1
|
Sun D, Xie C, Zhao Y, Liao J, Li S, Zhang Y, Wang D, Hua K, Gu Y, Du J, Huang G, Huang J. The gut microbiota-bile acid axis in cholestatic liver disease. Mol Med 2024; 30:104. [PMID: 39030473 PMCID: PMC11265038 DOI: 10.1186/s10020-024-00830-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/07/2024] [Indexed: 07/21/2024] Open
Abstract
Cholestatic liver diseases (CLD) are characterized by impaired normal bile flow, culminating in excessive accumulation of toxic bile acids. The majority of patients with CLD ultimately progress to liver cirrhosis and hepatic failure, necessitating liver transplantation due to the lack of effective treatment. Recent investigations have underscored the pivotal role of the gut microbiota-bile acid axis in the progression of hepatic fibrosis via various pathways. The obstruction of bile drainage can induce gut microbiota dysbiosis and disrupt the intestinal mucosal barrier, leading to bacteria translocation. The microbial translocation activates the immune response and promotes liver fibrosis progression. The identification of therapeutic targets for modulating the gut microbiota-bile acid axis represents a promising strategy to ameliorate or perhaps reverse liver fibrosis in CLD. This review focuses on the mechanisms in the gut microbiota-bile acids axis in CLD and highlights potential therapeutic targets, aiming to lay a foundation for innovative treatment approaches.
Collapse
Affiliation(s)
- Dayan Sun
- Department of Neonatal Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, No. 56 Nalishi Road, Xicheng District, Beijing, 100045, China
| | - Chuanping Xie
- Department of Neonatal Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, No. 56 Nalishi Road, Xicheng District, Beijing, 100045, China
| | - Yong Zhao
- Department of Neonatal Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, No. 56 Nalishi Road, Xicheng District, Beijing, 100045, China
| | - Junmin Liao
- Department of Neonatal Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, No. 56 Nalishi Road, Xicheng District, Beijing, 100045, China
| | - Shuangshuang Li
- Department of Neonatal Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, No. 56 Nalishi Road, Xicheng District, Beijing, 100045, China
| | - Yanan Zhang
- Department of Neonatal Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, No. 56 Nalishi Road, Xicheng District, Beijing, 100045, China
| | - Dingding Wang
- Department of Neonatal Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, No. 56 Nalishi Road, Xicheng District, Beijing, 100045, China
| | - Kaiyun Hua
- Department of Neonatal Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, No. 56 Nalishi Road, Xicheng District, Beijing, 100045, China
| | - Yichao Gu
- Department of Neonatal Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, No. 56 Nalishi Road, Xicheng District, Beijing, 100045, China
| | - Jingbin Du
- Department of Neonatal Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, No. 56 Nalishi Road, Xicheng District, Beijing, 100045, China
| | - Guoxian Huang
- Department of Pediatric Surgery, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, 361000, China
| | - Jinshi Huang
- Department of Neonatal Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, No. 56 Nalishi Road, Xicheng District, Beijing, 100045, China.
| |
Collapse
|
2
|
Zou Y, Zhou C, Chang X, Zhao F, Ye K. Differential mechanism between Listeria monocytogenes strains with different virulence contaminating ready-to-eat sausages during the simulated gastrointestinal tract. Food Res Int 2024; 186:114312. [PMID: 38729688 DOI: 10.1016/j.foodres.2024.114312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/26/2024] [Accepted: 04/16/2024] [Indexed: 05/12/2024]
Abstract
Listeria monocytogenes exhibits varying levels of pathogenicity when entering the host through contaminated food. However, little is known regarding the stress response and environmental tolerance mechanism of different virulence strains to host gastrointestinal (GI) stimuli. This study analyzed the differences in the survival and genes of stress responses among two strains of L. monocytogenes 10403S (serotype 1/2a, highly virulent strain) and M7 (serotype 4a, low-virulence strain) during simulated gastrointestinal digestion. The results indicated that L. monocytogenes 10403S showed greater acid and bile salt tolerance than L. monocytogenes M7, with higher survival rates and less cell deformation and cell membrane permeability during the in vitro digestion. KEGG analysis of the transcriptomes indicated that L. monocytogenes 10403S displayed significant activity in amino acid metabolism, such as glutamate and arginine, associated with acid tolerance. Additionally, L. monocytogenes 10403S demonstrated a higher efficacy in promoting activities that preserve bacterial cell membrane integrity and facilitate flagellar protein synthesis. These findings will contribute valuable practical insights into the tolerance distinctions among different virulence strains of L. monocytogenes in the GI environment.
Collapse
Affiliation(s)
- Yafang Zou
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, 210095 Nanjing, Jiangsu, PR China
| | - Cong Zhou
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, 210095 Nanjing, Jiangsu, PR China
| | - Xiaochen Chang
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, 210095 Nanjing, Jiangsu, PR China
| | - Fanwen Zhao
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, 210095 Nanjing, Jiangsu, PR China
| | - Keping Ye
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, 210095 Nanjing, Jiangsu, PR China.
| |
Collapse
|
3
|
Ridlon JM, Gaskins HR. Another renaissance for bile acid gastrointestinal microbiology. Nat Rev Gastroenterol Hepatol 2024; 21:348-364. [PMID: 38383804 DOI: 10.1038/s41575-024-00896-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/16/2024] [Indexed: 02/23/2024]
Abstract
The field of bile acid microbiology in the gastrointestinal tract is going through a current rebirth after a peak of activity in the late 1970s and early 1980s. This renewed activity is a result of many factors, including the discovery near the turn of the century that bile acids are potent signalling molecules and technological advances in next-generation sequencing, computation, culturomics, gnotobiology, and metabolomics. We describe the current state of the field with particular emphasis on questions that have remained unanswered for many decades in both bile acid synthesis by the host and metabolism by the gut microbiota. Current knowledge of established enzymatic pathways, including bile salt hydrolase, hydroxysteroid dehydrogenases involved in the oxidation and epimerization of bile acid hydroxy groups, the Hylemon-Bjӧrkhem pathway of bile acid C7-dehydroxylation, and the formation of secondary allo-bile acids, is described. We cover aspects of bile acid conjugation and esterification as well as evidence for bile acid C3-dehydroxylation and C12-dehydroxylation that are less well understood but potentially critical for our understanding of bile acid metabolism in the human gut. The physiological consequences of bile acid metabolism for human health, important caveats and cautionary notes on experimental design and interpretation of data reflecting bile acid metabolism are also explored.
Collapse
Affiliation(s)
- Jason M Ridlon
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Center for Advanced Study, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Department of Microbiology & Immunology, Virginia Commonwealth University, Richmond, VA, USA.
| | - H Rex Gaskins
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Department of Biomedical and Translational Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Department of Pathobiology, University of Illinois Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
4
|
Guo L, Liu Q, Yin X. Gut Microbiota Protects Listeria monocytogenes-Infected Mice by Reducing the Inflammatory Cytokines Storm and Cell Apoptosis. Foodborne Pathog Dis 2024; 21:288-297. [PMID: 38237167 DOI: 10.1089/fpd.2023.0121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024] Open
Abstract
Gut microbiota (GM) has been proven to resist pathogenic infection through nutritional competition, colonization resistance and promotion of the host immune response. However, in clinical practice, GM is mainly used in intestinal diseases, such as Clostridium difficile infection, and there are few reports on its application in the treatment of pathogenic bacterial infections. In this study, GM from healthy mice was transplanted into mice infected with Listeria monocytogenes using fecal microbiota transplantation (FMT) and the effects were observed. We found that GM from healthy mice could reduce the mortality of infected mice and decrease the counts of L. monocytogenes in their liver and spleen. In addition, FMT inhibited the expression of inflammatory factors in the liver and spleen of infected mice. In vitro cell experiments revealed that GM can reduce the count of L. monocytogenes invading Caco-2 cells and inhibit the L. monocytogenes-caused apoptosis. These results indicate that GM can be used to protect mice infected with L. monocytogenes by eliminating the amount of L. monocytogenes in the host and inhibiting the overexpression of inflammatory factors. Hence, this method can potentially replace antibiotics in the treatment of L. monocytogenes infection.
Collapse
Affiliation(s)
- Liang Guo
- College of Food Science and Pharmaceutical Engineering, Zaozhuang University, Shandong, China
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Qing Liu
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Xianhong Yin
- College of Food Science and Pharmaceutical Engineering, Zaozhuang University, Shandong, China
| |
Collapse
|
5
|
Bongiovanni M, Cavallo C, Barda B, Strulak L, Bernasconi E, Cardia A. Clinical Findings of Listeria monocytogenes Infections with a Special Focus on Bone Localizations. Microorganisms 2024; 12:178. [PMID: 38258004 PMCID: PMC10821090 DOI: 10.3390/microorganisms12010178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/05/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
Listeria monocytogenes is a Gram-positive pathogenic bacterium which can be found in soil or water. Infection with the microorganism can occur after ingestion of contaminated food products. Small and large outbreaks of listeriosis have been described in the past. L. monocytogenes can cause a number of different clinical syndromes, most frequently sepsis, meningitis, and rhombencephalitis, particularly in immunocompromised hosts. L. monocytogenes systemic infections can develop following tissue penetration across the gastrointestinal tract or to hematogenous spread to sterile sites, possibly evolving towards bacteremia. L. monocytogenes only rarely causes bone or joint infections, usually in the context of prosthetic material that can provide a site for bacterial seeding. We describe here the clinical findings of invasive listeriosis, mainly focusing on the diagnosis, clinical management, and treatment of bone and vertebral infections occurring in the context of invasive listeriosis.
Collapse
Affiliation(s)
- Marco Bongiovanni
- Division of Infectious Diseases, Ente Ospedaliero Cantonale, 6900 Lugano, Switzerland; (B.B.); (E.B.)
| | - Claudio Cavallo
- Division of Neurosurgery, Ente Ospedaliero Cantonale, 6900 Lugano, Switzerland; (C.C.); (L.S.)
| | - Beatrice Barda
- Division of Infectious Diseases, Ente Ospedaliero Cantonale, 6900 Lugano, Switzerland; (B.B.); (E.B.)
| | - Lukasz Strulak
- Division of Neurosurgery, Ente Ospedaliero Cantonale, 6900 Lugano, Switzerland; (C.C.); (L.S.)
| | - Enos Bernasconi
- Division of Infectious Diseases, Ente Ospedaliero Cantonale, 6900 Lugano, Switzerland; (B.B.); (E.B.)
| | - Andrea Cardia
- Division of Neurosurgery, Ente Ospedaliero Cantonale, 6900 Lugano, Switzerland; (C.C.); (L.S.)
| |
Collapse
|
6
|
Zhao J, Tian L, Xia B, Mi N, He Q, Yang M, Wang D, Wu S, Li Z, Zhang S, Zhang X, Yue P, Lin Y, Zhao H, Zhang B, Ma Z, Jiang N, Li M, Yuan J, Nie P, Lu L, Meng W. Cholecystectomy is associated with a higher risk of irritable bowel syndrome in the UK Biobank: a prospective cohort study. Front Pharmacol 2023; 14:1244563. [PMID: 38143491 PMCID: PMC10749201 DOI: 10.3389/fphar.2023.1244563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 11/28/2023] [Indexed: 12/26/2023] Open
Abstract
Background: Recent studies have shown that bile acids are essential in irritable bowel syndrome (IBS) pathology, and cholecystectomy has direct effects on bile acid metabolism. However, whether cholecystectomy increases the risk of IBS remains unclear. We aimed to investigate the association between cholecystectomy and IBS risk in the UK Biobank (UKB). Methods: This study is a prospective analysis of 413,472 participants who were free of IBS, inflammatory bowel disease, cancer, or common benign digestive tract diseases. We identified incidents of IBS through self-reporting or links to primary healthcare and hospitalization data. We evaluated hazard ratios (HRs) adjusted for sociodemographic characteristics, health behaviours, comorbidities, and medications. Results: During a median follow-up period of 12.7 years, we observed 15,503 new cases of IBS. Participants with a history of cholecystectomy had a 46% higher risk of IBS than those without (HR = 1.46, 95% CI: 1.32-1.60), and further subtype analysis showed that the risk of IBS with diarrhoea was significantly higher than the risk of IBS without diarrhoea (HR = 1.71, 95% CI: 1.30-2.25 vs. HR = 1.42, 95% CI: 1.28-1.58). The overall covariate-adjusted HRs for IBS were similar between the group with both cholecystectomy and gallstones (HR = 1.45, 95% CI: 1.32-1.58) and the group with cholecystectomy without gallstones (HR = 1.50, 95% CI: 1.36-1.67) when the group without both cholecystectomy and gallstones was used as a reference. The overall covariate-adjusted HR was not significantly different in the group without cholecystectomy with gallstones (HR = 1.18, 95% CI: 0.95-1.47). The positive association of cholecystectomy with IBS risk did not change when stratifying the data based on age, sex, BMI, smoking, alcohol consumption, healthy diet, quality sleep, physical activity, type 2 diabetes, hypertension, hyperlipidaemia, mental illness, NSAID intake, or acid inhibitor intake. Sensitivity analyses, including propensity score matching analysis and lagging the exposure for two or four years, indicated that the effects were robust. Conclusion: Cholecystectomy was associated with a higher risk of IBS, especially IBS with diarrhoea. Additional prospective randomized controlled and experimental studies are warranted to further validate the association and to explore the relevant biological mechanisms.
Collapse
Affiliation(s)
- Jinyu Zhao
- The First Clinical Medical School, Lanzhou University, Lanzhou, Gansu, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Liang Tian
- The First Clinical Medical School, Lanzhou University, Lanzhou, Gansu, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Bin Xia
- Scientific Research Center, Big Data Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, China
- Clinical Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, China
- Guangdong Provincial Key Laboratory of Gastroenterology, Center for Digestive Disease, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Ningning Mi
- The First Clinical Medical School, Lanzhou University, Lanzhou, Gansu, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Qiangsheng He
- Scientific Research Center, Big Data Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, China
- Clinical Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, China
- Guangdong Provincial Key Laboratory of Gastroenterology, Center for Digestive Disease, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Man Yang
- Guangdong Provincial Key Laboratory of Gastroenterology, Center for Digestive Disease, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Danni Wang
- Scientific Research Center, Big Data Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Siqing Wu
- School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, China
| | - Zijun Li
- Evidence Based Social Science Research Center, School of Public Health, Lanzhou University, Lanzhou, China
| | - Shiyong Zhang
- Department of Joint Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Xianzhuo Zhang
- The First Clinical Medical School, Lanzhou University, Lanzhou, Gansu, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Ping Yue
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Yanyan Lin
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Haitong Zhao
- Evidence Based Social Science Research Center, School of Public Health, Lanzhou University, Lanzhou, China
| | - Baoping Zhang
- The First Clinical Medical School, Lanzhou University, Lanzhou, Gansu, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Zelong Ma
- The First Clinical Medical School, Lanzhou University, Lanzhou, Gansu, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Ningzu Jiang
- The First Clinical Medical School, Lanzhou University, Lanzhou, Gansu, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Matu Li
- The First Clinical Medical School, Lanzhou University, Lanzhou, Gansu, China
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Jinqiu Yuan
- Scientific Research Center, Big Data Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, China
- Clinical Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, China
- Guangdong Provincial Key Laboratory of Gastroenterology, Center for Digestive Disease, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Peng Nie
- Department of Gastric Surgery, Gansu Wuwei Tumour Hospital, Wuwei Academy of Medical Science, Wuwei, Gansu, China
| | - Linzhi Lu
- Wuwei Oncology Hospital, Wuwei, Gansu, China
| | - Wenbo Meng
- The First Clinical Medical School, Lanzhou University, Lanzhou, Gansu, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
7
|
Hugon AM, Deblois CL, Simmons HA, Mejia A, Schotzo ML, Czuprynski CJ, Suen G, Golos TG. Listeria monocytogenes infection in pregnant macaques alters the maternal gut microbiome†. Biol Reprod 2023; 109:618-634. [PMID: 37665249 PMCID: PMC10651077 DOI: 10.1093/biolre/ioad104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023] Open
Abstract
OBJECTIVES The bacterium Listeria monocytogenes (Lm) is associated with adverse pregnancy outcomes. Infection occurs through consumption of contaminated food that is disseminated to the maternal-fetal interface. The influence on the gastrointestinal microbiome during Lm infection remains unexplored in pregnancy. The objective of this study was to determine the impact of listeriosis on the gut microbiota of pregnant macaques. METHODS A non-human primate model of listeriosis in pregnancy has been previously described. Both pregnant and non-pregnant cynomolgus macaques were inoculated with Lm and bacteremia and fecal shedding were monitored for 14 days. Non-pregnant animal tissues were collected at necropsy to determine bacterial burden, and fecal samples from both pregnant and non-pregnant animals were evaluated by 16S rRNA next-generation sequencing. RESULTS Unlike pregnant macaques, non-pregnant macaques did not exhibit bacteremia, fecal shedding, or tissue colonization by Lm. Dispersion of Lm during pregnancy was associated with a significant decrease in alpha diversity of the host gut microbiome, compared to non-pregnant counterparts. The combined effects of pregnancy and listeriosis were associated with a significant loss in microbial richness, although there were increases in some genera and decreases in others. CONCLUSIONS Although pregnancy alone is not associated with gut microbiome disruption, we observed dysbiosis with listeriosis during pregnancy. The macaque model may provide an understanding of the roles that pregnancy and the gut microbiota play in the ability of Lm to establish intestinal infection and disseminate throughout the host, thereby contributing to adverse pregnancy outcomes and risk to the developing fetus.
Collapse
Affiliation(s)
- Anna Marie Hugon
- Wisconsin National Primate Research Center, University of Wisconsin–Madison, Madison, WI, USA
- Department of Pathology and Laboratory Medicine, University of Wisconsin–Madison, Madison, WI, USA
| | - Courtney L Deblois
- Department of Bacteriology, University of Wisconsin–Madison, Madison, WI, USA
- Microbiology Doctoral Training Program, University of Wisconsin–Madison, Madison, WI, USA
| | - Heather A Simmons
- Wisconsin National Primate Research Center, University of Wisconsin–Madison, Madison, WI, USA
| | - Andres Mejia
- Wisconsin National Primate Research Center, University of Wisconsin–Madison, Madison, WI, USA
| | - Michele L Schotzo
- Wisconsin National Primate Research Center, University of Wisconsin–Madison, Madison, WI, USA
| | - Charles J Czuprynski
- Department of Pathobiological Sciences, University of Wisconsin–Madison, Madison, WI, USA
| | - Garret Suen
- Department of Bacteriology, University of Wisconsin–Madison, Madison, WI, USA
| | - Thaddeus G Golos
- Wisconsin National Primate Research Center, University of Wisconsin–Madison, Madison, WI, USA
- Department of Comparative Biosciences, University of Wisconsin–Madison, Madison, WI, USA
- Department of Obstetrics and Gynecology, University of Wisconsin–Madison, Madison, WI, USA
| |
Collapse
|
8
|
Mao P, Wang Y, Gan L, Liu L, Chen J, Li L, Sun H, Luo X, Ye C. Large-scale genetic analysis and biological traits of two SigB factors in Listeria monocytogenes: lineage correlations and differential functions. Front Microbiol 2023; 14:1268709. [PMID: 38029172 PMCID: PMC10679752 DOI: 10.3389/fmicb.2023.1268709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/13/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Listeria monocytogenes is a globally distributed bacterium that exhibits genetic diversity and trait heterogeneity. The alternative sigma factor SigB serves as a crucial transcriptional regulator essential for responding to environmental stress conditions and facilitating host infection. Method We employed a comprehensive genetic analysis of sigB in a dataset comprising 46,921 L. monocytogenes genomes. The functional attributes of SigB were evaluated by phenotypic experiments. Results Our study revealed the presence of two predominant SigB factors (SigBT1 and SigBT2) in L. monocytogenes, with a robust correlation between SigBT1 and lineages I and III, as well as SigBT2 and lineage II. Furthermore, SigBT1 exhibits superior performance in promoting cellular invasion, cytotoxicity and enhancing biofilm formation and cold tolerance abilities under minimally defined media conditions compared to SigBT2. Discussion The functional characteristics of SigBT1 suggest a potential association with the epidemiology of lineages I and III strains in both human hosts and the natural environment. Our findings highlight the important role of distinct SigB factors in influencing the biological traits of L. monocytogenes of different lineages, thus highlighting its distinct pathogenic and adaptive attributes.
Collapse
Affiliation(s)
- Pan Mao
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yan Wang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Lin Gan
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
| | - Lingyun Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jinni Chen
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Lingling Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Hui Sun
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xia Luo
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Changyun Ye
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
9
|
Engelgeh T, Herrmann J, Jansen R, Müller R, Halbedel S. Tartrolon sensing and detoxification by the Listeria monocytogenes timABR resistance operon. Mol Microbiol 2023; 120:629-644. [PMID: 37804169 DOI: 10.1111/mmi.15178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/09/2023]
Abstract
Listeria monocytogenes is a foodborne bacterium that naturally occurs in the soil. Originating from there, it contaminates crops and infects farm animals and their consumption by humans may lead to listeriosis, a systemic life-threatening infectious disease. The adaptation of L. monocytogenes to such contrastive habitats is reflected by the presence of virulence genes for host infection and other genes for survival under environmental conditions. Among the latter are ABC transporters for excretion of antibiotics produced by environmental competitors; however, most of these transporters have not been characterized. Here, we generated a collection of promoter-lacZ fusions for genes encoding ABC-type drug transporters of L. monocytogenes and screened this reporter strain collection for induction using a library of natural compounds produced by various environmental microorganisms. We found that the timABR locus (lmo1964-lmo1962) was induced by the macrodiolide antibiotic tartrolon B, which is synthesized by the soil myxobacterium Sorangium cellulosum. Tartrolon B resistance of L. monocytogenes was dependent on timAB, encoding the ATPase and the permease component of a novel ABC transporter. Moreover, transplantation of timAB was sufficient to confer tartrolon B resistance to Bacillus subtilis. Expression of the timABR locus was found to be auto-repressed by the TimR repressor, whose repressing activity was lost in the presence of tartrolon B. We also demonstrate that tartrolon sensitivity was suppressed by high external potassium concentrations, suggesting that tartrolon acts as potassium ionophore. Our results help to map the ecological interactions of an important human pathogen with its co-residing species within their joint natural reservoir.
Collapse
Affiliation(s)
- Tim Engelgeh
- FG11 Division of Enteropathogenic Bacteria and Legionella, Robert Koch Institute, Wernigerode, Germany
| | - Jennifer Herrmann
- Department of Microbial Natural Products, Helmholtz Centre for Infection Research, Saarland University, Saarbrücken, Germany
- Department of Pharmaceutical Biotechnology, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarland University, Saarbrücken, Germany
- German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Braunschweig, Germany
| | - Rolf Jansen
- Department of Microbial Drugs, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Rolf Müller
- Department of Microbial Natural Products, Helmholtz Centre for Infection Research, Saarland University, Saarbrücken, Germany
- Department of Pharmaceutical Biotechnology, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarland University, Saarbrücken, Germany
- German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Braunschweig, Germany
| | - Sven Halbedel
- FG11 Division of Enteropathogenic Bacteria and Legionella, Robert Koch Institute, Wernigerode, Germany
- Institute for Medical Microbiology and Hospital Hygiene, Otto von Guericke University Magdeburg, Magdeburg, Germany
| |
Collapse
|
10
|
Tükenmez H, Singh P, Sarkar S, Çakır M, Oliveira AH, Lindgren C, Vaitkevicius K, Bonde M, Sauer-Eriksson AE, Almqvist F, Johansson J. A Highly Substituted Ring-Fused 2-Pyridone Compound Targeting PrfA and the Efflux Regulator BrtA in Listeria monocytogenes. mBio 2023; 14:e0044923. [PMID: 37120759 PMCID: PMC10294697 DOI: 10.1128/mbio.00449-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 03/20/2023] [Indexed: 05/01/2023] Open
Abstract
Listeria monocytogenes is a facultative Gram-positive bacterium that causes listeriosis, a severe foodborne disease. We previously discovered that ring-fused 2-pyridone compounds can decrease virulence factor expression in Listeria by binding and inactivating the PrfA virulence activator. In this study, we tested PS900, a highly substituted 2-pyridone that was recently discovered to be bactericidal to other Gram-positive pathogenic bacteria, such as Staphylococcus aureus and Enterococcus faecalis. We show that PS900 can interact with PrfA and reduce the expression of virulence factors. Unlike previous ring-fused 2-pyridones shown to inactivate PrfA, PS900 had an additional antibacterial activity and was found to potentiate sensitivity toward cholic acid. Two PS900-tolerant mutants able to grow in the presence of PS900 carried mutations in the brtA gene, encoding the BrtA repressor. In wild-type (WT) bacteria, cholic acid binds and inactivates BrtA, thereby alleviating the expression of the multidrug transporter MdrT. Interestingly, we found that PS900 also binds to BrtA and that this interaction causes BrtA to dissociate from its binding site in front of the mdrT gene. In addition, we observed that PS900 potentiated the effect of different osmolytes. We suggest that the increased potency of cholic acid and osmolytes to kill bacteria in the presence of PS900 is due to the ability of the latter to inhibit general efflux, through a yet-unknown mechanism. Our data indicate that thiazolino 2-pyridones constitute an attractive scaffold when designing new types of antibacterial agents. IMPORTANCE Bacteria resistant to one or several antibiotics are a very large problem, threatening not only treatment of infections but also surgery and cancer treatments. Thus, new types of antibacterial drugs are desperately needed. In this work, we show that a new generation of substituted ring-fused 2-pyridones not only inhibit Listeria monocytogenes virulence gene expression, presumably by inactivating the PrfA virulence regulator, but also potentiate the bactericidal effects of cholic acid and different osmolytes. We identified a multidrug repressor as a second target of 2-pyridones. The repressor-2-pyridone interaction displaces the repressor from DNA, thus increasing the expression of a multidrug transporter. In addition, our data suggest that the new class of ring-fused 2-pyridones are efficient efflux inhibitors, possibly explaining why the simultaneous addition of 2-pyridones together with cholic acid or osmolytes is detrimental for the bacterium. This work proves conclusively that 2-pyridones constitute a promising scaffold to build on for future antibacterial drug design.
Collapse
Affiliation(s)
- Hasan Tükenmez
- Department of Chemistry, Umeå University, Umeå, Sweden
- Umeå Centre of Microbial Research (UCMR), Umeå University, Umeå, Sweden
- Molecular Infection Medicine, Sweden (MIMS), Umeå University, Umeå, Sweden
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- QureTech Bio, Umeå, Sweden
| | - Pardeep Singh
- Department of Chemistry, Umeå University, Umeå, Sweden
| | - Souvik Sarkar
- Department of Chemistry, Umeå University, Umeå, Sweden
- Umeå Centre of Microbial Research (UCMR), Umeå University, Umeå, Sweden
| | - Melike Çakır
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Ana H. Oliveira
- Umeå Centre of Microbial Research (UCMR), Umeå University, Umeå, Sweden
- Molecular Infection Medicine, Sweden (MIMS), Umeå University, Umeå, Sweden
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | | | - Karolis Vaitkevicius
- Umeå Centre of Microbial Research (UCMR), Umeå University, Umeå, Sweden
- Molecular Infection Medicine, Sweden (MIMS), Umeå University, Umeå, Sweden
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | | | - A. Elisabeth Sauer-Eriksson
- Department of Chemistry, Umeå University, Umeå, Sweden
- Umeå Centre of Microbial Research (UCMR), Umeå University, Umeå, Sweden
| | - Fredrik Almqvist
- Department of Chemistry, Umeå University, Umeå, Sweden
- Umeå Centre of Microbial Research (UCMR), Umeå University, Umeå, Sweden
| | - Jörgen Johansson
- Umeå Centre of Microbial Research (UCMR), Umeå University, Umeå, Sweden
- Molecular Infection Medicine, Sweden (MIMS), Umeå University, Umeå, Sweden
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| |
Collapse
|
11
|
Vaval Taylor DM, Xayarath B, Freitag NE. Two Permeases Associated with the Multifunctional CtaP Cysteine Transport System in Listeria monocytogenes Play Distinct Roles in Pathogenesis. Microbiol Spectr 2023; 11:e0331722. [PMID: 37199604 PMCID: PMC10269559 DOI: 10.1128/spectrum.03317-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 04/05/2023] [Indexed: 05/19/2023] Open
Abstract
The soil-dwelling bacterium Listeria monocytogenes survives a multitude of conditions when residing in the outside environment and as a pathogen within host cells. Key to survival within the infected mammalian host is the expression of bacterial gene products necessary for nutrient acquisition. Similar to many bacteria, L. monocytogenes uses peptide import to acquire amino acids. Peptide transport systems play an important role in nutrient uptake as well as in additional functions that include bacterial quorum sensing and signal transduction, recycling of peptidoglycan fragments, adherence to eukaryotic cells, and alterations in antibiotic susceptibility. It has been previously described that CtaP, encoded by lmo0135, is a multifunctional protein associated with activities that include cysteine transport, resistance to acid, membrane integrity, and bacterial adherence to host cells. ctaP is located next to two genes predicted to encode membrane-bound permeases lmo0136 and lmo0137, termed CtpP1 and CtpP2, respectively. Here, we show that CtpP1 and CtpP2 are required for bacterial growth in the presence of low concentrations of cysteine and for virulence in mouse infection models. Taken together, the data identify distinct nonoverlapping roles for two related permeases that are important for the growth and survival of L. monocytogenes within host cells. IMPORTANCE Bacterial peptide transport systems are important for nutrient uptake and may additionally function in a variety of other roles, including bacterial communication, signal transduction, and bacterial adherence to eukaryotic cells. Peptide transport systems often consist of a substrate-binding protein associated with a membrane-spanning permease. The environmental bacterial pathogen Listeria monocytogenes uses the substrate-binding protein CtaP not only for cysteine transport but also for resistance to acid, maintenance of membrane integrity, and bacterial adherence to host cells. In this study, we demonstrate complementary yet distinct functional roles for two membrane permeases, CtpP1 and CtpP2, that are encoded by genes linked to ctaP and that contribute to bacterial growth, invasion, and pathogenicity.
Collapse
Affiliation(s)
- Diandra M. Vaval Taylor
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Bobbi Xayarath
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Nancy E. Freitag
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
12
|
Oliveira AH, Tiensuu T, Guerreiro D, Tükenmez H, Dessaux C, García-Del Portillo F, O'Byrne C, Johansson J. The Virulence and Infectivity of Listeria monocytogenes Are Not Substantially Altered by Elevated SigB Activity. Infect Immun 2023:e0057122. [PMID: 37125941 DOI: 10.1128/iai.00571-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023] Open
Abstract
Listeria monocytogenes is a bacterial pathogen capable of causing severe infections but also thriving outside the host. To respond to different stress conditions, L. monocytogenes mainly utilizes the general stress response regulon, which largely is controlled by the alternative sigma factor Sigma B (SigB). In addition, SigB is important for virulence gene expression and infectivity. Upon encountering stress, a large multicomponent protein complex known as the stressosome becomes activated, ultimately leading to SigB activation. RsbX is a protein needed to reset a "stressed" stressosome and prevent unnecessary SigB activation in nonstressed conditions. Consequently, absence of RsbX leads to constitutive activation of SigB even without prevailing stress stimulus. To further examine the involvement of SigB in the virulence of this pathogen, we investigated whether a strain with constitutively active SigB would be affected in virulence factor expression and/or infectivity in cultured cells and in a chicken embryo infection model. Our results suggest that increased SigB activity does not substantially alter virulence gene expression compared with the wild-type (WT) strain at transcript and protein levels. Bacteria lacking RsbX were taken up by phagocytic and nonphagocytic cells at a similar frequency to WT bacteria, both in stressed and nonstressed conditions. Finally, the absence of RsbX only marginally affected the ability of bacteria to infect chicken embryos. Our results suggest only a minor role of RsbX in controlling virulence factor expression and infectivity under these conditions.
Collapse
Affiliation(s)
- Ana H Oliveira
- Laboratory for Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Umeå Centre of Microbial Research, Umeå University, Umeå, Sweden
| | - Teresa Tiensuu
- Laboratory for Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Umeå Centre of Microbial Research, Umeå University, Umeå, Sweden
| | - Duarte Guerreiro
- Laboratory for Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Umeå Centre of Microbial Research, Umeå University, Umeå, Sweden
- Bacterial Stress Response Group, Microbiology, School of Biological and Chemical Sciences, University of Galway, Galway, Ireland
| | - Hasan Tükenmez
- Laboratory for Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Umeå Centre of Microbial Research, Umeå University, Umeå, Sweden
- Department of Chemistry, Umeå University, Umeå, Sweden
| | - Charlotte Dessaux
- Laboratory of Intracellular Bacterial Pathogens, National Center of Biotechnology, (CNB)-CSIC, Madrid, Spain
| | | | - Conor O'Byrne
- Bacterial Stress Response Group, Microbiology, School of Biological and Chemical Sciences, University of Galway, Galway, Ireland
| | - Jörgen Johansson
- Laboratory for Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Umeå Centre of Microbial Research, Umeå University, Umeå, Sweden
| |
Collapse
|
13
|
Abstract
Listeria monocytogenes is a Gram-positive facultative intracellular pathogen that can cause severe invasive infections upon ingestion with contaminated food. Clinically, listerial disease, or listeriosis, most often presents as bacteremia, meningitis or meningoencephalitis, and pregnancy-associated infections manifesting as miscarriage or neonatal sepsis. Invasive listeriosis is life-threatening and a main cause of foodborne illness leading to hospital admissions in Western countries. Sources of contamination can be identified through international surveillance systems for foodborne bacteria and strains' genetic data sharing. Large-scale whole genome studies have increased our knowledge on the diversity and evolution of L. monocytogenes, while recent pathophysiological investigations have improved our mechanistic understanding of listeriosis. In this article, we present an overview of human listeriosis with particular focus on relevant features of the causative bacterium, epidemiology, risk groups, pathogenesis, clinical manifestations, and treatment and prevention.
Collapse
Affiliation(s)
- Merel M Koopmans
- Amsterdam UMC, University of Amsterdam, Department of Neurology, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Matthijs C Brouwer
- Amsterdam UMC, University of Amsterdam, Department of Neurology, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - José A Vázquez-Boland
- Infection Medicine, Edinburgh Medical School (Biomedical Sciences), University of Edinburgh, Edinburgh, United Kingdom
| | - Diederik van de Beek
- Amsterdam UMC, University of Amsterdam, Department of Neurology, Amsterdam Neuroscience, Amsterdam, the Netherlands
| |
Collapse
|
14
|
Meloni MP, Piras F, Siddi G, Cabras D, Comassi E, Lai R, McAuliffe O, De Santis EPL, Scarano C. Comparison of Activity of Commercial Protective Cultures and Thermophilic Lactic Acid Bacteria against Listeria monocytogenes: A New Perspective to Improve the Safety of Sardinian PDO Cheeses. Foods 2023; 12:1182. [PMID: 36981109 PMCID: PMC10048147 DOI: 10.3390/foods12061182] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/02/2023] [Accepted: 03/07/2023] [Indexed: 03/15/2023] Open
Abstract
Listeria monocytogenes contamination that occurs during and post-processing of dairy products is a serious concern for consumers, and bioprotective cultures can be applied to control the growth of the pathogen in sheep milk cheeses. However, to respect specifications provided for protected designation of origin (PDO) cheeses, only autochthonous microorganisms can be used as bioprotective cultures in these products. This in vitro study aimed to evaluate thermophilic lactic acid bacteria (LAB) isolated from sheep milk as bio-preservative agents to control L. monocytogenes growth in PDO cheese. Results were compared with those obtained with a commercial protective culture (cPC) composed of a Lactiplantibacillus plantarum bacteriocin producer designed to inhibit L. monocytogenes growth in cheese. The in vitro antilisterial activities of n.74 autochthonous LAB and a cPC were tested against 51 L. monocytogenes strains using an agar well diffusion assay. In addition, 16S rRNA sequencing of LAB isolates with antilisterial activity was conducted and strains of Lactobacillus helveticus, Lactobacillus delbrueckii subsp. indicus, Lactobacillus delbrueckii subsp. sunkii, Lactobacillus delbrueckii subsp. lactis and Enterococcus faecalis were identified. In this study, 33.6% (74/220) bacterial strains isolated from milk had characteristics compatible with thermophilic LAB, of which 17.6% (13/74) had in vitro antilisterial activity. These results demonstrate that raw sheep milk can be considered an important source of autochthonous thermophilic LAB that can be employed as protective cultures during the manufacturing of Sardinian PDO cheeses to improve their food safety. The use of bioprotective cultures should be seen as an additional procedure useful to improve cheese safety along with the correct application of good hygienic practices during manufacturing and the post-processing stages.
Collapse
Affiliation(s)
- Maria Pina Meloni
- Department of Veterinary Medicine, University of Sassari, Via Vienna, 2, 07100 Sassari, Italy
| | - Francesca Piras
- Department of Veterinary Medicine, University of Sassari, Via Vienna, 2, 07100 Sassari, Italy
| | - Giuliana Siddi
- Department of Veterinary Medicine, University of Sassari, Via Vienna, 2, 07100 Sassari, Italy
| | - Daniela Cabras
- Department of Veterinary Medicine, University of Sassari, Via Vienna, 2, 07100 Sassari, Italy
| | - Eleonora Comassi
- Department of Veterinary Medicine, University of Sassari, Via Vienna, 2, 07100 Sassari, Italy
| | - Roberta Lai
- Department of Veterinary Medicine, University of Sassari, Via Vienna, 2, 07100 Sassari, Italy
| | - Olivia McAuliffe
- Teagasc Food Research Centre, Moorepark, Fermoy, P61 C996 Co. Cork, Ireland
| | | | - Christian Scarano
- Department of Veterinary Medicine, University of Sassari, Via Vienna, 2, 07100 Sassari, Italy
| |
Collapse
|
15
|
Akritidou T, Akkermans S, Smet C, Delens V, Van Impe JFM. Effect of food structure and buffering capacity on pathogen survival during in vitro digestion. Food Res Int 2023; 164:112305. [PMID: 36737908 DOI: 10.1016/j.foodres.2022.112305] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 12/02/2022] [Accepted: 12/03/2022] [Indexed: 12/23/2022]
Abstract
Even though a plethora of barriers are employed by the human gastrointestinal tract (GIT) to cope with invading pathogens, foodborne diseases are still a common problem. The survival of food pathogens in the GIT is known to depend on food carrier properties. The aim of this study was to investigate the influence of food buffering capacity and food structure on the survival of Salmonella Typhimurium and Listeria monocytogenes during simulated digestion, following contamination of different food model systems that had different combinations of fat and protein content. The results illustrated the strong protective properties of proteins, acting either as a strong buffering agent or as a physical barrier against gastric acidity, for both pathogens. In comparison, fat manifested a lower buffering capacity and weaker protective effects against the two pathogens. Intriguingly, a low fat content was often linked with increased microbial resistance. Nonetheless, both pathogens survived their transit through the simulated GIT in all cases, with S. Typhimurium exhibiting growth during intestinal digestion and L.monocytogenes demonstrating a healthy residual population at the end of the intestinal phase. These results corroborate the need for a deeper understanding regarding the mechanisms with which food affects bacterial survival in the human GIT.
Collapse
Affiliation(s)
- Theodora Akritidou
- BioTeC+, Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, KU Leuven, Ghent, Belgium
| | - Simen Akkermans
- BioTeC+, Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, KU Leuven, Ghent, Belgium
| | - Cindy Smet
- BioTeC+, Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, KU Leuven, Ghent, Belgium
| | - Valérie Delens
- BioTeC+, Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, KU Leuven, Ghent, Belgium
| | - Jan F M Van Impe
- BioTeC+, Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, KU Leuven, Ghent, Belgium.
| |
Collapse
|
16
|
Herzog MKM, Cazzaniga M, Peters A, Shayya N, Beldi L, Hapfelmeier S, Heimesaat MM, Bereswill S, Frankel G, Gahan CG, Hardt WD. Mouse models for bacterial enteropathogen infections: insights into the role of colonization resistance. Gut Microbes 2023; 15:2172667. [PMID: 36794831 PMCID: PMC9980611 DOI: 10.1080/19490976.2023.2172667] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 01/18/2023] [Indexed: 02/17/2023] Open
Abstract
Globally, enteropathogenic bacteria are a major cause of morbidity and mortality.1-3 Campylobacter, Salmonella, Shiga-toxin-producing Escherichia coli, and Listeria are among the top five most commonly reported zoonotic pathogens in the European Union.4 However, not all individuals naturally exposed to enteropathogens go on to develop disease. This protection is attributable to colonization resistance (CR) conferred by the gut microbiota, as well as an array of physical, chemical, and immunological barriers that limit infection. Despite their importance for human health, a detailed understanding of gastrointestinal barriers to infection is lacking, and further research is required to investigate the mechanisms that underpin inter-individual differences in resistance to gastrointestinal infection. Here, we discuss the current mouse models available to study infections by non-typhoidal Salmonella strains, Citrobacter rodentium (as a model for enteropathogenic and enterohemorrhagic E. coli), Listeria monocytogenes, and Campylobacter jejuni. Clostridioides difficile is included as another important cause of enteric disease in which resistance is dependent upon CR. We outline which parameters of human infection are recapitulated in these mouse models, including the impact of CR, disease pathology, disease progression, and mucosal immune response. This will showcase common virulence strategies, highlight mechanistic differences, and help researchers from microbiology, infectiology, microbiome research, and mucosal immunology to select the optimal mouse model.
Collapse
Affiliation(s)
- Mathias K.-M. Herzog
- Department of Biology, Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | - Monica Cazzaniga
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Audrey Peters
- Department of Life Sciences, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | - Nizar Shayya
- Institute of Microbiology, Infectious Diseases and Immunology, Charité - University Medicine Berlin, Berlin, Germany
| | - Luca Beldi
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | | | - Markus M. Heimesaat
- Institute of Microbiology, Infectious Diseases and Immunology, Charité - University Medicine Berlin, Berlin, Germany
| | - Stefan Bereswill
- Institute of Microbiology, Infectious Diseases and Immunology, Charité - University Medicine Berlin, Berlin, Germany
| | - Gad Frankel
- Department of Life Sciences, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | - Cormac G.M. Gahan
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
- School of Pharmacy, University College Cork, Cork, Ireland
| | - Wolf-Dietrich Hardt
- Department of Biology, Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
17
|
Muchaamba F, von Ah U, Stephan R, Stevens MJA, Tasara T. Deciphering the global roles of Cold shock proteins in Listeria monocytogenes nutrient metabolism and stress tolerance. Front Microbiol 2022; 13:1057754. [PMID: 36605504 PMCID: PMC9808409 DOI: 10.3389/fmicb.2022.1057754] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/23/2022] [Indexed: 12/24/2022] Open
Abstract
Listeria monocytogenes (Lm) accounts for serious public health and food safety problems owing to its stress resilience and pathogenicity. Based on their regulatory involvement in global gene expression events, cold-shock domain family proteins (Csps) are crucial in expression of various stress fitness and virulence phenotypes in bacteria. Lm possesses three Csps (CspA, CspB, and CspD) whose regulatory roles in the context of the genetic diversity of this bacterium are not yet fully understood. We examined the impacts of Csps deficiency on Lm nutrient metabolism and stress tolerance using a set of csp deletion mutants generated in different genetic backgrounds. Phenotype microarrays (PM) analysis showed that the absence of Csps in ∆cspABD reduces carbon (C-) source utilization capacity and increases Lm sensitivity to osmotic, pH, various chemical, and antimicrobial stress conditions. Single and double csp deletion mutants in different Lm genetic backgrounds were used to further dissect the roles of individual Csps in these phenotypes. Selected PM-based observations were further corroborated through targeted phenotypic assays, confirming that Csps are crucial in Lm for optimal utilization of various C-sources including rhamnose and glucose as well as tolerance against NaCl, β-phenyethylamine (PEA), and food relevant detergent stress conditions. Strain and genetic lineage background-based differences, division of labour, epistasis, and functional redundancies among the Csps were uncovered with respect to their roles in various processes including C-source utilization, cold, and PEA stress resistance. Finally, targeted transcriptome analysis was performed, revealing the activation of csp gene expression under defined stress conditions and the impact of Csps on expression regulation of selected rhamnose utilization genes. Overall, our study shows that Csps play important roles in nutrient utilization and stress responses in Lm strains, contributing to traits that are central to the public health and food safety impacts of this pathogen.
Collapse
Affiliation(s)
- Francis Muchaamba
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland,*Correspondence: Francis Muchaamba,
| | | | - Roger Stephan
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Marc J. A. Stevens
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Taurai Tasara
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| |
Collapse
|
18
|
Listeria monocytogenes-How This Pathogen Uses Its Virulence Mechanisms to Infect the Hosts. Pathogens 2022; 11:pathogens11121491. [PMID: 36558825 PMCID: PMC9783847 DOI: 10.3390/pathogens11121491] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/23/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
Listeriosis is a serious food-borne illness, especially in susceptible populations, including children, pregnant women, and elderlies. The disease can occur in two forms: non-invasive febrile gastroenteritis and severe invasive listeriosis with septicemia, meningoencephalitis, perinatal infections, and abortion. Expression of each symptom depends on various bacterial virulence factors, immunological status of the infected person, and the number of ingested bacteria. Internalins, mainly InlA and InlB, invasins (invasin A, LAP), and other surface adhesion proteins (InlP1, InlP4) are responsible for epithelial cell binding, whereas internalin C (InlC) and actin assembly-inducing protein (ActA) are involved in cell-to-cell bacterial spread. L. monocytogenes is able to disseminate through the blood and invade diverse host organs. In persons with impaired immunity, the elderly, and pregnant women, the pathogen can also cross the blood-brain and placental barriers, which results in the invasion of the central nervous system and fetus infection, respectively. The aim of this comprehensive review is to summarize the current knowledge on the epidemiology of listeriosis and L. monocytogenes virulence mechanisms that are involved in host infection, with a special focus on their molecular and cellular aspects. We believe that all this information is crucial for a better understanding of the pathogenesis of L. monocytogenes infection.
Collapse
|
19
|
Sibanda T, Buys EM. Listeria monocytogenes Pathogenesis: The Role of Stress Adaptation. Microorganisms 2022; 10:microorganisms10081522. [PMID: 36013940 PMCID: PMC9416357 DOI: 10.3390/microorganisms10081522] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/08/2022] [Accepted: 07/19/2022] [Indexed: 12/13/2022] Open
Abstract
Adaptive stress tolerance responses are the driving force behind the survival ability of Listeria monocytogenes in different environmental niches, within foods, and ultimately, the ability to cause human infections. Although the bacterial stress adaptive responses are primarily a necessity for survival in foods and the environment, some aspects of the stress responses are linked to bacterial pathogenesis. Food stress-induced adaptive tolerance responses to acid and osmotic stresses can protect the pathogen against similar stresses in the gastrointestinal tract (GIT) and, thus, directly aid its virulence potential. Moreover, once in the GIT, the reprogramming of gene expression from the stress survival-related genes to virulence-related genes allows L. monocytogenes to switch from an avirulent to a virulent state. This transition is controlled by two overlapping and interlinked transcriptional networks for general stress response (regulated by Sigma factor B, (SigB)) and virulence (regulated by the positive regulatory factor A (PrfA)). This review explores the current knowledge on the molecular basis of the connection between stress tolerance responses and the pathogenesis of L. monocytogenes. The review gives a detailed background on the currently known mechanisms of pathogenesis and stress adaptation. Furthermore, the paper looks at the current literature and theories on the overlaps and connections between the regulatory networks for SigB and PrfA.
Collapse
Affiliation(s)
- Thulani Sibanda
- Department of Consumer and Food Sciences, University of Pretoria, Private Bag X20, Hatfield, Pretoria 0028, South Africa;
- Department of Applied Biology and Biochemistry, National University of Science and Technology, Bulawayo P.O. Box AC939, Zimbabwe
| | - Elna M. Buys
- Department of Consumer and Food Sciences, University of Pretoria, Private Bag X20, Hatfield, Pretoria 0028, South Africa;
- Correspondence:
| |
Collapse
|
20
|
Zhou C, Zou Y, Huang J, Zhao Z, Zhang Y, Wei Y, Ye K. TMT-Based Quantitative Proteomic Analysis of Intestinal Organoids Infected by Listeria monocytogenes Strains with Different Virulence. Int J Mol Sci 2022; 23:ijms23116231. [PMID: 35682909 PMCID: PMC9181811 DOI: 10.3390/ijms23116231] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/27/2022] [Accepted: 05/30/2022] [Indexed: 12/04/2022] Open
Abstract
L. monocytogenes, consisting of 13 serotypes, is an opportunistic food-borne pathogen that causes different host reactions depending on its serotypes. In this study, highly toxic L. monocytogenes 10403s resulted in more severe infections and lower survival rates. Additionally, to investigate the remodeling of the host proteome by strains exhibiting differential toxicity, the cellular protein responses of intestinal organoids were analyzed using tandem mass tag (TMT) labeling and high-performance liquid chromatography−mass spectrometry. The virulent strain 10403s caused 102 up-regulated and 52 down-regulated proteins, while the low virulent strain M7 caused 188 up-regulated and 25 down-regulated proteins. Based on the analysis of gene ontology (GO) and KEGG databases, the expressions of differential proteins in organoids infected by L. monocytogenes 10403s (virulent strain) or M7 (low virulent strain) were involved in regulating essential processes such as the biological metabolism, the energy metabolism, and immune system processes. The results showed that the immune system process, as the primary host defense response to L. monocytogenes, comprised five pathways, including ECM−receptor interaction, the complement and coagulation cascades, HIF-1, ferroptosis, and NOD-like receptor signaling pathways. As for the L. monocytogenes 10403s vs. M7 group, the expression of differential proteins was involved in two pathways: systemic lupus erythematosus and transcriptional mis-regulation in cancer. All in all, these results revealed that L. monocytogenes strains with different toxicity induced similar biological functions and immune responses while having different regulations on differential proteins in the pathway.
Collapse
|
21
|
Adaptation of the gut pathobiont Enterococcus faecalis to deoxycholate and taurocholate bile acids. Sci Rep 2022; 12:8485. [PMID: 35590028 PMCID: PMC9120511 DOI: 10.1038/s41598-022-12552-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 05/11/2022] [Indexed: 11/24/2022] Open
Abstract
Enterococcus faecalis is a natural inhabitant of the human gastrointestinal tract. This bacterial species is subdominant in a healthy physiological state of the gut microbiota (eubiosis) in adults, but can become dominant and cause infections when the intestinal homeostasis is disrupted (dysbiosis). The relatively high concentrations of bile acids deoxycholate (DCA) and taurocholate (TCA) hallmark eubiosis and dysbiosis, respectively. This study aimed to better understand how E. faecalis adapts to DCA and TCA. We showed that DCA impairs E. faecalis growth and possibly imposes a continuous adjustment in the expression of many essential genes, including a majority of ribosomal proteins. This may account for slow growth and low levels of E. faecalis in the gut. In contrast, TCA had no detectable growth effect. The evolving transcriptome upon TCA adaptation showed the early activation of an oligopeptide permease system (opp2) followed by the adjustment of amino acid and nucleotide metabolisms. We provide evidence that TCA favors the exploitation of oligopeptide resources to fuel amino acid needs in limiting oligopeptide conditions. Altogether, our data suggest that the combined effects of decreased DCA and increased TCA concentrations can contribute to the rise of E. faecalis population during dysbiosis.
Collapse
|
22
|
Gu Y, Li L, Yang M, Liu T, Song X, Qin X, Xu X, Liu J, Wang B, Cao H. Bile acid-gut microbiota crosstalk in irritable bowel syndrome. Crit Rev Microbiol 2022; 49:350-369. [PMID: 35389754 DOI: 10.1080/1040841x.2022.2058353] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Irritable bowel syndrome (IBS) is a common disorder of gut-brain interaction with an increasing prevalence, and its precise aetiology remains unclear. Gut microbiota dysbiosis has been found to be associated with IBS pathogenesis. In addition, a high incidence of bile acid diarrhoea and disturbed bile acid metabolism has been observed in IBS patients. The abundant microorganisms inhabited in human gut have essential functions in bile acid biotransformation, and can immensely affect the size and constitution of bile acid pool. Meanwhile, the alterations of bile acid profile can inversely interfere with the gut microbiota. This review discussed the role of intricate correlations between bile acids and gut microbiota in IBS pathogenesis and delineated the possible molecular mechanisms, mainly the signalling induced by farnesoid X receptor and transmembrane G protein-coupled receptor 5. Besides, some biomarkers for identifying bile acid diarrhoea in IBS population were listed, assisting the diagnosis and classification of IBS. Moreover, it also assessed some therapeutic strategies for IBS that regulate the bile acid-gut microbiota axis, such as dietary modulation, probiotics/prebiotics, faecal microbiota transplantation, and antibiotics. Collectively, this article illustrated the relationship between bile acids and gut microbiota in IBS pathophysiology and might offer some novel therapeutic options for IBS.
Collapse
Affiliation(s)
- Yu Gu
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
| | - Lingfeng Li
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
| | - Min Yang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
| | - Tianyu Liu
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
| | - Xueli Song
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiali Qin
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
| | - Xin Xu
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
| | - Jinghua Liu
- Department of Gastroenterology, Tianjin TEDA hospital, Tianjin, China
| | - Bangmao Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
| | - Hailong Cao
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
23
|
Zhou C, Zhang Y, Bassey A, Huang J, Zou Y, Ye K. Expansion of Intestinal Secretory Cell Population Induced by Listeria monocytogenes Infection: Accompanied With the Inhibition of NOTCH Pathway. Front Cell Infect Microbiol 2022; 12:793335. [PMID: 35402308 PMCID: PMC8990097 DOI: 10.3389/fcimb.2022.793335] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 03/04/2022] [Indexed: 01/17/2023] Open
Abstract
Listeria monocytogenes, as a model organism, is a causative agent of enteric pathogen that causes systemic infection. However, the interaction of L. monocytogenes and small intestinal epithelium has not been fully elucidated yet. In this study, mice and intestinal organoids were chosen as the models to investigate the influence of L. monocytogenes infection on the intestinal secretory cells and its differentiation-related pathways. Results confirmed the phenomenon of intestinal damage that L. monocytogenes infection could lead to villi damage in mice, which was accompanied by the increase of TNF-α production in jejunum as well as lipopolysaccharide (LPS) secretion in serum. Moreover, it was demonstrated that L. monocytogenes infection increased the number of goblet and Paneth cells in mice and intestinal organoids and upregulated the expression of Muc2 and Lyz. Furthermore, L. monocytogenes decreased the relative expression of Notch pathway-related genes (Jag1, Dll4, Notch1, and Hes1) while upregulating the relative expression of Math1 gene in mice and intestinal organoids. This indicated that L. monocytogenes infection caused the inhibition of Notch pathway, which may be the reason for the increased number of goblet and Paneth cells in the intestine. Collectively, these results are expected to provide more information on the mechanism of L. monocytogenes infection in the intestine.
Collapse
|
24
|
Lotoux A, Milohanic E, Bierne H. The Viable But Non-Culturable State of Listeria monocytogenes in the One-Health Continuum. Front Cell Infect Microbiol 2022; 12:849915. [PMID: 35372114 PMCID: PMC8974916 DOI: 10.3389/fcimb.2022.849915] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 02/07/2022] [Indexed: 11/13/2022] Open
Abstract
Many bacterial species, including several pathogens, can enter a so-called “viable but non-culturable” (VBNC) state when subjected to stress. Bacteria in the VBNC state are metabolically active but have lost their ability to grow on standard culture media, which compromises their detection by conventional techniques based on bacterial division. Under certain conditions, VBNC bacteria can regain their growth capacity and, for pathogens, their virulence potential, through a process called resuscitation. Here, we review the current state of knowledge of the VBNC state of Listeria monocytogenes (Lm), a Gram-positive pathogenic bacterium responsible for listeriosis, one of the most dangerous foodborne zoonosis. After a brief summary of characteristics of VBNC bacteria, we highlight work on VBNC Lm in the environment and in agricultural and food industry settings, with particular emphasis on the impact of antimicrobial treatments. We subsequently discuss recent data suggesting that Lm can enter the VBNC state in the host, raising the possibility that VBNC forms contribute to the asymptomatic carriage of this pathogen in wildlife, livestock and even humans. We also consider the resuscitation and virulence potential of VBNC Lm and the danger posed by these bacteria to at-risk individuals, particularly pregnant women. Overall, we put forth the hypothesis that VBNC forms contribute to adaptation, persistence, and transmission of Lm between different ecological niches in the One-Health continuum, and suggest that screening for healthy carriers, using alternative techniques to culture-based enrichment methods, should better prevent listeriosis risks.
Collapse
|
25
|
Muchaamba F, Eshwar AK, Stevens MJA, Stephan R, Tasara T. Different Shades of Listeria monocytogenes: Strain, Serotype, and Lineage-Based Variability in Virulence and Stress Tolerance Profiles. Front Microbiol 2022; 12:792162. [PMID: 35058906 PMCID: PMC8764371 DOI: 10.3389/fmicb.2021.792162] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 11/11/2021] [Indexed: 12/30/2022] Open
Abstract
Listeria monocytogenes is a public health and food safety challenge due to its virulence and natural stress resistance phenotypes. The variable distribution of L. monocytogenes molecular subtypes with respect to food products and processing environments and among human and animal clinical listeriosis cases is observed. Sixty-two clinical and food-associated L. monocytogenes isolates were examined through phenome and genome analysis. Virulence assessed using a zebrafish infection model revealed serotype and genotype-specific differences in pathogenicity. Strains of genetic lineage I serotype 4b and multilocus sequence type clonal complexes CC1, CC2, CC4, and CC6 grew and survived better and were more virulent than serotype 1/2a and 1/2c lineage II, CC8, and CC9 strains. Hemolysis, phospholipase activity, and lysozyme tolerance profiles were associated with the differences observed in virulence. Osmotic stress resistance evaluation revealed serotype 4b lineage I CC2 and CC4 strains as more osmotolerant, whereas serotype 1/2c lineage II CC9 strains were more osmo-sensitive than others. Variable tolerance to the widely used quaternary ammonium compound benzalkonium chloride (BC) was observed. Some outbreak and sporadic clinical case associated strains demonstrated BC tolerance, which might have contributed to their survival and transition in the food-processing environment facilitating food product contamination and ultimately outbreaks or sporadic listeriosis cases. Genome comparison uncovered various moderate differences in virulence and stress associated genes between the strains indicating that these differences in addition to gene expression regulation variations might largely be responsible for the observed virulence and stress sensitivity phenotypic differences. Overall, our study uncovered strain and genotype-dependent variation in virulence and stress resilience among clinical and food-associated L. monocytogenes isolates with potential public health risk implications. The extensive genome and phenotypic data generated provide a basis for developing improved Listeria control strategies and policies.
Collapse
Affiliation(s)
- Francis Muchaamba
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zürich, Zurich, Switzerland
| | - Athmanya K Eshwar
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zürich, Zurich, Switzerland
| | - Marc J A Stevens
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zürich, Zurich, Switzerland
| | - Roger Stephan
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zürich, Zurich, Switzerland
| | - Taurai Tasara
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zürich, Zurich, Switzerland
| |
Collapse
|
26
|
Lakicevic BZ, Den Besten HMW, De Biase D. Landscape of Stress Response and Virulence Genes Among Listeria monocytogenes Strains. Front Microbiol 2022; 12:738470. [PMID: 35126322 PMCID: PMC8811131 DOI: 10.3389/fmicb.2021.738470] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 11/30/2021] [Indexed: 12/23/2022] Open
Abstract
The pathogenic microorganism Listeria monocytogenes is ubiquitous and responsible for listeriosis, a disease with a high mortality rate in susceptible people. It can persist in different habitats, including the farm environment, the food production environments, and in foods. This pathogen can grow under challenging conditions, such as low pH, low temperatures, and high salt concentrations. However, L. monocytogenes has a high degree of strain divergence regarding virulence potential, environmental adaption, and stress response. This review seeks to provide the reader with an up-to-date overview of clonal and serotype-specific differences among L. monocytogenes strains. Emphasis on the genes and genomic islands responsible for virulence and resistance to environmental stresses is given to explain the complex adaptation among L. monocytogenes strains. Moreover, we highlight the use of advanced diagnostic technologies, such as whole-genome sequencing, to fine-tune quantitative microbiological risk assessment for better control of listeriosis.
Collapse
Affiliation(s)
- Brankica Z. Lakicevic
- Institute of Meat Hygiene and Technology, Belgrade, Serbia
- *Correspondence: Brankica Z. Lakicevic,
| | | | - Daniela De Biase
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| |
Collapse
|
27
|
Bagatella S, Tavares-Gomes L, Oevermann A. Listeria monocytogenes at the interface between ruminants and humans: A comparative pathology and pathogenesis review. Vet Pathol 2021; 59:186-210. [PMID: 34856818 DOI: 10.1177/03009858211052659] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The bacterium Listeria monocytogenes (Lm) is widely distributed in the environment as a saprophyte, but may turn into a lethal intracellular pathogen upon ingestion. Invasive infections occur in numerous species worldwide, but most commonly in humans and farmed ruminants, and manifest as distinct forms. Of those, neuroinfection is remarkably threatening due to its high mortality. Lm is widely studied not only as a pathogen but also as an essential model for intracellular infections and host-pathogen interactions. Many aspects of its ecology and pathogenesis, however, remain unclear and are rarely addressed in its natural hosts. This review highlights the heterogeneity and adaptability of Lm by summarizing its association with the environment, farm animals, and disease. It also provides current knowledge on key features of the pathology and (molecular) pathogenesis of various listeriosis forms in naturally susceptible species with a special focus on ruminants and on the neuroinvasive form of the disease. Moreover, knowledge gaps on pathomechanisms of listerial infections and relevant unexplored topics in Lm pathogenesis research are highlighted.
Collapse
Affiliation(s)
- Stefano Bagatella
- Division of Neurological Sciences, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Leticia Tavares-Gomes
- Division of Neurological Sciences, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Anna Oevermann
- Division of Neurological Sciences, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
28
|
Ren S, Zhou Y, Xuan R. Research progress in the role of gut microbiota and its metabolites in intrahepatic cholestasis of pregnancy. Expert Rev Gastroenterol Hepatol 2021; 15:1361-1366. [PMID: 34845962 DOI: 10.1080/17474124.2021.2011211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
INTRODUCTION Intrahepatic cholestasis of pregnancy (ICP) is a liver disease that occurs during pregnancy. While ICP has a minimal impact on the mother, it primarily affects the pregnancy outcome of fetus, resulting in spontaneous miscarriage and even the intrauterine death of fetus. AREAS COVERED This review covers current progress in the role of gut microbiota and bile acids in ICP. EXPERT OPINION The causes and pathogenesis of ICP are currently unclear, and the serum bile acid level is the main clinical evidence for ICP diagnosis. The gastrointestinal tract is home to a tremendous number and type of microbes, which play critical roles in the synthesis and metabolism of bile acids. Studies in recent years have shown that the changes in gut microbiota and bile acid metabolic profiles are closely associated with ICP. This review discusses some of the future prospects in this area of research.
Collapse
Affiliation(s)
- Shuaijun Ren
- Department of Obstetrics and Gynecology, The Affiliated Hospital of School of Medicine of Ningbo University, Ningbo, China.,School of Medicine of Ningbo University, Ningbo, China
| | - Yuping Zhou
- Department of Gastroenterology, The Affiliated Hospital of School of Medicine of Ningbo University, Ningbo, China.,Institute of Digestive Disease of Ningbo University, Ningbo, China
| | - Rongrong Xuan
- Department of Obstetrics and Gynecology, The Affiliated Hospital of School of Medicine of Ningbo University, Ningbo, China
| |
Collapse
|
29
|
Quereda JJ, Morón-García A, Palacios-Gorba C, Dessaux C, García-del Portillo F, Pucciarelli MG, Ortega AD. Pathogenicity and virulence of Listeria monocytogenes: A trip from environmental to medical microbiology. Virulence 2021; 12:2509-2545. [PMID: 34612177 PMCID: PMC8496543 DOI: 10.1080/21505594.2021.1975526] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 01/02/2023] Open
Abstract
Listeria monocytogenes is a saprophytic gram-positive bacterium, and an opportunistic foodborne pathogen that can produce listeriosis in humans and animals. It has evolved an exceptional ability to adapt to stress conditions encountered in different environments, resulting in a ubiquitous distribution. Because some food preservation methods and disinfection protocols in food-processing environments cannot efficiently prevent contaminations, L. monocytogenes constitutes a threat to human health and a challenge to food safety. In the host, Listeria colonizes the gastrointestinal tract, crosses the intestinal barrier, and disseminates through the blood to target organs. In immunocompromised individuals, the elderly, and pregnant women, the pathogen can cross the blood-brain and placental barriers, leading to neurolisteriosis and materno-fetal listeriosis. Molecular and cell biology studies of infection have proven L. monocytogenes to be a versatile pathogen that deploys unique strategies to invade different cell types, survive and move inside the eukaryotic host cell, and spread from cell to cell. Here, we present the multifaceted Listeria life cycle from a comprehensive perspective. We discuss genetic features of pathogenic Listeria species, analyze factors involved in food contamination, and review bacterial strategies to tolerate stresses encountered both during food processing and along the host's gastrointestinal tract. Then we dissect host-pathogen interactions underlying listerial pathogenesis in mammals from a cell biology and systemic point of view. Finally, we summarize the epidemiology, pathophysiology, and clinical features of listeriosis in humans and animals. This work aims to gather information from different fields crucial for a comprehensive understanding of the pathogenesis of L. monocytogenes.
Collapse
Affiliation(s)
- Juan J. Quereda
- Departamento de Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities. Valencia, Spain
| | - Alvaro Morón-García
- Departamento de Biología Celular. Facultad de Ciencias Biológicas, Universidad Complutense de Madrid. Madrid, Spain
| | - Carla Palacios-Gorba
- Departamento de Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities. Valencia, Spain
| | - Charlotte Dessaux
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología (CNB)- Consejo Superior De Investigaciones Científicas (CSIC), Madrid, Spain
| | - Francisco García-del Portillo
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología (CNB)- Consejo Superior De Investigaciones Científicas (CSIC), Madrid, Spain
| | - M. Graciela Pucciarelli
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología (CNB)- Consejo Superior De Investigaciones Científicas (CSIC), Madrid, Spain
- Centro de Biología Molecular ‘Severo Ochoa’. Departamento de Biología Molecular, Facultad de Ciencias, Universidad Autónoma de Madrid. Madrid, Spain
| | - Alvaro D. Ortega
- Departamento de Biología Celular. Facultad de Ciencias Biológicas, Universidad Complutense de Madrid. Madrid, Spain
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología (CNB)- Consejo Superior De Investigaciones Científicas (CSIC), Madrid, Spain
| |
Collapse
|
30
|
Tarazi Y, El-Sukhon S, Al-Rahbi A, Ismail ZB. Molecular characterization and in vivo pathogenicity study of Listeria monocytogenes isolated from fresh and frozen local and imported fish in Jordan. Open Vet J 2021; 11:517-524. [PMID: 34722217 PMCID: PMC8541712 DOI: 10.5455/ovj.2021.v11.i3.25] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 09/01/2021] [Indexed: 12/18/2022] Open
Abstract
Background: Listeria monocytogenes (L. monocytogenes) is a serious zoonotic and food transmitted human pathogen causing meningitis and abortions. Several outbreaks of listeriosis have been associated with the consumption of ready-to-eat food products; dairy, meat, fish, and contaminated fruits and vegetables worldwide. Aim: This study was designed to detect and characterize L. monocytogenes isolated from local and imported fish in Jordan. Methods: A total of 170 fish (70 local and 100 imported), of which 140 fresh and 30 frozen samples were used in this study. Listeria monocytogenes was cultured and initially identified using conventional microbiological methods. For confirmation and serotyping of the L. monocytogenes isolates, PCR techniques were used. Using oral and intraperitoneal administration, mice were used to determine the pathogenicity and LD50 of the isolated L. monocytogenes. Results: A total of 72 Listeria spp. isolates were cultured from fish. Of those, 24 were positively identified as L. monocytogenes. Other strains of Listeria spp. were L. ivanovii (21), L. innocua (11), and L. grayi (16). Serotyping of the L. monocytogenes indicated that 14 isolates belonged to the 1/2b, 3b serotypes whereas 10 isolates belonged to the 4a and 4c serotypes. All isolates were virulent to mice with an LD50 dose ranging from 3 × 1010 CFU/ml to 3 × 107.5 CFU/ml. All the virulent isolates belonged to the serotype 1/2b. Histopathologically, dead mice showed multiple necrotic lesions in the liver and spleen. Conclusion: Results of this study showed the presence of potentially pathogenic L. monocytogenes in fresh and frozen, local, and imported fish in Jordan. Strict monitoring and quality control regulatory measures must be adopted to prevent future outbreaks of food poisoning associated with fish consumption.
Collapse
Affiliation(s)
- Yaser Tarazi
- Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Saeb El-Sukhon
- Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Adil Al-Rahbi
- Ministry of Agriculture, Fisheries and Water Resources, Mascat, Oman
| | - Zuhair Bani Ismail
- Department of Clinical Veterinary Medicine, Faculty of Veterinary Medicine, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
31
|
Kokkoni EA, Andritsos N, Sakarikou C, Michailidou S, Argiriou A, Giaouris E. Investigating Transcriptomic Induction of Resistance and/or Virulence in Listeria monocytogenes Cells Surviving Sublethal Antimicrobial Exposure. Foods 2021; 10:foods10102382. [PMID: 34681431 PMCID: PMC8535302 DOI: 10.3390/foods10102382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 09/26/2021] [Accepted: 10/05/2021] [Indexed: 01/06/2023] Open
Abstract
The potential transcriptomic induction of resistance and/or virulence in two L. monocytogenes strains belonging to the most frequent listeriosis-associated serovars (i.e., 1/2a and 4b), following their sublethal antimicrobial exposure, was studied through qPCR determination of the relative expression of 10 selected related genes (i.e., groEL, hly, iap, inlA, inlB, lisK, mdrD, mdrL, prfA, and sigB). To induce sublethal stress, three common antimicrobials (i.e., benzalkonium chloride, thymol, and ampicillin) were individually applied for 2 h at 37 °C against stationary phase cells of each strain, each at a sublethal concentration. In general, the expression of most of the studied genes remained either stable or was significantly downregulated following the antimicrobial exposure, with some strain-specific differences to be yet recorded. Thymol provoked downregulation of most of the studied genes, significantly limiting the expression of 6/10 and 4/10 genes in the strains of ser. 1/2a and ser. 4b, respectively, including those coding for the master regulators of stress response and virulence (SigB and PrfA, respectively), in both strains. At the same time, the two genes coding for the invasion internalin proteins (InlA and InlB), with crucial role in the onset of L. monocytogenes pathogenesis, were both importantly upregulated in ser. 4b strain. The results obtained increase our knowledge of the stress physiology of L. monocytogenes under certain sublethal antimicrobial conditions that could be encountered within the food chain and in clinical settings, and may assist in better and more effective mitigation strategies.
Collapse
Affiliation(s)
- Eleni-Anna Kokkoni
- Department of Food Science and Nutrition, School of the Environment, University of the Aegean, Ierou Lochou 10 & Makrygianni, 81400 Myrina, Greece; (E.-A.K.); (N.A.); (C.S.); (S.M.); (A.A.)
| | - Nikolaos Andritsos
- Department of Food Science and Nutrition, School of the Environment, University of the Aegean, Ierou Lochou 10 & Makrygianni, 81400 Myrina, Greece; (E.-A.K.); (N.A.); (C.S.); (S.M.); (A.A.)
- Athens Analysis Laboratories S.A., Microbiology Laboratory, Nafpliou 29, 14452 Metamorfosi, Greece
| | - Christina Sakarikou
- Department of Food Science and Nutrition, School of the Environment, University of the Aegean, Ierou Lochou 10 & Makrygianni, 81400 Myrina, Greece; (E.-A.K.); (N.A.); (C.S.); (S.M.); (A.A.)
| | - Sofia Michailidou
- Department of Food Science and Nutrition, School of the Environment, University of the Aegean, Ierou Lochou 10 & Makrygianni, 81400 Myrina, Greece; (E.-A.K.); (N.A.); (C.S.); (S.M.); (A.A.)
- Centre for Research and Technology Hellas (CERTH), Institute of Applied Biosciences, 57001 Thessaloniki, Greece
| | - Anagnostis Argiriou
- Department of Food Science and Nutrition, School of the Environment, University of the Aegean, Ierou Lochou 10 & Makrygianni, 81400 Myrina, Greece; (E.-A.K.); (N.A.); (C.S.); (S.M.); (A.A.)
- Centre for Research and Technology Hellas (CERTH), Institute of Applied Biosciences, 57001 Thessaloniki, Greece
| | - Efstathios Giaouris
- Department of Food Science and Nutrition, School of the Environment, University of the Aegean, Ierou Lochou 10 & Makrygianni, 81400 Myrina, Greece; (E.-A.K.); (N.A.); (C.S.); (S.M.); (A.A.)
- Correspondence: ; Tel.: +30-22540-83115
| |
Collapse
|
32
|
Desiderato CK, Sachsenmaier S, Ovchinnikov KV, Stohr J, Jacksch S, Desef DN, Crauwels P, Egert M, Diep DB, Goldbeck O, Riedel CU. Identification of Potential Probiotics Producing Bacteriocins Active against Listeria monocytogenes by a Combination of Screening Tools. Int J Mol Sci 2021; 22:ijms22168615. [PMID: 34445321 PMCID: PMC8395247 DOI: 10.3390/ijms22168615] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/07/2021] [Accepted: 08/09/2021] [Indexed: 12/19/2022] Open
Abstract
Listeria monocytogenes is an important food-borne pathogen and a serious concern to food industries. Bacteriocins are antimicrobial peptides produced naturally by a wide range of bacteria mostly belonging to the group of lactic acid bacteria (LAB), which also comprises many strains used as starter cultures or probiotic supplements. Consequently, multifunctional strains that produce bacteriocins are an attractive approach to combine a green-label approach for food preservation with an important probiotic trait. Here, a collection of bacterial isolates from raw cow's milk was typed by 16S rRNA gene sequencing and MALDI-Biotyping and supernatants were screened for the production of antimicrobial compounds. Screening was performed with live Listeria monocytogenes biosensors using a growth-dependent assay and pHluorin, a pH-dependent protein reporting membrane damage. Purification by cation exchange chromatography and further investigation of the active compounds in supernatants of two isolates belonging to the species Pediococcus acidilactici and Lactococcus garvieae suggest that their antimicrobial activity is related to heat-stable proteins/peptides that presumably belong to the class IIa bacteriocins. In conclusion, we present a pipeline of methods for high-throughput screening of strain libraries for potential starter cultures and probiotics producing antimicrobial compounds and their identification and analysis.
Collapse
Affiliation(s)
- Christian K. Desiderato
- Institute of Microbiology and Biotechnology, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany; (C.K.D.); (S.S.); (J.S.); (D.N.D.); (P.C.); (O.G.)
| | - Steffen Sachsenmaier
- Institute of Microbiology and Biotechnology, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany; (C.K.D.); (S.S.); (J.S.); (D.N.D.); (P.C.); (O.G.)
| | - Kirill V. Ovchinnikov
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Universitetstunet 3, 1433 Ås, Norway; (K.V.O.); (D.B.D.)
| | - Jonas Stohr
- Institute of Microbiology and Biotechnology, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany; (C.K.D.); (S.S.); (J.S.); (D.N.D.); (P.C.); (O.G.)
| | - Susanne Jacksch
- Faculty of Medical and Life Sciences, Institute of Precision Medicine, Furtwangen University, Campus Schwenningen, Jakob-Kienzle-Straße 17, 78054 Villingen-Schwenningen, Germany; (S.J.); (M.E.)
| | - Dominique N. Desef
- Institute of Microbiology and Biotechnology, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany; (C.K.D.); (S.S.); (J.S.); (D.N.D.); (P.C.); (O.G.)
| | - Peter Crauwels
- Institute of Microbiology and Biotechnology, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany; (C.K.D.); (S.S.); (J.S.); (D.N.D.); (P.C.); (O.G.)
| | - Markus Egert
- Faculty of Medical and Life Sciences, Institute of Precision Medicine, Furtwangen University, Campus Schwenningen, Jakob-Kienzle-Straße 17, 78054 Villingen-Schwenningen, Germany; (S.J.); (M.E.)
| | - Dzung B. Diep
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Universitetstunet 3, 1433 Ås, Norway; (K.V.O.); (D.B.D.)
| | - Oliver Goldbeck
- Institute of Microbiology and Biotechnology, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany; (C.K.D.); (S.S.); (J.S.); (D.N.D.); (P.C.); (O.G.)
| | - Christian U. Riedel
- Institute of Microbiology and Biotechnology, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany; (C.K.D.); (S.S.); (J.S.); (D.N.D.); (P.C.); (O.G.)
- Correspondence: ; Tel.: +49-731-5024853
| |
Collapse
|
33
|
Anaerobic Growth of Listeria monocytogenes on Rhamnose Is Stimulated by Vitamin B 12 and Bacterial Microcompartment-Dependent 1,2-Propanediol Utilization. mSphere 2021; 6:e0043421. [PMID: 34287006 PMCID: PMC8386454 DOI: 10.1128/msphere.00434-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The foodborne pathogen Listeria monocytogenes can form proteinaceous organelles called bacterial microcompartments (BMCs) that optimize the utilization of substrates, such as 1,2-propanediol, and confer an anaerobic growth advantage. Rhamnose is a deoxyhexose sugar abundant in a range of environments, including the human intestine, and can be degraded in anaerobic conditions into 1,2-propanediol, next to acetate and lactate. Rhamnose-derived 1,2-propanediol was found to link with BMCs in some human pathogens such as Salmonella enterica, but the involvement of BMCs in rhamnose metabolism and potential physiological effects on L. monocytogenes are still unknown. In this study, we first test the effect of rhamnose uptake and utilization on anaerobic growth of L. monocytogenes EGDe without or with added vitamin B12, followed by metabolic analysis. We show that vitamin B12-dependent activation of pdu stimulates metabolism and anaerobic growth of L. monocytogenes EGDe on rhamnose via 1,2-propanediol degradation into 1-propanol and propionate. Transmission electron microscopy of pdu-induced cells shows that BMCs are formed, and additional proteomics experiments confirm expression of pdu BMC shell proteins and enzymes. Finally, we discuss the physiological effects and energy efficiency of L. monocytogenespdu BMC-driven anaerobic rhamnose metabolism and the impact on competitive fitness in environments such as the human intestine. IMPORTANCEListeria monocytogenes is a foodborne pathogen causing severe illness and, as such, it is crucial to understand the molecular mechanisms contributing to its survival strategy and pathogenicity. Rhamnose is a deoxyhexose sugar abundant in a range of environments, including the human intestine, and can be degraded in anaerobic conditions into 1,2-propanediol. In our previous study, the utilization of 1,2-propanediol (pdu) in L. monocytogenes was proved to be metabolized in bacterial microcompartments (BMCs), which are self-assembling subcellular proteinaceous structures and analogs of eukaryotic organelles. Here, we show that the vitamin B12-dependent activation of pdu stimulates metabolism and anaerobic growth of L. monocytogenes EGDe on rhamnose via BMC-dependent 1,2-propanediol utilization. Combined with metabolic and proteomics analysis, our discussion on the physiological effects and energy efficiency of BMC-driven rhamnose metabolism shed new light to understand the impact on L. monocytogenes competitive fitness in ecosystems such as the human intestine.
Collapse
|
34
|
Li M, Carpenter CE, Broadbent JR. Organic Acid Exposure Enhances Virulence in Some Listeria monocytogenes Strains Using the Galleria mellonella Infection Model. Front Microbiol 2021; 12:675241. [PMID: 34295317 PMCID: PMC8290484 DOI: 10.3389/fmicb.2021.675241] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 06/14/2021] [Indexed: 01/01/2023] Open
Abstract
Prior research has suggested that the use of organic acids in the food industry may unintentionally enhance pathogenicity of Listeria monocytogenes strain N1-227 and R2-499. This study explored the connection between habituation to L-lactic acid or acetic acid and virulence in L. monocytogenes strains N1-227 and R2-499 using selected gene expression analysis and the in vivo Galleria mellonella wax worm model for infection. Expression of transcription factors (sigB and prfA) and genes related to acid resistance (gadD2, gadD3, and arcA) and bile resistance (bsh and bilE) or to virulence (inlA, inlB, hly, plcA, plcB, uhpT, and actA) was investigated by quantitative real-time PCR (qRT-PCR), while in vivo virulence was assessed by following the lethal time to 50% population mortality (LT50) of G. mellonella larvae after injection of untreated and habituated L. monocytogenes. Twenty minutes of habituation to the organic acids at pH 6.0 significantly increased expression of key acid and bile stress response genes in both strains, while expression of virulence genes was strain-dependent. The expression of transcription factor sigB was strain-dependent and there was no significant change in the expression of transcription factor prfA in both strains. Habituation to acid increased virulence of both strains as evidenced by decreased LT50 of G. mellonella larvae injected with Listeria habituated to either acid. In summary, habituation of both L. monocytogenes strains to organic acids up-regulated expression of several stress and virulence genes and concurrently increased virulence as measured using the G. mellonella model.
Collapse
Affiliation(s)
- Minghao Li
- Department of Nutrition, Dietetics and Food Sciences, Utah State University, Logan, UT, United States
| | - Charles E Carpenter
- Department of Nutrition, Dietetics and Food Sciences, Utah State University, Logan, UT, United States
| | - Jeff R Broadbent
- Department of Nutrition, Dietetics and Food Sciences, Utah State University, Logan, UT, United States
| |
Collapse
|
35
|
Lopes-Luz L, Mendonça M, Bernardes Fogaça M, Kipnis A, Bhunia AK, Bührer-Sékula S. Listeria monocytogenes: review of pathogenesis and virulence determinants-targeted immunological assays. Crit Rev Microbiol 2021; 47:647-666. [PMID: 33896354 DOI: 10.1080/1040841x.2021.1911930] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Listeria monocytogenes is one of the most invasive foodborne pathogens and is responsible for numerous outbreaks worldwide. Most of the methods to detect this bacterium in food require selective enrichment using traditional bacterial culture techniques that can be time-consuming and labour-intensive. Moreover, molecular methods are expensive and need specific technical knowledge. In contrast, immunological approaches are faster, simpler, and user-friendly alternatives and have been developed for the detection of L. monocytogenes in food, environmental, and clinical samples. These techniques are dependent on the constitutive expression of L. monocytogenes antigens and the specificity of the antibodies used. Here, updated knowledge on pathogenesis and the key immunogenic virulence determinants of L. monocytogenes that are used for the generation of monoclonal and polyclonal antibodies for the serological assay development are summarised. In addition, immunological approaches based on enzyme-linked immunosorbent assay, immunofluorescence, lateral flow immunochromatographic assays, and immunosensors with relevant improvements are highlighted. Though the sensitivity and specificity of the assays were improved significantly, methods still face many challenges that require further validation before use.
Collapse
Affiliation(s)
- Leonardo Lopes-Luz
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Brasil
| | - Marcelo Mendonça
- Curso de Medicina Veterinária, Universidade Federal do Agreste de Pernambuco, Garanhuns, Brasil
| | | | - André Kipnis
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Brasil
| | - Arun K Bhunia
- Department of Food Science, Purdue University, West Lafayette, IN, USA.,Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, USA.,Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, USA
| | - Samira Bührer-Sékula
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Brasil
| |
Collapse
|
36
|
Bierne H, Hamon M. Targeting host epigenetic machinery: The Listeria paradigm. Cell Microbiol 2021; 22:e13169. [PMID: 32185898 DOI: 10.1111/cmi.13169] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/22/2020] [Accepted: 01/22/2020] [Indexed: 12/11/2022]
Abstract
By modifying the host cell transcription programme, pathogenic bacteria disrupt a wide range of cellular processes and take control of the host's immune system. Conversely, by mobilising a network of defence genes, the host cells trigger various responses that allow them to tolerate or eliminate invaders. The study of the molecular basis of this crosstalk is crucial to the understanding of infectious diseases. Although research has long focused on the targeting of eukaryotic DNA-binding transcription factors, more recently, another powerful way by which bacteria modify the expression of host genes has emerged: chromatin modifications in the cell nucleus. One of the most prolific bacterial models in this area has been Listeria monocytogenes, a facultative intracellular bacterium responsible for serious food-borne infections. Here, we aim to highlight the contribution of this model to the field of bacteria-mediated chromatin modifications. We will first recall the general principles of epigenetic regulation and then illustrate five mechanisms that mobilise the epigenetic machinery in response to Listeria factors, either through bacterial molecular patterns, a toxin, an invasion protein, or nucleomodulins. Strategies used by Listeria to control the expression of host genes at the chromatin level, by activation of cytosolic signalling pathways or direct targeting of epifactors in the nucleus, have contributed to the emergence of a new discipline combining cellular microbiology and epigenetics: "patho-epigenetics."
Collapse
Affiliation(s)
- Hélène Bierne
- Université Paris Saclay, INRAE, AgroParisTech, Micalis Institute, Epigenetics and Cellular Microbiology Team, Jouy-en-Josas, France
| | - Mélanie Hamon
- G5 Chromatin and Infection, Institut Pasteur, Paris, France
| |
Collapse
|
37
|
Duru IC, Bucur FI, Andreevskaya M, Ylinen A, Crauwels P, Grigore-Gurgu L, Nikparvar B, Rode TM, Laine P, Paulin L, Løvdal T, Riedel CU, Bar N, Borda D, Nicolau AI, Auvinen P. The complete genome sequence of Listeria monocytogenes strain S2542 and expression of selected genes under high-pressure processing. BMC Res Notes 2021; 14:137. [PMID: 33858503 PMCID: PMC8048338 DOI: 10.1186/s13104-021-05555-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 04/02/2021] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVES The study aims to generate the whole genome sequence of L. monocytogenes strain S2542 and to compare it to the genomes of strains RO15 and ScottA. In addition, we aimed to compare gene expression profiles of L. monocytogenes strains S2542, ScottA and RO15 after high-pressure processing (HPP) using ddPCR. RESULTS The whole genome sequence of L. monocytogenes S2542 indicates that this strain belongs to serotype 4b, in contrast to the previously reported serotype 1/2a. Strain S2542 appears to be more susceptible to the treatment at 400 MPa compared to RO15 and ScottA strains. In contrast to RO15 and ScottA strains, viable cell counts of strain S2542 were below the limit of detection after HPP (400 MPa/8 min) when stored at 8 °C for 24 and 48 h. The transcriptional response of all three strains to HPP was not significantly different.
Collapse
Affiliation(s)
- Ilhan Cem Duru
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland.
| | - Florentina Ionela Bucur
- Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, Galati, Romania
| | - Margarita Andreevskaya
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland.,Blueprint Genetics, Espoo, Finland
| | - Anne Ylinen
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Peter Crauwels
- Institute of Microbiology and Biotechnology, Ulm, University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Leontina Grigore-Gurgu
- Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, Galati, Romania
| | - Bahareh Nikparvar
- Department of Chemical Engineering, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Tone Mari Rode
- Department of Process Technology, Nofima-Norwegian Institute of Food, Fisheries and Aquaculture Research, 4068, Stavanger, Norway
| | - Pia Laine
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Lars Paulin
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Trond Løvdal
- Department of Process Technology, Nofima-Norwegian Institute of Food, Fisheries and Aquaculture Research, 4068, Stavanger, Norway
| | - Christian U Riedel
- Institute of Microbiology and Biotechnology, Ulm, University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Nadav Bar
- Department of Chemical Engineering, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Daniela Borda
- Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, Galati, Romania
| | - Anca Ioana Nicolau
- Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, Galati, Romania
| | - Petri Auvinen
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
38
|
Transcriptome Analysis of Listeria monocytogenes Exposed to Beef Fat Reveals Antimicrobial and Pathogenicity Attenuation Mechanisms. Appl Environ Microbiol 2021; 87:AEM.03027-20. [PMID: 33608290 DOI: 10.1128/aem.03027-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/09/2021] [Indexed: 12/13/2022] Open
Abstract
Listeria monocytogenes is a deadly intracellular pathogen mostly associated with consumption of ready-to-eat foods. This study investigated the effectiveness of total beef fat (BF-T) from flaxseed-fed cattle and its fractions enriched with monounsaturated fatty acids (BF-MUFA) and polyunsaturated fatty acids (BF-PUFA), along with commercially available long-chain fatty acids (LC-FA), as natural antimicrobials against L. monocytogenes BF-T was ineffective at concentrations up to 6 mg/ml, while L. monocytogenes was susceptible to BF-MUFA and BF-PUFA, with MICs at pH 7 of 0.33 ± 0.21 mg/ml and 0.06 ± 0.03 mg/ml, respectively. The MIC of C14:0 was significantly lower than those of C16:0 and C18:0 (P < 0.05). Fatty acids c9-C16:1, C18:2n-6, and C18:3n-3 showed stronger inhibitory activity than c9-C18:1 and conjugated C18:2, with MICs of <1 mg/ml. Furthermore, global transcriptional analysis by transcriptome sequencing (RNA-seq) was performed to characterize the response of L. monocytogenes to selected fatty acids. Functional analysis indicated that antimicrobial LC-UFA repressed the expression of genes associated with nutrient transmembrane transport, energy generation, and oxidative stress resistance. On the other hand, upregulation of ribosome assembly and translation process is possibly associated with adaptive and repair mechanisms activated in response to LC-UFA. Virulence genes and genes involved in bile, acid, and osmotic stresses were largely downregulated, and more so for c9-C16:1, C18:2n-6, and C18:3n-3, likely through interaction with the master virulence regulator PrfA and the alternative sigma factor σB IMPORTANCE Listeria monocytogenes is a bacterial pathogen known for its ability to survive and thrive under adverse environments and, as such, its control poses a significant challenge, especially with the trend of minimally processed and ready-to-eat foods. This work investigated the effectiveness of fatty acids from various sources as natural antimicrobials against L. monocytogenes and evaluated their potential role in L. monocytogenes pathogenicity modulation, using the strain ATCC 19111. The findings show that long-chain unsaturated fatty acids (LC-UFA), including unsaturated beef fat fractions from flaxseed-fed cattle, could have the potential to be used as effective antimicrobials for L. monocytogenes through controlling growth as well as virulence attenuation. This not only advances our understanding of the mode of action of LC-UFA against L. monocytogenes but also suggests the potential for use of beef fat or its fractions as natural antimicrobials for controlling foodborne pathogens.
Collapse
|
39
|
Development of a fluorescence aptasensor for rapid and sensitive detection of Listeria monocytogenes in food. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107808] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
40
|
Duru IC, Bucur FI, Andreevskaya M, Nikparvar B, Ylinen A, Grigore-Gurgu L, Rode TM, Crauwels P, Laine P, Paulin L, Løvdal T, Riedel CU, Bar N, Borda D, Nicolau AI, Auvinen P. High-pressure processing-induced transcriptome response during recovery of Listeria monocytogenes. BMC Genomics 2021; 22:117. [PMID: 33579201 PMCID: PMC7881616 DOI: 10.1186/s12864-021-07407-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/25/2021] [Indexed: 12/18/2022] Open
Abstract
Background High-pressure processing (HPP) is a commonly used technique in the food industry to inactivate pathogens, including L. monocytogenes. It has been shown that L. monocytogenes is able to recover from HPP injuries and can start to grow again during long-term cold storage. To date, the gene expression profiling of L. monocytogenes during HPP damage recovery at cooling temperature has not been studied. In order identify key genes that play a role in recovery of the damage caused by HPP treatment, we performed RNA-sequencing (RNA-seq) for two L. monocytogenes strains (barotolerant RO15 and barosensitive ScottA) at nine selected time points (up to 48 h) after treatment with two pressure levels (200 and 400 MPa). Results The results showed that a general stress response was activated by SigB after HPP treatment. In addition, the phosphotransferase system (PTS; mostly fructose-, mannose-, galactitol-, cellobiose-, and ascorbate-specific PTS systems), protein folding, and cobalamin biosynthesis were the most upregulated genes during HPP damage recovery. We observed that cell-division-related genes (divIC, dicIVA, ftsE, and ftsX) were downregulated. By contrast, peptidoglycan-synthesis genes (murG, murC, and pbp2A) were upregulated. This indicates that cell-wall repair occurs as a part of HPP damage recovery. We also observed that prophage genes, including anti-CRISPR genes, were induced by HPP. Interestingly, a large amount of RNA-seq data (up to 85%) was mapped to Rli47, which is a non-coding RNA that is upregulated after HPP. Thus, we predicted that Rli47 plays a role in HPP damage recovery in L. monocytogenes. Moreover, gene-deletion experiments showed that amongst peptidoglycan biosynthesis genes, pbp2A mutants are more sensitive to HPP. Conclusions We identified several genes and mechanisms that may play a role in recovery from HPP damage of L. monocytogenes. Our study contributes to new information on pathogen inactivation by HPP. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07407-6.
Collapse
Affiliation(s)
- Ilhan Cem Duru
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland.
| | - Florentina Ionela Bucur
- Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, Galati, Romania
| | | | - Bahareh Nikparvar
- Department of Chemical Engineering, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Anne Ylinen
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Leontina Grigore-Gurgu
- Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, Galati, Romania
| | - Tone Mari Rode
- Department of Process Technology, Nofima - Norwegian Institute of Food, Fisheries and Aquaculture Research, N-4068, Stavanger, Norway
| | - Peter Crauwels
- Institute of Microbiology and Biotechnology, Ulm, University, Albert-Einstein-Allee 11, D-89081, Ulm, Germany
| | - Pia Laine
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Lars Paulin
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Trond Løvdal
- Department of Process Technology, Nofima - Norwegian Institute of Food, Fisheries and Aquaculture Research, N-4068, Stavanger, Norway
| | - Christian U Riedel
- Institute of Microbiology and Biotechnology, Ulm, University, Albert-Einstein-Allee 11, D-89081, Ulm, Germany
| | - Nadav Bar
- Department of Chemical Engineering, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Daniela Borda
- Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, Galati, Romania
| | - Anca Ioana Nicolau
- Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, Galati, Romania
| | - Petri Auvinen
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
41
|
Marinho CM, Garmyn D, Ga L, Brunhede MZ, O'Byrne C, Piveteau P. Investigation of the roles of AgrA and σB regulators in Listeria monocytogenes adaptation to roots and soil. FEMS Microbiol Lett 2021; 367:5775477. [PMID: 32124918 DOI: 10.1093/femsle/fnaa036] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 03/02/2020] [Indexed: 02/07/2023] Open
Abstract
Little is known about the regulatory mechanisms that ensure the survival of the food-borne bacterial pathogen Listeria monocytogenes in the telluric environment and on roots. Earlier studies have suggested a regulatory overlap between the Agr cell-cell communication system and the general stress response regulator σB. Here, we investigated the contribution of these two systems to root colonisation and survival in sterilised and biotic soil. The ability to colonise the roots of the grass Festuca arundinacea was significantly compromised in the double mutant (∆agrA∆sigB). In sterile soil at 25°C, a significant defect was observed in the double mutant, suggesting some synergy between these systems. However, growth was observed and similar population dynamics were shown in the parental strain, ΔagrA and ΔsigB mutants. In biotic soil at 25°C, viability of the parental strain declined steadily over a two-week period highlighting the challenging nature of live soil environments. Inactivation of the two systems further decreased survival. The synergistic effect of Agr and σB was stronger in biotic soil. Transcriptional analysis confirmed the expected effects of the mutations on known Agr- and σB-dependent genes. Data highlight the important role that these global regulatory systems play in the natural ecology of this pathogen.
Collapse
Affiliation(s)
- Catarina M Marinho
- Université de Bourgogne Franche-Comté, Esplanade Erasme BP27877, 21078 Dijon Cedex, France.,Institut National de la Recherche Agronomique, UMR 1347 Agroécologie, 17 Rue Sully, 21000 Dijon Cedex, France.,National University of Ireland, Galway, School of Natural Sciences, Department of Microbiology, Bacterial Stress Response Group, University Road H91 TK33, Galway, Ireland
| | - Dominique Garmyn
- Université de Bourgogne Franche-Comté, Esplanade Erasme BP27877, 21078 Dijon Cedex, France.,Institut National de la Recherche Agronomique, UMR 1347 Agroécologie, 17 Rue Sully, 21000 Dijon Cedex, France
| | - Laurent Ga
- Institut National de la Recherche Agronomique, UMR 1347 Agroécologie, 17 Rue Sully, 21000 Dijon Cedex, France.,AgroSup Dijon, 26 Boulevard Dr Petitjean BP8799, 21079 Dijon Cedex, France
| | - Maja Z Brunhede
- Université de Bourgogne Franche-Comté, Esplanade Erasme BP27877, 21078 Dijon Cedex, France.,Institut National de la Recherche Agronomique, UMR 1347 Agroécologie, 17 Rue Sully, 21000 Dijon Cedex, France
| | - Conor O'Byrne
- National University of Ireland, Galway, School of Natural Sciences, Department of Microbiology, Bacterial Stress Response Group, University Road H91 TK33, Galway, Ireland
| | - Pascal Piveteau
- Université de Bourgogne Franche-Comté, Esplanade Erasme BP27877, 21078 Dijon Cedex, France.,Institut National de la Recherche Agronomique, UMR 1347 Agroécologie, 17 Rue Sully, 21000 Dijon Cedex, France.,AgroSup Dijon, 26 Boulevard Dr Petitjean BP8799, 21079 Dijon Cedex, France
| |
Collapse
|
42
|
Huang J, Zhou C, Zhou G, Li H, Ye K. Effect of Listeria monocytogenes on intestinal stem cells in the co-culture model of small intestinal organoids. Microb Pathog 2021; 153:104776. [PMID: 33548482 DOI: 10.1016/j.micpath.2021.104776] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 01/26/2021] [Accepted: 01/26/2021] [Indexed: 02/08/2023]
Abstract
Listeria monocytogenes is a foodborne pathogen that causes systemic infections by crossing the intestinal barrier. However, in vitro analysis of the interaction of L. monocytogenes and small intestinal epithelium has yet to be fully elucidated. To study host responses from intestinal epithelium during L. monocytogenes infection, we used the co-culture model of small intestinal organoids and L. monocytogenes. Results showed that L. monocytogenes mediated damage to intestinal epithelium, especially intestinal stem cells. L. monocytogenes was found to reduce budding rate and increase mortality of organoids. Moreover, it affected the proliferation of epithelial cells and numbers of secretory cells. In addition, it was demonstrated that L. monocytogenes stimulated a reduction in the number of Lgr5+ stem cells. Furthermore, L. monocytogenes affected the expression of Hes1, Math1 and Sox9 to interfere with the differentiation of intestinal stem cells. Collectively, our findings reveal the effects of L. monocytogenes infection on intestinal stem cells and demonstrate that small intestinal organoid is a suitable experimental model for studying intestinal epithelium-pathogen interactions.
Collapse
Affiliation(s)
- Jie Huang
- Key Laboratory of Meat Processing and Quality Control, MOE, China-US Joint Research Center for Food Safety and Quality, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology; Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Cong Zhou
- Key Laboratory of Meat Processing and Quality Control, MOE, China-US Joint Research Center for Food Safety and Quality, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology; Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Guanghong Zhou
- Key Laboratory of Meat Processing and Quality Control, MOE, China-US Joint Research Center for Food Safety and Quality, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology; Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Haokun Li
- Key Laboratory of Meat Processing and Quality Control, MOE, China-US Joint Research Center for Food Safety and Quality, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology; Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Keping Ye
- Key Laboratory of Meat Processing and Quality Control, MOE, China-US Joint Research Center for Food Safety and Quality, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology; Nanjing Agricultural University, Nanjing, 210095, PR China.
| |
Collapse
|
43
|
Ryan VE, Bailey TW, Liu D, Vemulapalli T, Cooper B, Cox AD, Bhunia AK. Listeria adhesion protein-expressing bioengineered probiotics prevent fetoplacental transmission of Listeria monocytogenes in a pregnant Guinea pig model. Microb Pathog 2021; 151:104752. [PMID: 33484805 DOI: 10.1016/j.micpath.2021.104752] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/07/2021] [Accepted: 01/15/2021] [Indexed: 12/11/2022]
Abstract
Pregnancy is a high-risk factor for foodborne pathogen Listeria monocytogenes (Lm), which causes abortion, premature birth, or stillbirth. The primary route of Lm transmission is oral hence intestinal epithelial barrier crossing is a prerequisite for systemic spread. Intestinal barrier crossing, in part, is attributed to the interaction of Listeria adhesion protein (LAP) with its cognate receptor, Hsp60. In a recent study, we showed that oral-dosing of bioengineered Lactobacillus caseiprobiotic (BLP) expressing the LAP protected nonpregnant mice from lethal infection; however, its ability to prevent listeriosis during pregnancy is not known. Therefore, we investigated whether BLP could prevent fetoplacental transmission of Lm in a pregnant guinea pig model. After 14 consecutive days on probiotic (~109 CFU/ml in drinking water), pregnant guinea pigs (gestational days 24-28) were orally challenged with Lm (9 × 108-2.5 × 109 CFU/animal) and were euthanized 72 h post-infection. Maternal mesenteric lymph node (MLN), liver, spleen, lungs, blood, and placenta, and fetal liver were analyzed for the presence/absence of Lm. All tissues/organs from Lm-challenged naïve dams and fetuses were Lm positive. Similar tissue distribution was also seen in guinea pigs that received wild-type Lactobacillus casei (LbcWT). Remarkably, Lm was absent in the maternal blood, kidney, lungs, and placenta, and fetal liver from the BLP-fed group even though the Lm was present in the maternal liver, spleen, and MLN. BLP feeding also suppressed Lm-induced inflammatory response in mothers. These data highlight the potential for the prevention of fetoplacental transmission of Lm by LAP-expressing BLP during pregnancy.
Collapse
Affiliation(s)
- Valerie E Ryan
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN, 47907, USA
| | - Taylor W Bailey
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, 47907, USA
| | - Dongqi Liu
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN, 47907, USA; Purdue Institute of Inflammation, Immunology and Infectious Diseases (PI4D), Purdue University, West Lafayette, IN, 47907, USA
| | - Tracy Vemulapalli
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, 77843, USA
| | - Bruce Cooper
- Bindley Bioscience Center, Purdue University, West Lafayette, IN, 47907, USA
| | - Abigail D Cox
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, 47907, USA
| | - Arun K Bhunia
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN, 47907, USA; Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, 47907, USA; Purdue University Interdisciplinary Life Science Program (PULSe), Purdue University, West Lafayette, IN, 47907, USA; Purdue Institute of Inflammation, Immunology and Infectious Diseases (PI4D), Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
44
|
Drolia R, Amalaradjou MAR, Ryan V, Tenguria S, Liu D, Bai X, Xu L, Singh AK, Cox AD, Bernal-Crespo V, Schaber JA, Applegate BM, Vemulapalli R, Bhunia AK. Receptor-targeted engineered probiotics mitigate lethal Listeria infection. Nat Commun 2020; 11:6344. [PMID: 33311493 PMCID: PMC7732855 DOI: 10.1038/s41467-020-20200-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 11/18/2020] [Indexed: 12/24/2022] Open
Abstract
Probiotic bacteria reduce the intestinal colonization of pathogens. Yet, their use in preventing fatal infection caused by foodborne Listeria monocytogenes (Lm), is inconsistent. Here, we bioengineered Lactobacillus probiotics (BLP) to express the Listeria adhesion protein (LAP) from a non-pathogenic Listeria (L. innocua) and a pathogenic Listeria (Lm) on the surface of Lactobacillus casei. The BLP strains colonize the intestine, reduce Lm mucosal colonization and systemic dissemination, and protect mice from lethal infection. The BLP competitively excludes Lm by occupying the surface presented LAP receptor, heat shock protein 60 and ameliorates the Lm-induced intestinal barrier dysfunction by blocking the nuclear factor-κB and myosin light chain kinase-mediated redistribution of the major epithelial junctional proteins. Additionally, the BLP increases intestinal immunomodulatory functions by recruiting FOXP3+T cells, CD11c+ dendritic cells and natural killer cells. Engineering a probiotic strain with an adhesion protein from a non-pathogenic bacterium provides a new paradigm to exclude pathogens and amplify their inherent health benefits.
Collapse
Affiliation(s)
- Rishi Drolia
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN, USA
- Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, USA
| | - Mary Anne Roshni Amalaradjou
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN, USA
- Department of Animal Science, University of Connecticut, Storrs, CT, USA
| | - Valerie Ryan
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN, USA
| | - Shivendra Tenguria
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN, USA
- Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, USA
| | - Dongqi Liu
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN, USA
- Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, USA
| | - Xingjian Bai
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN, USA
| | - Luping Xu
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN, USA
| | - Atul K Singh
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN, USA
| | - Abigail D Cox
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, USA
| | - Victor Bernal-Crespo
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, USA
| | - James A Schaber
- Bindley Bioscience Research Center, Purdue University, West Lafayette, IN, USA
| | - Bruce M Applegate
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN, USA
- Purdue University Interdisciplinary Life Science Program, Purdue University, West Lafayette, IN, USA
| | - Ramesh Vemulapalli
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, USA
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, USA
| | - Arun K Bhunia
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN, USA.
- Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, USA.
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, USA.
- Purdue University Interdisciplinary Life Science Program, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
45
|
Bustamante F, Maury-Sintjago E, Leal FC, Acuña S, Aguirre J, Troncoso M, Figueroa G, Parra-Flores J. Presence of Listeria monocytogenes in Ready-to-Eat Artisanal Chilean Foods. Microorganisms 2020; 8:microorganisms8111669. [PMID: 33121209 PMCID: PMC7694154 DOI: 10.3390/microorganisms8111669] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/10/2020] [Accepted: 10/13/2020] [Indexed: 11/16/2022] Open
Abstract
Ready-to-eat (RTE) artisanal foods are very popular, but they can be contaminated by Listeria monocytogenes. The aim was to determine the presence of L. monocytogenes in artisanal RTE foods and evaluate its food safety risk. We analyzed 400 RTE artisanal food samples requiring minimal (fresh products manufactured by a primary producer) or moderate processing (culinary products for sale from the home, restaurants such as small cafés, or on the street). Listeria monocytogenes was isolated according to the ISO 11290-1:2017 standard, detected with VIDAS equipment, and identified by real-time polymerase chain reaction (PCR). A small subset (n = 8) of the strains were further characterized for evaluation. The antibiotic resistance profile was determined by the CLSI methodology, and the virulence genes hlyA, prfA, and inlA were detected by PCR. Genotyping was performed by pulsed-field gel electrophoresis (PFGE). Listeria monocytogenes was detected in 7.5% of RTE artisanal foods. On the basis of food type, positivity in minimally processed artisanal foods was 11.6%, significantly different from moderately processed foods with 6.2% positivity (p > 0.05). All the L. monocytogenes strains (n = 8) amplified the three virulence genes, while six strains exhibited premature stop codons (PMSC) in the inlA gene; two strains were resistant to ampicillin and one strain was resistant to sulfamethoxazole-trimethoprim. Seven strains were 1/2a serotype and one was a 4b strain. The sampled RTE artisanal foods did not meet the microbiological criteria for L. monocytogenes according to the Chilean Food Sanitary Regulations. The presence of virulence factors and antibiotic-resistant strains make the consumption of RTE artisanal foods a risk for the hypersensitive population that consumes them.
Collapse
Affiliation(s)
- Fernanda Bustamante
- Environmental and Public Health Laboratory, Universidad del Bío-Bío, Regional Secreatariat of the Ministry of Health in Maule, Talca 3461637, Chile;
| | - Eduard Maury-Sintjago
- Department of Nutrition and Public Health, Universidad del Bío-Bío, Chillán 3800708, Chile;
| | - Fabiola Cerda Leal
- Department of Food Engineering, Universidad del Bío-Bío, Chillán 3800708, Chile; (F.C.L.); (S.A.)
| | - Sergio Acuña
- Department of Food Engineering, Universidad del Bío-Bío, Chillán 3800708, Chile; (F.C.L.); (S.A.)
| | - Juan Aguirre
- Department of Agricultural Industry and Enology, Universidad de Chile, Santiago 8820808, Chile;
| | - Miriam Troncoso
- Microbiology and Probiotics Laboratory, Institute of Nutrition and Food Technology, Universidad de Chile, Santiago 7830490, Chile; (M.T.); (G.F.)
| | - Guillermo Figueroa
- Microbiology and Probiotics Laboratory, Institute of Nutrition and Food Technology, Universidad de Chile, Santiago 7830490, Chile; (M.T.); (G.F.)
| | - Julio Parra-Flores
- Department of Nutrition and Public Health, Universidad del Bío-Bío, Chillán 3800708, Chile;
- Correspondence:
| |
Collapse
|
46
|
González García M, Rodríguez A, Alba A, Vázquez AA, Morales Vicente FE, Pérez-Erviti J, Spellerberg B, Stenger S, Grieshober M, Conzelmann C, Münch J, Raber H, Kubiczek D, Rosenau F, Wiese S, Ständker L, Otero-González A. New Antibacterial Peptides from the Freshwater Mollusk Pomacea poeyana (Pilsbry, 1927). Biomolecules 2020; 10:biom10111473. [PMID: 33113998 PMCID: PMC7690686 DOI: 10.3390/biom10111473] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 01/04/2023] Open
Abstract
Antimicrobial peptides (AMPs) are biomolecules with antimicrobial activity against a broad group of pathogens. In the past few decades, AMPs have represented an important alternative for the treatment of infectious diseases. Their isolation from natural sources has been widely investigated. In this sense, mollusks are promising organisms for the identification of AMPs given that their immune system mainly relies on innate response. In this report, we characterized the peptide fraction of the Cuban freshwater snail Pomacea poeyana (Pilsbry, 1927) and identified 37 different peptides by nanoLC-ESI-MS-MS technology. From these peptide sequences, using bioinformatic prediction tools, we discovered two potential antimicrobial peptides named Pom-1 (KCAGSIAWAIGSGLFGGAKLIKIKKYIAELGGLQ) and Pom-2 (KEIERAGQRIRDAIISAAPAVETLAQAQKIIKGG). Database search revealed that Pom-1 is a fragment of Closticin 574 previously isolated from the bacteria Clostridium tyrobutyrium, and Pom-2 is a fragment of cecropin D-like peptide first isolated from Galleria mellonella hemolymph. These sequences were chemically synthesized and evaluated against different human pathogens. Interestingly, structural predictions of both peptides in the presence of micelles showed models that comprise two alpha helices joined by a short loop. The CD spectra analysis of Pom-1 and Pom-2 in water showed for both structures a high random coil content, a certain content of α-helix and a low β-sheet content. Like other described AMPs displaying a disordered structure in water, the peptides may adopt a helical conformation in presence of bacterial membranes. In antimicrobial assays, Pom-1 demonstrated high activity against the Gram-negative bacteria Pseudomonas aeruginosa and moderate activity against Klebsiella pneumoniae and Listeria monocytogenes. Neither of the two peptides showed antifungal action. Pom-1 moderately inhibits Zika Virus infection but slightly enhances HIV-1 infectivion in vitro. The evaluation of cell toxicity on primary human macrophages did not show toxicity on THP-1 cells, although slight overall toxicity was observed in high concentrations of Pom-1. We assume that both peptides may play a key role in innate defense of P. poeyana and represent promising antimicrobial candidates for humans.
Collapse
Affiliation(s)
- Melaine González García
- Center for Protein Studies, Faculty of Biology, University of Havana, 25 street, 10400 Havana, Cuba; (M.G.G.); (J.P.-E.)
| | - Armando Rodríguez
- Core Facility for Functional Peptidomics, Faculty of Medicine, Ulm University, 89081 Ulm, Germany;
- Core Unit of Mass Spectrometry and Proteomics, Faculty of Medicine, Ulm University, 89081 Ulm, Germany;
| | - Annia Alba
- Reference Center for Research and Diagnosis, Pedro Kourí Institute for Tropical Medicine, 11400 Havana, Cuba; (A.A.); (A.A.V.)
| | - Antonio A. Vázquez
- Reference Center for Research and Diagnosis, Pedro Kourí Institute for Tropical Medicine, 11400 Havana, Cuba; (A.A.); (A.A.V.)
| | - Fidel E. Morales Vicente
- General Chemistry Department, Faculty of Chemistry, University of Havana, Zapata y G, 10400 Havana, Cuba;
- Synthetic Peptides Group, Center for Genetic Engineering and Biotechnology, P.O. Box 6162, 10600 Havana, Cuba
| | - Julio Pérez-Erviti
- Center for Protein Studies, Faculty of Biology, University of Havana, 25 street, 10400 Havana, Cuba; (M.G.G.); (J.P.-E.)
| | - Barbara Spellerberg
- Institute of Medical Microbiology and Hygiene, University Hospital Ulm, 89081 Ulm, Germany; (B.S.); (S.S.); (M.G.)
| | - Steffen Stenger
- Institute of Medical Microbiology and Hygiene, University Hospital Ulm, 89081 Ulm, Germany; (B.S.); (S.S.); (M.G.)
| | - Mark Grieshober
- Institute of Medical Microbiology and Hygiene, University Hospital Ulm, 89081 Ulm, Germany; (B.S.); (S.S.); (M.G.)
| | - Carina Conzelmann
- Institute of Molecular Virology, Ulm University, Meyerhofstrasse 1, 89081 Ulm, Germany; (C.C.); (J.M.)
| | - Jan Münch
- Institute of Molecular Virology, Ulm University, Meyerhofstrasse 1, 89081 Ulm, Germany; (C.C.); (J.M.)
| | - Heinz Raber
- Institute of Pharmaceutical Biotechnology, Ulm University, 89081 Ulm, Germany; (H.R.); (D.K.); (F.R.)
| | - Dennis Kubiczek
- Institute of Pharmaceutical Biotechnology, Ulm University, 89081 Ulm, Germany; (H.R.); (D.K.); (F.R.)
| | - Frank Rosenau
- Institute of Pharmaceutical Biotechnology, Ulm University, 89081 Ulm, Germany; (H.R.); (D.K.); (F.R.)
| | - Sebastian Wiese
- Core Unit of Mass Spectrometry and Proteomics, Faculty of Medicine, Ulm University, 89081 Ulm, Germany;
| | - Ludger Ständker
- Core Facility for Functional Peptidomics, Faculty of Medicine, Ulm University, 89081 Ulm, Germany;
- Correspondence: (L.S.); (A.O.-G.)
| | - Anselmo Otero-González
- Center for Protein Studies, Faculty of Biology, University of Havana, 25 street, 10400 Havana, Cuba; (M.G.G.); (J.P.-E.)
- Correspondence: (L.S.); (A.O.-G.)
| |
Collapse
|
47
|
Russell L, Whyte P, Zintl A, Gordon S, Markey B, de Waal T, Cummins E, Nolan S, O’Flaherty V, Abram F, Richards K, Fenton O, Bolton D. A Small Study of Bacterial Contamination of Anaerobic Digestion Materials and Survival in Different Feed Stocks. Bioengineering (Basel) 2020; 7:bioengineering7030116. [PMID: 32972002 PMCID: PMC7552645 DOI: 10.3390/bioengineering7030116] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/10/2020] [Accepted: 09/20/2020] [Indexed: 01/01/2023] Open
Abstract
If pathogens are present in feedstock materials and survive in anaerobic digestion (AD) formulations at 37 °C, they may also survive the AD process to be disseminated in digestate spread on farmland as a fertilizer. The aim of this study was to investigate the prevalence of Salmonella spp., Escherichia coli O157, Listeria monocytogenes, Enterococcus faecalis and Clostridium spp. in AD feed and output materials and survival/growth in four formulations based on food waste, bovine slurry and/or grease-trap waste using International Organization for Standardization (ISO) or equivalent methods. The latter was undertaken in 100 mL Ramboldi tubes, incubated at 37 °C for 10 d with surviving cells enumerated periodically and the T90 values (time to achieve a 1 log reduction) calculated. The prevalence rates for Salmonella spp., Escherichia coli O157, Listeria monocytogenes, Enterococcus faecalis and Clostridium spp. were 3, 0, 5, 11 and 10/13 in food waste, 0, 0, 2, 3 and 2/3 in bovine slurry, 1, 0, 8, 7 and 8/8 in the mixing tank, 5, 1, 17, 18 and 17 /19 in raw digestate and 0, 0, 0, 2 and 2/2 in dried digestate, respectively. Depending on the formulation, T90 values ranged from 1.5 to 2.8 d, 1.6 to 2.8 d, 3.1 to 23.5 d, 2.2 to 6.6 d and 2.4 to 9.1 d for Salmonella Newport, Escherichia coli O157, Listeria monocytogenes, Enterococcus faecalis and Clostridium sporogenes, respectively. It was concluded that AD feed materials may be contaminated with a range of bacterial pathogens and L. monocytogenes may survive for extended periods in the test formulations incubated at 37 °C.
Collapse
Affiliation(s)
- Lauren Russell
- Teagasc Food Research Centre, Ashtown, Dublin 15, Ireland;
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland; (P.W.); (A.Z.); (S.G.); (B.M.); (T.d.W.)
| | - Paul Whyte
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland; (P.W.); (A.Z.); (S.G.); (B.M.); (T.d.W.)
| | - Annetta Zintl
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland; (P.W.); (A.Z.); (S.G.); (B.M.); (T.d.W.)
| | - Stephen Gordon
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland; (P.W.); (A.Z.); (S.G.); (B.M.); (T.d.W.)
| | - Bryan Markey
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland; (P.W.); (A.Z.); (S.G.); (B.M.); (T.d.W.)
| | - Theo de Waal
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland; (P.W.); (A.Z.); (S.G.); (B.M.); (T.d.W.)
| | - Enda Cummins
- School of Biosystems and Food Engineering, University College Dublin, Belfield, Dublin 4, Ireland;
| | - Stephen Nolan
- School of Natural Sciences, National University of Ireland, Galway, Ireland; (S.N.); (V.O.); (F.A.)
| | - Vincent O’Flaherty
- School of Natural Sciences, National University of Ireland, Galway, Ireland; (S.N.); (V.O.); (F.A.)
| | - Florence Abram
- School of Natural Sciences, National University of Ireland, Galway, Ireland; (S.N.); (V.O.); (F.A.)
| | - Karl Richards
- Teagasc Environmental Research Centres, Johnstown Castle, Wexford, Ireland; (K.R.); (O.F.)
| | - Owen Fenton
- Teagasc Environmental Research Centres, Johnstown Castle, Wexford, Ireland; (K.R.); (O.F.)
| | - Declan Bolton
- Teagasc Food Research Centre, Ashtown, Dublin 15, Ireland;
- Correspondence:
| |
Collapse
|
48
|
Different carbon sources result in differential activation of sigma B and stress resistance in Listeria monocytogenes. Int J Food Microbiol 2020; 320:108504. [DOI: 10.1016/j.ijfoodmicro.2019.108504] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 11/23/2019] [Accepted: 12/27/2019] [Indexed: 12/16/2022]
|
49
|
Varadarajan AR, Goetze S, Pavlou MP, Grosboillot V, Shen Y, Loessner MJ, Ahrens CH, Wollscheid B. A Proteogenomic Resource Enabling Integrated Analysis of Listeria Genotype-Proteotype-Phenotype Relationships. J Proteome Res 2020; 19:1647-1662. [PMID: 32091902 DOI: 10.1021/acs.jproteome.9b00842] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Listeria monocytogenes is an opportunistic foodborne pathogen responsible for listeriosis, a potentially fatal foodborne disease. Many different Listeria strains and serotypes exist, but a proteogenomic resource that bridges the gap in our molecular understanding of the relationships between the Listeria genotypes and phenotypes via proteotypes is still missing. Here, we devised a next-generation proteogenomics strategy that enables the community to rapidly proteotype Listeria strains and relate this information back to the genotype. Based on sequencing and de novo assembly of the two most commonly used Listeria model strains, EGD-e and ScottA, we established two comprehensive Listeria proteogenomic databases. A genome comparison established core- and strain-specific genes potentially responsible for virulence differences. Next, we established a DIA/SWATH-based proteotyping strategy, including a new and robust sample preparation workflow, that enables the reproducible, sensitive, and relative quantitative measurement of Listeria proteotypes. This reusable and publicly available DIA/SWATH library covers 70% of open reading frames of Listeria and represents the most extensive spectral library for Listeria proteotype analysis to date. We used these two new resources to investigate the Listeria proteotype in states mimicking the upper gastrointestinal passage. Exposure of Listeria to bile salts at 37 °C, which simulates conditions encountered in the duodenum, showed significant proteotype perturbations including an increase of FlaA, the structural protein of flagella. Given that Listeria is known to lose its flagella above 30 °C, this was an unexpected finding. The formation of flagella, which might have implications on infectivity, was validated by parallel reaction monitoring and light and scanning electron microscopy. flaA transcript levels did not change significantly upon exposure to bile salts at 37 °C, suggesting regulation at the post-transcriptional level. Together, these analyses provide a comprehensive proteogenomic resource and toolbox for the Listeria community enabling the analysis of Listeria genotype-proteotype-phenotype relationships.
Collapse
Affiliation(s)
- Adithi R Varadarajan
- Department of Health Sciences and Technology (D-HEST), ETH Zürich, 8092 Zürich, Switzerland.,Agroscope, Molecular Diagnostics, Genomics & Bioinformatics, 8820 Wädenswil, Switzerland.,Swiss Institute of Bioinformatics (SIB), 1015 Lausanne, Switzerland
| | - Sandra Goetze
- Department of Health Sciences and Technology (D-HEST), ETH Zürich, 8092 Zürich, Switzerland.,Swiss Institute of Bioinformatics (SIB), 1015 Lausanne, Switzerland.,Institute of Translational Medicine (ITM), ETH Zürich, 8093 Zürich, Switzerland
| | - Maria P Pavlou
- Department of Health Sciences and Technology (D-HEST), ETH Zürich, 8092 Zürich, Switzerland.,Institute of Translational Medicine (ITM), ETH Zürich, 8093 Zürich, Switzerland
| | - Virginie Grosboillot
- Department of Health Sciences and Technology (D-HEST), ETH Zürich, 8092 Zürich, Switzerland.,Institute of Food, Nutrition and Health (IFNH), ETH Zürich, 8092 Zürich, Switzerland
| | - Yang Shen
- Department of Health Sciences and Technology (D-HEST), ETH Zürich, 8092 Zürich, Switzerland.,Institute of Food, Nutrition and Health (IFNH), ETH Zürich, 8092 Zürich, Switzerland
| | - Martin J Loessner
- Department of Health Sciences and Technology (D-HEST), ETH Zürich, 8092 Zürich, Switzerland.,Institute of Food, Nutrition and Health (IFNH), ETH Zürich, 8092 Zürich, Switzerland
| | - Christian H Ahrens
- Agroscope, Molecular Diagnostics, Genomics & Bioinformatics, 8820 Wädenswil, Switzerland.,Swiss Institute of Bioinformatics (SIB), 1015 Lausanne, Switzerland
| | - Bernd Wollscheid
- Department of Health Sciences and Technology (D-HEST), ETH Zürich, 8092 Zürich, Switzerland.,Swiss Institute of Bioinformatics (SIB), 1015 Lausanne, Switzerland.,Institute of Translational Medicine (ITM), ETH Zürich, 8093 Zürich, Switzerland
| |
Collapse
|
50
|
Camargo AC, Moura A, Avillan J, Herman N, McFarland AP, Sreevatsan S, Call DR, Woodward JJ, Lecuit M, Nero LA. Whole-genome sequencing reveals Listeria monocytogenes diversity and allows identification of long-term persistent strains in Brazil. Environ Microbiol 2019; 21:4478-4487. [PMID: 31251828 PMCID: PMC7644123 DOI: 10.1111/1462-2920.14726] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 06/12/2019] [Accepted: 06/24/2019] [Indexed: 01/06/2023]
Abstract
Advances in whole-genome sequencing (WGS) technologies have documented genetic diversity and epidemiology of the major foodborne pathogen Listeria monocytogenes (Lm) in Europe and North America, but data concerning South America are scarce. Here, we examined the population structure and genetic diversity of this major foodborne pathogen collected in Brazil. Based on core genome multilocus sequence typing (cgMLST), isolates from lineages I (n = 22; 63%) and II (n = 13; 37%) were distributed into 10 different sublineages (SLs) and represented 31 new cgMLST types (CTs). The most prevalent SLs were SL9 (n = 9; 26%), SL3 (n = 6; 17%) and SL2 and SL218 (n = 5; 14%). Isolates belonging to CTs L2-SL9-ST9-CT4420 and L1-SL315-ST520-CT4429 were collected 3 and 9 years apart, respectively, revealing long-term persistence of Lm in Brazil. Genetic elements associated with stress survival were present in 60% of isolates (57% SSI-1 and 3% SSI-2). Pathogenic islands were present in 100% (LIPI-1), 43% (LIPI-3) and 6% (LIPI-4) of the isolates. Mutations leading to premature stop codons were detected in the prfA and inlA virulence genes. This study is an important contribution to understanding the genomic diversity and epidemiology of Lm in South America. In addition, the results highlight the importance of using WGS to reveal Lm long-term persistence.
Collapse
Affiliation(s)
- Anderson C. Camargo
- Departamento de Veterinária, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Alexandra Moura
- Institut Pasteur, Biology of Infection Unit, Paris, France
- Inserm U1117, Paris, France
| | - Johannetsy Avillan
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA, USA
| | - Nicole Herman
- Veterinary Population Medicine Department, University of Minnesota, St. Paul, MN, USA
| | | | - Srinand Sreevatsan
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI, USA
| | - Douglas R. Call
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA, USA
| | | | - Marc Lecuit
- Institut Pasteur, Biology of Infection Unit, Paris, France
- Inserm U1117, Paris, France
- Université de Paris, Department of Infectious Diseases and Tropical Medicine, Necker-Enfants Malades University Hospital, APHP, Institut Imagine, Paris, France
| | - Luís A. Nero
- Departamento de Veterinária, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| |
Collapse
|