1
|
Giunco S, Del Mistro A, Morello M, Lidonnici J, Frayle H, Gori S, De Rossi A, Boscolo-Rizzo P. From infection to immortality: The role of HPV and telomerase in head and neck cancer. Oral Oncol 2025; 161:107169. [PMID: 39755000 DOI: 10.1016/j.oraloncology.2024.107169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 12/19/2024] [Accepted: 12/25/2024] [Indexed: 01/06/2025]
Abstract
Head and neck squamous cell carcinomas (HNSCCs) represent a heterogeneous group of malignancies with multifactorial aetiologies. High-risk human papillomavirus (hrHPV) infections, particularly HPV16, and the dysregulation of telomerase activity, specifically through its catalytic subunit, telomerase reverse transcriptase (TERT) are among the key contributors to HNSCC development and progression. HPV promotes oncogenesis via the E6 and E7 oncoproteins, which inactivate tumour suppressors TP53 and RB1, leading to unchecked cellular proliferation. Concurrently, telomerase activation plays a critical role in HNSCC by maintaining telomere length, thus enabling cellular immortality, and facilitating tumour development and progression. The interplay between HPV and telomerase is significant; HPV oncoprotein E6 enhances telomerase activity through multiple regulatory mechanisms, including upregulating TERT expression. Beyond telomere maintenance, TERT influences signalling pathways, cellular metabolism, and the tumour microenvironment, contributing to aggressive tumour behaviour and poor prognosis. This review integrates the roles of HPV and telomerase in HNSCC, focusing on their molecular mechanisms and interactions that drive carcinogenesis and influence disease progression. Understanding the synergistic effects of HPV and TERT in HNSCC may be crucial for risk stratification, prognostic assessment, and the development of novel therapeutic strategies targeting these specific molecular pathways.
Collapse
Affiliation(s)
- Silvia Giunco
- Department of Surgery, Oncology and Gastroenterology, Section of Oncology and Immunology, University of Padova, 35128 Padova, Italy; Immunology and Diagnostic Molecular Oncology Unit, Veneto Institute of Oncology IOV - IRCCS, 35128 Padova, Italy
| | - Annarosa Del Mistro
- Immunology and Diagnostic Molecular Oncology Unit, Veneto Institute of Oncology IOV - IRCCS, 35128 Padova, Italy
| | - Marzia Morello
- Immunology and Diagnostic Molecular Oncology Unit, Veneto Institute of Oncology IOV - IRCCS, 35128 Padova, Italy
| | - Jacopo Lidonnici
- Department of Surgery, Oncology and Gastroenterology, Section of Oncology and Immunology, University of Padova, 35128 Padova, Italy
| | - Helena Frayle
- Immunology and Diagnostic Molecular Oncology Unit, Veneto Institute of Oncology IOV - IRCCS, 35128 Padova, Italy
| | - Silvia Gori
- Immunology and Diagnostic Molecular Oncology Unit, Veneto Institute of Oncology IOV - IRCCS, 35128 Padova, Italy
| | - Anita De Rossi
- Department of Surgery, Oncology and Gastroenterology, Section of Oncology and Immunology, University of Padova, 35128 Padova, Italy.
| | - Paolo Boscolo-Rizzo
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy
| |
Collapse
|
2
|
Jaszek N, Bogdanowicz A, Siwiec J, Starownik R, Kwaśniewski W, Mlak R. Epigenetic Biomarkers as a New Diagnostic Tool in Bladder Cancer-From Early Detection to Prognosis. J Clin Med 2024; 13:7159. [PMID: 39685620 DOI: 10.3390/jcm13237159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/20/2024] [Accepted: 11/24/2024] [Indexed: 12/18/2024] Open
Abstract
Bladder cancer (BC) currently ranks as the 9th most common cancer worldwide. It is characterised by very high rates of recurrence and metastasis. Most cases of BC are of urothelial origin, and due to its ability to penetrate muscle tissue, BC is divided into non-muscle-invasive BC (NMIBC) and muscle-invasive BC (MIBC). The current diagnosis of BC is still based primarily on invasive cystoscopy, which is an expensive and invasive method that carries a risk of various complications. Urine sediment cytology is often used as a complementary test, the biggest drawback of which is its very low sensitivity concerning the detection of BC at early stages, which is crucial for prompt implementation of appropriate treatment. Therefore, there is a great need to develop innovative diagnostic techniques that would enable early detection and accurate prognosis of BC. Great potential in this regard is shown by epigenetic changes, which are often possible to observe long before the onset of clinical symptoms of the disease. In addition, these changes can be detected in readily available biological material, such as urine or blood, indicating the possibility of constructing non-invasive diagnostic tests. Over the past few years, many studies have emerged using epigenetic alterations as novel diagnostic and prognostic biomarkers of BC. This review provides an update on promising diagnostic biomarkers for the detection and prognosis of BC based on epigenetic changes such as DNA methylation and expression levels of selected non-coding RNAs (ncRNAs), taking into account the latest literature data.
Collapse
Affiliation(s)
- Natalia Jaszek
- Department of Laboratory Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland
| | - Alicja Bogdanowicz
- Department of Laboratory Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland
| | - Jan Siwiec
- Department of Pneumology, Oncology and Allergology, Medical University of Lublin, 20-090 Lublin, Poland
| | - Radosław Starownik
- Department of Urology and Urological Oncology, Medical University of Lublin, 20-090 Lublin, Poland
| | - Wojciech Kwaśniewski
- Department of Oncological Gynaecology and Gynaecology, Medical University of Lublin, 20-081 Lublin, Poland
| | - Radosław Mlak
- Department of Laboratory Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland
| |
Collapse
|
3
|
Rubtsova MP, Nikishin DA, Vyssokikh MY, Koriagina MS, Vasiliev AV, Dontsova OA. Telomere Reprogramming and Cellular Metabolism: Is There a Link? Int J Mol Sci 2024; 25:10500. [PMID: 39408829 PMCID: PMC11476947 DOI: 10.3390/ijms251910500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
Telomeres-special DNA-protein structures at the ends of linear eukaryotic chromosomes-define the proliferation potential of cells. Extremely short telomeres promote a DNA damage response and cell death to eliminate cells that may have accumulated mutations after multiple divisions. However, telomere elongation is associated with the increased proliferative potential of specific cell types, such as stem and germ cells. This elongation can be permanent in these cells and is activated temporally during immune response activation and regeneration processes. The activation of telomere lengthening mechanisms is coupled with increased proliferation and the cells' need for energy and building resources. To obtain the necessary nutrients, cells are capable of finely regulating energy production and consumption, switching between catabolic and anabolic processes. In this review, we focused on the interconnection between metabolism programs and telomere lengthening mechanisms during programmed activation of proliferation, such as in germ cell maturation, early embryonic development, neoplastic lesion growth, and immune response activation. It is generally accepted that telomere disturbance influences biological processes and promotes dysfunctionality. Here, we propose that metabolic conditions within proliferating cells should be involved in regulating telomere lengthening mechanisms, and telomere length may serve as a marker of defects in cellular functionality. We propose that it is possible to reprogram metabolism in order to regulate the telomere length and proliferative activity of cells, which may be important for the development of approaches to regeneration, immune response modulation, and cancer therapy. However, further investigations in this area are necessary to improve the understanding and manipulation of the molecular mechanisms involved in the regulation of proliferation, metabolism, and aging.
Collapse
Affiliation(s)
- Maria P. Rubtsova
- Chemistry Department, Lomonosov Moscow State University, Moscow 119234, Russia; (M.S.K.); (O.A.D.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117437, Russia
| | - Denis A. Nikishin
- Department of Embryology, Faculty of Biology, Lomonosov Moscow State University, Moscow 119234, Russia; (D.A.N.); (A.V.V.)
| | - Mikhail Y. Vyssokikh
- A.N.Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia;
| | - Maria S. Koriagina
- Chemistry Department, Lomonosov Moscow State University, Moscow 119234, Russia; (M.S.K.); (O.A.D.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117437, Russia
| | - Andrey V. Vasiliev
- Department of Embryology, Faculty of Biology, Lomonosov Moscow State University, Moscow 119234, Russia; (D.A.N.); (A.V.V.)
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Olga A. Dontsova
- Chemistry Department, Lomonosov Moscow State University, Moscow 119234, Russia; (M.S.K.); (O.A.D.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117437, Russia
- A.N.Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia;
- Skolkovo Institute of Science and Technology, Center for Molecular and Cellular Biology, Moscow 121205, Russia
| |
Collapse
|
4
|
Li H, Xu WX, Tan JC, Hong YM, He J, Zhao BP, Zhou JA, Zheng YM, Lei M, Zheng XQ, Ding J, Liu NN, Gao JJ, Zhang CQ, Wang H. Single-cell multi-omics identify novel regulators required for osteoclastogenesis during aging. iScience 2024; 27:110734. [PMID: 39280596 PMCID: PMC11401210 DOI: 10.1016/j.isci.2024.110734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 04/25/2024] [Accepted: 08/12/2024] [Indexed: 09/18/2024] Open
Abstract
Age-related osteoporosis manifests as a complex pathology that disrupts bone homeostasis and elevates fracture risk, yet the mechanisms facilitating age-related shifts in bone marrow macrophages/osteoclasts (BMMs/OCs) lineage are not fully understood. To decipher these mechanisms, we conducted an investigation into the determinants controlling BMMs/OCs differentiation. We performed single-cell multi-omics profiling on bone marrow samples from mice of different ages (1, 6, and 20 months) to gain a holistic understanding of cellular changes across time. Our analysis revealed that aging significantly instigates OC differentiation. Importantly, we identified Cebpd as a vital gene for osteoclastogenesis and bone resorption during the aging process. Counterbalancing the effects of Cebpd, we found Irf8, Sox4, and Klf4 to play crucial roles. By thoroughly examining the cellular dynamics underpinning bone aging, our study unveils novel insights into the mechanisms of age-related osteoporosis and presents potential therapeutic targets for future exploration.
Collapse
Affiliation(s)
- Hao Li
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wan-Xing Xu
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing-Cong Tan
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yue-Mei Hong
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian He
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ben-Peng Zhao
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jin-An Zhou
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu-Min Zheng
- Quantitative Life Sciences, Faculty of Medicine & Health Sciences, McGill University, Montreal, QC, Canada
- Meakins-Christie Laboratories, Department of Medicine, McGill University Health Centre, Montreal, QC, Canada
| | - Ming Lei
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao-Qi Zheng
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Ding
- Quantitative Life Sciences, Faculty of Medicine & Health Sciences, McGill University, Montreal, QC, Canada
- Meakins-Christie Laboratories, Department of Medicine, McGill University Health Centre, Montreal, QC, Canada
| | - Ning-Ning Liu
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun-Jie Gao
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Sixth People's Hospital Fujian, No. 16, Luoshan Section, Jinguang Road, Luoshan Street, Jinjiang City, Quanzhou, Fujian, China
| | - Chang-Qing Zhang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Wang
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
5
|
Chen D, Xiang Y, Wu D, Wang H, Huang Y, Xiao H. Electroacupuncture Ameliorates Neuronal Damage and Neurological Deficits after Cerebral Ischemia-Reperfusion Injury via Restoring Telomerase Reverse Transcriptase. Cell Biochem Biophys 2024:10.1007/s12013-024-01504-5. [PMID: 39235509 DOI: 10.1007/s12013-024-01504-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2024] [Indexed: 09/06/2024]
Abstract
The purpose of this study is to identify the therapeutic effect of electroacupuncture (EA) on cerebral ischemia-reperfusion (I/R) injury, and to clarify the regulatory mechanism related to telomerase reverse transcriptase (TERT)-mediated telomerase activity. A Middle cerebral artery occlusion/reperfusion (MCAO/R) animal model was constructed and rats were treated by EA invention at the Baihui (GV20) and Fengchi (GB20) acupoints. Neurological deficits were assessed via rotarod test and Morris water maze test. 2,3,5-Triphenyltertrazolium chloride (TTC) staining was performed to evaluate infarct volume. Histological changes were observed under H&E staining and Nissl staining. TERT expression was examined using qRT-PCR and western blot. Telomerase activity was assessed with TRAP method. Neuron apoptosis and senescence were assessed by TUNEL and immunofluorescence assays. Inflammatory cytokines and oxidative stress-indicators were examined using commercial kits. EA intervention at both GV20 and GB20 acupoints reduced infarct volumes (2.48 ± 1.89 vs. 29.56 ± 2.55), elevated the telomerase activity (0.84 ± 0.08 vs. 0.34 ± 0.09), and upregulated the levels of total TERT protein (0.61 ± 0.09 vs. 0.21 ± 0.05) and mitochondrial TERT (Mito-TERT; 0.54 ± 0.03 vs. 0.27 ± 0.03) in hippocampus tissues of MCAO/R rats. EA intervention attenuated motor dysfunction (112.00 ± 6.69 vs. 30.02 ± 2.60) and improved spatial learning (23.87 ± 1.90 vs. 16.23 ± 1.45) and memory ability (8.38 ± 1.06 vs. 4.13 ± 1.13) of rats with cerebral I/R injury. In addition, EA intervention significantly attenuated histopathological changes of injured neurons, mitigated neuron apoptosis (32.27 ± 5.52 vs. 65.83 ± 4.31) and senescence in MCAO/R rats, as well as inhibited excessive production of inflammatory cytokines and attenuated oxidative stress. However, the above therapeutic efficiency of EA intervention in MCAO/R rats was partly eliminated by TERT knockdown. EA intervention at GB20 and GV20 acupoints exerted a protective role in cerebral I/R injury partly through restoring TERT function, implying the clinical potential of EA treatment in the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Dan Chen
- Department of Rehabilitation Medicine, Xuancheng People's Hospital, Xuancheng, Anhui, China
| | - Yunxia Xiang
- Department of Rehabilitation Medicine, Xuancheng People's Hospital, Xuancheng, Anhui, China
| | - Di Wu
- Department of Rehabilitation Medicine, Xuancheng People's Hospital, Xuancheng, Anhui, China
| | - Hui Wang
- Department of Rehabilitation Medicine, Xuancheng People's Hospital, Xuancheng, Anhui, China
| | - Yaping Huang
- Department of Rehabilitation Medicine, Xuancheng People's Hospital, Xuancheng, Anhui, China
| | - Hongbo Xiao
- Department of Acupuncture and Moxibustion Rehabilitation, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China.
| |
Collapse
|
6
|
Lee SE, Lee SB, Roh JI, Kim KP, Lee JH, Lee HW. SIRT1 regulates the localization and stability of telomerase protein by direct interaction. Biochem Biophys Res Commun 2024; 720:150098. [PMID: 38749190 DOI: 10.1016/j.bbrc.2024.150098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/06/2024] [Accepted: 05/09/2024] [Indexed: 06/05/2024]
Abstract
Telomerase reverse transcriptase (TERT) not only upholds telomeric equilibrium but also plays a pivotal role in multiple non-canonical cellular mechanisms, particularly in the context of aging, cancer, and genomic stability. Though depletion of SIRT1 in mouse embryonic fibroblasts has demonstrated telomere shortening, the impact of SIRT1 on enabling TERT to regulate telomeric homeostasis remains enigmatic. Here, we reveal that SIRT1 directly interacts with TERT, and promotes the nuclear localization and stability of TERT. Reverse transcriptase (RT) domain of TERT and N-terminus of SIRT1 mainly participated in their direct interaction. TERT, concomitantly expressed with intact SIRT1, exhibits nuclear localization, whereas TERT co-expressed with N-terminal-deleted SIRT1 remains in the cytosol. Furthermore, overexpression of SIRT1 enhances the nuclear localization and protein stability of TERT, akin to overexpression of deacetylase-inactive SIRT1, whereas N-terminal-deleted SIRT1 has no effect on TERT. These findings suggest a novel regulatory role of SIRT1 for TERT through direct interaction. This interaction provides new insights into the fields of aging, cancer, and genome stability governed by TERT and SIRT1.
Collapse
Affiliation(s)
- Seung Eon Lee
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Su Bin Lee
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Jae-Il Roh
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea; ReCerise Therapeutics Inc., 400-12, Yangcheon-ro, Gangseo-gu, Seoul, 07573, Republic of Korea
| | - Kwang Pyo Kim
- Department of Applied Chemistry, Institute of Natural Science, Global Center for Pharmaceutical Ingredient Materials, Kyung Hee University, Yongin-si, 17104, Gyeonggi-do, Republic of Korea
| | - Jae Hoon Lee
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea; GEMCRO, Inc., Seoul, 03722, Republic of Korea.
| | - Han-Woong Lee
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea; GEMCRO, Inc., Seoul, 03722, Republic of Korea.
| |
Collapse
|
7
|
Pangrácová M, Křivánek J, Vrchotová M, Sehadová H, Hadravová R, Hanus R, Lukšan O. Extended longevity of termite kings and queens is accompanied by extranuclear localization of telomerase in somatic organs and caste-specific expression of its isoforms. INSECT SCIENCE 2024. [PMID: 39034424 DOI: 10.1111/1744-7917.13418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 07/23/2024]
Abstract
Kings and queens of termites are endowed with an extraordinary longevity coupled with lifelong fecundity. We recently reported that termite kings and queens display a dramatically increased enzymatic activity and abundance of telomerase in their somatic organs when compared to short-lived workers and soldiers. We hypothesized that this telomerase activation may represent a noncanonical pro-longevity function, independent of its canonical role in telomere maintenance. Here, we explore this avenue and investigate whether the presumed noncanonical role of telomerase may be due to alternative splicing of the catalytic telomerase subunit TERT and whether the subcellular localization of TERT isoforms differs among organs and castes in the termite Prorhinotermes simplex. We empirically confirm the expression of four in silico predicted splice variants (psTERT1-A, psTERT1-B, psTERT2-A, psTERT2-B), defined by N-terminal splicing implicating differential localizations, and C-terminal splicing giving rise to full-length and truncated isoforms. We show that the transcript proportions of the psTERT are caste- and tissue-specific and that the extranuclear full-length isoform TERT1-A is relatively enriched in the soma of neotenic kings and queens compared to their gonads and to the soma of workers. We also show that extranuclear TERT protein quantities are significantly higher in the soma of kings and queens compared to workers, namely due to the cytosolic TERT. Independently, we confirm by microscopy the extranuclear TERT localization in somatic organs. We conclude that the presumed pleiotropic action of telomerase combining the canonical nuclear role in telomere maintenance with extranuclear functions is driven by complex TERT splicing.
Collapse
Affiliation(s)
- Marie Pangrácová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
- Faculty of Science, Charles University, Prague, Czech Republic
| | - Jan Křivánek
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Markéta Vrchotová
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Hana Sehadová
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Romana Hadravová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Robert Hanus
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Ondřej Lukšan
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
8
|
Kurabayashi A, Fukuhara H, Furihata K, Iwashita W, Furihata M, Inoue K. Photodynamic Diagnosis and Therapy in Non-Muscle-Invasive Bladder Cancer. Cancers (Basel) 2024; 16:2299. [PMID: 39001362 PMCID: PMC11240600 DOI: 10.3390/cancers16132299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/17/2024] [Accepted: 06/19/2024] [Indexed: 07/16/2024] Open
Abstract
Bladder cancer (BC) possesses distinct molecular profiles that influence progression depending on its biological nature and delivered treatment intensity. Muscle-invasive BC (MIBC) and non-MIBC (NMIBC) demonstrate great intrinsic heterogeneity regarding different prognoses, survival, progression, and treatment outcomes. Transurethral resection of bladder tumor (TURBT) is the standard of care in treating NMIBC and serves both diagnostic and therapeutic purposes despite the prevalent recurrence and progression among many patients. In particular, flat urothelial carcinoma in situ and urothelial carcinoma with lamina propria invasion are the major precursors of MIBC. A new-generation photosensitizer, 5-Aminolevulinic acid (5-ALA), demonstrates high tumor specificity by illuminating the tumor lesion with a specific wavelength of light to produce fluorescence and has been studied for photodynamic diagnosis to detect precise tumor areas by TURBT. Additionally, it has been applied for treatment by producing its cytotoxic reactive oxygen species, as well as screening for urological carcinomas by excreting porphyrin in the blood and urine. Moreover, 5-ALA may contribute to screening before and after TURBT in NMIBC. Here, we summarize the updated evidence and ongoing research on photodynamic technology for NMIBC, providing insight into the potential for improving patient outcomes.
Collapse
Affiliation(s)
- Atsushi Kurabayashi
- Department of Pathology, Kochi Medical School, Nankoku 783-8505, Kochi, Japan
| | - Hideo Fukuhara
- Department of Urology, Kochi Medical School, Nankoku 783-8505, Kochi, Japan
| | - Kaoru Furihata
- Department of Pathology, Kochi Medical School, Nankoku 783-8505, Kochi, Japan
| | - Waka Iwashita
- Department of Pathology, Kochi Medical School, Nankoku 783-8505, Kochi, Japan
| | - Mutsuo Furihata
- Department of Pathology, Kochi Medical School, Nankoku 783-8505, Kochi, Japan
| | - Keiji Inoue
- Department of Urology, Kochi Medical School, Nankoku 783-8505, Kochi, Japan
| |
Collapse
|
9
|
Huang M, Liu M, Wang R, Man Y, Zhou H, Xu ZX, Wang Y. The crosstalk between glucose metabolism and telomerase regulation in cancer. Biomed Pharmacother 2024; 175:116643. [PMID: 38696988 DOI: 10.1016/j.biopha.2024.116643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 04/24/2024] [Indexed: 05/04/2024] Open
Abstract
Accumulated alterations in metabolic control provide energy and anabolic demands for enhanced cancer cell proliferation. Exemplified by the Warburg effect, changes in glucose metabolism during cancer progression are widely recognized as a characteristic of metabolic disorders. Since telomerases are a vital factor in maintaining DNA integrity and stability, any damage threatening telomerases could have a severe impact on DNA and, subsequently, whole-cell homeostasis. However, it remains unclear whether the regulation of glucose metabolism in cancer is connected to the regulation of telomerase. In this review, we present the latest insights into the crosstalk between telomerase function and glucose metabolism in cancer cells. However, at this moment this subject is not well investigated that the association is mostly indirectly regulations and few explicit regulating pathways were identified between telomerase and glucose metabolism. Therefore, the information presented in this review can provide a scientific basis for further research on the detail mechanism and the clinical application of cancer therapy, which could be valuable in improving the effectiveness of chemotherapy.
Collapse
Affiliation(s)
- Mingrui Huang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, Jilin 130021, China; The First Norman Bethune College of Clinical Medicine, Jilin University, Changchun 130021, China
| | - Mingdi Liu
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, Jilin 130021, China
| | - Ruijia Wang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, Jilin 130021, China; The First Norman Bethune College of Clinical Medicine, Jilin University, Changchun 130021, China
| | - Yifan Man
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, Jilin 130021, China; The First Norman Bethune College of Clinical Medicine, Jilin University, Changchun 130021, China
| | - Honglan Zhou
- Department of Urology, the First Hospital of Jilin University, Changchun, Jilin 130021, China.
| | - Zhi-Xiang Xu
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, Jilin 130021, China.
| | - Yishu Wang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, Jilin 130021, China.
| |
Collapse
|
10
|
Drobyshev A, Modestov A, Suntsova M, Poddubskaya E, Seryakov A, Moisseev A, Sorokin M, Tkachev V, Zakharova G, Simonov A, Zolotovskaia MA, Buzdin A. Pan-cancer experimental characteristic of human transcriptional patterns connected with telomerase reverse transcriptase ( TERT) gene expression status. Front Genet 2024; 15:1401100. [PMID: 38859942 PMCID: PMC11163056 DOI: 10.3389/fgene.2024.1401100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/08/2024] [Indexed: 06/12/2024] Open
Abstract
The TERT gene encodes the reverse transcriptase subunit of telomerase and is normally transcriptionally suppressed in differentiated human cells but reactivated in cancers where its expression is frequently associated with poor survival prognosis. Here we experimentally assessed the RNA sequencing expression patterns associated with TERT transcription in 1039 human cancer samples of 27 tumor types. We observed a bimodal distribution of TERT expression where ∼27% of cancer samples did not express TERT and the rest showed a bell-shaped distribution. Expression of TERT strongly correlated with 1443 human genes including 103 encoding transcriptional factor proteins. Comparison of TERT- positive and negative cancers showed the differential activation of 496 genes and 1975 molecular pathways. Therein, 32/38 (84%) of DNA repair pathways were hyperactivated in TERT+ cancers which was also connected with accelerated replication, transcription, translation, and cell cycle progression. In contrast, the level of 40 positive cell cycle regulator proteins and a set of epithelial-to-mesenchymal transition pathways was specific for the TERT- group suggesting different proliferation strategies for both groups of cancer. Our pilot study showed that the TERT+ group had ∼13% of cancers with C228T or C250T mutated TERT promoter. However, the presence of promoter mutations was not associated with greater TERT expression compared with other TERT+ cancers, suggesting parallel mechanisms of its transcriptional activation in cancers. In addition, we detected a decreased expression of L1 retrotransposons in the TERT+ group, and further decreased L1 expression in promoter mutated TERT+ cancers. TERT expression was correlated with 17 genes encoding molecular targets of cancer therapeutics and may relate to differential survival patterns of TERT- positive and negative cancers.
Collapse
Affiliation(s)
- Aleksey Drobyshev
- Endocrinology Research Center, Moscow, Russia
- Institute of Personalized Oncology, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Alexander Modestov
- Institute of Personalized Oncology, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Maria Suntsova
- Endocrinology Research Center, Moscow, Russia
- Institute of Personalized Oncology, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Elena Poddubskaya
- Institute of Personalized Oncology, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
- Clinical Center Vitamed, Moscow, Russia
| | | | - Aleksey Moisseev
- Institute of Personalized Oncology, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Maksim Sorokin
- Endocrinology Research Center, Moscow, Russia
- Institute of Personalized Oncology, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | | | - Galina Zakharova
- Institute of Personalized Oncology, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Aleksander Simonov
- Institute of Personalized Oncology, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Marianna A. Zolotovskaia
- Endocrinology Research Center, Moscow, Russia
- Institute of Personalized Oncology, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
- Moscow Center for Advanced Studies 20, Moscow, Russia
| | - Anton Buzdin
- Endocrinology Research Center, Moscow, Russia
- Institute of Personalized Oncology, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
- Moscow Center for Advanced Studies 20, Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| |
Collapse
|
11
|
Rasouli S, Dakic A, Wang QE, Mitchell D, Blakaj DM, Putluri N, Li J, Liu X. Noncanonical functions of telomerase and telomeres in viruses-associated cancer. J Med Virol 2024; 96:e29665. [PMID: 38738582 DOI: 10.1002/jmv.29665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/26/2024] [Accepted: 04/30/2024] [Indexed: 05/14/2024]
Abstract
The cause of cancer is attributed to the uncontrolled growth and proliferation of cells resulting from genetic changes and alterations in cell behavior, a phenomenon known as epigenetics. Telomeres, protective caps on the ends of chromosomes, regulate both cellular aging and cancer formation. In most cancers, telomerase is upregulated, with the telomerase reverse transcriptase (TERT) enzyme and telomerase RNA component (TERC) RNA element contributing to the maintenance of telomere length. Additionally, it is noteworthy that two viruses, human papillomavirus (HPV) and Epstein-Barr virus (EBV), utilize telomerase for their replication or persistence in infected cells. Also, TERT and TERC may play major roles in cancer not related to telomere biology. They are involved in the regulation of gene expression, signal transduction pathways, cellular metabolism, or even immune response modulation. Furthermore, the crosstalk between TERT, TERC, RNA-binding proteins, and microRNAs contributes to a greater extent to cancer biology. To understand the multifaceted roles played by TERT and TERC in cancer and viral life cycles, and then to develop effective therapeutic strategies against these diseases, are fundamental for this goal. By investigating deeply, the complicated mechanisms and relationships between TERT and TERC, scientists will open the doors to new therapies. In its analysis, the review emphasizes the significance of gaining insight into the multifaceted roles that TERT and TERC play in cancer pathogenesis, as well as their involvement in the viral life cycle for designing effective anticancer therapy approaches.
Collapse
Affiliation(s)
- Sara Rasouli
- Comprehensive Cancer Center, Ohio State University, Columbus, Ohio, USA
| | - Aleksandra Dakic
- Division of Neuroscience, National Institute of Aging, Bethesda, Maryland, USA
| | - Qi-En Wang
- Comprehensive Cancer Center, Ohio State University, Columbus, Ohio, USA
- Department of Radiation Oncology, Wexner Medical Center, Ohio State University, Columbus, Ohio, USA
| | - Darrion Mitchell
- Comprehensive Cancer Center, Ohio State University, Columbus, Ohio, USA
- Department of Radiation Oncology, Wexner Medical Center, Ohio State University, Columbus, Ohio, USA
| | - Dukagjin M Blakaj
- Comprehensive Cancer Center, Ohio State University, Columbus, Ohio, USA
- Department of Radiation Oncology, Wexner Medical Center, Ohio State University, Columbus, Ohio, USA
| | - Nagireddy Putluri
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Jenny Li
- Comprehensive Cancer Center, Ohio State University, Columbus, Ohio, USA
| | - Xuefeng Liu
- Comprehensive Cancer Center, Ohio State University, Columbus, Ohio, USA
- Department of Radiation Oncology, Wexner Medical Center, Ohio State University, Columbus, Ohio, USA
- Department of Pathology, Wexner Medical Center, Ohio State University, Columbus, Ohio, USA
- Department of Urology, Wexner Medical Center, Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
12
|
Frydrychová RČ, Konopová B, Peska V, Brejcha M, Sábová M. Telomeres and telomerase: active but complex players in life-history decisions. Biogerontology 2024; 25:205-226. [PMID: 37610666 DOI: 10.1007/s10522-023-10060-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 08/01/2023] [Indexed: 08/24/2023]
Abstract
Studies on human telomeres have established that telomeres exert a significant influence on lifespan and health of organisms. However, recent research has indicated that the original idea that telomeres affect lifespan in a universal and central manner across all eukaryotic species is an oversimplification. Indeed, findings from a variety of animal species revealed that the role of telomere biology in aging is more subtle and intricate than previously recognized. Here, we show how telomere biology varies depending on the taxon. We also show how telomere biology corresponds to basic life history traits and affects the life table of a species and investments in growth, body size, reproduction, and lifespan; telomeres are hypothesized to shape evolutionary perspectives for species in an active but complex manner. Our evaluation is based on telomere biology data from many examples from throughout the animal kingdom that vary according to the degree of organismal complexity and life history strategies.
Collapse
Affiliation(s)
- Radmila Čapková Frydrychová
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, 370 05, Ceske Budejovice, Czech Republic.
- Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05, Ceske Budejovice, Czech Republic.
| | - Barbora Konopová
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, 370 05, Ceske Budejovice, Czech Republic
| | - Vratislav Peska
- Department of Cell Biology and Radiobiology, Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 00, Brno, Czech Republic
| | - Miloslav Brejcha
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, 370 05, Ceske Budejovice, Czech Republic
- Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05, Ceske Budejovice, Czech Republic
| | - Michala Sábová
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, 370 05, Ceske Budejovice, Czech Republic
| |
Collapse
|
13
|
Harley J, Santosa MM, Ng CY, Grinchuk OV, Hor JH, Liang Y, Lim VJ, Tee WW, Ong DST, Ng SY. Telomere shortening induces aging-associated phenotypes in hiPSC-derived neurons and astrocytes. Biogerontology 2024; 25:341-360. [PMID: 37987889 PMCID: PMC10998800 DOI: 10.1007/s10522-023-10076-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/13/2023] [Indexed: 11/22/2023]
Abstract
Telomere shortening is a well-established hallmark of cellular aging. Telomerase reverse transcriptase (TERT) plays a crucial role in maintaining the length of telomeres, which are specialised protective caps at the end of chromosomes. The lack of in vitro aging models, particularly for the central nervous system (CNS), has impeded progress in understanding aging and age-associated neurodegenerative diseases. In this study, we aimed to explore the possibility of inducing aging-associated features in cell types of the CNS using hiPSC (human induced pluripotent stem cell) technology. To achieve this, we utilised CRISPR/Cas9 to generate hiPSCs with a loss of telomerase function and shortened telomeres. Through directed differentiation, we generated motor neurons and astrocytes to investigate whether telomere shortening could lead to age-associated phenotypes. Our findings revealed that shortened telomeres induced age-associated characteristics in both motor neurons and astrocytes including increased cellular senescence, heightened inflammation, and elevated DNA damage. We also observed cell-type specific age-related morphology changes. Additionally, our study highlighted the fundamental role of TERT and telomere shortening in neural progenitor cell (NPC) proliferation and neuronal differentiation. This study serves as a proof of concept that telomere shortening can effectively induce aging-associated phenotypes, thereby providing a valuable tool to investigate age-related decline and neurodegenerative diseases.
Collapse
Affiliation(s)
- Jasmine Harley
- Institute of Molecular and Cell Biology, A*STAR Research Entities, Singapore, 138673, Singapore
| | - Munirah Mohamad Santosa
- Institute of Molecular and Cell Biology, A*STAR Research Entities, Singapore, 138673, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117593, Singapore
| | - Chong Yi Ng
- Institute of Molecular and Cell Biology, A*STAR Research Entities, Singapore, 138673, Singapore
| | - Oleg V Grinchuk
- Institute of Molecular and Cell Biology, A*STAR Research Entities, Singapore, 138673, Singapore
| | - Jin-Hui Hor
- Institute of Molecular and Cell Biology, A*STAR Research Entities, Singapore, 138673, Singapore
| | - Yajing Liang
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117593, Singapore
| | - Valerie Jingwen Lim
- Institute of Molecular and Cell Biology, A*STAR Research Entities, Singapore, 138673, Singapore
| | - Wee Wei Tee
- Institute of Molecular and Cell Biology, A*STAR Research Entities, Singapore, 138673, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117593, Singapore
| | - Derrick Sek Tong Ong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117593, Singapore
| | - Shi-Yan Ng
- Institute of Molecular and Cell Biology, A*STAR Research Entities, Singapore, 138673, Singapore.
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117593, Singapore.
| |
Collapse
|
14
|
Wang W, Chen C, Wang Q, Ma J, Li Y, Guan Z, Wang R, Chen X. Electroacupuncture pretreatment preserves telomerase reverse transcriptase function and alleviates postoperative cognitive dysfunction by suppressing oxidative stress and neuroinflammation in aged mice. CNS Neurosci Ther 2024; 30:e14373. [PMID: 37501354 PMCID: PMC10848091 DOI: 10.1111/cns.14373] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 07/06/2023] [Accepted: 07/09/2023] [Indexed: 07/29/2023] Open
Abstract
BACKGROUND Elderly patients often exhibit postoperative cognitive dysfunction (POCD), a postsurgical decline in memory and executive function. Oxidative stress and neuroinflammation, both pathological characteristics of the aged brain, contribute to this decline. This study posits that electroacupuncture (EA) stimulation, an effective antioxidant and anti-inflammatory modality, may enhance telomerase reverse transcriptase (TERT) function, the catalytic subunit of telomerase known for its protective properties against cellular senescence and oxidative damage, to alleviate POCD in aged mice. METHODS The animal POCD model was created by subjecting aged mice to abdominal surgery, followed by EA pretreatment at the Baihui acupoint (GV20). Postoperative cognitive function was gauged using the Morris water maze (MWM) test. Hippocampal TERT mRNA levels and telomerase activity were determined through qPCR and a Telomerase PCR ELISA kit, respectively. Oxidative stress was assessed through superoxide dismutase (SOD), reactive oxygen species (ROS), and malondialdehyde (MDA) levels. Iba-1 immunostaining determined the quantity of hippocampal microglia. Additionally, western blotting assessed TERT, autophagy markers, and proinflammatory cytokines at the protein level. RESULTS Abdominal surgery in aged mice significantly decreased telomerase activity and TERT mRNA and protein levels, but increased oxidative stress and neuroinflammation and decreased autophagy in the hippocampus. EA-pretreated mice demonstrated improved postoperative cognitive performance, enhanced telomerase activity, increased TERT protein expression, improved TERT mitochondrial localization, and reduced oxidative damage, autophagy dysfunction, and neuroinflammation. The neuroprotective benefits of EA pretreatment were diminished following TERT knockdown. CONCLUSIONS Our findings underscore the significance of TERT function preservation in alleviating surgery-induced oxidative stress and neuroinflammation in aged mice. A novel neuroprotective mechanism of EA stimulation is highlighted, whereby modulation of TERT and telomerase activity reduces oxidative damage and neuroinflammation. Consequently, maintaining TERT function via EA treatment could serve as an effective strategy for managing POCD in elderly patients.
Collapse
Affiliation(s)
- Wei Wang
- Department of AnesthesiologyThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'an Jiaotong UniversityXi'anShaanxiChina
- Department of AnesthesiologyThe First People's Hospital of FoshanFoshanGuangdongChina
| | - Chen Chen
- Department of Burns and Plastic surgeryHainan Hospital of PLA General HospitalSanyaHainanChina
| | - Qiang Wang
- Department of AnesthesiologyThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'an Jiaotong UniversityXi'anShaanxiChina
| | - Ji‐Guang Ma
- Department of AnesthesiologyThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'an Jiaotong UniversityXi'anShaanxiChina
| | - Yan‐Song Li
- Department of AnesthesiologyThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'an Jiaotong UniversityXi'anShaanxiChina
| | - Zheng Guan
- Department of AnesthesiologyThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'an Jiaotong UniversityXi'anShaanxiChina
| | - Rui Wang
- Department of AnesthesiologyThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'an Jiaotong UniversityXi'anShaanxiChina
| | - Xin Chen
- Department of AnesthesiologyThe First People's Hospital of FoshanFoshanGuangdongChina
| |
Collapse
|
15
|
Katoueezadeh M, Maleki P, Torabizadeh SA, Farsinejad A, Khalilabadi RM, Valandani HM, Nurain IO, Ashoub MH, Fatemi A. Combinatorial targeting of telomerase and DNA-PK induces synergistic apoptotic effects against Pre-B acute lymphoblastic leukemia cells. Mol Biol Rep 2024; 51:163. [PMID: 38252348 DOI: 10.1007/s11033-023-09087-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 11/30/2023] [Indexed: 01/23/2024]
Abstract
BACKGROUND Due to the high demand for novel approaches for leukemia-targeted therapy, this study investigates the impact of DNA-PK inhibitor NU7441 on the sensitivity of pre-B ALL cells to the telomerase inhibitor MST-312. METHODS The study involved NALM-6 cells treated with MST-312 and NU7441, assessing their viability and metabolic activity using trypan blue and MTT assays. The study also evaluated apoptosis, gene expression changes, and DNA damage using flow cytometry, qRT-PCR, and micronucleus assays. The binding energy of MST-312 in the active site of telomerase was calculated using molecular docking. RESULTS The study's findings revealed a synergistic decline in both cell viability and metabolic activity in NALM-6 cells when exposed to the combined treatment of MST-312 and NU7441, and this decrease occurred without any adverse effects on healthy PBMC cells. Furthermore, the combination treatment exhibited a significantly higher induction of apoptosis than treatment with MST-312 alone, as observed through flow cytometry assay. qRT-PCR analysis revealed that this enhanced apoptosis was associated with a notable downregulation of Bcl-2 expression and an upregulation of Bax gene expression. Moreover, the combination therapy decreased expression levels of hTERT and c-Myc genes. The micronucleus assay indicated that the combination treatment increased DNA damage in NALM-6 cells. Also, a good conformation between MST-312 and the active site of telomerase was revealed by docking data. CONCLUSIONS The study suggests that simultaneous inhibition of telomerase and DNA-PK in pre-B ALL presents a novel targeted therapy approach.
Collapse
Affiliation(s)
- Maryam Katoueezadeh
- Student Research Committee, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Department of Hematology and Medical Laboratory Sciences, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Parisa Maleki
- Student Research Committee, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Department of Hematology and Medical Laboratory Sciences, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Seyedeh Atekeh Torabizadeh
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Alireza Farsinejad
- Department of Hematology and Medical Laboratory Sciences, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Cell Therapy and Regenerative Medicine Comprehensive Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Roohollah Mirzaee Khalilabadi
- Department of Hematology and Medical Laboratory Sciences, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Hajar Mardani Valandani
- Department of Hematology and Medical Laboratory Sciences, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Ismaila Olanrewaju Nurain
- Postdoctoral Research Fellow, Faculty of Applied Health Sciences, Brock University, St. Catharines, ON, Canada
| | - Muhammad Hossein Ashoub
- Department of Hematology and Medical Laboratory Sciences, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Cell Therapy and Regenerative Medicine Comprehensive Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Ahmad Fatemi
- Cellular and Molecular Research Center, Gerash University of Medical Sciences, Gerash, Iran.
| |
Collapse
|
16
|
Kalmykova A. Telomere Checkpoint in Development and Aging. Int J Mol Sci 2023; 24:15979. [PMID: 37958962 PMCID: PMC10647821 DOI: 10.3390/ijms242115979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/19/2023] [Accepted: 11/02/2023] [Indexed: 11/15/2023] Open
Abstract
The maintenance of genome integrity through generations is largely determined by the stability of telomeres. Increasing evidence suggests that telomere dysfunction may trigger changes in cell fate, independently of telomere length. Telomeric multiple tandem repeats are potentially highly recombinogenic. Heterochromatin formation, transcriptional repression, the suppression of homologous recombination and chromosome end protection are all required for telomere stability. Genetic and epigenetic defects affecting telomere homeostasis may cause length-independent internal telomeric DNA damage. Growing evidence, including that based on Drosophila research, points to a telomere checkpoint mechanism that coordinates cell fate with telomere state. According to this scenario, telomeres, irrespective of their length, serve as a primary sensor of genome instability that is capable of triggering cell death or developmental arrest. Telomeric factors released from shortened or dysfunctional telomeres are thought to mediate these processes. Here, we discuss a novel signaling role for telomeric RNAs in cell fate and early development. Telomere checkpoint ensures genome stability in multicellular organisms but aggravates the aging process, promoting the accumulation of damaged and senescent cells.
Collapse
Affiliation(s)
- Alla Kalmykova
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| |
Collapse
|
17
|
Dyrskjøt L, Hansel DE, Efstathiou JA, Knowles MA, Galsky MD, Teoh J, Theodorescu D. Bladder cancer. Nat Rev Dis Primers 2023; 9:58. [PMID: 37884563 PMCID: PMC11218610 DOI: 10.1038/s41572-023-00468-9] [Citation(s) in RCA: 93] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/20/2023] [Indexed: 10/28/2023]
Abstract
Bladder cancer is a global health issue with sex differences in incidence and prognosis. Bladder cancer has distinct molecular subtypes with multiple pathogenic pathways depending on whether the disease is non-muscle invasive or muscle invasive. The mutational burden is higher in muscle-invasive than in non-muscle-invasive disease. Commonly mutated genes include TERT, FGFR3, TP53, PIK3CA, STAG2 and genes involved in chromatin modification. Subtyping of both forms of bladder cancer is likely to change considerably with the advent of single-cell analysis methods. Early detection signifies a better disease prognosis; thus, minimally invasive diagnostic options are needed to improve patient outcomes. Urine-based tests are available for disease diagnosis and surveillance, and analysis of blood-based cell-free DNA is a promising tool for the detection of minimal residual disease and metastatic relapse. Transurethral resection is the cornerstone treatment for non-muscle-invasive bladder cancer and intravesical therapy can further improve oncological outcomes. For muscle-invasive bladder cancer, radical cystectomy with neoadjuvant chemotherapy is the standard of care with evidence supporting trimodality therapy. Immune-checkpoint inhibitors have demonstrated benefit in non-muscle-invasive, muscle-invasive and metastatic bladder cancer. Effective management requires a multidisciplinary approach that considers patient characteristics and molecular disease characteristics.
Collapse
Affiliation(s)
- Lars Dyrskjøt
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Donna E Hansel
- Division of Pathology and Laboratory Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jason A Efstathiou
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Margaret A Knowles
- Division of Molecular Medicine, Leeds Institute of Medical Research at St James's, St James's University Hospital, Leeds, UK
| | - Matthew D Galsky
- Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jeremy Teoh
- S.H. Ho Urology Centre, Department of Surgery, The Chinese University of Hong Kong, Hong Kong, China
| | - Dan Theodorescu
- Department of Urology, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
18
|
Kim JJ, Ahn A, Ying J, Hickman E, Ludlow AT. Exercise as a Therapy to Maintain Telomere Function and Prevent Cellular Senescence. Exerc Sport Sci Rev 2023; 51:150-160. [PMID: 37288975 PMCID: PMC10526708 DOI: 10.1249/jes.0000000000000324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Exercise transiently impacts the expression, regulation, and activity of TERT/telomerase to maintain telomeres and protect the genome from insults. By protecting the telomeres (chromosome ends) and the genome, telomerase promotes cellular survival and prevents cellular senescence. By increasing cellular resiliency, via the actions of telomerase and TERT, exercise promotes healthy aging.
Collapse
Affiliation(s)
- Jeongjin J Kim
- School of Kinesiology, University of Michigan, Ann Arbor, MI
| | | | | | | | | |
Collapse
|
19
|
Sanpedro-Luna JA, Vega-Alvarado L, Vázquez-Cruz C, Sánchez-Alonso P. Global Gene Expression of Post-Senescent Telomerase-Negative ter1Δ Strain of Ustilago maydis. J Fungi (Basel) 2023; 9:896. [PMID: 37755003 PMCID: PMC10532341 DOI: 10.3390/jof9090896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 09/28/2023] Open
Abstract
We analyzed the global expression patterns of telomerase-negative mutants from haploid cells of Ustilago maydis to identify the gene network required for cell survival in the absence of telomerase. Mutations in either of the telomerase core subunits (trt1 and ter1) of the dimorphic fungus U. maydis cause deficiencies in teliospore formation. We report the global transcriptome analysis of two ter1Δ survivor strains of U. maydis, revealing the deregulation of telomerase-deleted responses (TDR) genes, such as DNA-damage response, stress response, cell cycle, subtelomeric, and proximal telomere genes. Other differentially expressed genes (DEGs) found in the ter1Δ survivor strains were related to pathogenic lifestyle factors, plant-pathogen crosstalk, iron uptake, meiosis, and melanin synthesis. The two ter1Δ survivors were phenotypically comparable, yet DEGs were identified when comparing these strains. Our findings suggest that teliospore formation in U. maydis is controlled by key pathogenic lifestyle and meiosis genes.
Collapse
Affiliation(s)
- Juan Antonio Sanpedro-Luna
- Posgrado en Microbiología, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico;
| | - Leticia Vega-Alvarado
- Instituto de Ciencias Aplicadas y Tecnología, Universidad Nacional Autónoma de México, Ciudad de Mexico 04510, Mexico;
| | - Candelario Vázquez-Cruz
- Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico;
| | - Patricia Sánchez-Alonso
- Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico;
| |
Collapse
|
20
|
Yang R, Han Y, Guan X, Hong Y, Meng J, Ding S, Long Q, Yi W. Regulation and clinical potential of telomerase reverse transcriptase (TERT/hTERT) in breast cancer. Cell Commun Signal 2023; 21:218. [PMID: 37612721 PMCID: PMC10463831 DOI: 10.1186/s12964-023-01244-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 07/23/2023] [Indexed: 08/25/2023] Open
Abstract
Telomerase reverse transcriptase (TERT/hTERT) serves as the pivotal catalytic subunit of telomerase, a crucial enzyme responsible for telomere maintenance and human genome stability. The high activation of hTERT, observed in over 90% of tumors, plays a significant role in tumor initiation and progression. An in-depth exploration of hTERT activation mechanisms in cancer holds promise for advancing our understanding of the disease and developing more effective treatment strategies. In breast cancer, the expression of hTERT is regulated by epigenetic, transcriptional, post-translational modification mechanisms and DNA variation. Besides its canonical function in telomere maintenance, hTERT exerts non-canonical roles that contribute to disease progression through telomerase-independent mechanisms. This comprehensive review summarizes the regulatory mechanisms governing hTERT in breast cancer and elucidates the functional implications of its activation. Given the overexpression of hTERT in most breast cancer cells, the detection of hTERT and its associated molecules are potential for enhancing early screening and prognostic evaluation of breast cancer. Although still in its early stages, therapeutic approaches targeting hTERT and its regulatory molecules show promise as viable strategies for breast cancer treatment. These methods are also discussed in this paper. Video Abstract.
Collapse
Affiliation(s)
- Ruozhu Yang
- Department of General Surgery, the Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha, 410011, China
| | - Yi Han
- Department of General Surgery, the Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha, 410011, China
| | - Xinyu Guan
- Department of General Surgery, the Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha, 410011, China
| | - Yue Hong
- Department of General Surgery, the Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha, 410011, China
| | - Jiahao Meng
- Department of General Surgery, the Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha, 410011, China
| | - Shirong Ding
- Department of Oncology, the Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha, 410011, China.
| | - Qian Long
- Department of General Surgery, the Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha, 410011, China.
| | - Wenjun Yi
- Department of General Surgery, the Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha, 410011, China.
| |
Collapse
|
21
|
Gao J, Zhang Z, Yan JY, Ge YX, Gao Y. Inflammation and coagulation abnormalities via the activation of the HMGB1‑RAGE/NF‑κB and F2/Rho pathways in lung injury induced by acute hypoxia. Int J Mol Med 2023; 52:67. [PMID: 37350396 PMCID: PMC10555482 DOI: 10.3892/ijmm.2023.5270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/15/2023] [Indexed: 06/24/2023] Open
Abstract
High‑altitude acute hypoxia is commonly associated with respiratory cardiovascular diseases. The inability to adapt to acute hypoxia may lead to cardiovascular dysfunction, lung injury and even death. Therefore, understanding the molecular basis of the adaptation to high‑altitude acute hypoxia may reveal novel therapeutic approaches with which to counteract the detrimental consequences of hypoxia. In the present study, a high‑altitude environment was simulated in a rat model in order to investigate the role of the high mobility group protein‑1 (HMGB1)/receptor for advanced glycation end products (RAGE)/NF‑κB and F2/Rho signaling pathways in lung injury induced by acute hypoxia. It was found that acute hypoxia caused inflammation through the HMGB1/RAGE/NF‑κB pathway and coagulation dysfunction through the F2/Rho pathway, both of which may be key processes in acute hypoxia‑induced lung injury. The present study provides new insight into the molecular basis of lung injury induced by acute hypoxia. The simultaneous activation of the HMGB1/RAGE/NF‑κB and F2/Rho signaling pathways plays a critical role in hypoxia‑induced inflammatory responses and coagulation abnormalities, and provides a theoretical basis for the development of potential therapeutic strategies.
Collapse
Affiliation(s)
| | | | - Jia-Yi Yan
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China
| | - Yun-Xuan Ge
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China
| | - Yue Gao
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China
| |
Collapse
|
22
|
van Gerwen M, Cerutti JM, Mendes TB, Brody R, Genden E, Riggins GJ, Taioli E. TERT and BRAF V600E mutations in thyroid cancer of World Trade Center Responders. Carcinogenesis 2023; 44:350-355. [PMID: 37144982 PMCID: PMC10290513 DOI: 10.1093/carcin/bgad029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 04/27/2023] [Accepted: 05/04/2023] [Indexed: 05/06/2023] Open
Abstract
The 2-fold excess thyroid cancer risk reported in multiple World Trade Center (WTC) disaster exposed cohorts cannot entirely be explained by surveillance and physician bias thus highlighting the need to investigate the potential consequences of the dust exposure, containing carcinogenic and endocrine disruptive elements, on the thyroid. This study investigated the presence of TERT promoter and BRAF V600E mutations in 20 WTC-exposed versus 23 matched non-exposed thyroid cancers as potential mechanism explaining the excess risk. Although no significant difference in BRAF V600E mutation was found, TERT promoter mutations were significantly more prevalent in WTC thyroid cancer versus non-exposed thyroid cancers (P = 0.021). The odds of a TERT promoter mutation was significantly higher in the WTC versus the non-WTC thyroid cancers after adjustment [ORadj: 7.11 (95% CI: 1.21-41.83)]. These results may indicate that exposure to the mixture of pollutants present in the WTC dust resulted in an excess thyroid cancer risk and potentially more aggressive thyroid cancer, warranting investigating WTC responders on thyroid-associated symptoms during their health checkups. Future studies should include long-term follow-up to provide important insights in whether thyroid-specific survival is negatively affected by WTC dust exposure and whether this is because of the presence of one or more driver mutations.
Collapse
Affiliation(s)
- Maaike van Gerwen
- Department of Otolaryngology-Head and Neck Surgery, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Institute for Translational Epidemiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Janete Maria Cerutti
- Genetic Bases of Thyroid Tumor Laboratory, Division of Genetics, Department of Morphology and Genetics, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Pedro de Toledo 669, 11 Andar, São Paulo, 04039-032 SP, Brazil
| | - Thais Biude Mendes
- Genetic Bases of Thyroid Tumor Laboratory, Division of Genetics, Department of Morphology and Genetics, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Pedro de Toledo 669, 11 Andar, São Paulo, 04039-032 SP, Brazil
| | - Rachel Brody
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Eric Genden
- Department of Otolaryngology-Head and Neck Surgery, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Gregory J Riggins
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Emanuela Taioli
- Institute for Translational Epidemiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
23
|
Giunco S, Padovan M, Angelini C, Cavallin F, Cerretti G, Morello M, Caccese M, Rizzo B, d'Avella D, Della Puppa A, Chioffi F, De Bonis P, Zagonel V, De Rossi A, Lombardi G. Prognostic role and interaction of TERT promoter status, telomere length and MGMT promoter methylation in newly diagnosed IDH wild-type glioblastoma patients. ESMO Open 2023; 8:101570. [PMID: 37230028 PMCID: PMC10265608 DOI: 10.1016/j.esmoop.2023.101570] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/12/2023] [Accepted: 04/24/2023] [Indexed: 05/27/2023] Open
Abstract
BACKGROUND The clinical relevance of promoter mutations and single nucleotide polymorphism rs2853669 of telomerase reverse transcriptase (TERT) and telomere length in patients with isocitrate dehydrogenase (IDH) wild-type glioblastoma (GBM) patients remains unclear. Moreover, some studies speculated that TERT promoter status might influence the prognostic role of O6-methylguanine DNA methyltransferase (MGMT) promoter methylation in newly diagnosed GBM. We carried out a large study to investigate their clinical impact and their interaction in newly diagnosed GBM patients. PATIENTS AND METHODS We included 273 newly diagnosed IDH wild-type GBM patients who started treatment at Veneto Institute of Oncology IOV - IRCCS (Padua, Italy) from December 2016 to January 2020. TERT promoter mutations (-124 C>T and -146 C>T) and SNP rs2853669 (-245 T>C), relative telomere length (RTL) and MGMT methylation status were retrospectively assessed in this prospective cohort of patients. RESULTS Median overall survival (OS) of 273 newly diagnosed IDH wild-type GBM patients was 15 months. TERT promoter was mutated in 80.2% of patients, and most had the rs2853669 single nucleotide polymorphism as T/T genotype (46.2%). Median RTL was 1.57 (interquartile range 1.13-2.32). MGMT promoter was methylated in 53.4% of cases. At multivariable analysis, RTL and TERT promoter mutations were not associated with OS or progression-free survival (PFS). Notably, patients C carrier of rs2853669 (C/C+C/T genotypes) showed a better PFS compared with those with the T/T genotype (hazard ratio 0.69, P = 0.007). In terms of OS and PFS, all interactions between MGMT, TERT and RTL and between TERT and rs2853669 genotype were not statistically significant. CONCLUSIONS Our findings suggest the presence of the C variant allele at the rs2853669 of the TERT promoter as an attractive independent prognostic biomarker of disease progression in IDH wild-type GBM patients. RTL and TERT promoter mutational status were not correlated to survival regardless of MGMT methylation status.
Collapse
Affiliation(s)
- S Giunco
- Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy; Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | - M Padovan
- Department of Oncology, Oncology 1, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | - C Angelini
- Neurosurgery, Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - F Cavallin
- Independent Statistician, Solagna, Italy
| | - G Cerretti
- Department of Oncology, Oncology 1, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | - M Morello
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | - M Caccese
- Department of Oncology, Oncology 1, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | - B Rizzo
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | - D d'Avella
- Department of Neuroscience, Neurosurgery, University of Padua, Padua, Italy
| | - A Della Puppa
- Department of Neurosurgery, Neuroscience, Psychology, Drug Area and Child Health (NEUROFARBA), University of Florence, Careggi University Hospital, Florence, Italy
| | - F Chioffi
- Neurosurgery, Azienda Ospedaliera- Università Padova, Padua, Italy
| | - P De Bonis
- Neurosurgery, Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - V Zagonel
- Department of Oncology, Oncology 1, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | - A De Rossi
- Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy; Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | - G Lombardi
- Department of Oncology, Oncology 1, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy.
| |
Collapse
|
24
|
El Maï M, Bird M, Allouche A, Targen S, Şerifoğlu N, Lopes-Bastos B, Guigonis JM, Kang D, Pourcher T, Yue JX, Ferreira MG. Gut-specific telomerase expression counteracts systemic aging in telomerase-deficient zebrafish. NATURE AGING 2023; 3:567-584. [PMID: 37142828 DOI: 10.1038/s43587-023-00401-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/21/2023] [Indexed: 05/06/2023]
Abstract
Telomere shortening is a hallmark of aging and is counteracted by telomerase. As in humans, the zebrafish gut is one of the organs with the fastest rate of telomere decline, triggering early tissue dysfunction during normal zebrafish aging and in prematurely aged telomerase mutants. However, whether telomere-dependent aging of an individual organ, the gut, causes systemic aging is unknown. Here we show that tissue-specific telomerase expression in the gut can prevent telomere shortening and rescues premature aging of tert-/-. Induction of telomerase rescues gut senescence and low cell proliferation, while restoring tissue integrity, inflammation and age-dependent microbiota dysbiosis. Averting gut aging causes systemic beneficial impacts, rescuing aging of distant organs such as reproductive and hematopoietic systems. Conclusively, we show that gut-specific telomerase expression extends the lifespan of tert-/- by 40%, while ameliorating natural aging. Our work demonstrates that gut-specific rescue of telomerase expression leading to telomere elongation is sufficient to systemically counteract aging in zebrafish.
Collapse
Affiliation(s)
- Mounir El Maï
- Institute for Research on Cancer and Aging of Nice (IRCAN), CNRS UMR7284, INSERM U1081, Université Côte d'Azur, Nice, France
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Malia Bird
- Institute for Research on Cancer and Aging of Nice (IRCAN), CNRS UMR7284, INSERM U1081, Université Côte d'Azur, Nice, France
| | - Asma Allouche
- Institute for Research on Cancer and Aging of Nice (IRCAN), CNRS UMR7284, INSERM U1081, Université Côte d'Azur, Nice, France
| | - Seniye Targen
- Institute for Research on Cancer and Aging of Nice (IRCAN), CNRS UMR7284, INSERM U1081, Université Côte d'Azur, Nice, France
| | - Naz Şerifoğlu
- Institute for Research on Cancer and Aging of Nice (IRCAN), CNRS UMR7284, INSERM U1081, Université Côte d'Azur, Nice, France
| | - Bruno Lopes-Bastos
- Institute for Research on Cancer and Aging of Nice (IRCAN), CNRS UMR7284, INSERM U1081, Université Côte d'Azur, Nice, France
| | - Jean-Marie Guigonis
- Laboratory Transporter in Imaging and Radiotherapy in Oncology, Institut des Sciences du Vivant Frederic Joliot, Commissariat à l'Energie Atomique et aux Energies Alternatives, Université Côte d'Azur, Nice, France
| | - Da Kang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Thierry Pourcher
- Laboratory Transporter in Imaging and Radiotherapy in Oncology, Institut des Sciences du Vivant Frederic Joliot, Commissariat à l'Energie Atomique et aux Energies Alternatives, Université Côte d'Azur, Nice, France
| | - Jia-Xing Yue
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Miguel Godinho Ferreira
- Institute for Research on Cancer and Aging of Nice (IRCAN), CNRS UMR7284, INSERM U1081, Université Côte d'Azur, Nice, France.
- Instituto Gulbenkian de Ciência, Oeiras, Portugal.
| |
Collapse
|
25
|
Boscolo-Rizzo P, Tirelli G, Polesel J, Sia E, Phillips V, Borsetto D, De Rossi A, Giunco S. TERT promoter mutations in head and neck squamous cell carcinoma: A systematic review and meta-analysis on prevalence and prognostic significance. Oral Oncol 2023; 140:106398. [PMID: 37075587 DOI: 10.1016/j.oraloncology.2023.106398] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/27/2023] [Accepted: 04/11/2023] [Indexed: 04/21/2023]
Abstract
OBJECTIVES To estimate the prevalence of two most common and mutually exclusive -124 C > T and -146 C > T TERT promoter mutations in HNSCC and analyse their prognostic role. MATERIALS AND METHODS The databases Medline (via Ovid), Embase (via Ovid), Cochrane Library, Scopus, and Web of Science (Core Collection) were searched from inception to December 2022 to identify studies analysing TERT promoter mutations in HNSCC. Pooled prevalence of TERT promoter mutations and hazard ratio (sHR) of death/progression, with corresponding confidence intervals (CI), were estimated. RESULTS The initial search returned 6416 articles, of which 17 studies, including 1830 patients, met the criteria for prevalence meta-analysis. Among them, 8 studies fitted the inclusion criterion to analyse the prognostic impact of TERT promoter mutations. Overall, 21% (95% CI: 12%-31%) of HNSCCs harboured TERT promoter mutation. TERT promoter mutations were more commonly found in oral cavity cancer (prevalence = 47%, 95% CI: 33%-61%), followed by laryngeal/hypopharyngeal cancer (prevalence = 12%, 95% CI: 4%-25%), while they were quite rare in oropharyngeal cancer (prevalence = 1%, 95% CI: 0%-4%). TERT promoter mutation -124 C > T was associated with a higher risk of death (sHR = 2.01, 95% CI: 1.25-3.23) and progression (sHR = 2.79, 95% CI: 1.77-4.40), while -146 C > T TERT promoter mutation did not show any significant correlation neither to overall nor progression-free survival. CONCLUSION TERT promoter mutations were mainly topographically restricted to oral cavity cancer. -124 C > T was the most common TERT promoter mutation and was significantly associated to worse outcome in HNSCC.
Collapse
Affiliation(s)
- Paolo Boscolo-Rizzo
- Department of Medical, Surgical and Health Sciences, Section of Otolaryngology, University of Trieste, Trieste, Italy.
| | - Giancarlo Tirelli
- Department of Medical, Surgical and Health Sciences, Section of Otolaryngology, University of Trieste, Trieste, Italy
| | - Jerry Polesel
- Unit of Cancer Epidemiology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Egidio Sia
- Department of Medical, Surgical and Health Sciences, Section of Otolaryngology, University of Trieste, Trieste, Italy
| | | | - Daniele Borsetto
- Department of ENT, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Anita De Rossi
- Department of Surgery, Oncology and Gastroenterology, Section of Oncology and Immunology, University of Padova, Padova, Italy; Immunology and Diagnostic Molecular Oncology Unit, Veneto Institute of Oncology IOV- IRCCS, Padova, Italy
| | - Silvia Giunco
- Department of Surgery, Oncology and Gastroenterology, Section of Oncology and Immunology, University of Padova, Padova, Italy; Immunology and Diagnostic Molecular Oncology Unit, Veneto Institute of Oncology IOV- IRCCS, Padova, Italy
| |
Collapse
|
26
|
Bardelčíková A, Šoltys J, Mojžiš J. Oxidative Stress, Inflammation and Colorectal Cancer: An Overview. Antioxidants (Basel) 2023; 12:antiox12040901. [PMID: 37107276 PMCID: PMC10135609 DOI: 10.3390/antiox12040901] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/05/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Colorectal cancer (CRC) represents the second leading cause of cancer-related deaths worldwide. The pathogenesis of CRC is a complex multistep process. Among other factors, inflammation and oxidative stress (OS) have been reported to be involved in the initiation and development of CRC. Although OS plays a vital part in the life of all organisms, its long-term effects on the human body may be involved in the development of different chronic diseases, including cancer diseases. Chronic OS can lead to the oxidation of biomolecules (nucleic acids, lipids and proteins) or the activation of inflammatory signaling pathways, resulting in the activation of several transcription factors or the dysregulation of gene and protein expression followed by tumor initiation or cancer cell survival. In addition, it is well known that chronic intestinal diseases such as inflammatory bowel disease (IBD) are associated with an increased risk of cancer, and a link between OS and IBD initiation and progression has been reported. This review focuses on the role of oxidative stress as a causative agent of inflammation in colorectal cancer.
Collapse
Affiliation(s)
- Annamária Bardelčíková
- Department of Pharmacology, Medical Faculty of University of Pavol Jozef Šafárik in Košice, Tr. SNP 1, 040 11 Košice, Slovakia
| | - Jindřich Šoltys
- Institute of Parasitology, Slovak Academy of Science, Hlinkova 3, 040 01 Košice, Slovakia
| | - Ján Mojžiš
- Department of Pharmacology, Medical Faculty of University of Pavol Jozef Šafárik in Košice, Tr. SNP 1, 040 11 Košice, Slovakia
| |
Collapse
|
27
|
Palamarchuk AI, Kovalenko EI, Streltsova MA. Multiple Actions of Telomerase Reverse Transcriptase in Cell Death Regulation. Biomedicines 2023; 11:biomedicines11041091. [PMID: 37189709 DOI: 10.3390/biomedicines11041091] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/25/2023] [Accepted: 04/02/2023] [Indexed: 04/07/2023] Open
Abstract
Telomerase reverse transcriptase (TERT), a core part of telomerase, has been known for a long time only for its telomere lengthening function by reverse transcription of RNA template. Currently, TERT is considered as an intriguing link between multiple signaling pathways. The diverse intracellular localization of TERT corresponds to a wide range of functional activities. In addition to the canonical function of protecting chromosome ends, TERT by itself or as a part of the telomerase complex participates in cell stress responses, gene regulation and mitochondria functioning. Upregulation of TERT expression and increased telomerase activity in cancer and somatic cells relate to improved survival and persistence of such cells. In this review, we summarize the data for a comprehensive understanding of the role of TERT in cell death regulation, with a focus on the interaction of TERT with signaling pathways involved in cell survival and stress response.
Collapse
Affiliation(s)
- Anastasia I. Palamarchuk
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Elena I. Kovalenko
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Maria A. Streltsova
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| |
Collapse
|
28
|
Liu S, Nong W, Ji L, Zhuge X, Wei H, Luo M, Zhou L, Chen S, Zhang S, Lei X, Huang H. The regulatory feedback of inflammatory signaling and telomere/telomerase complex dysfunction in chronic inflammatory diseases. Exp Gerontol 2023; 174:112132. [PMID: 36849001 DOI: 10.1016/j.exger.2023.112132] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 02/18/2023] [Accepted: 02/21/2023] [Indexed: 03/01/2023]
Abstract
Inflammation is believed to play a role in the progression of numerous human diseases. Research has shown that inflammation and telomeres are involved in a feedback regulatory loop: inflammation increases the rate of telomere attrition, leading to telomere dysfunction, while telomere components also participate in regulating the inflammatory response. However, the specific mechanism behind this feedback loop between inflammatory signaling and telomere/telomerase complex dysfunction has yet to be fully understood. This review presents the latest findings on this topic, with a particular focus on the detailed regulation and molecular mechanisms involved in the progression of aging, various chronic inflammatory diseases, cancers, and different stressors. Several feedback loops between inflammatory signaling and telomere/telomerase complex dysfunction, including NF-κB-TERT feedback, NF-κB-RAP1 feedback, NF-κB-TERC feedback, STAT3-TERT feedback, and p38 MAPK-shelterin complex-related gene feedback, are summarized. Understanding the latest discoveries of this feedback regulatory loop can help identify novel potential drug targets for the suppression of various inflammation-associated diseases.
Collapse
Affiliation(s)
- Shun Liu
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Weihua Nong
- Department of Obstetrics and Gynecology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi 533300, China
| | - Lin Ji
- Reproductive Hospital of Guangxi Zhuang Autonomous Region, 530021 Nanning, China
| | - Xiuhong Zhuge
- Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541001, China
| | - Huimei Wei
- Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541001, China
| | - Min Luo
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Leguang Zhou
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Shenghua Chen
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| | - Shun Zhang
- Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541001, China.
| | - Xiaocan Lei
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| | - Hua Huang
- Reproductive Hospital of Guangxi Zhuang Autonomous Region, 530021 Nanning, China.
| |
Collapse
|
29
|
Marinaccio J, Micheli E, Udroiu I, Di Nottia M, Carrozzo R, Baranzini N, Grimaldi A, Leone S, Moreno S, Muzzi M, Sgura A. TERT Extra-Telomeric Roles: Antioxidant Activity and Mitochondrial Protection. Int J Mol Sci 2023; 24:ijms24054450. [PMID: 36901881 PMCID: PMC10002448 DOI: 10.3390/ijms24054450] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/18/2023] [Accepted: 02/20/2023] [Indexed: 03/05/2023] Open
Abstract
Telomerase reverse transcriptase (TERT) is the catalytic subunit of telomerase holoenzyme, which adds telomeric DNA repeats on chromosome ends to counteract telomere shortening. In addition, there is evidence of TERT non-canonical functions, among which is an antioxidant role. In order to better investigate this role, we tested the response to X-rays and H2O2 treatment in hTERT-overexpressing human fibroblasts (HF-TERT). We observed in HF-TERT a reduced induction of reactive oxygen species and an increased expression of the proteins involved in the antioxidant defense. Therefore, we also tested a possible role of TERT inside mitochondria. We confirmed TERT mitochondrial localization, which increases after oxidative stress (OS) induced by H2O2 treatment. We next evaluated some mitochondrial markers. The basal mitochondria quantity appeared reduced in HF-TERT compared to normal fibroblasts and an additional reduction was observed after OS; nevertheless, the mitochondrial membrane potential and morphology were better conserved in HF-TERT. Our results suggest a protective function of TERT against OS, also preserving mitochondrial functionality.
Collapse
Affiliation(s)
| | - Emanuela Micheli
- Department of Science, University “ROMA TRE”, 00146 Rome, Italy
- Correspondence:
| | - Ion Udroiu
- Department of Science, University “ROMA TRE”, 00146 Rome, Italy
| | - Michela Di Nottia
- Unit of Muscular and Neurodegenerative Disorders, Laboratory of Molecular Medicine, Bambino Gesù Children’s Hospital IRCCS, 00146 Rome, Italy
| | - Rosalba Carrozzo
- Unit of Muscular and Neurodegenerative Disorders, Laboratory of Molecular Medicine, Bambino Gesù Children’s Hospital IRCCS, 00146 Rome, Italy
| | - Nicolò Baranzini
- Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy
| | - Annalisa Grimaldi
- Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy
| | - Stefano Leone
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, 00161 Rome, Italy
| | - Sandra Moreno
- Department of Science, University “ROMA TRE”, 00146 Rome, Italy
- IRCCS Santa Lucia Foundation, 00179 Rome, Italy
| | - Maurizio Muzzi
- Department of Science, University “ROMA TRE”, 00146 Rome, Italy
- IRCCS Santa Lucia Foundation, 00179 Rome, Italy
| | - Antonella Sgura
- Department of Science, University “ROMA TRE”, 00146 Rome, Italy
| |
Collapse
|
30
|
Tiendrébéogo AJF, Soumagne T, Pellegrin F, Dagouassat M, Tran Van Nhieu J, Caramelle P, Paul EN, Even B, Zysman M, Julé Y, Samb A, Boczkowski J, Lanone S, Schlemmer F. The telomerase activator TA-65 protects from cigarette smoke-induced small airway remodeling in mice through extra-telomeric effects. Sci Rep 2023; 13:25. [PMID: 36646720 PMCID: PMC9842758 DOI: 10.1038/s41598-022-25993-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 12/07/2022] [Indexed: 01/18/2023] Open
Abstract
Small airway remodeling (SAR) is a key phenomenon of airflow obstruction in smokers, leading to chronic obstructive pulmonary disease (COPD). SAR results in an increased thickness of small airway walls, with a combination of peribronchiolar fibrosis with increased fibrous tissue and accumulation of mesenchymal and epithelial cells. SAR pathogenesis is still unclear but recent data suggest that alterations in telomerase activity could represent a possible underlying mechanism of SAR. Our study was dedicated to identify a potential protective role of TA-65, a pharmacological telomerase activator, in a cigarette smoke (CS) model of SAR in mice, and to further precise if extra-telomeric effects of telomerase, involving oxidative stress modulation, could explain it. C57BL/6J mice were daily exposed to air or CS during 4 weeks with or without a concomitant administration of TA-65 starting 7 days before CS exposure. Morphological analyses were performed, and mucus production, myofibroblast differentiation, collagen deposition, as well as transforming growth factor-β1 (TGF-β1) expression in the small airway walls were examined. In addition, the effects of TA-65 treatment on TGF-β expression, fibroblast-to-myofibroblast differentiation, reactive oxygen species (ROS) production and catalase expression and activity were evaluated in primary cultures of pulmonary fibroblasts and/or mouse embryonic fibroblasts in vitro. Exposure to CS during 4 weeks induced SAR in mice, characterized by small airway walls thickening and peribronchiolar fibrosis (increased deposition of collagen, expression of α-SMA in small airway walls), without mucus overproduction. Treatment of mice with TA-65 protected them from CS-induced SAR. This effect was associated with the prevention of CS-induced TGF-β expression in vivo, the blockade of TGF-β-induced myofibroblast differentiation, and the reduction of TGF-β-induced ROS production that correlates with an increase of catalase expression and activity. Our findings demonstrate that telomerase is a critical player of SAR, probably through extra-telomeric anti-oxidant effects, and therefore provide new insights in the understanding and treatment of COPD pathogenesis.
Collapse
Affiliation(s)
- Arnaud Jean Florent Tiendrébéogo
- grid.462410.50000 0004 0386 3258IMRB, INSERM U955, 94000 Créteil, France ,grid.410511.00000 0001 2149 7878Université Paris Est-Créteil, Faculté de Santé, 94000 Créteil, France ,Laboratoire de physiologie et d’explorations fonctionnelles physiologiques, Université Cheik Anta Diop, Dakar, Senegal
| | - Thibaud Soumagne
- grid.462410.50000 0004 0386 3258IMRB, INSERM U955, 94000 Créteil, France ,grid.410511.00000 0001 2149 7878Université Paris Est-Créteil, Faculté de Santé, 94000 Créteil, France
| | - François Pellegrin
- grid.462410.50000 0004 0386 3258IMRB, INSERM U955, 94000 Créteil, France ,grid.410511.00000 0001 2149 7878Université Paris Est-Créteil, Faculté de Santé, 94000 Créteil, France
| | - Maylis Dagouassat
- grid.462410.50000 0004 0386 3258IMRB, INSERM U955, 94000 Créteil, France ,grid.410511.00000 0001 2149 7878Université Paris Est-Créteil, Faculté de Santé, 94000 Créteil, France
| | - Jeanne Tran Van Nhieu
- grid.462410.50000 0004 0386 3258IMRB, INSERM U955, 94000 Créteil, France ,grid.410511.00000 0001 2149 7878Université Paris Est-Créteil, Faculté de Santé, 94000 Créteil, France ,grid.412116.10000 0004 1799 3934Assistance Publique Hôpitaux de Paris, Hôpitaux Universitaires Henri Mondor, Département de Pathologie, 94000 Créteil, France
| | - Philippe Caramelle
- grid.462410.50000 0004 0386 3258IMRB, INSERM U955, 94000 Créteil, France ,grid.410511.00000 0001 2149 7878Université Paris Est-Créteil, Faculté de Santé, 94000 Créteil, France
| | - Emmanuel N. Paul
- grid.462410.50000 0004 0386 3258IMRB, INSERM U955, 94000 Créteil, France ,grid.410511.00000 0001 2149 7878Université Paris Est-Créteil, Faculté de Santé, 94000 Créteil, France
| | - Benjamin Even
- grid.462410.50000 0004 0386 3258IMRB, INSERM U955, 94000 Créteil, France ,grid.410511.00000 0001 2149 7878Université Paris Est-Créteil, Faculté de Santé, 94000 Créteil, France
| | - Maeva Zysman
- grid.462410.50000 0004 0386 3258IMRB, INSERM U955, 94000 Créteil, France ,grid.410511.00000 0001 2149 7878Université Paris Est-Créteil, Faculté de Santé, 94000 Créteil, France
| | | | - Abdoulaye Samb
- Laboratoire de physiologie et d’explorations fonctionnelles physiologiques, Université Cheik Anta Diop, Dakar, Senegal
| | - Jorge Boczkowski
- grid.462410.50000 0004 0386 3258IMRB, INSERM U955, 94000 Créteil, France ,grid.410511.00000 0001 2149 7878Université Paris Est-Créteil, Faculté de Santé, 94000 Créteil, France ,grid.412116.10000 0004 1799 3934Assistance Publique Hôpitaux de Paris, Hôpitaux Universitaires Henri Mondor, Service d’explorations fonctionnelles respiratoires, DHU A-TVB, FHU Senec, 94000 Créteil, France
| | - Sophie Lanone
- grid.462410.50000 0004 0386 3258IMRB, INSERM U955, 94000 Créteil, France ,grid.410511.00000 0001 2149 7878Université Paris Est-Créteil, Faculté de Santé, 94000 Créteil, France
| | - Frédéric Schlemmer
- grid.462410.50000 0004 0386 3258IMRB, INSERM U955, 94000 Créteil, France ,grid.410511.00000 0001 2149 7878Université Paris Est-Créteil, Faculté de Santé, 94000 Créteil, France ,grid.412116.10000 0004 1799 3934Assistance Publique Hôpitaux de Paris, Hôpitaux Universitaires Henri Mondor, Unité de Pneumologie, DHU A-TVB, FHU Senec, 94000 Créteil, France
| |
Collapse
|
31
|
Tornesello ML, Cerasuolo A, Starita N, Tornesello AL, Bonelli P, Tuccillo FM, Buonaguro L, Isaguliants MG, Buonaguro FM. The Molecular Interplay between Human Oncoviruses and Telomerase in Cancer Development. Cancers (Basel) 2022; 14:5257. [PMID: 36358677 PMCID: PMC9659228 DOI: 10.3390/cancers14215257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/21/2022] [Accepted: 10/22/2022] [Indexed: 08/29/2023] Open
Abstract
Human oncoviruses are able to subvert telomerase function in cancer cells through multiple strategies. The activity of the catalytic subunit of telomerase (TERT) is universally enhanced in virus-related cancers. Viral oncoproteins, such as high-risk human papillomavirus (HPV) E6, Epstein-Barr virus (EBV) LMP1, Kaposi's sarcoma-associated herpesvirus (HHV-8) LANA, hepatitis B virus (HBV) HBVx, hepatitis C virus (HCV) core protein and human T-cell leukemia virus-1 (HTLV-1) Tax protein, interact with regulatory elements in the infected cells and contribute to the transcriptional activation of TERT gene. Specifically, viral oncoproteins have been shown to bind TERT promoter, to induce post-transcriptional alterations of TERT mRNA and to cause epigenetic modifications, which have important effects on the regulation of telomeric and extra-telomeric functions of the telomerase. Other viruses, such as herpesviruses, operate by integrating their genomes within the telomeres or by inducing alternative lengthening of telomeres (ALT) in non-ALT cells. In this review, we recapitulate on recent findings on virus-telomerase/telomeres interplay and the importance of TERT-related oncogenic pathways activated by cancer-causing viruses.
Collapse
Affiliation(s)
- Maria Lina Tornesello
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, Via Mariano Semmola, 80131 Napoli, Italy
| | - Andrea Cerasuolo
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, Via Mariano Semmola, 80131 Napoli, Italy
| | - Noemy Starita
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, Via Mariano Semmola, 80131 Napoli, Italy
| | - Anna Lucia Tornesello
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, Via Mariano Semmola, 80131 Napoli, Italy
| | - Patrizia Bonelli
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, Via Mariano Semmola, 80131 Napoli, Italy
| | - Franca Maria Tuccillo
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, Via Mariano Semmola, 80131 Napoli, Italy
| | - Luigi Buonaguro
- Cancer Immunoregulation Unit, Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, Via Mariano Semmola, 80131 Napoli, Italy
| | | | - Franco M. Buonaguro
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, Via Mariano Semmola, 80131 Napoli, Italy
| |
Collapse
|
32
|
Judasz E, Lisiak N, Kopczyński P, Taube M, Rubiś B. The Role of Telomerase in Breast Cancer's Response to Therapy. Int J Mol Sci 2022; 23:12844. [PMID: 36361634 PMCID: PMC9654063 DOI: 10.3390/ijms232112844] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/13/2022] [Accepted: 10/24/2022] [Indexed: 11/26/2023] Open
Abstract
Currently, breast cancer appears to be the most widespread cancer in the world and the most common cause of cancer deaths. This specific type of cancer affects women in both developed and developing countries. Prevention and early diagnosis are very important factors for good prognosis. A characteristic feature of cancer cells is the ability of unlimited cell division, which makes them immortal. Telomeres, which are shortened with each cell division in normal cells, are rebuilt in cancer cells by the enzyme telomerase, which is expressed in more than 85% of cancers (up to 100% of adenocarcinomas, including breast cancer). Telomerase may have different functions that are related to telomeres or unrelated. It has been shown that high activity of the enzyme in cancer cells is associated with poor cell sensitivity to therapies. Therefore, telomerase has become a potential target for cancer therapies. The low efficacy of therapies has resulted in the search for new combined and more effective therapeutic methods, including the involvement of telomerase inhibitors and telomerase-targeted immunotherapy.
Collapse
Affiliation(s)
- Eliza Judasz
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, 60-806 Poznan, Poland
| | - Natalia Lisiak
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, 60-806 Poznan, Poland
| | - Przemysław Kopczyński
- Centre for Orthodontic Mini-Implants at the Department and Clinic of Maxillofacial Orthopedics and Orthodontics, Poznan University of Medical Sciences, 60-812 Poznan, Poland
| | - Magdalena Taube
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, 60-806 Poznan, Poland
| | - Błażej Rubiś
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, 60-806 Poznan, Poland
| |
Collapse
|
33
|
Liu Y, Betori RC, Pagacz J, Frost GB, Efimova EV, Wu D, Wolfgeher DJ, Bryan TM, Cohen SB, Scheidt KA, Kron SJ. Targeting telomerase reverse transcriptase with the covalent inhibitor NU-1 confers immunogenic radiation sensitization. Cell Chem Biol 2022; 29:1517-1531.e7. [PMID: 36206753 PMCID: PMC9588800 DOI: 10.1016/j.chembiol.2022.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 07/29/2022] [Accepted: 09/15/2022] [Indexed: 11/03/2022]
Abstract
Beyond synthesizing telomere repeats, the telomerase reverse transcriptase (TERT) also serves multiple other roles supporting cancer growth. Blocking telomerase to drive telomere erosion appears impractical, but TERT's non-canonical activities have yet to be fully explored as cancer targets. Here, we used an irreversible TERT inhibitor, NU-1, to examine impacts on resistance to conventional cancer therapies. In vitro, inhibiting TERT sensitized cells to chemotherapy and radiation. NU-1 delayed repair of double-strand breaks, resulting in persistent DNA damage signaling and cellular senescence. Although NU-1 alone did not impact growth of syngeneic CT26 tumors in BALB/c mice, it dramatically enhanced the effects of radiation, leading to immune-dependent tumor elimination. Tumors displayed persistent DNA damage, suppressed proliferation, and increased activated immune infiltrate. Our studies confirm TERT's role in limiting genotoxic effects of conventional therapy but also implicate TERT as a determinant of immune evasion and therapy resistance.
Collapse
Affiliation(s)
- Yue Liu
- Ludwig Center for Metastasis Research and Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | - Rick C Betori
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - Joanna Pagacz
- Ludwig Center for Metastasis Research and Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | - Grant B Frost
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - Elena V Efimova
- Ludwig Center for Metastasis Research and Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | - Ding Wu
- Ludwig Center for Metastasis Research and Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | - Donald J Wolfgeher
- Ludwig Center for Metastasis Research and Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | - Tracy M Bryan
- Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, NSW 2145, Australia
| | - Scott B Cohen
- Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, NSW 2145, Australia
| | - Karl A Scheidt
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA.
| | - Stephen J Kron
- Ludwig Center for Metastasis Research and Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
34
|
Low-dose telomerase is required for the expansion and migration of placental mesenchymal stem cells. Biochem Biophys Res Commun 2022; 636:40-47. [DOI: 10.1016/j.bbrc.2022.10.093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 10/27/2022] [Indexed: 11/17/2022]
|
35
|
Noguera JC, Velando A. Maternal testosterone affects offspring telomerase activity in a long-lived seabird. Ecol Evol 2022; 12:e9281. [PMID: 36110870 PMCID: PMC9465397 DOI: 10.1002/ece3.9281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/29/2022] [Accepted: 08/19/2022] [Indexed: 11/10/2022] Open
Abstract
Androgens are a group of steroid hormones that have long been proposed as a mechanism underpinning intergenerational plasticity. In birds, maternally allocated egg testosterone, one of the main androgens in vertebrates, affects a wide variety of offspring phenotypic traits but the mechanisms underlying this form of intergenerational plasticity are not yet well understood. Recent in vitro and animal model studies have shown that telomerase expression and activity are important targets of androgen signaling. The telomerase enzyme is known for its repair function on telomeres, the DNA-protein complexes at the ends of chromosomes that are involved in genomic integrity and cell aging. However, the role of maternal testosterone in influencing offspring telomerase levels in natural populations and its consequences on telomere length and potentially on offspring development is still unknown. Here, by experimentally modifying the level of egg testosterone in a natural population of yellow-legged gull (Larus michahellis), we show that chicks hatched from testosterone-treated eggs had higher average levels of telomerase and faster growth than controls during the first week of life. While testosterone-treated chicks also tended to have longer telomeres than controls at hatching this difference disappeared by day 6 of age. Overall, our results suggest that maternal testosterone may have a potential adaptive value by promoting offspring growth and presumably telomerase levels, as this enzyme plays other important physiological functions (e.g., stress resistance, cell signaling, or tissue genesis) besides telomere lengthening. Nonetheless, our knowledge of the potential adaptive function of telomerase in natural populations is scarce and so the potential pathways linking maternal hormones, offspring telomerase, and fitness should be further investigated.
Collapse
Affiliation(s)
- Jose C. Noguera
- Grupo de Ecología Animal (GEA), Centro de Investigación Marina (CIM)Universidad de VigoVigoSpain
| | - Alberto Velando
- Grupo de Ecología Animal (GEA), Centro de Investigación Marina (CIM)Universidad de VigoVigoSpain
| |
Collapse
|
36
|
Taheri M, Ghafouri-Fard S, Najafi S, Kallenbach J, Keramatfar E, Atri Roozbahani G, Heidari Horestani M, Hussen BM, Baniahmad A. Hormonal regulation of telomerase activity and hTERT expression in steroid-regulated tissues and cancer. Cancer Cell Int 2022; 22:258. [PMID: 35974340 PMCID: PMC9380309 DOI: 10.1186/s12935-022-02678-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 08/05/2022] [Indexed: 11/10/2022] Open
Abstract
Naturally, in somatic cells chromosome ends (telomeres) shorten during each cell division. This process ensures to limit proliferation of somatic cells to avoid malignant proliferation; however, it leads to proliferative senescence. Telomerase contains the reverse transcriptase TERT, which together with the TERC component, is responsible for protection of genome integrity by preventing shortening of telomeres through adding repetitive sequences. In addition, telomerase has non-telomeric function and supports growth factor independent growth. Unlike somatic cells, telomerase is detectable in stem cells, germ line cells, and cancer cells to support self-renewal and expansion. Elevated telomerase activity is reported in almost all of human cancers. Increased expression of hTERT gene or its reactivation is required for limitless cellular proliferation in immortal malignant cells. In hormonally regulated tissues as well as in prostate, breast and endometrial cancers, telomerase activity and hTERT expression are under control of steroid sex hormones and growth factors. Also, a number of hormones and growth factors are known to play a role in the carcinogenesis via regulation of hTERT levels or telomerase activity. Understanding the role of hormones in interaction with telomerase may help finding therapeutical targets for anticancer strategies. In this review, we outline the roles and functions of several steroid hormones and growth factors in telomerase regulation, particularly in hormone regulated cancers such as prostate, breast and endometrial cancer.
Collapse
Affiliation(s)
- Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Institute of Human Genetics, Jena University Hospital, 07740, Jena, Germany
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Julia Kallenbach
- Institute of Human Genetics, Jena University Hospital, 07740, Jena, Germany
| | - Elmira Keramatfar
- Institute of Human Genetics, Jena University Hospital, 07740, Jena, Germany
| | | | | | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Kurdistan Region, Erbil, Iraq.,Center of Research and Strategic Studies, Lebanese French University, Erbil, Kurdistan Region, Iraq
| | - Aria Baniahmad
- Institute of Human Genetics, Jena University Hospital, 07740, Jena, Germany.
| |
Collapse
|
37
|
Yilmaz S, Bedir E, Ballar Kirmizibayrak P. The role of cycloastragenol at the intersection of NRF2/ARE, telomerase, and proteasome activity. Free Radic Biol Med 2022; 188:105-116. [PMID: 35718303 DOI: 10.1016/j.freeradbiomed.2022.06.230] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/09/2022] [Accepted: 06/14/2022] [Indexed: 10/18/2022]
Abstract
Aging is well-characterized by the gradual decline of cellular functionality. As redox balance, proteostasis, and telomerase systems have been found to be associated with aging and age-related diseases, targeting these systems with small compounds has been considered a promising therapeutic approach. Cycloastragenol (CA), a small molecule telomerase activator obtained from Astragalus species, has been reported to positively affect several age-related pathophysiologies, but the mechanisms underlying CA activity have yet to be reported. Here, we presented that CA increased NRF2 nuclear localization and activity leading to upregulation of cytoprotective enzymes and attenuation of oxidative stress-induced ROS levels. Furthermore, CA-mediated induction of telomerase activity was found to be regulated by NRF2. CA not only increased the expression of hTERT but also its nuclear localization via upregulating the Hsp90-chaperon complex. In addition to modulating nuclear hTERT levels at unstressed conditions, CA alleviated oxidative stress-induced mitochondrial hTERT levels while increasing nuclear hTERT levels. Concomitantly, H2O2-induced mitochondrial ROS level was found to be significantly decreased by CA administration. Our data also revealed that CA strongly enhanced proteasome activity and assembly. More importantly, the proteasome activator effect of CA is dependent on the induction of telomerase activity, which is mediated by NRF2 system. In conclusion, our results not only revealed the cross-talk among NRF2, telomerase, and proteasome systems but also that CA functions at the intersection of these three major aging-related cellular pathways.
Collapse
Affiliation(s)
- Sinem Yilmaz
- Department of Biotechnology, Graduate School of Natural and Applied Sciences, Ege University, Bornova, Izmir, Turkey; Department of Bioengineering, Faculty of Engineering, University of Alanya Aladdin Keykubat, Antalya, Turkey
| | - Erdal Bedir
- Department of Bioengineering, Izmir Institute of Technology, 35430, Urla, Izmir, Turkey.
| | | |
Collapse
|
38
|
Ellis PS, Martins RR, Thompson EJ, Farhat A, Renshaw SA, Henriques CM. A subset of gut leukocytes has telomerase-dependent "hyper-long" telomeres and require telomerase for function in zebrafish. Immun Ageing 2022; 19:31. [PMID: 35820929 PMCID: PMC9277892 DOI: 10.1186/s12979-022-00287-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 06/17/2022] [Indexed: 11/13/2022]
Abstract
BACKGROUND Telomerase, the enzyme capable of elongating telomeres, is usually restricted in human somatic cells, which contributes to progressive telomere shortening with cell-division and ageing. T and B-cells cells are somatic cells that can break this rule and can modulate telomerase expression in a homeostatic manner. Whereas it seems intuitive that an immune cell type that depends on regular proliferation outbursts for function may have evolved to modulate telomerase expression it is less obvious why others may also do so, as has been suggested for macrophages and neutrophils in some chronic inflammation disease settings. The gut has been highlighted as a key modulator of systemic ageing and is a key tissue where inflammation must be carefully controlled to prevent dysfunction. How telomerase may play a role in innate immune subtypes in the context of natural ageing in the gut, however, remains to be determined. RESULTS Using the zebrafish model, we show that subsets of gut immune cells have telomerase-dependent"hyper-long" telomeres, which we identified as being predominantly macrophages and dendritics (mpeg1.1+ and cd45+mhcII+). Notably, mpeg1.1+ macrophages have much longer telomeres in the gut than in their haematopoietic tissue of origin, suggesting that there is modulation of telomerase in these cells, in the gut. Moreover, we show that a subset of gut mpeg1.1+ cells express telomerase (tert) in young WT zebrafish, but that the relative proportion of these cells decreases with ageing. Importantly, this is accompanied by telomere shortening and DNA damage responses with ageing and a telomerase-dependent decrease in expression of autophagy and immune activation markers. Finally, these telomerase-dependent molecular alterations are accompanied by impaired phagocytosis of E. coli and increased gut permeability in vivo. CONCLUSIONS Our data show that limiting levels of telomerase lead to alterations in gut immunity, impacting on the ability to clear pathogens in vivo. These are accompanied by increased gut permeability, which, together, are likely contributors to local and systemic tissue degeneration and increased susceptibility to infection with ageing.
Collapse
Affiliation(s)
- Pam S Ellis
- The Bateson Centre, MRC-Arthritis Research UK Centre for Integrated Research Into Musculoskeletal Ageing and Department of Oncology and Metabolism, Healthy Lifespan Institute, University of Sheffield Medical School, Sheffield, UK
| | - Raquel R Martins
- The Bateson Centre, MRC-Arthritis Research UK Centre for Integrated Research Into Musculoskeletal Ageing and Department of Oncology and Metabolism, Healthy Lifespan Institute, University of Sheffield Medical School, Sheffield, UK
| | - Emily J Thompson
- The Bateson Centre, MRC-Arthritis Research UK Centre for Integrated Research Into Musculoskeletal Ageing and Department of Oncology and Metabolism, Healthy Lifespan Institute, University of Sheffield Medical School, Sheffield, UK
| | - Asma Farhat
- The Bateson Centre, MRC-Arthritis Research UK Centre for Integrated Research Into Musculoskeletal Ageing and Department of Oncology and Metabolism, Healthy Lifespan Institute, University of Sheffield Medical School, Sheffield, UK
| | - Stephen A Renshaw
- The Bateson Centre and Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, UK
| | - Catarina M Henriques
- The Bateson Centre, MRC-Arthritis Research UK Centre for Integrated Research Into Musculoskeletal Ageing and Department of Oncology and Metabolism, Healthy Lifespan Institute, University of Sheffield Medical School, Sheffield, UK.
| |
Collapse
|
39
|
Nguyen E, Richerolle A, Sánchez-Bellver J, Varennes J, Ségal-Bendirdjian E. hTERT DNA Methylation Analysis Identifies a Biomarker for Retinoic Acid-Induced hTERT Repression in Breast Cancer Cell Lines. Biomedicines 2022; 10:biomedicines10030695. [PMID: 35327497 PMCID: PMC8945736 DOI: 10.3390/biomedicines10030695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/10/2022] [Accepted: 03/12/2022] [Indexed: 11/16/2022] Open
Abstract
Telomerase reactivation is responsible for telomere preservation in about 90% of cancers, providing cancer cells an indefinite proliferating potential. Telomerase consists of at least two main subunits: a catalytic reverse transcriptase protein (hTERT) and an RNA template subunit. Strategies to inhibit hTERT expression seem promising for cancer treatment. Previous works showed that all-trans retinoic acid (ATRA) induces hTERT repression in acute promyelocytic leukemia cells, resulting in their death. Here, we investigated the effects of ATRA in a subset of breast cancer cell lines. The mutational status of hTERT promoter and the methylation patterns at a single CpG resolution were assessed. We observed an inverse relationship between hTERT expression after ATRA treatment and the methylation level of a specific CpG at chr5: 1,300,438 in a region of hTERT gene at −5 kb of the transcription initiation site. This observation highlighted the significance of this region, whose methylation profile could represent a promising biomarker to predict the sensitivity to ATRA-induced hTERT repression in specific breast cancer subtypes. As hTERT repression promotes drug-induced cell death, checking the methylation status of this unique region and the specific CpG included can help in decision-making to include ATRA in combination therapy and contributes to a better clinical outcome.
Collapse
Affiliation(s)
- Eric Nguyen
- Université Paris Cité, INSERM, CNRS, T3S “Environmental Toxicity, Therapeutic Targets, Cellular Signaling and Biomarkers”, F-75006 Paris, France; (E.N.); (A.R.); (J.V.)
| | - Andréa Richerolle
- Université Paris Cité, INSERM, CNRS, T3S “Environmental Toxicity, Therapeutic Targets, Cellular Signaling and Biomarkers”, F-75006 Paris, France; (E.N.); (A.R.); (J.V.)
- Ecole Pratique des Hautes Etudes, F-75014 Paris, France
| | | | - Jacqueline Varennes
- Université Paris Cité, INSERM, CNRS, T3S “Environmental Toxicity, Therapeutic Targets, Cellular Signaling and Biomarkers”, F-75006 Paris, France; (E.N.); (A.R.); (J.V.)
| | - Evelyne Ségal-Bendirdjian
- Université Paris Cité, INSERM, CNRS, T3S “Environmental Toxicity, Therapeutic Targets, Cellular Signaling and Biomarkers”, F-75006 Paris, France; (E.N.); (A.R.); (J.V.)
- Correspondence: ; Tel.: +33-1-42-86-22-46
| |
Collapse
|
40
|
Nery MF, Rennó M, Picorelli A, Ramos E. A phylogenetic review of cancer resistance highlights evolutionary solutions to Peto’s Paradox. Genet Mol Biol 2022; 45:e20220133. [DOI: 10.1590/1678-4685-gmb-2022-0133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 10/03/2022] [Indexed: 12/12/2022] Open
|
41
|
Sahabi S, Jafari-Gharabaghlou D, Zarghami N. A new insight into cell biological and biochemical changes through aging. Acta Histochem 2022; 124:151841. [PMID: 34995929 DOI: 10.1016/j.acthis.2021.151841] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/29/2021] [Accepted: 12/29/2021] [Indexed: 12/17/2022]
Abstract
After several years of extensive research, the main cause of aging is yet elusive. There are some theories about aging, such as stem cell aging, senescent cells accumulation, and neuro-endocrine theories. None of them is able to explain all changes that happen in cells and body through aging. By finding out the main cause of aging, it will be much easier to control, prevent and even reverse the aging process. Our cells, regardless of their replicative capacity, get old through aging and they have almost the same epigenetic age. Different cell signaling pathways contribute to aging. The most important one is mTORC1 that becomes hyperactive in cells that undergo aging. Other significant changes with age are lysosome accumulation, impaired autophagy, and mitophagy. Immune system undergoes gradual changes through aging including a shift from lymphoid to myeloid lineage production as well as increased IL-6 and TNF-α which lead to age-related weight loss and meta-inflammation. Additionally, our endocrine system also experiences some changes that should be taken into consideration when looking for the main cause of aging in the human body. In this review, we planned to summarize some of the changes that happen in cells and the body through aging.
Collapse
|
42
|
Lin J, Epel E. Stress and telomere shortening: Insights from cellular mechanisms. Ageing Res Rev 2022; 73:101507. [PMID: 34736994 PMCID: PMC8920518 DOI: 10.1016/j.arr.2021.101507] [Citation(s) in RCA: 141] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 10/08/2021] [Accepted: 10/21/2021] [Indexed: 12/14/2022]
Abstract
Short telomeres confer risk of degenerative diseases. Chronic psychological stress can lead to disease through many pathways, and research from in vitro studies to human longitudinal studies has pointed to stress-induced telomere damage as an important pathway. However, there has not been a comprehensive model to describe how changes in stress physiology and neuroendocrine pathways can lead to changes in telomere biology. Critically short telomeres or the collapse of the telomere structure caused by displacement of telomere binding protein complex shelterin elicit a DNA damage response and lead to senescence or apoptosis. In this narrative review, we summarize the key roles glucocorticoids, reactive oxygen species (ROS) and mitochondria, and inflammation play in mediating the relationship between psychological stress and telomere maintenance. We emphasis that these mediators are interconnected and reinforce each other in positive feedback loops. Telomere length has not been studied across the lifespan yet, but the initial setting point at birth appears to be the most influential point, as it sets the lifetime trajectory, and is influenced by stress. We describe two types of intergenerational stress effects on telomeres - prenatal stress effects on telomeres during fetal development, and 'telotype transmission" -the directly inherited transmission of short telomeres from parental germline. It is clear that the initial simplistic view of telomere length as a mitotic clock has evolved into a far more complex picture of both transgenerational telomere influences, and of interconnected molecular and cellular pathways and networks, as hallmarks of aging where telomere maintenance is a key player interacting with mitochondria. Further mechanistic investigations testing this comprehensive model of stress mediators shaping telomere biology and the telomere-mitochondrial nexus will lead to better understanding from cell to human lifespan aging, and could lead to anti-aging interventions.
Collapse
|
43
|
Shliapina V, Koriagina M, Vasilkova D, Govorun V, Dontsova O, Rubtsova M. Human Telomerase RNA Protein Encoded by Telomerase RNA is Involved in Metabolic Responses. Front Cell Dev Biol 2021; 9:754611. [PMID: 34950657 PMCID: PMC8688989 DOI: 10.3389/fcell.2021.754611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 11/17/2021] [Indexed: 12/25/2022] Open
Abstract
Cell proliferation is associated with increased energy and nutrients consumption. Metabolism switch from oxidative phosphorylation to glycolysis and telomerase activity are induced during stimulation of proliferation, such as tumorigenesis, immune cell activation, and stem cell differentiation, among others. Telomerase RNA is one of the core components of the telomerase complex and participates in survival mechanisms that are activated under stress conditions. Human telomerase RNA protein (hTERP) is encoded by telomerase RNA and has been recently shown to be involved in autophagy regulation. In this study, we demonstrated the role of hTERP in the modulation of signaling pathways regulating autophagy, protein biosynthesis, and cell proliferation. The AMPK signaling pathway was affected in cells deficient of hTERP and when hTERP was overexpressed. The appearance of hTERP is important for metabolism switching associated with the accelerated proliferation of cells in healthy and pathological processes. These findings demonstrate the connection between telomerase RNA biogenesis and function and signaling pathways.
Collapse
Affiliation(s)
- Viktoriia Shliapina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
| | - Mariia Koriagina
- Department of Chemistry and A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Daria Vasilkova
- Department of Chemistry and A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Vadim Govorun
- Federal Research and Clinical Centre of Physical-Chemical Medicine, Moscow, Russia
| | - Olga Dontsova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia.,Department of Chemistry and A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia.,Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Maria Rubtsova
- Department of Chemistry and A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
44
|
Giunco S, Boscolo-Rizzo P, Rampazzo E, Tirelli G, Alessandrini L, Di Carlo R, Rossi M, Nicolai P, Menegaldo A, Carraro V, Tofanelli M, Bandolin L, Spinato G, Emanuelli E, Mantovani M, Stellin M, Bussani R, Dei Tos AP, Guido M, Morello M, Fussey J, Esposito G, Polesel J, De Rossi A. TERT Promoter Mutations and rs2853669 Polymorphism: Useful Markers for Clinical Outcome Stratification of Patients With Oral Cavity Squamous Cell Carcinoma. Front Oncol 2021; 11:782658. [PMID: 34858860 PMCID: PMC8631274 DOI: 10.3389/fonc.2021.782658] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 10/25/2021] [Indexed: 12/25/2022] Open
Abstract
Objective To date, no useful prognostic biomarker exists for patients with oral squamous cell carcinoma (OCSCC), a tumour with uncertain biological behaviour and subsequent unpredictable clinical course. We aim to investigate the prognostic significance of two recurrent somatic mutations (-124 C>T and -146 C>T) within the promoter of telomerase reverse transcriptase (TERT) gene and the impact of TERT single nucleotide polymorphism (SNP) rs2853669 in patients surgically treated for OCSCC. Methods The genetic frequencies of rs2853669, -124 C>T and -146 C>T as well as the telomere length were investigated in 144 tumours and 57 normal adjacent mucosal (AM) specimens from OCSCC patients. Results Forty-five tumours harboured TERT promoter mutations (31.3%), with -124 C>T and -146 C>T accounting for 64.4% and 35.6% of the alterations respectively. Patients with -124 C>T TERT promoter mutated tumours had the shortest telomeres in the AM (p=0.016) and showed higher risk of local recurrence (hazard ratio [HR]:2.75, p=0.0143), death (HR:2.71, p=0.0079) and disease progression (HR:2.71, p=0.0024) with the effect being potentiated by the co-occurrence of T/T genotype of rs2853669. Conclusion -124 C>T TERT promoter mutation as well as the T/T genotype of the rs2853669 SNP are attractive independent prognostic biomarkers in patients surgically treated for OCSCC, with the coexistence of these genetic variants showing a synergistic impact on the aggressiveness of the disease.
Collapse
Affiliation(s)
- Silvia Giunco
- Department of Surgery, Oncology and Gastroenterology, Section of Oncology and Immunology, University of Padova, Padova, Italy.,Immunology and Diagnostic Molecular Oncology Unit, Veneto Institute of Oncology (IOV), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Padova, Italy
| | - Paolo Boscolo-Rizzo
- Department of Neurosciences, Section of Otolaryngology, University of Padova, Treviso, Italy.,Department of Medical, Surgical and Health Sciences, Section of Otolaryngology, University of Trieste, Trieste, Italy
| | - Enrica Rampazzo
- Department of Surgery, Oncology and Gastroenterology, Section of Oncology and Immunology, University of Padova, Padova, Italy
| | - Giancarlo Tirelli
- Department of Medical, Surgical and Health Sciences, Section of Otolaryngology, University of Trieste, Trieste, Italy
| | - Lara Alessandrini
- Department of Medicine (DIMED), Section of Pathology, University of Padova, Padova, Italy
| | - Roberto Di Carlo
- Department of Neurosciences, Section of Otolaryngology, University of Padova, Padova, Italy
| | - Marco Rossi
- Unit of Oral and Maxillofacial Surgery, Treviso Regional Hospital, Treviso, Italy
| | - Piero Nicolai
- Department of Neurosciences, Section of Otolaryngology, University of Padova, Padova, Italy
| | - Anna Menegaldo
- Department of Neurosciences, Section of Otolaryngology, University of Padova, Treviso, Italy
| | - Valentina Carraro
- Department of Medicine (DIMED), Section of Pathology, University of Padova, Padova, Italy
| | - Margherita Tofanelli
- Department of Medical, Surgical and Health Sciences, Section of Otolaryngology, University of Trieste, Trieste, Italy
| | - Luigia Bandolin
- Department of Neurosciences, Section of Otolaryngology, University of Padova, Padova, Italy
| | - Giacomo Spinato
- Department of Surgery, Oncology and Gastroenterology, Section of Oncology and Immunology, University of Padova, Padova, Italy.,Department of Neurosciences, Section of Otolaryngology, University of Padova, Treviso, Italy
| | - Enzo Emanuelli
- Department of Neurosciences, Section of Otolaryngology, University of Padova, Treviso, Italy
| | - Monica Mantovani
- Department of Neurosciences, Section of Otolaryngology, University of Padova, Treviso, Italy
| | - Marco Stellin
- Department of Neurosciences, Section of Otolaryngology, University of Padova, Treviso, Italy
| | - Rossana Bussani
- Department of Medical, Surgical and Health Sciences, Section of Pathology, University of Trieste, Trieste, Italy
| | - Angelo Paolo Dei Tos
- Department of Medicine (DIMED), Section of Pathology, University of Padova, Padova, Italy
| | - Maria Guido
- Department of Medicine (DIMED), Section of Pathology, University of Padova, Treviso, Italy
| | - Marzia Morello
- Immunology and Diagnostic Molecular Oncology Unit, Veneto Institute of Oncology (IOV), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Padova, Italy
| | - Jonathan Fussey
- Department of ENT/Head and Neck Surgery, Queen Elizabeth University Hospital Birmingham, Birmingham, United Kingdom
| | - Giovanni Esposito
- Immunology and Diagnostic Molecular Oncology Unit, Veneto Institute of Oncology (IOV), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Padova, Italy
| | - Jerry Polesel
- Unit of Cancer Epidemiology, Centro di Riferimento Oncologico di Aviano (CRO) Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Aviano, Italy
| | - Anita De Rossi
- Department of Surgery, Oncology and Gastroenterology, Section of Oncology and Immunology, University of Padova, Padova, Italy.,Immunology and Diagnostic Molecular Oncology Unit, Veneto Institute of Oncology (IOV), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Padova, Italy
| |
Collapse
|
45
|
Parulekar A, Choksi A, Taye N, Totakura KVS, Firmal P, Kundu GC, Chattopadhyay S. SMAR1 suppresses the cancer stem cell population via hTERT repression in colorectal cancer cells. Int J Biochem Cell Biol 2021; 141:106085. [PMID: 34551340 DOI: 10.1016/j.biocel.2021.106085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 09/09/2021] [Accepted: 09/16/2021] [Indexed: 11/25/2022]
Abstract
One of the hallmarks of a cancer cell is the ability for indefinite proliferation leading to the immortalization of the cell. Activation of several signaling pathways leads to the immortalization of cancer cells via the reactivation of enzyme telomerase (hTERT). hTERT is active in germ cells, stem cells and also cancer cells. An earlier report from our lab suggests that SMAR1, a tumor suppressor protein, is significantly downregulated in the higher grades of colorectal cancers. Our study identifies SMAR1 as a transcriptional repressor of hTERT. We find that SMAR1 interacts with HDAC1/mSin3a co-repressor complex at the hTERT promoter and brings about HDAC1-mediated transcriptional repression of the promoter. Most solid tumors including colorectal cancer reactivate hTERT expression as it confers several advantages to the cancer cells like increased proliferation and angiogenesis. One of these non-canonical functions of hTERT is inducing the pool of cancer stem cell population. We find that in the CD133HighCD44High cancer stem cells population, SMAR1 expression is highly diminished leading to elevated hTERT expression. We also find that knockdown of SMAR1 promotes total CD133+CD44+ population and impart enhanced sphere-forming ability to the colorectal cancer cells. SMAR1 also inhibits invasion and metastasis in colorectal cancer cell lines via repression of hTERT. Our study provides evidence that downregulation of SMAR1 causes activation of hTERT leading to an increase in the cancer stem cell phenotype in colorectal cancer cells.
Collapse
Affiliation(s)
| | | | | | | | | | - Gopal C Kundu
- National Centre for Cell Science, Pune, India; Kalinga Institute of Industrial Technology, Bhubaneswar, India
| | - Samit Chattopadhyay
- National Centre for Cell Science, Pune, India; Birla Institute of Technology and Science, Goa, India.
| |
Collapse
|
46
|
Kalasekar SM, VanSant-Webb CH, Evason KJ. Intratumor Heterogeneity in Hepatocellular Carcinoma: Challenges and Opportunities. Cancers (Basel) 2021; 13:5524. [PMID: 34771685 PMCID: PMC8582820 DOI: 10.3390/cancers13215524] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 12/19/2022] Open
Abstract
Hepatocellular carcinoma (HCC) represents a leading cause of cancer-related death, but it remains difficult to treat. Intratumor genetic and phenotypic heterogeneity are inherent properties of breast, skin, lung, prostate, and brain tumors, and intratumor heterogeneity (ITH) helps define prognosis and therapeutic response in these cancers. Several recent studies estimate that ITH is inherent to HCC and attribute the clinical intractability of HCC to this heterogeneity. In this review, we examine the evidence for genomic, phenotypic, and tumor microenvironment ITH in HCC, with a focus on two of the top molecular drivers of HCC: β-catenin (CTNNB1) and Telomerase reverse transcriptase (TERT). We discuss the influence of ITH on HCC diagnosis, prognosis, and therapy, while highlighting the gaps in knowledge and possible future directions.
Collapse
Affiliation(s)
| | | | - Kimberley J. Evason
- Department of Pathology and Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA; (S.M.K.); (C.H.V.-W.)
| |
Collapse
|
47
|
Kotiyal S, Evason KJ. Exploring the Interplay of Telomerase Reverse Transcriptase and β-Catenin in Hepatocellular Carcinoma. Cancers (Basel) 2021; 13:cancers13164202. [PMID: 34439356 PMCID: PMC8393605 DOI: 10.3390/cancers13164202] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 08/12/2021] [Accepted: 08/15/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Liver cancer is one of the deadliest human cancers. Two of the most common molecular aberrations in liver cancer are: (1) activating mutations in the gene encoding β-catenin (CTNNB1); and (2) promoter mutations in telomerase reverse transcriptase (TERT). Here, we review recent findings regarding the interplay between TERT and β-catenin in order to better understand their role in liver cancer. Abstract Hepatocellular carcinoma (HCC) is one of the deadliest human cancers. Activating mutations in the telomerase reverse transcriptase (TERT) promoter (TERTp) and CTNNB1 gene encoding β-catenin are widespread in HCC (~50% and ~30%, respectively). TERTp mutations are predicted to increase TERT transcription and telomerase activity. This review focuses on exploring the role of TERT and β-catenin in HCC and the current findings regarding their interplay. TERT can have contradictory effects on tumorigenesis via both its canonical and non-canonical functions. As a critical regulator of proliferation and differentiation in progenitor and stem cells, activated β-catenin drives HCC; however, inhibiting endogenous β-catenin can also have pro-tumor effects. Clinical studies revealed a significant concordance between TERTp and CTNNB1 mutations in HCC. In stem cells, TERT acts as a co-factor in β-catenin transcriptional complexes driving the expression of WNT/β-catenin target genes, and β-catenin can bind to the TERTp to drive its transcription. A few studies have examined potential interactions between TERT and β-catenin in HCC in vivo, and their results suggest that the coexpression of these two genes promotes hepatocarcinogenesis. Further studies are required with vertebrate models to better understand how TERT and β-catenin influence hepatocarcinogenesis.
Collapse
|
48
|
Raghunandan M, Decottignies A. The multifaceted hTR telomerase RNA from a structural perspective: Distinct domains of hTR differentially interact with protein partners to orchestrate its telomerase-independent functions. Bioessays 2021; 43:e2100099. [PMID: 34319611 DOI: 10.1002/bies.202100099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 11/07/2022]
Abstract
Human telomerase progressively emerged as a multifaceted ribonucleoprotein complex with additional functions beyond telomeric repeat synthesis. Both the hTERT catalytic subunit and the hTR long non-coding RNA (lncRNA) subunit are engaged in highly regulated cellular pathways that, together, contribute to cell fitness and protection against apoptosis. We recently described a new role for hTR in regulating the abundance of replication protein A at telomeres, adding to the growing repertoire of hTR's functions. Here, we focus on the non-canonical roles of hTR and discuss them in the context of the structural elements of the lncRNA. We propose that some functions of hTR may compete amongst each other through distinct interactions with its partners, proteins or mRNAs. We postulate that hTR's non-canonical functions may be highly relevant in the context of normal somatic cells that naturally silence hTERT gene, while keeping hTR expression.
Collapse
Affiliation(s)
- Maya Raghunandan
- Genetic and Epigenetic Alterations of Genomes, de Duve Institute, UCLouvain, Brussels, Belgium
| | - Anabelle Decottignies
- Genetic and Epigenetic Alterations of Genomes, de Duve Institute, UCLouvain, Brussels, Belgium
| |
Collapse
|
49
|
Pietri P, Stefanadis C. Cardiovascular Aging and Longevity: JACC State-of-the-Art Review. J Am Coll Cardiol 2021; 77:189-204. [PMID: 33446313 DOI: 10.1016/j.jacc.2020.11.023] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 12/25/2022]
Abstract
Cardiovascular aging and longevity are interrelated through many pathophysiological mechanisms. Many factors that promote atherosclerotic cardiovascular disease are also implicated in the aging process and vice versa. Indeed, cardiometabolic disorders such as hyperglycemia, insulin resistance, dyslipidemia, and arterial hypertension share common pathophysiological mechanisms with aging and longevity. Moreover, genetic modulators of longevity have a significant impact on cardiovascular aging. The current knowledge of genetic, molecular, and biochemical pathways of aging may serve as a substrate to introduce interventions that might delay cardiovascular aging, thus approaching the goal of longevity. In the present review, the authors describe pathophysiological links between cardiovascular aging and longevity and translate these mechanisms into clinical data by reporting genetic, dietary, and environmental characteristics from long-living populations.
Collapse
Affiliation(s)
- Panagiota Pietri
- Athens Medical School, University of Athens, Athens, Greece; Research Institute for Longevity and Aging-related diseases, Athens, Greece
| | - Christodoulos Stefanadis
- Athens Medical School, University of Athens, Athens, Greece; Research Institute for Longevity and Aging-related diseases, Athens, Greece.
| |
Collapse
|
50
|
Ovarian Telomerase and Female Fertility. Biomedicines 2021; 9:biomedicines9070842. [PMID: 34356906 PMCID: PMC8301802 DOI: 10.3390/biomedicines9070842] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 07/08/2021] [Accepted: 07/14/2021] [Indexed: 11/16/2022] Open
Abstract
Women's fertility is characterized both quantitatively and qualitatively mainly by the pool of ovarian follicles. Monthly, gonadotropins cause an intense multiplication of granulosa cells surrounding the oocyte. This step of follicular development requires a high proliferation ability for these cells. Telomere length plays a crucial role in the mitotic index of human cells. Hence, disrupting telomere homeostasis could directly affect women's fertility. Strongly expressed in ovaries, telomerase is the most effective factor to limit telomeric attrition and preserve ovarian reserve. Considering these facts, two situations of infertility could be correlated with the length of telomeres and ovarian telomerase activity: PolyCystic Ovary Syndrome (PCOS), which is associated with a high density of small antral follicles, and Premature Ovarian Failure (POF), which is associated with a premature decrease in ovarian reserve. Several authors have studied this topic, expecting to find long telomeres and strong telomerase activity in PCOS and short telomeres and low telomerase activity in POF patients. Although the results of these studies are contradictory, telomere length and the ovarian telomerase impact in women's fertility disorders appear obvious. In this context, our research perspectives aimed to explore the stimulation of ovarian telomerase to limit the decrease in the follicular pool while avoiding an increase in cancer risk.
Collapse
|