1
|
Kim E, Choi S, Kim SY, Jang SJ, Lee S, Kim H, Jang JH, Seo HH, Lee JH, Choi SS, Moh SH. Wound healing effect of polydeoxyribonucleotide derived from Hibiscus sabdariffa callus via Nrf2 signaling in human keratinocytes. Biochem Biophys Res Commun 2024; 728:150335. [PMID: 38996695 DOI: 10.1016/j.bbrc.2024.150335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/28/2024] [Accepted: 06/29/2024] [Indexed: 07/14/2024]
Abstract
There has been a growing interest in skin recovery in both the medical and cosmetics fields, leading to an increasing number of studies reporting diverse materials being utilized for this purpose. Among them, polydeoxyribonucleotide (PDRN) is known for its efficacy in skin repair processes, while Hibiscus sabdariffa (HS) is recognized for its antioxidant, hypolipidemic, and wound healing properties, including its positive impact on mammalian skin and cells. We hypothesized that these characteristics may have a germane relationship during the healing process. Consequently, we induced calli from HS and then extracted PDRN for use in treating human keratinocytes. PDRN (5 μg/mL) had considerable wound healing effects and wrinkle improvement effects. To confirm its function at the molecular level, we performed real-time polymerase chain reaction, western blotting, and immunocytochemistry. Furthermore, genes related to wound healing (MMP9, Nrf2, KGF, VEGF, SOD2, and AQP3) were significantly upregulated. Additionally, the protein expression of MMP9, AQP3, and CAT, which are closely related to wound healing and antioxidant cascades, was considerably enhanced. Based on cellular morphology and molecular-level evidence, we propose that PDRN from calli of HS can improve wound healing in human keratinocytes. Furthermore, its potential to serve as a novel material in cosmetic products is demonstrated.
Collapse
Affiliation(s)
- Euihyun Kim
- Plant Cell Research Institute, BIO-FD&C Co., Ltd, Yeonsu-gu, Incheon, 21990, Republic of Korea.
| | - Sunmee Choi
- Plant Cell Research Institute, BIO-FD&C Co., Ltd, Yeonsu-gu, Incheon, 21990, Republic of Korea.
| | - Soo-Yun Kim
- Plant Cell Research Institute, BIO-FD&C Co., Ltd, Yeonsu-gu, Incheon, 21990, Republic of Korea.
| | - Sung Joo Jang
- Plant Cell Research Institute, BIO-FD&C Co., Ltd, Yeonsu-gu, Incheon, 21990, Republic of Korea.
| | - Sak Lee
- Plant Cell Research Institute, BIO-FD&C Co., Ltd, Yeonsu-gu, Incheon, 21990, Republic of Korea.
| | - Hyein Kim
- Plant Cell Research Institute, BIO-FD&C Co., Ltd, Yeonsu-gu, Incheon, 21990, Republic of Korea.
| | - Ji Hyeon Jang
- Plant Cell Research Institute, BIO-FD&C Co., Ltd, Yeonsu-gu, Incheon, 21990, Republic of Korea.
| | - Hyo Hyun Seo
- Plant Cell Research Institute, BIO-FD&C Co., Ltd, Yeonsu-gu, Incheon, 21990, Republic of Korea.
| | - Jeong Hun Lee
- Plant Cell Research Institute, BIO-FD&C Co., Ltd, Yeonsu-gu, Incheon, 21990, Republic of Korea.
| | - Sung Soo Choi
- Daesang Holdings, Jung-gu, Seoul, 04513, Republic of Korea.
| | - Sang Hyun Moh
- Plant Cell Research Institute, BIO-FD&C Co., Ltd, Yeonsu-gu, Incheon, 21990, Republic of Korea.
| |
Collapse
|
2
|
Inguscio CR, Carton F, Cisterna B, Rizzi M, Boccafoschi F, Tabaracci G, Malatesta M. Low ozone concentrations do not exert cytoprotective effects on tamoxifen-treated breast cancer cells in vitro. Eur J Histochem 2024; 68. [PMID: 39252536 PMCID: PMC11445695 DOI: 10.4081/ejh.2024.4106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 09/02/2024] [Indexed: 09/11/2024] Open
Abstract
Medical treatment with low ozone concentrations proved to exert therapeutic effects in various diseases by inducing a cytoprotective antioxidant response through the nuclear factor erythroid derived-like 2 (Nrf2) transcription factor pathway. Low ozone doses are increasingly administered to oncological patients as a complementary treatment to mitigate some adverse side-effects of antitumor treatments. However, a widespread concern exists about the possibility that the cytoprotective effect of Nrf2 activation may confer drug resistance to cancer cells or at least reduce the efficacy of antitumor agents. In this study, the effect of low ozone concentrations on tamoxifen-treated MCF7 human breast cancer cells has been investigated in vitro by histochemical and molecular techniques. Results demonstrated that cell viability, proliferation and migration were generally similar in tamoxifen-treated cells as in cells concomitantly treated with tamoxifen and ozone. Notably, low ozone concentrations were unable to overstimulate the antioxidant response through the Nfr2 pathway, thus excluding a possible ozone-driven cytoprotective effect that would lead to increased tumor cell survival during the antineoplastic treatment. These findings, though obtained in an in vitro model, support the hypothesis that low ozone concentrations do not interfere with the tamoxifen-induced effects on breast cancer cells.
Collapse
Affiliation(s)
- Chiara Rita Inguscio
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona.
| | - Flavia Carton
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona.
| | - Barbara Cisterna
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona.
| | - Manuela Rizzi
- Department of Health Sciences, University of Piemonte Orientale "A. Avogadro", Novara.
| | - Francesca Boccafoschi
- Department of Health Sciences, University of Piemonte Orientale "A. Avogadro", Novara.
| | | | - Manuela Malatesta
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona.
| |
Collapse
|
3
|
Saija C, Currò M, Arena S, Bertuccio MP, Cassaro F, Montalto AS, Colonna MR, Caccamo D, Romeo C, Impellizzeri P. Possible Role of NRF2 in Cell Response to OZOILE (Stable Ozonides) in Children Affected by Lichen Sclerosus of Foreskin. Curr Issues Mol Biol 2024; 46:9401-9414. [PMID: 39329909 PMCID: PMC11429901 DOI: 10.3390/cimb46090557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/17/2024] [Accepted: 08/23/2024] [Indexed: 09/28/2024] Open
Abstract
Lichen sclerosus (LS) is a chronic inflammatory disease of the skin, and the gold standard for treatment is the use of the very potent topical steroids, but they can have side effects. Previously, we demonstrated that OZOILE (stable ozonides) were effective in children affected by LS, reducing the inflammatory process and stimulating tissue regeneration of the foreskin, showing a similar efficacy to steroid treatment. In this study, the modulation of inflammatory and oxidative stress pathways was evaluated by qRT-PCR and Western blotting in foreskins affected by LS removed from patients untreated or treated with OZOILE or corticosteroid cream formulations for 7 days before circumcision. OZOILE induced a significant increase in NRF2 and SOD2 levels, while it did not produce change in MIF, NF-kB subunits, and MMPs in comparison to untreated foreskins. Conversely, steroid topical treatment produced a significant reduction in the expression of p65, MIF, and MMP9, but it did not cause variation in NRF2 and SOD2 levels. These results demonstrate that the use of OZOILE as cream formulation exhibits effects on NRF2 signaling, and it does not induce NF-κB activation, unlike corticosteroids. On the basis of our biochemical data, further studies evaluating the role of NRF2 signaling cascade are necessary.
Collapse
Affiliation(s)
- Caterina Saija
- Department of Biomedical and Dental Sciences and Morpho-functional Imaging, University of Messina, 98124 Messina, Italy; (C.S.); (M.C.); (M.P.B.); (D.C.)
| | - Monica Currò
- Department of Biomedical and Dental Sciences and Morpho-functional Imaging, University of Messina, 98124 Messina, Italy; (C.S.); (M.C.); (M.P.B.); (D.C.)
| | - Salvatore Arena
- Department of Human Pathology of Adult and Childhood “G. Barresi”, University of Messina, 98124 Messina, Italy; (S.A.); (F.C.); (A.S.M.); (M.R.C.); (C.R.)
| | - Maria Paola Bertuccio
- Department of Biomedical and Dental Sciences and Morpho-functional Imaging, University of Messina, 98124 Messina, Italy; (C.S.); (M.C.); (M.P.B.); (D.C.)
| | - Fabiola Cassaro
- Department of Human Pathology of Adult and Childhood “G. Barresi”, University of Messina, 98124 Messina, Italy; (S.A.); (F.C.); (A.S.M.); (M.R.C.); (C.R.)
| | - Angela Simona Montalto
- Department of Human Pathology of Adult and Childhood “G. Barresi”, University of Messina, 98124 Messina, Italy; (S.A.); (F.C.); (A.S.M.); (M.R.C.); (C.R.)
| | - Michele Rosario Colonna
- Department of Human Pathology of Adult and Childhood “G. Barresi”, University of Messina, 98124 Messina, Italy; (S.A.); (F.C.); (A.S.M.); (M.R.C.); (C.R.)
| | - Daniela Caccamo
- Department of Biomedical and Dental Sciences and Morpho-functional Imaging, University of Messina, 98124 Messina, Italy; (C.S.); (M.C.); (M.P.B.); (D.C.)
| | - Carmelo Romeo
- Department of Human Pathology of Adult and Childhood “G. Barresi”, University of Messina, 98124 Messina, Italy; (S.A.); (F.C.); (A.S.M.); (M.R.C.); (C.R.)
| | - Pietro Impellizzeri
- Department of Human Pathology of Adult and Childhood “G. Barresi”, University of Messina, 98124 Messina, Italy; (S.A.); (F.C.); (A.S.M.); (M.R.C.); (C.R.)
| |
Collapse
|
4
|
Guo S, Rezaei MJ. The benefits of ashwagandha ( Withania somnifera) supplements on brain function and sports performance. Front Nutr 2024; 11:1439294. [PMID: 39155932 PMCID: PMC11327513 DOI: 10.3389/fnut.2024.1439294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/15/2024] [Indexed: 08/20/2024] Open
Abstract
Ashwagandha or Withania somnifera is an herbal plant belonging to the Solanaceae family. Because of its wide range of phytochemicals, ashwagandha root extract has been used in numerous research studies, either alone or in conjunction with other natural plants, for various biomedical applications, which include its anti-microbial, anti-inflammatory, anti-stress, anti-tumor, cardioprotective, and neuroprotective properties. Additionally, it improves endothelial function, lowers reactive oxygen species, controls apoptosis, and improves mitochondrial function. These properties make it a useful treatment for a variety of conditions, including age-related symptoms, anxiety, neurodegenerative diseases, diabetes, stress, arthritis, fatigue, and cognitive/memory impairment. Despite the numerous benefits of ashwagandha supplementation, there have been just four meta-analyses on the herb's effectiveness in treating anxiety, neurobehavioral disorders, impotence, and infertility. Moreover, no reviews exist that examine how ashwagandha affects antioxidant response and physical sports performance. Consequently, the goal of this study was to analyze the scientific literature regarding the effects of ashwagandha consumption on antioxidant response and athletic performance.
Collapse
Affiliation(s)
- Shiyi Guo
- College of Physical Education, LiaoNing Petrochemical University, Fushun, Liaoning, China
| | | |
Collapse
|
5
|
Gan Y, Tian X, Yao H, Huo F, Feng Y. Ozone Improves Oxygenation and Offers Organ Protection after Autologous Blood Transfusion in a Simulated Carbon Dioxide Pneumoperitoneal Environment in a Rabbit Hemorrhagic Shock Model. Transfus Med Hemother 2024; 51:164-174. [PMID: 38867809 PMCID: PMC11166905 DOI: 10.1159/000527934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 10/31/2022] [Indexed: 06/14/2024] Open
Abstract
Objectives Autologous blood transfusion techniques are well applied in surgery, but the red blood cells (RBCs) collected during laparoscopic surgery may forfeit their ability to oxygenate. O3 is a potent oxidation gas. This study investigates whether O3 could improve the oxygen-carrying capacity of RBCs, reduce inflammatory reactions, and offer organ protection. Methods We established a hemorrhagic shock model in rabbits, and simulated CO2 pneumoperitoneum and O3 were applied before autologous blood transfusion. Perioperative mean arterial pressure and arterial blood gas were recorded, blood gas and RBC morphology of collected blood were analyzed, plasma IL-6, ALT, AST, CRE, and lung histopathology POD0 and POD3 were tested, as well as postoperative survival quality. Results Autologous blood that underwent simulated CO2 pneumoperitoneum had a lower pH and SaO2 and a higher PaCO2 than the control group. After O3 treatment, PaO2 and SaO2 increased significantly, with unchanged pH values and PaCO2. RBCs in autologous blood were drastically deformed after CO2 conditioning and then reversed to normal by O3 treatment. Rabbits that received CO2-conditioned autologous blood had a compromised survival quality after surgery, higher plasma IL-6 levels, higher lung injury scores on POD0, higher ALT and AST levels on POD3, and O3 treatment alleviated these adverse outcomes. Conclusion O3 can restore RBC function, significantly improve blood oxygenation under simulated CO2 pneumoperitoneum, offer organ protection, and improve the postoperative survival quality in the rabbit hemorrhage shock model.
Collapse
Affiliation(s)
- Yu Gan
- Department of Anesthesiology, Peking University People's Hospital, Beijing, China
| | - Xue Tian
- Department of Anesthesiology, Peking University People's Hospital, Beijing, China
| | - Han Yao
- Department of Anesthesiology, Peking University People's Hospital, Beijing, China
| | - Fei Huo
- Department of Anesthesiology, Peking University People's Hospital, Beijing, China
| | - Yi Feng
- Department of Anesthesiology, Peking University People's Hospital, Beijing, China
| |
Collapse
|
6
|
Rodríguez-Quintero P, Rubio-Osornio M, Uribe E, Moreno W, Marín-Castañeda LA, Morales Z, Portila A, Vázquez D, Rubio C. Exposure to Ozone Downregulates Bcl-2 and Increases Executing Caspases-3 and -8 in the Hippocampus, Frontal Cortex, and Cerebellum of Rats. Cureus 2024; 16:e54546. [PMID: 38516464 PMCID: PMC10956716 DOI: 10.7759/cureus.54546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/19/2024] [Indexed: 03/23/2024] Open
Abstract
Introduction Ozone (O3) is one of the most prevalent atmospheric pollutants, arising from a photochemical reaction between volatile organic compounds (VOC), nitrogen oxides (NOx), and sunlight. O3 triggers oxidative stress, resulting in lipid oxidation, inflammation, alterations in metabolic and cellular signaling, and potentially initiating cell death in vulnerable brain regions. Inflammation and oxidative stress are recognized for their ability to induce cell death, primarily through the apoptosis pathway, involving various proteins that participate in this process via two pathways: intrinsic and extrinsic. Objective This study aims to identify the expression of pro-apoptotic proteins and Bcl-2 in the frontal cortex, cerebellum, and hippocampus of rats exposed to O3 acutely. Methods Two groups of 20 Wistar rodents (250-300 g) were established. The control group (n=10) was exposed to unrestricted polluted air for 12 hours, while the experimental group (n=10) was exposed to 1 ppm of O3. After exposure, the animals were sacrificed for immunofluorescence and Western blot analysis. Using a t-test, the arbitrary units of pro-apoptotic proteins and Bcl-2 were compared between the two groups. Results Significant increases in caspase-8 and caspase-3 activation were found in the O3-exposed group compared to the control group, specifically in the frontal cortex, cerebellum, and hippocampus. Additionally, notable changes in Bcl-2 expression were observed in these brain regions. The TUNEL (terminal deoxynucleotidyl transferase dUTP nick end labeling) assay further indicated significant differences in immunopositivity between the groups in the same areas. However, intrinsic apoptotic proteins such as Bax, VDAC1, and cytochrome-c did not show significant differences between the groups within these structures. Western blot analyses aligned with the immunofluorescence results, showing statistically significant concentrations of caspase-8 in the cerebellum, caspase-3 in the hippocampus, and Bcl-2 in the frontal cortex in the O3 exposed group. Conversely, proteins like Bax, cytochrome-c, and VDAC1 did not exhibit significant differences in all analyzed structures. Conclusions This study demonstrates that acute exposure to 1 ppm of ozone can trigger neuronal apoptosis in the frontal cortex, hippocampus, and cerebellum of rats, primarily through the activation of the extrinsic apoptosis pathway via caspase-8 and caspase-3. Additionally, it causes a reduction in Bcl-2 expression, an essential antiapoptotic protein. Despite not observing the activation of intrinsic pathway proteins like BAX, VDAC, or cytochrome-c, the study suggests that chronic O3 exposure might promote cell death by activating this pathway, requiring further long-term research.
Collapse
Affiliation(s)
- Paola Rodríguez-Quintero
- Departamento de Neurofisiología, Instituto Nacional de Neurología y Neurocirugía, Mexico City, MEX
| | - Moisés Rubio-Osornio
- Departamento de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía, Mexico City, MEX
| | - Eric Uribe
- Departamento de Neurofisiología, Instituto Nacional de Neurología y Neurocirugía, Mexico City, MEX
| | - Wilhelm Moreno
- Departamento de Neurofisiología, Instituto Nacional de Neurología y Neurocirugía, Mexico City, MEX
| | - Luis A Marín-Castañeda
- Departamento de Neurofisiología, Instituto Nacional de Neurología y Neurocirugía, Mexico City, MEX
| | - Zayra Morales
- Departamento de Neurofisiología, Instituto Nacional de Neurología y Neurocirugía, Mexico City, MEX
| | - Alonso Portila
- Departamento de Neurofisiología, Instituto Nacional de Neurología y Neurocirugía, Mexico City, MEX
| | - David Vázquez
- Departamento de Neurofisiología, Instituto Nacional de Neurología y Neurocirugía, Mexico City, MEX
| | - Carmen Rubio
- Departamento de Neurofisiología, Instituto Nacional de Neurología y Neurocirugía, Mexico City, MEX
| |
Collapse
|
7
|
Yetim E, Eren MA, Karaaslan H, Sabuncu T. Higher Levels of Plasma Fetuin-A, Nrf2, and Cytokeratin 18 in Patients with Hashimoto's Disease. SISLI ETFAL HASTANESI TIP BULTENI 2023; 57:473-478. [PMID: 38268661 PMCID: PMC10805046 DOI: 10.14744/semb.2023.95826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/28/2023] [Accepted: 08/09/2023] [Indexed: 01/26/2024]
Abstract
Objectives Fetuin-A is a protein that exhibits proatherogenic, pro-inflammatory, and anti-inflammatory effects with increased insulin resistance and adipocyte dysfunction. The nuclear factor erythroid 2-related factor (Nrf2) is a transcription factor that is crucial for protecting cells against oxidative damage. As a cell death product, cytokeratin 18 (CK18) levels increase during necrosis and apoptosis of both normal and tumor cells. We analyzed the plasma levels of three biomarkers based on the hypothesis that they might be related to some pathophysiological pathways in Hashimoto's disease. Methods We compared 34 female patients with overt hypothyroidism due to Hashimoto's disease (Group 1) with 34 age-matched healthy females (Group 2). For comparison, plasma levels of thyroid-stimulating hormone (TSH), fetuin-A, Nrf2, and CK18 were measured in all participants. Results In group 1, the mean TSH levels (31.4±15.3) were significantly higher than those in group 2 (2.6±1.0) (p<0.001). The levels of mean fetuin-A (606.7±34.2) and Nrf2 (1.3±0.6) were found to be significantly higher in group 1 than in group 2 (440.0±34.2 vs. 0.7±0.2) (p<0.001 for both). CK18 levels in group 1 (0.36±0.13) were also significantly higher than in group 2 (0.26±0.16) (p=0.020). A significant correlation was observed between TSH levels and fetuin-A (r=0.401, p=0.001). Conclusion Increased levels of fetuin-A, Nrf2, and CK18 may be a consequence or cause of the pathophysiological pathways of Hashimoto's disease. The clinical significance of increased levels of these biomarkers requires further investigation.
Collapse
Affiliation(s)
- Esma Yetim
- Department of Internal Medicine, Harran University Faculty of Medicine, Sanliurfa, Türkiye
| | - Mehmet Ali Eren
- Department of Endocrinology, Harran University, Faculty of Medicine, Sanliurfa, Türkiye
| | - Huseyin Karaaslan
- Department of Endocrinology, Harran University, Faculty of Medicine, Sanliurfa, Türkiye
| | - Tevfik Sabuncu
- Department of Endocrinology, Harran University, Faculty of Medicine, Sanliurfa, Türkiye
| |
Collapse
|
8
|
Inguscio CR, Cisterna B, Carton F, Barberis E, Manfredi M, Malatesta M. Modifications of Blood Molecular Components after Treatment with Low Ozone Concentrations. Int J Mol Sci 2023; 24:17175. [PMID: 38139004 PMCID: PMC10742958 DOI: 10.3390/ijms242417175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/04/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
The ex vivo treatment of a limited volume of blood with gaseous oxygen-ozone (O2-O3) mixtures and its rapid reinfusion into the patient is a widespread medical procedure. O3 instantly reacts with the blood's antioxidant systems, disappearing before reinfusion, although the molecules formed act as messengers in the organism, inducing multiple antioxidant and anti-inflammatory responses. An appropriate dose of O3 is obviously essential to ensure both safety and therapeutic efficacy, and in recent years, the low-dose O3 concept has led to a significant reduction in the administered O3 concentrations. However, the molecular events triggered by such low concentrations in the blood still need to be fully elucidated. In this basic study, we analysed the molecular modifications induced ex vivo in sheep blood by 5 and 10 µg O3/mL O2 by means of a powerful metabolomics analysis in association with haemogas, light microscopy and bioanalytical assays. This combined approach revealed increased oxygenation and an increased antioxidant capacity in the O3-treated blood, which accorded with the literature. Moreover, original information was obtained on the impact of these low O3 concentrations on the metabolic pathways of amino acids, carbohydrates, lipids and nucleotides, with the modified metabolites being mostly involved in the preservation of the oxidant-antioxidant balance and in energy production.
Collapse
Affiliation(s)
- Chiara Rita Inguscio
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy; (C.R.I.); (B.C.); (F.C.)
| | - Barbara Cisterna
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy; (C.R.I.); (B.C.); (F.C.)
| | - Flavia Carton
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy; (C.R.I.); (B.C.); (F.C.)
| | - Elettra Barberis
- Department of Sciences and Technological Innovation, University of Piemonte Orientale, Viale T. Michel 11, 15121 Alessandria, Italy;
- Center for Translational Research on Autoimmune and Allergic Diseases, University of Piemonte Orientale, Corso Trieste 15/A, 28100 Novara, Italy;
| | - Marcello Manfredi
- Center for Translational Research on Autoimmune and Allergic Diseases, University of Piemonte Orientale, Corso Trieste 15/A, 28100 Novara, Italy;
- Department of Translational Medicine, University of Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
| | - Manuela Malatesta
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy; (C.R.I.); (B.C.); (F.C.)
| |
Collapse
|
9
|
Inguscio CR, Cisterna B, Lacavalla MA, Donati F, Angelini O, Tabaracci G, Malatesta M. Ozone and procaine increase secretion of platelet-derived factors in platelet-rich plasma. Eur J Histochem 2023; 67:3879. [PMID: 37817677 PMCID: PMC10644046 DOI: 10.4081/ejh.2023.3879] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 10/04/2023] [Indexed: 01/14/2024] Open
Abstract
Platelet-rich plasma (PRP) is gaining more and more attention in regenerative medicine as an innovative and efficient therapeutic approach. The regenerative properties of PRP rely on the numerous bioactive molecules released by the platelets: growth factors are involved in proliferation and differentiation of endothelial cells and fibroblasts, angiogenesis and extracellular matrix formation, while cytokines are mainly involved in immune cell recruitment and inflammation modulation. Attempts are ongoing to improve the therapeutic potential of PRP by combining it with agents able to promote regenerative processes. Two interesting candidates are ozone, administered at low doses as gaseous oxygen-ozone mixtures, and procaine. In the present study, we investigated the effects induced on platelets by the in vitro treatment of PRP with ozone or procaine, or both. We combined transmission electron microscopy to obtain information on platelet modifications and bioanalytical assays to quantify the secreted factors. The results demonstrate that, although platelets were already activated by the procedure to prepare PRP, both ozone and procaine induced differential morpho-functional modifications in platelets resulting in an increased release of factors. In detail, ozone induced an increase in surface protrusions and open canalicular system dilation suggestive of a marked α-granule release, while procaine caused a decrease in surface protrusions and open canalicular system dilation but a remarkable increase in microvesicle release suggestive of high secretory activity. Consistently, nine of the thirteen platelet-derived factors analysed in the PRP serum significantly increased after treatment with ozone and/or procaine. Therefore, ozone and procaine proved to have a remarkable stimulating potential without causing any damage to platelets, probably because they act through physiological, although different, secretory pathways.
Collapse
Affiliation(s)
- Chiara Rita Inguscio
- Department of Neurosciences, Biomedicine and Movement Sciences, Anatomy and Histology Section, University of Verona.
| | - Barbara Cisterna
- Department of Neurosciences, Biomedicine and Movement Sciences, Anatomy and Histology Section, University of Verona.
| | - Maria Assunta Lacavalla
- Department of Neurosciences, Biomedicine and Movement Sciences, Anatomy and Histology Section, University of Verona.
| | | | | | | | - Manuela Malatesta
- Department of Neurosciences, Biomedicine and Movement Sciences, Anatomy and Histology Section, University of Verona.
| |
Collapse
|
10
|
Gómez Afonso A, Fernandez-Lazaro D, Adams DP, Monserdà-Vilaró A, Fernandez-Lazaro CI. Effects of Withania somnifera (Ashwagandha) on Hematological and Biochemical Markers, Hormonal Behavior, and Oxidant Response in Healthy Adults: A Systematic Review. Curr Nutr Rep 2023; 12:465-477. [PMID: 37428341 PMCID: PMC10444651 DOI: 10.1007/s13668-023-00481-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2023] [Indexed: 07/11/2023]
Abstract
PURPOSE OF REVIEW: Withania somnifera (L.) Dunal (Ws) is a common herb plant that has been used for centuries to treat a wide range of conditions, particularly certain chronic diseases due to its antidiabetic, cardioprotective, antistress, and chondroprotective effects, among many others. No conclusive evidence, however, exists about the potential health effects of Ws in adults without chronic conditions. We aimed to evaluate the current evidence on the health benefits of Ws supplementation in healthy adults. RECENT FINDINGS: Based on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, we systematically reviewed studies indexed in Web of Science, Scopus, and PubMed to assess the effects of Ws on hematological and biochemical markers, hormonal behavior, and oxidant response in healthy adults. Original articles published up to March 5, 2022, with a controlled trial design or pre-post intervention design, in which supplementation of Ws was compared to a control group or data prior to intervention were included. Among 2,421 records identified in the search, 10 studies met the inclusion criteria. Overall, most of the studies reported beneficial effects of the Ws supplementation, and no serious adverse events were reported. Participants supplemented with Ws displayed reduced levels of oxidative stress and inflammation, and counterbalanced hormone levels. No evidence of the beneficial effects of Ws supplementation on hematological markers was reported. Ws supplementation appears to be safe, may regulate hormone levels, and has potent anti-inflammatory and antioxidant effects. However, further studies are needed to elucidate the relevance of its application.
Collapse
Affiliation(s)
- Adrián Gómez Afonso
- Faculty of Physical Activity Sport Sciences, European University of Madrid, 28670, Madrid, Spain
| | - Diego Fernandez-Lazaro
- Departamento de Biología Celular, Genética, Histología y Farmacología, Facultad de Ciencias de la Salud, Campus de Soria, Universidad de Valladolid, Soria, 42004, Spain.
- Grupo de Investigación Reconocido "Neurobiología", Facultad de Medicina, Universidad de Valladolid, Valladolid, 47005, Spain.
| | - David P Adams
- University of Galway, University Road, Galway, H91 TK33, Ireland
| | - Aniol Monserdà-Vilaró
- Faculty of Physical Activity Sport Sciences, European University of Madrid, 28670, Madrid, Spain
| | - Cesar I Fernandez-Lazaro
- Department of Preventive Medicine and Public Health, School of Medicine, University of Navarra, 31008, Pamplona, Spain.
- IdiSNA, Navarra Institute for Health Research, 31008, Pamplona, Spain.
| |
Collapse
|
11
|
Clavo B, Cánovas-Molina A, Díaz-Garrido JA, Cañas S, Ramallo-Fariña Y, Laffite H, Federico M, Rodríguez-Abreu D, Galván S, García-Lourve C, González-Beltrán D, Caramés MA, Hernández-Fleta JL, Serrano-Aguilar P, Rodríguez-Esparragón F. Effects of ozone therapy on anxiety and depression in patients with refractory symptoms of severe diseases: a pilot study. Front Psychol 2023; 14:1176204. [PMID: 37599784 PMCID: PMC10437070 DOI: 10.3389/fpsyg.2023.1176204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 07/17/2023] [Indexed: 08/22/2023] Open
Abstract
Background Patients with refractory symptoms of severe diseases frequently experience anxiety, depression, and an altered health-related quality of life (HRQOL). Some publications have described the beneficial effect of ozone therapy on several symptoms of this kind of patient. The aim of this study was to preliminarily evaluate, in patients treated because of refractory symptoms of cancer treatment and advanced nononcologic diseases, if ozone therapy has an additional impact on self-reported anxiety and depression. Methods Before and after ozone treatment, we assessed (i) anxiety and depression according to the Hospital Anxiety and Depression Scale (HADS); (ii) the HRQOL (according to the EQ-5D-5L questionnaire), which includes a dimension on anxiety and depression and a visual analog scale (VAS) measuring self-perceived general health. Results Before ozone therapy, 56% of patients were on anxiolytic and/or antidepressant treatment. Before and after ozone therapy, the anxiety and depression HADS subscales (i) significantly correlated with the anxiety/depression dimension of the EQ-5D-5L questionnaire and (ii) inversely correlated with the health status as measured by the VAS. After ozone therapy, we found a significant improvement in anxiety and depression measured by both the (i) HADS subscales and (ii) EQ-5D-5L questionnaire. Conclusion The addition of ozone therapy for patients with refractory symptoms of cancer treatment and advanced chronic nononcologic diseases can decrease anxiety and depression severity levels. Additional, more focused studies are ongoing to provide the needed explanatory information for this finding.
Collapse
Affiliation(s)
- Bernardino Clavo
- Research Unit, Hospital Universitario de Gran Canaria Dr. Negrín, Las Palmas de Gran Canaria, Spain
- Chronic Pain Unit, Hospital Universitario de Gran Canaria Dr. Negrín, Las Palmas de Gran Canaria, Spain
- Radiation Oncology Department, Hospital Universitario de Gran Canaria Dr. Negrín, Las Palmas de Gran Canaria, Spain
- Fundación Canaria Instituto de Investigación Sanitaria de Canarias (FIISC), Las Palmas de Gran Canaria/Tenerife, Spain
- Universitary Institute for Research in Biomedicine and Health (iUIBS), Molecular and Translational Pharmacology Group, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias de la Universidad de La Laguna, Santa Cruz de Tenerife, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Spanish Group of Clinical Research in Radiation Oncology (GICOR), Madrid, Spain
| | - Angeles Cánovas-Molina
- Research Unit, Hospital Universitario de Gran Canaria Dr. Negrín, Las Palmas de Gran Canaria, Spain
- Chronic Pain Unit, Hospital Universitario de Gran Canaria Dr. Negrín, Las Palmas de Gran Canaria, Spain
- Fundación Canaria Instituto de Investigación Sanitaria de Canarias (FIISC), Las Palmas de Gran Canaria/Tenerife, Spain
| | - Juan A. Díaz-Garrido
- Psychiatry Department, Hospital Universitario de Gran Canaria Dr. Negrín, Las Palmas de Gran Canaria, Spain
| | - Silvia Cañas
- Psychiatry Department, Complejo Hospitalario Universitario Insular Materno-Infantil de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Yolanda Ramallo-Fariña
- Fundación Canaria Instituto de Investigación Sanitaria de Canarias (FIISC), Las Palmas de Gran Canaria/Tenerife, Spain
- Network for Research on Chronicity, Primary Care, and Health Promotion (RICAPPS), Santa Cruz de Tenerife, Spain
- Servicio de Evaluación y Planificación del Servicio Canario de Salud (SESCS), Santa Cruz de Tenerife, Spain
- Instituto de Tecnologías Biomédicas (ITB), Universidad de la Laguna, Santa Cruz de Tenerife, Spain
| | - Horus Laffite
- Psychiatry Department, Hospital Universitario de Gran Canaria Dr. Negrín, Las Palmas de Gran Canaria, Spain
| | - Mario Federico
- Radiation Oncology Department, Hospital Universitario de Gran Canaria Dr. Negrín, Las Palmas de Gran Canaria, Spain
| | - Delvys Rodríguez-Abreu
- Medical Oncology Department, Complejo Hospitalario Universitario Insular Materno-Infantil de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Saray Galván
- Medical Oncology Department, Hospital Universitario de Gran Canaria Dr. Negrín, Las Palmas de Gran Canaria, Spain
| | - Carla García-Lourve
- Research Unit, Hospital Universitario de Gran Canaria Dr. Negrín, Las Palmas de Gran Canaria, Spain
- Fundación Canaria Instituto de Investigación Sanitaria de Canarias (FIISC), Las Palmas de Gran Canaria/Tenerife, Spain
| | - Damián González-Beltrán
- Research Unit, Hospital Universitario de Gran Canaria Dr. Negrín, Las Palmas de Gran Canaria, Spain
| | - Miguel A. Caramés
- Chronic Pain Unit, Hospital Universitario de Gran Canaria Dr. Negrín, Las Palmas de Gran Canaria, Spain
| | - Jose L. Hernández-Fleta
- Psychiatry Department, Hospital Universitario de Gran Canaria Dr. Negrín, Las Palmas de Gran Canaria, Spain
| | - Pedro Serrano-Aguilar
- Fundación Canaria Instituto de Investigación Sanitaria de Canarias (FIISC), Las Palmas de Gran Canaria/Tenerife, Spain
- Instituto de Tecnologías Biomédicas (ITB), Universidad de la Laguna, Santa Cruz de Tenerife, Spain
| | - Francisco Rodríguez-Esparragón
- Research Unit, Hospital Universitario de Gran Canaria Dr. Negrín, Las Palmas de Gran Canaria, Spain
- Fundación Canaria Instituto de Investigación Sanitaria de Canarias (FIISC), Las Palmas de Gran Canaria/Tenerife, Spain
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias de la Universidad de La Laguna, Santa Cruz de Tenerife, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
12
|
Liu J, Wang J, Xiong A, Zhang L, Zhang Y, Liu Y, Xiong Y, Li G, He X. Mitochondrial quality control in lung diseases: current research and future directions. Front Physiol 2023; 14:1236651. [PMID: 37538379 PMCID: PMC10395103 DOI: 10.3389/fphys.2023.1236651] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 07/12/2023] [Indexed: 08/05/2023] Open
Abstract
Lung diseases are a major global health problem, affecting millions of people worldwide. Recent research has highlighted the critical role that mitochondrial quality control plays in respiratory-related diseases, including chronic obstructive pulmonary disease (COPD), lung cancer, and idiopathic pulmonary fibrosis (IPF). In this review, we summarize recent findings on the involvement of mitochondrial quality control in these diseases and discuss potential therapeutic strategies. Mitochondria are essential organelles for energy production and other cellular processes, and their dysfunction is associated with various diseases. The quality control of mitochondria involves a complex system of pathways, including mitophagy, mitochondrial biogenesis, fusion/fission dynamics, and regulation of gene expression. In COPD and lung cancer, mitochondrial quality control is often involved in disease development by influencing oxidative stress and apoptosis. In IPF, it appears to be involved in the disease process by participating in the cellular senescence process. Mitochondrial quality control is a promising target for therapeutic interventions in lung diseases. However, there are conflicting reports on different pathological processes, such as the role of mitochondrial autophagy in lung cancer, which pose difficulties in the study of targeted mitochondrial quality control drugs. Additionally, there seems to be a delicate balance between the mitochondrial quality control processes in the physiological state. Emerging evidence suggests that molecules such as PTEN-induced putative kinase 1 (PINK1), parkin RBR E3 ubiquitin protein ligase (PRKN), dynamin-related protein 1 (DRP1), and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1-α), as well as the signaling pathways they affect, play an important role in respiratory-related diseases. Targeting these molecules and pathways could contribute to the development of effective treatments for lung diseases. In conclusion, the involvement of mitochondrial quality control in lung diseases presents a promising new avenue for disease treatment. Further research is needed to better understand the complex mechanisms involved in the pathogenesis of respiratory diseases and to develop targeted therapies that could improve clinical outcomes.
Collapse
Affiliation(s)
- Jiliu Liu
- Laboratory of Allergy and Precision Medicine, School of Medicine, Southwest Jiaotong University, Chengdu Institute of Respiratory Health, The Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
- Department of Pulmonary and Critical Care Medicine, Chengdu Third People’s Hospital Branch of National Clinical Research Center for Respiratory Disease, Affiliated Hospital of ChongQing Medical University, Chengdu, China
| | - Junyi Wang
- Laboratory of Allergy and Precision Medicine, School of Medicine, Southwest Jiaotong University, Chengdu Institute of Respiratory Health, The Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
- Department of Pulmonary and Critical Care Medicine, Chengdu Third People’s Hospital Branch of National Clinical Research Center for Respiratory Disease, Affiliated Hospital of ChongQing Medical University, Chengdu, China
| | - Anying Xiong
- Laboratory of Allergy and Precision Medicine, School of Medicine, Southwest Jiaotong University, Chengdu Institute of Respiratory Health, The Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
- Department of Pulmonary and Critical Care Medicine, Chengdu Third People’s Hospital Branch of National Clinical Research Center for Respiratory Disease, Affiliated Hospital of ChongQing Medical University, Chengdu, China
| | - Lei Zhang
- Laboratory of Allergy and Precision Medicine, School of Medicine, Southwest Jiaotong University, Chengdu Institute of Respiratory Health, The Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
- Department of Pulmonary and Critical Care Medicine, Chengdu Third People’s Hospital Branch of National Clinical Research Center for Respiratory Disease, Affiliated Hospital of ChongQing Medical University, Chengdu, China
| | - Yi Zhang
- Laboratory of Allergy and Precision Medicine, School of Medicine, Southwest Jiaotong University, Chengdu Institute of Respiratory Health, The Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
- Department of Pulmonary and Critical Care Medicine, Chengdu Third People’s Hospital Branch of National Clinical Research Center for Respiratory Disease, Affiliated Hospital of ChongQing Medical University, Chengdu, China
| | - Yao Liu
- Laboratory of Allergy and Precision Medicine, School of Medicine, Southwest Jiaotong University, Chengdu Institute of Respiratory Health, The Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
- Department of Pulmonary and Critical Care Medicine, Chengdu Third People’s Hospital Branch of National Clinical Research Center for Respiratory Disease, Affiliated Hospital of ChongQing Medical University, Chengdu, China
| | - Ying Xiong
- Department of Pulmonary and Critical Care Medicine, Sichuan Friendship Hospital, Chengdu, China
| | - Guoping Li
- Laboratory of Allergy and Precision Medicine, School of Medicine, Southwest Jiaotong University, Chengdu Institute of Respiratory Health, The Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
- Department of Pulmonary and Critical Care Medicine, Chengdu Third People’s Hospital Branch of National Clinical Research Center for Respiratory Disease, Affiliated Hospital of ChongQing Medical University, Chengdu, China
| | - Xiang He
- Laboratory of Allergy and Precision Medicine, School of Medicine, Southwest Jiaotong University, Chengdu Institute of Respiratory Health, The Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
- Department of Pulmonary and Critical Care Medicine, Chengdu Third People’s Hospital Branch of National Clinical Research Center for Respiratory Disease, Affiliated Hospital of ChongQing Medical University, Chengdu, China
| |
Collapse
|
13
|
Wang Y, Li P, Cao Y, Liu C, Wang J, Wu W. Skeletal Muscle Mitochondrial Dysfunction in Chronic Obstructive Pulmonary Disease: Underlying Mechanisms and Physical Therapy Perspectives. Aging Dis 2023; 14:33-45. [PMID: 36818563 PMCID: PMC9937710 DOI: 10.14336/ad.2022.0603] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 06/03/2022] [Indexed: 11/18/2022] Open
Abstract
Skeletal muscle dysfunction (SMD) is a prevalent extrapulmonary complication and a significant independent prognostic factor in patients with chronic obstructive pulmonary disease (COPD). Mitochondrial dysfunction is one of the core factors that damage structure and function in COPD skeletal muscle and is closely related to smoke exposure, hypoxia, and insufficient physical activity. The currently known phenotypes of mitochondrial dysfunction are reduced mitochondrial content and biogenesis, impaired activity of mitochondrial respiratory chain complexes, and increased mitochondrial reactive oxygen species production. Significant progress has been made in research on physical therapy (PT), which has broad prospects for treating the abovementioned potential mitochondrial-function changes in COPD skeletal muscle. In terms of specific types of PT, exercise therapy can directly act on mitochondria and improve COPD SMD by increasing mitochondrial density, regulating mitochondrial biogenesis, upregulating mitochondrial respiratory function, and reducing oxidative stress. However, improvements in mitochondrial-dysfunction phenotype in COPD skeletal muscle due to different exercise strategies are not entirely consistent. Therefore, based on the elucidation of this phenotype, in this study, we analyzed the effect of exercise on mitochondrial dysfunction in COPD skeletal muscle and the regulatory mechanism thereof. We also provided a theoretical basis for exercise programs to rehabilitate this condition.
Collapse
Affiliation(s)
- Yingqi Wang
- Department of Sports Rehabilitation, Shanghai University of Sport, Shanghai, China.
| | - Peijun Li
- Department of Sports Rehabilitation, Shanghai University of Sport, Shanghai, China.
| | - Yuanyuan Cao
- Department of Sports Rehabilitation, Shanghai University of Sport, Shanghai, China.
| | - Chanjing Liu
- Department of Sports Rehabilitation, Shanghai University of Sport, Shanghai, China.
| | - Jie Wang
- School of Physical Education and Sport Training, Shanghai University of Sport, Shanghai, China.,Correspondence should be addressed to: Dr. Weibing Wu () and Dr. Jie Wang (), Shanghai University of Sport, Shanghai, China
| | - Weibing Wu
- Department of Sports Rehabilitation, Shanghai University of Sport, Shanghai, China.,Correspondence should be addressed to: Dr. Weibing Wu () and Dr. Jie Wang (), Shanghai University of Sport, Shanghai, China
| |
Collapse
|
14
|
Clavo B, Cánovas-Molina A, Ramallo-Fariña Y, Federico M, Rodríguez-Abreu D, Galván S, Ribeiro I, Marques da Silva SC, Navarro M, González-Beltrán D, Díaz-Garrido JA, Cazorla-Rivero S, Rodríguez-Esparragón F, Serrano-Aguilar P. Effects of Ozone Treatment on Health-Related Quality of Life and Toxicity Induced by Radiotherapy and Chemotherapy in Symptomatic Cancer Survivors. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1479. [PMID: 36674232 PMCID: PMC9859304 DOI: 10.3390/ijerph20021479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
(1) Background: The continuous improvement in cancer treatment has led to improvement in patients’ survival and a subsequent increase in the number of cancer survivors living with adverse side effects of cancer treatments, sometimes with a high and adverse impact on their health-related quality of life (HRQOL). Side effects of cancer treatments are frequently associated with chronic status of oxidative stress, inflammation, and/or ischemia. The potential for ozone treatment to modulate those processes and improve some of those adverse effects has previously been described. The aim of this study was to evaluate the effect of ozone treatment on the HRQOL and grade of toxicity in symptomatic cancer survivors. (2) Methods: Before and after ozone treatment, we assessed (i) the HRQOL (according to the EQ-5D-5L questionnaire) and (ii) the grade of toxicity (according to the Common Terminology Criteria for Adverse Events of the National Cancer Institute of EEUU (CTCAE v.5.0)) in 26 cancer survivors with chronic side effects of radiotherapy and chemotherapy. (3) Results: There was a significant (p < 0.001) improvement in the EQ-5D-5L index as per the self-reported outcome evaluation of patients’ health status. All the dimensions of the EQ-5D-5L questionnaire (mobility, self-care, activities, pain/discomfort, and anxiety/depression) and the self-evaluation of the health status using the visual analog scale were significantly improved (p < 0.05). The grade of toxicity was also significantly decreased (p < 0.001). (4) Conclusions: In cancer survivors with chronic side effects of cancer treatment, ozone treatment can improve the grade of toxicity and the HRQOL. These results merit additional research. Further studies are ongoing.
Collapse
Affiliation(s)
- Bernardino Clavo
- Research Unit, Hospital Universitario de Gran Canaria Dr. Negrín, 35019 Las Palmas de Gran Canaria, Spain
- Chronic Pain Unit, Dr. Negrín University Hospital, 35019 Las Palmas de Gran Canaria, Spain
- Radiation Oncology Department, Hospital Universitario Dr. Negrín, 35019 Las Palmas de Gran Canaria, Spain
- Fundación Canaria Instituto de Investigación Sanitaria de Canarias (FIISC), 35019 Las Palmas de Gran Canaria, Spain
- Universitary Institute for Research in Biomedicine and Health (iUIBS), Molecular and Translational Pharmacology Group, University of Las Palmas de Gran Canaria, 35016 Las Palmas de Gran Canaria, Spain
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, 38296 La Laguna, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Spanish Group of Clinical Research in Radiation Oncology (GICOR), 28290 Madrid, Spain
| | - Angeles Cánovas-Molina
- Research Unit, Hospital Universitario de Gran Canaria Dr. Negrín, 35019 Las Palmas de Gran Canaria, Spain
- Chronic Pain Unit, Dr. Negrín University Hospital, 35019 Las Palmas de Gran Canaria, Spain
- Fundación Canaria Instituto de Investigación Sanitaria de Canarias (FIISC), 35019 Las Palmas de Gran Canaria, Spain
| | - Yolanda Ramallo-Fariña
- Fundación Canaria Instituto de Investigación Sanitaria de Canarias (FIISC), 35019 Las Palmas de Gran Canaria, Spain
- Network for Research on Chronicity, Primary Care, and Health Promotion (RICAPPS), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Servicio de Evaluación y Planificación del Servicio Canario de Salud (SESCS), 38109 Santa Cruz de Tenerife, Spain
- Instituto de Tecnologías Biomédicas (ITB), Universidad de la Laguna, 38296 La Laguna, Spain
| | - Mario Federico
- Radiation Oncology Department, Hospital Universitario Dr. Negrín, 35019 Las Palmas de Gran Canaria, Spain
| | - Delvys Rodríguez-Abreu
- Medical Oncology Department, Complejo Hospitalario Universitario Insular Materno-Infantil de Gran Canaria, 35016 Las Palmas de Gran Canaria, Spain
| | - Saray Galván
- Medical Oncology Department, Hospital Universitario de Gran Canaria Dr. Negrín, 35019 Las Palmas de Gran Canaria, Spain
| | - Ivone Ribeiro
- Radiation Oncology Department, Hospital Universitario Dr. Negrín, 35019 Las Palmas de Gran Canaria, Spain
| | - Susana C. Marques da Silva
- Research Unit, Hospital Universitario de Gran Canaria Dr. Negrín, 35019 Las Palmas de Gran Canaria, Spain
- Chronic Pain Unit, Dr. Negrín University Hospital, 35019 Las Palmas de Gran Canaria, Spain
| | - Minerva Navarro
- Chronic Pain Unit, Dr. Negrín University Hospital, 35019 Las Palmas de Gran Canaria, Spain
| | - Damián González-Beltrán
- Research Unit, Hospital Universitario de Gran Canaria Dr. Negrín, 35019 Las Palmas de Gran Canaria, Spain
| | - Juan A. Díaz-Garrido
- Psychiatry Department, Hospital Universitario de Gran Canaria Dr. Negrín, 35019 Las Palmas de Gran Canaria, Spain
| | - Sara Cazorla-Rivero
- Research Unit, Hospital Universitario de Gran Canaria Dr. Negrín, 35019 Las Palmas de Gran Canaria, Spain
- Universidad de La Laguna, 38296 La Laguna, Spain
| | - Francisco Rodríguez-Esparragón
- Research Unit, Hospital Universitario de Gran Canaria Dr. Negrín, 35019 Las Palmas de Gran Canaria, Spain
- Fundación Canaria Instituto de Investigación Sanitaria de Canarias (FIISC), 35019 Las Palmas de Gran Canaria, Spain
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, 38296 La Laguna, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Pedro Serrano-Aguilar
- Network for Research on Chronicity, Primary Care, and Health Promotion (RICAPPS), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Servicio de Evaluación y Planificación del Servicio Canario de Salud (SESCS), 38109 Santa Cruz de Tenerife, Spain
- Instituto de Tecnologías Biomédicas (ITB), Universidad de la Laguna, 38296 La Laguna, Spain
| |
Collapse
|
15
|
The Mito-Hormetic Mechanisms of Ozone in the Clearance of SARS-CoV2 and in the COVID-19 Therapy. Biomedicines 2022; 10:biomedicines10092258. [PMID: 36140358 PMCID: PMC9496465 DOI: 10.3390/biomedicines10092258] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
An increasing body of evidence in the literature is reporting the feasibility of using medical ozone as a possible alternative and adjuvant treatment for COVID-19 patients, significantly reducing hospitalization time, pro-inflammatory indicators, and coagulation markers and improving blood oxygenation parameters. In addition to the well-described ability of medical ozone in counteracting oxidative stress through the upregulation of the main anti-oxidant and scavenging enzymes, oxygen–ozone (O2–O3) therapy has also proved effective in reducing chronic inflammation and the occurrence of immune thrombosis, two key players involved in COVID-19 exacerbation and severity. As chronic inflammation and oxidative stress are also reported to be among the main drivers of the long sequelae of SARS-CoV2 infection, a rising number of studies is investigating the potential of O2–O3 therapy to reduce and/or prevent the wide range of post-COVID (or PASC)-related disorders. This narrative review aims to describe the molecular mechanisms through which medical ozone acts, to summarize the clinical evidence on the use of O2–O3 therapy as an alternative and adjuvant COVID-19 treatment, and to discuss the emerging potential of this approach in the context of PASC symptoms, thus offering new insights into effective and safe nonantiviral therapies for the fighting of this devastating pandemic.
Collapse
|
16
|
Shojaei-Zarghani S, Fattahi MR, Kazemi A, Safarpour AR. Effects of garlic and its major bioactive components on non-alcoholic fatty liver disease: A systematic review and meta-analysis of animal studies. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022] Open
|
17
|
König B, Lahodny J. Ozone high dose therapy (OHT) improves mitochondrial bioenergetics in peripheral blood mononuclear cells. TRANSLATIONAL MEDICINE COMMUNICATIONS 2022; 7:17. [PMID: 35880042 PMCID: PMC9301618 DOI: 10.1186/s41231-022-00123-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 07/08/2022] [Indexed: 06/01/2023]
Abstract
BACKGROUND The worldwide increasing number of people with chronic diseases is pushing conventional therapy to its limits. The so-called Major AutoHaemo Therapy (MAH) has been used in many practices for years. Despite suspicions, especially the 10-passes ozone-high-dosis Therapy (OHT) has shown substantial benefits in chronic ailments. However, knowledge of scientifically based effects of high ozone concentrations are still rare. The present investigation focussed on verifying whether OHT may be linked to a beneficial effect on mitochondrial bioenergetics which can be expressed as a bioenergetic health index (BHI). METHODS We report on six patients which received OHT for preventive purposes twice within one week. The BHI in peripheral blood mononuclear cells (PBMC) is calculated from parameters of a cellular mitochondrial function assay, which gives insights into different aspects of mitochondrial function: 1) Basal oxygen consumption rate (OCR); 2) ATP-linked OCR and proton leak; 3) Maximal OCR and reserve capacity; 4) Non-mitochondrial OCR. RESULTS The results clearly show that the bioenergetic health index in PBMC improves significantly after just 2 OHT applications over a period of 1 week. The overall improvement of the BHI is based primarily on a significant increase in the reserve capacity and the maximum respiration of the mitochondria. The increase in non-mitochondrial oxygen consumption, which has a negative impact on the BHI value, is indicative for the Nrf-2 dependent activation of antioxidant and detoxifying enzymes activated through OHT. CONCLUSION These data demonstrate for the first time the beneficial effect of OHT on mitochondrial parameters. Thus, the results of this study suggest that OHT could be a safe and effective therapeutic option alone or as integrative and complementary support for pharmacological therapy in a variety of chronic and acute diseases where mitochondrial dysfunction plays a central role.
Collapse
Affiliation(s)
- Brigitte König
- Department of Medical Microbiology and Virology, University Clinic Leipzig, Liebigstrasse 21, Leipzig, Germany
| | - Johann Lahodny
- Private Department of Gynecology and General Medicine Univ. Doz. Dr. Johann Lahodny, Klostergasse 1A, St. Pölten, Austria
| |
Collapse
|
18
|
Brazão V, Colato RP, Santello FH, Duarte A, Goulart A, Sampaio PA, Pacheco Silva CB, Tirapelli CR, Costa RM, Tostes RC, do Prado JC. Melatonin regulates antioxidant defense and inflammatory response by activating Nrf2-dependent mechanisms and inhibiting NFkappaB expression in middle-aged T. cruzi infected rats. Exp Gerontol 2022; 167:111895. [PMID: 35843349 DOI: 10.1016/j.exger.2022.111895] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/05/2022] [Accepted: 07/11/2022] [Indexed: 12/29/2022]
Abstract
Oxidative stress with higher levels of leptin and inflammatory response are key processes related to pathogenesis of both T. cruzi infection and aging. Nuclear factor erythroid 2-related factor 2 (Nrf2) controls the expression of several genes implicated in the oxidative stress response in many pathological conditions. Melatonin is a pleiotropic hormone with, antioxidant, anti-inflammatory and anti-aging actions. Then, we hypothesized that Nrf2 response is impaired during the acute T. cruzi (9 days) infection and that melatonin rescues Nrf2 responses. Young (5 weeks-old) and middle-aged (18 months-old) male Wistar rats were infected with T. cruzi. Nrf2 translocation and markers of inflammation and oxidative stress were analyzed in blood and spleen. Increased apoptosis levels and oxidative stress indicators were observed in the rat spleen during T. cruzi infection. These responses were accompanied by decreased Nrf2 expression and increased expression of nuclear factor kappa B (NFκB). Melatonin (5 mg/kg/day; p.o. gavage) attenuated the superoxide anion (O2-) and hydrogen peroxide (H2O2) production induced by T. cruzi infection. Increased expressions of catalase and superoxide dismutase (SOD) were detected in the spleen of melatonin-treated rats infected with T. cruzi. Melatonin treatment inhibited the spleen NF-κB activation and downregulates the levels of circulating interleukin (IL)-4, IL-10 and tumor necrosis factor (TNF)-α in T. cruzi middle-aged infected rats. Increased levels of the chemokine CXCL1 in middle-aged control rats was observed, confirming that aging alters the production of this chemokine. In T. cruzi infected young animals, CXCL1 was up-regulated when compared to non-infected young ones. For young or middle-aged animals, melatonin treatment had no significant effect on CXCL1 levels. Our findings demonstrate an important role for Nrf2/NF-kB regulation as a possible mechanism by which melatonin attenuates oxidative stress, and provide new insights for further studies of this indoleamine as a therapeutic co-adjuvant agent against T. cruzi infection.
Collapse
Affiliation(s)
- Vânia Brazão
- College of Pharmaceutical Sciences of Ribeirão Preto (FCFRP), University of São Paulo, Ribeirão Preto, SP, Brazil.
| | - Rafaela Pravato Colato
- College of Pharmaceutical Sciences of Ribeirão Preto (FCFRP), University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Fabricia Helena Santello
- College of Pharmaceutical Sciences of Ribeirão Preto (FCFRP), University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Andressa Duarte
- College of Pharmaceutical Sciences of Ribeirão Preto (FCFRP), University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Amanda Goulart
- College of Pharmaceutical Sciences of Ribeirão Preto (FCFRP), University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Pedro Alexandre Sampaio
- College of Pharmaceutical Sciences of Ribeirão Preto (FCFRP), University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Carla B Pacheco Silva
- Department of Psychiatric Nursing and Human Sciences, Laboratory of Pharmacology, College of Nursing of Ribeirão Preto, USP, Ribeirão Preto, SP, Brazil
| | - Carlos Renato Tirapelli
- Department of Psychiatric Nursing and Human Sciences, Laboratory of Pharmacology, College of Nursing of Ribeirão Preto, USP, Ribeirão Preto, SP, Brazil
| | - Rafael M Costa
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirao Preto, SP, Brazil; Special Academic Unit of Health Sciences, Federal University of Jatai, Jatai, GO, Brazil
| | - Rita C Tostes
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirao Preto, SP, Brazil
| | - José Clóvis do Prado
- College of Pharmaceutical Sciences of Ribeirão Preto (FCFRP), University of São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
19
|
Role of Oxidative Stress in Cardiac Dysfunction and Subcellular Defects Due to Ischemia-Reperfusion Injury. Biomedicines 2022; 10:biomedicines10071473. [PMID: 35884777 PMCID: PMC9313001 DOI: 10.3390/biomedicines10071473] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 11/17/2022] Open
Abstract
Ischemia-reperfusion (I/R) injury is well-known to be associated with impaired cardiac function, massive arrhythmias, marked alterations in cardiac metabolism and irreversible ultrastructural changes in the heart. Two major mechanisms namely oxidative stress and intracellular Ca2+-overload are considered to explain I/R-induced injury to the heart. However, it is becoming apparent that oxidative stress is the most critical pathogenic factor because it produces myocardial abnormalities directly or indirectly for the occurrence of cardiac damage. Furthermore, I/R injury has been shown to generate oxidative stress by promoting the formation of different reactive oxygen species due to defects in mitochondrial function and depressions in both endogenous antioxidant levels as well as regulatory antioxidative defense systems. It has also been demonstrated to adversely affect a wide variety of metabolic pathways and targets in cardiomyocytes, various resident structures in myocardial interstitium, as well as circulating neutrophils and leukocytes. These I/R-induced alterations in addition to myocardial inflammation may cause cell death, fibrosis, inflammation, Ca2+-handling abnormalities, activation of proteases and phospholipases, as well as subcellular remodeling and depletion of energy stores in the heart. Analysis of results from isolated hearts perfused with or without some antioxidant treatments before subjecting to I/R injury has indicated that cardiac dysfunction is associated with the development of oxidative stress, intracellular Ca2+-overload and protease activation. In addition, changes in the sarcolemma and sarcoplasmic reticulum Ca2+-handling, mitochondrial oxidative phosphorylation as well as myofibrillar Ca2+-ATPase activities in I/R hearts were attenuated by pretreatment with antioxidants. The I/R-induced alterations in cardiac function were simulated upon perfusing the hearts with oxyradical generating system or oxidant. These observations support the view that oxidative stress may be intimately involved in inducing intracellular Ca2+-overload, protease activation, subcellular remodeling, and cardiac dysfunction as a consequence of I/R injury to the heart.
Collapse
|
20
|
Davydova EV, Osikov MV, Kaigorodtseva NV. Immune changes at the injured sites in oxazolone-induced ulcerous colitis: Influence of ozone therapy. MEDICAL IMMUNOLOGY (RUSSIA) 2022; 24:379-388. [DOI: 10.15789/1563-0625-ica-2467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Impaired immunoregulation and development of autoimmune response to antigens of own intestinal microbiota and inflammation-altered antigens of colonic cells represent the key links in pathogenesis of inflammatory bowel diseases. Multimodal biological effects of ozone presunme the usage of local and systemic ozone therapy in complex treatment of many inflammatory diseases of the gastrointestinal tract. The aim of our work was to study effects of intraperitoneal and rectal ozone therapy upon immune parameters of the lesion focus in oxazolone-induced ulcerative colitis in the course of time. The study was carried out on 64 adult male inbred Wistar rats weighing 240±20 g. Experimental ulcerative colitis was produced by oxazolone treatment (4-ethoxymethylene-2-phenyl-2-oxazolin-5-one) (SigmaAldrich, USA). The ozone-oxygen mixture was injected intraperitoneally or rectally at a concentration of 1.0-1.2 mg/l, once a day, in a volume of 10 ml, at the 6-day course. The results of experiments were recorded on the days +2, +4 and +6. The concentrations of IL-17 and IL-23 was determined in a homogenate of intestinal tissues (Bender Medsystems, Austria) using a Personal LAB analyzer; expression of CD4 and FoxP3 on intestinal lymphocytes was determined by immunohistochemistry technique (ElisaKit, China). The observed tissue damage of large intestine showed an increase from day 2 to day 6 of oxazolone-induced ulcerative colitis. The total number of lymphocytes significantly increased upon development of experimental colitis, with parallel decrease in the number of CD4+ lymphocytes and FoxP3-positive T lymphocytes. IL-17 and IL-23 concentrations in the tissues increased with the severity of inflammatory changes in the lesion focus. Intraperitoneal ozone administration was associated with significant reduction of lymphocyte contents in the damaged tissues on the 6th day, whereas the numbers of CD4+ and FoxP3 positive T lymphocytes normalized by the 6th day. The levels of IL-17 and IL-23 increased from day 2 to day 6, with a lower IL-23 values on day 6 as compared with non-treated animals. Rectal administration of ACS led to the normalization of FoxP3 cells on the 6th day to the values of intact animals. The levels of proinflammatory cytokines (IL-17 and IL-23) significantly decreased on the 6th day as compared to the group of animals without treatment, which could be due to anti-inflammatory properties of ozone.
Collapse
|
21
|
Pozzetti L, Ferrara F, Marotta L, Gemma S, Butini S, Benedusi M, Fusi F, Ahmed A, Pomponi S, Ferrari S, Perini M, Ramunno A, Pepe G, Campiglia P, Valacchi G, Carullo G, Campiani G. Extra Virgin Olive Oil Extracts of Indigenous Southern Tuscany Cultivar Act as Anti-Inflammatory and Vasorelaxant Nutraceuticals. Antioxidants (Basel) 2022; 11:antiox11030437. [PMID: 35326088 PMCID: PMC8944769 DOI: 10.3390/antiox11030437] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/14/2022] [Accepted: 02/17/2022] [Indexed: 02/01/2023] Open
Abstract
Extra virgin olive oil (EVOO) is the typical source of fats in the Mediterranean diet. While fatty acids are essential for the EVOO nutraceutical properties, multiple biological activities are also due to the presence of polyphenols. In this work, autochthonous Tuscany EVOOs were chemically characterized and selected EVOO samples were extracted to obtain hydroalcoholic phytocomplexes, which were assayed to establish their anti-inflammatory and vasorelaxant properties. The polar extracts were characterized via 1H-NMR and UHPLC-HRMS to investigate the chemical composition and assayed in CaCo-2 cells exposed to glucose oxidase or rat aorta rings contracted by phenylephrine. Apigenin and luteolin were found as representative flavones; other components were pinoresinol, ligstroside, and oleuropein. The extracts showed anti-inflammatory and antioxidant properties via modulation of NF-κB and Nrf2 pathways, respectively, and good vasorelaxant activity, both in the presence and absence of an intact endothelium. In conclusion, this study evaluated the nutraceutical properties of autochthonous Tuscany EVOO cv., which showed promising anti-inflammatory and vasorelaxant effects.
Collapse
Affiliation(s)
- Luca Pozzetti
- Department of Biotechnology, Chemistry and Pharmacy, DoE 2018–2022, University of Siena, 53100 Siena, Italy; (L.P.); (L.M.); (S.G.); (S.B.); (F.F.)
| | - Francesca Ferrara
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy; (F.F.); (M.B.)
| | - Ludovica Marotta
- Department of Biotechnology, Chemistry and Pharmacy, DoE 2018–2022, University of Siena, 53100 Siena, Italy; (L.P.); (L.M.); (S.G.); (S.B.); (F.F.)
| | - Sandra Gemma
- Department of Biotechnology, Chemistry and Pharmacy, DoE 2018–2022, University of Siena, 53100 Siena, Italy; (L.P.); (L.M.); (S.G.); (S.B.); (F.F.)
| | - Stefania Butini
- Department of Biotechnology, Chemistry and Pharmacy, DoE 2018–2022, University of Siena, 53100 Siena, Italy; (L.P.); (L.M.); (S.G.); (S.B.); (F.F.)
| | - Mascia Benedusi
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy; (F.F.); (M.B.)
| | - Fabio Fusi
- Department of Biotechnology, Chemistry and Pharmacy, DoE 2018–2022, University of Siena, 53100 Siena, Italy; (L.P.); (L.M.); (S.G.); (S.B.); (F.F.)
| | - Amer Ahmed
- Department of Life Sciences, University of Siena, 53100 Siena, Italy;
| | - Serena Pomponi
- Società Agricola Olivicoltori delle Colline del Cetona Società Cooperativa, 53100 Siena, Italy;
| | | | - Matteo Perini
- Fondazione Emund Mach, 38098 San Michele all’Adige (TN), Italy;
| | - Anna Ramunno
- Department of Pharmacy, University of Salerno, 84084 Fisciano (SA), Italy; (A.R.); (G.P.); (P.C.)
| | - Giacomo Pepe
- Department of Pharmacy, University of Salerno, 84084 Fisciano (SA), Italy; (A.R.); (G.P.); (P.C.)
| | - Pietro Campiglia
- Department of Pharmacy, University of Salerno, 84084 Fisciano (SA), Italy; (A.R.); (G.P.); (P.C.)
| | - Giuseppe Valacchi
- Department of Animal Science, Plants for Human Health Institute, NC State University, Kannapolis, NC 28081, USA;
- Department of Environmental Sciences and Prevention, University of Ferrara, 44121 Ferrara, Italy
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Korea
| | - Gabriele Carullo
- Department of Biotechnology, Chemistry and Pharmacy, DoE 2018–2022, University of Siena, 53100 Siena, Italy; (L.P.); (L.M.); (S.G.); (S.B.); (F.F.)
- Correspondence: (G.C.); (G.C.)
| | - Giuseppe Campiani
- Department of Biotechnology, Chemistry and Pharmacy, DoE 2018–2022, University of Siena, 53100 Siena, Italy; (L.P.); (L.M.); (S.G.); (S.B.); (F.F.)
- Correspondence: (G.C.); (G.C.)
| |
Collapse
|
22
|
Cheng WJ, Li P, Huang WY, Huang Y, Chen WJ, Chen YP, Shen JL, Chen JK, Long NS, Meng XJ. Acupuncture Relieves Stress-Induced Depressive Behavior by Reducing Oxidative Stress and Neuroapoptosis in Rats. Front Behav Neurosci 2022; 15:783056. [PMID: 35058758 PMCID: PMC8763975 DOI: 10.3389/fnbeh.2021.783056] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 11/30/2021] [Indexed: 11/13/2022] Open
Abstract
Oxidative stress is closely related to the occurrence of depression. Acupuncture has been proved to be an effective method for treating depression. In order to explore the mechanism of the antidepressant effect of acupuncture, this study performed acupuncture prevention on chronic unpredictable mild stress (CUMS) depression model rats, and observed the effect of acupuncture on hippocampal oxidative stress and Nrf2 signaling pathway. Male SD rats were randomly divided into control group, CUMS group, acupuncture group, and fluoxetine group (n = 10/group). Fluoxetine, a common antidepressant, was used as a positive control drug in this study. In the fluoxetine group, rats were given fluoxetine (2.1 mg/kg) intragastrically once a day for 28 days. The acupoints of Shangxing (GV23) and Fengfu (GV16) were applied in acupuncture group, once every other day for 14 times in total. Behavioral tests and biological detections were used to evaluate the effects of the interventions and the changes of factors related to oxidative stress, Nrf2 pathway, and neuronal apoptosis. The results showed that both acupuncture and fluoxetine could increase sugar preference rate in SPT and decrease immobility time in FST in depression model rats. It also significantly decreased oxidative stress products such as ROS and H2O2, and elevated the protein and mRNA expressions of Nrf2 and HO-1. From Nissl’s staining, there were more abundant nerve cells in two intervention groups compared with CUMS group. Plus, acupuncture down-regulated the expression levels of Bax and caspase-3 and up-regulated the expression of Bcl-2. Our findings indicate that acupuncture improved depression-like behaviors of CUMS rats. And CUMS-induced depression-like behaviors in rats were related to oxidative stress and neuronal apoptosis in hippocampus. Acupuncture showed antidepressant effects in reducing oxidative stress products via regulating the Nrf2/HO-1 signaling pathway so that prevented neuronal apoptosis.
Collapse
Affiliation(s)
- Wen-Jing Cheng
- Department of Traditional Chinese Medicine, School of Medicine, Xiamen University, Xiamen, China
- Shenzhen Research Institute of Xiamen University, Shenzhen, China
| | - Peng Li
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wen-Ya Huang
- Department of Traditional Chinese Medicine, School of Medicine, Xiamen University, Xiamen, China
- Institute of TCM-Related Comorbid Depression, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yang Huang
- Department of Traditional Chinese Medicine, School of Medicine, Xiamen University, Xiamen, China
| | - Wen-Jie Chen
- Department of Traditional Chinese Medicine, School of Medicine, Xiamen University, Xiamen, China
| | - Yi-Ping Chen
- Third Clinical College, Shanxi University of Traditional Chinese Medicine, Taiyuan, China
| | - Jun-Liang Shen
- Department of Traditional Chinese Medicine, School of Medicine, Xiamen University, Xiamen, China
| | - Jian-Kun Chen
- Department of Traditional Chinese Medicine, School of Medicine, Xiamen University, Xiamen, China
| | - Na-Sha Long
- Department of Traditional Chinese Medicine, School of Medicine, Xiamen University, Xiamen, China
| | - Xian-Jun Meng
- Department of Traditional Chinese Medicine, School of Medicine, Xiamen University, Xiamen, China
- Shenzhen Research Institute of Xiamen University, Shenzhen, China
- *Correspondence: Xian-Jun Meng,
| |
Collapse
|
23
|
Tretter V, Hochreiter B, Zach ML, Krenn K, Klein KU. Understanding Cellular Redox Homeostasis: A Challenge for Precision Medicine. Int J Mol Sci 2021; 23:ijms23010106. [PMID: 35008532 PMCID: PMC8745322 DOI: 10.3390/ijms23010106] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 12/16/2022] Open
Abstract
Living organisms use a large repertoire of anabolic and catabolic reactions to maintain their physiological body functions, many of which include oxidation and reduction of substrates. The scientific field of redox biology tries to understand how redox homeostasis is regulated and maintained and which mechanisms are derailed in diverse pathological developments of diseases, where oxidative or reductive stress is an issue. The term “oxidative stress” is defined as an imbalance between the generation of oxidants and the local antioxidative defense. Key mediators of oxidative stress are reactive species derived from oxygen, nitrogen, and sulfur that are signal factors at physiological concentrations but can damage cellular macromolecules when they accumulate. However, therapeutical targeting of oxidative stress in disease has proven more difficult than previously expected. Major reasons for this are the very delicate cellular redox systems that differ in the subcellular compartments with regard to their concentrations and depending on the physiological or pathological status of cells and organelles (i.e., circadian rhythm, cell cycle, metabolic need, disease stadium). As reactive species are used as signaling molecules, non-targeted broad-spectrum antioxidants in many cases will fail their therapeutic aim. Precision medicine is called to remedy the situation.
Collapse
|
24
|
Pereira RR, Nogueira BG, Milan B, Acacio BR, Freitas-Dell'Aqua CP, Souza MI, Sampaio BF. Use Low Ozone Dosages has Positive Effects on the Cooling and Cryopreservation of Equine Semen. J Equine Vet Sci 2021; 108:103800. [PMID: 34844202 DOI: 10.1016/j.jevs.2021.103800] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 09/22/2021] [Accepted: 10/25/2021] [Indexed: 12/15/2022]
Abstract
The aim of this study was to determine an ozone dosage capable of inducing pro-oxidation, and to verify its action on sperm cells during the process of cooling and cryopreservation of equine semen. In this study, we evaluated the ozone concentrations of 2µg/mL,15µg/mL, 30µg/mL e 60 µg/mL added in equine semen cooling and freezing extenders. Samples were evaluated for sperm kinetics patterns, function of sperm structures and lipid peroxidation. In the experiment, the concentration of 15 µg/mL showed higher total and progressive motility when comparing to control (60.3±3 and 40.7±3.4 vs. 54.9±4 e 35.0±4.4, respectively, P < .05) at M24 of cooling; The concentration of 2 µg/mL showed higher percentage of intact plasma and acrosomal membrane when comparing to control at M24 (51.1±3.6 vs. 46.1±3.9, P < .05), M24 after 30 minutes of incubation (43.4±3.1 versus 32.4±2.6, P <.05). The concentration of 2 µg/mL showed higher percentage of intact plasma and acrosomal membrane (P <.05) comparing to control at moments M0 (43.5±5.0 vs. 36.3±3.5), M30 (41.0±3,7 vs. 35.3±2,9) e M60 (39.0±7.0 vs. 31.4±5.4). Thus, it can be concluded that low doses of ozone can lead to a positive response in the sperm kinetics patterns and sperm structures after sperm storage at low temperatures. Higher concentrations (30 and 60 µg/mL) were harmful in the cooling and cryopreservation of equine semen.
Collapse
Affiliation(s)
- Raiza R Pereira
- School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu, Sao Paulo, Brazil
| | - Bruno G Nogueira
- Veterinary Medicine and Animal Science of the Federal University of Mato Grosso do Sul Foundation - FAMEZ/UFMS, Campo Grande, Mato Grosso do Sul, Brazil
| | - Bruno Milan
- Veterinary Medicine and Animal Science of the Federal University of Mato Grosso do Sul Foundation - FAMEZ/UFMS, Campo Grande, Mato Grosso do Sul, Brazil
| | - Bianca R Acacio
- Veterinary Medicine and Animal Science of the Federal University of Mato Grosso do Sul Foundation - FAMEZ/UFMS, Campo Grande, Mato Grosso do Sul, Brazil
| | - Camila P Freitas-Dell'Aqua
- School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu, Sao Paulo, Brazil
| | - Maria Il Souza
- Veterinary Medicine and Animal Science of the Federal University of Mato Grosso do Sul Foundation - FAMEZ/UFMS, Campo Grande, Mato Grosso do Sul, Brazil
| | - Breno Fb Sampaio
- Veterinary Medicine and Animal Science of the Federal University of Mato Grosso do Sul Foundation - FAMEZ/UFMS, Campo Grande, Mato Grosso do Sul, Brazil.
| |
Collapse
|
25
|
Ma X, Chen H, Cao L, Zhao S, Zhao C, Yin S, Hu H. 18β-glycyrrhetinic acid improves high-intensity exercise performance by promoting glucose-dependent energy production and inhibiting oxidative stress in mice. Phytother Res 2021; 35:6932-6943. [PMID: 34709693 DOI: 10.1002/ptr.7310] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 09/10/2021] [Accepted: 09/30/2021] [Indexed: 01/08/2023]
Abstract
It has been shown that 18β-glycyrrhetinic acid (18β-GA), the main bioactive compound of licorice, can modulate oxidative stress and metabolic processes in liver and skin. Given the critical role of oxidative stress and energy metabolism in exercise-induced fatigue, we hypothesized that 18β-GA could exert an ergogenic action by inhibiting excess reactive oxygen species (ROS) induction and promoting energy production in muscles. Mice were gavage-fed with 18β-GA for four consecutive days. Running ability was assessed based on the exhaustive treadmill test with high- and moderate-intensity. Western blot analysis, enzyme-linked immunosorbent assay, and immunofluorescence staining were used to measure the changes of muscle fatigue-related markers, oxidative stress status, and energy metabolism in response to 18β-GA exposure. Treatment with 18β-GA significantly increased the exhaustive running distance (~37%) in the high-intensity exercise, but not in the moderate-intensity exercise. Mechanistically, reduction of oxidative stress and induction of antioxidants (SOD, CAT, and GSH) by 18β-GA were observed. Moreover, 18β-GA treatment caused an improved preservation of muscle glycogen (12%), which was associated with upregulation of glucose transporter 4 (GLUT4) (91%) and increased insulin level (17%). The findings of the present study clearly suggest that 18β-GA holds excellent potential as a novel bioactive agent against high-intensity exercise-induced fatigue.
Collapse
Affiliation(s)
- Xuan Ma
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Hui Chen
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Lixing Cao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Shuang Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Chong Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Shutao Yin
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Hongbo Hu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
26
|
Paraskeuas V, Griela E, Bouziotis D, Fegeros K, Antonissen G, Mountzouris KC. Effects of Deoxynivalenol and Fumonisins on Broiler Gut Cytoprotective Capacity. Toxins (Basel) 2021; 13:729. [PMID: 34679022 PMCID: PMC8538483 DOI: 10.3390/toxins13100729] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/11/2021] [Accepted: 10/13/2021] [Indexed: 12/26/2022] Open
Abstract
Mycotoxins are a crucial problem for poultry production worldwide. Two of the most frequently found mycotoxins in feedstuffs are deoxynivalenol (DON) and fumonisins (FUM) which adversely affect gut health and poultry performance. The current knowledge on DON and FUM effects on broiler responses relevant for gut detoxification, antioxidant capacity, and health is still unclear. The aim of this study was to assess a range of selected molecular intestinal biomarkers for their responsiveness to the maximum allowable European Union dietary levels for DON (5 mg/kg) and FUM (20 mg/kg) in broilers. For the experimental purpose, a challenge diet was formulated, and biomarkers relevant for detoxification, antioxidant response, stress, inflammation, and integrity were profiled across the broiler intestine. The results reveal that DON significantly (p < 0.05) induced aryl hydrocarbon receptor (AhR) and cytochrome P450 enzyme (CYP) expression mainly at the duodenum. Moreover, DON and FUM had specific significant (p < 0.05) effects on the antioxidant response, stress, inflammation, and integrity depending on the intestinal segment. Consequently, broiler molecular responses to DON and FUM assessed via a powerful palette of biomarkers were shown to be mycotoxin and intestinal site specific. The study findings could be highly relevant for assessing various dietary bioactive components for protection against mycotoxins.
Collapse
Affiliation(s)
- Vasileios Paraskeuas
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (V.P.); (E.G.); (D.B.); (K.F.)
| | - Eirini Griela
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (V.P.); (E.G.); (D.B.); (K.F.)
| | - Dimitrios Bouziotis
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (V.P.); (E.G.); (D.B.); (K.F.)
| | - Konstantinos Fegeros
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (V.P.); (E.G.); (D.B.); (K.F.)
| | - Gunther Antonissen
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium;
| | - Konstantinos C. Mountzouris
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (V.P.); (E.G.); (D.B.); (K.F.)
| |
Collapse
|
27
|
Chirumbolo S, Valdenassi L, Simonetti V, Bertossi D, Ricevuti G, Franzini M, Pandolfi S. Insights on the mechanisms of action of ozone in the medical therapy against COVID-19. Int Immunopharmacol 2021; 96:107777. [PMID: 34020394 PMCID: PMC8112288 DOI: 10.1016/j.intimp.2021.107777] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/28/2021] [Accepted: 05/06/2021] [Indexed: 02/06/2023]
Abstract
An increasing amount of reports in the literature is showing that medical ozone (O3) is used, with encouraging results, in treating COVID-19 patients, optimizing pain and symptoms relief, respiratory parameters, inflammatory and coagulation markers and the overall health status, so reducing significantly how much time patients underwent hospitalization and intensive care. To date, aside from mechanisms taking into account the ability of O3 to activate a rapid oxidative stress response, by up-regulating antioxidant and scavenging enzymes, no sound hypothesis was addressed to attempt a synopsis of how O3 should act on COVID-19. The knowledge on how O3 works on inflammation and thrombosis mechanisms is of the utmost importance to make physicians endowed with new guns against SARS-CoV2 pandemic. This review tries to address this issue, so to expand the debate in the scientific community.
Collapse
Affiliation(s)
- Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy.
| | - Luigi Valdenassi
- SIOOT, High School in Oxygen Ozone Therapy, University of Pavia, Italy; SIOOT INTERNATIONAL, Communian Clinic, Gorle Bergamo, Italy
| | - Vincenzo Simonetti
- SIOOT, High School in Oxygen Ozone Therapy, University of Pavia, Italy; SIOOT INTERNATIONAL, Communian Clinic, Gorle Bergamo, Italy
| | - Dario Bertossi
- Department of Surgery, Dentistry, Paediatrics and Gynaecology Unit of Maxillo-Facial Surgery University of Verona, Verona, Italy
| | | | - Marianno Franzini
- SIOOT, High School in Oxygen Ozone Therapy, University of Pavia, Italy; SIOOT INTERNATIONAL, Communian Clinic, Gorle Bergamo, Italy
| | - Sergio Pandolfi
- SIOOT, High School in Oxygen Ozone Therapy, University of Pavia, Italy; SIOOT INTERNATIONAL, Communian Clinic, Gorle Bergamo, Italy; Villa Mafalda Clinics via Monte delle Gioie, Rome, Italy
| |
Collapse
|
28
|
Jin AP, Zhang QR, Yang CL, Ye S, Cheng HJ, Zheng YY. Up-regulation of CTRP12 ameliorates hypoxia/re-oxygenation-induced cardiomyocyte injury by inhibiting apoptosis, oxidative stress, and inflammation via the enhancement of Nrf2 signaling. Hum Exp Toxicol 2021; 40:2087-2098. [PMID: 34085554 DOI: 10.1177/09603271211021880] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
C1q/TNF-related protein 12 (CTRP12) has been reported to play a key role in coronary artery disease. However, whether CTRP12 plays a role in the regulation of myocardial ischemia-reperfusion injury is not fully understood. The goals of this work were to assess the possible relationship between CTRP12 and myocardial ischemia-reperfusion injury. Here, we exposed cardiomyocytes to hypoxia/re-oxygenation (H/R) to establish an in vitro cardiomyocyte injury model of myocardial ischemia-reperfusion injury. Our results showed that H/R treatment resulted in a decrease in CTRP12 expression in cardiomyocytes. The up-regulation of CTRP12 ameliorated H/R-induced cardiomyocyte injury via the down-regulation of apoptosis, oxidative stress, and inflammation. In contrast, the knockdown of CTRP12 enhanced cardiomyocyte sensitivity to H/R-induced cardiomyocyte injury. Further investigation showed that CTRP12 enhanced the levels of nuclear Nrf2 and increased the expression of Nrf2 target genes in cardiomyocytes exposed to H/R. However, the inhibition of Nrf2 markedly diminished CTRP12-overexpression-mediated cardioprotective effects against H/R injury. Overall, these data indicate that CTRP12 protects against H/R-induced cardiomyocyte injury by inhibiting apoptosis, oxidative stress, and inflammation via the enhancement of Nrf2 signaling. This work suggests a potential role of CTRP12 in myocardial ischemia-reperfusion injury and proposes it as an attractive target for cardioprotection.
Collapse
Affiliation(s)
- Ai-Ping Jin
- Geriatric Cardiovascular Department, 117799The Second Affiliated Hospital of Xi'an Jiaotong University (Xibei Hospital), Xi'an, Shaanxi Province, China
| | - Qian-Rong Zhang
- Geriatric Cardiovascular Department, 117799The Second Affiliated Hospital of Xi'an Jiaotong University (Xibei Hospital), Xi'an, Shaanxi Province, China
| | - Cui-Ling Yang
- Geriatric Cardiovascular Department, 117799The Second Affiliated Hospital of Xi'an Jiaotong University (Xibei Hospital), Xi'an, Shaanxi Province, China
| | - Sha Ye
- Geriatric Cardiovascular Department, 117799The Second Affiliated Hospital of Xi'an Jiaotong University (Xibei Hospital), Xi'an, Shaanxi Province, China
| | - Hai-Juan Cheng
- Geriatric Cardiovascular Department, 117799The Second Affiliated Hospital of Xi'an Jiaotong University (Xibei Hospital), Xi'an, Shaanxi Province, China
| | - Yuan-Yuan Zheng
- Geriatric Cardiovascular Department, 117799The Second Affiliated Hospital of Xi'an Jiaotong University (Xibei Hospital), Xi'an, Shaanxi Province, China
| |
Collapse
|
29
|
Sharma A, Shah M, Lakshmi S, Sane H, Captain J, Gokulchandran N, Khubchandani P, Pradeep MK, Gote P, Tuppekar B, Kulkarni P, Paranjape A, Pradhan R, Varghese R, Kasekar S, Nair V, Khanbande U. A pilot study for treatment of COVID-19 patients in moderate stage using intravenous administration of ozonized saline as an adjuvant treatment-registered clinical trial. Int Immunopharmacol 2021; 96:107743. [PMID: 33984718 PMCID: PMC8084612 DOI: 10.1016/j.intimp.2021.107743] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/15/2021] [Accepted: 04/27/2021] [Indexed: 12/27/2022]
Abstract
Objective Ozone therapy has tremendous therapeutic potential owing to its antiviral, anti-inflammatory and antioxidant properties, and potential to improve oxygenation. A pilot clinical trial was conducted to evaluate the safety and efficacy of intravenous ozonised saline treatment in patients with moderate COVID-19 pneumonia. Patients and Methods 10 patients were administered 200 ml freshly prepared ozonised saline intravenously over 1 h once a day for 8 days along with standard medical treatment. Clinical symptoms were monitored everyday and laboratory biomarkers, radiological findings at 1,3,6,10 days. Telephonic follow up was done for all after discharge till Day 14. 7 out of 10 patients required oxygen supplementation at recruitment. Results There was severe adverse event recorded in the study group. All patients improved from moderate to mild category in average 8 days and were discharged in average 9.7 days. None deteriorated to severe stage. All clinical symptoms resolved within 6 days and oxygen supplementation requirement reduced to none within 4.1 days. There was statistically significant reduction in CRP (p = 0.003), D-Dimer (p = 0.049), IL6 (p = 0.002) and statistically significant improvement (p = 0.001) in SpO2/FiO2 ratio. Change in LDH was borderline statistically not significant (p = 0.058). All patients showed significant resolution of bilateral interstitial infiltrates at the end of 10 days. Conclusion Resolved clinical symptoms, improved oxygenation, clearance of infiltrates on Chest X-ray and improvement in biomarkers in a short period with non-progression of the disease showed that IV ozonised saline therapy was safe and effective to prevent disease progression in COVID-19, making it an effective novel therapeutic tool.
Collapse
Affiliation(s)
- Alok Sharma
- Department of Medical Services and Clinical Research, NeuroGen Brain & Spine Institute, Navi Mumbai, India
| | - Mili Shah
- Training and Education, Ozone Forum of India, Mumbai, India
| | - Satya Lakshmi
- National Institute of Naturopathy, Ministry of AYUSH, Pune, India
| | - Hemangi Sane
- Department of Research & Development, NeuroGen Brain & Spine Institute, Navi Mumbai, India
| | | | - Nandini Gokulchandran
- Department of Medical Services and Clinical Research, NeuroGen Brain & Spine Institute, Navi Mumbai, India
| | - Pallavi Khubchandani
- Department of Medical Services and Clinical Research, NeuroGen Brain & Spine Institute, Navi Mumbai, India
| | | | - Prakash Gote
- Department of Medical Services and Clinical Research, NeuroGen Brain & Spine Institute, Navi Mumbai, India
| | - Balaji Tuppekar
- Department of Medical Services and Clinical Research, NeuroGen Brain & Spine Institute, Navi Mumbai, India
| | - Pooja Kulkarni
- Department of Research & Development, NeuroGen Brain & Spine Institute, Navi Mumbai, India.
| | - Amruta Paranjape
- Department of Research & Development, NeuroGen Brain & Spine Institute, Navi Mumbai, India
| | - Radhika Pradhan
- Department of Research & Development, NeuroGen Brain & Spine Institute, Navi Mumbai, India
| | - Ritu Varghese
- Department of Research & Development, NeuroGen Brain & Spine Institute, Navi Mumbai, India
| | - Sushil Kasekar
- Department of Medical Services and Clinical Research, NeuroGen Brain & Spine Institute, Navi Mumbai, India
| | - Vivek Nair
- Department of Medical Services and Clinical Research, NeuroGen Brain & Spine Institute, Navi Mumbai, India
| | - Ummeammara Khanbande
- Department of Medical Services and Clinical Research, NeuroGen Brain & Spine Institute, Navi Mumbai, India
| |
Collapse
|
30
|
Caffeic Acid, One of the Major Phenolic Acids of the Medicinal Plant Antirhea borbonica, Reduces Renal Tubulointerstitial Fibrosis. Biomedicines 2021; 9:biomedicines9040358. [PMID: 33808509 PMCID: PMC8065974 DOI: 10.3390/biomedicines9040358] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/25/2021] [Accepted: 03/27/2021] [Indexed: 12/16/2022] Open
Abstract
The renal fibrotic process is characterized by a chronic inflammatory state and oxidative stress. Antirhea borbonica (A. borbonica) is a French medicinal plant found in Reunion Island and known for its antioxidant and anti-inflammatory activities mostly related to its high polyphenols content. We investigated whether oral administration of polyphenol-rich extract from A. borbonica could exert in vivo a curative anti-renal fibrosis effect. To this aim, three days after unilateral ureteral obstruction (UUO), mice were daily orally treated either with a non-toxic dose of polyphenol-rich extract from A. borbonica or with caffeic acid (CA) for 5 days. The polyphenol-rich extract from A. borbonica, as well as CA, the predominant phenolic acid of this medicinal plant, exerted a nephroprotective effect through the reduction in the three phases of the fibrotic process: (i) macrophage infiltration, (ii) myofibroblast appearance and (iii) extracellular matrix accumulation. These effects were associated with the mRNA down-regulation of Tgf-β, Tnf-α, Mcp1 and NfkB, as well as the upregulation of Nrf2. Importantly, we observed an increased antioxidant enzyme activity for GPX and Cu/ZnSOD. Last but not least, desorption electrospray ionization-high resolution/mass spectrometry (DESI-HR/MS) imaging allowed us to visualize, for the first time, CA in the kidney tissue. The present study demonstrates that polyphenol-rich extract from A. borbonica significantly improves, in a curative way, renal tubulointerstitial fibrosis progression in the UUO mouse model.
Collapse
|
31
|
Effects of Diet and Phytogenic Inclusion on the Antioxidant Capacity of the Broiler Chicken Gut. Animals (Basel) 2021; 11:ani11030739. [PMID: 33800377 PMCID: PMC8001425 DOI: 10.3390/ani11030739] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 02/25/2021] [Accepted: 03/03/2021] [Indexed: 01/30/2023] Open
Abstract
Simple Summary Triggering of poultry capacity to resist challenge stressors could be vital for animal performance and health. Diet may serve as a tool for modulating animal response to oxidative stress. Within the context of a balanced diet, certain feed additives of plant origin, such as phytogenics, may confer additional cytoprotective effects. As gut health is a prerequisite for animal performance, this work delved into advancing our knowledge on dietary and phytogenic effects on the capacity of the poultry gut to counteract oxidative stress. Study findings showed that a reduction in dietary energy and protein intake by 5% primed important antioxidant responses especially upon phytogenic addition. The new knowledge could assist in devising nutritional management strategies for counteracting oxidative stress. Abstract The reduction in energy and protein dietary levels, whilst preserving the gut health of broilers, is warranted in modern poultry production. Phytogenic feed additives (PFAs) are purported to enhance performance and antioxidant capacity in broilers. However, few studies have assessed PFA effects on a molecular level related to antioxidant response. The aim of this study was to investigate the effects of administering two dietary types differing in energy and protein levels (L: 95% and H: 100% of hybrid optimal recommendations) supplemented with or without PFA (−, +) on gene expressions relevant for antioxidant response along the broiler gut. Interactions of diet type with PFA (i.e., treatments L−, L+, H−, H+) were determined for critical antioxidant and cyto-protective genes (i.e., nuclear factor erythroid 2-like 2 (Nrf2) pathway) and for the total antioxidant capacity (TAC) in the proximal gut. In particular, the overall antioxidant response along the broiler gut was increased upon reduced dietary energy and protein intake (diet type L) and consistently up-regulated by PFA addition. The study results provide a new mechanistic insight of diet and PFA functions with respect to the overall broiler gut antioxidant capacity.
Collapse
|
32
|
Izadi M, Cegolon L, Javanbakht M, Sarafzadeh A, Abolghasemi H, Alishiri G, Zhao S, Einollahi B, Kashaki M, Jonaidi-Jafari N, Asadi M, Jafari R, Fathi S, Nikoueinejad H, Ebrahimi M, Imanizadeh S, Ghazale AH. Ozone therapy for the treatment of COVID-19 pneumonia: A scoping review. Int Immunopharmacol 2021; 92:107307. [PMID: 33476982 PMCID: PMC7752030 DOI: 10.1016/j.intimp.2020.107307] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 12/13/2020] [Accepted: 12/14/2020] [Indexed: 01/25/2023]
Abstract
Severe forms of COVID-19 can evolve into pneumonia, featured by acute respiratory failure due to acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). In viral diseases, the replication of viruses is seemingly stimulated by an imbalance between pro-oxidant and antioxidant activity as well as by the deprivation of antioxidant mechanisms. In COVID-19 pneumonia, oxidative stress also appears to be highly detrimental to lung tissues. Although inhaling ozone (O3) gas has been shown to be toxic to the lungs, recent evidence suggests that its administration via appropriate routes and at small doses can paradoxically induce an adaptive reaction capable of decreasing the endogenous oxidative stress. Ozone therapy is recommended to counter the disruptive effects of severe COVID-19 on lung tissues, especially if administered in early stages of the disease, thereby preventing the progression to ARDS.
Collapse
Affiliation(s)
- Morteza Izadi
- Health Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Luca Cegolon
- Local Health Unit N. 2 "Marca Trevigiana", Public Health Department, Treviso, Italy
| | - Mohammad Javanbakht
- Nephrology and Urology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Ali Sarafzadeh
- Health Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Hassan Abolghasemi
- Pediatric Congenital Hematologic Disorders Research Center, Research Institute for Children's Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Faculty of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Gholamhossein Alishiri
- Chemical Injuries Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Shi Zhao
- JC School of Public Health and Primary Care, Chinese University of Hong Kong, Hong Kong, China
| | - Behzad Einollahi
- Nephrology and Urology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mandana Kashaki
- Shahid Akbarabadi Clinical Research Development, Unit (ShACRDU), Iran University of Medical Sciences (IUMS), Tehran, Iran
| | | | - Mosa Asadi
- Nephrology and Urology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ramezan Jafari
- Department of Radiology, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | | - Hassan Nikoueinejad
- Nephrology and Urology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mehrdad Ebrahimi
- Nephrology and Urology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Sina Imanizadeh
- Student Research Committee (SRC), Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Amir Hosein Ghazale
- Student Research Committee (SRC), Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
33
|
Osikov MV, Davydova EV, Abramov KS. Bone turnover markers in patients with isolated femoral shaft fracture undergoing systemic ozone therapy. BULLETIN OF RUSSIAN STATE MEDICAL UNIVERSITY 2021. [DOI: 10.24075/brsmu.2021.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Efferent physical therapy holds promise as an adjunct to the combination treatment of femoral fractures in young, working-age individuals. The aim of the study was to investigate the dynamics of bone turnover markers at different stages of femoral fracture consolidation in patients undergoing ozone therapy. The study enrolled 20 men (group 2, 47.8 ± 3.5 years) with a femoral shaft fracture (AO/ASIF 32А, 32В). The control group (group 1, 46.8 ± 3.7 years) comprised 10 healthy males. Subgroup 2a (n = 10) was assigned to receive standard therapy; subgroup 2b (n = 10) was assigned to receive standard therapy complemented by minor autohemotherapy (MAHT) at 20 mg/L ozone concentrations. On days 7, 30 and 90, fracture consolidation was assessed on the RUST scale and blood levels of С-terminal telopeptides of type I collagen (bCTx, pg/ml) and procollagen type I carboxy-terminal propeptide (PICP, ng/ml) were measured. On day 7, the total RUST score in subgroups 2a and 2b was 4 points; on day 30, it was 6.5 and 8.7 points, respectively, and on day 90, it reached 10 and 11.5 points, respectively. Bone mineral density was as high as 90% in the MAHT subgroup vs. 78% in subgroup 2а, indicating faster bone healing. On day 30, bCTx levels in subgroup 2b were higher than in subgroup 2a (2289.4 [2145.3; 2365.4] vs. 1894.6 [1745.3; 2098.2], respectively. On day 7, PICP was significantly elevated in subgroup 2b in comparison with subgroup 2a; its levels peaked on days 30 and 90 (day 30: 268.3 [231.2; 286.3] vs. 183.2 [174.6; 195.6]; day 90: 584.6 [512.3; 589.3] vs. 351.2 [312.3; 369.4]. Thus, MAHT produces a positive effect on the quality and intensity of bone healing in men with isolated closed femoral shaft fractures.
Collapse
Affiliation(s)
- MV Osikov
- South Ural State Medical University, Chelyabinsk, Russia
| | - EV Davydova
- South Ural State Medical University, Chelyabinsk, Russia
| | - KS Abramov
- South Ural State Medical University, Chelyabinsk, Russia
| |
Collapse
|
34
|
Osikov MV, Davydova EV, Abramov KS. (deleted). BULLETIN OF RUSSIAN STATE MEDICAL UNIVERSITY 2021. [DOI: 10.24075/10.24075/brsmu.2021.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Efferent physical therapy holds promise as an adjunct to the combination treatment of femoral fractures in young, working-age individuals. The aim of the study was to investigate the dynamics of bone turnover markers at different stages of femoral fracture consolidation in patients undergoing ozone therapy. The study enrolled 20 men (group 2, 47.8 ± 3.5 years) with a femoral shaft fracture (AO/ASIF 32А, 32В). The control group (group 1, 46.8 ± 3.7 years) comprised 10 healthy males. Subgroup 2a (n = 10) was assigned to receive standard therapy; subgroup 2b (n = 10) was assigned to receive standard therapy complemented by minor autohemotherapy (MAHT) at 20 mg/L ozone concentrations. On days 7, 30 and 90, fracture consolidation was assessed on the RUST scale and blood levels of С-terminal telopeptides of type I collagen (bCTx, pg/ml) and procollagen type I carboxy-terminal propeptide (PICP, ng/ml) were measured. On day 7, the total RUST score in subgroups 2a and 2b was 4 points; on day 30, it was 6.5 and 8.7 points, respectively, and on day 90, it reached 10 and 11.5 points, respectively. Bone mineral density was as high as 90% in the MAHT subgroup vs. 78% in subgroup 2а, indicating faster bone healing. On day 30, bCTx levels in subgroup 2b were higher than in subgroup 2a (2289.4 [2145.3; 2365.4] vs. 1894.6 [1745.3; 2098.2], respectively. On day 7, PICP was significantly elevated in subgroup 2b in comparison with subgroup 2a; its levels peaked on days 30 and 90 (day 30: 268.3 [231.2; 286.3] vs. 183.2 [174.6; 195.6]; day 90: 584.6 [512.3; 589.3] vs. 351.2 [312.3; 369.4]. Thus, MAHT produces a positive effect on the quality and intensity of bone healing in men with isolated closed femoral shaft fractures.
Collapse
Affiliation(s)
- MV Osikov
- South Ural State Medical University, Chelyabinsk, Russia
| | - EV Davydova
- South Ural State Medical University, Chelyabinsk, Russia
| | - KS Abramov
- South Ural State Medical University, Chelyabinsk, Russia
| |
Collapse
|
35
|
Wu Y, Xu J, Liu Y, Zeng Y, Wu G. A Review on Anti-Tumor Mechanisms of Coumarins. Front Oncol 2020; 10:592853. [PMID: 33344242 PMCID: PMC7746827 DOI: 10.3389/fonc.2020.592853] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 11/04/2020] [Indexed: 12/18/2022] Open
Abstract
Coumarins are a class of compound with benzopyrone as their basic structure. Due to abundant sources, easy synthesis, and various pharmacological activities, coumarins have attracted extensive attention from researchers. In particular, coumarins have very significant anti-tumor abilities and a variety of anti-tumor mechanisms, including inhibition of carbonic anhydrase, targeting PI3K/Akt/mTOR signaling pathways, inducing cell apoptosis protein activation, inhibition of tumor multidrug resistance, inhibition of microtubule polymerization, regulating the reactive oxygen species, and inhibition of tumor angiogenesis, etc. This review focuses on the mechanisms and the research progress of coumarins against cancers in recent years.
Collapse
Affiliation(s)
- Yi Wu
- School of Stomatology, Central South University, Changsha, China
| | - Jing Xu
- School of Stomatology, Central South University, Changsha, China
| | - Yiting Liu
- School of Stomatology, Central South University, Changsha, China
| | - Yiyu Zeng
- School of Stomatology, Central South University, Changsha, China
| | - Guojun Wu
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China
| |
Collapse
|
36
|
Nieman DC, Ferrara F, Pecorelli A, Woodby B, Hoyle AT, Simonson A, Valacchi G. Postexercise Inflammasome Activation and IL-1β Production Mitigated by Flavonoid Supplementation in Cyclists. Int J Sport Nutr Exerc Metab 2020; 30:396-404. [PMID: 32932235 DOI: 10.1123/ijsnem.2020-0084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/21/2020] [Accepted: 07/19/2020] [Indexed: 11/18/2022]
Abstract
Inflammasomes are multiprotein signaling platforms of the innate immune system that detect markers of physiological stress and promote the maturation of caspase-1 and interleukin 1 beta (IL-1β), IL-18, and gasdermin D. This randomized, cross-over trial investigated the influence of 2-week mixed flavonoid (FLAV) versus placebo (PL) supplementation on inflammasome activation and IL-1β and IL-18 production after 75-km cycling in 22 cyclists (42 ± 1.7 years). Blood samples were collected before and after the 2-week supplementation, and then 0 hr, 1.5 hr, and 21 hr postexercise (176 ± 5.4 min, 73.4 ± 2.0 %VO2max). The supplement (678 mg FLAVs) included quercetin, green tea catechins, and bilberry anthocyanins. The pattern of change in the plasma levels of the inflammasome adaptor oligomer ASC (apoptosis-associated speck-like protein containing caspase recruitment domain) was different between the FLAV and PL trials, with the FLAV ASC levels 52% lower (Cohen's d = 1.06) than PL immediately following 75-km cycling (interaction effect, p = .012). The plasma IL-1β levels in FLAV were significantly lower than PL (23-42%; Cohen's d = 0.293-0.644) throughout 21 hr of recovery (interaction effect, p = .004). The change in plasma gasdermin D levels were lower immediately postexercise in FLAV versus PL (15% contrast, p = .023; Cohen's d = 0.450). The patterns of change in plasma IL-18 and IL-37 did not differ between the FLAV and PL trials (interaction effects, p = .388, .716, respectively). These data indicate that 2-week FLAV ingestion mitigated inflammasome activation, with a corresponding decrease in IL-1β release in cyclists after a 75-km cycling time trial. The data from this study support the strategy of ingesting high amounts of FLAV to mitigate postexercise inflammation.
Collapse
|
37
|
Scassellati C, Galoforo AC, Bonvicini C, Esposito C, Ricevuti G. Ozone: a natural bioactive molecule with antioxidant property as potential new strategy in aging and in neurodegenerative disorders. Ageing Res Rev 2020; 63:101138. [PMID: 32810649 PMCID: PMC7428719 DOI: 10.1016/j.arr.2020.101138] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/14/2020] [Accepted: 08/04/2020] [Indexed: 02/07/2023]
Abstract
Systems medicine is founded on a mechanism-based approach and identifies in this way specific therapeutic targets. This approach has been applied for the transcription factor nuclear factor (erythroid-derived 2)-like 2 (Nrf2). Nrf2 plays a central role in different pathologies including neurodegenerative disorders (NDs), which are characterized by common pathogenetic features. We here present wide scientific background indicating how a natural bioactive molecule with antioxidant/anti-apoptotic and pro-autophagy properties such as the ozone (O3) can represent a potential new strategy to delay neurodegeneration. Our hypothesis is based on different evidence demonstrating the interaction between O3 and Nrf2 system. Through a meta-analytic approach, we found a significant modulation of O3 on endogenous antioxidant-Nrf2 (p < 0.00001, Odd Ratio (OR) = 1.71 95%CI:1.17-2.25) and vitagene-Nrf2 systems (p < 0.00001, OR = 1.80 95%CI:1.05-2.55). O3 activates also immune, anti-inflammatory signalling, proteasome, releases growth factors, improves blood circulation, and has antimicrobial activity, with potential effects on gut microbiota. Thus, we provide a consistent rationale to implement future clinical studies to apply the oxygen-ozone (O2-O3) therapy in an early phase of aging decline, when it is still possible to intervene before to potentially develop a more severe neurodegenerative pathology. We suggest that O3 along with other antioxidants (polyphenols, mushrooms) implicated in the same Nrf2-mechanisms, can show neurogenic potential, providing evidence as new preventive strategies in aging and in NDs.
Collapse
Affiliation(s)
- Catia Scassellati
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy.
| | - Antonio Carlo Galoforo
- Oxygen-Ozone Therapy Scientific Society (SIOOT), Gorle, Italy; University of Pavia, Pavia, Italy
| | - Cristian Bonvicini
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Ciro Esposito
- Department of Internal Medicine and Therapeutics, University of Pavia, Italy; Nephrology and dialysis unit, ICS S. Maugeri SPA SB Hospital, Pavia, Italy; High School in Geriatrics, University of Pavia, Italy
| | - Giovanni Ricevuti
- Department of Drug Sciences, University of Pavia, Italy; P.D. High School in Geriatrics, University of Pavia, Italy; St.Camillus Medical University, Rome, Italy
| |
Collapse
|
38
|
Fernández-Cuadros ME, Albaladejo-Florín MJ, Peña-Lora D, Álava-Rabasa S, Pérez-Moro OS. Ozone (O3) and SARS-CoV-2: Physiological Bases and Their Therapeutic Possibilities According to COVID-19 Evolutionary Stage. ACTA ACUST UNITED AC 2020; 2:1094-1102. [PMID: 32838159 PMCID: PMC7340747 DOI: 10.1007/s42399-020-00328-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/19/2020] [Indexed: 12/19/2022]
Abstract
To date, there is no definitive treatment for the new SARS-CoV-2 pandemic. Three evolutionary stages in SARS-CoV-2 infection are recognized (early infection, pulmonary phase, and systemic hyper inflammation), with characteristic clinical signs and symptoms. There are 80 international experimental trials underway seeking effective treatment for the COVID-19 pandemic. Of these, there are only three that consider ozone therapy (major auto hemotherapy) as an alternative option. There is no study that evaluates rectal ozone insufflation, despite being a safe, cheap, risk-free technique. That technique is a systemic route of ozone administration (95–96%) and that could be extrapolated to the use of SARS-CoV-2, given the excellent results observed in the management of Ebola. Ozone has four proven biological properties that could allow its use as an alternative therapy in the different phases of SARS-CoV-2 infection. Ozone could inactivate the virus by direct (O3) or indirect oxidation (ROS and LOPs) and could stimulate the cellular and humoral immune systems, being useful in the early COVID-19 infection phase (stages 1 and 2a). Ozone improves gas exchange, reduces inflammation, and modulates the antioxidant system, so it would be useful in the hyper inflammation or “cytokine storm” phase, and in the hypoxemia and/or multi-organ failure phase (stage 2b and stage 3). Given the current pandemic, it is urgent to carry out an experimental study that confirms or rules out the biological properties of ozone and thus allows it to be an alternative or compassionate therapy for the effective management of SARS-Cov-2 infection. The Ethical Committee at our Hospital has authorized the use of this technique for compassionate management of SARS-CoV-2 infection, considering the four biological Ozone properties exposed previously.
Collapse
Affiliation(s)
- Marcos Edgar Fernández-Cuadros
- Calle del Maestro Vives 2 y 3, Servicio de Medicina Física y Rehabilitación, Hospital Universitario Santa Cristina, CP28009 Madrid, Spain
| | - María Jesús Albaladejo-Florín
- Calle del Maestro Vives 2 y 3, Servicio de Medicina Física y Rehabilitación, Hospital Universitario Santa Cristina, CP28009 Madrid, Spain
| | - Daiana Peña-Lora
- Unidad de Geriatría, Hospital Universitario Santa Cristina, Madrid, Spain
| | - Sandra Álava-Rabasa
- Calle del Maestro Vives 2 y 3, Servicio de Medicina Física y Rehabilitación, Hospital Universitario Santa Cristina, CP28009 Madrid, Spain
| | - Olga Susana Pérez-Moro
- Calle del Maestro Vives 2 y 3, Servicio de Medicina Física y Rehabilitación, Hospital Universitario Santa Cristina, CP28009 Madrid, Spain
| |
Collapse
|
39
|
Mountzouris KC, Paraskeuas VV, Fegeros K. Priming of intestinal cytoprotective genes and antioxidant capacity by dietary phytogenic inclusion in broilers. ACTA ACUST UNITED AC 2020; 6:305-312. [PMID: 33005764 PMCID: PMC7503066 DOI: 10.1016/j.aninu.2020.04.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 04/08/2020] [Accepted: 04/21/2020] [Indexed: 12/11/2022]
Abstract
The potential of a phytogenic premix (PP) based on ginger, lemon balm, oregano and thyme to stimulate the expression of cytoprotective genes at the broiler gut level was evaluated in this study. In particular, the effects of PP inclusion levels on a selection of genes related to host protection against oxidation (catalase [CAT], superoxide dismutase 1 [SOD1], glutathione peroxidase 2 [GPX2], heme oxygenase 1 [HMOX1], NAD(P)H quinone dehydrogenase 1 [NQO1], nuclear factor (erythroid-derived 2)-like 2 [Nrf2] and kelch like ECH associated protein 1 [Keap1]), stress (heat shock 70 kDa protein 2 [HSP70] and heat shock protein 90 alpha family class A member 1 [HSP90]) and inflammation (nuclear factor kappa B subunit 1 [NF-κB1], Toll-like receptor 2 family member B (TLR2B) and Toll-like receptor 4 [TLR4]) were profiled along the broiler intestine. In addition, broiler intestinal segments were assayed for their total antioxidant capacity (TAC). Depending on PP inclusion level (i.e. 0, 750, 1,000 and 2,000 mg/kg diet) in the basal diets, 1-d-old Cobb broiler chickens (n = 500) were assigned into the following 4 treatments: CON, PP-750, PP-1000 and PP-2000. Each treatment had 5 replicates of 25 chickens with ad libitum access to feed and water. Data were analyzed by ANOVA and means compared using Tukey's honest significant difference (HSD) test. Polynomial contrasts tested the linear and quadratic effect of PP inclusion levels. Inclusion of PP increased (P ≤ 0.05) the expression of cytoprotective genes against oxidation, except CAT. In particular, the cytoprotective against oxidation genes were up-regulated primarily in the duodenum and the ceca and secondarily in the jejunum. Most of the genes were up-regulated in a quadratic manner with increasing PP inclusion level with the highest expression levels noted in treatments PP-750 and PP-1000 compared to CON. Similarly, intestinal TAC was higher in PP-1000 in the duodenum (P = 0.011) and the ceca (P = 0.050) compared to CON. Finally, increasing PP inclusion level resulted in linearly reduced (P ≤ 0.05) expression of NF-κB1, TLR4 and HSP70, the former in the duodenum and the latter 2 in the ceca. Overall, PP inclusion consistently up-regulated cytoprotective genes and down-regulated stress and inflammation related ones. The effect is dependent on PP inclusion level and the intestinal site. The potential of PP to beneficially prime bird cytoprotective responses merit further investigation under stress-challenge conditions.
Collapse
Affiliation(s)
| | - Vasileios V Paraskeuas
- Department of Nutritional Physiology and Feeding, Agricultural University of Athens, Greece
| | - Konstantinos Fegeros
- Department of Nutritional Physiology and Feeding, Agricultural University of Athens, Greece
| |
Collapse
|
40
|
Martínez-Sánchez G, Schwartz A, Di Donna V. Potential Cytoprotective Activity of Ozone Therapy in SARS-CoV-2/COVID-19. Antioxidants (Basel) 2020; 9:antiox9050389. [PMID: 32384798 PMCID: PMC7278582 DOI: 10.3390/antiox9050389] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 05/01/2020] [Accepted: 05/04/2020] [Indexed: 12/14/2022] Open
Abstract
(1) Background: The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) disease (COVID-19) in China at the end of 2019 has caused a large global outbreak. Systemic ozone therapy (OT) could be potentially useful in the clinical management of several complications secondary to SARS-CoV-2. The rationale and mechanism of action has already been proven clinically in other viral infections and has been shown in research studies to be highly effective at decreasing organ damage mediated by inflammation and oxidative stress. This review summarizes the OT studies that illustrate the possible cytoprotective mechanism of action of ozone and its physiological by-products in target organs affected by SARS-CoV-2. (2) Methods: This review encompasses a total of 74 peer-reviewed original articles. It is mainly focused on ozone as a modulator of the NF-κB/Nrf2 pathways and IL-6/IL-1β expression. (3) Results: In experimental models and the few existent clinical studies, homeostasis of the free radical and antioxidant balance by OT was associated with a modulation of NF-κB/Nrf2 balance and IL-6 and IL-1β expression. These molecular mechanisms support the cytoprotective effects of OT against tissue damage present in many inflammatory diseases, including viral infections. (4) Conclusions: The potential cytoprotective role of OT in the management of organ damage induced by COVID-19 merits further research. Controlled clinical trials are needed.
Collapse
|
41
|
Clavo B, Navarro M, Federico M, Borrelli E, Jorge IJ, Ribeiro I, Rodríguez-Melcon JI, Caramés MA, Santana-Rodríguez N, Rodríguez-Esparragón F. Ozone Therapy in Refractory Pelvic Pain Syndromes Secondary to Cancer Treatment: A New Approach Warranting Exploration. J Palliat Med 2020; 24:97-102. [PMID: 32379556 DOI: 10.1089/jpm.2019.0597] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Background: Chronic pain secondary to treatment in cancer survivors without tumor evidence is not unusual. Its management often requires specific approaches that are different from those applied for cancer patients with advanced disease and short life expectancy. Some studies have described clinical benefit with ozone therapy (O3T) in the management of pain and side effects secondary to cancer treatment. Objective: We present our preliminary experience with O3T in the management of refractory pelvic pain syndromes secondary to cancer treatment. Design: Case series. Subjects and Methods: Six cancer patients (without tumor evidence) who had been treated previously with radiotherapy, chemotherapy, or endoscopic procedures and were suffering persistent or severe pelvic pain (median 14 months) received O3T using ozone-oxygen gas mixture insufflation as a complementary therapy in addition to their scheduled conventional treatment. Results: All cases, except one, showed clinically relevant pain improvement. Visual analog scale score with the standard treatment was 7.8 ± 2.1 before O3T, 4.3 ± 3.4 (p = 0.049) after one month, 3.3 ± 3.7 (p = 0.024) after two months, and 2.8 ± 3.8 (p = 0.020) after three months of O3T. The median value of "pain symptom" according to the U.S. National Cancer Institute Common Terminology Criteria for Adverse Events v. 5.0 showed a decrease from 3 (range: 2-3) to 1 (range: 0-3) (p = 0.046). Conclusions: Following unsuccessful conventional treatments, O3T provided significant benefit in our patients with refractory pelvic pain secondary to cancer treatment. These results merit further evaluation in blinded, randomized clinical trials.
Collapse
Affiliation(s)
- Bernardino Clavo
- Research Unit, Dr. Negrín University Hospital, Las Palmas de Gran Canaria, Spain.,Chronic Pain Unit, and Dr. Negrín University Hospital, Las Palmas de Gran Canaria, Spain.,Radiation Oncology, Dr. Negrín University Hospital, Las Palmas de Gran Canaria, Spain.,BioPharm Group, Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain.,Grupo de Investigación Clínica en Oncología Radioterápica (GICOR), Madrid, Spain
| | - Minerva Navarro
- Chronic Pain Unit, and Dr. Negrín University Hospital, Las Palmas de Gran Canaria, Spain
| | - Mario Federico
- Radiation Oncology, Dr. Negrín University Hospital, Las Palmas de Gran Canaria, Spain
| | - Emma Borrelli
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Ignacio J Jorge
- Chronic Pain Unit, and Dr. Negrín University Hospital, Las Palmas de Gran Canaria, Spain
| | - Ivone Ribeiro
- Radiation Oncology, Dr. Negrín University Hospital, Las Palmas de Gran Canaria, Spain
| | | | - Miguel A Caramés
- Chronic Pain Unit, and Dr. Negrín University Hospital, Las Palmas de Gran Canaria, Spain
| | - Norberto Santana-Rodríguez
- BioPharm Group, Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain.,Section of Thoracic Surgery, Department of Surgery, King Faisal Specialist Hospital and Research Center, Riyadh, Kingdom of Saudi Arabia.,Department of Surgery, College of Medicine, Alfaisal University, Riyadh, Kingdom of Saudi Arabia
| | | |
Collapse
|
42
|
Oliveira MS, Tanaka LY, Antonio EL, Brandizzi LI, Serra AJ, Dos Santos L, Krieger JE, Laurindo FRM, Tucci PJF. Hyperbaric oxygenation improves redox control and reduces mortality in the acute phase of myocardial infarction in a rat model. Mol Med Rep 2020; 21:1431-1438. [PMID: 32016473 PMCID: PMC7003025 DOI: 10.3892/mmr.2020.10968] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 07/18/2019] [Indexed: 01/02/2023] Open
Abstract
Among the mechanisms of action of hyperbaric oxygenation (HBO), the chance of reducing injury by interfering with the mechanisms of redox homeostasis in the heart leads to the possibility of extending the period of viability of the myocardium at risk. This would benefit late interventions for reperfusion to the ischemic area. The objective of the present study was to investigate the changes in the redox system associated with HBO therapy maintained during the first hour after coronary occlusion in an acute myocardial infarction (MI) rat model. Surviving male rats (n=105) were randomly assigned to one of three groups: Sham (SH=26), myocardial infarction (MI=45) and infarction+hyperbaric therapy (HBO=34, 1 h at 2.5 atm). After 90 min of coronary occlusion, a sample of the heart was collected for western blot analysis of total protein levels of superoxide dismutase, catalase, peroxiredoxin and 3‑nitrotyrosine. Glutathione was measured by enzyme‑linked immunosorbent assay (ELISA). The detection of the superoxide radical anion was carried out by oxidation of dihydroethidium analyzed with confocal microscopy. The mortality rate of the MI group was significantly higher than that of the HBO group. No difference was noted in the myocardial infarction size. The oxidized/reduced glutathione ratio and peroxiredoxin were significantly higher in the SH and MI when compared to the HBO group. Superoxide dismutase enzymes and catalase were significantly higher in the HBO group compared to the MI and SH groups. 3‑Nitrotyrosine and the superoxide radical were significantly lower in the HBO group compared to these in the MI and SH groups. These data demonstrated that hyperbaric oxygenation therapy decreased mortality by improving redox control in the hearts of rats in the acute phase of myocardial infarction.
Collapse
Affiliation(s)
- Mario S Oliveira
- Division of Cardiology, Federal University of São Paulo (UNIFESP), São Paulo 04039‑032, Brazil
| | - Leonardo Y Tanaka
- Vascular Biology Laboratory, Heart Institute, University of São Paulo (USP), São Paulo 05403‑900, Brazil
| | - Ednei L Antonio
- Division of Cardiology, Federal University of São Paulo (UNIFESP), São Paulo 04039‑032, Brazil
| | - Laura I Brandizzi
- Vascular Biology Laboratory, Heart Institute, University of São Paulo (USP), São Paulo 05403‑900, Brazil
| | - Andrey J Serra
- Division of Cardiology, Federal University of São Paulo (UNIFESP), São Paulo 04039‑032, Brazil
| | - Leonardo Dos Santos
- Department of Physiological Sciences, Federal University of Espírito Santo (UFES), Vitória, Espírito Santo 29043‑215, Brazil
| | - José E Krieger
- Laboratory of Genetics and Molecular Cardiology, Heart Institute, University of São Paulo (USP), São Paulo 05403‑900, Brazil
| | - Francisco R M Laurindo
- Vascular Biology Laboratory, Heart Institute, University of São Paulo (USP), São Paulo 05403‑900, Brazil
| | - Paulo J F Tucci
- Division of Cardiology, Federal University of São Paulo (UNIFESP), São Paulo 04039‑032, Brazil
| |
Collapse
|
43
|
Scassellati C, Ciani M, Galoforo AC, Zanardini R, Bonvicini C, Geroldi C. Molecular mechanisms in cognitive frailty: potential therapeutic targets for oxygen-ozone treatment. Mech Ageing Dev 2020; 186:111210. [PMID: 31982474 DOI: 10.1016/j.mad.2020.111210] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 01/14/2020] [Accepted: 01/21/2020] [Indexed: 12/18/2022]
Abstract
In the last decade, cognitive frailty has gained great attention from the scientific community. It is characterized by high inflammation and oxidant state, endocrine and metabolic alterations, mitochondria dysfunctions and slowdown in regenerative processes and immune system, with a complex and multifactorial aetiology. Although several treatments are available, challenges regarding the efficacy and the costs persist. Here, we proposed an alternative non-pharmacological, non-side-effect, low cost therapy based on anti-inflammation, antioxidant, regenerative and anti-pathogens properties of ozone, through the activation of several molecular mechanisms (Nrf2-ARE, NF-κB, NFAT, AP-1, HIFα). We highlighted how these specific processes could be implicated in cognitive frailty to identify putative therapeutic targets for its treatment. The oxigen-ozone (O2-O3) therapy has never been tested for cognitive frailty. This work provides thus wide scientific background to build a consistent rationale for testing for the first time this therapy, that could modulate the immune, inflammatory, oxidant, metabolic, endocrine, microbiota and regenerative processes impaired in cognitive frailty. Although insights are needed, the O2-O3 therapy could represent a faster, easier, inexpensive monodomain intervention working in absence of side effects for cognitive frailty.
Collapse
Affiliation(s)
- Catia Scassellati
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Miriam Ciani
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Antonio Carlo Galoforo
- Oxygen-Ozone Therapy Scientific Society (SIOOT), Gorle, Italy; University of Pavia, Pavia, Italy
| | - Roberta Zanardini
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Cristian Bonvicini
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy.
| | - Cristina Geroldi
- Alzheimer Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| |
Collapse
|
44
|
Modulation of Oxidative Stress by Ozone Therapy in the Prevention and Treatment of Chemotherapy-Induced Toxicity: Review and Prospects. Antioxidants (Basel) 2019; 8:antiox8120588. [PMID: 31779159 PMCID: PMC6943601 DOI: 10.3390/antiox8120588] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/22/2019] [Accepted: 11/23/2019] [Indexed: 12/15/2022] Open
Abstract
(1) Background: Cancer is one of the leading causes of mortality worldwide. Radiotherapy and chemotherapy attempt to kill tumor cells by different mechanisms mediated by an intracellular increase of free radicals. However, free radicals can also increase in healthy cells and lead to oxidative stress, resulting in further damage to healthy tissues. Approaches to prevent or treat many of these side effects are limited. Ozone therapy can induce a controlled oxidative stress able to stimulate an adaptive antioxidant response in healthy tissue. This review describes the studies using ozone therapy to prevent and/or treat chemotherapy-induced toxicity, and how its effect is linked to a modification of free radicals and antioxidants. (2) Methods: This review encompasses a total of 13 peer-reviewed original articles (most of them with assessment of oxidative stress parameters) and some related works. It is mainly focused on four drugs: Cisplatin, Methotrexate, Doxorubicin, and Bleomycin. (3) Results: In experimental models and the few existing clinical studies, modulation of free radicals and antioxidants by ozone therapy was associated with decreased chemotherapy-induced toxicity. (4) Conclusions: The potential role of ozone therapy in the management of chemotherapy-induced toxicity merits further research. Randomized controlled trials are ongoing.
Collapse
|
45
|
Mixed Flavonoid Supplementation Attenuates Postexercise Plasma Levels of 4-Hydroxynonenal and Protein Carbonyls in Endurance Athletes. Int J Sport Nutr Exerc Metab 2019; 30:112–119. [PMID: 31754080 DOI: 10.1123/ijsnem.2019-0171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 09/07/2019] [Accepted: 09/08/2019] [Indexed: 11/18/2022]
Abstract
This double-blinded, placebo controlled, randomized crossover trial investigated the influence of 2-week mixed flavonoid versus placebo supplementation on oxinflammation markers after a 75-km cycling time trial in 22 cyclists (42.3 ± 1.7 years). Blood samples were collected before and after the 2-week supplementation, and then 0 hr, 1.5 hr, and 21 hr post 75-km cycling (176 ± 5.4 min, 73.4 ±2.0% maximal oxygen consumption). The supplement provided 678-mg flavonoids with quercetin (200 mg), green tea catechins (368 mg, 180-mg epigallocatechin gallate), and anthocyanins (128 mg) from bilberry extract, with caffeine, vitamin C, and omega-3 fatty acids added as adjuvants. Blood samples were analyzed for blood leukocyte counts, oxinflammation biomarkers, including 4-hydroxynonenal, protein carbonyls, and peripheral blood mononuclear mRNA expression for cyclooxygenease-2 and glutathione peroxidase. Each of the blood biomarkers was elevated postexercise (time effects, all ps < .01), with lower plasma levels for 4-hydroxynonenal (at 21-hr postexercise) in flavonoid versus placebo (interaction effect, p = .008). Although elevated postexercise, no trial differences for the neutrophil/lymphocyte ratio (p = .539) or peripheral blood mononuclear mRNA expression for cyclooxygenease-2 (p = .322) or glutathione peroxidase (p = .839) were shown. Flavonoid supplementation prior to intensive exercise decreased plasma peroxidation and oxidative damage, as determined by 4-hydroxynonenal. Postexercise increases were similar between the flavonoid and placebo trials for peripheral blood mononuclear mRNA expression for cyclooxygenease-2 and the nuclear factor erythroid 2-related factor 2 related gene glutathione peroxidase (NFE2L2). The data support the strategy of flavonoid supplementation to mitigate postexercise oxidative stress in endurance athletes.
Collapse
|
46
|
Kubo H, Asai K, Kojima K, Sugitani A, Kyomoto Y, Okamoto A, Yamada K, Ijiri N, Watanabe T, Hirata K, Kawaguchi T. Exercise Ameliorates Emphysema Of Cigarette Smoke-Induced COPD In Mice Through The Exercise-Irisin-Nrf2 Axis. Int J Chron Obstruct Pulmon Dis 2019; 14:2507-2516. [PMID: 31814716 PMCID: PMC6862806 DOI: 10.2147/copd.s226623] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 10/31/2019] [Indexed: 01/12/2023] Open
Abstract
Background Oxidative stress is one of the important mechanisms underlying the pathogenesis of chronic obstructive pulmonary disease (COPD). Irisin is a type of myokine secreted from the muscle during exercise and acts against oxidative stress via nuclear factor erythroid 2-related factor 2 (Nrf2), a transcription factor with antioxidant properties. Here, we examined the emphysema suppressive effects of the exercise-irisin-Nrf2 axis in mice. Methods Mice were divided into three groups, namely, the control, smoking, and exercise + smoking groups. All mice from the smoking and exercise + smoking groups were exposed to cigarette smoke once a day. The mice from the exercise + smoking group were adapted to a treadmill once a day. To investigate the Nrf2 cascade, after 12 weeks, serum irisin concentration and Nrf2 and heme oxygenase-1 (HO-1) expression in the lung homogenate were determined. To evaluate cigarette smoke-induced COPD, the number of inflammatory cells in bronchoalveolar lavage fluid (BALF), mean linear intercept (MLI), and destructive index in the lung tissue were examined. Results Serum irisin concentration and the expression levels of Nrf2 and HO-1 in the lung homogenate were significantly higher in mice from the exercise + smoking group than in those from the control and smoking groups. The proportion of neutrophils in the BALF was significantly lower in the exercise + smoking group than in the smoking group. The MLI and destructive index were also significantly smaller in mice from the exercise + smoking group than mice from the smoking group. Conclusion Irisin secreted from the muscle during exercise may exert protective effects against oxidative stress via Nrf2 and HO-1, and ameliorate emphysema of cigarette smoke-induced COPD. The exercise-irisin-Nrf2 axis may serve as a novel target for COPD treatment.
Collapse
Affiliation(s)
- Hiroaki Kubo
- Department of Respiratory Medicine, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Kazuhisa Asai
- Department of Respiratory Medicine, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Kazuya Kojima
- Department of Respiratory Medicine, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Arata Sugitani
- Department of Respiratory Medicine, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Yohkoh Kyomoto
- Department of Respiratory Medicine, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Atsuko Okamoto
- Department of Respiratory Medicine, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Kazuhiro Yamada
- Department of Respiratory Medicine, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Naoki Ijiri
- Department of Respiratory Medicine, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Tetsuya Watanabe
- Department of Respiratory Medicine, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Kazuto Hirata
- Department of Respiratory Medicine, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Tomoya Kawaguchi
- Department of Respiratory Medicine, Graduate School of Medicine, Osaka City University, Osaka, Japan
| |
Collapse
|
47
|
Protective effects of hederagenic acid on PC12 cells against the OGD/R-induced apoptosis via activating Nrf2/ARE signaling pathway. Med Chem Res 2019. [DOI: 10.1007/s00044-019-02464-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
48
|
Tert-butylhydroquinone enhanced angiogenesis and astrocyte activation by activating nuclear factor-E2-related factor 2/heme oxygenase-1 after focal cerebral ischemia in mice. Microvasc Res 2019; 126:103891. [DOI: 10.1016/j.mvr.2019.103891] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 05/07/2019] [Accepted: 07/04/2019] [Indexed: 12/14/2022]
|
49
|
Liu WH, Shi LS, Chung MC, Chang TC, Lee SY. Antcamphin M Inhibits TLR4-Mediated Inflammatory Responses by Upregulating the Nrf2/HO-1 Pathway and Suppressing the NLRP3 Inflammasome Pathway in Macrophages. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2019; 47:1611-1626. [PMID: 31645125 DOI: 10.1142/s0192415x19500824] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The medicinal mushroom Antrodia cinnamomea has been demonstrated to have anti-inflammatory properties. However, the bioactive compounds in A. cinnamomea need further investigation. The present study aimed to understand the mechanism of action of antcamphin M, an ergostanoid isolated from A. cinnamomea mycelium and to clarify its underlying mechanisms of action. RAW264.7 cells were pretreated with the indicated concentrations of antcamphin M, prior to stimulation with lipopolysaccharide (LPS). Cell viability, production of nitric oxide (NO), prostaglandin E2 (PGE2), cytokines, and chemokines, as well as the inflammation-related signaling pathways were investigated. The study revealed that antcamphin M significantly decreased the LPS-induced production of NO, PGE2, pro-inflammatory cytokines, and keratinocyte chemoattractant CXCL1 (KC), along with the levels of inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2) proteins without significant cytotoxicity, indicating it had a better anti-inflammatory activity than that of gisenoside Rb1 and Rg1. Additionally, antcamphin M significantly inhibited the activation of MAPKs (p38, ERK, and JNK), NFκB, and components of the NLRP3 inflammasome (NLRP3, ASC, and caspase-1) signaling pathways and also increased the levels of nuclear factor erythroid-2-related factor (Nrf2) and heme oxygenase-1 (HO-1). These findings suggest that antcamphin M possesses potent anti-inflammatory activities and could be a potential candidate for the development of anti-inflammatory drugs.
Collapse
Affiliation(s)
- Wei-Hsiu Liu
- Department of Neurological Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.,Department of Surgery, School of Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Li-Shian Shi
- Department of Biotechnology, National Formosa University, Yunlin, Taiwan
| | - Min-Chieh Chung
- Graduate Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Tsu-Chung Chang
- Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan
| | - Shih-Yu Lee
- Graduate Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
50
|
Galiè M, Covi V, Tabaracci G, Malatesta M. The Role of Nrf2 in the Antioxidant Cellular Response to Medical Ozone Exposure. Int J Mol Sci 2019; 20:E4009. [PMID: 31426459 PMCID: PMC6720777 DOI: 10.3390/ijms20164009] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 08/15/2019] [Accepted: 08/15/2019] [Indexed: 02/07/2023] Open
Abstract
Ozone (O3) is a natural, highly unstable atmospheric gas that rapidly decomposes to oxygen. Although not being a radical molecule, O3 is a very strong oxidant and therefore it is potentially toxic for living organisms. However, scientific evidence proved that the effects of O3 exposure are dose-dependent: high dosages stimulate severe oxidative stress resulting in inflammatory response and tissue injury, whereas low O3 concentrations induce a moderate oxidative eustress activating antioxidant pathways. These properties make O3 a powerful medical tool, which can be used as either a disinfectant or an adjuvant agent in the therapy of numerous diseases. In this paper, the cellular mechanisms involved in the antioxidant response to O3 exposure will be reviewed with special reference to the activation of nuclear factor erythroid 2-related factor 2 (Nrf2) and its role in the efficacy of ozone therapy.
Collapse
Affiliation(s)
- Mirco Galiè
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie 8, I-37134 Verona, Italy
| | - Viviana Covi
- San Rocco Clinic, Via Monsignor G. V. Moreni 95, I-25018 Montichiari (BS), Italy
| | - Gabriele Tabaracci
- San Rocco Clinic, Via Monsignor G. V. Moreni 95, I-25018 Montichiari (BS), Italy
| | - Manuela Malatesta
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie 8, I-37134 Verona, Italy.
| |
Collapse
|