1
|
Shaikh I, Bhatt LK. Targeting Adipokines: A Promising Therapeutic Strategy for Epilepsy. Neurochem Res 2024; 49:2973-2987. [PMID: 39060767 DOI: 10.1007/s11064-024-04219-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/17/2024] [Accepted: 07/22/2024] [Indexed: 07/28/2024]
Abstract
Epilepsy affects 65 million people globally and causes neurobehavioral, cognitive, and psychological defects. Although research on the disease is progressing and a wide range of treatments are available, approximately 30% of people have refractory epilepsy that cannot be managed with conventional medications. This underlines the importance of further understanding the condition and exploring cutting-edge targets for treatment. Adipokines are peptides secreted by adipocyte's white adipose tissue, involved in controlling food intake and metabolism. Their regulatory functions in the central nervous system (CNS) are multifaceted and identified in several physiology and pathologies. Adipokines play a role in oxidative stress and neuroinflammation which are associated with brain degeneration and connected neurological diseases. This review aims to highlight the potential impacts of leptin, adiponectin, apelin, vaspin, visfatin, and chimerin in the pathogenesis of epilepsy.
Collapse
Affiliation(s)
- Iqraa Shaikh
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai, India
| | - Lokesh Kumar Bhatt
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai, India.
| |
Collapse
|
2
|
Wenderoth T, Feldotto M, Hernandez J, Schäffer J, Leisengang S, Pflieger FJ, Bredehöft J, Mayer K, Kang JX, Bier J, Grimminger F, Paßlack N, Rummel C. Effects of Omega-3 Polyunsaturated Fatty Acids on the Formation of Adipokines, Cytokines, and Oxylipins in Retroperitoneal Adi-Pose Tissue of Mice. Int J Mol Sci 2024; 25:9904. [PMID: 39337391 PMCID: PMC11432517 DOI: 10.3390/ijms25189904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
Oxylipins and specialized pro-resolving lipid mediators (SPMs) derived from polyunsaturated fatty acids (PUFAs) are mediators that coordinate an active process of inflammation resolution. While these mediators have potential as circulating biomarkers for several disease states with inflammatory components, the source of plasma oxylipins/SPMs remains a matter of debate but may involve white adipose tissue (WAT). Here, we aimed to investigate to what extent high or low omega (n)-3 PUFA enrichment affects the production of cytokines and adipokines (RT-PCR), as well as oxylipins/SPMs (liquid chromatography-tandem mass spectrometry) in the WAT of mice during lipopolysaccharide (LPS)-induced systemic inflammation (intraperitoneal injection, 2.5 mg/kg, 24 h). For this purpose, n-3 PUFA genetically enriched mice (FAT-1), which endogenously synthesize n-3 PUFAs, were compared to wild-type mice (WT) and combined with n-3 PUFA-sufficient or deficient diets. LPS-induced systemic inflammation resulted in the decreased expression of most adipokines and interleukin-6 in WAT, whereas the n-3-sufficient diet increased them compared to the deficient diet. The n-6 PUFA arachidonic acid was decreased in WAT of FAT-1 mice, while n-3 derived PUFAs (eicosapentaenoic acid, docosahexaenoic acid) and their metabolites (oxylipins/SPMs) were increased in WAT by genetic and nutritional n-3 enrichment. Several oxylipins/SPMs were increased by LPS treatment in WAT compared to PBS-treated controls in genetically n-3 enriched FAT-1 mice. Overall, we show that WAT may significantly contribute to circulating oxylipin production. Moreover, n-3-sufficient or n-3-deficient diets alter adipokine production. The precise interplay between cytokines, adipokines, and oxylipins remains to be further investigated.
Collapse
Affiliation(s)
- Tatjana Wenderoth
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University, 35392 Giessen, Germany
| | - Martin Feldotto
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University, 35392 Giessen, Germany
| | - Jessica Hernandez
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University, 35392 Giessen, Germany
| | - Julia Schäffer
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University, 35392 Giessen, Germany
| | - Stephan Leisengang
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University, 35392 Giessen, Germany
- Center for Mind Brain and Behavior (CMMB), Universities Giessen and Marburg, 34032 Marburg, Germany
- Translational Neuroscience Network Giessen (TNNG), Justus Liebig University, 35392 Giessen, Germany
| | - Fabian Johannes Pflieger
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University, 35392 Giessen, Germany
| | - Janne Bredehöft
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University, 35392 Giessen, Germany
| | - Konstantin Mayer
- Department of Internal Medicine, Justus Liebig University, 35392 Giessen, Germany
| | - Jing X Kang
- Laboratory for Lipid Medicine and Technology, Department of Medicine, Massachusetts General Hospital and Harvard Medical, Charlestown, MA 02129, USA
| | - Jens Bier
- Cardio-Pulmonary Institute, Justus Liebig University, 35392 Giessen, Germany
- Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), 35392 Giessen, Germany
| | - Friedrich Grimminger
- Cardio-Pulmonary Institute, Justus Liebig University, 35392 Giessen, Germany
- Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), 35392 Giessen, Germany
| | - Nadine Paßlack
- Small Animal Clinic, Internal Medicine and Department of Veterinary Clinical Sciences, Justus Liebig University, 35392 Giessen, Germany
| | - Christoph Rummel
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University, 35392 Giessen, Germany
- Center for Mind Brain and Behavior (CMMB), Universities Giessen and Marburg, 34032 Marburg, Germany
- Translational Neuroscience Network Giessen (TNNG), Justus Liebig University, 35392 Giessen, Germany
| |
Collapse
|
3
|
Jones JA, Zhou J, Dong J, Huitron-Resendiz S, Boussaty E, Chavez E, Wei N, Dumitru CD, Morodomi Y, Kanaji T, Ryan AF, Friedman R, Zhou T, Kanaji S, Wortham M, Schenk S, Roberts AJ, Yang XL. Murine nuclear tyrosyl-tRNA synthetase deficiency leads to fat storage deficiency and hearing loss. J Biol Chem 2024; 300:107756. [PMID: 39260699 PMCID: PMC11470617 DOI: 10.1016/j.jbc.2024.107756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/26/2024] [Accepted: 08/30/2024] [Indexed: 09/13/2024] Open
Abstract
Aminoacyl-tRNA synthetases are fundamental to the translation machinery with emerging roles in transcriptional regulation. Previous cellular studies have demonstrated tyrosyl-tRNA synthetase (YARS1 or TyrRS) as a stress response protein through its cytosol-nucleus translocation to maintain cellular homeostasis. Here, we established a mouse model with a disrupted TyrRS nuclear localization signal, revealing its systemic impact on metabolism. Nuclear TyrRS deficiency (YarsΔNLS) led to reduced lean mass, reflecting a mild developmental defect, and reduced fat mass, possibly due to increased energy expenditure. Consistently, YarsΔNLS mice exhibit improved insulin sensitivity and reduced insulin levels, yet maintain normoglycemia, indicative of enhanced insulin action. Notably, YarsΔNLS mice also develop progressive hearing loss. These findings underscore the crucial function of nuclear TyrRS in the maintenance of fat storage and hearing and suggest that aminoacyl-tRNA synthetases' regulatory roles can affect metabolic pathways and tissue-specific health. This work broadens our understanding of how protein synthesis interconnects metabolic regulation to ensure energy efficiency.
Collapse
Affiliation(s)
- Julia A Jones
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Jiadong Zhou
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Jianjie Dong
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | | | - Ely Boussaty
- Department of Otolaryngology - Head and Neck Surgery, University of California San Diego, La Jolla, California, USA
| | - Eduardo Chavez
- Department of Otolaryngology - Head and Neck Surgery, University of California San Diego, La Jolla, California, USA
| | - Na Wei
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Calin Dan Dumitru
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Yosuke Morodomi
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Taisuke Kanaji
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Allen F Ryan
- Department of Otolaryngology - Head and Neck Surgery, University of California San Diego, La Jolla, California, USA
| | - Rick Friedman
- Department of Otolaryngology - Head and Neck Surgery, University of California San Diego, La Jolla, California, USA
| | - Tong Zhou
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, Nevada, USA
| | - Sachiko Kanaji
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Matthew Wortham
- Department of Pediatrics, Pediatric Diabetes Research Center, University of California San Diego, La Jolla, California, USA
| | - Simon Schenk
- Department of Orthopaedic Surgery, University of California San Diego, La Jolla, California, USA
| | - Amanda J Roberts
- Animal Models Core Facility, The Scripps Research Institute, La Jolla, California, USA
| | - Xiang-Lei Yang
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA.
| |
Collapse
|
4
|
Ott RK, Williams IH, Armstrong AR. Improved whole-mount immunofluorescence protocol for consistent and robust labeling of adult Drosophila melanogaster adipose tissue. Biol Open 2024; 13:bio060491. [PMID: 39041865 DOI: 10.1242/bio.060491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/11/2024] [Indexed: 07/24/2024] Open
Abstract
Energy storage and endocrine functions of the Drosophila fat body make it an excellent model for elucidating mechanisms that underlie physiological and pathophysiological organismal metabolism. Combined with Drosophila's robust genetic and immunofluorescence microscopy toolkits, studies of Drosophila fat body function are ripe for cell biological analysis. Unlike the larval fat body, which is easily removed as a single, cohesive sheet of tissue, isolating intact adult fat body proves to be more challenging, thus hindering consistent immunofluorescence labeling even within a single piece of adipose tissue. Here, we describe an improved approach to handling Drosophila abdomens that ensures full access of the adult fat body to solutions generally used in immunofluorescence labeling protocols. In addition, we assess the quality of fluorescence reporter expression and antibody immunoreactivity in response to variations in fixative type, fixation incubation time, and detergent used for cellular permeabilization. Overall, we provide several recommendations for steps in a whole-mount staining protocol that results in consistent and robust immunofluorescence labeling of the adult Drosophila fat body.
Collapse
Affiliation(s)
- Rachael K Ott
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29072, USA
| | - Isaiah H Williams
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29072, USA
| | - Alissa R Armstrong
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29072, USA
| |
Collapse
|
5
|
Xu P, Kong Y, Palmer ND, Ng MCY, Zhang B, Das SK. Integrated multi-omic analyses uncover the effects of aging on cell-type regulation in glucose-responsive tissues. Aging Cell 2024; 23:e14199. [PMID: 38932492 PMCID: PMC11320340 DOI: 10.1111/acel.14199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/27/2024] [Accepted: 05/01/2024] [Indexed: 06/28/2024] Open
Abstract
Aging significantly influences cellular activity and metabolism in glucose-responsive tissues, yet a comprehensive evaluation of the impacts of aging and associated cell-type responses has been lacking. This study integrates transcriptomic, methylomic, single-cell RNA sequencing, and metabolomic data to investigate aging-related regulations in adipose and muscle tissues. Through coexpression network analysis of the adipose tissue, we identified aging-associated network modules specific to certain cell types, including adipocytes and immune cells. Aging upregulates the metabolic functions of lysosomes and downregulates the branched-chain amino acids (BCAAs) degradation pathway. Additionally, aging-associated changes in cell proportions, methylation profiles, and single-cell expressions were observed in the adipose. In the muscle tissue, aging was found to repress the metabolic processes of glycolysis and oxidative phosphorylation, along with reduced gene activity of fast-twitch type II muscle fibers. Metabolomic profiling linked aging-related alterations in plasma metabolites to gene expression in glucose-responsive tissues, particularly in tRNA modifications, BCAA metabolism, and sex hormone signaling. Together, our multi-omic analyses provide a comprehensive understanding of the impacts of aging on glucose-responsive tissues and identify potential plasma biomarkers for these effects.
Collapse
Affiliation(s)
- Peng Xu
- Center of Clinical Laboratory Medicine, Zhongda Hospital, School of Medicine, Advanced Institute for Life and HealthSoutheast UniversityNanjingChina
- Department of Genetics & Genomic Sciences, Mount Sinai Center for Transformative Disease Modeling, Icahn Genomics InstituteIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Department of Pharmacological Sciences, Mount Sinai Center for Transformative Disease Modeling, Icahn Genomics InstituteIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Department of Artificial Intelligence and Human Health, Mount Sinai Center for Transformative Disease Modeling, Icahn Genomics InstituteIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Yimeng Kong
- Center of Clinical Laboratory Medicine, Zhongda Hospital, School of Medicine, Advanced Institute for Life and HealthSoutheast UniversityNanjingChina
| | - Nicholette D. Palmer
- Department of BiochemistryWake Forest University School of MedicineWinston–SalemNorth CarolinaUSA
| | - Maggie C. Y. Ng
- Division of Genetic Medicine, Vanderbilt Genetics InstituteVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Bin Zhang
- Department of Genetics & Genomic Sciences, Mount Sinai Center for Transformative Disease Modeling, Icahn Genomics InstituteIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Department of Pharmacological Sciences, Mount Sinai Center for Transformative Disease Modeling, Icahn Genomics InstituteIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Department of Artificial Intelligence and Human Health, Mount Sinai Center for Transformative Disease Modeling, Icahn Genomics InstituteIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Swapan K. Das
- Department of Internal Medicine, Section on Endocrinology and MetabolismWake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
| |
Collapse
|
6
|
Rodrigues Moro C, Abreu EDL, Kanaan SHH, Márquez A, Uranga-Ocio JA, Rossoni LV, Vassallo DV, Miguel-Castro M, Wiggers GA. Egg white hydrolysate protects white adipose tissue against metabolic insult in deoxycorticosterone acetate-salt rats. Br J Nutr 2024; 131:1827-1840. [PMID: 38410884 DOI: 10.1017/s0007114524000552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
The purpose of this study was to investigate the effect of an egg white hydrolysate (EWH) to protect white adipose tissue damage from cardiometabolic changes induced by severe hypertension. Male Wistar rats were uninephrectomised and divided: SHAM (weekly subcutaneous vehicle (mineral oil + propylene glycol, 1:1)), SHAM + EWH (subcutaneous vehicle plus EWH via gavage, 1 g/kg per day), DOCA (deoxycorticosterone acetate diluted in vehicle subcutaneously weekly in subsequent doses of 20 mg/kg -1st week, 12 mg/kg - 2–3th week, and 6 mg/kg -4–8th week, respectively, plus 1 % NaCl and 0·2 % KCl in drinking water), and DOCA + EWH. Body weight gain, food and water intake, glucose and lipid metabolism were evaluated. Oxidative stress was assessed by biochemical assay and immunofluorescence for NOX-1, nuclear factor kappa B (NFκB), and caspase-3 in retroperitoneal white adipose tissue (rtWAT). Proinflammatory cytokines (IL-6 and 1β), CD163+ macrophage infiltration, and immunohistochemistry for TNFα and uncoupling protein-1 were evaluated, as well as histological analysis on rtWAT. Glutathione peroxidase and reductase were also determined in plasma. EWH showed hypocholesterolemic, antioxidant, anti-inflammatory, and anti-apoptotic properties in the arterial hypertension DOCA-salt model. The results demonstrated the presence of functional changes in adipose tissue function by a decrease in macrophage infiltration and in the fluorescence intensity of NFκB, NOX-1, and caspase-3. A reduction of proinflammatory cytokines and restoration of antioxidant enzymatic activity and mitochondrial oxidative damage by reducing uncoupling protein-1 fluorescence intensity were also observed. EWH could be used as a potential alternative therapeutic strategy in the treatment of cardiometabolic complications associated with malignant secondary arterial hypertension.
Collapse
Affiliation(s)
- Camila Rodrigues Moro
- Cardiovascular Physiology Laboratory, Universidade Federal do Pampa, BR 472, Km 592, Uruguaiana, Rio Grande do Sul, Brazil
| | - Edina da Luz Abreu
- Cardiovascular Physiology Laboratory, Universidade Federal do Pampa, BR 472, Km 592, Uruguaiana, Rio Grande do Sul, Brazil
| | - Samia Hassan Husein Kanaan
- Cardiovascular Physiology Laboratory, Universidade Federal do Pampa, BR 472, Km 592, Uruguaiana, Rio Grande do Sul, Brazil
| | - Antonio Márquez
- Department of Ciencias Básicas de la Salud, Universidad Rey Juan Carlos (URJC), Avda. de Atenas s/n, 28032 Alcorcón, Spain and High Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut), URJC, Alcorcón, Spain
| | - Jose Antonio Uranga-Ocio
- Department of Ciencias Básicas de la Salud, Universidad Rey Juan Carlos (URJC), Avda. de Atenas s/n, 28032 Alcorcón, Spain and High Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut), URJC, Alcorcón, Spain
| | - Luciana Venturini Rossoni
- Department of Physiology and Biophysics, Institute of Biomedical Science, University of São Paulo, Av. Prof. Lineu Prestes, nº 2415, São Paulo, Brazil
| | - Dalton Valentim Vassallo
- Cardiac Electromechanical and Vascular Reactivity Laboratory, Universidade Federal do Espírito Santo, Av. Marechal Campos, 1468, Vitória, Espírito Santo, Brazil
| | - Marta Miguel-Castro
- Instituto de Investigación en Ciencias de la Alimentación (CIAL, CSIC-UAM.), C/Nicolás Cabrera, 9, Campus Universitario de Cantoblanco, Madrid, Spain
| | - Giulia Alessandra Wiggers
- Cardiovascular Physiology Laboratory, Universidade Federal do Pampa, BR 472, Km 592, Uruguaiana, Rio Grande do Sul, Brazil
| |
Collapse
|
7
|
Hemba-Waduge RUS, Liu M, Li X, Sun JL, Budslick EA, Bondos SE, Ji JY. Metabolic control by the Bithorax Complex-Wnt signaling crosstalk in Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.31.596851. [PMID: 38853890 PMCID: PMC11160800 DOI: 10.1101/2024.05.31.596851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Adipocytes distributed throughout the body play crucial roles in lipid metabolism and energy homeostasis. Regional differences among adipocytes influence normal function and disease susceptibility, but the mechanisms driving this regional heterogeneity remain poorly understood. Here, we report a genetic crosstalk between the Bithorax Complex ( BX-C ) genes and Wnt/Wingless signaling that orchestrates regional differences among adipocytes in Drosophila larvae. Abdominal adipocytes, characterized by the exclusive expression of abdominal A ( abd-A ) and Abdominal B ( Abd-B ), exhibit distinct features compared to thoracic adipocytes, with Wnt signaling further amplifying these disparities. Depletion of BX-C genes in adipocytes reduces fat accumulation, delays larval-pupal transition, and eventually leads to pupal lethality. Depleting Abd-A or Abd-B reduces Wnt target gene expression, thereby attenuating Wnt signaling-induced lipid mobilization. Conversely, Wnt signaling stimulated abd-A transcription, suggesting a feedforward loop that amplifies the interplay between Wnt signaling and BX-C in adipocytes. These findings elucidate how the crosstalk between cell-autonomous BX-C gene expression and Wnt signaling define unique metabolic behaviors in adipocytes in different anatomical regions of fat body, delineating larval adipose tissue domains.
Collapse
|
8
|
Barbalho SM, de Alvares Goulart R, Minniti G, Bechara MD, de Castro MVM, Dias JA, Laurindo LF. Unraveling the rationale and conducting a comprehensive assessment of KD025 (Belumosudil) as a candidate drug for inhibiting adipogenic differentiation-a systematic review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:2681-2699. [PMID: 37966572 DOI: 10.1007/s00210-023-02834-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 11/02/2023] [Indexed: 11/16/2023]
Abstract
Rho-associated kinases (ROCKs) are crucial during the adipocyte differentiation process. KD025 (Belumosudil) is a newly developed inhibitor that selectively targets ROCK2. It has exhibited consistent efficacy in impeding adipogenesis across a spectrum of in vitro models of adipogenic differentiation. Given the novelty of this treatment, a comprehensive systematic review has not been conducted yet. This systematic review aims to fill this knowledge void by providing readers with an extensive examination of the rationale behind KD025 and its impacts on adipogenesis. Preclinical evidence was gathered owing to the absence of clinical trials. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were followed, and the study's quality was assessed using the Joanna Briggs Institute (JBI) Checklist Critical Appraisal Tool for Systematic Reviews. In various in vitro models, such as 3T3-L1 cells, human orbital fibroblasts, and human adipose-derived stem cells, KD025 demonstrated potent anti-adipogenic actions. At a molecular level, KD025 had significant effects, including decreasing fibronectin (Fn) expression, inhibiting ROCK2 and CK2 activity, suppressing lipid droplet formation, and reducing the expression of proadipogenic genes peroxisome proliferator-activated receptor gamma (PPARγ) and CCAAT/enhancer-binding protein α (C/EBPα). Additionally, KD025 resulted in the suppression of fatty acid-binding protein 4 (FABP4 or AP2) expression, a decrease in sterol regulatory element binding protein 1c (SREBP-1c) and Glut-4 expression. Emphasis must be placed on the fact that while KD025 shows potential in preclinical studies and experimental models, extensive research is crucial to assess its efficacy, safety, and potential therapeutic applications thoroughly and directly in human subjects.
Collapse
Affiliation(s)
- Sandra Maria Barbalho
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, 17525-902, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, 17525-902, Brazil
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), Marília, São Paulo, 17500-000, Brazil
| | - Ricardo de Alvares Goulart
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, 17525-902, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, 17525-902, Brazil
| | - Giulia Minniti
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, 17525-902, Brazil
| | - Marcelo Dib Bechara
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, 17525-902, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, 17525-902, Brazil
| | - Marcela Vialogo Marques de Castro
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, 17525-902, Brazil
| | - Jefferson Aparecido Dias
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, 17525-902, Brazil
| | - Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, 17525-902, Brazil.
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), Marília, São Paulo, 17519-030, Brazil.
| |
Collapse
|
9
|
Sousa S, Paíga P, Pestana D, Faria G, Delerue-Matos C, Ramalhosa MJ, Calhau C, Domingues VF. Evaluating the impact of polycyclic aromatic hydrocarbon bioaccumulation in adipose tissue of obese women. CHEMOSPHERE 2024; 353:141673. [PMID: 38462176 DOI: 10.1016/j.chemosphere.2024.141673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 02/26/2024] [Accepted: 03/07/2024] [Indexed: 03/12/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are widespread across the environment and humans are unavoidably and constantly exposed to them. As lipophilic contaminants, these substances tend to accumulate in fatty tissues as adipose tissue and exposure to these endocrine disruptors has been associated with severe health hazards including prevalence and incidence of obesity. Previous studies have shown significantly higher concentrations of PAHs in adipose tissue compared to other human samples, such as urine and plasma, which are typically used for PAHs assessment. Therefore, conducting biomonitoring studies in adipose tissue is essential, although such studies are currently limited. In this study, the concentrations of 18 PAHs were measured in subcutaneous (scAT) and visceral adipose tissue (vAT) of 188 Portuguese obese females by high performance liquid chromatography (HPLC). The obtained results were then associated with the patient's data namely: 13 clinical, 4 social, and 42 biochemical parameters. Seventeen PAHs were present, at least, in one sample of both scAT and vAT, most of them with detection frequencies higher than 80%. Indeno [1,2,3-cd]pyrene (InP) was the only PAH never detected. Overall higher concentrations of PAHs were observed in scAT. Median concentrations of ∑PAHs were 32.2 ± 10.0 ng/g in scAT and 24.6 ± 10.0 ng/g in vAT. Thirty-six significant associations (7 with social, 18 with clinical, and 11 with biochemical parameters), including 21 Spearman's correlations were identified (12 positive and 9 negative correlations). Indicating the potential effects of PAHs on various parameters such as obesity evolution, body fat, number of adipocytes, total cholesterol, alkaline phosphatase, macrominerals, uric acid, sedimentation velocity, and luteinizing hormone. This study underscores the significance of biomonitoring PAH levels in adipose tissue and their potential effects on metabolic health. Further research is essential to fully comprehend the metabolic implications of PAHs in the human body and to develop strategies for obesity prevention and treatment.
Collapse
Affiliation(s)
- Sara Sousa
- REQUIMTE/LAQV, ISEP, Polytechnic of Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015, Porto, Portugal; Nutrition & Metabolism, CINTESIS@RISE, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria 130, 1169-056, Lisboa, Portugal.
| | - Paula Paíga
- REQUIMTE/LAQV, ISEP, Polytechnic of Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015, Porto, Portugal.
| | - Diogo Pestana
- Nutrition & Metabolism, CINTESIS@RISE, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria 130, 1169-056, Lisboa, Portugal.
| | - Gil Faria
- Center for Research in Health Technologies and Information Systems, Rua Dr. Plácido da Costa, 4200-450, Porto, Portugal; Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal.
| | - Cristina Delerue-Matos
- REQUIMTE/LAQV, ISEP, Polytechnic of Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015, Porto, Portugal.
| | - Maria João Ramalhosa
- REQUIMTE/LAQV, ISEP, Polytechnic of Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015, Porto, Portugal.
| | - Conceição Calhau
- Nutrition & Metabolism, CINTESIS@RISE, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria 130, 1169-056, Lisboa, Portugal.
| | | |
Collapse
|
10
|
Mendoza-Grimau V, Pérez-Gálvez A, Busturia A, Fontecha J. Lipidomic profiling of Drosophila strains Canton-S and white 1118 reveals intraspecific lipid variations in basal metabolic rate. Prostaglandins Leukot Essent Fatty Acids 2024; 201:102618. [PMID: 38795635 DOI: 10.1016/j.plefa.2024.102618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/23/2024] [Accepted: 05/08/2024] [Indexed: 05/28/2024]
Abstract
Drosophila melanogaster is a well-established model system for studies on lipid metabolism and energy homeostasis. In this study, we identified and quantified the main components of the lipid profile of two widely utilized Drosophila strains, namely Canton-S and white1118, under identical experimental conditions. Differences observed between the strains can be attributed to inherent metabolic divergences, thus limiting the influence of confounding factors. Using the comprehensive lipid data acquired, we applied cluster analysis and PLS-DA techniques to ascertain whether the lipidome could effectively differentiate between the strains. Certain lipid features, such as triacylglycerols, polar lipids, and specific sterol components, could be distinguished between flies of both strains regardless of sex. Our results suggest that although Canton-S and white1118 have similar lipid profiles and distributions, a selected subset of lipids demonstrates clear discriminatory potential between strains, thereby bearing significant implications for planning biological studies using these strains as control references.
Collapse
Affiliation(s)
- Victor Mendoza-Grimau
- Food Lipid Biomarkers and Health Group, Institute of Food Science Research (CIAL, CSIC-UAM), Madrid 28049, Spain
| | - Antonio Pérez-Gálvez
- Group of Chemistry and Biochemistry of Pigments, Instituto de la Grasa, CSIC, Sevilla 41013, Spain
| | - Ana Busturia
- Tissue and organ homeostasis, Centro de Biología Molecular Severo Ochoa, (CBMSO, CSIC-UAM), Madrid 28049, Spain
| | - Javier Fontecha
- Food Lipid Biomarkers and Health Group, Institute of Food Science Research (CIAL, CSIC-UAM), Madrid 28049, Spain.
| |
Collapse
|
11
|
Ahmed K, Choi HN, Park JS, Kim YG, Bae MK, Yim JE. Taurine supplementation alters gene expression profiles in white adipose tissue of obese C57BL/6J mice: Inflammation and lipid synthesis perspectives. Heliyon 2024; 10:e23288. [PMID: 38192788 PMCID: PMC10771985 DOI: 10.1016/j.heliyon.2023.e23288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 11/30/2023] [Accepted: 11/30/2023] [Indexed: 01/10/2024] Open
Abstract
This work aimed to identify the mechanisms by which taurine exerts its anti-obesity effects in the C57BL/6J ob/ob mice model and determine if taurine supplementation increases the amelioration of inflammation and lipogenesis linked genes in the adipose and liver tissues. Three groups of C57BL/6J mice were fed a standard chow diet for a period of 10 weeks the C57BL/6J normal group, the C57BL/6J ob/ob negative control group with no taurine intake and C57BL/6J ob/ob taurine group with taurine intake. Real time PCR was used to examine the gene expression profile in the experimental groups intrascapular brown adipose tissue (BAT), inguinal white adipose tissue (WAT) and liver. TNF-alpha, Ccl2, Adgre and illb genes that are associated with inflammation were found to have varying level of expression in the three tissues. In comparison to BAT and liver these genes were expressed at a much lower level in WAT, with enhanced serum adiponectin levels.
Collapse
Affiliation(s)
- Kainat Ahmed
- Interdisciplinary Program in Senior Human Ecology, Changwon National University, Changwon, Korea
| | - Ha-Neul Choi
- Department of Food and Nutrition, Changwon National University, Changwon, Korea
| | - Ji-sook Park
- Department of Food and Nutrition, Changwon National University, Changwon, Korea
| | - Yu-Gyeong Kim
- Department of Food and Nutrition, Changwon National University, Changwon, Korea
| | - Min Kyung Bae
- Interdisciplinary Program in Senior Human Ecology, Changwon National University, Changwon, Korea
- Department of Food and Nutrition, Changwon National University, Changwon, Korea
| | - Jung-Eun Yim
- Interdisciplinary Program in Senior Human Ecology, Changwon National University, Changwon, Korea
- Department of Food and Nutrition, Changwon National University, Changwon, Korea
| |
Collapse
|
12
|
Valamparamban GF, Spéder P. Homemade: building the structure of the neurogenic niche. Front Cell Dev Biol 2023; 11:1275963. [PMID: 38107074 PMCID: PMC10722289 DOI: 10.3389/fcell.2023.1275963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/16/2023] [Indexed: 12/19/2023] Open
Abstract
Neural stem/progenitor cells live in an intricate cellular environment, the neurogenic niche, which supports their function and enables neurogenesis. The niche is made of a diversity of cell types, including neurons, glia and the vasculature, which are able to signal to and are structurally organised around neural stem/progenitor cells. While the focus has been on how individual cell types signal to and influence the behaviour of neural stem/progenitor cells, very little is actually known on how the niche is assembled during development from multiple cellular origins, and on the role of the resulting topology on these cells. This review proposes to draw a state-of-the art picture of this emerging field of research, with the aim to expose our knowledge on niche architecture and formation from different animal models (mouse, zebrafish and fruit fly). We will span its multiple aspects, from the existence and importance of local, adhesive interactions to the potential emergence of larger-scale topological properties through the careful assembly of diverse cellular and acellular components.
Collapse
Affiliation(s)
| | - Pauline Spéder
- Institut Pasteur, Université Paris Cité, CNRS UMR3738, Structure and Signals in the Neurogenic Niche, Paris, France
| |
Collapse
|
13
|
Tang C, Li Q, Wang X, Yu Z, Ping X, Qin Y, Liu Y, Zheng L. Cardiac Timeless Trans-Organically Regulated by miR-276 in Adipose Tissue Modulates Cardiac Function. FUNCTION 2023; 5:zqad064. [PMID: 38058384 PMCID: PMC10696634 DOI: 10.1093/function/zqad064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/09/2023] [Accepted: 11/16/2023] [Indexed: 12/08/2023] Open
Abstract
The interconnection between cardiac function and circadian rhythms is of great importance. While the role of the biological clock gene Timeless (Tim) in circadian rhythm has been extensively studied, its impact on cardiac function remains largely been unexplored. Previous research has provided experimental evidence for the regulation of the heart by adipose tissue and the targeting of miR-276a/b on Timeless. However, the extent to which adipose tissue regulates cardiac Timeless genes trans-organically through miR-276a/b, and subsequently affects cardiac function, remains uncertain. Therefore, the objective of this study was to investigate the potential trans-organ modulation of the Timeless gene in the heart by adipose tissue through miR-276a/b. We found that cardiac-specific Timeless knockdown and overexpression resulted in a significant increase in heart rate (HR) and a significant decrease in Heart period (HP), diastolic intervals (DI), systolic intervals (SI), diastolic diameter (DD), and systolic diameter (SD). miR-276b systemic knockdown resulted in a significant increase in DI, arrhythmia index (AI), and fractional shortening (FS) significantly increased and SI, DD and SD significantly decreased. Adipose tissue-specific miR-276a/b knockdown and miR-276a overexpression resulted in a significant increase in HR and a significant decrease in DI and SI, which were improved by exercise intervention. This study presents a novel finding that highlights the significance of the heart circadian clock gene Timeless in heart function. Additionally, it demonstrates that adipose tissue exerts trans-organ modulation on the expression of the heart Timeless gene via miR-276a/b.
Collapse
Affiliation(s)
- Chao Tang
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, 410012 Changsha, China
| | - Qiufang Li
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, 410012 Changsha, China
| | - Xiaoya Wang
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, 410012 Changsha, China
| | - Zhengwen Yu
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, 410012 Changsha, China
| | - Xu Ping
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, 410012 Changsha, China
| | - yi Qin
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, 410012 Changsha, China
| | - Yang Liu
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, 410012 Changsha, China
| | - Lan Zheng
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, 410012 Changsha, China
| |
Collapse
|
14
|
Farhana S, Kai YC, Kadir R, Sulaiman WAW, Nordin NA, Nasir NAM. The fate of adipose tissue and adipose-derived stem cells in allograft. Cell Tissue Res 2023; 394:269-292. [PMID: 37624425 DOI: 10.1007/s00441-023-03827-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/15/2023] [Indexed: 08/26/2023]
Abstract
Utilizing adipose tissue and adipose-derived stem cells (ADSCs) turned into a promising field of allograft in recent years. The therapeutic potential of adipose tissue and ADSCs is governed by their molecular secretions, ability to sustain multi-differentiation and self-renewal which are pivotal in reconstructive, genetic diseases, and cosmetic goals. However, revisiting the existing functional capacity of adipose tissue and ADSCs and their intricate relationship with allograft is crucial to figure out the remarkable question of safety to use in allograft due to the growing evidence of interactions between tumor microenvironment and ADSCs. For instance, the molecular secretions of adipose tissue and ADSCs induce angiogenesis, create growth factors, and control the inflammatory response; it has now been well determined. Though the existing preclinical allograft studies gave positive feedback, ADSCs and adipose tissue are attracted by some factors of tumor stroma. Moreover, allorecognition is pivotal to allograft rejection which is carried out by costimulation in a complement-dependent way and leads to the destruction of the donor cells. However, extensive preclinical trials of adipose tissue and ADSCs in allograft at molecular level are still limited. Hence, comprehensive immunomodulatory analysis could ensure the successful allograft of adipose tissue and ADSCs avoiding the oncological risk.
Collapse
Affiliation(s)
- Sadia Farhana
- Reconstructive Sciences Unit, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, 16150, Kota Bharu, Kelantan, Malaysia
| | - Yew Chun Kai
- Reconstructive Sciences Unit, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, 16150, Kota Bharu, Kelantan, Malaysia
- Hospital Universiti Sains Malaysia, 16150, Kota Bharu, Kelantan, Malaysia
| | - Ramlah Kadir
- Department of Immunology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, 16150, Kota Bharu, Kelantan, Malaysia
| | - Wan Azman Wan Sulaiman
- Reconstructive Sciences Unit, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, 16150, Kota Bharu, Kelantan, Malaysia
- Hospital Universiti Sains Malaysia, 16150, Kota Bharu, Kelantan, Malaysia
| | - Nor Asyikin Nordin
- Department of Immunology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, 16150, Kota Bharu, Kelantan, Malaysia
| | - Nur Azida Mohd Nasir
- Reconstructive Sciences Unit, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, 16150, Kota Bharu, Kelantan, Malaysia.
| |
Collapse
|
15
|
Flore G, Deledda A, Lombardo M, Armani A, Velluzzi F. Effects of Functional and Nutraceutical Foods in the Context of the Mediterranean Diet in Patients Diagnosed with Breast Cancer. Antioxidants (Basel) 2023; 12:1845. [PMID: 37891924 PMCID: PMC10603973 DOI: 10.3390/antiox12101845] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Several studies report that breast cancer survivors (BCS) tend to have a poor diet, as fruit, vegetable, and legume consumption is often reduced, resulting in a decreased intake of nutraceuticals. Moreover, weight gain has been commonly described among BCS during treatment, increasing recurrence rate and mortality. Improving lifestyle and nutrition after the diagnosis of BC may have important benefits on patients' general health and on specific clinical outcomes. The Mediterranean diet (MD), known for its multiple beneficial effects on health, can be considered a nutritional pool comprising several nutraceuticals: bioactive compounds and foods with anti-inflammatory and antioxidant effects. Recent scientific advances have led to the identification of nutraceuticals that could amplify the benefits of the MD and favorably influence gene expression in these patients. Nutraceuticals could have beneficial effects in the postdiagnostic phase of BC, including helping to mitigate the adverse effects of chemotherapy and radiotherapy. Moreover, the MD could be a valid and easy-to-follow option for managing excess weight. The aim of this narrative review is to evaluate the recent scientific literature on the possible beneficial effects of consuming functional and nutraceutical foods in the framework of MD in BCS.
Collapse
Affiliation(s)
- Giovanna Flore
- Obesity Unit, Department of Medical Sciences and Public Health, University of Cagliari, 09124 Cagliari, Italy; (G.F.); (A.D.); (F.V.)
| | - Andrea Deledda
- Obesity Unit, Department of Medical Sciences and Public Health, University of Cagliari, 09124 Cagliari, Italy; (G.F.); (A.D.); (F.V.)
| | - Mauro Lombardo
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy;
| | - Andrea Armani
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy;
- Laboratory of Cardiovascular Endocrinology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele, 00166 Rome, Italy
| | - Fernanda Velluzzi
- Obesity Unit, Department of Medical Sciences and Public Health, University of Cagliari, 09124 Cagliari, Italy; (G.F.); (A.D.); (F.V.)
| |
Collapse
|
16
|
Endo K, Sato T, Umetsu A, Watanabe M, Hikage F, Ida Y, Ohguro H, Furuhashi M. 3D culture induction of adipogenic differentiation in 3T3-L1 preadipocytes exhibits adipocyte-specific molecular expression patterns and metabolic functions. Heliyon 2023; 9:e20713. [PMID: 37867843 PMCID: PMC10585234 DOI: 10.1016/j.heliyon.2023.e20713] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 09/15/2023] [Accepted: 10/04/2023] [Indexed: 10/24/2023] Open
Abstract
Adipose tissues are closely related to physiological functions and pathological conditions in most organs. Although differentiated 3T3-L1 preadipocytes have been used for in vitro adipose studies, the difference in cellular characteristics of adipogenic differentiation in two-dimensional (2D) culture and three-dimensional (3D) culture remain unclear. In this study, we evaluated gene expression patterns using RNA sequencing and metabolic functions using an extracellular flux analyzer in 3T3-L1 preadipocytes with and without adipogenic induction in 2D culture and 3D culture. In 2D culture, 565 up-regulated genes and 391 down-regulated genes were identified as differentially expressed genes (DEGs) by adipogenic induction of 3T3-L1 preadipocytes, whereas only 69 up-regulated genes and 59 down-regulated genes were identified as DEGs in 3D culture. Ingenuity Pathway Analysis (IPA) revealed that genes associated with lipid metabolism were identified as 2 out of the top 3 causal networks related to diseases and function in 3D spheroids, whereas only one network related to lipid metabolism was identified within the top 9 of these causal networks in the 2D planar cells, suggesting that adipogenic induction in the 3D culture condition exhibits a more adipocyte-specific gene expression pattern in 3T3-L1 preadipocytes. Real-time metabolic analysis revealed that the metabolic capacity shifted from glycolysis to mitochondrial respiration in differentiated 3T3-L1 cells in the 3D culture condition but not in those in the 2D cultured condition, suggesting that adipogenic differentiation in 3D culture induces a metabolic phenotype of well-differentiated adipocytes. Consistently, expression levels of mitochondria-encoded genes including mt-Nd6, mt-Cytb, and mt-Co1 were significantly increased by adipogenic induction of 3T3-L1 preadipocytes in 3D culture compared with those in 2D culture. Taken together, the findings suggest that induction of adipogenesis in 3D culture provides a more adipocyte-specific gene expression pattern and enhances mitochondrial respiration, resulting in more adipocyte-like cellular properties.
Collapse
Affiliation(s)
- Keisuke Endo
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Tatsuya Sato
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
- Department of Cellular Physiology and Signal Transduction, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Araya Umetsu
- Department of Ophthalmology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Megumi Watanabe
- Department of Ophthalmology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Fumihito Hikage
- Department of Ophthalmology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Yosuke Ida
- Department of Ophthalmology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hiroshi Ohguro
- Department of Ophthalmology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Masato Furuhashi
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
17
|
Park J, Kim M, Shin H, Ahn H, Park YK. Low-Molecular Collagen Peptide Supplementation and Body Fat Mass in Adults Aged ≥ 50 Years: A Randomized, Double-Blind, Placebo-Controlled Trial. Clin Nutr Res 2023; 12:245-256. [PMID: 37969940 PMCID: PMC10641330 DOI: 10.7762/cnr.2023.12.4.245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/17/2023] Open
Abstract
A randomized, double-blind, placebo-controlled trial was conducted to confirm whether collagen peptide supplementation for 12 week has a beneficial effect on body fat control in older adults at a daily physical activity level. Participants were assigned to either the collagen group (15 g/day of collagen peptide) or the placebo group (placebo drink). Body composition was measured by bioelectrical impedance analysis (BIA) and dual-energy X-ray absorptiometry (DEXA). In total, 74 participants (collagen group, n = 37; placebo group, n = 37) were included in the final analysis. The collagen group showed a significant reduction in total body fat mass compared with the placebo group, as evidenced by both BIA (p = 0.021) and DEXA (p = 0.041) measurements. Body fat mass and percent body fat of the whole body and trunk reduced at 12 weeks compared with baseline only in the collagen group (whole body: body fat mass, p = 0.002; percent body fat, p = 0.002; trunk: body fat mass, p = 0.001; percent body fat, p = 0.000). Total fat mass change (%) (collagen group, -0.49 ± 3.39; placebo group, 2.23 ± 4.20) showed a significant difference between the two groups (p = 0.041). Physical activity, dietary intake, and biochemical parameters showed no significant difference between the groups. The results confirmed that collagen peptide supplementation had a beneficial effect on body fat reduction in older adults aged ≥ 50 years with daily physical activity level. Thus, collagen peptide supplementation has a positive effect on age-related changes.
Collapse
Affiliation(s)
- Jeongbin Park
- Department of Medical Nutrition, Graduate School of East-West Medical Nutrition, Kyung Hee University, Yongin 17104, Korea
| | - Minji Kim
- Department of Medical Nutrition, Graduate School of East-West Medical Nutrition, Kyung Hee University, Yongin 17104, Korea
| | - Hyeri Shin
- Department of Gerontology, AgeTech-Service Convergence Major, Kyung Hee University, Yongin 17104, Korea
| | - Hyejin Ahn
- Department of Gerontology, AgeTech-Service Convergence Major, Kyung Hee University, Yongin 17104, Korea
| | - Yoo Kyoung Park
- Department of Medical Nutrition, Graduate School of East-West Medical Nutrition, Kyung Hee University, Yongin 17104, Korea
- Department of Medical Nutrition, AgeTech-Service Convergence Major, Kyung Hee University, Yongin 17104, Korea
- Department of Food Innovation and Health, Graduate School of East-West Medical Nutrition, Kyung Hee University, Seoul 02453, Korea
| |
Collapse
|
18
|
Aggeletopoulou I, Tsounis EP, Mouzaki A, Triantos C. Creeping Fat in Crohn's Disease-Surgical, Histological, and Radiological Approaches. J Pers Med 2023; 13:1029. [PMID: 37511642 PMCID: PMC10381426 DOI: 10.3390/jpm13071029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 07/30/2023] Open
Abstract
During the course of Crohn's disease, the response of mesenteric adipose tissue to the production of inflammatory mediators and bacterial invasion through the intestinal mucosa results in the formation of creeping fat. Creeping fat describes the arresting finger-like projections that surround the inflamed bowel. In this review, the microscopic and macroscopic features of creeping fat and histological evidence for the importance of this tissue are discussed. Moreover, the most recent insights into the radiological assessment of creeping fat in patients with Crohn's disease are reported. Advances in imaging techniques have revolutionized the possibility of visualization and quantification of adipose tissue depots with excellent accuracy. Visceral fat has been significantly correlated with various Crohn's-disease-related outcomes. Despite the difficulties in distinguishing physiologic perienteric fat from creeping fat, the growing interest in fat-wrapping in Crohn's disease has rejuvenated radiologic research. With regard to the noninvasive fat-wrapping assessment, a novel CT enterography-based mesenteric creeping fat index has been developed for the mitigation of the confounding effect of normal retroperitoneal and perienteric adipose tissue. Research on machine learning algorithms and computational radiomics in conjunction with mechanistic studies may be the key for the elucidation of the complex role of creeping fat in Crohn's disease.
Collapse
Affiliation(s)
- Ioanna Aggeletopoulou
- Division of Gastroenterology, Department of Internal Medicine, University Hospital of Patras, 26504 Patras, Greece; (I.A.); (E.P.T.)
- Division of Hematology, Department of Internal Medicine, Medical School, University of Patras, 26504 Patras, Greece;
| | - Efthymios P. Tsounis
- Division of Gastroenterology, Department of Internal Medicine, University Hospital of Patras, 26504 Patras, Greece; (I.A.); (E.P.T.)
| | - Athanasia Mouzaki
- Division of Hematology, Department of Internal Medicine, Medical School, University of Patras, 26504 Patras, Greece;
| | - Christos Triantos
- Division of Gastroenterology, Department of Internal Medicine, University Hospital of Patras, 26504 Patras, Greece; (I.A.); (E.P.T.)
| |
Collapse
|
19
|
Parker J. Pathophysiological Effects of Contemporary Lifestyle on Evolutionary-Conserved Survival Mechanisms in Polycystic Ovary Syndrome. Life (Basel) 2023; 13:life13041056. [PMID: 37109585 PMCID: PMC10145572 DOI: 10.3390/life13041056] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/15/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is increasingly being characterized as an evolutionary mismatch disorder that presents with a complex mixture of metabolic and endocrine symptoms. The Evolutionary Model proposes that PCOS arises from a collection of inherited polymorphisms that have been consistently demonstrated in a variety of ethnic groups and races. In utero developmental programming of susceptible genomic variants are thought to predispose the offspring to develop PCOS. Postnatal exposure to lifestyle and environmental risk factors results in epigenetic activation of developmentally programmed genes and disturbance of the hallmarks of health. The resulting pathophysiological changes represent the consequences of poor-quality diet, sedentary behaviour, endocrine disrupting chemicals, stress, circadian disruption, and other lifestyle factors. Emerging evidence suggests that lifestyle-induced gastrointestinal dysbiosis plays a central role in the pathogenesis of PCOS. Lifestyle and environmental exposures initiate changes that result in disturbance of the gastrointestinal microbiome (dysbiosis), immune dysregulation (chronic inflammation), altered metabolism (insulin resistance), endocrine and reproductive imbalance (hyperandrogenism), and central nervous system dysfunction (neuroendocrine and autonomic nervous system). PCOS can be a progressive metabolic condition that leads to obesity, gestational diabetes, type two diabetes, metabolic-associated fatty liver disease, metabolic syndrome, cardiovascular disease, and cancer. This review explores the mechanisms that underpin the evolutionary mismatch between ancient survival pathways and contemporary lifestyle factors involved in the pathogenesis and pathophysiology of PCOS.
Collapse
Affiliation(s)
- Jim Parker
- School of Medicine, University of Wollongong, Wollongong, NSW 2522, Australia
| |
Collapse
|
20
|
Sánchez J, Ingaramo M, Gervé M, Thomas M, Boccaccio G, Dekanty A. FOXO-mediated repression of Dicer1 regulates metabolism, stress resistance, and longevity in Drosophila. Proc Natl Acad Sci U S A 2023; 120:e2216539120. [PMID: 37014862 PMCID: PMC10104520 DOI: 10.1073/pnas.2216539120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 03/04/2023] [Indexed: 04/05/2023] Open
Abstract
The adipose tissue plays a crucial role in metabolism and physiology, affecting animal lifespan and susceptibility to disease. In this study, we present evidence that adipose Dicer1 (Dcr-1), a conserved type III endoribonuclease involved in miRNA processing, plays a crucial role in the regulation of metabolism, stress resistance, and longevity. Our results indicate that the expression of Dcr-1 in murine 3T3L1 adipocytes is responsive to changes in nutrient levels and is subject to tight regulation in the Drosophila fat body, analogous to human adipose and hepatic tissues, under various stress and physiological conditions such as starvation, oxidative stress, and aging. The specific depletion of Dcr-1 in the Drosophila fat body leads to changes in lipid metabolism, enhanced resistance to oxidative and nutritional stress, and is associated with a significant increase in lifespan. Moreover, we provide mechanistic evidence showing that the JNK-activated transcription factor FOXO binds to conserved DNA-binding sites in the dcr-1 promoter, directly repressing its expression in response to nutrient deprivation. Our findings emphasize the importance of FOXO in controlling nutrient responses in the fat body by suppressing Dcr-1 expression. This mechanism coupling nutrient status with miRNA biogenesis represents a novel and previously unappreciated function of the JNK-FOXO axis in physiological responses at the organismal level.
Collapse
Affiliation(s)
- Juan A. Sánchez
- Instituto de Agrobiotecnología del Litoral, Consejo Nacional de Investigaciones Científicas y Técnicas, Santa Fe3000, Argentina
| | - María C. Ingaramo
- Instituto de Agrobiotecnología del Litoral, Consejo Nacional de Investigaciones Científicas y Técnicas, Santa Fe3000, Argentina
| | - María P. Gervé
- Instituto de Agrobiotecnología del Litoral, Consejo Nacional de Investigaciones Científicas y Técnicas, Santa Fe3000, Argentina
| | - Maria G. Thomas
- Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas and Instituto Leloir, Buenos Aires1405, Argentina
| | - Graciela L. Boccaccio
- Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas and Instituto Leloir, Buenos Aires1405, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires1428, Argentina
| | - Andrés Dekanty
- Instituto de Agrobiotecnología del Litoral, Consejo Nacional de Investigaciones Científicas y Técnicas, Santa Fe3000, Argentina
- Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe3000, Argentina
| |
Collapse
|
21
|
Lei Y, Huang Y, Yang K, Cao X, Song Y, Martín-Blanco E, Pastor-Pareja JC. FGF signaling promotes spreading of fat body precursors necessary for adult adipogenesis in Drosophila. PLoS Biol 2023; 21:e3002050. [PMID: 36947563 PMCID: PMC10069774 DOI: 10.1371/journal.pbio.3002050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 04/03/2023] [Accepted: 02/24/2023] [Indexed: 03/23/2023] Open
Abstract
Knowledge of adipogenetic mechanisms is essential to understand and treat conditions affecting organismal metabolism and adipose tissue health. In Drosophila, mature adipose tissue (fat body) exists in larvae and adults. In contrast to the well-known development of the larval fat body from the embryonic mesoderm, adult adipogenesis has remained mysterious. Furthermore, conclusive proof of its physiological significance is lacking. Here, we show that the adult fat body originates from a pool of undifferentiated mesodermal precursors that migrate from the thorax into the abdomen during metamorphosis. Through in vivo imaging, we found that these precursors spread from the ventral midline and cover the inner surface of the abdomen in a process strikingly reminiscent of embryonic mesoderm migration, requiring fibroblast growth factor (FGF) signaling as well. FGF signaling guides migration dorsally and regulates adhesion to the substrate. After spreading is complete, precursor differentiation involves fat accumulation and cell fusion that produces mature binucleate and tetranucleate adipocytes. Finally, we show that flies where adult adipogenesis is impaired by knock down of FGF receptor Heartless or transcription factor Serpent display ectopic fat accumulation in oenocytes and decreased resistance to starvation. Our results reveal that adult adipogenesis occurs de novo during metamorphosis and demonstrate its crucial physiological role.
Collapse
Affiliation(s)
- Yuting Lei
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Yuwei Huang
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Ke Yang
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Xueya Cao
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Yuzhao Song
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Enrique Martín-Blanco
- Instituto de Biología Molecular de Barcelona, Consejo Superior de Investigaciones Científicas, Parc Científic de Barcelona, Barcelona, Spain
| | - José Carlos Pastor-Pareja
- School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
- Institute of Neurosciences, Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández, San Juan de Alicante, Spain
| |
Collapse
|
22
|
Conte F, Beier JP, Ruhl T. Adipose and lipoma stem cells: A donor-matched comparison. Cell Biochem Funct 2023; 41:202-210. [PMID: 36576019 DOI: 10.1002/cbf.3773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/16/2022] [Indexed: 12/29/2022]
Abstract
Lipomas are slow growing benign fat tumors that develop in soft tissues of the mesoderm. Thus, the specific (dys-)function of mesenchymal stem cells (MSCs) has been suggested in the development of lipomas, but details of the tumor pathogenesis remain unclear. Existing studies comparing stem cells from native adipose (adipose stem cells [ASCs]) and lipomatous tissues (LSCs) have reported contradicting findings. However, harvesting ASCs and LSCs from different individuals might have influenced proper comparison. Therefore, we aimed to characterize donor-matched ASCs and LSCs to investigate metabolic activity, proliferation, capability for tri-linear differentiation (chondrogenesis, adipogenesis, osteogenesis), and the secretome of mature adipocytes and lipomacytes. Both stem cell types did not differ in metabolic activity, but ASCs demonstrated stronger proliferation than LSCs. While there was no difference in proteoglycan accumulation during chondrogenic differentiation, adipogenesis was higher in ASCs, with more lipid vacuole formation. Conversely, LSCs showed increased osteogenesis by higher calcium deposition. Lipomacytes showed stronger secretory activity and released higher levels of certain adipokines. Our findings indicated that LSCs possessed important characteristics of MSCs, including ASCs. However, LSCs' low proliferation and adipogenic differentiation behavior did not appear to account for enhanced tissue proliferation, but the secretome of lipomacytes could contribute to lipomatous neoplasm.
Collapse
Affiliation(s)
- Francesco Conte
- Department of Plastic Surgery, Hand Surgery-Burn Center, University Hospital RWTH Aachen, Aachen, Germany
| | - Justus P Beier
- Department of Plastic Surgery, Hand Surgery-Burn Center, University Hospital RWTH Aachen, Aachen, Germany
| | - Tim Ruhl
- Department of Plastic Surgery, Hand Surgery-Burn Center, University Hospital RWTH Aachen, Aachen, Germany
| |
Collapse
|
23
|
Mmp-induced fat body cell dissociation promotes pupal development and moderately averts pupal diapause by activating lipid metabolism. Proc Natl Acad Sci U S A 2023; 120:e2215214120. [PMID: 36574695 PMCID: PMC9910469 DOI: 10.1073/pnas.2215214120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
In Lepidoptera and Diptera, the fat body dissociates into single cells in nondiapause pupae, but it does not dissociate in diapause pupae until diapause termination. Using the cotton bollworm, Helicoverpa armigera, as a model of pupal diapause insects, we illustrated the catalytic mechanism and physiological importance of fat body cell dissociation in regulating pupal development and diapause. In nondiapause pupae, cathepsin L (CatL) activates matrix metalloproteinases (Mmps) that degrade extracellular matrix proteins and cause fat body cell dissociation. Mmp-induced fat body cell dissociation activates lipid metabolism through transcriptional regulation, and the resulting energetic supplies increase brain metabolic activity (i.e., mitochondria respiration and insulin signaling) and thus promote pupal development. In diapause pupae, low activities of CatL and Mmps prevent fat body cell dissociation and lipid metabolism from occurring, maintaining pupal diapause. Importantly, as demonstrated by chemical inhibitor treatments and CRISPR-mediated gene knockouts, Mmp inhibition delayed pupal development and moderately increased the incidence of pupal diapause, while Mmp stimulation promoted pupal development and moderately averted pupal diapause. This study advances our recent understanding of fat body biology and insect diapause regulation.
Collapse
|
24
|
Liu H, Li J, Chang X, He F, Ma J. Modeling Obesity-Associated Ovarian Dysfunction in Drosophila. Nutrients 2022; 14:nu14245365. [PMID: 36558524 PMCID: PMC9783805 DOI: 10.3390/nu14245365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
We perform quantitative studies to investigate the effect of high-calorie diet on Drosophila oogenesis. We use the central composite design (CCD) method to obtain quadratic regression models of body fat and fertility as a function of the concentrations of protein and sucrose, two major macronutrients in Drosophila diet, and treatment duration. Our results reveal complex interactions between sucrose and protein in impacting body fat and fertility when they are considered as an integrated physiological response. We verify the utility of our quantitative modeling approach by experimentally confirming the physiological responses-including increased body fat, reduced fertility, and ovarian insulin insensitivity-expected of a treatment condition identified by our modeling method. Under this treatment condition, we uncover a Drosophila oogenesis phenotype that exhibits an accumulation of immature oocytes and a halt in the production of mature oocytes, a phenotype that bears resemblance to key aspects of the human condition of polycystic ovary syndrome (PCOS). Our analysis of the dynamic progression of different aspects of diet-induced pathophysiology also suggests an order of the onset timing for obesity, ovarian dysfunction, and insulin resistance. Thus, our study documents the utility of quantitative modeling approaches toward understanding the biology of Drosophila female reproduction, in relation to diet-induced obesity and type II diabetes, serving as a potential disease model for human ovarian dysfunction.
Collapse
Affiliation(s)
- Huanju Liu
- Women’s Hospital and Institute of Genetics, Zhejiang University School of Medicine, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Genetic and Developmental Disorder, Hangzhou 310058, China
| | - Jiajun Li
- ZJU-UOE Institute, Zhejiang University School of Medicine, Haining 314400, China
| | - Xinyue Chang
- Women’s Hospital and Institute of Genetics, Zhejiang University School of Medicine, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Genetic and Developmental Disorder, Hangzhou 310058, China
| | - Feng He
- Women’s Hospital and Institute of Genetics, Zhejiang University School of Medicine, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Genetic and Developmental Disorder, Hangzhou 310058, China
- Correspondence: (F.H.); (J.M.)
| | - Jun Ma
- Women’s Hospital and Institute of Genetics, Zhejiang University School of Medicine, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Genetic and Developmental Disorder, Hangzhou 310058, China
- Women’s Reproductive Health Research Laboratory of Zhejiang Province, Hangzhou 310006, China
- Zhejiang University-University of Toronto Joint Institute of Genetics and Genome Medicine, Hangzhou 310058, China
- Correspondence: (F.H.); (J.M.)
| |
Collapse
|
25
|
Pinto PB, Domsch K, Lohmann I. Hox function and specificity – A tissue centric view. Semin Cell Dev Biol 2022:S1084-9521(22)00353-6. [PMID: 36517344 DOI: 10.1016/j.semcdb.2022.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/11/2022] [Accepted: 11/30/2022] [Indexed: 12/15/2022]
Abstract
Since their discovery, the Hox genes, with their incredible power to reprogram the identity of complete body regions, a phenomenon called homeosis, have captured the fascination of many biologists. Recent research has provided new insights into the function of Hox proteins in different germ layers and the mechanisms they employ to control tissue morphogenesis. We focus in this review on the ectoderm and mesoderm to highlight new findings and discuss them with regards to established concepts of Hox target gene regulation. Furthermore, we highlight the molecular mechanisms involved the transcriptional repression of specific groups of Hox target genes, and summarize the role of Hox mediated gene silencing in tissue development. Finally, we reflect on recent findings identifying a large number of tissue-specific Hox interactor partners, which open up new avenues and directions towards a better understanding of Hox function and specificity in different tissues.
Collapse
|
26
|
Okamoto N, Watanabe A. Interorgan communication through peripherally derived peptide hormones in Drosophila. Fly (Austin) 2022; 16:152-176. [PMID: 35499154 PMCID: PMC9067537 DOI: 10.1080/19336934.2022.2061834] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/21/2022] [Accepted: 03/29/2022] [Indexed: 02/06/2023] Open
Abstract
In multicellular organisms, endocrine factors such as hormones and cytokines regulate development and homoeostasis through communication between different organs. For understanding such interorgan communications through endocrine factors, the fruit fly Drosophila melanogaster serves as an excellent model system due to conservation of essential endocrine systems between flies and mammals and availability of powerful genetic tools. In Drosophila and other insects, functions of neuropeptides or peptide hormones from the central nervous system have been extensively studied. However, a series of recent studies conducted in Drosophila revealed that peptide hormones derived from peripheral tissues also play critical roles in regulating multiple biological processes, including growth, metabolism, reproduction, and behaviour. Here, we summarise recent advances in understanding target organs/tissues and functions of peripherally derived peptide hormones in Drosophila and describe how these hormones contribute to various biological events through interorgan communications.
Collapse
Affiliation(s)
- Naoki Okamoto
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Akira Watanabe
- Degree Programs in Life and Earth Sciences, Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
27
|
Cechinel LR, Batabyal RA, Freishtat RJ, Zohn IE. Parental obesity-induced changes in developmental programming. Front Cell Dev Biol 2022; 10:918080. [PMID: 36274855 PMCID: PMC9585252 DOI: 10.3389/fcell.2022.918080] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 09/06/2022] [Indexed: 11/13/2022] Open
Abstract
Many studies support the link between parental obesity and the predisposition to develop adult-onset metabolic syndromes that include obesity, high blood pressure, dyslipidemia, insulin resistance, and diabetes in the offspring. As the prevalence of obesity increases in persons of childbearing age, so does metabolic syndrome in their descendants. Understanding how parental obesity alters metabolic programs in the progeny, predisposing them to adult-onset metabolic syndrome, is key to breaking this cycle. This review explores the basis for altered metabolism of offspring exposed to overnutrition by focusing on critical developmental processes influenced by parental obesity. We draw from human and animal model studies, highlighting the adaptations in metabolism that occur during normal pregnancy that become maladaptive with obesity. We describe essential phases of development impacted by parental obesity that contribute to long-term alterations in metabolism in the offspring. These encompass gamete formation, placentation, adipogenesis, pancreas development, and development of brain appetite control circuits. Parental obesity alters the developmental programming of these organs in part by inducing epigenetic changes with long-term consequences on metabolism. While exposure to parental obesity during any of these phases is sufficient to alter long-term metabolism, offspring often experience multiple exposures throughout their development. These insults accumulate to increase further the susceptibility of the offspring to the obesogenic environments of modern society.
Collapse
|
28
|
Wahlmueller M, Narzt MS, Missfeldt K, Arminger V, Krasensky A, Lämmermann I, Schaedl B, Mairhofer M, Suessner S, Wolbank S, Priglinger E. Establishment of In Vitro Models by Stress-Induced Premature Senescence for Characterizing the Stromal Vascular Niche in Human Adipose Tissue. Life (Basel) 2022; 12:life12101459. [PMID: 36294893 PMCID: PMC9605485 DOI: 10.3390/life12101459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 09/14/2022] [Indexed: 12/02/2022] Open
Abstract
Acting as the largest energy reservoir in the body, adipose tissue is involved in longevity and progression of age-related metabolic dysfunction. Here, cellular senescence plays a central role in the generation of a pro-inflammatory environment and in the evolution of chronic diseases. Within the complexity of a tissue, identification and targeting of senescent cells is hampered by their heterogeneity. In this study, we generated stress-induced premature senescence 2D and 3D in vitro models for the stromal vascular niche of human adipose tissue. We established treatment conditions for senescence induction using Doxorubicin (Dox), starting from adipose-derived stromal/stem cells (ASCs), which we adapted to freshly isolated microtissue-stromal vascular fraction (MT-SVF), where cells are embedded within their native extracellular matrix. Senescence hallmarks for the established in vitro models were verified on different cellular levels, including morphology, cell cycle arrest, senescence-associated β-galactosidase activity (SA-βgal) and gene expression. Two subsequent exposures with 200 nM Dox for six days were suitable to induce senescence in our in vitro models. We demonstrated induction of senescence in the 2D in vitro models through SA-βgal activity, at the mRNA level (LMNB1, CDK1, p21) and additionally by G2/M phase cell cycle arrest in ASCs. Significant differences in Lamin B1 and p21 protein expression confirmed senescence in our MT-SVF 3D model. MT-SVF 3D cultures were composed of multiple cell types, including CD31, CD34 and CD68 positive cells, while cell death remained unaltered upon senescence induction. As heterogeneity and complexity of adipose tissue senescence is given by multiple cell types, our established senescence models that represent the perivascular niche embedded within its native extracellular matrix are highly relevant for future clinical studies.
Collapse
Affiliation(s)
- Marlene Wahlmueller
- Ludwig Boltzmann Institute for Traumatology in Cooperation with the AUVA, 1200 Vienna, Austria
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
- MorphoMed GmbH, 1030 Vienna, Austria
| | - Marie-Sophie Narzt
- Ludwig Boltzmann Institute for Traumatology in Cooperation with the AUVA, 1200 Vienna, Austria
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
- MorphoMed GmbH, 1030 Vienna, Austria
| | - Karin Missfeldt
- Ludwig Boltzmann Institute for Traumatology in Cooperation with the AUVA, 1200 Vienna, Austria
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Verena Arminger
- Ludwig Boltzmann Institute for Traumatology in Cooperation with the AUVA, 1200 Vienna, Austria
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Anna Krasensky
- Ludwig Boltzmann Institute for Traumatology in Cooperation with the AUVA, 1200 Vienna, Austria
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Ingo Lämmermann
- Christian Doppler Laboratory for the Biotechnology of Skin Aging, Department of Biotechnology, Institute of Molecular Biotechnology, University of Natural Resources and Life Sciences, 1190 Vienna, Austria
- Rockfish Bio AG, 1010 Vienna, Austria
| | - Barbara Schaedl
- Ludwig Boltzmann Institute for Traumatology in Cooperation with the AUVA, 1200 Vienna, Austria
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
- University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria
| | - Mario Mairhofer
- Department of Hematology and Internal Oncology, Johannes Kepler University, 4020 Linz, Austria
| | - Susanne Suessner
- Austrian Red Cross Blood Transfusion Service for Upper Austria, 4020 Linz, Austria
| | - Susanne Wolbank
- Ludwig Boltzmann Institute for Traumatology in Cooperation with the AUVA, 1200 Vienna, Austria
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Eleni Priglinger
- Ludwig Boltzmann Institute for Traumatology in Cooperation with the AUVA, 1200 Vienna, Austria
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
- MorphoMed GmbH, 1030 Vienna, Austria
- Correspondence:
| |
Collapse
|
29
|
Anti-adipogenic and Pro-lipolytic Effects on 3T3-L1 Preadipocytes by CX-4945, an Inhibitor of Casein Kinase 2. Int J Mol Sci 2022; 23:ijms23137274. [PMID: 35806278 PMCID: PMC9266649 DOI: 10.3390/ijms23137274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 11/16/2022] Open
Abstract
Casein kinase 2 (CK2) is a ubiquitously expressed serine/threonine kinase and is upregulated in human obesity. CX-4945 (Silmitasertib) is a CK2 inhibitor with anti-cancerous and anti-adipogenic activities. However, the anti-adipogenic and pro-lipolytic effects and the mode of action of CX-4945 in (pre)adipocytes remain elusive. Here, we explored the effects of CX-4945 on adipogenesis and lipolysis in differentiating and differentiated 3T3-L1 cells, a murine preadipocyte cell line. CX-4945 at 15 μM strongly reduced lipid droplet (LD) accumulation and triglyceride (TG) content in differentiating 3T3-L1 cells, indicating the drug’s anti-adipogenic effect. Mechanistically, CX-4945 reduced the expression levels of CCAAT/enhancer-binding protein-α (C/EBP-α), peroxisome proliferator-activated receptor-γ (PPAR-γ), fatty acid synthase (FAS), acetyl-CoA carboxylase (ACC), and perilipin A in differentiating 3T3-L1 cells. Strikingly, CX-4945 further increased the phosphorylation levels of cAMP-activated protein kinase (AMPK) and liver kinase B-1 (LKB-1) while decreasing the intracellular ATP content in differentiating 3T3-L1 cells. In differentiated 3T3-L1 cells, CX-4945 had abilities to stimulate glycerol release and elevate the phosphorylation levels of hormone-sensitive lipase (HSL), pointing to the drug’s pro-lipolytic effect. In addition, CX-4945 induced the activation of extracellular signal-regulated kinase-1/2 (ERK-1/2), and PD98059, an inhibitor of ERK-1/2, attenuated the CX4945-induced glycerol release and HSL phosphorylation in differentiated 3T3-L1 cells, indicating the drug’s ERK-1/2-dependent lipolysis. In summary, this investigation shows that CX-4945 has strong anti-adipogenic and pro-lipolytic effects on differentiating and differentiated 3T3-L1 cells, mediated by control of the expression and phosphorylation levels of CK2, C/EBP-α, PPAR-γ, FAS, ACC, perilipin A, AMPK, LKB-1, ERK-1/2, and HSL.
Collapse
|
30
|
Expression and Role of β3-Adrenergic Receptor during the Differentiation of 3T3-L1 Preadipocytes into Adipocytes. BIOLOGY 2022; 11:biology11050772. [PMID: 35625499 PMCID: PMC9138837 DOI: 10.3390/biology11050772] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/16/2022] [Accepted: 05/16/2022] [Indexed: 02/04/2023]
Abstract
Simple Summary The β3-adrenergic receptor (β3-AR) has long been viewed as a potential therapeutic target for dealing with obesity. Although the lipolytic and thermogenic role of β3-AR in brown/beige adipocytes is well defined, the β3-AR’s adipogenic role in white adipocytes remains unclear at present. In this study, we investigated the expression and function of β3-AR in 3T3-L1 murine white preadipocytes. Knockdown of β3-AR led to less lipid accumulation and triglyceride (TG) content as well as less expression and phosphorylation levels of CCAAT/enhancer-binding protein-α (C/EBP-α) and peroxisome proliferator-activated receptor-γ (PPAR-γ) during 3T3-L1 preadipocyte differentiation. These findings reveal that the β3-AR inhibitor or antagonist could be a promising candidate for potential preventive and therapeutics against obesity. Abstract β3-adrenergic receptor (β3-AR) is expressed predominantly in mature white and brown/beige adipocytes. Although the lipolytic and thermogenic role of β3-AR in brown/beige adipocytes is well defined, the adipogenic role of β3-AR in white adipocytes remains unclear at present. In this study, we investigated the expression and function of β3-AR in differentiating 3T3-L1 cells, murine white preadipocytes. Of note, the expression of β3-AR at the protein and mRNA levels was highly induced in a time-dependent manner during 3T3-L1 preadipocyte differentiation. Interestingly, the results of the pharmacological inhibition study demonstrated the roles of p38 MAPK and PKC in the induction of β3-AR expression in differentiating 3T3-L1 cells. Knockdown of β3-AR led to less lipid accumulation and triglyceride (TG) content during 3T3-L1 preadipocyte differentiation with no cytotoxicity. Furthermore, knockdown of β3-AR resulted in a decrease in not only expression levels of CCAAT/enhancer-binding protein-α (C/EBP-α), peroxisome proliferator-activated receptor-γ (PPAR-γ), fatty acid synthase (FASN), perilipin A, and leptin but also phosphorylation levels of signal transducer and activator of transcription-5 (STAT-5) during 3T3-L1 preadipocyte differentiation. In summary, these results demonstrate firstly that β3-AR expression is highly up-regulated in p38 MAPK and PKC-dependent manners, and the up-regulated β3-AR plays a crucial role in lipid accumulation in differentiating 3T3-L1 cells, which is mediated through control of expression and phosphorylation levels of C/EBP-α, PPAR-γ, STAT-5, FASN, and perilipin A.
Collapse
|