1
|
Brudenell EL, Pohare MB, Zafred D, Phipps J, Hornsby HR, Darby JF, Dai J, Liggett E, Cain KM, Barran PE, de Silva TI, Sayers JR. Efficient overexpression and purification of severe acute respiratory syndrome coronavirus 2 nucleocapsid proteins in Escherichia coli. Biochem J 2024; 481:669-682. [PMID: 38713013 PMCID: PMC11346444 DOI: 10.1042/bcj20240019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/30/2024] [Accepted: 05/07/2024] [Indexed: 05/08/2024]
Abstract
The fundamental biology of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) nucleocapsid protein (Ncap), its use in diagnostic assays and its potential application as a vaccine component have received considerable attention since the outbreak of the Covid19 pandemic in late 2019. Here we report the scalable expression and purification of soluble, immunologically active, SARS-CoV-2 Ncap in Escherichia coli. Codon-optimised synthetic genes encoding the original Ncap sequence and four common variants with an N-terminal 6His affinity tag (sequence MHHHHHHG) were cloned into an inducible expression vector carrying a regulated bacteriophage T5 synthetic promoter controlled by lac operator binding sites. The constructs were used to express Ncap proteins and protocols developed which allow efficient production of purified Ncap with yields of over 200 mg per litre of culture media. These proteins were deployed in ELISA assays to allow comparison of their responses to human sera. Our results suggest that there was no detectable difference between the 6His-tagged and untagged original Ncap proteins but there may be a slight loss of sensitivity of sera to other Ncap isolates.
Collapse
Affiliation(s)
- Emma L. Brudenell
- Sheffield Institute for Nucleic Acids and Florey Institute, Section of Infection and Immunity, Division of Clinical Medicine, School of Medicine and Population Health, The University of Sheffield, Beech Hill Road, Sheffield S10 2RX, U.K
| | - Manoj B. Pohare
- Sheffield Institute for Nucleic Acids and Florey Institute, Section of Infection and Immunity, Division of Clinical Medicine, School of Medicine and Population Health, The University of Sheffield, Beech Hill Road, Sheffield S10 2RX, U.K
| | - Domen Zafred
- Sheffield Institute for Nucleic Acids and Florey Institute, Section of Infection and Immunity, Division of Clinical Medicine, School of Medicine and Population Health, The University of Sheffield, Beech Hill Road, Sheffield S10 2RX, U.K
| | - Janine Phipps
- Sheffield Institute for Nucleic Acids and Florey Institute, Section of Infection and Immunity, Division of Clinical Medicine, School of Medicine and Population Health, The University of Sheffield, Beech Hill Road, Sheffield S10 2RX, U.K
| | - Hailey R. Hornsby
- Sheffield Institute for Nucleic Acids and Florey Institute, Section of Infection and Immunity, Division of Clinical Medicine, School of Medicine and Population Health, The University of Sheffield, Beech Hill Road, Sheffield S10 2RX, U.K
| | - John F. Darby
- Sheffield Institute for Nucleic Acids and Florey Institute, Section of Infection and Immunity, Division of Clinical Medicine, School of Medicine and Population Health, The University of Sheffield, Beech Hill Road, Sheffield S10 2RX, U.K
| | - Junxiao Dai
- Michael Barber Centre for Collaborative Mass Spectrometry, Department of Chemistry, Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
| | - Ellen Liggett
- Michael Barber Centre for Collaborative Mass Spectrometry, Department of Chemistry, Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
| | - Kathleen M. Cain
- Michael Barber Centre for Collaborative Mass Spectrometry, Department of Chemistry, Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
| | - Perdita E. Barran
- Michael Barber Centre for Collaborative Mass Spectrometry, Department of Chemistry, Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
| | - Thushan I. de Silva
- Sheffield Institute for Nucleic Acids and Florey Institute, Section of Infection and Immunity, Division of Clinical Medicine, School of Medicine and Population Health, The University of Sheffield, Beech Hill Road, Sheffield S10 2RX, U.K
| | - Jon R. Sayers
- Sheffield Institute for Nucleic Acids and Florey Institute, Section of Infection and Immunity, Division of Clinical Medicine, School of Medicine and Population Health, The University of Sheffield, Beech Hill Road, Sheffield S10 2RX, U.K
| |
Collapse
|
2
|
Niu X, Liu M, Yang S, Xu J, Hou YJ, Liu D, Tang Q, Zhu H, Wang Q. A recombination-resistant genome for live attenuated and stable PEDV vaccines by engineering the transcriptional regulatory sequences. J Virol 2023; 97:e0119323. [PMID: 37971221 PMCID: PMC10734454 DOI: 10.1128/jvi.01193-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/23/2023] [Indexed: 11/19/2023] Open
Abstract
IMPORTANCE Coronaviruses are important pathogens of humans and animals, and vaccine developments against them are imperative. Due to the ability to induce broad and prolonged protective immunity and the convenient administration routes, live attenuated vaccines (LAVs) are promising arms for controlling the deadly coronavirus infections. However, potential recombination events between vaccine and field strains raise a safety concern for LAVs. The porcine epidemic diarrhea virus (PEDV) remodeled TRS (RMT) mutant generated in this study replicated efficiently in both cell culture and in pigs and retained protective immunogenicity against PEDV challenge in pigs. Furthermore, the RMT PEDV was resistant to recombination and genetically stable. Therefore, RMT PEDV can be further optimized as a backbone for the development of safe LAVs.
Collapse
Affiliation(s)
- Xiaoyu Niu
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, Ohio, USA
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Mingde Liu
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, Ohio, USA
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Shaomin Yang
- Department of Pain Medicine, Shenzhen Nanshan People’s Hospital and the 6th Affiliated Hospital of Guangdong Medical University, Shenzhen, China
| | - Jiayu Xu
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Yixuan J. Hou
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, Ohio, USA
| | - Dongxiao Liu
- Department of Microbiology, Howard University College of Medicine, Washington, DC, USA
| | - Qiyi Tang
- Department of Microbiology, Howard University College of Medicine, Washington, DC, USA
| | - Hua Zhu
- Department of Microbiology and Molecular Genetics, UMDNJ-New Jersey Medical School, Newark, New Jersey, USA
| | - Qiuhong Wang
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, Ohio, USA
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
3
|
Pradeep S, Patil SM, Dharmashekara C, Jain A, Ramu R, Shirahatti PS, Mandal SP, Reddy P, Srinivasa C, Patil SS, Ortega-Castro J, Frau J, Flores-Holgúın N, Shivamallu C, Kollur SP, Glossman-Mitnik D. Molecular insights into the in silico discovery of corilagin from Terminalia chebula as a potential dual inhibitor of SARS-CoV-2 structural proteins. J Biomol Struct Dyn 2023; 41:10869-10884. [PMID: 36576118 DOI: 10.1080/07391102.2022.2158943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 12/10/2022] [Indexed: 12/29/2022]
Abstract
The spike (S) glycoprotein and nucleocapsid (N) proteins are the crucial pathogenic proteins of the Severe Acute Respiratory Syndrome Coronavirus-2 (SARS CoV-2) virus during its interaction with the host. Even FDA-approved drugs like dexamethasone and grazoprevir are not able to curb the viral progression inside the host and are reported with adverse effects on body metabolism. In this context, we aim to report corilagin a novel, potential dual inhibitor of S and N proteins from Terminalia chebula. The bioactive compounds of T. chebula were subjected to a series of computational investigations including molecular docking simulations, molecular dynamics (MD) simulations, binding free energy calculations, and PASS pharmacological analysis. The results obtained from these studies revealed that corilagin was highly interactive with the S (-8.9 kcal/mol) and N (-9.2 kcal/mol) proteins, thereby showing dual inhibition activity. It was also found to be stable enough to induce biological activity inside the inhibitor binding pocket of the target enzymes throughout the dynamics simulation run for 100 ns. This is also confirmed by the changes in the protein conformations, evaluated using free energy landscapes. Outcomes from this investigation identify corilagin as the lead potential dual inhibitor of S and N proteins of SARS-CoV-2, which could be taken for biological studies in near future.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sushma Pradeep
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education & Research, Mysuru, Karnataka, India
| | - Shashank M Patil
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education & Research, Mysuru, Karnataka, India
| | - Chandan Dharmashekara
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education & Research, Mysuru, Karnataka, India
| | - Anisha Jain
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education & Research, Mysuru, Karnataka, India
| | - Ramith Ramu
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education & Research, Mysuru, Karnataka, India
| | | | - Subhankar P Mandal
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, Karnataka, India
| | - Pruthvish Reddy
- Department of Biotechnology, Acharya Institute of Technology, Bengaluru, Karnataka, India
| | - Chandrashekar Srinivasa
- Department of Studies in Biotechnology, Davangere University, Shivagangotri, Karnataka, India
| | - Sharanagouda S Patil
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics (NIVEDI), Bengaluru, Karnataka, India
| | | | - Juan Frau
- Departament de Qúımica, Universitat de les Illes Balears, Palma de Malllorca, Spain
| | - Norma Flores-Holgúın
- Laboratorio Virtual NANOCOSMOS, Departamento de Medio Ambiente y Energ'ıa, Centro de Investigación en Materiales Avanzados, Chihuahua, Chih, México
| | - Chandan Shivamallu
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education & Research, Mysuru, Karnataka, India
| | - Shiva Prasad Kollur
- School of Physical Sciences, Amrita Vishwa Vidyapeetham, Mysuru Campus, Mysuru, Karnataka, India
| | - Daniel Glossman-Mitnik
- Laboratorio Virtual NANOCOSMOS, Departamento de Medio Ambiente y Energ'ıa, Centro de Investigación en Materiales Avanzados, Chihuahua, Chih, México
| |
Collapse
|
4
|
Boniardi I, Corona A, Basquin J, Basquin C, Milia J, Nagy I, Tramontano E, Zinzula L. Suramin inhibits SARS-CoV-2 nucleocapsid phosphoprotein genome packaging function. Virus Res 2023; 336:199221. [PMID: 37704176 PMCID: PMC10514558 DOI: 10.1016/j.virusres.2023.199221] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/27/2023] [Accepted: 09/10/2023] [Indexed: 09/15/2023]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic is fading, however its etiologic agent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues posing - despite the availability of licensed vaccines - a global health threat, due to the potential emergence of vaccine-resistant SARS-CoV-2 variants. This makes the development of new drugs against COVID-19 a persistent urgency and sets as research priority the validation of novel therapeutic targets within the SARS-CoV-2 proteome. Among these, a promising one is the SARS-CoV-2 nucleocapsid (N) phosphoprotein, a major structural component of the virion with indispensable role in packaging the viral genome into a ribonucleoprotein (RNP) complex, which also contributes to SARS-CoV-2 innate immune evasion by inhibiting the host cell type-I interferon (IFN-I) response. By combining miniaturized differential scanning fluorimetry with microscale thermophoresis, we found that the 100-year-old drug Suramin interacts with SARS-CoV-2 N-terminal domain (NTD) and C-terminal domain (CTD), thereby inhibiting their single-stranded RNA (ssRNA) binding function with low-micromolar Kd and IC50 values. Molecular docking suggests that Suramin interacts with basic NTD cleft and CTD dimer interface groove, highlighting three potentially druggable ssRNA binding sites. Electron microscopy shows that Suramin inhibits the formation in vitro of RNP complex-like condensates by SARS-CoV-2 N with a synthetic ssRNA. In a dose-dependent manner, Suramin also reduced SARS-CoV-2-induced cytopathic effect on Vero E6 and Calu-3 cells, partially reverting the SARS-CoV-2 N-inhibited IFN-I production in 293T cells. Our findings indicate that Suramin inhibits SARS-CoV-2 replication by hampering viral genome packaging, thereby representing a starting model for design of new COVID-19 antivirals.
Collapse
Affiliation(s)
- Irene Boniardi
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Martinsried 82152, Germany
| | - Angela Corona
- Department of Life and Environmental Sciences, University of Cagliari, Monserrato 09042, Italy
| | - Jerome Basquin
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Martinsried 82152, Germany
| | - Claire Basquin
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Martinsried 82152, Germany
| | - Jessica Milia
- Department of Life and Environmental Sciences, University of Cagliari, Monserrato 09042, Italy
| | - István Nagy
- Center of Research and Development, Eszterházy Károly Catholic University, Eger 3300, Hungary
| | - Enzo Tramontano
- Department of Life and Environmental Sciences, University of Cagliari, Monserrato 09042, Italy.
| | - Luca Zinzula
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Martinsried 82152, Germany.
| |
Collapse
|
5
|
Shukla E, Choudhury L, Rastogi S, Chawla A, Bhattacharya S, Kaushik U, Mittal M, Rathore AS, Pandey G. Improved Stability and Manufacturability of Nucleocapsid Antigens for SARS-CoV2 Diagnostics through Protein Engineering. Biomolecules 2023; 13:1524. [PMID: 37892206 PMCID: PMC10604654 DOI: 10.3390/biom13101524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
The COVID-19 pandemic has had a significant impact on human health management. A rapid diagnosis of SARS-CoV2 at the point-of-care (POC) is critical to prevent disease spread. As a POC device for remote settings, a LFIA should not require cold-chain maintenance and should be kept at normal temperatures. Antigen stability can be enhanced by addressing instability issues when dealing with fragile components, such as proteinaceous capture antigens. This study used immunologically guided protein engineering to enhance the capture nucleocapsid (NP) antigen stability of SARS-CoV2. A search of the IEDB database revealed that antibodies detecting epitopes are almost uniformly distributed over NP1-419. In contrast, N-terminal stretches of NP1-419 are theoretically more unstable than C-terminal stretches. We identified NP250-365 as a NP stretch with a low instability index and B-cell epitopes. Apart from NP1-419, two other variants (NP121-419 and NP250-365) were cloned, expressed, and purified. The degradation pattern of the proteins was observed on SDS-PAGE after three days of stability studies at -20 °C, 4 °C, and 37 °C. NP1-419 was the most degraded while NP250-365 exhibited the least degradation. Also, NP1-419, NP250-365, and NP121-419 reacted with purified antibodies from COVID-19 patient serum. Our results suggest that NP250-365 may be used as a stable capture antigen in LFIA devices to detect COVID-19.
Collapse
Affiliation(s)
- Esha Shukla
- Bioprocess and Bioproduct Development Laboratory, University School of Biotechnology, Guru Gobind Singh Indraprastha University, Dwarka, New Delhi 110078, India
| | - Lipsa Choudhury
- Bioprocess and Bioproduct Development Laboratory, University School of Biotechnology, Guru Gobind Singh Indraprastha University, Dwarka, New Delhi 110078, India
| | - Saurabh Rastogi
- Bioprocess and Bioproduct Development Laboratory, University School of Biotechnology, Guru Gobind Singh Indraprastha University, Dwarka, New Delhi 110078, India
| | - Arshmeet Chawla
- Bioprocess and Bioproduct Development Laboratory, University School of Biotechnology, Guru Gobind Singh Indraprastha University, Dwarka, New Delhi 110078, India
| | - Sanghati Bhattacharya
- Department of Chemical Engineering, Indian Institute of Technology New Delhi, Hauz Khas, New Delhi 110016, India
| | - Umesh Kaushik
- Medsource Ozone Biomedicals Pvt. Ltd., Parmeshwari Colony, Faridabad 121003, India
| | - Manan Mittal
- Medsource Ozone Biomedicals Pvt. Ltd., Parmeshwari Colony, Faridabad 121003, India
| | - Anurag Singh Rathore
- Department of Chemical Engineering, Indian Institute of Technology New Delhi, Hauz Khas, New Delhi 110016, India
| | - Gaurav Pandey
- Bioprocess and Bioproduct Development Laboratory, University School of Biotechnology, Guru Gobind Singh Indraprastha University, Dwarka, New Delhi 110078, India
| |
Collapse
|
6
|
Estelle AB, Forsythe HM, Yu Z, Hughes K, Lasher B, Allen P, Reardon PN, Hendrix DA, Barbar EJ. RNA structure and multiple weak interactions balance the interplay between RNA binding and phase separation of SARS-CoV-2 nucleocapsid. PNAS NEXUS 2023; 2:pgad333. [PMID: 37901441 PMCID: PMC10605006 DOI: 10.1093/pnasnexus/pgad333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 10/02/2023] [Indexed: 10/31/2023]
Abstract
The nucleocapsid (N) protein of SARS-CoV-2 binds viral RNA, condensing it inside the virion, and phase separating with RNA to form liquid-liquid condensates. There is little consensus on what differentiates sequence-independent N-RNA interactions in the virion or in liquid droplets from those with specific genomic RNA (gRNA) motifs necessary for viral function inside infected cells. To identify the RNA structures and the N domains responsible for specific interactions and phase separation, we use the first 1,000 nt of viral RNA and short RNA segments designed as models for single-stranded and paired RNA. Binding affinities estimated from fluorescence anisotropy of these RNAs to the two-folded domains of N (the NTD and CTD) and comparison to full-length N demonstrate that the NTD binds preferentially to single-stranded RNA, and while it is the primary RNA-binding site, it is not essential to phase separation. Nuclear magnetic resonance spectroscopy identifies two RNA-binding sites on the NTD: a previously characterized site and an additional although weaker RNA-binding face that becomes prominent when binding to the primary site is weak, such as with dsRNA or a binding-impaired mutant. Phase separation assays of nucleocapsid domains with double-stranded and single-stranded RNA structures support a model where multiple weak interactions, such as with the CTD or the NTD's secondary face promote phase separation, while strong, specific interactions do not. These studies indicate that both strong and multivalent weak N-RNA interactions underlie the multifunctional abilities of N.
Collapse
Affiliation(s)
- Aidan B Estelle
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA
| | - Heather M Forsythe
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA
| | - Zhen Yu
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA
| | - Kaitlyn Hughes
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA
| | - Brittany Lasher
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA
| | - Patrick Allen
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA
| | - Patrick N Reardon
- Oregon State University NMR Facility, Oregon State University, Corvallis, OR 97331, USA
| | - David A Hendrix
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA
- School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR 97331, USA
| | - Elisar J Barbar
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
7
|
Aloise C, Schipper JG, van Vliet A, Oymans J, Donselaar T, Hurdiss DL, de Groot RJ, van Kuppeveld FJM. SARS-CoV-2 nucleocapsid protein inhibits the PKR-mediated integrated stress response through RNA-binding domain N2b. PLoS Pathog 2023; 19:e1011582. [PMID: 37607209 PMCID: PMC10473545 DOI: 10.1371/journal.ppat.1011582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 09/01/2023] [Accepted: 07/27/2023] [Indexed: 08/24/2023] Open
Abstract
The nucleocapsid protein N of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) enwraps and condenses the viral genome for packaging but is also an antagonist of the innate antiviral defense. It suppresses the integrated stress response (ISR), purportedly by interacting with stress granule (SG) assembly factors G3BP1 and 2, and inhibits type I interferon responses. To elucidate its mode of action, we systematically deleted and over-expressed distinct regions and domains. We show that N via domain N2b blocks PKR-mediated ISR activation, as measured by suppression of ISR-induced translational arrest and SG formation. N2b mutations that prevent dsRNA binding abrogate these activities also when introduced in the intact N protein. Substitutions reported to block post-translation modifications of N or its interaction with G3BP1/2 did not have a detectable additive effect. In an encephalomyocarditis virus-based infection model, N2b - but not a derivative defective in RNA binding-prevented PKR activation, inhibited β-interferon expression and promoted virus replication. Apparently, SARS-CoV-2 N inhibits innate immunity by sequestering dsRNA to prevent activation of PKR and RIG-I-like receptors. Similar observations were made for the N protein of human coronavirus 229E, suggesting that this may be a general trait conserved among members of other orthocoronavirus (sub)genera.
Collapse
Affiliation(s)
- Chiara Aloise
- Virology Section, Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Jelle G. Schipper
- Virology Section, Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Arno van Vliet
- Virology Section, Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Judith Oymans
- Virology Section, Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Tim Donselaar
- Virology Section, Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Daniel L. Hurdiss
- Virology Section, Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Raoul J. de Groot
- Virology Section, Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Frank J. M. van Kuppeveld
- Virology Section, Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
8
|
Vandervaart JP, Inniss NL, Ling-Hu T, Minasov G, Wiersum G, Rosas-Lemus M, Shuvalova L, Achenbach CJ, Hultquist JF, Satchell KJF, Bachta KER. Serodominant SARS-CoV-2 Nucleocapsid Peptides Map to Unstructured Protein Regions. Microbiol Spectr 2023; 11:e0032423. [PMID: 37191546 PMCID: PMC10269789 DOI: 10.1128/spectrum.00324-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 04/28/2023] [Indexed: 05/17/2023] Open
Abstract
The SARS-CoV-2 nucleocapsid (N) protein is highly immunogenic, and anti-N antibodies are commonly used as markers for prior infection. While several studies have examined or predicted the antigenic regions of N, these have lacked consensus and structural context. Using COVID-19 patient sera to probe an overlapping peptide array, we identified six public and four private epitope regions across N, some of which are unique to this study. We further report the first deposited X-ray structure of the stable dimerization domain at 2.05 Å as similar to all other reported structures. Structural mapping revealed that most epitopes are derived from surface-exposed loops on the stable domains or from the unstructured linker regions. An antibody response to an epitope in the stable RNA binding domain was found more frequently in sera from patients requiring intensive care. Since emerging amino acid variations in N map to immunogenic peptides, N protein variation could impact detection of seroconversion for variants of concern. IMPORTANCE As SARS-CoV-2 continues to evolve, a structural and genetic understanding of key viral epitopes will be essential to the development of next-generation diagnostics and vaccines. This study uses structural biology and epitope mapping to define the antigenic regions of the viral nucleocapsid protein in sera from a cohort of COVID-19 patients with diverse clinical outcomes. These results are interpreted in the context of prior structural and epitope mapping studies as well as in the context of emergent viral variants. This report serves as a resource for synthesizing the current state of the field toward improving strategies for future diagnostic and therapeutic design.
Collapse
Affiliation(s)
- Jacob P. Vandervaart
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Nicole L. Inniss
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
- Center for Structural Biology of Infectious Diseases, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Ted Ling-Hu
- Department of Medicine, Division of Infectious Diseases, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - George Minasov
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
- Center for Structural Biology of Infectious Diseases, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Grant Wiersum
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
- Center for Structural Biology of Infectious Diseases, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Monica Rosas-Lemus
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
- Center for Structural Biology of Infectious Diseases, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Ludmilla Shuvalova
- Center for Structural Biology of Infectious Diseases, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
- Department of Pharmacology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Chad J. Achenbach
- Department of Medicine, Division of Infectious Diseases, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Judd F. Hultquist
- Department of Medicine, Division of Infectious Diseases, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Karla J. F. Satchell
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
- Center for Structural Biology of Infectious Diseases, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Kelly E. R. Bachta
- Department of Medicine, Division of Infectious Diseases, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
9
|
Korn SM, Dhamotharan K, Jeffries CM, Schlundt A. The preference signature of the SARS-CoV-2 Nucleocapsid NTD for its 5'-genomic RNA elements. Nat Commun 2023; 14:3331. [PMID: 37286558 DOI: 10.1038/s41467-023-38882-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 05/17/2023] [Indexed: 06/09/2023] Open
Abstract
The nucleocapsid protein (N) of SARS-CoV-2 plays a pivotal role during the viral life cycle. It is involved in RNA transcription and accounts for packaging of the large genome into virus particles. N manages the enigmatic balance of bulk RNA-coating versus precise RNA-binding to designated cis-regulatory elements. Numerous studies report the involvement of its disordered segments in non-selective RNA-recognition, but how N organizes the inevitable recognition of specific motifs remains unanswered. We here use NMR spectroscopy to systematically analyze the interactions of N's N-terminal RNA-binding domain (NTD) with individual cis RNA elements clustering in the SARS-CoV-2 regulatory 5'-genomic end. Supported by broad solution-based biophysical data, we unravel the NTD RNA-binding preferences in the natural genome context. We show that the domain's flexible regions read the intrinsic signature of preferred RNA elements for selective and stable complex formation within the large pool of available motifs.
Collapse
Affiliation(s)
- Sophie Marianne Korn
- Institute for Molecular Biosciences, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt/M., Germany
- Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt/M., Germany
| | - Karthikeyan Dhamotharan
- Institute for Molecular Biosciences, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt/M., Germany
- Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt/M., Germany
| | - Cy M Jeffries
- European Molecular Biology Laboratory (EMBL) Hamburg Site, c/o Deutsches Elektronen-Synchrotron, Notkestr. 85, 22607, Hamburg, Germany
| | - Andreas Schlundt
- Institute for Molecular Biosciences, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt/M., Germany.
- Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt/M., Germany.
| |
Collapse
|
10
|
Padroni G, Bikaki M, Novakovic M, Wolter AC, Rüdisser S, Gossert AD, Leitner A, Allain FHT. A hybrid structure determination approach to investigate the druggability of the nucleocapsid protein of SARS-CoV-2. Nucleic Acids Res 2023; 51:4555-4571. [PMID: 36928389 PMCID: PMC10201421 DOI: 10.1093/nar/gkad195] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 03/01/2023] [Accepted: 03/08/2023] [Indexed: 03/18/2023] Open
Abstract
The pandemic caused by SARS-CoV-2 has called for concerted efforts to generate new insights into the biology of betacoronaviruses to inform drug screening and development. Here, we establish a workflow to determine the RNA recognition and druggability of the nucleocapsid N-protein of SARS-CoV-2, a highly abundant protein crucial for the viral life cycle. We use a synergistic method that combines NMR spectroscopy and protein-RNA cross-linking coupled to mass spectrometry to quickly determine the RNA binding of two RNA recognition domains of the N-protein. Finally, we explore the druggability of these domains by performing an NMR fragment screening. This workflow identified small molecule chemotypes that bind to RNA binding interfaces and that have promising properties for further fragment expansion and drug development.
Collapse
Affiliation(s)
- Giacomo Padroni
- Institute of Biochemistry, Department of Biology, ETH Zurich, Hönggerbergring 64, 8093 Zürich, Switzerland
| | - Maria Bikaki
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Otto-Stern-Weg 3, 8093 Zürich, Switzerland
| | - Mihajlo Novakovic
- Institute of Biochemistry, Department of Biology, ETH Zurich, Hönggerbergring 64, 8093 Zürich, Switzerland
| | - Antje C Wolter
- Institute of Biochemistry, Department of Biology, ETH Zurich, Hönggerbergring 64, 8093 Zürich, Switzerland
| | - Simon H Rüdisser
- Biomolecular NMR Spectroscopy Platform, ETH Zurich, Hönggerbergring 64, 8093 Zürich, Switzerland
| | - Alvar D Gossert
- Biomolecular NMR Spectroscopy Platform, ETH Zurich, Hönggerbergring 64, 8093 Zürich, Switzerland
| | - Alexander Leitner
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Otto-Stern-Weg 3, 8093 Zürich, Switzerland
| | - Frederic H-T Allain
- Institute of Biochemistry, Department of Biology, ETH Zurich, Hönggerbergring 64, 8093 Zürich, Switzerland
| |
Collapse
|
11
|
Suramin Disturbs the Association of the N-Terminal Domain of SARS-CoV-2 Nucleocapsid Protein with RNA. Molecules 2023; 28:molecules28062534. [PMID: 36985506 PMCID: PMC10051649 DOI: 10.3390/molecules28062534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023] Open
Abstract
Suramin was originally used as an antiparasitic drug in clinics. Here, we demonstrate that suramin can bind to the N-terminal domain of SARS-CoV-2 nucleocapsid protein (N-NTD) and disturb its interaction with RNA. The BLI experiments showed that N-NTD interacts suramin with a dissociate constant (Kd = 2.74 μM) stronger than that of N-NTD with ssRNA-16 (Kd = 8.37 μM). Furthermore, both NMR titration experiments and molecular docking analysis suggested that suramin mainly binds to the positively charged cavity between the finger and the palm subdomains of N-NTD, and residues R88, R92, R93, I94, R95, K102 and A156 are crucial for N-NTD capturing suramin. Besides, NMR dynamics experiments showed that suramin-bound N-NTD adopts a more rigid structure, and the loop between β2-β3 exhibits fast motion on the ps-ns timescale, potentially facilitating suramin binding. Our findings not only reveal the molecular basis of suramin disturbing the association of SARS-CoV-2 N-NTD with RNA but also provide valuable structural information for the development of drugs against SARS-CoV-2.
Collapse
|
12
|
Chau BA, Chen V, Cochrane AW, Parent LJ, Mouland AJ. Liquid-liquid phase separation of nucleocapsid proteins during SARS-CoV-2 and HIV-1 replication. Cell Rep 2023; 42:111968. [PMID: 36640305 PMCID: PMC9790868 DOI: 10.1016/j.celrep.2022.111968] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 10/27/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
The leap of retroviruses and coronaviruses from animal hosts to humans has led to two ongoing pandemics and tens of millions of deaths worldwide. Retrovirus and coronavirus nucleocapsid proteins have been studied extensively as potential drug targets due to their central roles in virus replication, among which is their capacity to bind their respective genomic RNAs for packaging into nascent virions. This review focuses on fundamental studies of these nucleocapsid proteins and how their intrinsic abilities to condense through liquid-liquid phase separation (LLPS) contribute to viral replication. Therapeutic targeting of these condensates and methodological advances are also described to address future questions on how phase separation contributes to viral replication.
Collapse
Affiliation(s)
- Bao-An Chau
- HIV-1 RNA Trafficking Lab, Lady Davis Institute at the Jewish General Hospital, Montreal, QC H3T 1E2, Canada; Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada
| | - Venessa Chen
- HIV-1 RNA Trafficking Lab, Lady Davis Institute at the Jewish General Hospital, Montreal, QC H3T 1E2, Canada; Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada
| | - Alan W Cochrane
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Leslie J Parent
- Division of Infectious Diseases and Epidemiology, Departments of Medicine and Microbiology and Immunology, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Andrew J Mouland
- HIV-1 RNA Trafficking Lab, Lady Davis Institute at the Jewish General Hospital, Montreal, QC H3T 1E2, Canada; Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada; Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada.
| |
Collapse
|
13
|
Chauhan A, Avti PK, Shekhar N, Prajapat M, Sarma P, Sangwan N, Singh J, Bhattacharyya A, Kumar S, Kaur H, Sharma S, Prakash A, Medhi B. An insight into the simulation directed understanding of the mechanism in SARS CoV-2 N-CTD, dimer integrity, and RNA-binding: Identifying potential antiviral inhibitors. J Biomol Struct Dyn 2022; 40:13912-13924. [PMID: 34751101 DOI: 10.1080/07391102.2021.1996463] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Coronavirus 2019 is a transmissible disease and has caused havoc throughout the world. The present study identifies the novel potential antiviral inhibitors against the nucleocapsid C-terminal domain that aids in RNA-binding and replication. A total of 485,629 compounds were screened, and MD was performed. The trajectory analysis (DCCM & PCA), structural integrity, and degree of compaction depicted the protein-ligand complex stability (PDB-PISA and Rgyr). Results obtained from screening shortlists 13 compounds possessing high Docking score. Further, seven compounds had a permissible RMSD limit (3 Å), with robust RMSF. Post-MD analysis of the top two compounds (204 and 502), DCCM & PCA analysis show a positive atomic displacements correlation among residues of active sites-dimer (Chain A and Chain B) & residual clustering. The ΔGint of RNA-bound (-83.5 kcal/mol) and drug-bound N-CTD-204 (-40.8 kcal/mol) and 502(-39.7 kcal/mol) as compared to Apo (-35.95 kcal/mol) suggests stabilization of protein, with less RNA-binding possibility. The Rgyr values depict the loss of compactness on RNA-binding when compared to the drug-bound N-CTD complex. Further, overlapping the protein complexes (0 ns and 100 ns) display significant changes in RMSD of the protein (204-2.07 Å and 502-1.89 Å) as compared to the Apo (1.72 Å) and RNA-bound form (1.76 Å), suggesting strong interaction for compound 204 as compared to 502. ADMET profiling indicates that these compounds can be used for further experiments (in vitro and pre-clinical). Compound 204 could be a promising candidate for targeting the N-protein-RNA assembly and viral replication.
Collapse
Affiliation(s)
- Arushi Chauhan
- Department of Biophysics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Pramod K Avti
- Department of Biophysics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Nishant Shekhar
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Manisha Prajapat
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Phulen Sarma
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Namrata Sangwan
- Department of Biophysics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Jitender Singh
- Department of Biophysics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Anusuya Bhattacharyya
- Department of Ophthalmology, Government Medical College and Hospital, Chandigarh, India
| | - Subodh Kumar
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Hardeep Kaur
- Department of Pediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Saurabh Sharma
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Ajay Prakash
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Bikash Medhi
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
14
|
Chechetkin VR, Lobzin VV. Evolving ribonucleocapsid assembly/packaging signals in the genomes of the human and animal coronaviruses: targeting, transmission and evolution. J Biomol Struct Dyn 2022; 40:11239-11263. [PMID: 34338591 DOI: 10.1080/07391102.2021.1958061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
A world-wide COVID-19 pandemic intensified strongly the studies of molecular mechanisms related to the coronaviruses. The origin of coronaviruses and the risks of human-to-human, animal-to-human and human-to-animal transmission of coronaviral infections can be understood only on a broader evolutionary level by detailed comparative studies. In this paper, we studied ribonucleocapsid assembly-packaging signals (RNAPS) in the genomes of all seven known pathogenic human coronaviruses, SARS-CoV, SARS-CoV-2, MERS-CoV, HCoV-OC43, HCoV-HKU1, HCoV-229E and HCoV-NL63 and compared them with RNAPS in the genomes of the related animal coronaviruses including SARS-Bat-CoV, MERS-Camel-CoV, MHV, Bat-CoV MOP1, TGEV and one of camel alphacoronaviruses. RNAPS in the genomes of coronaviruses were evolved due to weakly specific interactions between genomic RNA and N proteins in helical nucleocapsids. Combining transitional genome mapping and Jaccard correlation coefficients allows us to perform the analysis directly in terms of underlying motifs distributed over the genome. In all coronaviruses, RNAPS were distributed quasi-periodically over the genome with the period about 54 nt biased to 57 nt and to 51 nt for the genomes longer and shorter than that of SARS-CoV, respectively. The comparison with the experimentally verified packaging signals for MERS-CoV, MHV and TGEV proved that the distribution of particular motifs is strongly correlated with the packaging signals. We also found that many motifs were highly conserved in both characters and positioning on the genomes throughout the lineages that make them promising therapeutic targets. The mechanisms of encapsidation can affect the recombination and co-infection as well.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Vladimir R Chechetkin
- Engelhardt Institute of Molecular Biology of Russian Academy of Sciences, Moscow, Russia
| | - Vasily V Lobzin
- School of Physics, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
15
|
Kimbrel J, Moon J, Avila-Herrera A, Martí JM, Thissen J, Mulakken N, Sandholtz SH, Ferrell T, Daum C, Hall S, Segelke B, Arrildt KT, Messenger S, Wadford DA, Jaing C, Allen JE, Borucki MK. Multiple Mutations Associated with Emergent Variants Can Be Detected as Low-Frequency Mutations in Early SARS-CoV-2 Pandemic Clinical Samples. Viruses 2022; 14:2775. [PMID: 36560780 PMCID: PMC9788161 DOI: 10.3390/v14122775] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/23/2022] [Accepted: 12/06/2022] [Indexed: 12/15/2022] Open
Abstract
Genetic analysis of intra-host viral populations provides unique insight into pre-emergent mutations that may contribute to the genotype of future variants. Clinical samples positive for SARS-CoV-2 collected in California during the first months of the pandemic were sequenced to define the dynamics of mutation emergence as the virus became established in the state. Deep sequencing of 90 nasopharyngeal samples showed that many mutations associated with the establishment of SARS-CoV-2 globally were present at varying frequencies in a majority of the samples, even those collected as the virus was first detected in the US. A subset of mutations that emerged months later in consensus sequences were detected as subconsensus members of intra-host populations. Spike mutations P681H, H655Y, and V1104L were detected prior to emergence in variant genotypes, mutations were detected at multiple positions within the furin cleavage site, and pre-emergent mutations were identified in the nucleocapsid and the envelope genes. Because many of the samples had a very high depth of coverage, a bioinformatics pipeline, "Mappgene", was established that uses both iVar and LoFreq variant calling to enable identification of very low-frequency variants. This enabled detection of a spike protein deletion present in many samples at low frequency and associated with a variant of concern.
Collapse
Affiliation(s)
- Jeffrey Kimbrel
- Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Joseph Moon
- Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | | | | | - James Thissen
- Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Nisha Mulakken
- Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | | | - Tyshawn Ferrell
- Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Chris Daum
- Lawrence Berkeley National Laboratory, US Department of Energy Joint Genome Institute, Berkeley, CA 94720, USA
| | - Sara Hall
- Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Brent Segelke
- Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | | | - Sharon Messenger
- Viral and Rickettsial Disease Laboratory, California Department of Public Health, Richmond, CA 94804, USA
| | - Debra A. Wadford
- Viral and Rickettsial Disease Laboratory, California Department of Public Health, Richmond, CA 94804, USA
| | - Crystal Jaing
- Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | | | | |
Collapse
|
16
|
Henri J, Minder L, Mohanasundaram K, Dilly S, Goupil-Lamy A, Di Primo C, Slama Schwok A. Neuropeptides, New Ligands of SARS-CoV-2 Nucleoprotein, a Potential Link between Replication, Inflammation and Neurotransmission. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27228094. [PMID: 36432196 PMCID: PMC9698730 DOI: 10.3390/molecules27228094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/13/2022] [Accepted: 11/15/2022] [Indexed: 11/23/2022]
Abstract
This work identifies new ligands of the nucleoprotein N of SARS-CoV-2 by in silico screening, which used a new model of N, built from an Alphafold model refined by molecular dynamic simulations. The ligands were neuropeptides, such as substance P (1-7) and enkephalin, bound at a large site of the C-terminal or associated with the N-terminal β-sheet. The BA4 and BA5 Omicron variants of N also exhibited a large site as in wt N, and an increased flexibility of the BA5 variant, enabling substance P binding. The binding sites of some ligands deduced from modeling in wt N were assessed by mutation studies in surface plasmon resonance experiments. Dynamic light scattering showed that the ligands impeded RNA binding to N, which likely inhibited replication. We suggest that the physiological role of these neuropeptides in neurotransmission, pain and vasodilation for cholecystokinin and substance P could be altered by binding to N. We speculate that N may link between viral replication and multiple pathways leading to long COVID-19 symptoms. Therefore, N may constitute a "danger hub" that needs to be inhibited, even at high cost for the host. Antivirals targeted to N may therefore reduce the risk of brain fog and stroke, and improve patients' health.
Collapse
Affiliation(s)
- Julien Henri
- Laboratoire de Biologie Computationnelle et Quantitative, Institut de Biologie Paris-Seine, UMR-CNRS 7238, Sorbonne Université, F-75005 Paris, France
| | - Laetitia Minder
- Institut Européen de Chimie et Biologie (IECB), CNRS, INSERM UAR 3033, US001, Univ. Bordeaux, F-33000 Bordeaux, France
| | - Kevin Mohanasundaram
- Saint Antoine Hospital, Centre de Recherche Saint Antoine, Sorbonne Université, Biology and Cancer Therapeutics, INSERM U938, F-75231 Paris, France
| | - Sébastien Dilly
- Saint Antoine Hospital, Centre de Recherche Saint Antoine, Sorbonne Université, Biology and Cancer Therapeutics, INSERM U938, F-75231 Paris, France
| | - Anne Goupil-Lamy
- Biovia, Dassault Systèmes, 10 Rue Marcel Dassault, CS40501, CEDEX, F-78946 Vélizy-Villacoublay, France
| | - Carmelo Di Primo
- CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, Univ. Bordeaux, F-33000 Bordeaux, France
| | - Anny Slama Schwok
- Saint Antoine Hospital, Centre de Recherche Saint Antoine, Sorbonne Université, Biology and Cancer Therapeutics, INSERM U938, F-75231 Paris, France
- Correspondence: or
| |
Collapse
|
17
|
Ravi V, Swaminathan A, Yadav S, Arya H, Pandey R. SARS-CoV-2 Variants of Concern and Variations within Their Genome Architecture: Does Nucleotide Distribution and Mutation Rate Alter the Functionality and Evolution of the Virus? Viruses 2022; 14:2499. [PMID: 36423107 PMCID: PMC9694950 DOI: 10.3390/v14112499] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/02/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
SARS-CoV-2 virus pathogenicity and transmissibility are correlated with the mutations acquired over time, giving rise to variants of concern (VOCs). Mutations can significantly influence the genetic make-up of the virus. Herein, we analyzed the SARS-CoV-2 genomes and sub-genomic nucleotide composition in relation to the mutation rate. Nucleotide percentage distributions of 1397 in-house-sequenced SARS-CoV-2 genomes were enumerated, and comparative analyses (i) within the VOCs and of (ii) recovered and mortality patients were performed. Fisher's test was carried out to highlight the significant mutations, followed by RNA secondary structure prediction and protein modeling for their functional impacts. Subsequently, a uniform dinucleotide composition of AT and GC was found across study cohorts. Notably, the N gene was observed to have a high GC percentage coupled with a relatively higher mutation rate. Functional analysis demonstrated the N gene mutations, C29144T and G29332T, to induce structural changes at the RNA level. Protein secondary structure prediction with N gene missense mutations revealed a differential composition of alpha helices, beta sheets, and coils, whereas the tertiary structure displayed no significant changes. Additionally, the N gene CTD region displayed no mutations. The analysis highlighted the importance of N protein in viral evolution with CTD as a possible target for antiviral drugs.
Collapse
Affiliation(s)
- Varsha Ravi
- INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, Division of Immunology and Infectious Disease Biology, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi 110007, India
| | - Aparna Swaminathan
- INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, Division of Immunology and Infectious Disease Biology, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi 110007, India
| | - Sunita Yadav
- INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, Division of Immunology and Infectious Disease Biology, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi 110007, India
| | - Hemant Arya
- INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, Division of Immunology and Infectious Disease Biology, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi 110007, India
| | - Rajesh Pandey
- INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, Division of Immunology and Infectious Disease Biology, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi 110007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
18
|
Discovery and structural characterization of chicoric acid as a SARS-CoV-2 nucleocapsid protein ligand and RNA binding disruptor. Sci Rep 2022; 12:18500. [PMID: 36323732 PMCID: PMC9628480 DOI: 10.1038/s41598-022-22576-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 10/17/2022] [Indexed: 01/06/2023] Open
Abstract
The nucleocapsid (N) protein plays critical roles in coronavirus genome transcription and packaging, representing a key target for the development of novel antivirals, and for which structural information on ligand binding is scarce. We used a novel fluorescence polarization assay to identify small molecules that disrupt the binding of the N protein to a target RNA derived from the SARS-CoV-2 genome packaging signal. Several phenolic compounds, including L-chicoric acid (CA), were identified as high-affinity N-protein ligands. The binding of CA to the N protein was confirmed by isothermal titration calorimetry, 1H-STD and 15N-HSQC NMR, and by the crystal structure of CA bound to the N protein C-terminal domain (CTD), further revealing a new modulatory site in the SARS-CoV-2 N protein. Moreover, CA reduced SARS-CoV-2 replication in cell cultures. These data thus open venues for the development of new antivirals targeting the N protein, an essential and yet underexplored coronavirus target.
Collapse
|
19
|
Luan X, Li X, Li Y, Su G, Yin W, Jiang Y, Xu N, Wang F, Cheng W, Jin Y, Zhang L, Eric Xu H, Xue Y, Zhang S. Antiviral drug design based on structural insights into the N-terminal domain and C-terminal domain of the SARS-CoV-2 nucleocapsid protein. Sci Bull (Beijing) 2022; 67:2327-2335. [PMID: 36317101 PMCID: PMC9605790 DOI: 10.1016/j.scib.2022.10.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/10/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022]
Abstract
Nucleocapsid (N) protein plays crucial roles in the life cycle of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), including the formation of ribonucleoprotein (RNP) complex with the viral RNA. Here we reported the crystal structures of the N-terminal domain (NTD) and C-terminal domain (CTD) of the N protein and an NTD-RNA complex. Our structures reveal a unique tetramer organization of NTD and identify a distinct RNA binding mode in the NTD-RNA complex, which could contribute to the formation of the RNP complex. We also screened small molecule inhibitors of N-NTD and N-CTD and discovered that ceftriaxone sodium, an antibiotic, can block the binding of RNA to NTD and inhibit the formation of the RNP complex. These results together could facilitate the further research of antiviral drug design targeting N protein.
Collapse
Affiliation(s)
- Xiaodong Luan
- School of Medicine, Tsinghua University, Beijing 100084, China,Department of Cardiology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China,Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xinming Li
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China,School of Life Science, Tsinghua University, Beijing 100084, China,Beijing Advanced Innovation Center for Structural Biology, Beijing 100084, China
| | - Yufan Li
- School of Medicine, Tsinghua University, Beijing 100084, China,Department of Cardiology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Gengchen Su
- School of Medicine, Tsinghua University, Beijing 100084, China,Department of Cardiology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Wanchao Yin
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yi Jiang
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Ning Xu
- School of Life Science, Tsinghua University, Beijing 100084, China,Beijing Advanced Innovation Center for Structural Biology, Beijing 100084, China
| | - Feng Wang
- WuxiBiortus Biosciences Co. Ltd, Jiangyin 214437, China
| | - Wang Cheng
- WuxiBiortus Biosciences Co. Ltd, Jiangyin 214437, China
| | - Ye Jin
- Department of Cardiology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Leike Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| | - H. Eric Xu
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China,University of Chinese Academy of Sciences, Beijing 100049, China,Corresponding authors
| | - Yi Xue
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China,School of Life Science, Tsinghua University, Beijing 100084, China,Beijing Advanced Innovation Center for Structural Biology, Beijing 100084, China,Corresponding authors
| | - Shuyang Zhang
- School of Medicine, Tsinghua University, Beijing 100084, China,Department of Cardiology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China,Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China,Corresponding authors
| |
Collapse
|
20
|
Shahanshah MFH, Anvitha D, Gupta V. In-silico screening to delineate novel antagonists to SARS-CoV-2 nucleocapsid protein. PHYSICS AND CHEMISTRY OF THE EARTH (2002) 2022; 127:103188. [PMID: 35757560 PMCID: PMC9212792 DOI: 10.1016/j.pce.2022.103188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 06/07/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
Since its inception, SARS-CoV-2 has crossed all borders and continues rampaging around the globe, causing profound economic damage and heavy burden on the scientific community and the healthcare fraternity and facilities. With the emergence of new variants, the global pandemic has prolonged and raised concerns regarding the existing therapies. Most of the identified mutants have the potential to exacerbate the already existing crisis. In line with the urgent need for promising antivirals against the novel coronavirus, we conducted an in-silico drug docking study using SeeSAR and other bioinformatics tools and identified prospective molecules that target the nucleocapsid protein of SARS-CoV-2. The highly conserved N protein plays a crucial role in viral assembly and pathogenicity by interacting with the host ribosomal subunits and suppressing nonsense mediated decay (NMD) of viral mRNA by the host cell. In the current study, FDA approved drugs were docked into pockets created within the N protein including the crucial conserved residues and analyzed for their affinity. The docked compounds give us novel plausible models that can be inspected further and paves way for the development of potent therapeutics against SARS-CoV-2.
Collapse
Affiliation(s)
| | - D Anvitha
- Ram Lal Anand College, University of Delhi, New Delhi, India
| | - Vandana Gupta
- Ram Lal Anand College, University of Delhi, New Delhi, India
| |
Collapse
|
21
|
Li S, Zandi R. Biophysical Modeling of SARS-CoV-2 Assembly: Genome Condensation and Budding. Viruses 2022; 14:2089. [PMID: 36298645 PMCID: PMC9611094 DOI: 10.3390/v14102089] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/12/2022] [Accepted: 09/16/2022] [Indexed: 11/18/2022] Open
Abstract
The COVID-19 pandemic caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has spurred unprecedented and concerted worldwide research to curtail and eradicate this pathogen. SARS-CoV-2 has four structural proteins: Envelope (E), Membrane (M), Nucleocapsid (N), and Spike (S), which self-assemble along with its RNA into the infectious virus by budding from intracellular lipid membranes. In this paper, we develop a model to explore the mechanisms of RNA condensation by structural proteins, protein oligomerization and cellular membrane-protein interactions that control the budding process and the ultimate virus structure. Using molecular dynamics simulations, we have deciphered how the positively charged N proteins interact and condense the very long genomic RNA resulting in its packaging by a lipid envelope decorated with structural proteins inside a host cell. Furthermore, considering the length of RNA and the size of the virus, we find that the intrinsic curvature of M proteins is essential for virus budding. While most current research has focused on the S protein, which is responsible for viral entry, and it has been motivated by the need to develop efficacious vaccines, the development of resistance through mutations in this crucial protein makes it essential to elucidate the details of the viral life cycle to identify other drug targets for future therapy. Our simulations will provide insight into the viral life cycle through the assembly of viral particles de novo and potentially identify therapeutic targets for future drug development.
Collapse
Affiliation(s)
- Siyu Li
- Songshan Lake Materials Laboratory, Dongguan 523808, China
| | - Roya Zandi
- Department of Physics and Astronomy, University of California Riverside, Riverside, CA 92521, USA
| |
Collapse
|
22
|
Frank F, Keen MM, Rao A, Bassit L, Liu X, Bowers HB, Patel AB, Cato ML, Sullivan JA, Greenleaf M, Piantadosi A, Lam WA, Hudson WH, Ortlund EA. Deep mutational scanning identifies SARS-CoV-2 Nucleocapsid escape mutations of currently available rapid antigen tests. Cell 2022; 185:3603-3616.e13. [PMID: 36084631 PMCID: PMC9420710 DOI: 10.1016/j.cell.2022.08.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/15/2022] [Accepted: 08/09/2022] [Indexed: 01/26/2023]
Abstract
The effects of mutations in continuously emerging variants of SARS-CoV-2 are a major concern for the performance of rapid antigen tests. To evaluate the impact of mutations on 17 antibodies used in 11 commercially available antigen tests with emergency use authorization, we measured antibody binding for all possible Nucleocapsid point mutations using a mammalian surface-display platform and deep mutational scanning. The results provide a complete map of the antibodies' epitopes and their susceptibility to mutational escape. Our data predict no vulnerabilities for detection of mutations found in variants of concern. We confirm this using the commercial tests and sequence-confirmed COVID-19 patient samples. The antibody escape mutational profiles generated here serve as a valuable resource for predicting the performance of rapid antigen tests against past, current, as well as any possible future variants of SARS-CoV-2, establishing the direct clinical and public health utility of our system.
Collapse
Affiliation(s)
- Filipp Frank
- Department of Biochemistry, Emory University School of Medicine, Emory University, Atlanta, GA 30322, USA; The Atlanta Center for Microsystems-Engineered Point-of-Care Technologies, Atlanta, GA 30322, USA.
| | - Meredith M Keen
- Department of Biochemistry, Emory University School of Medicine, Emory University, Atlanta, GA 30322, USA; The Atlanta Center for Microsystems-Engineered Point-of-Care Technologies, Atlanta, GA 30322, USA
| | - Anuradha Rao
- The Atlanta Center for Microsystems-Engineered Point-of-Care Technologies, Atlanta, GA 30322, USA; Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA; Center for Childhood Infections and Vaccines of Children's Healthcare of Atlanta, Emory University, Atlanta, GA 30322, USA
| | - Leda Bassit
- The Atlanta Center for Microsystems-Engineered Point-of-Care Technologies, Atlanta, GA 30322, USA; Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA; Center for Childhood Infections and Vaccines of Children's Healthcare of Atlanta, Emory University, Atlanta, GA 30322, USA
| | - Xu Liu
- Department of Biochemistry, Emory University School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Heather B Bowers
- The Atlanta Center for Microsystems-Engineered Point-of-Care Technologies, Atlanta, GA 30322, USA; Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA; Center for Childhood Infections and Vaccines of Children's Healthcare of Atlanta, Emory University, Atlanta, GA 30322, USA
| | - Anamika B Patel
- Department of Biochemistry, Emory University School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Michael L Cato
- Department of Biochemistry, Emory University School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Julie A Sullivan
- The Atlanta Center for Microsystems-Engineered Point-of-Care Technologies, Atlanta, GA 30322, USA; Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Morgan Greenleaf
- The Atlanta Center for Microsystems-Engineered Point-of-Care Technologies, Atlanta, GA 30322, USA; Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Anne Piantadosi
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA; Department of Medicine, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Wilbur A Lam
- The Atlanta Center for Microsystems-Engineered Point-of-Care Technologies, Atlanta, GA 30322, USA; Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA; Wallace H. Coulter Department of Biomedical Engineering, Emory University, Georgia Institute of Technology, Atlanta, GA 30332, USA; Aflac Cancer and Blood Disorders Center of Children's Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - William H Hudson
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322, USA; Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | - Eric A Ortlund
- Department of Biochemistry, Emory University School of Medicine, Emory University, Atlanta, GA 30322, USA; The Atlanta Center for Microsystems-Engineered Point-of-Care Technologies, Atlanta, GA 30322, USA.
| |
Collapse
|
23
|
McGowan J, Borucki M, Omairi H, Varghese M, Vellani S, Chakravarty S, Fan S, Chattopadhyay S, Siddiquee M, Thissen JB, Mulakken N, Moon J, Kimbrel J, Tiwari AK, Taylor RT, Kang DW, Jaing C, Chakravarti R, Chattopadhyay S. SARS-CoV-2 Monitoring in Wastewater Reveals Novel Variants and Biomarkers of Infection. Viruses 2022; 14:2032. [PMID: 36146835 PMCID: PMC9503862 DOI: 10.3390/v14092032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/06/2022] [Accepted: 09/09/2022] [Indexed: 12/02/2022] Open
Abstract
Wastewater-based epidemiology (WBE) is a popular tool for the early indication of community spread of infectious diseases. WBE emerged as an effective tool during the COVID-19 pandemic and has provided meaningful information to minimize the spread of infection. Here, we present a combination of analyses using the correlation of viral gene copies with clinical cases, sequencing of wastewater-derived RNA for the viral mutants, and correlative analyses of the viral gene copies with the bacterial biomarkers. Our study provides a unique platform for potentially using the WBE-derived results to predict the spread of COVID-19 and the emergence of new variants of concern. Further, we observed a strong correlation between the presence of SARS-CoV-2 and changes in the microbial community of wastewater, particularly the significant changes in bacterial genera belonging to the families of Lachnospiraceae and Actinomycetaceae. Our study shows that microbial biomarkers could be utilized as prediction tools for future infectious disease surveillance and outbreak responses. Overall, our comprehensive analyses of viral spread, variants, and novel bacterial biomarkers will add significantly to the growing body of literature on WBE and COVID-19.
Collapse
Affiliation(s)
- Jenna McGowan
- Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Monica Borucki
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Hicham Omairi
- Department of Civil and Environmental Engineering, University of Toledo College of Engineering, Toledo, OH 43607, USA
| | - Merina Varghese
- Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Shahnaz Vellani
- Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Sukanya Chakravarty
- Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Shumin Fan
- Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Srestha Chattopadhyay
- College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43606, USA
| | - Mashuk Siddiquee
- Department of Civil and Environmental Engineering, University of Toledo College of Engineering, Toledo, OH 43607, USA
| | - James B. Thissen
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Nisha Mulakken
- Computing Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Joseph Moon
- Computing Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Jeffrey Kimbrel
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Amit K. Tiwari
- College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43606, USA
- Center for Medical Bio-Allied Health Sciences Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | - Roger Travis Taylor
- Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Dae-Wook Kang
- Department of Civil and Environmental Engineering, University of Toledo College of Engineering, Toledo, OH 43607, USA
| | - Crystal Jaing
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Ritu Chakravarti
- Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Saurabh Chattopadhyay
- Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| |
Collapse
|
24
|
Hossain A, Akter S, Rashid AA, Khair S, Alam ASMRU. Unique mutations in SARS-CoV-2 Omicron subvariants' non-spike proteins: Potential impacts on viral pathogenesis and host immune evasion. Microb Pathog 2022; 170:105699. [PMID: 35944840 PMCID: PMC9356572 DOI: 10.1016/j.micpath.2022.105699] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 12/20/2022]
Abstract
SARS-CoV-2 is the causative agent behind the ongoing COVID-19 pandemic. This virus is a cumulative outcome of mutations, leading to frequent emergence of new variants and their subvariants. Some of them are a matter of high concern, while others are variants of interest for studying the mutational effect. The major five variants of concern (VOCs) are Alpha (B.1.1.7), Beta (B.1.315), Gamma (P.1), Delta (B.1.617.2), and Omicron (B.1.1.529.*/BA.*). Omicron itself has >100 subvariants at present, among which BA.1 (21K), BA.2 (21L), BA.4 (22A), BA.5 (22B), and BA.2.12.1 (22C) are the dominant ones. Undoubtedly, these variants and sometimes their progeny subvariants have significant differences in their spike region that impart them the unique properties they harbor. But alongside, the mutations in their non-spike regions could also be responsible elements behind their characteristics, such as replication time, virulence, survival, host immune evasion, and such. There exists a probability that these mutations of non-spike proteins may also impart epistatic effects that are yet to be brought to light. The focus of this review encompasses the non-spike mutations of Omicron, especially in its widely circulating subvariants (BA.1, BA.2, BA.4, BA.5, and BA.2.12.1). The mutations such as in NSP3, NSP6, NSP13, M protein, ORF7b, and ORF9b are mentioned few of all, which might have led to the varying properties, including growth advantages, higher transmission rate, lower infectivity, and most importantly better host immune evasion through natural killer cell inactivation, autophagosome-lysosome fusion prevention, host protein synthesis disruption, and so on. This aspect of Omicron subvariants has not yet been explored. Further study of alteration of expression or interaction profile of these non-spike mutations bearing proteins, if present, can add a great deal of knowledge to the current understanding of the viral properties and thus effective prevention strategies.
Collapse
Affiliation(s)
- Anamica Hossain
- Department of Microbiology, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Shammi Akter
- Department of Microbiology, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Alfi Anjum Rashid
- Department of Microbiology, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Sabik Khair
- Department of Microbiology, University of Dhaka, Dhaka, 1000, Bangladesh
| | - A S M Rubayet Ul Alam
- Department of Microbiology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh.
| |
Collapse
|
25
|
Rafael Ciges-Tomas J, Franco ML, Vilar M. Identification of a guanine-specific pocket in the protein N of SARS-CoV-2. Commun Biol 2022; 5:711. [PMID: 35842466 PMCID: PMC9288159 DOI: 10.1038/s42003-022-03647-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 06/28/2022] [Indexed: 01/14/2023] Open
Abstract
The SARS-CoV-2 nucleocapsid protein (N) is responsible for RNA binding. Here we report the crystal structure of the C-terminal domain (NCTD) in open and closed conformations and in complex with guanine triphosphate, GTP. The crystal structure and biochemical studies reveal a specific interaction between the guanine, a nucleotide enriched in the packaging signals regions of coronaviruses, and a highly conserved tryptophan residue (W330). In addition, EMSA assays with SARS-CoV-2 derived RNA hairpin loops from a putative viral packaging sequence showed the preference interaction of the N-CTD to RNA oligonucleotides containing G and the loss of the specificity in the mutant W330A. Here we propose that this interaction may facilitate the viral assembly process. In summary, we have identified a specific guanine-binding pocket in the N protein that may be used to design viral assembly inhibitors. The molecular basis of GTP binding to the N protein from SARS-CoV-2 is presented, providing a framework for drug design and disruption of the RNA packing function in the N protein.
Collapse
Affiliation(s)
- J Rafael Ciges-Tomas
- Instituto de Biomedicina de Valencia-CSIC Spanish National Research Council, C/Jaime Roig, 11, 46010, Valencia, Spain. .,Structural Molecular Biology Group, Novo Nordisk Foundation Centre for Protein Research, Faculty of Health and Medical Sciences University of Copenhagen, Blegdamsvej 3-B, 2200, Copenhagen, Denmark.
| | - María Luisa Franco
- Instituto de Biomedicina de Valencia-CSIC Spanish National Research Council, C/Jaime Roig, 11, 46010, Valencia, Spain
| | - Marçal Vilar
- Instituto de Biomedicina de Valencia-CSIC Spanish National Research Council, C/Jaime Roig, 11, 46010, Valencia, Spain.
| |
Collapse
|
26
|
Sarkar S, Runge B, Russell RW, Movellan KT, Calero D, Zeinalilathori S, Quinn CM, Lu M, Calero G, Gronenborn AM, Polenova T. Atomic-Resolution Structure of SARS-CoV-2 Nucleocapsid Protein N-Terminal Domain. J Am Chem Soc 2022; 144:10543-10555. [PMID: 35638584 PMCID: PMC9173677 DOI: 10.1021/jacs.2c03320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Indexed: 11/28/2022]
Abstract
The nucleocapsid (N) protein is one of the four structural proteins of the SARS-CoV-2 virus and plays a crucial role in viral genome organization and, hence, replication and pathogenicity. The N-terminal domain (NNTD) binds to the genomic RNA and thus comprises a potential target for inhibitor and vaccine development. We determined the atomic-resolution structure of crystalline NNTD by integrating solid-state magic angle spinning (MAS) NMR and X-ray diffraction. Our combined approach provides atomic details of protein packing interfaces as well as information about flexible regions as the N- and C-termini and the functionally important RNA binding, β-hairpin loop. In addition, ultrafast (100 kHz) MAS 1H-detected experiments permitted the assignment of side-chain proton chemical shifts not available by other means. The present structure offers guidance for designing therapeutic interventions against the SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Sucharita Sarkar
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA 15261, United States
| | - Brent Runge
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA 15261, United States
| | - Ryan W. Russell
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA 15261, United States
| | - Kumar Tekwani Movellan
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States
| | - Daniel Calero
- Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 Fifth Ave., Pittsburgh, PA 15261, United States
| | - Somayeh Zeinalilathori
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States
| | - Caitlin M. Quinn
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States
| | - Manman Lu
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA 15261, United States
- Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 Fifth Ave., Pittsburgh, PA 15261, United States
| | - Guillermo Calero
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA 15261, United States
- Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 Fifth Ave., Pittsburgh, PA 15261, United States
| | - Angela M. Gronenborn
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA 15261, United States
- Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 Fifth Ave., Pittsburgh, PA 15261, United States
| | - Tatyana Polenova
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA 15261, United States
- Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 Fifth Ave., Pittsburgh, PA 15261, United States
| |
Collapse
|
27
|
Conformational ensemble of the full-length SARS-CoV-2 nucleocapsid (N) protein based on molecular simulations and SAXS data. Biophys Chem 2022; 288:106843. [PMID: 35696898 PMCID: PMC9172258 DOI: 10.1016/j.bpc.2022.106843] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/10/2022] [Accepted: 06/02/2022] [Indexed: 11/02/2022]
Abstract
The nucleocapsid protein of the SARS-CoV-2 virus comprises two RNA-binding domains and three regions that are intrinsically disordered. While the structures of the RNA-binding domains have been solved using protein crystallography and NMR, current knowledge of the conformations of the full-length nucleocapsid protein is rather limited. To fill in this knowledge gap, we combined coarse-grained molecular simulations with data from small-angle X-ray scattering (SAXS) experiments using the ensemble refinement of SAXS (EROS) method. Our results show that the dimer of the full-length nucleocapsid protein exhibits large conformational fluctuations with its radius of gyration ranging from about 4 to 8 nm. The RNA-binding domains do not make direct contacts. The disordered region that links these two domains comprises a hydrophobic α-helix which makes frequent and nonspecific contacts with the RNA-binding domains. Each of the intrinsically disordered regions adopts conformations that are locally compact, yet on average, much more extended than Gaussian chains of equivalent lengths. We offer a detailed picture of the conformational ensemble of the nucleocapsid protein dimer under near-physiological conditions, which will be important for understanding the nucleocapsid assembly process.
Collapse
|
28
|
Wang Z, Hu N, Zhou Y, Shi N, Shen B, Luo L, Feng J. Structure-guided affinity maturation of a novel human antibody targeting the SARS-CoV-2 nucleocapsid protein. Sci Rep 2022; 12:8469. [PMID: 35589780 PMCID: PMC9118815 DOI: 10.1038/s41598-022-12242-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 05/04/2022] [Indexed: 01/09/2023] Open
Abstract
The continuous mutation of SARS-CoV-2 has presented enormous challenges to global pandemic prevention and control. Recent studies have shown evidence that the genome sequence of SARS-CoV-2 nucleocapsid proteins is relatively conserved, and their biological functions are being confirmed. There is increasing evidence that the N protein will not only provide a specific diagnostic marker but also become an effective treatment target. In this study, 2G4, which specifically recognizes the N protein, was identified by screening a human phage display library. Based on the computer-guided homology modelling and molecular docking method used, the 3-D structures for the 2G4 scFv fragment (VH-linker-VL structure, with (G4S)3 as the linker peptide in the model), SARS-CoV-2 N protein and its complex were modelled and optimized with a suitable force field. The binding mode and key residues of the 2G4 and N protein interaction were predicted, and three mutant antibodies (named 2G4-M1, 2G4-M2 and 2G4-M3) with higher affinity were designed theoretically. Using directed point mutant technology, the three mutant antibodies were prepared, and their affinity was tested. Their affinity constants of approximately 0.19 nM (2G4-M1), 0.019 nM (2G4-M2) and 0.075 nM (2G4-M3) were at least one order of magnitude lower than that of the parent antibody (3 nM; 2G4, parent antibody), as determined using a biolayer interferometry (BLI) assay. It is expected that high-affinity candidates will be used for diagnosis and even as potential therapeutic drugs for the SARS-CoV-2 pandemic.
Collapse
Affiliation(s)
- Zhihong Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Naijing Hu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Yangyihua Zhou
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Ning Shi
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Beifen Shen
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Longlong Luo
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China.
| | - Jiannan Feng
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China.
| |
Collapse
|
29
|
Zhang B, Tian J, Zhang Q, Xie Y, Wang K, Qiu S, Lu K, Liu Y. Comparing the Nucleocapsid Proteins of Human Coronaviruses: Structure, Immunoregulation, Vaccine, and Targeted Drug. Front Mol Biosci 2022; 9:761173. [PMID: 35573742 PMCID: PMC9099148 DOI: 10.3389/fmolb.2022.761173] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 03/28/2022] [Indexed: 01/08/2023] Open
Abstract
The seven pathogenic human coronaviruses (HCoVs) include HCoV-229E, HCoV-OC43, HCoV-NL63, and HCoV-HKU1, which usually cause mild upper respiratory tract diseases, and SARS-CoV, MERS-CoV, and SARS-CoV-2, which cause a severe acute respiratory syndrome. The nucleocapsid (N) protein, as the dominant structural protein from coronaviruses that bind to the genomic RNA, participates in various vital activities after virus invasion and will probably become a promising target of antiviral drug design. Therefore, a comprehensive literature review of human coronavirus’ pathogenic mechanism and therapeutic strategies is necessary for the control of the pandemic. Here, we give a systematic summary of the structures, immunoregulation, and potential vaccines and targeted drugs of the HCoVs N protein. First, we provide a general introduction to the fundamental structures and molecular function of N protein. Next, we outline the N protein mediated immune regulation and pathogenesis mechanism. Finally, we comprehensively summarize the development of potential N protein-targeted drugs and candidate vaccines to treat coronavirus disease 2019 (COVID-19). We believe this review provides insight into the virulence and transmission of SARS-CoV-2 as well as support for further study on epidemic control of COVID-19.
Collapse
Affiliation(s)
- Bo Zhang
- College of Basic Medicine, Zunyi Medical University, Zunyi, China
- *Correspondence: Yang Liu, ; Keyu Lu, ; Bo Zhang,
| | - Junjie Tian
- College of Basic Medicine, Zunyi Medical University, Zunyi, China
| | - Qintao Zhang
- College of Basic Medicine, Zunyi Medical University, Zunyi, China
| | - Yan Xie
- School of Public Health, Zunyi Medical University, Zunyi, China
| | - Kejia Wang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, China
| | - Shuyi Qiu
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, China
| | - Keyu Lu
- College of Basic Medicine, Zunyi Medical University, Zunyi, China
- *Correspondence: Yang Liu, ; Keyu Lu, ; Bo Zhang,
| | - Yang Liu
- School of Public Health, Zunyi Medical University, Zunyi, China
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, China
- *Correspondence: Yang Liu, ; Keyu Lu, ; Bo Zhang,
| |
Collapse
|
30
|
Boccia A, Tufano R, Ferrucci V, Sepe L, Bianchi M, Pascarella S, Zollo M, Paolella G. SARS-CoV-2 Pandemic Tracing in Italy Highlights Lineages with Mutational Burden in Growing Subsets. Int J Mol Sci 2022; 23:4155. [PMID: 35456974 PMCID: PMC9029933 DOI: 10.3390/ijms23084155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/31/2022] [Accepted: 04/06/2022] [Indexed: 02/07/2023] Open
Abstract
Tracing the appearance and evolution of virus variants is essential in the management of the COVID-19 pandemic. Here, we focus on SARS-CoV-2 spread in Italian patients by using viral sequences deposited in public databases and a tracing procedure which is used to monitor the evolution of the pandemic and detect the spreading, within the infected population of emergent sub-clades with a potential positive selection. Analyses of a collection of monthly samples focused on Italy highlighted the appearance and evolution of all the main viral sub-trees emerging at the end of the first year of the pandemic. It also identified additional expanding subpopulations which spread during the second year (i.e., 2021). Three-dimensional (3D) modelling of the main amino acid changes in mutated viral proteins, including ORF1ab (nsp3, nsp4, 2'-o-ribose methyltransferase, nsp6, helicase, nsp12 [RdRp]), N, ORF3a, ORF8, and spike proteins, shows the potential of the analysed structural variations to result in epistatic modulation and positive/negative selection pressure. These analyzes will be of importance to the early identification of emerging clades, which can develop into new "variants of concern" (i.e., VOC). These analyses and settings will also help SARS-CoV-2 coronet genomic centers in other countries to trace emerging worldwide variants.
Collapse
Affiliation(s)
- Angelo Boccia
- Ceinge Biotecnologie Avanzate, 80145 Naples, Italy; (A.B.); (R.T.); (V.F.); (L.S.)
| | - Rossella Tufano
- Ceinge Biotecnologie Avanzate, 80145 Naples, Italy; (A.B.); (R.T.); (V.F.); (L.S.)
| | - Veronica Ferrucci
- Ceinge Biotecnologie Avanzate, 80145 Naples, Italy; (A.B.); (R.T.); (V.F.); (L.S.)
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), Università degli Studi di Napoli Federico II, 80131 Naples, Italy
| | - Leandra Sepe
- Ceinge Biotecnologie Avanzate, 80145 Naples, Italy; (A.B.); (R.T.); (V.F.); (L.S.)
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), Università degli Studi di Napoli Federico II, 80131 Naples, Italy
| | - Martina Bianchi
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza Università di Roma, 00185 Rome, Italy; (M.B.); (S.P.)
| | - Stefano Pascarella
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza Università di Roma, 00185 Rome, Italy; (M.B.); (S.P.)
| | - Massimo Zollo
- Ceinge Biotecnologie Avanzate, 80145 Naples, Italy; (A.B.); (R.T.); (V.F.); (L.S.)
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), Università degli Studi di Napoli Federico II, 80131 Naples, Italy
- DAI Medicina di Laboratorio e Trasfusionale, AOU Azienda Ospedaliera ‘Federico II’, 80131 Naples, Italy
| | - Giovanni Paolella
- Ceinge Biotecnologie Avanzate, 80145 Naples, Italy; (A.B.); (R.T.); (V.F.); (L.S.)
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), Università degli Studi di Napoli Federico II, 80131 Naples, Italy
| |
Collapse
|
31
|
Ugolini C, Mulroney L, Leger A, Castelli M, Criscuolo E, Williamson MK, Davidson AD, Almuqrin A, Giambruno R, Jain M, Frigè G, Olsen H, Tzertzinis G, Schildkraut I, Wulf MG, Corrêa IR, Ettwiller L, Clementi N, Clementi M, Mancini N, Birney E, Akeson M, Nicassio F, Matthews D, Leonardi T. Nanopore ReCappable sequencing maps SARS-CoV-2 5' capping sites and provides new insights into the structure of sgRNAs. Nucleic Acids Res 2022; 50:3475-3489. [PMID: 35244721 PMCID: PMC8989550 DOI: 10.1093/nar/gkac144] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/05/2022] [Accepted: 02/16/2022] [Indexed: 01/09/2023] Open
Abstract
The SARS-CoV-2 virus has a complex transcriptome characterised by multiple, nested subgenomic RNAsused to express structural and accessory proteins. Long-read sequencing technologies such as nanopore direct RNA sequencing can recover full-length transcripts, greatly simplifying the assembly of structurally complex RNAs. However, these techniques do not detect the 5' cap, thus preventing reliable identification and quantification of full-length, coding transcript models. Here we used Nanopore ReCappable Sequencing (NRCeq), a new technique that can identify capped full-length RNAs, to assemble a complete annotation of SARS-CoV-2 sgRNAs and annotate the location of capping sites across the viral genome. We obtained robust estimates of sgRNA expression across cell lines and viral isolates and identified novel canonical and non-canonical sgRNAs, including one that uses a previously un-annotated leader-to-body junction site. The data generated in this work constitute a useful resource for the scientific community and provide important insights into the mechanisms that regulate the transcription of SARS-CoV-2 sgRNAs.
Collapse
Affiliation(s)
- Camilla Ugolini
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia, 20139 Milano, Italy
| | - Logan Mulroney
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia, 20139 Milano, Italy
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, UK
- Biomolecular Engineering Department, UC Santa Cruz, CA 95064, USA
| | - Adrien Leger
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, UK
| | - Matteo Castelli
- Laboratory of Microbiology and Virology, Vita-Salute San Raffaele University; via Olgettina 58, 20132 Milan, Italy
| | - Elena Criscuolo
- Laboratory of Microbiology and Virology, Vita-Salute San Raffaele University; via Olgettina 58, 20132 Milan, Italy
| | - Maia Kavanagh Williamson
- School of Cellular and Molecular Medicine, Faculty of Life Sciences, University Walk, University of Bristol, Bristol BS8 1TD, UK
| | - Andrew D Davidson
- School of Cellular and Molecular Medicine, Faculty of Life Sciences, University Walk, University of Bristol, Bristol BS8 1TD, UK
| | - Abdulaziz Almuqrin
- School of Cellular and Molecular Medicine, Faculty of Life Sciences, University Walk, University of Bristol, Bristol BS8 1TD, UK
- Department of Clinical Laboratory Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Roberto Giambruno
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia, 20139 Milano, Italy
| | - Miten Jain
- Biomolecular Engineering Department, UC Santa Cruz, CA 95064, USA
| | - Gianmaria Frigè
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, 20139 Milano, Italy
| | - Hugh Olsen
- Biomolecular Engineering Department, UC Santa Cruz, CA 95064, USA
| | | | | | | | | | | | - Nicola Clementi
- Laboratory of Microbiology and Virology, Vita-Salute San Raffaele University; via Olgettina 58, 20132 Milan, Italy
- Laboratory of Medical Microbiology and Virology, IRCCS San Raffaele Scientific Institute; via Olgettina 60, 20132 Milan, Italy
| | - Massimo Clementi
- Laboratory of Microbiology and Virology, Vita-Salute San Raffaele University; via Olgettina 58, 20132 Milan, Italy
- Laboratory of Medical Microbiology and Virology, IRCCS San Raffaele Scientific Institute; via Olgettina 60, 20132 Milan, Italy
| | - Nicasio Mancini
- Laboratory of Microbiology and Virology, Vita-Salute San Raffaele University; via Olgettina 58, 20132 Milan, Italy
- Laboratory of Medical Microbiology and Virology, IRCCS San Raffaele Scientific Institute; via Olgettina 60, 20132 Milan, Italy
| | - Ewan Birney
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, UK
| | - Mark Akeson
- Biomolecular Engineering Department, UC Santa Cruz, CA 95064, USA
| | - Francesco Nicassio
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia, 20139 Milano, Italy
| | - David A Matthews
- School of Cellular and Molecular Medicine, Faculty of Life Sciences, University Walk, University of Bristol, Bristol BS8 1TD, UK
| | - Tommaso Leonardi
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia, 20139 Milano, Italy
| |
Collapse
|
32
|
Caruso IP, Dos Santos Almeida V, do Amaral MJ, de Andrade GC, de Araújo GR, de Araújo TS, de Azevedo JM, Barbosa GM, Bartkevihi L, Bezerra PR, Dos Santos Cabral KM, de Lourenço IO, Malizia-Motta CLF, de Luna Marques A, Mebus-Antunes NC, Neves-Martins TC, de Sá JM, Sanches K, Santana-Silva MC, Vasconcelos AA, da Silva Almeida M, de Amorim GC, Anobom CD, Da Poian AT, Gomes-Neto F, Pinheiro AS, Almeida FCL. Insights into the specificity for the interaction of the promiscuous SARS-CoV-2 nucleocapsid protein N-terminal domain with deoxyribonucleic acids. Int J Biol Macromol 2022; 203:466-480. [PMID: 35077748 PMCID: PMC8783401 DOI: 10.1016/j.ijbiomac.2022.01.121] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 12/23/2022]
Abstract
The SARS-CoV-2 nucleocapsid protein (N) is a multifunctional promiscuous nucleic acid-binding protein, which plays a major role in nucleocapsid assembly and discontinuous RNA transcription, facilitating the template switch of transcriptional regulatory sequences (TRS). Here, we dissect the structural features of the N protein N-terminal domain (N-NTD) and N-NTD plus the SR-rich motif (N-NTD-SR) upon binding to single and double-stranded TRS DNA, as well as their activities for dsTRS melting and TRS-induced liquid-liquid phase separation (LLPS). Our study gives insights on the specificity for N-NTD(-SR) interaction with TRS. We observed an approximation of the triple-thymidine (TTT) motif of the TRS to β-sheet II, giving rise to an orientation difference of ~25° between dsTRS and non-specific sequence (dsNS). It led to a local unfavorable energetic contribution that might trigger the melting activity. The thermodynamic parameters of binding of ssTRSs and dsTRS suggested that the duplex dissociation of the dsTRS in the binding cleft is entropically favorable. We showed a preference for TRS in the formation of liquid condensates when compared to NS. Moreover, our results on DNA binding may serve as a starting point for the design of inhibitors, including aptamers, against N, a possible therapeutic target essential for the virus infectivity.
Collapse
Affiliation(s)
- Icaro Putinhon Caruso
- Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Multiuser Center for Biomolecular Innovation (CMIB), Department of Physics, São Paulo State University (UNESP), São José do Rio Preto, Brazil; Rio BioNMR Network, Rio de Janeiro, Brazil.
| | - Vitor Dos Santos Almeida
- National Center of Nuclear Magnetic Resonance (CNRMN), CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Rio BioNMR Network, Rio de Janeiro, Brazil
| | - Mariana Juliani do Amaral
- Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Protein Advanced Biochemistry (PAB), CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Rio BioNMR Network, Rio de Janeiro, Brazil
| | - Guilherme Caldas de Andrade
- Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; National Center of Nuclear Magnetic Resonance (CNRMN), CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Rio BioNMR Network, Rio de Janeiro, Brazil
| | - Gabriela Rocha de Araújo
- Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; National Center of Nuclear Magnetic Resonance (CNRMN), CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Rio BioNMR Network, Rio de Janeiro, Brazil
| | - Talita Stelling de Araújo
- Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Protein Advanced Biochemistry (PAB), CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Rio BioNMR Network, Rio de Janeiro, Brazil
| | - Jéssica Moreira de Azevedo
- Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Protein Advanced Biochemistry (PAB), CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Rio BioNMR Network, Rio de Janeiro, Brazil
| | - Glauce Moreno Barbosa
- Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; National Center of Nuclear Magnetic Resonance (CNRMN), CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Rio BioNMR Network, Rio de Janeiro, Brazil
| | - Leonardo Bartkevihi
- Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; National Center of Nuclear Magnetic Resonance (CNRMN), CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Rio BioNMR Network, Rio de Janeiro, Brazil
| | - Peter Reis Bezerra
- Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; National Center of Nuclear Magnetic Resonance (CNRMN), CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Rio BioNMR Network, Rio de Janeiro, Brazil
| | - Katia Maria Dos Santos Cabral
- Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Protein Advanced Biochemistry (PAB), CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Rio BioNMR Network, Rio de Janeiro, Brazil
| | - Isabella Otênio de Lourenço
- Multiuser Center for Biomolecular Innovation (CMIB), Department of Physics, São Paulo State University (UNESP), São José do Rio Preto, Brazil; Rio BioNMR Network, Rio de Janeiro, Brazil
| | - Clara L F Malizia-Motta
- Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Rio BioNMR Network, Rio de Janeiro, Brazil
| | - Aline de Luna Marques
- Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Multidisciplinary Center for Research in Biology (NUMPEX), Campus Duque de Caxias Federal University of Rio de Janeiro, Duque de Caxias, Brazil; Rio BioNMR Network, Rio de Janeiro, Brazil
| | - Nathane Cunha Mebus-Antunes
- Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Rio BioNMR Network, Rio de Janeiro, Brazil
| | - Thais Cristtina Neves-Martins
- Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Rio BioNMR Network, Rio de Janeiro, Brazil
| | - Jéssica Maróstica de Sá
- Multiuser Center for Biomolecular Innovation (CMIB), Department of Physics, São Paulo State University (UNESP), São José do Rio Preto, Brazil; Rio BioNMR Network, Rio de Janeiro, Brazil
| | - Karoline Sanches
- Multiuser Center for Biomolecular Innovation (CMIB), Department of Physics, São Paulo State University (UNESP), São José do Rio Preto, Brazil; Rio BioNMR Network, Rio de Janeiro, Brazil
| | - Marcos Caique Santana-Silva
- Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Multidisciplinary Center for Research in Biology (NUMPEX), Campus Duque de Caxias Federal University of Rio de Janeiro, Duque de Caxias, Brazil; Rio BioNMR Network, Rio de Janeiro, Brazil
| | - Ariana Azevedo Vasconcelos
- Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; National Center of Nuclear Magnetic Resonance (CNRMN), CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Rio BioNMR Network, Rio de Janeiro, Brazil
| | - Marcius da Silva Almeida
- Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Protein Advanced Biochemistry (PAB), CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Rio BioNMR Network, Rio de Janeiro, Brazil
| | - Gisele Cardoso de Amorim
- Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Multidisciplinary Center for Research in Biology (NUMPEX), Campus Duque de Caxias Federal University of Rio de Janeiro, Duque de Caxias, Brazil; Rio BioNMR Network, Rio de Janeiro, Brazil
| | - Cristiane Dinis Anobom
- National Center of Nuclear Magnetic Resonance (CNRMN), CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Rio BioNMR Network, Rio de Janeiro, Brazil
| | - Andrea T Da Poian
- Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Rio BioNMR Network, Rio de Janeiro, Brazil
| | - Francisco Gomes-Neto
- National Center of Nuclear Magnetic Resonance (CNRMN), CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Laboratory of Toxinology, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil; Rio BioNMR Network, Rio de Janeiro, Brazil
| | - Anderson S Pinheiro
- Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Rio BioNMR Network, Rio de Janeiro, Brazil
| | - Fabio C L Almeida
- Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; National Center of Nuclear Magnetic Resonance (CNRMN), CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Rio BioNMR Network, Rio de Janeiro, Brazil.
| |
Collapse
|
33
|
Vindeirinho JM, Pinho E, Azevedo NF, Almeida C. SARS-CoV-2 Diagnostics Based on Nucleic Acids Amplification: From Fundamental Concepts to Applications and Beyond. Front Cell Infect Microbiol 2022; 12:799678. [PMID: 35402302 PMCID: PMC8984495 DOI: 10.3389/fcimb.2022.799678] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 02/18/2022] [Indexed: 02/06/2023] Open
Abstract
COVID-19 pandemic ignited the development of countless molecular methods for the diagnosis of SARS-CoV-2 based either on nucleic acid, or protein analysis, with the first establishing as the most used for routine diagnosis. The methods trusted for day to day analysis of nucleic acids rely on amplification, in order to enable specific SARS-CoV-2 RNA detection. This review aims to compile the state-of-the-art in the field of nucleic acid amplification tests (NAATs) used for SARS-CoV-2 detection, either at the clinic level, or at the Point-Of-Care (POC), thus focusing on isothermal and non-isothermal amplification-based diagnostics, while looking carefully at the concerning virology aspects, steps and instruments a test can involve. Following a theme contextualization in introduction, topics about fundamental knowledge on underlying virology aspects, collection and processing of clinical samples pave the way for a detailed assessment of the amplification and detection technologies. In order to address such themes, nucleic acid amplification methods, the different types of molecular reactions used for DNA detection, as well as the instruments requested for executing such routes of analysis are discussed in the subsequent sections. The benchmark of paradigmatic commercial tests further contributes toward discussion, building on technical aspects addressed in the previous sections and other additional information supplied in that part. The last lines are reserved for looking ahead to the future of NAATs and its importance in tackling this pandemic and other identical upcoming challenges.
Collapse
Affiliation(s)
- João M. Vindeirinho
- National Institute for Agrarian and Veterinarian Research (INIAV, I.P), Vairão, Portugal
- Laboratory for Process Engineering, Environment, Biotechnology and Energy (LEPABE), Faculty of Engineering, University of Porto, Porto, Portugal
- Associate Laboratory in Chemical Engineering (ALiCE), Faculty of Engineering, University of Porto, Porto, Portugal
| | - Eva Pinho
- National Institute for Agrarian and Veterinarian Research (INIAV, I.P), Vairão, Portugal
- Laboratory for Process Engineering, Environment, Biotechnology and Energy (LEPABE), Faculty of Engineering, University of Porto, Porto, Portugal
- Associate Laboratory in Chemical Engineering (ALiCE), Faculty of Engineering, University of Porto, Porto, Portugal
| | - Nuno F. Azevedo
- Laboratory for Process Engineering, Environment, Biotechnology and Energy (LEPABE), Faculty of Engineering, University of Porto, Porto, Portugal
- Associate Laboratory in Chemical Engineering (ALiCE), Faculty of Engineering, University of Porto, Porto, Portugal
| | - Carina Almeida
- National Institute for Agrarian and Veterinarian Research (INIAV, I.P), Vairão, Portugal
- Laboratory for Process Engineering, Environment, Biotechnology and Energy (LEPABE), Faculty of Engineering, University of Porto, Porto, Portugal
- Associate Laboratory in Chemical Engineering (ALiCE), Faculty of Engineering, University of Porto, Porto, Portugal
- Centre of Biological Engineering (CEB), University of Minho, Braga, Portugal
| |
Collapse
|
34
|
Cascarina SM, Ross ED. Phase separation by the SARS-CoV-2 nucleocapsid protein: Consensus and open questions. J Biol Chem 2022; 298:101677. [PMID: 35131265 PMCID: PMC8813722 DOI: 10.1016/j.jbc.2022.101677] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 01/26/2022] [Accepted: 01/28/2022] [Indexed: 01/09/2023] Open
Abstract
In response to the recent SARS-CoV-2 pandemic, a number of labs across the world have reallocated their time and resources to better our understanding of the virus. For some viruses, including SARS-CoV-2, viral proteins can undergo phase separation: a biophysical process often related to the partitioning of protein and RNA into membraneless organelles in vivo. In this review, we discuss emerging observations of phase separation by the SARS-CoV-2 nucleocapsid (N) protein-an essential viral protein required for viral replication-and the possible in vivo functions that have been proposed for N-protein phase separation, including viral replication, viral genomic RNA packaging, and modulation of host-cell response to infection. Additionally, since a relatively large number of studies examining SARS-CoV-2 N-protein phase separation have been published in a short span of time, we take advantage of this situation to compare results from similar experiments across studies. Our evaluation highlights potential strengths and pitfalls of drawing conclusions from a single set of experiments, as well as the value of publishing overlapping scientific observations performed simultaneously by multiple labs.
Collapse
Affiliation(s)
- Sean M Cascarina
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Eric D Ross
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado, USA.
| |
Collapse
|
35
|
Khan WH, Khan N, Mishra A, Gupta S, Bansode V, Mehta D, Bhambure R, Ansari MA, Das S, Rathore AS. Dimerization of SARS-CoV-2 nucleocapsid protein affects sensitivity of ELISA based diagnostics of COVID-19. Int J Biol Macromol 2022; 200:428-437. [PMID: 35051498 PMCID: PMC8762837 DOI: 10.1016/j.ijbiomac.2022.01.094] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 01/13/2022] [Accepted: 01/13/2022] [Indexed: 12/27/2022]
Abstract
Nucleocapsid protein (N protein) is the primary antigen of the virus for development of sensitive diagnostic assays of COVID-19. In this paper, we demonstrate the significant impact of dimerization of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) N-protein on sensitivity of enzyme-linked immunosorbent assay (ELISA) based diagnostics. The expressed purified protein from E. coli is composed of dimeric and monomeric forms, which have been further characterized using biophysical and immunological techniques. Indirect ELISA indicated elevated susceptibility of the dimeric form of the nucleocapsid protein for identification of protein-specific monoclonal antibody as compared to the monomeric form. This finding also confirmed with the modelled structure of monomeric and dimeric nucleocapsid protein via HHPred software and its solvent accessible surface area, which indicates higher stability and antigenicity of the dimeric type as compared to the monomeric form. The sensitivity and specificity of the ELISA at 95% CI are 99.0% (94.5-99.9) and 95.0% (83.0-99.4), respectively, for the highest purified dimeric form of the N protein. As a result, using the highest purified dimeric form will improve the sensitivity of the current nucleocapsid-dependent ELISA for COVID-19 diagnosis, and manufacturers should monitor and maintain the monomer-dimer composition for accurate and robust diagnostics.
Collapse
Affiliation(s)
- Wajihul Hasan Khan
- Department of Chemical Engineering, Indian Institute of Technology, Hauz Khas, New Delhi 110016, India
| | - Nida Khan
- Department of Chemical Engineering, Indian Institute of Technology, Hauz Khas, New Delhi 110016, India
| | - Avinash Mishra
- Department of Chemical Engineering, Indian Institute of Technology, Hauz Khas, New Delhi 110016, India
| | - Surbhi Gupta
- Department of Chemical Engineering, Indian Institute of Technology, Hauz Khas, New Delhi 110016, India
| | - Vikrant Bansode
- Department of Chemical Engineering, Indian Institute of Technology, Hauz Khas, New Delhi 110016, India
| | - Deepa Mehta
- Chemical Engineering and Process Development Division, CSIR-National Chemical Laboratory, Dr Homi Bhabha Rd, Pune, Maharashtra 411008, India
| | - Rahul Bhambure
- Chemical Engineering and Process Development Division, CSIR-National Chemical Laboratory, Dr Homi Bhabha Rd, Pune, Maharashtra 411008, India
| | - M. Ahmad Ansari
- Department of Microbiology, The University College of Medical Sciences (UCMS) and Guru Teg Bahadur Hospital (GTB), Dilshad Garden, Delhi 110095, India
| | - Shukla Das
- Department of Microbiology, The University College of Medical Sciences (UCMS) and Guru Teg Bahadur Hospital (GTB), Dilshad Garden, Delhi 110095, India
| | - Anurag S. Rathore
- Department of Chemical Engineering, Indian Institute of Technology, Hauz Khas, New Delhi 110016, India,Corresponding author at: DBT Centre of Excellence for Biopharmaceutical Technology, Department of Chemical Engineering, Indian Institute of Technology, Delhi Hauz Khas, New Delhi 110016, India
| |
Collapse
|
36
|
Loss of Detection of sgN Precedes Viral Abridged Replication in COVID-19-Affected Patients-A Target for SARS-CoV-2 Propagation. Int J Mol Sci 2022; 23:ijms23041941. [PMID: 35216056 PMCID: PMC8878976 DOI: 10.3390/ijms23041941] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/24/2022] [Accepted: 02/07/2022] [Indexed: 02/05/2023] Open
Abstract
The development of prophylactic agents against the SARS-CoV-2 virus is a public health priority in the search for new surrogate markers of active virus replication. Early detection markers are needed to follow disease progression and foresee patient negativization. Subgenomic RNA transcripts (with a focus on sgN) were evaluated in oro/nasopharyngeal swabs from COVID-19-affected patients with an analysis of 315 positive samples using qPCR technology. Cut-off Cq values for sgN (Cq < 33.15) and sgE (Cq < 34.06) showed correlations to high viral loads. The specific loss of sgN in home-isolated and hospitalized COVID-19-positive patients indicated negativization of patient condition, 3–7 days from the first swab, respectively. A new detection kit for sgN, gene E, gene ORF1ab, and gene RNAse P was developed recently. In addition, in vitro studies have shown that 2’-O-methyl antisense RNA (related to the sgN sequence) can impair SARS-CoV-2 N protein synthesis, viral replication, and syncytia formation in human cells (i.e., HEK-293T cells overexpressing ACE2) upon infection with VOC Alpha (B.1.1.7)-SARS-CoV-2 variant, defining the use that this procedure might have for future therapeutic actions against SARS-CoV-2.
Collapse
|
37
|
Akram F, Haq IU, Aqeel A, Ahmed Z, Shah FI, Nawaz A, Zafar J, Sattar R. Insights into the evolutionary and prophylactic analysis of SARS-CoV-2: A review. J Virol Methods 2022; 300:114375. [PMID: 34838536 PMCID: PMC8610842 DOI: 10.1016/j.jviromet.2021.114375] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 10/29/2021] [Accepted: 11/22/2021] [Indexed: 01/04/2023]
Abstract
In late 2019, following the emergence of a β-originated SARS-CoV-2, phylogenetic and evolutionary approaches have been demonstrated to strengthen the diagnostic and prophylactic stratagem of COVID-19 at an unprecedented level. Despite its clinical prominence, the SARS-CoV-2 gene set remains largely irrefutable by impeding the dissection of COVID-19 biology. However, many pieces of molecular and serological evidence have predicted that SARS-CoV-2 related viruses carry their roots from bats and pangolins of South East Asia. Analysis of viral genome predicts that point mutations at a rate of 10-4 nucleotides per base in the receptor-binding domain allow the emergence of new SARS-CoV-2 genomic variants at regular intervals. Research in the evolution of molecular pathways involved in emergence of pandemic is critical for the development of therapeutics and vaccines as well as the prevention of future zoonosis. By determining the phyletic lineages of the SARS-CoV-2 genomic variants and those of the conserved regions in the accessory and spike proteins of all the SARS-related coronaviruses, a universal vaccine against all human coronaviruses could be formulated which would revolutionize the field of medicine. This review highlighted the current development and future prospects of antiviral drugs, inhibitors, mesenchymal stem cells, passive immunization, targeted immune therapy and CRISPR-Cas-based prophylactic and therapeutic strategies against SARS-CoV-2. However, further investigations on Covid-19 pathogenesis is required for the successful fabrication of successful antivirals.
Collapse
Affiliation(s)
- Fatima Akram
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan.
| | - Ikram Ul Haq
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan
| | - Amna Aqeel
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan
| | - Zeeshan Ahmed
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan
| | - Fatima Iftikhar Shah
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan
| | - Ali Nawaz
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan
| | - Javaria Zafar
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan
| | - Rukhma Sattar
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan
| |
Collapse
|
38
|
Wu CR, Yin WC, Jiang Y, Xu HE. Structure genomics of SARS-CoV-2 and its Omicron variant: drug design templates for COVID-19. Acta Pharmacol Sin 2022; 43:3021-3033. [PMID: 35058587 PMCID: PMC8771608 DOI: 10.1038/s41401-021-00851-w] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/21/2021] [Indexed: 02/08/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has brought an unprecedented public health crisis and persistently threatens to humanity. With tireless efforts from scientists around the world, understanding of the biology of coronavirus has been greatly enhanced over the past 2 years. Structural biology has demonstrated its powerful impact on uncovering structures and functions for the vast majority of SARS-CoV-2 proteins and guided the development of drugs and vaccines against COVID-19. In this review, we summarize current progress in the structural biology of SARS-CoV-2 and discuss important biological issues that remain to be addressed. We present the examples of structure-based design of Pfizer’s novel anti-SARS-CoV-2 drug PF-07321332 (Paxlovid), Merck’s nucleotide inhibitor molnupiravir (Lagevrio), and VV116, an oral drug candidate for COVID-19. These examples highlight the importance of structure in drug discovery to combat COVID-19. We also discussed the recent variants of Omicron and its implication in immunity escape from existing vaccines and antibody therapies.
Collapse
|
39
|
Jia Z, Liu C, Chen Y, Jiang H, Wang Z, Yao J, Yang J, Zhu J, Zhang B, Yuchi Z. Crystal structures of the SARS-CoV-2 nucleocapsid protein C-terminal domain and development of nucleocapsid-targeting nanobodies. FEBS J 2021; 289:3813-3825. [PMID: 34665939 PMCID: PMC8646419 DOI: 10.1111/febs.16239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 09/23/2021] [Accepted: 10/18/2021] [Indexed: 12/22/2022]
Abstract
The ongoing outbreak of COVID-19 caused by SARS-CoV-2 has resulted in a serious public health threat globally. Nucleocapsid protein is a major structural protein of SARS-CoV-2 that plays important roles in the viral RNA packing, replication, assembly, and infection. Here, we report two crystal structures of nucleocapsid protein C-terminal domain (CTD) at resolutions of 2.0 Å and 3.1 Å, respectively. These two structures, crystallized under different conditions, contain 2 and 12 CTDs in asymmetric unit, respectively. Interestingly, despite different crystal packing, both structures show a similar dimeric form as the smallest unit, consistent with its solution form measured by the size-exclusion chromatography, suggesting an important role of CTD in the dimerization of nucleocapsid proteins. By analyzing the surface charge distribution, we identified a stretch of positively charged residues between Lys257 and Arg262 that are involved in RNA-binding. Through screening a single-domain antibodies (sdAbs) library, we identified four sdAbs targeting different regions of nucleocapsid protein with high affinities that have future potential to be used in viral detection and therapeutic purposes.
Collapse
Affiliation(s)
- Zhenghu Jia
- The First Affiliated Hospital, Biomedical Translational Research Institute and Guangdong Province Key Laboratory of Molecular Immunology and Antibody Engineering, Jinan University, Guangzhou, China.,Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, China.,International Research Center for precision medicine, Beroni Group Limited, Sydney, Australia
| | - Chen Liu
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, China
| | - Yuewen Chen
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, China
| | - Heng Jiang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, China
| | - Zijing Wang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, China
| | - Jialu Yao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, China
| | - Jie Yang
- International Research Center for precision medicine, Beroni Group Limited, Sydney, Australia
| | - Jiaxing Zhu
- International Research Center for precision medicine, Beroni Group Limited, Sydney, Australia
| | - Boqing Zhang
- International Research Center for precision medicine, Beroni Group Limited, Sydney, Australia
| | - Zhiguang Yuchi
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, China
| |
Collapse
|
40
|
Fukuzawa K, Kato K, Watanabe C, Kawashima Y, Handa Y, Yamamoto A, Watanabe K, Ohyama T, Kamisaka K, Takaya D, Honma T. Special Features of COVID-19 in the FMODB: Fragment Molecular Orbital Calculations and Interaction Energy Analysis of SARS-CoV-2-Related Proteins. J Chem Inf Model 2021; 61:4594-4612. [PMID: 34506132 PMCID: PMC8457332 DOI: 10.1021/acs.jcim.1c00694] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Indexed: 01/18/2023]
Abstract
SARS-CoV-2 is the causative agent of coronavirus (known as COVID-19), the virus causing the current pandemic. There are ongoing research studies to develop effective therapeutics and vaccines against COVID-19 using various methods and many results have been published. The structure-based drug design of SARS-CoV-2-related proteins is promising, however, reliable information regarding the structural and intra- and intermolecular interactions is required. We have conducted studies based on the fragment molecular orbital (FMO) method for calculating the electronic structures of protein complexes and analyzing their quantitative molecular interactions. This enables us to extensively analyze the molecular interactions in residues or functional group units acting inside the protein complexes. Such precise interaction data are available in the FMO database (FMODB) (https://drugdesign.riken.jp/FMODB/). Since April 2020, we have performed several FMO calculations on the structures of SARS-CoV-2-related proteins registered in the Protein Data Bank. We have published the results of 681 structures, including three structural proteins and 11 nonstructural proteins, on the COVID-19 special page (as of June 8, 2021). In this paper, we describe the entire COVID-19 special page of the FMODB and discuss the calculation results for various proteins. These data not only aid the interpretation of experimentally determined structures but also the understanding of protein functions, which is useful for rational drug design for COVID-19.
Collapse
Affiliation(s)
- Kaori Fukuzawa
- Department of Physical Chemistry, School of Pharmacy
and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara,
Shinagawa-ku, Tokyo 142-8501, Japan
- Department of Biomolecular Engineering, Graduate
School of Engineering, Tohoku University, 6-6-11 Aoba, Aramaki,
Aoba-ku, Sendai 980-8579, Japan
| | - Koichiro Kato
- Department of Applied Chemistry, Graduate School of
Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka
819-0395, Japan
- Center for Molecular Systems (CMS),
Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395,
Japan
| | - Chiduru Watanabe
- RIKEN Center for Biosystems Dynamics
Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045,
Japan
- JST PRESTO, 4-1-8, Honcho,
Kawaguchi, Saitama 332-0012, Japan
| | - Yusuke Kawashima
- Department of Physical Chemistry, School of Pharmacy
and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara,
Shinagawa-ku, Tokyo 142-8501, Japan
| | - Yuma Handa
- Department of Physical Chemistry, School of Pharmacy
and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara,
Shinagawa-ku, Tokyo 142-8501, Japan
| | - Ami Yamamoto
- Department of Physical Chemistry, School of Pharmacy
and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara,
Shinagawa-ku, Tokyo 142-8501, Japan
| | - Kazuki Watanabe
- Graduate School of Pharmaceutical Sciences,
Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871,
Japan
- Graduate School of Pharmaceutical Sciences,
Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675,
Japan
| | - Tatsuya Ohyama
- RIKEN Center for Biosystems Dynamics
Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045,
Japan
- Frontier Institute for Biomolecular Engineering
Research (FIBER), Konan University, 7-1-20,
Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Kikuko Kamisaka
- RIKEN Center for Biosystems Dynamics
Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045,
Japan
| | - Daisuke Takaya
- RIKEN Center for Biosystems Dynamics
Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045,
Japan
| | - Teruki Honma
- RIKEN Center for Biosystems Dynamics
Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045,
Japan
| |
Collapse
|
41
|
Di D, Dileepan M, Ahmed S, Liang Y, Ly H. Recombinant SARS-CoV-2 Nucleocapsid Protein: Expression, Purification, and Its Biochemical Characterization and Utility in Serological Assay Development to Assess Immunological Responses to SARS-CoV-2 Infection. Pathogens 2021; 10:1039. [PMID: 34451501 PMCID: PMC8402198 DOI: 10.3390/pathogens10081039] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/08/2021] [Accepted: 08/14/2021] [Indexed: 12/23/2022] Open
Abstract
The SARS-CoV-2 nucleocapsid protein (N) binds a single-stranded viral RNA genome to form a helical ribonucleoprotein complex that is packaged into virion particles. N is relatively conserved among coronaviruses and consists of the N-terminal domain (NTD) and C-terminal domain (CTD), which are flanked by three disorganized regions. N is highly immunogenic and has been widely used to develop a serological assay as a diagnostic tool for COVID-19 infection, although there is a concern that the natural propensity of N to associate with RNA might compromise the assay's specificity. We expressed and purified from bacterial cells two recombinant forms of SARS-CoV-2 N, one from the soluble fraction of bacterial cell lysates that is strongly associated with bacterial RNAs and the other that is completely devoid of RNAs. We showed that both forms of N can be used to develop enzyme-linked immunosorbent assays (ELISAs) for the specific detection of human and mouse anti-N monoclonal antibodies (mAb) as well as feline SARS-CoV-2 seropositive serum samples, but that the RNA-free form of N exhibits a slightly higher level of sensitivity than the RNA-bound form to react to anti-N mouse mAb. Using the electrophoretic mobility shift assay (EMSA), we also showed that N preferentially binds ssRNA in a sequence-independent manner and that both NTD and CTD of N contribute to RNA-binding activity. Collectively, our study describes methods to express, purify, and biochemically characterize the SARS-CoV-2 N protein and to use it for the development of serological assays to detect SARS-CoV-2 infection.
Collapse
Affiliation(s)
| | | | | | - Yuying Liang
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St Paul, MN 55108, USA; (D.D.); (M.D.); (S.A.)
| | - Hinh Ly
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St Paul, MN 55108, USA; (D.D.); (M.D.); (S.A.)
| |
Collapse
|
42
|
Bourassa L, Perchetti GA, Phung Q, Lin MJ, Mills MG, Roychoudhury P, Harmon KG, Reed JC, Greninger AL. A SARS-CoV-2 Nucleocapsid Variant that Affects Antigen Test Performance. J Clin Virol 2021; 141:104900. [PMID: 34171548 DOI: 10.1101/2021.05.05.21256527] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/09/2021] [Indexed: 05/27/2023]
Abstract
More than one year into a global pandemic, SARS-CoV-2 is now defined by a variety of rapidly evolving variant lineages. Several FDA authorized molecular diagnostic tests have been impacted by viral variation, while no reports of viral variation affecting antigen test performance have occurred to date. While determining the analytical sensitivity of the Quidel Sofia SARS Antigen FIA test (Sofia 2), we uncovered a high viral load specimen that repeatedly tested negative by this antigen test. Whole genome sequencing of the specimen uncovered two mutations, T205I and D399N, present in the nucleocapsid protein of the isolate. All six SARS-CoV-2 positive clinical specimens available in our laboratory with a D399N nucleocapsid mutation and CT < 31 were not detected by the Sofia 2 but detected by the Abbott BinaxNOW COVID-19 Ag Card, while clinical specimens with the T205I mutation were detected by both assays. Testing of recombinant SARS-CoV-2 nucleocapsid with these variants demonstrated an approximate 1000-fold loss in sensitivity for the Quidel Sofia SARS Antigen FIA test associated with the D399N mutation, while the BinaxNOW and Quidel Quickvue SARS Antigen tests were unaffected by the mutation. The D399N nucleocapsid mutation has been relatively uncommon to date, appearing in only 0.02% of genomes worldwide at time of writing. Our results demonstrate how routine pathogen genomics can be integrated into the clinical microbiology laboratory to investigate diagnostic edge cases, as well as the importance of profiling antigenic diversity outside of the spike protein for SARS-CoV-2 diagnostics.
Collapse
Affiliation(s)
- Lori Bourassa
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Garrett A Perchetti
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Quynh Phung
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Michelle J Lin
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Margaret G Mills
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Pavitra Roychoudhury
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA; Viral and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Kimberly G Harmon
- Department of Family Medicine, for Stanley Herring Department of Physical Medicine and Rehabilitation, University of Washington, Seattle, Washington, USA
| | - Jonathan C Reed
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Alexander L Greninger
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA; Viral and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
| |
Collapse
|
43
|
Andrew M, Jayaraman G. Marine sulfated polysaccharides as potential antiviral drug candidates to treat Corona Virus disease (COVID-19). Carbohydr Res 2021; 505:108326. [PMID: 34015720 PMCID: PMC8091805 DOI: 10.1016/j.carres.2021.108326] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 04/19/2021] [Accepted: 04/19/2021] [Indexed: 02/06/2023]
Abstract
The viral infection caused by SARS-CoV-2 has increased the mortality rate and engaged several adverse effects on the affected individuals. Currently available antiviral drugs have found to be unsuccessful in the treatment of COVID-19 patients. The demand for efficient antiviral drugs has created a huge burden on physicians and health workers. Plasma therapy seems to be less accomplishable due to insufficient donors to donate plasma and low recovery rate from viral infection. Repurposing of antivirals has been evolved as a suitable strategy in the current treatment and preventive measures. The concept of drug repurposing represents new experimental approaches for effective therapeutic benefits. Besides, SARS-CoV-2 exhibits several complications such as lung damage, blood clot formation, respiratory illness and organ failures in most of the patients. Based on the accumulation of data, sulfated marine polysaccharides have exerted successful inhibition of virus entry, attachment and replication with known or unknown possible mechanisms against deadly animal and human viruses so far. Since the virus entry into the host cells is the key process, the prevention of such entry mechanism makes any antiviral strategy effective. Enveloped viruses are more sensitive to polyanions than non-enveloped viruses. Besides, the viral infection caused by RNA virus types embarks severe oxidative stress in the human body that leads to malfunction of tissues and organs. In this context, polysaccharides play a very significant role in providing shielding effect against the virus due to their polyanionic rich features and a molecular weight that hinders their reactive surface glycoproteins. Significantly the functional groups especially sulfate, sulfate pattern and addition, uronic acids, monosaccharides, glycosidic linkage and high molecular weight have greater influence in the antiviral activity. Moreover, they are very good antioxidants that can reduce the free radical generation and provokes intracellular antioxidant enzymes. Additionally, polysaccharides enable a host-virus immune response, activate phagocytosis and stimulate interferon systems. Therefore, polysaccharides can be used as candidate drugs, adjuvants in vaccines or combination with other antivirals, antioxidants and immune-activating nutritional supplements and antiviral materials in healthcare products to prevent SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Monic Andrew
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - Gurunathan Jayaraman
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India.
| |
Collapse
|
44
|
Praissman JL, Wells L. Proteomics-Based Insights Into the SARS-CoV-2-Mediated COVID-19 Pandemic: A Review of the First Year of Research. Mol Cell Proteomics 2021; 20:100103. [PMID: 34089862 PMCID: PMC8176883 DOI: 10.1016/j.mcpro.2021.100103] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 05/24/2021] [Indexed: 02/08/2023] Open
Abstract
In late 2019, a virus subsequently named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in China and led to a worldwide pandemic of the disease termed coronavirus disease 2019. The global health threat posed by this pandemic led to an extremely rapid and robust mobilization of the scientific and medical communities as evidenced by the publication of more than 10,000 peer-reviewed articles and thousands of preprints in the first year of the pandemic alone. With the publication of the initial genome sequence of SARS-CoV-2, the proteomics community immediately joined this effort publishing, to date, more than 100 peer-reviewed proteomics studies and submitting many more preprints to preprint servers. In this review, we focus on peer-reviewed articles published on the proteome, glycoproteome, and glycome of SARS-CoV-2. At a basic level, proteomic studies provide valuable information on quantitative aspects of viral infection course; information on the identities, sites, and microheterogeneity of post-translational modifications; and, information on protein-protein interactions. At a biological systems level, these studies elucidate host cell and tissue responses, characterize antibodies and other immune system factors in infection, suggest biomarkers that may be useful for diagnosis and disease-course monitoring, and help in the development or repurposing of potential therapeutics. Here, we summarize results from selected early studies to provide a perspective on the current rapidly evolving literature.
Collapse
Affiliation(s)
- Jeremy L Praissman
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Lance Wells
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA.
| |
Collapse
|
45
|
Lytton SD, Yeasmin M, Ghosh AK, Bulbul MRH, Molla MMA, Herr M, Duchmann H, Sharif MM, Nafisa T, Amin MR, Hosen N, Rahman MT, Islam S, Islam A, Shamsuzzaman AKM. Detection of Anti-Nucleocapsid Antibody in COVID-19 Patients in Bangladesh Is not Correlated with Previous Dengue Infection. Pathogens 2021; 10:637. [PMID: 34067281 PMCID: PMC8224749 DOI: 10.3390/pathogens10060637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND The assessment of antibody responses to severe acute respiratory syndrome coronavirus-2 is potentially confounded by exposures to flaviviruses. The aims of the present research were to determine whether anti-dengue antibodies affect the viral load and the detection of anti-coronavirus nucleocapsid (N)-protein antibodies in coronavirus infectious disease 2019 (COVID-19) in Bangladesh. METHODS Viral RNA was evaluated in swab specimens from 115 COVID-19 patients by real-time reverse transcription polymerase chain reaction (rT-PCR). The anti-N-protein antibodies, anti-dengue virus E-protein antibodies and the dengue non-structural protein-1 were determined in serum from 115 COVID-19 patients, 30 acute dengue fever pre-COVID-19 pandemic and nine normal controls by ELISA. RESULTS The concentrations of viral RNA in the nasopharyngeal; Ct median (95% CI); 22 (21.9-23.3) was significantly higher than viral RNA concentrations in oropharyngeal swabs; and 29 (27-30.5) p < 0.0001. Viral RNA concentrations were not correlated with-dengue IgG levels. The anti-nucleocapsid antibodies were IgA 27% positive and IgG 35% positive at days 1 to 8 post-onset of COVID-19 symptoms versus IgA 0% and IgG 0% in dengue patients, p < 0.0001. The levels of anti- nucleocapsid IgA or IgG versus the levels of anti-dengue IgM or IgG revealed no significant correlations. CONCLUSIONS Viral RNA and anti-nucleocapsid antibodies were detected in COVID-19 patients from dengue-endemic regions of Bangladesh, independently of the dengue IgG levels.
Collapse
Affiliation(s)
| | - Mahmuda Yeasmin
- National Institute of Laboratory Medicine and Referral Center, Sher E-Bangla Nagar, Dhaka 1207, Bangladesh; (M.Y.); (M.M.A.M.); (T.N.); (N.H.); (A.K.M.S.)
| | - Asish Kumar Ghosh
- Dhaka Medical College Hospital, Dhaka 1000, Bangladesh; (A.K.G.); (M.M.S.); (M.R.A.)
| | | | - Md. Maruf Ahmed Molla
- National Institute of Laboratory Medicine and Referral Center, Sher E-Bangla Nagar, Dhaka 1207, Bangladesh; (M.Y.); (M.M.A.M.); (T.N.); (N.H.); (A.K.M.S.)
| | - Martha Herr
- NovaTec Immundiagnostica GmbH, 63128 Dietzenbach, Germany; (M.H.); (H.D.)
| | - Helmut Duchmann
- NovaTec Immundiagnostica GmbH, 63128 Dietzenbach, Germany; (M.H.); (H.D.)
| | - Md. Mohiuddin Sharif
- Dhaka Medical College Hospital, Dhaka 1000, Bangladesh; (A.K.G.); (M.M.S.); (M.R.A.)
| | - Tasnim Nafisa
- National Institute of Laboratory Medicine and Referral Center, Sher E-Bangla Nagar, Dhaka 1207, Bangladesh; (M.Y.); (M.M.A.M.); (T.N.); (N.H.); (A.K.M.S.)
| | - Md. Robed Amin
- Dhaka Medical College Hospital, Dhaka 1000, Bangladesh; (A.K.G.); (M.M.S.); (M.R.A.)
| | - Nur Hosen
- National Institute of Laboratory Medicine and Referral Center, Sher E-Bangla Nagar, Dhaka 1207, Bangladesh; (M.Y.); (M.M.A.M.); (T.N.); (N.H.); (A.K.M.S.)
| | - Md. Tanvir Rahman
- Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (M.T.R.); (A.I.)
| | - Sumaiya Islam
- Bangladesh Medical College and Hospital, 14/A Dhanmondi, Dhaka 1209, Bangladesh;
| | - Alimul Islam
- Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (M.T.R.); (A.I.)
| | - Abul Khair Mohammad Shamsuzzaman
- National Institute of Laboratory Medicine and Referral Center, Sher E-Bangla Nagar, Dhaka 1207, Bangladesh; (M.Y.); (M.M.A.M.); (T.N.); (N.H.); (A.K.M.S.)
| |
Collapse
|
46
|
Abiri A, Rezaei M, Zeighami MH, Vaezpour Y, Dehghan L, KhorramGhahfarokhi M. Discovery of new TLR7 agonists by a combination of statistical learning-based QSAR, virtual screening, and molecular dynamics. INFORMATICS IN MEDICINE UNLOCKED 2021; 27:100787. [PMID: 34805481 PMCID: PMC8591993 DOI: 10.1016/j.imu.2021.100787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/16/2021] [Accepted: 11/11/2021] [Indexed: 01/31/2023] Open
Abstract
Search for new antiviral medications has surged in the past two years due to the COVID-19 crisis. Toll-like receptor 7 (TLR7) is among one of the most important TLR proteins of innate immunity that is responsible for broad antiviral response and immune system control. TLR7 agonists, as both vaccine adjuvants and immune response modulators, are among the top drug candidates for not only our contemporary viral pandemic but also other diseases. The agonists of TLR7 have been utilized as vaccine adjuvants and antiviral agents. In this study, we hybridized a statistical learning-based QSAR model with molecular docking and molecular dynamics simulation to extract new antiviral drugs by drug repurposing of the DrugBank database. First, we manually curated a dataset consisting of TLR7 agonists. The molecular descriptors of these compounds were extracted, and feature engineering was done to restrict the number of features to 45. We applied a statistically inspired modification of the partial least squares (SIMPLS) method to build our QSAR model. In the next stage, the DrugBank database was virtually screened structurally using molecular docking, and the top compounds for the guanosine binding site of TLR were identified. The result of molecular docking was again screened by the ligand-based approach of QSAR to eliminate compounds that do not display strong EC50 values by the previously trained model. We then subjected the final results to molecular dynamics simulation and compared our compounds with imiquimod (an FDA-approved TLR7 agonist) and compound 1 (the most active compound against TLR7 in vitro, EC50 = 0.2 nM). Our results evidently demonstrate that cephalosporins and nucleotide analogues (especially acyclic nucleotide analogues such as adefovir and cidofovir) are computationally potent agonists of TLR7. We finally reviewed some publications about cephalosporins that, just like pieces of a puzzle, completed our conclusion.
Collapse
Affiliation(s)
- Ardavan Abiri
- Department of Medicinal Chemistry, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran,Corresponding author
| | - Masoud Rezaei
- Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran,Corresponding author
| | - Mohammad Hossein Zeighami
- Department of Medicinal Chemistry, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Younes Vaezpour
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran
| | - Leili Dehghan
- Department of Medicinal Chemistry, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Maedeh KhorramGhahfarokhi
- Faculty of Pharmacy and Pharmaceutical Sciences, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|