There is solid evidence of diverse beneficial effects of the treatment with low-power near-infrared (NIR) light, defined as photobiomodulation (PBM). Although the precise mechanisms of action of PBM are still elusive, recent studies consistently report that PBM improves endothelial dysfunction via increasing bioavailable NO in a dose-dependent manner and open a feasible path to the use of PBM for treating cardiovascular diseases via augmenting NO bioavailability. In particular, the use of NIR light in the NIR-II window (1000-1700 nm) for PBM, which has reduced scattering and minimal tissue absorption with the largest penetration depth, is emerging as a promising therapy. In this review, we update recent findings on PBM and NO.
Collapse
Affiliation(s)
- Satoshi Kashiwagi
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, 149 13th Street, Charlestown, MA, 02129, USA.
| | - Atsuyo Morita
- Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, 149 13th Street, Charlestown, MA, 02129, USA
| | - Shinya Yokomizo
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, 149 13th Street, Charlestown, MA, 02129, USA; Department of Radiological Science, Tokyo Metropolitan University, 7-2-10 Higashi-Ogu, Arakawa, Tokyo, 116-8551, Japan
| | - Emiyu Ogawa
- School of Allied Health Science, Kitasato University, 1-15-1 Kitasato Minami-ku Sagamihara, Kanagawa, Japan
| | - Eri Komai
- Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, 149 13th Street, Charlestown, MA, 02129, USA
| | - Paul L Huang
- Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, 149 13th Street, Charlestown, MA, 02129, USA
| | - Denis E Bragin
- Lovelace Biomedical Research Institute, 2425 Ridgecrest Dr. SE, Albuquerque, NM, 87108, USA; Department of Neurology, The University of New Mexico School of Medicine, MSC08 4720, 1 UNM, Albuquerque, NM, 87131, USA.
| | - Dmitriy N Atochin
- Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, 149 13th Street, Charlestown, MA, 02129, USA.
| |
Collapse
|
18
|
Díaz-Resendiz KJG, Toledo-Ibarra GA, Ruiz-Manzano R, Giron Perez DA, Covantes-Rosales CE, Benitez-Trinidad AB, Ramirez-Ibarra KM, Hermosillo Escobedo AT, González-Navarro I, Ventura-Ramón GH, Romero Castro A, Alam Escamilla D, Bueno-Duran AY, Girón-Pérez MI. Ex vivo treatment with fucoidan of mononuclear cells from SARS-CoV-2 infected patients. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2022; 32:2634-2652. [PMID: 34689674 DOI: 10.1080/09603123.2021.1982875] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 09/16/2021] [Indexed: 06/13/2023]
Abstract
COVID-19 is a worldwide health emergency, therapy for this disease is based on antiviral drugs and immunomodulators, however, there is no treatment to effectively reduce the COVID-19 mortality rate. Fucoidan is a polysaccharide obtained from marine brown algae, with anti-inflammatory, antiviral, and immune-enhancing properties, thus, fucoidan may be used as an alternative treatment (complementary to prescribed medical therapy) for the recovery of COVID-19. This work aimed to determine the effects of ex-vivo treatment with fucoidan on cytotoxicity, apoptosis, necrosis, and senescence, besides functional parameters of calcium flux and mitochondrial membrane potential (ΔΨm) on human peripheral blood mononuclear cells isolated from SARS-CoV-2 infected, recovered and healthy subjects. Data suggest that fucoidan does not exert cytotoxicity or senescence, however, it induces the increment of intracellular calcium flux. Additionally, fucoidan promotes recovery of ΔΨm in PBMCs from COVID-19 recovered females. Data suggest that fucoidan could ameliorate the immune response in COVID-19 patients.
Collapse
Affiliation(s)
- K J G Díaz-Resendiz
- Universidad Autónoma De Nayarit, Laboratorio Nacional De Investigación Para La Inocuidad Alimentaria (Laniia)-unidad Nayarit, Calle Tres S/n. Colonia. Cd. Industrial. Tepic, Nayarit, México
| | - G A Toledo-Ibarra
- Universidad Autónoma De Nayarit, Laboratorio Nacional De Investigación Para La Inocuidad Alimentaria (Laniia)-unidad Nayarit, Calle Tres S/n. Colonia. Cd. Industrial. Tepic, Nayarit, México
| | - R Ruiz-Manzano
- Universidad Autónoma De Nayarit, Laboratorio Nacional De Investigación Para La Inocuidad Alimentaria (Laniia)-unidad Nayarit, Calle Tres S/n. Colonia. Cd. Industrial. Tepic, Nayarit, México
| | - D A Giron Perez
- Universidad Autónoma De Nayarit, Laboratorio Nacional De Investigación Para La Inocuidad Alimentaria (Laniia)-unidad Nayarit, Calle Tres S/n. Colonia. Cd. Industrial. Tepic, Nayarit, México
| | - C E Covantes-Rosales
- Universidad Autónoma De Nayarit, Laboratorio Nacional De Investigación Para La Inocuidad Alimentaria (Laniia)-unidad Nayarit, Calle Tres S/n. Colonia. Cd. Industrial. Tepic, Nayarit, México
| | - A B Benitez-Trinidad
- Universidad Autónoma De Nayarit, Laboratorio Nacional De Investigación Para La Inocuidad Alimentaria (Laniia)-unidad Nayarit, Calle Tres S/n. Colonia. Cd. Industrial. Tepic, Nayarit, México
| | - K M Ramirez-Ibarra
- Universidad Autónoma De Nayarit, Laboratorio Nacional De Investigación Para La Inocuidad Alimentaria (Laniia)-unidad Nayarit, Calle Tres S/n. Colonia. Cd. Industrial. Tepic, Nayarit, México
| | - A T Hermosillo Escobedo
- Universidad Autónoma De Nayarit, Laboratorio Nacional De Investigación Para La Inocuidad Alimentaria (Laniia)-unidad Nayarit, Calle Tres S/n. Colonia. Cd. Industrial. Tepic, Nayarit, México
| | - I González-Navarro
- Universidad Autónoma De Nayarit, Laboratorio Nacional De Investigación Para La Inocuidad Alimentaria (Laniia)-unidad Nayarit, Calle Tres S/n. Colonia. Cd. Industrial. Tepic, Nayarit, México
| | - G H Ventura-Ramón
- Universidad Autónoma De Nayarit, Laboratorio Nacional De Investigación Para La Inocuidad Alimentaria (Laniia)-unidad Nayarit, Calle Tres S/n. Colonia. Cd. Industrial. Tepic, Nayarit, México
| | - A Romero Castro
- Universidad De Quintana Roo, División De Ciencias De La Salud, Chetumal, Quintana Roo, México
| | - D Alam Escamilla
- Universidad De Quintana Roo, División De Ciencias De La Salud, Chetumal, Quintana Roo, México
| | - A Y Bueno-Duran
- Universidad Autónoma De Nayarit, Laboratorio Nacional De Investigación Para La Inocuidad Alimentaria (Laniia)-unidad Nayarit, Calle Tres S/n. Colonia. Cd. Industrial. Tepic, Nayarit, México
| | - Manuel Iván Girón-Pérez
- Universidad Autónoma De Nayarit, Laboratorio Nacional De Investigación Para La Inocuidad Alimentaria (Laniia)-unidad Nayarit, Calle Tres S/n. Colonia. Cd. Industrial. Tepic, Nayarit, México
| |
Collapse
|
19
|
Khan K, Van Aken O. The colonization of land was a likely driving force for the evolution of mitochondrial retrograde signalling in plants. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:7182-7197. [PMID: 36055768 PMCID: PMC9675596 DOI: 10.1093/jxb/erac351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
Most retrograde signalling research in plants was performed using Arabidopsis, so an evolutionary perspective on mitochondrial retrograde regulation (MRR) is largely missing. Here, we used phylogenetics to track the evolutionary origins of factors involved in plant MRR. In all cases, the gene families can be traced to ancestral green algae or earlier. However, the specific subfamilies containing factors involved in plant MRR in many cases arose during the transition to land. NAC transcription factors with C-terminal transmembrane domains, as observed in the key regulator ANAC017, can first be observed in non-vascular mosses, and close homologs to ANAC017 can be found in seed plants. Cyclin-dependent kinases (CDKs) are common to eukaryotes, but E-type CDKs that control MRR also diverged in conjunction with plant colonization of land. AtWRKY15 can be traced to the earliest land plants, while AtWRKY40 only arose in angiosperms and AtWRKY63 even more recently in Brassicaceae. Apetala 2 (AP2) transcription factors are traceable to algae, but the ABI4 type again only appeared in seed plants. This strongly suggests that the transition to land was a major driver for developing plant MRR pathways, while additional fine-tuning events have appeared in seed plants or later. Finally, we discuss how MRR may have contributed to meeting the specific challenges that early land plants faced during terrestrialization.
Collapse
Affiliation(s)
- Kasim Khan
- Department of Biology, Lund University, Lund, Sweden
| | | |
Collapse
|
20
|
Yokomizo S, Roessing M, Morita A, Kopp T, Ogawa E, Katagiri W, Feil S, Huang PL, Atochin DN, Kashiwagi S. Near-infrared II photobiomodulation augments nitric oxide bioavailability via phosphorylation of endothelial nitric oxide synthase. FASEB J 2022; 36:e22490. [PMID: 35929438 PMCID: PMC9382775 DOI: 10.1096/fj.202101890r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 07/05/2022] [Accepted: 07/25/2022] [Indexed: 11/11/2022]
Abstract
There is solid evidence of the beneficial effect of photobiomodulation (PBM) with low-power near-infrared (NIR) light in the NIR-I window in increasing bioavailable nitric oxide (NO). However, it is not established whether this effect can be extended to NIR-II light, limiting broader applications of this therapeutic modality. Since we have demonstrated PBM with NIR laser in the NIR-II window, we determined the causal relationship between NIR-II irradiation and its specific biological effects on NO bioavailability. We analyzed the impact of NIR-II irradiation on NO release in cultured human endothelial cells using a NO-sensitive fluorescence probe and single-cell live imaging. Two distinct wavelengths of NIR-II laser (1064 and 1270 nm) and NIR-I (808 nm) at an irradiance of 10 mW/cm2 induced NO release from endothelial cells. These lasers also enhanced Akt phosphorylation at Ser 473, endothelial nitric oxide synthase (eNOS) phosphorylation at Ser 1177, and endothelial cell migration. Moreover, the NO release and phosphorylation of eNOS were abolished by inhibiting mitochondrial respiration, suggesting that Akt activation caused by NIR-II laser exposure involves mitochondrial retrograde signaling. Other inhibitors that inhibit known Akt activation pathways, including a specific inhibitor of PI3K, Src family PKC, did not affect this response. These two wavelengths of NIR-II laser induced no appreciable NO generation in cultured neuronal cells expressing neuronal NOS (nNOS). In short, NIR-II laser enhances bioavailable NO in endothelial cells. Since a hallmark of endothelial dysfunction is suppressed eNOS with concomitant NO deficiency, NIR-II laser technology could be broadly used to restore endothelial NO and treat or prevent cardiovascular diseases.
Collapse
Affiliation(s)
- Shinya Yokomizo
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, 149 13 Street, Charlestown, MA, 02129, USA
- Department of Radiological Science, Tokyo Metropolitan University, 7-2-10 Higashi-Ogu, Arakawa, Tokyo 116-8551, Japan
| | - Malte Roessing
- Interfaculty Institute of Biochemistry (IFIB), University of Tübingen, Auf der Morgenstelle 34, Tübingen 72076, Germany
- Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, 149 13 Street, Charlestown, MA 02129, USA
| | - Atsuyo Morita
- Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, 149 13 Street, Charlestown, MA 02129, USA
| | - Timo Kopp
- Interfaculty Institute of Biochemistry (IFIB), University of Tübingen, Auf der Morgenstelle 34, Tübingen 72076, Germany
- Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, 149 13 Street, Charlestown, MA 02129, USA
| | - Emiyu Ogawa
- School of Allied Health Science, Kitasato University, 1-15-1 Kitasato Minami-ku Sagamihara, Kanagawa, Japan
| | - Wataru Katagiri
- Graduate School of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Susanne Feil
- Interfaculty Institute of Biochemistry (IFIB), University of Tübingen, Auf der Morgenstelle 34, Tübingen 72076, Germany
| | - Paul L. Huang
- Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, 149 13 Street, Charlestown, MA 02129, USA
| | - Dmitriy N. Atochin
- Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, 149 13 Street, Charlestown, MA 02129, USA
| | - Satoshi Kashiwagi
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, 149 13 Street, Charlestown, MA, 02129, USA
| |
Collapse
|
21
|
Zumbaugh MD, Johnson SE, Shi TH, Gerrard DE. Molecular and biochemical regulation of skeletal muscle metabolism. J Anim Sci 2022; 100:6652332. [PMID: 35908794 PMCID: PMC9339271 DOI: 10.1093/jas/skac035] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 02/02/2022] [Indexed: 12/13/2022] Open
Abstract
Skeletal muscle hypertrophy is a culmination of catabolic and anabolic processes that are interwoven into major metabolic pathways, and as such modulation of skeletal muscle metabolism may have implications on animal growth efficiency. Muscle is composed of a heterogeneous population of muscle fibers that can be classified by metabolism (oxidative or glycolytic) and contractile speed (slow or fast). Although slow fibers (type I) rely heavily on oxidative metabolism, presumably to fuel long or continuous bouts of work, fast fibers (type IIa, IIx, and IIb) vary in their metabolic capability and can range from having a high oxidative capacity to a high glycolytic capacity. The plasticity of muscle permits continuous adaptations to changing intrinsic and extrinsic stimuli that can shift the classification of muscle fibers, which has implications on fiber size, nutrient utilization, and protein turnover rate. The purpose of this paper is to summarize the major metabolic pathways in skeletal muscle and the associated regulatory pathways.
Collapse
Affiliation(s)
- Morgan D Zumbaugh
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Sally E Johnson
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Tim H Shi
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - David E Gerrard
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| |
Collapse
|
22
|
Wagner A, Kosnacova H, Chovanec M, Jurkovicova D. Mitochondrial Genetic and Epigenetic Regulations in Cancer: Therapeutic Potential. Int J Mol Sci 2022; 23:ijms23147897. [PMID: 35887244 PMCID: PMC9321253 DOI: 10.3390/ijms23147897] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/12/2022] [Accepted: 07/14/2022] [Indexed: 02/01/2023] Open
Abstract
Mitochondria are dynamic organelles managing crucial processes of cellular metabolism and bioenergetics. Enabling rapid cellular adaptation to altered endogenous and exogenous environments, mitochondria play an important role in many pathophysiological states, including cancer. Being under the control of mitochondrial and nuclear DNA (mtDNA and nDNA), mitochondria adjust their activity and biogenesis to cell demands. In cancer, numerous mutations in mtDNA have been detected, which do not inactivate mitochondrial functions but rather alter energy metabolism to support cancer cell growth. Increasing evidence suggests that mtDNA mutations, mtDNA epigenetics and miRNA regulations dynamically modify signalling pathways in an altered microenvironment, resulting in cancer initiation and progression and aberrant therapy response. In this review, we discuss mitochondria as organelles importantly involved in tumorigenesis and anti-cancer therapy response. Tumour treatment unresponsiveness still represents a serious drawback in current drug therapies. Therefore, studying aspects related to genetic and epigenetic control of mitochondria can open a new field for understanding cancer therapy response. The urgency of finding new therapeutic regimens with better treatment outcomes underlines the targeting of mitochondria as a suitable candidate with new therapeutic potential. Understanding the role of mitochondria and their regulation in cancer development, progression and treatment is essential for the development of new safe and effective mitochondria-based therapeutic regimens.
Collapse
Affiliation(s)
- Alexandra Wagner
- Department of Genetics, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia; (A.W.); (H.K.); (M.C.)
- Department of Simulation and Virtual Medical Education, Faculty of Medicine, Comenius University, 811 08 Bratislava, Slovakia
| | - Helena Kosnacova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia; (A.W.); (H.K.); (M.C.)
- Department of Simulation and Virtual Medical Education, Faculty of Medicine, Comenius University, 811 08 Bratislava, Slovakia
| | - Miroslav Chovanec
- Department of Genetics, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia; (A.W.); (H.K.); (M.C.)
| | - Dana Jurkovicova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia; (A.W.); (H.K.); (M.C.)
- Correspondence:
| |
Collapse
|
23
|
Kim D, Shin Y, Kim EH, Lee Y, Kim S, Kim HS, Kim HC, Leem JH, Kim HR, Bae ON. Functional and dynamic mitochondrial damage by chloromethylisothiazolinone/methylisothiazolinone (CMIT/MIT) mixture in brain endothelial cell lines and rat cerebrovascular endothelium. Toxicol Lett 2022; 366:45-57. [PMID: 35803525 DOI: 10.1016/j.toxlet.2022.06.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 06/27/2022] [Accepted: 06/29/2022] [Indexed: 12/23/2022]
Abstract
The mixture of 5-chloro-2-methyl-4-isothiazolin-3-one (CMIT, chloromethylisothiazolinone) and 2-methyl-4-isothiazolin-3-one (MIT, methylisothiazolinone) is a commonly used biocide in consumer products. Despite the health issues related to its usage in cosmetics and humidifier disinfectants (HD), understanding its adverse outcome is still limited. Using in vitro cell lines and ex vivo rat models, we examined the effects of CMIT/MIT on the cellular redox homeostasis and energy metabolism in the brain microvascular endothelium, a highly restrictive interface between the bloodstream and brain. In murine bEND.3 and human hCMEC/D3, CMIT/MIT significantly amplified the mitochondrial-derived oxidative stress causing disruption of the mitochondrial membrane potential and oxidative phosphorylation at a sub-lethal concentration (1 μg/mL) or treatment duration (1 h). In addition, CMIT/MIT significantly increased a dynamic imbalance between mitochondrial fission and fusion, and endogenous pathological stressors significantly potentiated the CMIT/MIT-induced endothelial dysfunction. Notably, in the brain endothelium isolated from intravenously CMIT/MIT-administered rats, we observed significant mitochondrial damage and decreased tight junction protein. Taken together, we report that CMIT/MIT significantly impaired mitochondrial function and dynamics resulting in endothelial barrier dysfunction, giving an insight into the role of mitochondrial damage in CMIT/MIT-associated systemic health effects.
Collapse
Affiliation(s)
- Donghyun Kim
- College of Pharmacy Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, South Korea
| | - Yusun Shin
- College of Pharmacy Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, South Korea
| | - Eun-Hye Kim
- College of Pharmacy Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, South Korea
| | - Youngmee Lee
- Humidifier Disinfectant Health Center, National Institute of Environmental Research, Incheon, South Korea
| | - Seongmi Kim
- Humidifier Disinfectant Health Center, National Institute of Environmental Research, Incheon, South Korea
| | - Hyung Sik Kim
- Division of Toxicology, School of Pharmacy, Sungkyunkwan University, Suwon, South Korea
| | - Hwan-Cheol Kim
- Department of Occupational and Environmental Medicine, Inha University, Incheon, South Korea
| | - Jong-Han Leem
- Department of Occupational and Environmental Medicine, Inha University, Incheon, South Korea
| | - Ha Ryong Kim
- College of Pharmacy, Daegu Catholic University, Daegu, South Korea
| | - Ok-Nam Bae
- College of Pharmacy Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, South Korea.
| |
Collapse
|
24
|
Chen N, Zhang H, Zang E, Liu ZX, Lan YF, Hao WL, He S, Fan X, Sun GL, Wang YL. Adaptation insights from comparative transcriptome analysis of two Opisthopappus species in the Taihang mountains. BMC Genomics 2022; 23:466. [PMID: 35751010 PMCID: PMC9233376 DOI: 10.1186/s12864-022-08703-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 06/13/2022] [Indexed: 11/29/2022] Open
Abstract
Opisthopappus is a major wild source of Asteraceae with resistance to cold and drought. Two species of this genus (Opisthopappus taihangensis and O. longilobus) have been employed as model systems to address the evolutionary history of perennial herb biomes in the Taihang Mountains of China. However, further studies on the adaptive divergence processes of these two species are currently impeded by the lack of genomic resources. To elucidate the molecular mechanisms involved, a comparative analysis of these two species was conducted. Among the identified transcription factors, the bHLH members were most prevalent, which exhibited significantly different expression levels in the terpenoid metabolic pathway. O. longilobus showed higher level of expression than did O. taihangensis in terms of terpenes biosynthesis and metabolism, particularly monoterpenoids and diterpenoids. Analyses of the positive selection genes (PSGs) identified from O. taihangensis and O. longilobus revealed that 1203 genes were related to adaptative divergence, which were under rapid evolution and/or have signs of positive selection. Differential expressions of PSG occurred primarily in the mitochondrial electron transport, starch degradation, secondary metabolism, as well as nucleotide synthesis and S-metabolism pathway processes. Several PSGs were obviously differentially expressed in terpenes biosynthesis that might result in the fragrances divergence between O. longilobus and O. taihangensis, which would provide insights into adaptation of the two species to different environments that characterized by sub-humid warm temperate and temperate continental monsoon climates. The comparative analysis for these two species in Opisthopappus not only revealed how the divergence occurred from molecular perspective, but also provided novel insights into how differential adaptations occurred in Taihang Mountains.
Collapse
Affiliation(s)
- Ning Chen
- College of Life Science, Shanxi Normal University, Taiyuan, 030031, China
| | - Hao Zhang
- College of Life Science, Shanxi Normal University, Taiyuan, 030031, China
| | - En Zang
- College of Life Science, Shanxi Normal University, Taiyuan, 030031, China
| | - Zhi-Xia Liu
- College of Life Science, Shanxi Normal University, Taiyuan, 030031, China
| | - Ya-Fei Lan
- College of Life Science, Shanxi Normal University, Taiyuan, 030031, China
| | - Wei-Li Hao
- College of Life Science, Shanxi Normal University, Taiyuan, 030031, China
| | - Shan He
- College of Life Science, Shanxi Normal University, Taiyuan, 030031, China
| | - Xing Fan
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Gen-Lou Sun
- Department of Biology, Saint Mary's University, Halifax, B3H3C3, Canada.
| | - Yi-Ling Wang
- College of Life Science, Shanxi Normal University, Taiyuan, 030031, China.
| |
Collapse
|
25
|
Elliot SJ, Catanuto P, Pereira-Simon S, Xia X, Pastar I, Thaller S, Head CR, Stojadinovic O, Tomic-Canic M, Glassberg MK. Catalase, a therapeutic target in the reversal of estrogen-mediated aging. Mol Ther 2022; 30:947-962. [PMID: 34174444 PMCID: PMC8821897 DOI: 10.1016/j.ymthe.2021.06.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 01/30/2021] [Accepted: 06/09/2021] [Indexed: 02/04/2023] Open
Abstract
Despite increasing interest in the reversal of age-related processes, there is a paucity of data regarding the effects of post-menopausal-associated estrogen loss on cellular function. We studied human adipose-derived mesenchymal stem cells (hASCs) isolated from women younger than 45 years old (pre-menopause, pre-hASC) or older than 55 years old (post-menopause, post-hASC). In this study, we provide proof of concept that the age-related ineffective functionality of ASCs can be reversed to improve their ability in promoting tissue repair. We found reduced estrogen receptor expression, decreased estrogen receptor activation, and reduced sensitivity to 17β-estradiol in post-hASCs. This correlated with decreased antioxidants (catalase and superoxide dismutase [SOD] expression) and increased oxidative stress compared with pre-hASCs. Increasing catalase expression in post-hASCs restored estrogen receptor (ER) expression and their functional capacity to promote tissue repair as shown in human skin ex vivo wound healing and in vivo mouse model of lung injury. Our results suggest that the consequences of 17β-estradiol decline on the function of hASCs may be reversible by changing the oxidative stress/antioxidant composition.
Collapse
Affiliation(s)
- Sharon J. Elliot
- DeWitt Daughtry Family Department of Surgery, University of Miami Leonard M. Miller School of Medicine, Miami, FL 33136, USA,Corresponding author: Sharon J. Elliot, DeWitt Daughtry Family Department of Surgery, University of Miami Leonard M. Miller School of Medicine, Miami, FL 33136, USA.
| | - Paola Catanuto
- DeWitt Daughtry Family Department of Surgery, University of Miami Leonard M. Miller School of Medicine, Miami, FL 33136, USA
| | - Simone Pereira-Simon
- DeWitt Daughtry Family Department of Surgery, University of Miami Leonard M. Miller School of Medicine, Miami, FL 33136, USA
| | - Xiaomei Xia
- Department of Medicine, Division of Pulmonary, Critical Care, and Sleep, University of Arizona College of Medicine, Phoenix, AZ 85004, USA
| | - Irena Pastar
- Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, University of Miami Leonard M. Miller School of Medicine, Miami, FL 33136, USA
| | - Seth Thaller
- DeWitt Daughtry Family Department of Surgery, University of Miami Leonard M. Miller School of Medicine, Miami, FL 33136, USA
| | - Cheyanne R. Head
- Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, University of Miami Leonard M. Miller School of Medicine, Miami, FL 33136, USA
| | - Olivera Stojadinovic
- Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, University of Miami Leonard M. Miller School of Medicine, Miami, FL 33136, USA
| | - Marjana Tomic-Canic
- Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, University of Miami Leonard M. Miller School of Medicine, Miami, FL 33136, USA
| | - Marilyn K. Glassberg
- DeWitt Daughtry Family Department of Surgery, University of Miami Leonard M. Miller School of Medicine, Miami, FL 33136, USA,Department of Medicine, Division of Pulmonary, Critical Care, and Sleep, University of Arizona College of Medicine, Phoenix, AZ 85004, USA,Corresponding author: Marilyn K. Glassberg, Department of Medicine, Division of Pulmonary, Critical Care, and Sleep, University of Arizona College of Medicine, Phoenix, AZ 85004, USA.
| |
Collapse
|
26
|
Amorim R, Cagide F, Tavares LC, Simões RF, Soares P, Benfeito S, Baldeiras I, Jones JG, Borges F, Oliveira PJ, Teixeira J. Mitochondriotropic antioxidant based on caffeic acid AntiOxCIN 4 activates Nrf2-dependent antioxidant defenses and quality control mechanisms to antagonize oxidative stress-induced cell damage. Free Radic Biol Med 2022; 179:119-132. [PMID: 34954022 DOI: 10.1016/j.freeradbiomed.2021.12.304] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/12/2021] [Accepted: 12/17/2021] [Indexed: 12/12/2022]
Abstract
Mitochondria are key organelles involved in cellular survival, differentiation, and death induction. In this regard, mitochondrial morphology and/or function alterations are involved in stress-induced adaptive pathways, priming mitochondria for mitophagy or apoptosis induction. We have previously shown that the mitochondriotropic antioxidant AntiOxCIN4 (100 μM; 48 h) presented significant cytoprotective effect without affecting the viability of human hepatoma-derived (HepG2) cells. Moreover, AntiOxCIN4 (12.5 μM; 72 h) caused a mild increase of reactive oxygen species (ROS) levels without toxicity to primary human skin fibroblasts (PHSF). As Nrf2 is a master regulator of the oxidative stress response inducing antioxidant-encoding gene expression, we hypothesized that AntiOxCIN4 could increase the resistance of human hepatoma-derived HepG2 to oxidative stress by Nrf2-dependent mechanisms, in a process mediated by mitochondrial ROS (mtROS). Here we showed that after an initial decrease in oxygen consumption paralleled by a moderate increase in superoxide anion levels, AntiOxCIN4 led to a time-dependent Nrf2 translocation to the nucleus. This was followed later by a 1.5-fold increase in basal respiration and a 1.2-fold increase in extracellular acidification. AntiOxCIN4 treatment enhanced mitochondrial quality by triggering the clearance of defective organelles by autophagy and/or mitophagy, coupled with increased mitochondrial biogenesis. AntiOxCIN4 also up-regulated the cellular antioxidant defense system. AntiOxCIN4 seems to have the ability to maintain hepatocyte redox homeostasis, regulating the electrophilic/nucleophilic tone, and preserve cellular physiological functions. The obtained data open a new avenue to explore the effects of AntiOxCIN4 in the context of preserving hepatic mitochondrial function in disorders, such as NASH/NAFLD and type II diabetes.
Collapse
Affiliation(s)
- Ricardo Amorim
- CNC-Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504, Coimbra, Portugal; CIQUP/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007, Porto, Portugal; PhD Programme in Experimental Biology and Biomedicine (PDBEB), Institute for Interdisciplinary Research (IIIUC), University of Coimbra, 3030-789, Coimbra, Portugal
| | - Fernando Cagide
- CIQUP/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007, Porto, Portugal
| | - Ludgero C Tavares
- CNC-Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504, Coimbra, Portugal; CIVG - Vasco da Gama Research Center, University School Vasco da Gama - EUVG, 3020-210, Coimbra, Portugal
| | - Rui F Simões
- CNC-Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504, Coimbra, Portugal; PhD Programme in Experimental Biology and Biomedicine (PDBEB), Institute for Interdisciplinary Research (IIIUC), University of Coimbra, 3030-789, Coimbra, Portugal
| | - Pedro Soares
- CIQUP/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007, Porto, Portugal
| | - Sofia Benfeito
- CIQUP/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007, Porto, Portugal
| | - Inês Baldeiras
- CNC-Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504, Coimbra, Portugal; Faculty of Medicine, University of Coimbra, 3004-504, Coimbra, Portugal
| | - John G Jones
- CNC-Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504, Coimbra, Portugal
| | - Fernanda Borges
- CIQUP/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007, Porto, Portugal
| | - Paulo J Oliveira
- CNC-Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504, Coimbra, Portugal.
| | - José Teixeira
- CNC-Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504, Coimbra, Portugal.
| |
Collapse
|
27
|
Lubawy J, Chowański S, Adamski Z, Słocińska M. Mitochondria as a target and central hub of energy division during cold stress in insects. Front Zool 2022; 19:1. [PMID: 34991650 PMCID: PMC8740437 DOI: 10.1186/s12983-021-00448-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 12/13/2021] [Indexed: 01/08/2023] Open
Abstract
Temperature stress is one of the crucial factors determining geographical distribution of insect species. Most of them are active in moderate temperatures, however some are capable of surviving in extremely high as well as low temperatures, including freezing. The tolerance of cold stress is a result of various adaptation strategies, among others the mitochondria are an important player. They supply cells with the most prominent energy carrier—ATP, needed for their life processes, but also take part in many other processes like growth, aging, protection against stress injuries or cell death. Under cold stress, the mitochondria activity changes in various manner, partially to minimize the damages caused by the cold stress, partially because of the decline in mitochondrial homeostasis by chill injuries. In the response to low temperature, modifications in mitochondrial gene expression, mtDNA amount or phosphorylation efficiency can be observed. So far study also showed an increase or decrease in mitochondria number, their shape and mitochondrial membrane permeability. Some of the changes are a trigger for apoptosis induced via mitochondrial pathway, that protects the whole organism against chill injuries occurring on the cellular level. In many cases, the observed modifications are not unequivocal and depend strongly on many factors including cold acclimation, duration and severity of cold stress or environmental conditions. In the presented article, we summarize the current knowledge about insect response to cold stress focusing on the role of mitochondria in that process considering differences in results obtained in different experimental conditions, as well as depending on insect species. These differentiated observations clearly indicate that it is still much to explore. ![]()
Collapse
Affiliation(s)
- Jan Lubawy
- Department of Animal Physiology and Developmental Biology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland.
| | - Szymon Chowański
- Department of Animal Physiology and Developmental Biology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Zbigniew Adamski
- Department of Animal Physiology and Developmental Biology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland.,Laboratory of Electron and Confocal Microscopy, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Małgorzata Słocińska
- Department of Animal Physiology and Developmental Biology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| |
Collapse
|
28
|
Peng J, Ramatchandirin B, Pearah A, Maheshwari A, He L. Development and Functions of Mitochondria in Early Life. NEWBORN (CLARKSVILLE, MD.) 2022; 1:131-141. [PMID: 37206110 PMCID: PMC10193534 DOI: 10.5005/jp-journals-11002-0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Mitochondria are highly dynamic organelles of bacterial origin in eukaryotic cells. These play a central role in metabolism and adenosine triphosphate (ATP) synthesis and in the production and regulation of reactive oxygen species (ROS). In addition to the generation of energy, mitochondria perform numerous other functions to support key developmental events such as fertilization during reproduction, oocyte maturation, and the development of the embryo. During embryonic and neonatal development, mitochondria may have important effects on metabolic, energetic, and epigenetic regulation, which may have significant short- and long-term effects on embryonic and offspring health. Hence, the environment, epigenome, and early-life regulation are all linked by mitochondrial integrity, communication, and metabolism.
Collapse
Affiliation(s)
- Jinghua Peng
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Balamurugan Ramatchandirin
- Department of Pediatrics and Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Alexia Pearah
- Department of Pediatrics and Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Akhil Maheshwari
- Global Newborn Society, Clarksville, Maryland, United States of America
| | - Ling He
- Department of Pediatrics and Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| |
Collapse
|
29
|
Chen K, Ernst P, Liu XM, Zhou L. Optogenetic Studies of Mitochondria. Methods Mol Biol 2022; 2501:311-324. [PMID: 35857235 DOI: 10.1007/978-1-0716-2329-9_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
While optogenetic approaches have been widely used for remote control of cell membrane excitability and intracellular signaling pathways, their application in mitochondrial study has been limited, largely due to the challenge of effectively and specifically expressing heterologous light-gated rhodopsin channels in the mitochondria. Here, we describe the methods for expressing functional channelrhodopsin 2 (ChR2) proteins in the mitochondrial inner membrane with an unusually long mitochondrial leading sequence and characterizing optogenetic-mediated mitochondrial membrane potential (ΔΨm) depolarization. We then illustrate how this next-generation optogenetic approach can be used to study the effect of ΔΨm on mitochondrial functions such as mitophagy, programed cell death, and preconditioning-mediated cytoprotection. We anticipate that this innovative technology will enable new insights into the mechanisms by which changes in ΔΨm differentially impacts mitochondrial and cellular functions.
Collapse
Affiliation(s)
- Kai Chen
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, USA
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Patrick Ernst
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, USA
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Xiaoguang Margaret Liu
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Lufang Zhou
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, USA.
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
30
|
Wang Y, Wang X, Long Q, Liu Y, Yin T, Sirota I, Ren F, Gu Z, Luo J. Reducing embryonic mtDNA copy number alters epigenetic profile of key hepatic lipolytic genes and causes abnormal lipid accumulation in adult mice. FEBS J 2021; 288:6828-6843. [PMID: 34258867 DOI: 10.1111/febs.16121] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/30/2021] [Accepted: 07/13/2021] [Indexed: 12/17/2022]
Abstract
Adverse fetal environment, in particular a shortage or excess of nutrients, is associated with increased risks of metabolic diseases later in life. However, the molecular mechanisms underlying this developmental origin of adult diseases remain unclear. Here, we directly tested the role of mitochondrial stress in mediating fetal programming in mice by enzymatically depleting mtDNA in zygotes. mtDNA-targeted plasmid microinjection is used to reduce embryonic mtDNA copy number directly, followed by embryo transfer. Mice with reduced zygote mtDNA copy number were born morphologically normal and showed no accelerated body weight gain. However, at 5 months of age these mice showed markedly increased hepatic lipidosis and became glucose-intolerant. Hepatic mRNA and protein expressions of peroxisome proliferator-activated receptor α (Pparα), a key transcriptional regulator of lipid metabolism, were significantly decreased as a result of increased DNA methylation in its proximal regulatory region. These results indicate that perturbation of mitochondrial function around the periconceptional period causes hypermethylation and thus suppressed expression of PPARα in fetal liver, leading to impaired hepatic lipid metabolism. Our findings provide the first direct evidence that mitochondrial stress mediates epigenetic changes associated with fetal programming of adult diseases in a mammalian system.
Collapse
Affiliation(s)
- Yakun Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Xuan Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Qiaoming Long
- Cam-Su Mouse Genomic Resource Center, Soochow University, China
| | - Yuanwu Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Tao Yin
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Inna Sirota
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | - Fazheng Ren
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Zhenglong Gu
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | - Junjie Luo
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
| |
Collapse
|
31
|
Nicolson GL, Ferreira de Mattos G, Ash M, Settineri R, Escribá PV. Fundamentals of Membrane Lipid Replacement: A Natural Medicine Approach to Repairing Cellular Membranes and Reducing Fatigue, Pain, and Other Symptoms While Restoring Function in Chronic Illnesses and Aging. MEMBRANES 2021; 11:944. [PMID: 34940446 PMCID: PMC8707623 DOI: 10.3390/membranes11120944] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/23/2021] [Accepted: 11/23/2021] [Indexed: 12/14/2022]
Abstract
Membrane Lipid Replacement (MLR) uses natural membrane lipid supplements to safely replace damaged, oxidized lipids in membranes in order to restore membrane function, decrease symptoms and improve health. Oral MLR supplements contain mixtures of cell membrane glycerolphospholipids, fatty acids, and other lipids, and can be used to replace and remove damaged cellular and intracellular membrane lipids. Membrane injury, caused mainly by oxidative damage, occurs in essentially all chronic and acute medical conditions, including cancer and degenerative diseases, and in normal processes, such as aging and development. After ingestion, the protected MLR glycerolphospholipids and other lipids are dispersed, absorbed, and internalized in the small intestines, where they can be partitioned into circulating lipoproteins, globules, liposomes, micelles, membranes, and other carriers and transported in the lymphatics and blood circulation to tissues and cellular sites where they are taken in by cells and partitioned into various cellular membranes. Once inside cells, the glycerolphospholipids and other lipids are transferred to various intracellular membranes by lipid carriers, globules, liposomes, chylomicrons, or by direct membrane-membrane interactions. The entire process appears to be driven by 'bulk flow' or mass action principles, where surplus concentrations of replacement lipids can stimulate the natural exchange and removal of damaged membrane lipids while the replacement lipids undergo further enzymatic alterations. Clinical studies have demonstrated the advantages of MLR in restoring membrane and organelle function and reducing fatigue, pain, and other symptoms in chronic illness and aging patients.
Collapse
Affiliation(s)
- Garth L. Nicolson
- Department of Molecular Pathology, The Institute for Molecular Medicine, Huntington Beach, CA 92647, USA
| | - Gonzalo Ferreira de Mattos
- Laboratory of Ion Channels, Biological Membranes and Cell Signaling, Department of Biophysics, Facultad de Medicina, Universidad de la República, Montevideo 11600, Uruguay;
| | - Michael Ash
- Clinical Education, Newton Abbot, Devon TQ12 4SG, UK;
| | | | - Pablo V. Escribá
- Laboratory of Molecular Cell Biomedicine, University of the Balearic Islands, 07122 Palma de Mallorca, Spain;
| |
Collapse
|
32
|
Dai Z, Wang Q, Tang J, Wu M, Li H, Yang Y, Zhen X, Yu C. Immune-regulating bimetallic metal-organic framework nanoparticles designed for cancer immunotherapy. Biomaterials 2021; 280:121261. [PMID: 34815099 DOI: 10.1016/j.biomaterials.2021.121261] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/10/2021] [Accepted: 11/14/2021] [Indexed: 12/12/2022]
Abstract
Immunogenic cell death (ICD) is a promising strategy in cancer immunotherapy to induce high immunogenicity and activate the immune system. However, its efficacy is counteracted by the concurrent exposure of phosphatidylserine (PS), an immunosuppressive signal on the surface of cancer cells. Here we report the synthesis of a bimetallic metal-organic framework (MOF) nanoparticle containing Gd3+ and Zn2+ (Gd-MOF-5) that can be used as an immunomodulator to downregulate the immunosuppressive PS signal and an ICD inducer to upregulate immunostimulatory signals. Gd3+ inhibits PS externalization via inhibiting the activity of scramblase, an enzyme to transfer PS to the outer leaflet of plasma membrane. Moreover, intracellular Zn2+ overload activates endoplasmic reticulum stress for ICD induction. In combination with an immune checkpoint inhibitor (PD-L1 antibody, denoted as aPDL1), Gd-MOF-5 activated potent immune response and effectively inhibited primary and distal tumor growth in a bilateral 4T1 tumor model. This work presents a new strategy using designed MOF materials to modulate the cell signalling and immunosuppressive microenvironment to improve the outcome of cancer immunotherapy.
Collapse
Affiliation(s)
- Zan Dai
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| | - Qiaoyun Wang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| | - Jie Tang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| | - Min Wu
- MOE Key Laboratory of High Performance Polymer Materials and Technology, Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210093, PR China
| | - Haoze Li
- MOE Key Laboratory of High Performance Polymer Materials and Technology, Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210093, PR China
| | - Yannan Yang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| | - Xu Zhen
- MOE Key Laboratory of High Performance Polymer Materials and Technology, Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210093, PR China.
| | - Chengzhong Yu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia; School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, PR China.
| |
Collapse
|
33
|
Zinsmaier KE. Mitochondrial Miro GTPases coordinate mitochondrial and peroxisomal dynamics. Small GTPases 2021; 12:372-398. [PMID: 33183150 PMCID: PMC8583064 DOI: 10.1080/21541248.2020.1843957] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 10/22/2020] [Accepted: 10/26/2020] [Indexed: 12/18/2022] Open
Abstract
Mitochondria and peroxisomes are highly dynamic, multifunctional organelles. Both perform key roles for cellular physiology and homoeostasis by mediating bioenergetics, biosynthesis, and/or signalling. To support cellular function, they must be properly distributed, of proper size, and be able to interact with other organelles. Accumulating evidence suggests that the small atypical GTPase Miro provides a central signalling node to coordinate mitochondrial as well as peroxisomal dynamics. In this review, I summarize our current understanding of Miro-dependent functions and molecular mechanisms underlying the proper distribution, size and function of mitochondria and peroxisomes.
Collapse
Affiliation(s)
- Konrad E. Zinsmaier
- Departments of Neuroscience and Molecular and Cellular Biology, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
34
|
Reprogramming the tumor metastasis cascade by targeting galectin-driven networks. Biochem J 2021; 478:597-617. [PMID: 33600595 DOI: 10.1042/bcj20200167] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/28/2020] [Accepted: 01/21/2021] [Indexed: 12/31/2022]
Abstract
A sequence of interconnected events known as the metastatic cascade promotes tumor progression by regulating cellular and molecular interactions between tumor, stromal, endothelial, and immune cells both locally and systemically. Recently, a new concept has emerged to better describe this process by defining four attributes that metastatic cells should undergo. Every individual hallmark represents a unique trait of a metastatic cell that impacts directly in the outcome of the metastasis process. These critical features, known as the hallmarks of metastasis, include motility and invasion, modulation of the microenvironment, cell plasticity and colonization. They are hierarchically regulated at different levels by several factors, including galectins, a highly conserved family of β-galactoside-binding proteins abundantly expressed in tumor microenvironments and sites of metastasis. In this review, we discuss the role of galectins in modulating each hallmark of metastasis, highlighting novel therapeutic opportunities for treating the metastatic disease.
Collapse
|
35
|
Kim SJ, Miller B, Kumagai H, Silverstein AR, Flores M, Yen K. Mitochondrial-derived peptides in aging and age-related diseases. GeroScience 2021; 43:1113-1121. [PMID: 32910336 PMCID: PMC8190245 DOI: 10.1007/s11357-020-00262-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 08/28/2020] [Indexed: 12/17/2022] Open
Abstract
A decline in mitochondrial quality and activity has been associated with normal aging and correlated with the development of a wide range of age-related diseases. Here, we review the evidence that a decline in the levels of mitochondrial-derived peptides contributes to aging and age-related diseases. In particular, we discuss how mitochondrial-derived peptides, humanin and MOTS-c, contribute to specific aspects of the aging process, including cellular senescence, chronic inflammation, and cognitive decline. Genetic variations in the coding region of humanin and MOTS-c that are associated with age-related diseases are also reviewed, with particular emphasis placed on how mitochondrial variants might, in turn, regulate MDP expression and age-related phenotypes. Taken together, these observations suggest that mitochondrial-derived peptides influence or regulate a number of key aspects of aging and that strategies directed at increasing mitochondrial-derived peptide levels might have broad beneficial effects.
Collapse
Affiliation(s)
- Su-Jeong Kim
- The Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089-0191, USA.
| | - Brendan Miller
- The Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089-0191, USA
| | - Hiroshi Kumagai
- The Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089-0191, USA
- Institute of Health and Sports Science & Medicine, Juntendo University, Inzai, Chiba, Japan
| | - Ana R Silverstein
- The Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089-0191, USA
| | - Melanie Flores
- The Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089-0191, USA
| | - Kelvin Yen
- The Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089-0191, USA
| |
Collapse
|
36
|
Meseguer S. MicroRNAs and tRNA-Derived Small Fragments: Key Messengers in Nuclear-Mitochondrial Communication. Front Mol Biosci 2021; 8:643575. [PMID: 34026824 PMCID: PMC8138316 DOI: 10.3389/fmolb.2021.643575] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/08/2021] [Indexed: 12/18/2022] Open
Abstract
Mitochondria are not only important as energy suppliers in cells but also participate in other biological processes essential for cell growth and survival. They arose from α-proteobacterial predecessors through endosymbiosis and evolved transferring a large part of their genome to the host cell nucleus. Such a symbiotic relationship has been reinforced over time through increasingly complex signaling mechanisms between the host cell and mitochondria. So far, we do not have a complete view of the mechanisms that allow the mitochondria to communicate their functional status to the nucleus and trigger adaptive and compensatory responses. Recent findings place two classes of small non-coding RNAs (sncRNAs), microRNAs (miRNAs), and tRNA-derived small fragments, in such a scenario, acting as key pieces in the mitochondria-nucleus cross-talk. This review highlights the emerging roles and the interrelation of these sncRNAs in different signaling pathways between mitochondria and the host cell. Moreover, we describe in what way alterations of these complex regulatory mechanisms involving sncRNAs lead to diseases associated with mitochondrial dysfunction. In turn, these discoveries provide novel prognostic biomarker candidates and/or potential therapeutic targets.
Collapse
Affiliation(s)
- Salvador Meseguer
- Molecular and Cellular Immunology Laboratory, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain
| |
Collapse
|
37
|
Abstract
Dache et al. (FASEB J 34: 3616-3630, 2020) recently reported the presence of respiratory-competent cell-free mitochondria in human blood (up to 3.7 × 106 per mL of blood), providing exciting perspectives on the potential role of these extracellular mitochondria. Although their evidence for the presence of cell-free mitochondria in human blood is compelling, their conclusion that these cell-free mitochondria are respiratory competent or functional has to be reevaluated. To this end, we evaluated the functionality of cell-free mitochondria in human blood using high-resolution respirometry and mitochondria extracted from platelets of the same blood samples as positive controls. Although cell-free mitochondria were present in human plasma (i.e., significant MitoTracker Green fluorescence and complex IV activity), there was no evidence suggesting that their mitochondrial electron transport system (ETS) was functional (i.e., respiration rate not significantly different from 0; no significant responses to ADP, uncoupler, or mitochondrial inhibitors oligomycin and antimycin A). Yet, in vitro complex IV activity was detectable and even slightly higher than levels found in mitochondria extracted from platelets, suggesting that cell-free mitochondria in human blood are likely to only retain a nonfunctional part of the ETS. Despite being unlikely to be fully functional in the narrow sense (i.e., capable of oxidative phosphorylation), circulating cell-free mitochondria may have significant physiological roles that remain to be elucidated.NEW & NOTEWORTHY The recently reported cell-free mitochondria in human blood have been thought to be respiratory competent, giving rise to speculation about their biological function(s). By characterizing their bioenergetics in vitro, we show that circulating cell-free mitochondria are unlikely to be functional in vivo since they display no potential for oxidative phosphorylation.
Collapse
Affiliation(s)
- Antoine Stier
- Department of Biology, University of Turku, Turku, Finland
- Institute of Biodiversity, Animal Health, and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
38
|
Lahiri T, Brambilla L, Andrade J, Askenazi M, Ueberheide B, Levy DE. Mitochondrial STAT3 regulates antioxidant gene expression through complex I-derived NAD in triple negative breast cancer. Mol Oncol 2021; 15:1432-1449. [PMID: 33605027 PMCID: PMC8096790 DOI: 10.1002/1878-0261.12928] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/29/2021] [Accepted: 02/16/2021] [Indexed: 12/17/2022] Open
Abstract
Signal transducer and activator of transcription 3 (STAT3) is a transcription factor with roles in inflammation and tumorigenicity. A fraction of STAT3 localizes in mitochondria, where it augments tumorigenesis via regulation of mitochondrial functions, including modulation of respiration and redox status. We show a novel mechanism for mitochondrial STAT3 regulation of redox homeostasis in triple‐negative breast cancer cells. Loss of STAT3 diminished complex I dehydrogenase activity and impaired NAD+ regeneration, leading to impaired expression of glutathione biosynthetic genes and other antioxidant genes. Expressing mitochondrially restricted STAT3 or replenishment of the cellular NAD pool restored antioxidant gene expression, as did complementation of the NADH dehydrogenase activity by expression of the STAT3‐independent yeast dehydrogenase, NDI1. These NAD‐regulated processes contributed to malignant phenotypes by promoting clonal cell growth and migration. Proximity interaction and protein pull‐down assays identified three components of complex I that associated with mitochondrial STAT3, providing a potential mechanistic basis for how mitochondrial STAT3 affects complex I activity. Our data document a novel mechanism through which mitochondrial STAT3 indirectly controls antioxidant gene regulation through a retrograde NAD+ signal that is modulated by complex I dehydrogenase activity.
Collapse
Affiliation(s)
- Tanaya Lahiri
- Department of Pathology and NYU Perlmutter Cancer Center, NYU School of Medicine, New York, NY, USA
| | - Lara Brambilla
- Department of Pathology and NYU Perlmutter Cancer Center, NYU School of Medicine, New York, NY, USA
| | - Joshua Andrade
- Department of Biochemistry and Molecular Pharmacology, NYU Perlmutter Cancer Center, NYU Langone Health Proteomics Laboratory, Division of Advanced Research Technologies, NYU School of Medicine, New York, NY, USA
| | - Manor Askenazi
- Department of Biochemistry and Molecular Pharmacology, NYU Perlmutter Cancer Center, NYU Langone Health Proteomics Laboratory, Division of Advanced Research Technologies, NYU School of Medicine, New York, NY, USA.,Biomedical Hosting LLC, Arlington, MA, USA
| | - Beatrix Ueberheide
- Department of Biochemistry and Molecular Pharmacology, NYU Perlmutter Cancer Center, NYU Langone Health Proteomics Laboratory, Division of Advanced Research Technologies, NYU School of Medicine, New York, NY, USA
| | - David E Levy
- Department of Pathology and NYU Perlmutter Cancer Center, NYU School of Medicine, New York, NY, USA
| |
Collapse
|
39
|
Strobbe D, Sharma S, Campanella M. Links between mitochondrial retrograde response and mitophagy in pathogenic cell signalling. Cell Mol Life Sci 2021; 78:3767-3775. [PMID: 33619614 PMCID: PMC11071702 DOI: 10.1007/s00018-021-03770-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2021] [Indexed: 12/18/2022]
Abstract
Preservation of mitochondrial quality is paramount for cellular homeostasis. The integrity of mitochondria is guarded by the balanced interplay between anabolic and catabolic mechanisms. The removal of bio-energetically flawed mitochondria is mediated by the process of mitophagy; the impairment of which leads to the accumulation of defective mitochondria which signal the activation of compensatory mechanisms to the nucleus. This process is known as the mitochondrial retrograde response (MRR) and is enacted by Reactive Oxygen Species (ROS), Calcium (Ca2+), ATP, as well as imbalanced lipid and proteostasis. Central to this mitochondria-to-nucleus signalling are the transcription factors (e.g. the nuclear factor kappa-light-chain-enhancer of activated B cells, NF-κB) which drive the expression of genes to adapt the cell to the compromised homeostasis. An increased degree of cellular proliferation is among the consequences of the MRR and as such, engagement of mitochondrial-nuclear communication is frequently observed in cancer. Mitophagy and the MRR are therefore interlinked processes framed to, respectively, prevent or compensate for mitochondrial defects.In this review, we discuss the available knowledge on the interdependency of these processes and their contribution to cell signalling in cancer.
Collapse
Affiliation(s)
- Daniela Strobbe
- Department of Biology, University of Rome "Tor Vergata", 00133, Rome, Italy
| | - Soumya Sharma
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, University of London, Royal College Street, London, NW10TU, UK
| | - Michelangelo Campanella
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, University of London, Royal College Street, London, NW10TU, UK.
- Department of Cell and Developmental Biology, Consortium for Mitochondrial Research (CfMR), University College London, Gower Street, London, WC1E6BT, UK.
- Department of Biology, University of Rome "Tor Vergata", 00133, Rome, Italy.
| |
Collapse
|
40
|
Wei L, Li Y, Ye H, Xiao J, Hogstrand C, Green I, Guo Z, Han D. Dietary Trivalent Chromium Exposure Up-Regulates Lipid Metabolism in Coral Trout: The Evidence From Transcriptome Analysis. Front Physiol 2021; 12:640898. [PMID: 33732169 PMCID: PMC7959734 DOI: 10.3389/fphys.2021.640898] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 01/25/2021] [Indexed: 11/14/2022] Open
Abstract
Diet quality greatly affects an animal’s performance and metabolism. Despite the fact that trivalent chromium [Cr(III)] is considered an essential element and is widely used in nutritional supplements for animals and humans, the potential toxicity of Cr(III) is unclear. Here, liver transcriptome sequencing was performed on coral trout (Plectropomus leopardus) exposed to 200 mg kg–1 of dietary organic Cr(III) [as chromium picolinate (CrPic)] for 8 weeks. One-hundred-and thirteen differentially expressed genes (DEGs) were identified in response to Cr(III) stress, in comparison to the control, including 31 up-regulated and 82 down-regulated DEGs. Clusters of Orthologous Groups of proteins (COG) classifies DEGs into 15 functional categories, with the predominant category being related to lipid transport and metabolism (9.73%). The Kyoto Encyclopedia of Genes and Genomes (KEGG) assigned DEGs to six major categories with robust DEGs as part of the lipid metabolism pathway (18.58%). Moreover, KEGG functional enrichment analysis showed that these DEGs are primarily related to steroid biosynthesis, terpenoid backbone biosynthesis, and steroid hormone biosynthesis pathways, of which steroid biosynthesis was the most significant pathway, and 12 key up-regulated DEGs (dhcr7, dhcr24, ebp, lss, msmo1, sqle, cyp51, tm7sf2, sc5dl, fdft1, nsdhl, and hsd17b7) were found for steroid biosynthesis pathways. To validate the RNA sequencing data using quantitative real-time PCR (qRT-PCR), qRT-PCR results indicate that the expression of genes encoding HMGCR, TM7SF2, TRYP2, CTRL, EBP, LSS, and CYP51 were induced, while those encoding THRSP, LCE, and MCM5 were reduced, consistent with RNA-seq results. This findings provides the first evidence that a long-term high dose of Cr(III) intake causes lipid metabolism disorder and potential toxicity in fish. Cautious health risk assessment of dietary Cr(III) intake is therefore highly recommended for the commercial and/or natural diets of aquatic animals, which has previously largely been ignored.
Collapse
Affiliation(s)
- Lu Wei
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Life and Pharmaceutical Sciences, College of Food Science and Engineering, Hainan University, Haikou, China
| | - Yu Li
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Life and Pharmaceutical Sciences, College of Food Science and Engineering, Hainan University, Haikou, China
| | - Hengzhen Ye
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Life and Pharmaceutical Sciences, College of Food Science and Engineering, Hainan University, Haikou, China
| | - Juan Xiao
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Life and Pharmaceutical Sciences, College of Food Science and Engineering, Hainan University, Haikou, China
| | - Christer Hogstrand
- Metals Metabolism Group, School of Life Course Sciences, King's College London, London, United Kingdom
| | - Iain Green
- Department of Life and Environmental Sciences, Faculty of Science and Technology, Bournemouth University, Poole, United Kingdom
| | - Zhiqiang Guo
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Life and Pharmaceutical Sciences, College of Food Science and Engineering, Hainan University, Haikou, China
| | - Dong Han
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China
| |
Collapse
|
41
|
Teixeira J, Basit F, Willems PHGM, Wagenaars JA, van de Westerlo E, Amorim R, Cagide F, Benfeito S, Oliveira C, Borges F, Oliveira PJ, Koopman WJH. Mitochondria-targeted phenolic antioxidants induce ROS-protective pathways in primary human skin fibroblasts. Free Radic Biol Med 2021; 163:314-324. [PMID: 33359686 DOI: 10.1016/j.freeradbiomed.2020.12.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/10/2020] [Accepted: 12/11/2020] [Indexed: 02/07/2023]
Abstract
Phytochemical antioxidants like gallic and caffeic acid are constituents of the normal human diet that display beneficial health effects, potentially via activating stress response pathways. Using primary human skin fibroblasts (PHSFs) as a model, we here investigated whether such pathways were induced by novel mitochondria-targeted variants of gallic acid (AntiOxBEN2) and caffeic acid (AntiOxCIN4). Both molecules reduced cell viability with similar kinetics and potency (72 h incubation, IC50 ~23 μM). At a relatively high but non-toxic concentration (12.5 μM), AntiOxBEN2 and AntiOxCIN4 increased ROS levels (at 24 h), followed by a decline (at 72 h). Further analysis at the 72 h timepoint demonstrated that AntiOxBEN2 and AntiOxCIN4 did not alter mitochondrial membrane potential (Δψ), but increased cellular glutathione (GSH) levels, mitochondrial NAD(P)H autofluorescence, and mitochondrial superoxide dismutase 2 (SOD2) protein levels. In contrast, cytosolic SOD1 protein levels were not affected. AntiOxBEN2 and AntiOxCIN4 both stimulated the gene expression of Nuclear factor erythroid 2-related factor 2 (NRF2; a master regulator of the cellular antioxidant response toward oxidative stress). AntiOxBEN2 and ANtiOxCIN4 differentially affected the gene expression of the antioxidants Heme oxygenase 1 (HMOX1) and NAD(P)H dehydrogenase (quinone) 1 (NQO1). Both antioxidants did not protect from cell death induced by GSH depletion and AntiOxBEN2 (but not AntiOxCIN4) antagonized hydrogen peroxide-induced cell death. We conclude that AntiOxBEN2 and AntiOxCIN4 increase ROS levels, which stimulates NRF2 expression and, as a consequence, SOD2 and GSH levels. This highlights that AntiOxBEN2 and AntiOxCIN4 can act as prooxidants thereby activating endogenous ROS-protective pathways.
Collapse
Affiliation(s)
- José Teixeira
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, UC-Biotech, Biocant Park, 3060-197, Cantanhede, Portugal; CIQUP/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto (UP), 4169-007, Porto, Portugal; Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6500HB Nijmegen, the Netherlands.
| | - Farhan Basit
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6500HB Nijmegen, the Netherlands
| | - Peter H G M Willems
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6500HB Nijmegen, the Netherlands
| | - Jori A Wagenaars
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6500HB Nijmegen, the Netherlands
| | - Els van de Westerlo
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6500HB Nijmegen, the Netherlands
| | - Ricardo Amorim
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, UC-Biotech, Biocant Park, 3060-197, Cantanhede, Portugal; CIQUP/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto (UP), 4169-007, Porto, Portugal
| | - Fernando Cagide
- CIQUP/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto (UP), 4169-007, Porto, Portugal
| | - Sofia Benfeito
- CIQUP/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto (UP), 4169-007, Porto, Portugal
| | - Catarina Oliveira
- CIQUP/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto (UP), 4169-007, Porto, Portugal
| | - Fernanda Borges
- CIQUP/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto (UP), 4169-007, Porto, Portugal
| | - Paulo J Oliveira
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, UC-Biotech, Biocant Park, 3060-197, Cantanhede, Portugal
| | - Werner J H Koopman
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6500HB Nijmegen, the Netherlands.
| |
Collapse
|
42
|
Pang BPS, Chan WS, Chan CB. Mitochondria Homeostasis and Oxidant/Antioxidant Balance in Skeletal Muscle-Do Myokines Play a Role? Antioxidants (Basel) 2021; 10:antiox10020179. [PMID: 33513795 PMCID: PMC7911667 DOI: 10.3390/antiox10020179] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/19/2021] [Accepted: 01/21/2021] [Indexed: 12/19/2022] Open
Abstract
Mitochondria are the cellular powerhouses that generate adenosine triphosphate (ATP) to substantiate various biochemical activities. Instead of being a static intracellular structure, they are dynamic organelles that perform constant structural and functional remodeling in response to different metabolic stresses. In situations that require a high ATP supply, new mitochondria are assembled (mitochondrial biogenesis) or formed by fusing the existing mitochondria (mitochondrial fusion) to maximize the oxidative capacity. On the other hand, nutrient overload may produce detrimental metabolites such as reactive oxidative species (ROS) that wreck the organelle, leading to the split of damaged mitochondria (mitofission) for clearance (mitophagy). These vital processes are tightly regulated by a sophisticated quality control system involving energy sensing, intracellular membrane interaction, autophagy, and proteasomal degradation to optimize the number of healthy mitochondria. The effective mitochondrial surveillance is particularly important to skeletal muscle fitness because of its large tissue mass as well as its high metabolic activities for supporting the intensive myofiber contractility. Indeed, the failure of the mitochondrial quality control system in skeletal muscle is associated with diseases such as insulin resistance, aging, and muscle wasting. While the mitochondrial dynamics in cells are believed to be intrinsically controlled by the energy content and nutrient availability, other upstream regulators such as hormonal signals from distal organs or factors generated by the muscle itself may also play a critical role. It is now clear that skeletal muscle actively participates in systemic energy homeostasis via producing hundreds of myokines. Acting either as autocrine/paracrine or circulating hormones to crosstalk with other organs, these secretory myokines regulate a large number of physiological activities including insulin sensitivity, fuel utilization, cell differentiation, and appetite behavior. In this article, we will review the mechanism of myokines in mitochondrial quality control and ROS balance, and discuss their translational potential.
Collapse
|
43
|
Liu Q, Yang X, Long G, Hu Y, Gu Z, Boisclair YR, Long Q. ERAD deficiency promotes mitochondrial dysfunction and transcriptional rewiring in human hepatic cells. J Biol Chem 2020; 295:16743-16753. [PMID: 32978261 PMCID: PMC7864069 DOI: 10.1074/jbc.ra120.013987] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 09/15/2020] [Indexed: 12/19/2022] Open
Abstract
Mitochondrial dysfunction is associated with a variety of human diseases including neurodegeneration, diabetes, nonalcohol fatty liver disease (NAFLD), and cancer, but its underlying causes are incompletely understood. Using the human hepatic cell line HepG2 as a model, we show here that endoplasmic reticulum-associated degradation (ERAD), an ER protein quality control process, is critically required for mitochondrial function in mammalian cells. Pharmacological inhibition or genetic ablation of key proteins involved in ERAD increased cell death under both basal conditions and in response to proinflammatory cytokines, a situation frequently found in NAFLD. Decreased viability of ERAD-deficient HepG2 cells was traced to impaired mitochondrial functions including reduced ATP production, enhanced reactive oxygen species (ROS) accumulation, and increased mitochondrial outer membrane permeability. Transcriptome profiling revealed widespread down-regulation of genes underpinning mitochondrial functions, and up-regulation of genes associated with tumor growth and aggression. These results highlight a critical role for ERAD in maintaining mitochondrial functional and structural integrity and raise the possibility of improving cellular and organismal mitochondrial function via enhancing cellular ERAD capacity.
Collapse
Affiliation(s)
- Qingqing Liu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Cam-Su Mouse Genomic Resources Center, Medical College of Soochow University, Suzhou, Jiangsu Province, China
| | - Xiaoqin Yang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Cam-Su Mouse Genomic Resources Center, Medical College of Soochow University, Suzhou, Jiangsu Province, China
| | - Guangyu Long
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Cam-Su Mouse Genomic Resources Center, Medical College of Soochow University, Suzhou, Jiangsu Province, China
| | - Yabing Hu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Cam-Su Mouse Genomic Resources Center, Medical College of Soochow University, Suzhou, Jiangsu Province, China
| | - Zhenglong Gu
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, USA
| | - Yves R Boisclair
- Department of Animal Science, Cornell University, College of Agriculture and Life Sciences, Ithaca, New York, USA
| | - Qiaoming Long
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Cam-Su Mouse Genomic Resources Center, Medical College of Soochow University, Suzhou, Jiangsu Province, China.
| |
Collapse
|
44
|
Williamson J, Davison G. Targeted Antioxidants in Exercise-Induced Mitochondrial Oxidative Stress: Emphasis on DNA Damage. Antioxidants (Basel) 2020; 9:E1142. [PMID: 33213007 PMCID: PMC7698504 DOI: 10.3390/antiox9111142] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/04/2020] [Accepted: 11/10/2020] [Indexed: 12/13/2022] Open
Abstract
Exercise simultaneously incites beneficial (e.g., signal) and harming (e.g., damage to macromolecules) effects, likely through the generation of reactive oxygen and nitrogen species (RONS) and downstream changes to redox homeostasis. Given the link between nuclear DNA damage and human longevity/pathology, research attempting to modulate DNA damage and restore redox homeostasis through non-selective pleiotropic antioxidants has yielded mixed results. Furthermore, until recently the role of oxidative modifications to mitochondrial DNA (mtDNA) in the context of exercising humans has largely been ignored. The development of antioxidant compounds which specifically target the mitochondria has unveiled a number of exciting avenues of exploration which allow for more precise discernment of the pathways involved with the generation of RONS and mitochondrial oxidative stress. Thus, the primary function of this review, and indeed its novel feature, is to highlight the potential roles of mitochondria-targeted antioxidants on perturbations to mitochondrial oxidative stress and the implications for exercise, with special focus on mtDNA damage. A brief synopsis of the current literature addressing the sources of mitochondrial superoxide and hydrogen peroxide, and available mitochondria-targeted antioxidants is also discussed.
Collapse
Affiliation(s)
- Josh Williamson
- Sport and Exercise Sciences Research Institute, Ulster University, Jordanstown Campus, Newtownabbey BT37 0QB, Northern Ireland, UK;
| | | |
Collapse
|
45
|
English J, Son JM, Cardamone MD, Lee C, Perissi V. Decoding the rosetta stone of mitonuclear communication. Pharmacol Res 2020; 161:105161. [PMID: 32846213 PMCID: PMC7755734 DOI: 10.1016/j.phrs.2020.105161] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/04/2020] [Accepted: 08/14/2020] [Indexed: 12/12/2022]
Abstract
Cellular homeostasis in eukaryotic cells requires synchronized coordination of multiple organelles. A key role in this stage is played by mitochondria, which have recently emerged as highly interconnected and multifunctional hubs that process and coordinate diverse cellular functions. Beyond producing ATP, mitochondria generate key metabolites and are central to apoptotic and metabolic signaling pathways. Because most mitochondrial proteins are encoded in the nuclear genome, the biogenesis of new mitochondria and the maintenance of mitochondrial functions and flexibility critically depend upon effective mitonuclear communication. This review addresses the complex network of signaling molecules and pathways allowing mitochondria-nuclear communication and coordinated regulation of their independent but interconnected genomes, and discusses the extent to which dynamic communication between the two organelles has evolved for mutual benefit and for the overall maintenance of cellular and organismal fitness.
Collapse
Affiliation(s)
- Justin English
- Department of Biochemistry, Boston University, Boston, MA, 02115, USA; Graduate Program in Biomolecular Pharmacology, Department of Pharmacology and Experimental Therapeutics, Boston University, Boston, MA, 02115, USA
| | - Jyung Mean Son
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | | | - Changhan Lee
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA; USC Norris Comprehensive Cancer Center, Los Angeles, CA, 90089, USA; Biomedical Sciences, Graduate School, Ajou University, Suwon, 16499, South Korea
| | - Valentina Perissi
- Department of Biochemistry, Boston University, Boston, MA, 02115, USA.
| |
Collapse
|
46
|
Chelombitko MA, Chernyak BV, Fedorov AV, Zinovkin RA, Razin E, Paruchuru LB. The Role Played by Mitochondria in FcεRI-Dependent Mast Cell Activation. Front Immunol 2020; 11:584210. [PMID: 33178217 PMCID: PMC7596649 DOI: 10.3389/fimmu.2020.584210] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 08/20/2020] [Indexed: 11/13/2022] Open
Abstract
Mast cells play a key role in the regulation of innate and adaptive immunity and are involved in pathogenesis of many inflammatory and allergic diseases. The most studied mechanism of mast cell activation is mediated by the interaction of antigens with immunoglobulin E (IgE) and a subsequent binding with the high-affinity receptor Fc epsilon RI (FcεRI). Increasing evidences indicated that mitochondria are actively involved in the FcεRI-dependent activation of this type of cells. Here, we discuss changes in energy metabolism and mitochondrial dynamics during IgE-antigen stimulation of mast cells. We reviewed the recent data with regards to the role played by mitochondrial membrane potential, mitochondrial calcium ions (Ca2+) influx and reactive oxygen species (ROS) in mast cell FcεRI-dependent activation. Additionally, in the present review we have discussed the crucial role played by the pyruvate dehydrogenase (PDH) complex, transcription factors signal transducer and activator of transcription 3 (STAT3) and microphthalmia-associated transcription factor (MITF) in the development and function of mast cells. These two transcription factors besides their nuclear localization were also found to translocate in to the mitochondria and functions as direct modulators of mitochondrial activity. Studying the role played by mast cell mitochondria following their activation is essential for expanding our basic knowledge about mast cell physiological functions and would help to design mitochondria-targeted anti-allergic and anti-inflammatory drugs.
Collapse
Affiliation(s)
- Maria A. Chelombitko
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Boris V. Chernyak
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Artem V. Fedorov
- Department of Cell Biology and Histology, Biology Faculty, Lomonosov Moscow State University, Moscow, Russia
| | - Roman A. Zinovkin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
- Institute of Molecular Medicine, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Ehud Razin
- Department of Biochemistry and Molecular Biology, School of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Lakhsmi Bhargavi Paruchuru
- Department of Biochemistry and Molecular Biology, School of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
47
|
Gatti P, Ilamathi HS, Todkar K, Germain M. Mitochondria Targeted Viral Replication and Survival Strategies-Prospective on SARS-CoV-2. Front Pharmacol 2020; 11:578599. [PMID: 32982760 PMCID: PMC7485471 DOI: 10.3389/fphar.2020.578599] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 08/14/2020] [Indexed: 12/11/2022] Open
Abstract
SARS-CoV-2 is a positive sense RNA coronavirus that constitutes a new threat for the global community and economy. While vaccines against SARS-CoV-2 are being developed, the mechanisms through which this virus takes control of an infected cell to replicate remains poorly understood. Upon infection, viruses completely rely on host cell molecular machinery to survive and replicate. To escape from the immune response and proliferate, viruses strategically modulate cellular metabolism and alter subcellular organelle architecture and functions. One way they do this is by modulating the structure and function of mitochondria, a critical cellular metabolic hub but also a key platform for the regulation of cellular immunity. This versatile nature of mitochondria defends host cells from viruses through several mechanisms including cellular apoptosis, ROS signaling, MAVS activation and mitochondrial DNA-dependent immune activation. These events are regulated by mitochondrial dynamics, a process by which mitochondria alter their structure (including their length and connectivity) in response to stress or other cues. It is therefore not surprising that viruses, including coronaviruses hijack these processes for their survival. In this review, we highlight how positive sense RNA viruses modulate mitochondrial dynamics and metabolism to evade mitochondrial mediated immune response in order to proliferate.
Collapse
Affiliation(s)
- Priya Gatti
- Groupe de Recherche en Signalisation Cellulaire and Département de Biologie, Médicale, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
- Centre d’Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
| | - Hema Saranya Ilamathi
- Groupe de Recherche en Signalisation Cellulaire and Département de Biologie, Médicale, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
- Centre d’Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
| | - Kiran Todkar
- Groupe de Recherche en Signalisation Cellulaire and Département de Biologie, Médicale, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
- Centre d’Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
| | - Marc Germain
- Groupe de Recherche en Signalisation Cellulaire and Département de Biologie, Médicale, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
- Centre d’Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
| |
Collapse
|
48
|
O'Malley J, Kumar R, Inigo J, Yadava N, Chandra D. Mitochondrial Stress Response and Cancer. Trends Cancer 2020; 6:688-701. [PMID: 32451306 DOI: 10.1016/j.trecan.2020.04.009] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/16/2020] [Accepted: 04/22/2020] [Indexed: 12/20/2022]
Abstract
Cancer cells survive and adapt to many types of stress including hypoxia, nutrient deprivation, metabolic, and oxidative stress. These stresses are sensed by diverse cellular signaling processes, leading to either degradation of mitochondria or alleviation of mitochondrial stress. This review discusses signaling during sensing and mitigation of stress involving mitochondrial communication with the endoplasmic reticulum, and how retrograde signaling upregulates the mitochondrial stress response to maintain mitochondrial integrity. The importance of the mitochondrial unfolded protein response, an emerging pathway that alleviates cellular stress, will be elaborated with respect to cancer. Detailed understanding of cellular pathways will establish mitochondrial stress response as a key mechanism for cancer cell survival leading to cancer progression and resistance, and provide a potential therapeutic target in cancer.
Collapse
Affiliation(s)
- Jordan O'Malley
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Rahul Kumar
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Joseph Inigo
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Nagendra Yadava
- Department of Anesthesiology and Center for Shock, Trauma, and Anesthesiology Research, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Dhyan Chandra
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA.
| |
Collapse
|
49
|
Pfannschmidt T, Terry MJ, Van Aken O, Quiros PM. Retrograde signals from endosymbiotic organelles: a common control principle in eukaryotic cells. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190396. [PMID: 32362267 DOI: 10.1098/rstb.2019.0396] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Endosymbiotic organelles of eukaryotic cells, the plastids, including chloroplasts and mitochondria, are highly integrated into cellular signalling networks. In both heterotrophic and autotrophic organisms, plastids and/or mitochondria require extensive organelle-to-nucleus communication in order to establish a coordinated expression of their own genomes with the nuclear genome, which encodes the majority of the components of these organelles. This goal is achieved by the use of a variety of signals that inform the cell nucleus about the number and developmental status of the organelles and their reaction to changing external environments. Such signals have been identified in both photosynthetic and non-photosynthetic eukaryotes (known as retrograde signalling and retrograde response, respectively) and, therefore, appear to be universal mechanisms acting in eukaryotes of all kingdoms. In particular, chloroplasts and mitochondria both harbour crucial redox reactions that are the basis of eukaryotic life and are, therefore, especially susceptible to stress from the environment, which they signal to the rest of the cell. These signals are crucial for cell survival, lifespan and environmental adjustment, and regulate quality control and targeted degradation of dysfunctional organelles, metabolic adjustments, and developmental signalling, as well as induction of apoptosis. The functional similarities between retrograde signalling pathways in autotrophic and non-autotrophic organisms are striking, suggesting the existence of common principles in signalling mechanisms or similarities in their evolution. Here, we provide a survey for the newcomers to this field of research and discuss the importance of retrograde signalling in the context of eukaryotic evolution. Furthermore, we discuss commonalities and differences in retrograde signalling mechanisms and propose retrograde signalling as a general signalling mechanism in eukaryotic cells that will be also of interest for the specialist. This article is part of the theme issue 'Retrograde signalling from endosymbiotic organelles'.
Collapse
Affiliation(s)
- Thomas Pfannschmidt
- Institute of Botany, Plant Physiology, Leibniz University Hannover, Herrenhäuser Straße 2, 30419 Hannover, Germany
| | - Matthew J Terry
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Olivier Van Aken
- Department of Biology, Lund University, Sölvegatan 35, 223 62 Lund, Sweden
| | | |
Collapse
|
50
|
Dourmap C, Roque S, Morin A, Caubrière D, Kerdiles M, Béguin K, Perdoux R, Reynoud N, Bourdet L, Audebert PA, Moullec JL, Couée I. Stress signalling dynamics of the mitochondrial electron transport chain and oxidative phosphorylation system in higher plants. ANNALS OF BOTANY 2020; 125:721-736. [PMID: 31711195 PMCID: PMC7182585 DOI: 10.1093/aob/mcz184] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Accepted: 11/07/2019] [Indexed: 05/23/2023]
Abstract
BACKGROUND Mitochondria play a diversity of physiological and metabolic roles under conditions of abiotic or biotic stress. They may be directly subjected to physico-chemical constraints, and they are also involved in integrative responses to environmental stresses through their central position in cell nutrition, respiration, energy balance and biosyntheses. In plant cells, mitochondria present various biochemical peculiarities, such as cyanide-insensitive alternative respiration, and, besides integration with ubiquitous eukaryotic compartments, their functioning must be coupled with plastid functioning. Moreover, given the sessile lifestyle of plants, their relative lack of protective barriers and present threats of climate change, the plant cell is an attractive model to understand the mechanisms of stress/organelle/cell integration in the context of environmental stress responses. SCOPE The involvement of mitochondria in this integration entails a complex network of signalling, which has not been fully elucidated, because of the great diversity of mitochondrial constituents (metabolites, reactive molecular species and structural and regulatory biomolecules) that are linked to stress signalling pathways. The present review analyses the complexity of stress signalling connexions that are related to the mitochondrial electron transport chain and oxidative phosphorylation system, and how they can be involved in stress perception and transduction, signal amplification or cell stress response modulation. CONCLUSIONS Plant mitochondria are endowed with a diversity of multi-directional hubs of stress signalling that lead to regulatory loops and regulatory rheostats, whose functioning can amplify and diversify some signals or, conversely, dampen and reduce other signals. Involvement in a wide range of abiotic and biotic responses also implies that mitochondrial stress signalling could result in synergistic or conflicting outcomes during acclimation to multiple and complex stresses, such as those arising from climate change.
Collapse
Affiliation(s)
- Corentin Dourmap
- Université de Rennes 1, Department of Life Sciences and Environment, Campus de Beaulieu, Rennes, France
| | - Solène Roque
- Université de Rennes 1, Department of Life Sciences and Environment, Campus de Beaulieu, Rennes, France
| | - Amélie Morin
- Université de Rennes 1, Department of Life Sciences and Environment, Campus de Beaulieu, Rennes, France
| | - Damien Caubrière
- Université de Rennes 1, Department of Life Sciences and Environment, Campus de Beaulieu, Rennes, France
| | - Margaux Kerdiles
- Université de Rennes 1, Department of Life Sciences and Environment, Campus de Beaulieu, Rennes, France
- Université de Rennes 1, CNRS ECOBIO (Ecosystems-Biodiversity-Evolution) – UMR 6553, Rennes, France
| | - Kyllian Béguin
- Université de Rennes 1, Department of Life Sciences and Environment, Campus de Beaulieu, Rennes, France
- Université de Rennes 1, CNRS ECOBIO (Ecosystems-Biodiversity-Evolution) – UMR 6553, Rennes, France
| | - Romain Perdoux
- Université de Rennes 1, Department of Life Sciences and Environment, Campus de Beaulieu, Rennes, France
| | - Nicolas Reynoud
- Université de Rennes 1, Department of Life Sciences and Environment, Campus de Beaulieu, Rennes, France
| | - Lucile Bourdet
- Université de Rennes 1, Department of Life Sciences and Environment, Campus de Beaulieu, Rennes, France
| | - Pierre-Alexandre Audebert
- Université de Rennes 1, Department of Life Sciences and Environment, Campus de Beaulieu, Rennes, France
| | - Julien Le Moullec
- Université de Rennes 1, Department of Life Sciences and Environment, Campus de Beaulieu, Rennes, France
| | - Ivan Couée
- Université de Rennes 1, Department of Life Sciences and Environment, Campus de Beaulieu, Rennes, France
- Université de Rennes 1, CNRS ECOBIO (Ecosystems-Biodiversity-Evolution) – UMR 6553, Rennes, France
| |
Collapse
|