1
|
Dartois V, Dick T. Toward better cures for Mycobacterium abscessus lung disease. Clin Microbiol Rev 2024:e0008023. [PMID: 39360834 DOI: 10.1128/cmr.00080-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024] Open
Abstract
SUMMARYThe opportunistic pathogen Mycobacterium abscessus (Mab) causes fatal lung infections that bear similarities-and notable differences-with tuberculosis (TB) pulmonary disease. In contrast to TB, no antibiotic is formally approved to treat Mab disease, there is no reliable cure, and the discovery and development pipeline is incredibly thin. Here, we discuss the factors behind the unsatisfactory cure rates of Mab disease, namely intrinsic resistance and persistence of the pathogen, and the use of underperforming, often parenteral and toxic, repurposed drugs. We propose preclinical strategies to build injectable-free sterilizing and safe regimens: (i) prioritize oral bactericidal antibiotic classes, with an initial focus on approved agents or advanced clinical candidates to provide immediate options for desperate patients, (ii) test drug combinations early, (iii) optimize novel leads specifically for M. abscessus, and (iv) consider pharmacokinetic-pharmacodynamic targets at the site of disease, the lung lesions in which drug tolerant bacterial populations reside. Knowledge and tool gaps in the preclinical drug discovery process are identified, including validated mouse models and computational platforms to enable in vitro mouse-human translation. We briefly discuss recent advances in clinical development, the need for readouts and biomarkers that correlate with cure, and clinical trial concepts adapted to the uniqueness of Mab patient populations for new regimen development. In an era when most pharmaceutical firms have withdrawn from antimicrobial drug discovery, the breakthroughs needed to fill the regimen development pipeline will likely come from partnerships between academia, biotech, pharma, non-profit organizations, and governments, with incentives that reward cooperation.
Collapse
Affiliation(s)
- Véronique Dartois
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
- Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, New Jersey, USA
| | - Thomas Dick
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
- Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, New Jersey, USA
- Department of Microbiology and Immunology, Georgetown University, Washington, DC, USA
| |
Collapse
|
2
|
Dartois V, Bonfield TL, Boyce JP, Daley CL, Dick T, Gonzalez-Juarrero M, Gupta S, Kramnik I, Lamichhane G, Laughon BE, Lorè NI, Malcolm KC, Olivier KN, Tuggle KL, Jackson M. Preclinical murine models for the testing of antimicrobials against Mycobacterium abscessus pulmonary infections: Current practices and recommendations. Tuberculosis (Edinb) 2024; 147:102503. [PMID: 38729070 PMCID: PMC11168888 DOI: 10.1016/j.tube.2024.102503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/08/2024] [Accepted: 03/17/2024] [Indexed: 05/12/2024]
Abstract
Mycobacterium abscessus, a rapidly growing nontuberculous mycobacterium, is increasingly recognized as an important pathogen of the human lung, disproportionally affecting people with cystic fibrosis (CF) and other susceptible individuals with non-CF bronchiectasis and compromised immune functions. M. abscessus infections are extremely difficult to treat due to intrinsic resistance to many antibiotics, including most anti-tuberculous drugs. Current standard-of-care chemotherapy is long, includes multiple oral and parenteral repurposed drugs, and is associated with significant toxicity. The development of more effective oral antibiotics to treat M. abscessus infections has thus emerged as a high priority. While murine models have proven instrumental in predicting the efficacy of therapeutic treatments for M. tuberculosis infections, the preclinical evaluation of drugs against M. abscessus infections has proven more challenging due to the difficulty of establishing a progressive, sustained, pulmonary infection with this pathogen in mice. To address this issue, a series of three workshops were hosted in 2023 by the Cystic Fibrosis Foundation (CFF) and the National Institute of Allergy and Infectious Diseases (NIAID) to review the current murine models of M. abscessus infections, discuss current challenges and identify priorities toward establishing validated and globally harmonized preclinical models. This paper summarizes the key points from these workshops. The hope is that the recommendations that emerged from this exercise will facilitate the implementation of informative murine models of therapeutic efficacy testing across laboratories, improve reproducibility from lab-to-lab and accelerate preclinical-to-clinical translation.
Collapse
Affiliation(s)
- Véronique Dartois
- Center for Discovery and Innovation & Department of Medical Sciences, Hackensack Meridian School of Medicine, Hackensack Meridian Health, Nutley, NJ, USA.
| | - Tracey L Bonfield
- Genetics and Genome Sciences and National Center for Regenerative Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Jim P Boyce
- Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Charles L Daley
- Department of Medicine, National Jewish Health, Denver, CO, USA; Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Thomas Dick
- Center for Discovery and Innovation & Department of Medical Sciences, Hackensack Meridian School of Medicine, Hackensack Meridian Health, Nutley, NJ, USA; Department of Microbiology and Immunology, Georgetown University, Washington, DC, USA
| | - Mercedes Gonzalez-Juarrero
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, 80523-1682, USA
| | - Shashank Gupta
- Laboratory of Chronic Airway Infection, Pulmonary Branch, National Heart, Lung, and Blood Institute, Bethesda, MD, USA; Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Igor Kramnik
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, 02215, USA; Department of Medicine, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Gyanu Lamichhane
- Division of Infectious Diseases, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Barbara E Laughon
- Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Nicola I Lorè
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Kenneth C Malcolm
- Department of Medicine, National Jewish Health, Denver, CO, USA; Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Kenneth N Olivier
- Department of Medicine, Division of Pulmonary Diseases and Critical Care Medicine, University of North Carolina, USA; Marsico Lung Institute, Chapel Hill, 27599-7248, NC, USA
| | | | - Mary Jackson
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, 80523-1682, USA.
| |
Collapse
|
3
|
Boudehen YM, Tasrini Y, Aguilera-Correa JJ, Alcaraz M, Kremer L. Silencing essential gene expression in Mycobacterium abscessus during infection. Microbiol Spectr 2023; 11:e0283623. [PMID: 37831478 PMCID: PMC10714871 DOI: 10.1128/spectrum.02836-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/01/2023] [Indexed: 10/14/2023] Open
Abstract
IMPORTANCE Mycobacterium abscessus represents the most common rapidly growing mycobacterial pathogen in cystic fibrosis and is extremely difficult to eradicate. Essential genes are required for growth, often participate in pathogenesis, and encode valid drug targets for further chemotherapeutic developments. However, assessing the function of essential genes in M. abscessus remains challenging due to the limited spectrum of efficient genetic tools. Herein, we generated a Tet-OFF-based system allowing to knock down the expression of mmpL3, encoding the mycolic acid transporter in mycobacteria. Using this conditional mutant, we confirm the essentiality of mmpL3 in planktonic cultures, in biofilms, and during infection in zebrafish embryos. Thus, in this study, we developed a robust and reliable method to silence the expression of any M. abscessus gene during host infection.
Collapse
Affiliation(s)
- Yves-Marie Boudehen
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, Montpellier, France
| | - Yara Tasrini
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, Montpellier, France
| | - John Jairo Aguilera-Correa
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, Montpellier, France
| | - Matthéo Alcaraz
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, Montpellier, France
| | - Laurent Kremer
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, Montpellier, France
- INSERM, IRIM, Montpellier, France
| |
Collapse
|
4
|
Illouz M, Leclercq LD, Dessenne C, Hatfull G, Daher W, Kremer L, Guérardel Y. Multiple Mycobacterium abscessus O-acetyltransferases influence glycopeptidolipid structure and colony morphotype. J Biol Chem 2023; 299:104979. [PMID: 37390990 PMCID: PMC10400925 DOI: 10.1016/j.jbc.2023.104979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/02/2023] Open
Abstract
Mycobacterium abscessus causes severe lung infections. Clinical isolates can have either smooth (S) or rough (R) colony morphotypes; of these, S but not R variants have abundant cell wall glycopeptidolipids (GPL) consisting of a peptidolipid core substituted by a 6-deoxy-α-L-talose (6-dTal) and rhamnose residues. Deletion of gtf1, encoding the 6-dTal transferase, results in the S-to-R transition, mycobacterial cord formation, and increased virulence, underscoring the importance of 6-dTal in infection outcomes. However, since 6-dTal is di-O-acetylated, it is unclear whether the gtf1 mutant phenotypes are related to the loss of the 6-dTal or the result of the absence of acetylation. Here, we addressed whether M. abscessus atf1 and atf2, encoding two putative O-acetyltransferases located within the gpl biosynthetic locus, transfer acetyl groups to 6-dTal. We found deletion of atf1 and/or atf2 did not drastically alter the GPL acetylation profile, suggesting there are additional enzymes with redundant functions. We subsequently identified two paralogs of atf1 and atf2, MAB_1725c and MAB_3448. While deletion of MAB_1725c and MAB_3448 had no effect on GPL acetylation, the triple atf1-atf2-MAB_1725c mutant did not synthetize fully acetylated GPL, and the quadruple mutant was totally devoid of acetylated GPL. Moreover, both triple and quadruple mutants accumulated hyper-methylated GPL. Finally, we show deletion of atf genes resulted in subtle changes in colony morphology but had no effect on M. abscessus internalization by macrophages. Overall, these findings reveal the existence of functionally redundant O-acetyltransferases and suggest that O-acetylation influences the glycan moiety of GPL by deflecting biosynthetic flux in M. abscessus.
Collapse
Affiliation(s)
- Morgane Illouz
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, Montpellier, France
| | - Louis-David Leclercq
- UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, CNRS, Université de Lille, Lille, France
| | - Clara Dessenne
- UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, CNRS, Université de Lille, Lille, France
| | - Graham Hatfull
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Wassim Daher
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, Montpellier, France; INSERM, IRIM, Montpellier, France
| | - Laurent Kremer
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, Montpellier, France; INSERM, IRIM, Montpellier, France.
| | - Yann Guérardel
- UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, CNRS, Université de Lille, Lille, France; Institute for Glyco-Core Research (iGCORE), Gifu University, Gifu, Japan.
| |
Collapse
|
5
|
Leon-Icaza SA, Bagayoko S, Vergé R, Iakobachvili N, Ferrand C, Aydogan T, Bernard C, Sanchez Dafun A, Murris-Espin M, Mazières J, Bordignon PJ, Mazères S, Bernes-Lasserre P, Ramé V, Lagarde JM, Marcoux J, Bousquet MP, Chalut C, Guilhot C, Clevers H, Peters PJ, Molle V, Lugo-Villarino G, Cam K, Berry L, Meunier E, Cougoule C. Druggable redox pathways against Mycobacterium abscessus in cystic fibrosis patient-derived airway organoids. PLoS Pathog 2023; 19:e1011559. [PMID: 37619220 PMCID: PMC10449475 DOI: 10.1371/journal.ppat.1011559] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 07/13/2023] [Indexed: 08/26/2023] Open
Abstract
Mycobacterium abscessus (Mabs) drives life-shortening mortality in cystic fibrosis (CF) patients, primarily because of its resistance to chemotherapeutic agents. To date, our knowledge on the host and bacterial determinants driving Mabs pathology in CF patient lung remains rudimentary. Here, we used human airway organoids (AOs) microinjected with smooth (S) or rough (R-)Mabs to evaluate bacteria fitness, host responses to infection, and new treatment efficacy. We show that S Mabs formed biofilm, and R Mabs formed cord serpentines and displayed a higher virulence. While Mabs infection triggers enhanced oxidative stress, pharmacological activation of antioxidant pathways resulted in better control of Mabs growth and reduced virulence. Genetic and pharmacological inhibition of the CFTR is associated with better growth and higher virulence of S and R Mabs. Finally, pharmacological activation of antioxidant pathways inhibited Mabs growth, at least in part through the quinone oxidoreductase NQO1, and improved efficacy in combination with cefoxitin, a first line antibiotic. In conclusion, we have established AOs as a suitable human system to decipher mechanisms of CF-driven respiratory infection by Mabs and propose boosting of the NRF2-NQO1 axis as a potential host-directed strategy to improve Mabs infection control.
Collapse
Affiliation(s)
- Stephen Adonai Leon-Icaza
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III–Paul Sabatier (UPS), Toulouse, France
| | - Salimata Bagayoko
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III–Paul Sabatier (UPS), Toulouse, France
| | - Romain Vergé
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III–Paul Sabatier (UPS), Toulouse, France
| | - Nino Iakobachvili
- M4i Nanoscopy Division, Maastricht University, Maastricht, Netherlands
| | - Chloé Ferrand
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III–Paul Sabatier (UPS), Toulouse, France
| | - Talip Aydogan
- Laboratory of Pathogen Host Interactions (LPHI), Université Montpellier, CNRS, Montpellier, France
| | - Célia Bernard
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III–Paul Sabatier (UPS), Toulouse, France
| | - Angelique Sanchez Dafun
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III–Paul Sabatier (UPS), Toulouse, France
| | - Marlène Murris-Espin
- Service de Pneumologie, Hôpital Larrey, CHU de Toulouse, Toulouse, France
- Centre de ressource et de compétence pour la mucoviscidose de l’adulte (CRCM adulte), CHU de Toulouse, Toulouse, France
| | - Julien Mazières
- Service de Pneumologie, Hôpital Larrey, CHU de Toulouse, Toulouse, France
| | - Pierre Jean Bordignon
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III–Paul Sabatier (UPS), Toulouse, France
| | - Serge Mazères
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III–Paul Sabatier (UPS), Toulouse, France
| | | | - Victoria Ramé
- Imactiv-3D SAS, 1 Place Pierre POTIER, Toulouse, France
| | | | - Julien Marcoux
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III–Paul Sabatier (UPS), Toulouse, France
| | - Marie-Pierre Bousquet
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III–Paul Sabatier (UPS), Toulouse, France
| | - Christian Chalut
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III–Paul Sabatier (UPS), Toulouse, France
| | - Christophe Guilhot
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III–Paul Sabatier (UPS), Toulouse, France
| | - Hans Clevers
- Oncode Institute, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center, Utrecht, Netherlands
| | - Peter J. Peters
- M4i Nanoscopy Division, Maastricht University, Maastricht, Netherlands
| | - Virginie Molle
- Laboratory of Pathogen Host Interactions (LPHI), Université Montpellier, CNRS, Montpellier, France
| | - Geanncarlo Lugo-Villarino
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III–Paul Sabatier (UPS), Toulouse, France
| | - Kaymeuang Cam
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III–Paul Sabatier (UPS), Toulouse, France
| | - Laurence Berry
- Laboratory of Pathogen Host Interactions (LPHI), Université Montpellier, CNRS, Montpellier, France
| | - Etienne Meunier
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III–Paul Sabatier (UPS), Toulouse, France
| | - Céline Cougoule
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III–Paul Sabatier (UPS), Toulouse, France
| |
Collapse
|
6
|
Opperman CJ, Wojno J, Goosen W, Warren R. Phages for the treatment of Mycobacterium species. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 201:41-92. [PMID: 37770176 DOI: 10.1016/bs.pmbts.2023.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Highly drug-resistant strains are not uncommon among the Mycobacterium genus, with patients requiring lengthy antibiotic treatment regimens with multiple drugs and harmful side effects. This alarming increase in antibiotic resistance globally has renewed the interest in mycobacteriophage therapy for both Mycobacterium tuberculosis complex and non-tuberculosis mycobacteria. With the increasing number of genetically well-characterized mycobacteriophages and robust engineering tools to convert temperate phages to obligate lytic phages, the phage cache against extensive drug-resistant mycobacteria is constantly expanding. Synergistic effects between phages and TB drugs are also a promising avenue to research, with mycobacteriophages having several additional advantages compared to traditional antibiotics due to their different modes of action. These advantages include less side effects, a narrow host spectrum, biofilm penetration, self-replication at the site of infection and the potential to be manufactured on a large scale. In addition, mycobacteriophage enzymes, not yet in clinical use, warrant further studies with their additional benefits for rupturing host bacteria thereby limiting resistance development as well as showing promise in vitro to act synergistically with TB drugs. Before mycobacteriophage therapy can be envisioned as part of routine care, several obstacles must be overcome to translate in vitro work into clinical practice. Strategies to target intracellular bacteria and selecting phage cocktails to limit cross-resistance remain important avenues to explore. However, insight into pathophysiological host-phage interactions on a molecular level and innovative solutions to transcend mycobacteriophage therapy impediments, offer sufficient encouragement to explore phage therapy. Recently, the first successful clinical studies were performed using a mycobacteriophage-constructed cocktail to treat non-tuberculosis mycobacteria, providing substantial insight into lessons learned and potential pitfalls to avoid in order to ensure favorable outcomes. However, due to mycobacterium strain variation, mycobacteriophage therapy remains personalized, only being utilized in compassionate care cases until there is further regulatory approval. Therefore, identifying the determinants that influence clinical outcomes that can expand the repertoire of mycobacteriophages for therapeutic benefit, remains key for their future application.
Collapse
Affiliation(s)
- Christoffel Johannes Opperman
- National Health Laboratory Service, Green Point TB-Laboratory, Cape Town, South Africa; DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for tuberculosis Research, Division of Molecular Biology and Human Genetics, Stellenbosch University, Cape Town, South Africa; Division of Medical Microbiology, University of Cape Town, Cape Town, South Africa.
| | - Justyna Wojno
- Division of Medical Microbiology, University of Cape Town, Cape Town, South Africa; Lancet Laboratories, Cape Town, South Africa
| | - Wynand Goosen
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for tuberculosis Research, Division of Molecular Biology and Human Genetics, Stellenbosch University, Cape Town, South Africa
| | - Rob Warren
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for tuberculosis Research, Division of Molecular Biology and Human Genetics, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
7
|
Sullivan MR, McGowen K, Liu Q, Akusobi C, Young DC, Mayfield JA, Raman S, Wolf ID, Moody DB, Aldrich CC, Muir A, Rubin EJ. Biotin-dependent cell envelope remodelling is required for Mycobacterium abscessus survival in lung infection. Nat Microbiol 2023; 8:481-497. [PMID: 36658396 PMCID: PMC9992005 DOI: 10.1038/s41564-022-01307-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 12/14/2022] [Indexed: 01/21/2023]
Abstract
Mycobacterium abscessus is an emerging pathogen causing lung infection predominantly in patients with underlying structural abnormalities or lung disease and is resistant to most frontline antibiotics. As the pathogenic mechanisms of M. abscessus in the context of the lung are not well-understood, we developed an infection model using air-liquid interface culture and performed a transposon mutagenesis and sequencing screen to identify genes differentially required for bacterial survival in the lung. Biotin cofactor synthesis was required for M. abscessus growth due to increased intracellular biotin demand, while pharmacological inhibition of biotin synthesis prevented bacterial proliferation. Biotin was required for fatty acid remodelling, which increased cell envelope fluidity and promoted M. abscessus survival in the alkaline lung environment. Together, these results indicate that biotin-dependent fatty acid remodelling plays a critical role in pathogenic adaptation to the lung niche, suggesting that biotin synthesis and fatty acid metabolism might provide therapeutic targets for treatment of M. abscessus infection.
Collapse
Affiliation(s)
- Mark R Sullivan
- Department of Immunology and Infectious Disease, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Kerry McGowen
- Department of Immunology and Infectious Disease, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Qiang Liu
- Department of Medicinal Chemistry, University of Minnesota College of Pharmacy, Minneapolis, MN, USA
| | - Chidiebere Akusobi
- Department of Immunology and Infectious Disease, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - David C Young
- Division of Rheumatology, Immunity and Inflammation, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jacob A Mayfield
- Division of Rheumatology, Immunity and Inflammation, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Sahadevan Raman
- Division of Rheumatology, Immunity and Inflammation, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ian D Wolf
- Department of Immunology and Infectious Disease, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - D Branch Moody
- Division of Rheumatology, Immunity and Inflammation, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Courtney C Aldrich
- Department of Medicinal Chemistry, University of Minnesota College of Pharmacy, Minneapolis, MN, USA
| | - Alexander Muir
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, USA
| | - Eric J Rubin
- Department of Immunology and Infectious Disease, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
8
|
Mycobacterial biotin biosynthesis counters airway alkalinity. Nat Microbiol 2023; 8:369-370. [PMID: 36797485 DOI: 10.1038/s41564-023-01330-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
|
9
|
Bonfield TL, Sutton MT, Fletcher DR, Reese-Koc J, Roesch EA, Lazarus HM, Chmiel JF, Caplan AI. Human Mesenchymal Stem Cell (hMSC) Donor Potency Selection for the "First in Cystic Fibrosis" Phase I Clinical Trial (CEASE-CF). Pharmaceuticals (Basel) 2023; 16:220. [PMID: 37259368 PMCID: PMC9960767 DOI: 10.3390/ph16020220] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/15/2023] [Accepted: 01/16/2023] [Indexed: 08/27/2023] Open
Abstract
Human Mesenchymal Stem Cell (hMSC) immunotherapy has been shown to provide both anti-inflammatory and anti-microbial effectiveness in a variety of diseases. The clinical potency of hMSCs is based upon an initial direct hMSC effect on the pro-inflammatory and anti-microbial pathophysiology as well as sustained potency through orchestrating the host immunity to optimize the resolution of infection and tissue damage. Cystic fibrosis (CF) patients suffer from a lung disease characterized by excessive inflammation and chronic infection as well as a variety of other systemic anomalies associated with the consequences of abnormal cystic fibrosis transmembrane conductance regulator (CFTR) function. The application of hMSC immunotherapy to the CF clinical armamentarium is important even in the era of modulators when patients with an established disease still need anti-inflammatory and anti-microbial therapies. Additionally, people with CF mutations not addressed by current modulator resources need anti-inflammation and anti-infection management. Furthermore, hMSCs possess dynamic therapeutic properties, but the potency of their products is highly variable with respect to their anti-inflammatory and anti-microbial effects. Due to the variability of hMSC products, we utilized standardized in vitro and in vivo models to select hMSC donor preparations with the greatest potential for clinical efficacy. The models that were used recapitulate many of the pathophysiologic outcomes associated with CF. We applied this strategy in pursuit of identifying the optimal donor to utilize for the "First in CF" Phase I clinical trial of hMSCs as an immunotherapy and anti-microbial therapy for people with cystic fibrosis. The hMSCs screened in this study demonstrated significant diversity in antimicrobial and anti-inflammatory function using models which mimic some aspects of CF infection and inflammation. However, the variability in activity between in vitro potency and in vivo effectiveness continues to be refined. Future studies require and in-depth pursuit of hMSC molecular signatures that ultimately predict the capacity of hMSCs to function in the clinical setting.
Collapse
Affiliation(s)
- Tracey L. Bonfield
- Department of Genetics and Genome Sciences, National Center Regenerative Medicine and Pediatrics, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, BRB 822, Cleveland, OH 444106, USA
- National Center for Regenerative Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 444106, USA
- Department of Pediatric Pulmonary, Rainbow Babies and Children’s Hospital, Cleveland, OH 44106, USA
| | - Morgan T. Sutton
- Department of Genetics and Genome Sciences, National Center Regenerative Medicine and Pediatrics, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, BRB 822, Cleveland, OH 444106, USA
- National Center for Regenerative Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 444106, USA
- Department of Pediatric Pulmonary, Rainbow Babies and Children’s Hospital, Cleveland, OH 44106, USA
- Saint Jude Children’s Research Hospital, Graduate School of Biomedical Sciences, Memphis, TN 38105, USA
| | - David R. Fletcher
- Department of Genetics and Genome Sciences, National Center Regenerative Medicine and Pediatrics, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, BRB 822, Cleveland, OH 444106, USA
- Department of Pediatric Pulmonary, Rainbow Babies and Children’s Hospital, Cleveland, OH 44106, USA
| | - Jane Reese-Koc
- National Center for Regenerative Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 444106, USA
- University Hospitals Seidman Cancer Center, Cleveland, OH 44106, USA
| | - Erica A. Roesch
- Department of Pediatric Pulmonary, Rainbow Babies and Children’s Hospital, Cleveland, OH 44106, USA
| | - Hillard M. Lazarus
- National Center for Regenerative Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 444106, USA
- University Hospitals Seidman Cancer Center, Cleveland, OH 44106, USA
| | - James F. Chmiel
- Department of Pediatrics, Riley Hospital for Children at IU Health, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Arnold I. Caplan
- National Center for Regenerative Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 444106, USA
- Skeletal Research Center, Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
10
|
Updated Review on the Mechanisms of Pathogenicity in Mycobacterium abscessus, a Rapidly Growing Emerging Pathogen. Microorganisms 2022; 11:microorganisms11010090. [PMID: 36677382 PMCID: PMC9866562 DOI: 10.3390/microorganisms11010090] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 01/01/2023] Open
Abstract
In recent years, Mycobacterium abscessus has appeared as an emerging pathogen, with an increasing number of disease cases reported worldwide that mainly occur among patients with chronic lung diseases or impaired immune systems. The treatment of this pathogen represents a challenge due to the multi-drug-resistant nature of this species and its ability to evade most therapeutic approaches. However, although predisposing host factors for disease are well known, intrinsic pathogenicity mechanisms of this mycobacterium are still not elucidated. Like other mycobacteria, intracellular invasiveness and survival inside different cell lines are pathogenic factors related to the ability of M. abscessus to establish infection. Some of the molecular factors involved in this process are well-known and are present in the mycobacterial cell wall, such as trehalose-dimycolate and glycopeptidolipids. The ability to form biofilms is another pathogenic factor that is essential for the development of chronic disease and for promoting mycobacterial survival against the host immune system or different antibacterial treatments. This capability also seems to be related to glycopeptidolipids and other lipid molecules, and some studies have shown an intrinsic relationship between both pathogenic mechanisms. Antimicrobial resistance is also considered a mechanism of pathogenicity because it allows the mycobacterium to resist antimicrobial therapies and represents an advantage in polymicrobial biofilms. The recent description of hyperpathogenic strains with the potential interhuman transmission makes it necessary to increase our knowledge of pathogenic mechanisms of this species to design better therapeutic approaches to the management of these infections.
Collapse
|
11
|
Nava A, Hahn AC, Wu TH, Byrd TF. Mice with lung airway ciliopathy develop persistent Mycobacterium abscessus lung infection and have a proinflammatory lung phenotype associated with decreased T regulatory cells. Front Immunol 2022; 13:1017540. [PMID: 36505420 PMCID: PMC9732727 DOI: 10.3389/fimmu.2022.1017540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 11/11/2022] [Indexed: 11/27/2022] Open
Abstract
Introduction Human pulmonary infection with non-tuberculous mycobacteria (NTM) such as Mycobacterium abscessus (Mabs) occurs in seemingly immunocompetent patients with underlying structural lung disease such as bronchiectasis in which normal ciliary function is perturbed. In addition to alterations in mucociliary clearance, the local immunologic milieu may be altered in patients with structural lung disease, but the nature of these changes and how they relate to NTM persistence remain unclear. Methods We used a mouse strain containing a conditional floxed allele of the gene IFT88, which encodes for the protein Polaris. Deletion of this gene in adult mice reportedly leads to loss of cilia on lung airway epithelium and to the development of bronchiectasis. In a series of experiments, IFT88 control mice and IFT88 KO mice received different preparations of Mabs lung inocula with lung CFU assessed out to approximately 8 weeks post-infection. In addition, cytokine levels in bronchoalveolar lavage (BAL) fluid, lung T cell subset analysis, and lung histopathology and morphometry were performed at various time points. Results Mabs embedded in agarose beads persisted in the lungs of IFT88 KO mice out to approximately 8 weeks (54 days), while Mabs agarose beads in the lungs of IFT88 control mice was cleared from the lungs of all mice at this time point. T cells subset analysis showed a decrease in the percentage of CD4+FoxP3+ T cells in the total lymphocyte population in the lungs of IFT88 KO mice relative to IFT88 control mice. Proinflammatory cytokines were elevated in the BAL fluid from infected IFT88 KO mice compared to infected IFT88 control mice, and histopathology showed an increased inflammatory response and greater numbers of granulomas in the lungs of infected IFT88 KO mice compared to the lungs of infected IFT88 control mice. Scanning lung morphometry did not show a significant difference comparing lung airway area and lung airway perimeter between IFT88 KO mice and IFT88 control mice. Discussion Persistent lung infection in our model was established using Mabs embedded in agarose beads. The utility of using IFT88 mice is that a significant difference in Mabs lung CFU is observed comparing IFT88 KO mice to IFT88 control mice thus allowing for studies assessing the mechanism(s) of Mabs lung persistence. Our finding of minimal differences in lung airway area and lung airway diameter comparing IFT88 KO mice to IFT88 control mice suggests that the development of a proinflammatory lung phenotype in IFT88 KO mice contributes to Mabs lung persistence independent of bronchiectasis. The contribution of cilia to immune regulation is increasingly recognized, and our results suggest that ciliopathy associated with structural lung disease may play a role in NTM pulmonary infection via alteration of the local immunologic lung milieu.
Collapse
Affiliation(s)
- Audrey Nava
- Center for Infectious Disease and Immunity, The University of New Mexico Health Science Center, Albuquerque, NM, United States
| | - Andrew C. Hahn
- Center for Infectious Disease and Immunity, The University of New Mexico Health Science Center, Albuquerque, NM, United States
| | - Terry H. Wu
- Center for Infectious Disease and Immunity, The University of New Mexico Health Science Center, Albuquerque, NM, United States,Department of Medicine, The University of New Mexico School of Medicine, Albuquerque, NM, United States
| | - Thomas F. Byrd
- Center for Infectious Disease and Immunity, The University of New Mexico Health Science Center, Albuquerque, NM, United States,Department of Medicine, The University of New Mexico School of Medicine, Albuquerque, NM, United States,*Correspondence: Thomas F. Byrd,
| |
Collapse
|
12
|
Jeon SM, Kim YJ, Nguyen TQ, Cui J, Thi Bich Hanh B, Silwal P, Kim JK, Kim JM, Oh DC, Jang J, Jo EK. Ohmyungsamycin Promotes M1-like Inflammatory Responses to Enhance Host Defense against Mycobacteroides abscessus Infections. Virulence 2022; 13:1966-1984. [PMID: 36271707 DOI: 10.1080/21505594.2022.2138009] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Ohmyungsamycin A (OMS) is a newly identified cyclic peptide that exerts antimicrobial effects against Mycobacterium tuberculosis. However, its role in nontuberculous mycobacteria (NTMs) infections has not been clarified. Mycobacteroides abscessus (Mabc) is a rapidly growing NTM that has emerged as a human pathogen in both immunocompetent and immunosuppressed individuals. In this study, we demonstrated that OMS had significant antimicrobial effects against Mabc infection in both immunocompetent and immunodeficient mice, and in macrophages. OMS treatment amplified Mabc-induced expression of M1-related proinflammatory cytokines and inducible nitric oxide synthase, and significantly downregulated arginase-1 expression in murine macrophages. In addition, OMS augmented Mabc-mediated production of mitochondrial reactive oxygen species (mtROS), which promoted M1-like proinflammatory responses in Mabc-infected macrophages. OMS-induced production of mtROS and nitric oxide was critical for OMS-mediated antimicrobial responses during Mabc infections. Notably, the combination of OMS and rifabutin had a synergistic effect on the antimicrobial responses against Mabc infections in vitro, in murine macrophages, and in zebrafish models in vivo. Collectively, these data strongly suggest that OMS may be an effective M1-like adjunctive therapeutic against Mabc infections, either alone or in combination with antibiotics.
Collapse
Affiliation(s)
- Sang Min Jeon
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, South Korea.,Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, South Korea.,Department of Medical Science, Chungnam National University School of Medicine, Daejeon, South Korea.,Brain Korea 21 FOUR Project for Medical Science, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Young Jae Kim
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, South Korea.,Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, South Korea.,Department of Medical Science, Chungnam National University School of Medicine, Daejeon, South Korea.,Brain Korea 21 FOUR Project for Medical Science, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Thanh Quang Nguyen
- Division of Applied Life Science (BK21 Four Program), Research Institute of Life Science, Gyeongsang National University, Jinju, South Korea
| | - Jinsheng Cui
- Department of Microbiology, Keimyung University School of Medicine, Daegu, South Korea
| | - Bui Thi Bich Hanh
- Division of Applied Life Science (BK21 Four Program), Research Institute of Life Science, Gyeongsang National University, Jinju, South Korea
| | - Prashanta Silwal
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, South Korea.,Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Jin Kyung Kim
- Department of Microbiology, Keimyung University School of Medicine, Daegu, South Korea
| | - Jin-Man Kim
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, South Korea.,Department of Medical Science, Chungnam National University School of Medicine, Daejeon, South Korea.,Department of Pathology, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Dong-Chan Oh
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Jichan Jang
- Division of Life Science, Department of Bio & Medical Big Data (BK21 Four Program), Research Institute of Life Science, Gyeongsang National University,Jinju, South Korea
| | - Eun-Kyeong Jo
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, South Korea.,Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, South Korea
| |
Collapse
|
13
|
Human pluripotent stem cell-derived macrophages host Mycobacterium abscessus infection. Stem Cell Reports 2022; 17:2156-2166. [PMID: 35985333 PMCID: PMC9481898 DOI: 10.1016/j.stemcr.2022.07.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 07/21/2022] [Accepted: 07/21/2022] [Indexed: 11/22/2022] Open
Abstract
Human macrophages are a natural host of many mycobacterium species, including Mycobacterium abscessus (M. abscessus), an emerging pathogen affecting immunocompromised and cystic fibrosis patients with few available treatments. The search for an effective treatment is hindered by the lack of a tractable in vitro intracellular infection model. Here, we established a reliable model for M. abscessus infection using human pluripotent stem cell-derived macrophages (hPSC-macrophages). hPSC differentiation permitted reproducible generation of functional macrophages that were highly susceptible to M. abscessus infection. Electron microscopy demonstrated that M. abscessus was present in the hPSC-macrophage vacuoles. RNA sequencing analysis revealed a time-dependent host cell response, with differing gene and protein expression patterns post-infection. Engineered tdTOMATO-expressing hPSC-macrophages with GFP-expressing mycobacteria enabled rapid image-based high-throughput analysis of intracellular infection and quantitative assessment of antibiotic efficacy. Our study describes the first to our knowledge hPSC-based model for M. abscessus infection, representing a novel and accessible system for studying pathogen-host interaction and drug discovery. A simplified chemically defined and serum-free protocol for the generation of functional macrophages from hPSCs An efficient human model recapitulating intracellular infection of Mycobacterium abscessus in hPSC-macrophages A high-throughput system testing antibiotic sensitivity with fluorescent hPSC-macrophages and M. abscessus
Collapse
|
14
|
Daher W, Leclercq LD, Johansen MD, Hamela C, Karam J, Trivelli X, Nigou J, Guérardel Y, Kremer L. Glycopeptidolipid glycosylation controls surface properties and pathogenicity in Mycobacterium abscessus. Cell Chem Biol 2022; 29:910-924.e7. [PMID: 35358417 DOI: 10.1016/j.chembiol.2022.03.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 12/17/2021] [Accepted: 03/10/2022] [Indexed: 12/18/2022]
Abstract
Mycobacterium abscessus is an emerging and difficult-to-manage mycobacterial species that exhibits smooth (S) or rough (R) morphotypes. Disruption of glycopeptidolipid (GPL) production results in transition from S to R and severe lung disease. A structure-activity relationship study was undertaken to decipher the role of GPL glycosylation in morphotype transition and pathogenesis. Deletion of gtf3 uncovered the prominent role of the extra rhamnose in enhancing mannose receptor-mediated internalization of M. abscessus by macrophages. In contrast, the absence of the 6-deoxy-talose and the first rhamnose in mutants lacking gtf1 and gtf2, respectively, affected M abscessus phagocytosis but also resulted in the S-to-R transition. Strikingly, gtf1 and gtf2 mutants displayed a strong propensity to form cords and abscesses in zebrafish, leading to robust and lethal infection. Together, these results underscore the importance and differential contribution of GPL monosaccharides in promoting virulence and infection outcomes.
Collapse
Affiliation(s)
- Wassim Daher
- CNRS UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, 1919 route de Mende, 34293 Montpellier, France; INSERM, IRIM, 34293 Montpellier, France
| | - Louis-David Leclercq
- Université de Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, 59000 Lille, France
| | - Matt D Johansen
- CNRS UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, 1919 route de Mende, 34293 Montpellier, France; Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW, Australia
| | - Claire Hamela
- CNRS UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, 1919 route de Mende, 34293 Montpellier, France
| | - Jona Karam
- CNRS UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, 1919 route de Mende, 34293 Montpellier, France
| | - Xavier Trivelli
- Université de Lille, CNRS, INRAE, Centrale Lille, Université d'Artois, FR 2638 - IMEC - Institut Michel-Eugène Chevreul, 59000 Lille, France
| | - Jérôme Nigou
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, Université Paul Sabatier, Toulouse, France
| | - Yann Guérardel
- Université de Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, 59000 Lille, France; Institute for Glyco-core Research (iGCORE), Gifu University, Gifu, Japan.
| | - Laurent Kremer
- CNRS UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, 1919 route de Mende, 34293 Montpellier, France; INSERM, IRIM, 34293 Montpellier, France.
| |
Collapse
|
15
|
Ferrell KC, Johansen MD, Triccas JA, Counoupas C. Virulence Mechanisms of Mycobacterium abscessus: Current Knowledge and Implications for Vaccine Design. Front Microbiol 2022; 13:842017. [PMID: 35308378 PMCID: PMC8928063 DOI: 10.3389/fmicb.2022.842017] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/08/2022] [Indexed: 12/22/2022] Open
Abstract
Mycobacterium abscessus is a member of the non-tuberculous mycobacteria (NTM) group, responsible for chronic infections in individuals with cystic fibrosis (CF) or those otherwise immunocompromised. While viewed traditionally as an opportunistic pathogen, increasing research into M. abscessus in recent years has highlighted its continued evolution into a true pathogen. This is demonstrated through an extensive collection of virulence factors (VFs) possessed by this organism which facilitate survival within the host, particularly in the harsh environment of the CF lung. These include VFs resembling those of other Mycobacteria, and non-mycobacterial VFs, both of which make a notable contribution in shaping M. abscessus interaction with the host. Mycobacterium abscessus continued acquisition of VFs is cause for concern and highlights the need for novel vaccination strategies to combat this pathogen. An effective M. abscessus vaccine must be suitably designed for target populations (i.e., individuals with CF) and incorporate current knowledge on immune correlates of protection against M. abscessus infection. Vaccination strategies must also build upon lessons learned from ongoing efforts to develop novel vaccines for other pathogens, particularly Mycobacterium tuberculosis (M. tb); decades of research into M. tb has provided insight into unconventional and innovative vaccine approaches that may be applied to M. abscessus. Continued research into M. abscessus pathogenesis will be critical for the future development of safe and effective vaccines and therapeutics to reduce global incidence of this emerging pathogen.
Collapse
Affiliation(s)
- Kia C. Ferrell
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
- Tuberculosis Research Program, Centenary Institute, Sydney, NSW, Australia
- *Correspondence: Kia C. Ferrell,
| | - Matt D. Johansen
- Centre for Inflammation, Centenary Institute, University of Technology, Sydney, NSW, Australia
- Faculty of Science, School of Life Sciences, University of Technology, Sydney, NSW, Australia
| | - James A. Triccas
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
- Sydney Institute for Infectious Diseases and the Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
| | - Claudio Counoupas
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
- Tuberculosis Research Program, Centenary Institute, Sydney, NSW, Australia
- Sydney Institute for Infectious Diseases and the Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
- Claudio Counoupas,
| |
Collapse
|
16
|
Kam JY, Hortle E, Krogman E, Warner SE, Wright K, Luo K, Cheng T, Manuneedhi Cholan P, Kikuchi K, Triccas JA, Britton WJ, Johansen MD, Kremer L, Oehlers SH. Rough and smooth variants of Mycobacterium abscessus are differentially controlled by host immunity during chronic infection of adult zebrafish. Nat Commun 2022; 13:952. [PMID: 35177649 PMCID: PMC8854618 DOI: 10.1038/s41467-022-28638-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 02/03/2022] [Indexed: 11/09/2022] Open
Abstract
Prevalence of Mycobacterium abscessus infections is increasing in patients with respiratory comorbidities. After initial colonisation, M. abscessus smooth colony (S) variants can undergo an irreversible genetic switch into highly inflammatory, rough colony (R) variants, often associated with a decline in pulmonary function. Here, we use an adult zebrafish model of chronic infection with R and S variants to study M. abscessus pathogenesis in the context of fully functioning host immunity. We show that infection with an R variant causes an inflammatory immune response that drives necrotic granuloma formation through host TNF signalling, mediated by the tnfa, tnfr1 and tnfr2 gene products. T cell-dependent immunity is stronger against the R variant early in infection, and regulatory T cells associate with R variant granulomas and limit bacterial growth. In comparison, an S variant proliferates to high burdens but appears to be controlled by TNF-dependent innate immunity early during infection, resulting in delayed granuloma formation. Thus, our work demonstrates the applicability of adult zebrafish to model persistent M. abscessus infection, and illustrates differences in the immunopathogenesis induced by R and S variants during granulomatous infection. The pathogen Mycobacterium abscessus can switch from a smooth colony form (S) into a highly inflammatory, rough colony form (R) during infection. Here, Kam et al. use an adult zebrafish model of M. abscessus chronic infection to illustrate differences in the immunopathogenesis induced by R and S variants.
Collapse
Affiliation(s)
- Julia Y Kam
- Tuberculosis Research Program at the Centenary Institute, The University of Sydney, Camperdown, NSW, Australia
| | - Elinor Hortle
- Tuberculosis Research Program at the Centenary Institute, The University of Sydney, Camperdown, NSW, Australia.,The University of Sydney, Faculty of Medicine and Health & Marie Bashir Institute, Camperdown, NSW, Australia
| | - Elizabeth Krogman
- Tuberculosis Research Program at the Centenary Institute, The University of Sydney, Camperdown, NSW, Australia
| | - Sherridan E Warner
- Tuberculosis Research Program at the Centenary Institute, The University of Sydney, Camperdown, NSW, Australia.,The University of Sydney, Faculty of Medicine and Health & Marie Bashir Institute, Camperdown, NSW, Australia
| | - Kathryn Wright
- Tuberculosis Research Program at the Centenary Institute, The University of Sydney, Camperdown, NSW, Australia
| | - Kaiming Luo
- Tuberculosis Research Program at the Centenary Institute, The University of Sydney, Camperdown, NSW, Australia
| | - Tina Cheng
- Tuberculosis Research Program at the Centenary Institute, The University of Sydney, Camperdown, NSW, Australia
| | - Pradeep Manuneedhi Cholan
- Tuberculosis Research Program at the Centenary Institute, The University of Sydney, Camperdown, NSW, Australia
| | - Kazu Kikuchi
- Developmental and Stem Cell Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia.,St. Vincent's Clinical School, University of New South Wales, Kensington, NSW, Australia
| | - James A Triccas
- The University of Sydney, Faculty of Medicine and Health & Marie Bashir Institute, Camperdown, NSW, Australia
| | - Warwick J Britton
- Tuberculosis Research Program at the Centenary Institute, The University of Sydney, Camperdown, NSW, Australia.,Department of Clinical Immunology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - Matt D Johansen
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, Montpellier, France
| | - Laurent Kremer
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, Montpellier, France.,INSERM, IRIM, Montpellier, France
| | - Stefan H Oehlers
- Tuberculosis Research Program at the Centenary Institute, The University of Sydney, Camperdown, NSW, Australia. .,The University of Sydney, Faculty of Medicine and Health & Marie Bashir Institute, Camperdown, NSW, Australia. .,A*STAR Infectious Diseases Labs, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.
| |
Collapse
|
17
|
Bich Hanh BT, Quang NT, Park Y, Heo BE, Jeon S, Park JW, Jang J. Omadacycline Potentiates Clarithromycin Activity Against Mycobacterium abscessus. Front Pharmacol 2021; 12:790767. [PMID: 34955859 PMCID: PMC8693020 DOI: 10.3389/fphar.2021.790767] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/15/2021] [Indexed: 11/29/2022] Open
Abstract
Mycobacterium abscessus is a difficult respiratory pathogen to treat, when compared to other nontuberculus mycobacteria (NTM), due to its drug resistance. In this study, we aimed to find a new clarithromycin partner that potentiated strong, positive, synergy against M. abscessus among current anti-M. abscessus drugs, including omadacycline, amikacin, rifabutin, bedaquiline, and cefoxitine. First, we determined the minimum inhibitory concentrations required of all the drugs tested for M. abscessus subsp. abscessus CIP104536T treatment using a resazurin microplate assay. Next, the best synergistic partner for clarithromycin against M. abscessus was determined using an in vitro checkerboard combination assay. Among the drug combinations evaluated, omadacycline showed the best synergistic effect with clarithromycin, with a fractional inhibitory concentration index of 0.4. This positive effect was also observed against M. abscessus clinical isolates and anti-M. abscessus drug resistant strains. Lastly, this combination was further validated using a M. abscessus infected zebrafish model. In this model, the clarithromycin-omadacyline regimen was found to inhibit the dissemination of M. abscessus, and it significantly extended the lifespan of the M. abscessus infected zebrafish. In summation, the synergy between two anti-M. abscessus compounds, clarithromycin and omadacycline, provides an attractive foundation for a new M. abscessus treatment regimen.
Collapse
Affiliation(s)
- Bui Thi Bich Hanh
- Division of Applied Life Science (BK21 Four Program), Research Institute of Life Science, Gyeongsang National University, Jinju, South Korea
| | - Nguyen Thanh Quang
- Division of Life Science, Department of Bio & Medical Big Data (BK21 Four Program), Research Institute of Life Science, Gyeongsang National University, Jinju, South Korea
| | - Yujin Park
- Division of Life Science, Department of Bio & Medical Big Data (BK21 Four Program), Research Institute of Life Science, Gyeongsang National University, Jinju, South Korea
| | - Bo Eun Heo
- Division of Life Science, Department of Bio & Medical Big Data (BK21 Four Program), Research Institute of Life Science, Gyeongsang National University, Jinju, South Korea
| | - Seunghyeon Jeon
- Division of Life Science, Gyeongsang National University, Jinju, South Korea
| | - June-Woo Park
- Department of Environmental Toxicology and Chemistry, Korea Institute of Toxicology, Korea & Human and Environmental Toxicology Program, Korea University of Science and Technology (UST), Daejeon, South Korea
| | - Jichan Jang
- Division of Life Science, Department of Bio & Medical Big Data (BK21 Four Program), Research Institute of Life Science, Gyeongsang National University, Jinju, South Korea.,Division of Life Science, Gyeongsang National University, Jinju, South Korea
| |
Collapse
|
18
|
Sullivan JR, Lupien A, Kalthoff E, Hamela C, Taylor L, Munro KA, Schmeing TM, Kremer L, Behr MA. Efficacy of epetraborole against Mycobacterium abscessus is increased with norvaline. PLoS Pathog 2021; 17:e1009965. [PMID: 34637487 PMCID: PMC8535176 DOI: 10.1371/journal.ppat.1009965] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 10/22/2021] [Accepted: 09/23/2021] [Indexed: 12/16/2022] Open
Abstract
Mycobacterium abscessus is the most common rapidly growing non-tuberculous mycobacteria to cause pulmonary disease in patients with impaired lung function such as cystic fibrosis. M. abscessus displays high intrinsic resistance to common antibiotics and inducible resistance to macrolides like clarithromycin. As such, M. abscessus is clinically resistant to the entire regimen of front-line M. tuberculosis drugs, and treatment with antibiotics that do inhibit M. abscessus in the lab results in cure rates of 50% or less. Here, we identified epetraborole (EPT) from the MMV pandemic response box as an inhibitor against the essential protein leucyl-tRNA synthetase (LeuRS) in M. abscessus. EPT protected zebrafish from lethal M. abscessus infection and did not induce self-resistance nor against clarithromycin. Contrary to most antimycobacterials, the whole-cell activity of EPT was greater against M. abscessus than M. tuberculosis, but crystallographic and equilibrium binding data showed that EPT binds LeuRSMabs and LeuRSMtb with similar residues and dissociation constants. Since EPT-resistant M. abscessus mutants lost LeuRS editing activity, these mutants became susceptible to misaminoacylation with leucine mimics like the non-proteinogenic amino acid norvaline. Proteomic analysis revealed that when M. abscessus LeuRS mutants were fed norvaline, leucine residues in proteins were replaced by norvaline, inducing the unfolded protein response with temporal changes in expression of GroEL chaperonins and Clp proteases. This supports our in vitro data that supplementation of media with norvaline reduced the emergence of EPT mutants in both M. abscessus and M. tuberculosis. Furthermore, the combination of EPT and norvaline had improved in vivo efficacy compared to EPT in a murine model of M. abscessus infection. Our results emphasize the effectiveness of EPT against the clinically relevant cystic fibrosis pathogen M. abscessus, and these findings also suggest norvaline adjunct therapy with EPT could be beneficial for M. abscessus and other mycobacterial infections like tuberculosis. Current antimycobacterial drugs are inadequate to handle the increasing number of non-tuberculous mycobacteria infections that eclipse tuberculosis infections in many developed countries. Of particular importance for cystic fibrosis patients, Mycobacterium abscessus is notoriously difficult to treat where patients spend extended time on antibiotics with cure rates comparable to extreme drug resistant M. tuberculosis. Here, we identified epetraborole (EPT) with in vitro and in vivo activities against M. abscessus. We showed that EPT targets the editing domain of the leucyl-tRNA synthetase (LeuRS) and that escape mutants lost LeuRS editing activity, making these mutants susceptible to misaminoacylation with leucine mimics. Most importantly, combination therapy of EPT and norvaline limited the rate of EPT resistance in both M. abscessus and M. tuberculosis, and this was the first study to demonstrate improved in vivo efficacy of EPT and norvaline compared to EPT in a murine model of M. abscessus pulmonary infection. The demonstration of norvaline adjunct therapy with EPT for M. abscessus infections is promising for cystic fibrosis patients and could translate to other mycobacterial infections, such as tuberculosis.
Collapse
Affiliation(s)
- Jaryd R. Sullivan
- Department of Microbiology & Immunology, McGill University, Montréal, Canada
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, Canada
- McGill International TB Centre, Montréal, Canada
| | - Andréanne Lupien
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, Canada
- McGill International TB Centre, Montréal, Canada
| | - Elias Kalthoff
- Department of Biochemistry, McGill University, Montréal, Canada
- Centre de Recherche en Biologie Structural, McGill University, Montréal, Canada
| | - Claire Hamela
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, Montpellier, France
| | - Lorne Taylor
- Clinical Proteomics Platform, Research Institute of the McGill University Health Centre, Montréal, Canada
| | - Kim A. Munro
- Department of Biochemistry, McGill University, Montréal, Canada
- Centre de Recherche en Biologie Structural, McGill University, Montréal, Canada
| | - T. Martin Schmeing
- Department of Biochemistry, McGill University, Montréal, Canada
- Centre de Recherche en Biologie Structural, McGill University, Montréal, Canada
| | - Laurent Kremer
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, Montpellier, France
- INSERM, IRIM, Montpellier, France
| | - Marcel A. Behr
- Department of Microbiology & Immunology, McGill University, Montréal, Canada
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, Canada
- McGill International TB Centre, Montréal, Canada
- Department of Medicine, McGill University Health Centre, Montréal, Canada
- * E-mail:
| |
Collapse
|
19
|
Johansen MD, Alcaraz M, Dedrick RM, Roquet-Banères F, Hamela C, Hatfull GF, Kremer L. Mycobacteriophage-antibiotic therapy promotes enhanced clearance of drug-resistant Mycobacterium abscessus. Dis Model Mech 2021; 14:272140. [PMID: 34530447 PMCID: PMC8461822 DOI: 10.1242/dmm.049159] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 07/26/2021] [Indexed: 12/16/2022] Open
Abstract
Infection by multidrug-resistant Mycobacterium abscessus is increasingly prevalent in cystic fibrosis (CF) patients, leaving clinicians with few therapeutic options. A compassionate study showed the clinical improvement of a CF patient with a disseminated M. abscessus (GD01) infection, following injection of a phage cocktail, including phage Muddy. Broadening the use of phage therapy in patients as a potential antibacterial alternative necessitates the development of biological models to improve the reliability and successful prediction of phage therapy in the clinic. Herein, we demonstrate that Muddy very efficiently lyses GD01 in vitro, an effect substantially increased with standard drugs. Remarkably, this cooperative activity was retained in an M. abscessus model of infection in CFTR-depleted zebrafish, associated with a striking increase in larval survival and reduction in pathological signs. The activity of Muddy was lost in macrophage-ablated larvae, suggesting that successful phage therapy relies on functional innate immunity. CFTR-depleted zebrafish represent a practical model to rapidly assess phage treatment efficacy against M. abscessus isolates, allowing the identification of drug combinations accompanying phage therapy and treatment prediction in patients. This article has an associated First Person interview with the first author of the paper. Summary: A zebrafish model of infection was developed to evaluate the in vivo cooperative activity of specific phages and antibiotics for the treatment of Mycobacterium abscessus infection.
Collapse
Affiliation(s)
- Matt D Johansen
- Institut de Recherche en Infectiologie de Montpellier, Centre National de la Recherche Scientifique UMR 9004, Université de Montpellier, Montpellier 34293, France
| | - Matthéo Alcaraz
- Institut de Recherche en Infectiologie de Montpellier, Centre National de la Recherche Scientifique UMR 9004, Université de Montpellier, Montpellier 34293, France
| | - Rebekah M Dedrick
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Françoise Roquet-Banères
- Institut de Recherche en Infectiologie de Montpellier, Centre National de la Recherche Scientifique UMR 9004, Université de Montpellier, Montpellier 34293, France
| | - Claire Hamela
- Institut de Recherche en Infectiologie de Montpellier, Centre National de la Recherche Scientifique UMR 9004, Université de Montpellier, Montpellier 34293, France
| | - Graham F Hatfull
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Laurent Kremer
- Institut de Recherche en Infectiologie de Montpellier, Centre National de la Recherche Scientifique UMR 9004, Université de Montpellier, Montpellier 34293, France.,INSERM, Institut de Recherche en Infectiologie de Montpellier, Montpellier 34293, France
| |
Collapse
|
20
|
de Moura VCN, Verma D, Everall I, Brown KP, Belardinelli JM, Shanley C, Stapleton M, Parkhill J, Floto RA, Ordway DJ, Jackson M. Increased Virulence of Outer Membrane Porin Mutants of Mycobacterium abscessus. Front Microbiol 2021; 12:706207. [PMID: 34335541 PMCID: PMC8317493 DOI: 10.3389/fmicb.2021.706207] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 06/23/2021] [Indexed: 11/13/2022] Open
Abstract
Chronic pulmonary infections caused by non-tuberculous mycobacteria of the Mycobacterium abscessus complex (MABSC) are emerging as a global health problem and pose a threat to susceptible individuals with structural lung disease such as cystic fibrosis. The molecular mechanisms underlying the pathogenicity and intrinsic resistance of MABSC to antibiotics remain largely unknown. The involvement of Msp-type porins in the virulence and biocide resistance of some rapidly growing non-tuberculous mycobacteria and the finding of deletions and rearrangements in the porin genes of serially collected MABSC isolates from cystic fibrosis patients prompted us to investigate the contribution of these major surface proteins to MABSC infection. Inactivation by allelic replacement of the each of the two Msp-type porin genes of M. abscessus subsp. massiliense CIP108297, mmpA and mmpB, led to a marked increase in the virulence and pathogenicity of both mutants in murine macrophages and infected mice. Neither of the mutants were found to be significantly more resistant to antibiotics. These results suggest that adaptation to the host environment rather than antibiotic pressure is the key driver of the emergence of porin mutants during infection.
Collapse
Affiliation(s)
- Vinicius C N de Moura
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Deepshikha Verma
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Isobel Everall
- Molecular Immunity Unit, Medical Research Council (MRC)-Laboratory of Molecular Biology, University of Cambridge Department of Medicine, Cambridge, United Kingdom.,Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | - Karen P Brown
- Molecular Immunity Unit, Medical Research Council (MRC)-Laboratory of Molecular Biology, University of Cambridge Department of Medicine, Cambridge, United Kingdom.,Cambridge Centre for Lung Infection, Papworth Hospital, Cambridge, United Kingdom
| | - Juan M Belardinelli
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Crystal Shanley
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Megan Stapleton
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Julian Parkhill
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - R Andres Floto
- Molecular Immunity Unit, Medical Research Council (MRC)-Laboratory of Molecular Biology, University of Cambridge Department of Medicine, Cambridge, United Kingdom.,Cambridge Centre for Lung Infection, Papworth Hospital, Cambridge, United Kingdom
| | - Diane J Ordway
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Mary Jackson
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
21
|
Kim T, Hanh BTB, Heo B, Quang N, Park Y, Shin J, Jeon S, Park JW, Samby K, Jang J. A Screening of the MMV Pandemic Response Box Reveals Epetraborole as a New Potent Inhibitor against Mycobacterium abscessus. Int J Mol Sci 2021; 22:ijms22115936. [PMID: 34073006 PMCID: PMC8199016 DOI: 10.3390/ijms22115936] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/27/2021] [Accepted: 05/27/2021] [Indexed: 12/16/2022] Open
Abstract
Mycobacterium abscessus is the one of the most feared bacterial respiratory pathogens in the world. Unfortunately, there are many problems with the current M. abscessus therapies available. These problems include misdiagnoses, high drug resistance, poor long-term treatment outcomes, and high costs. Until now, there have only been a few new compounds or drug formulations which are active against M. abscessus, and these are present in preclinical and clinical development only. With that in mind, new and more powerful anti-M. abscessus medicines need to be discovered and developed. In this study, we conducted an in vitro-dual screen against M. abscessus rough (R) and smooth (S) variants using a Pandemic Response Box and identified epetraborole as a new effective candidate for M. abscessus therapy. For further validation, epetraborole showed significant activity against the growth of the M. abscessus wild-type strain, three subspecies, drug-resistant strains and clinical isolates in vitro, while also inhibiting the growth of M. abscessus that reside in macrophages without cytotoxicity. Furthermore, the in vivo efficacy of epetraborole in the zebrafish infection model was greater than that of tigecycline. Thus, we concluded that epetraborole is a potential anti-M. abscessus candidate in the M. abscessus drug search.
Collapse
Affiliation(s)
- Taeho Kim
- Division of Applied Life Science (BK21 Four Program), Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Korea; (T.K.); (B.-T.-B.H.)
| | - Bui-Thi-Bich Hanh
- Division of Applied Life Science (BK21 Four Program), Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Korea; (T.K.); (B.-T.-B.H.)
| | - Boeun Heo
- Molecular Mechanisms of Antibiotics, Division of Life Science, Department of Bio & Medical Big Data (BK21 Four Program), Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Korea; (B.H.); (N.Q.); (Y.P.); (J.S.)
| | - Nguyenthanh Quang
- Molecular Mechanisms of Antibiotics, Division of Life Science, Department of Bio & Medical Big Data (BK21 Four Program), Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Korea; (B.H.); (N.Q.); (Y.P.); (J.S.)
| | - Yujin Park
- Molecular Mechanisms of Antibiotics, Division of Life Science, Department of Bio & Medical Big Data (BK21 Four Program), Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Korea; (B.H.); (N.Q.); (Y.P.); (J.S.)
| | - Jihyeon Shin
- Molecular Mechanisms of Antibiotics, Division of Life Science, Department of Bio & Medical Big Data (BK21 Four Program), Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Korea; (B.H.); (N.Q.); (Y.P.); (J.S.)
| | - Seunghyeon Jeon
- Division of Life Science, Gyeongsang National University, Jinju 52828, Korea;
| | - June-Woo Park
- Department of Environmental Toxicology and Chemistry, Korea Institute of Toxicology, Jinju 52843, Korea;
- Human and Environmental Toxicology Program, Korea University of Science and Technology (UST), Daejeon 34113, Korea
| | - Kirandeep Samby
- Medicines for Malaria Venture (MMV), 20, Route de Pré-Bois, 1215 Geneva, Switzerland;
| | - Jichan Jang
- Molecular Mechanisms of Antibiotics, Division of Life Science, Department of Bio & Medical Big Data (BK21 Four Program), Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Korea; (B.H.); (N.Q.); (Y.P.); (J.S.)
- Correspondence: ; Tel.: +82-055-772-1368
| |
Collapse
|
22
|
Bonfield TL, Sutton MT, Fletcher DR, Folz MA, Ragavapuram V, Somoza RA, Caplan AI. Donor-defined mesenchymal stem cell antimicrobial potency against nontuberculous mycobacterium. Stem Cells Transl Med 2021; 10:1202-1216. [PMID: 33943038 PMCID: PMC8284776 DOI: 10.1002/sctm.20-0521] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 03/02/2021] [Accepted: 03/22/2021] [Indexed: 12/12/2022] Open
Abstract
Chronic nontuberculous mycobacterial infections with Mycobacterium avium and Mycobacterium intracellulare complicate bronchiectasis, chronic obstructive airway disease, and the health of aging individuals. These insidious intracellular pathogens cause considerable morbidity and eventual mortality in individuals colonized with these bacteria. Current treatment regimens with antibiotic macrolides are both toxic and often inefficient at providing infection resolution. In this article, we demonstrate that human marrow‐derived mesenchymal stem cells are antimicrobial and anti‐inflammatory in vitro and in the context of an in vivo sustained infection of either M. avium and/or M. intracellulare.
Collapse
Affiliation(s)
- Tracey L Bonfield
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, USA.,National Center for Regenerative Medicine, Case Western Reserve University, Cleveland, Ohio, USA.,Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio, USA
| | - Morgan T Sutton
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, USA.,National Center for Regenerative Medicine, Case Western Reserve University, Cleveland, Ohio, USA.,Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio, USA.,St. Jude Children's Research Hospital Graduate School of Biomedical Sciences, Memphis, Tennessee, USA
| | - David R Fletcher
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, USA.,National Center for Regenerative Medicine, Case Western Reserve University, Cleveland, Ohio, USA.,Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio, USA
| | - Michael A Folz
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, USA.,National Center for Regenerative Medicine, Case Western Reserve University, Cleveland, Ohio, USA.,Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio, USA
| | - Vaishnavi Ragavapuram
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, USA.,National Center for Regenerative Medicine, Case Western Reserve University, Cleveland, Ohio, USA.,Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio, USA
| | - Rodrigo A Somoza
- Department of Biology, Skeletal Research Center, Case Western Reserve University, Cleveland, Ohio, USA
| | - Arnold I Caplan
- Department of Biology, Skeletal Research Center, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
23
|
Victoria L, Gupta A, Gómez JL, Robledo J. Mycobacterium abscessus complex: A Review of Recent Developments in an Emerging Pathogen. Front Cell Infect Microbiol 2021; 11:659997. [PMID: 33981630 PMCID: PMC8108695 DOI: 10.3389/fcimb.2021.659997] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 04/07/2021] [Indexed: 01/04/2023] Open
Abstract
Mycobacterium abscessus complex (MABC) is one of the most clinically relevant species among nontuberculous mycobacteria. MABC's prevalence has increased over the last two decades. Although these changes can be explained by improvements in microbiological and molecular techniques for identifying species and subspecies, a higher prevalence of chronic lung diseases may contribute to higher rates of MABC. High rates of antimicrobial resistance are seen in MABC, and patients experience multiple relapses with low cure rates. This review aims to integrate existing knowledge about MABC epidemiology, microbiological identification and familiarize readers with molecular mechanisms of resistance and therapeutic options for pulmonary infections with MABC.
Collapse
Affiliation(s)
- Laura Victoria
- Laboratory of Bacteriology and Mycobacteria, Corporación para Investigaciones Biológicas (CIB), Medellín, Colombia.,Escuela de Ciencias de la Salud, Universidad Pontificia Bolivariana, Medellín, Colombia
| | - Amolika Gupta
- Pulmonary, Critical Care and Sleep Medicine Section, Yale University School of Medicine, New Haven, CT, United States
| | - Jose Luis Gómez
- Pulmonary, Critical Care and Sleep Medicine Section, Yale University School of Medicine, New Haven, CT, United States
| | - Jaime Robledo
- Laboratory of Bacteriology and Mycobacteria, Corporación para Investigaciones Biológicas (CIB), Medellín, Colombia.,Escuela de Ciencias de la Salud, Universidad Pontificia Bolivariana, Medellín, Colombia
| |
Collapse
|
24
|
Verma D, Chan ED, Ordway DJ. The double-edged sword of Tregs in M tuberculosis, M avium, and M absessus infection. Immunol Rev 2021; 301:48-61. [PMID: 33713043 DOI: 10.1111/imr.12959] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/24/2021] [Accepted: 01/25/2021] [Indexed: 12/12/2022]
Abstract
Immunity against different Mycobacteria species targeting the lung requires distinctly different pulmonary immune responses for bacterial clearance. Many parameters of acquired and regulatory immune responses differ quantitatively and qualitatively from immunity during infection with Mycobacteria species. Nontuberculosis Mycobacteria species (NTM) Mycobacterium avium- (M avium), Mycobacterium abscessus-(M abscessus), and the Mycobacteria species Mycobacterium tuberculosis-(Mtb). Herein, we discuss the potential implications of acquired and regulatory immune responses in the context of animal and human studies, as well as future directions for efforts to treat Mycobacteria diseases.
Collapse
Affiliation(s)
- Deepshikha Verma
- Mycobacteria Research Laboratory, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Edward D Chan
- Department of Medicine, Rocky Mountain Regional Veterans Affairs Medical Center, Denver, CO, USA.,Departments of Medicine and Academic Affairs, National Jewish Health, Denver, CO, USA.,Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Denver, CO, USA
| | - Diane J Ordway
- Mycobacteria Research Laboratory, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
25
|
Gutiérrez AV, Baron SA, Sardi FS, Saad J, Coltey B, Reynaud-Gaubert M, Drancourt M. Beyond phenotype: The genomic heterogeneity of co-infecting Mycobacterium abscessus smooth and rough colony variants in cystic fibrosis patients. J Cyst Fibros 2021; 20:421-423. [PMID: 33610476 DOI: 10.1016/j.jcf.2021.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 11/18/2020] [Accepted: 02/06/2021] [Indexed: 10/22/2022]
Abstract
Two unrelated cystic fibrosis patients were co-infected with Mycobacterium abscessus smooth and rough phenotypes. Smooth M. abscessus is proposed as the infecting form, and the subsequent loss of glycopeptidolipids in the host leads to a rough phenotype. Whole-genome sequencing (WGS) diagnosed two different M. abscessus strains in patient N°1 but only one strain in patient N°2. In patient N°1, rough isolate had novel mutations potentially involved in smooth-to-rough morphology changes. In patient N°2, four genes were present in only the smooth isolate. In addition, we obtained different susceptibility profiles in the four clinical isolates. We revealed a new paradigm describing a cystic fibrosis patient infected with two different clones, including a rough isolate, and identifying a rough M. abscessus clone that did not lose glycopeptidolipids. We propose WGS for the identification of heterogenic isolates and genetic determinants of antimicrobial resistance, which we believe will positively influence treatment prognosis.
Collapse
Affiliation(s)
- Ana Victoria Gutiérrez
- Aix Marseille Univ., IRD, MEPHI, Marseille, France; IHU Méditerranée Infection, Marseille, France
| | - Sophie Alexandra Baron
- Aix Marseille Univ., IRD, MEPHI, Marseille, France; IHU Méditerranée Infection, Marseille, France
| | - Feyrouz Sonia Sardi
- Aix Marseille Univ., IRD, MEPHI, Marseille, France; IHU Méditerranée Infection, Marseille, France
| | - Jamal Saad
- Aix Marseille Univ., IRD, MEPHI, Marseille, France; IHU Méditerranée Infection, Marseille, France
| | - Bérengère Coltey
- Department of Respiratory Diseases, Adult Cystic Fibrosis Centre, Lung Transplant Team, University Hospital of Marseille, Marseille, France
| | - Martine Reynaud-Gaubert
- Aix Marseille Univ., IRD, MEPHI, Marseille, France; Department of Respiratory Diseases, Adult Cystic Fibrosis Centre, Lung Transplant Team, University Hospital of Marseille, Marseille, France
| | - Michel Drancourt
- Aix Marseille Univ., IRD, MEPHI, Marseille, France; IHU Méditerranée Infection, Marseille, France.
| |
Collapse
|
26
|
Saxena S, Spaink HP, Forn-Cuní G. Drug Resistance in Nontuberculous Mycobacteria: Mechanisms and Models. BIOLOGY 2021; 10:biology10020096. [PMID: 33573039 PMCID: PMC7911849 DOI: 10.3390/biology10020096] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 02/07/2023]
Abstract
The genus Mycobacteria comprises a multitude of species known to cause serious disease in humans, including Mycobacterium tuberculosis and M. leprae, the responsible agents for tuberculosis and leprosy, respectively. In addition, there is a worldwide spike in the number of infections caused by a mixed group of species such as the M. avium, M. abscessus and M. ulcerans complexes, collectively called nontuberculous mycobacteria (NTMs). The situation is forecasted to worsen because, like tuberculosis, NTMs either naturally possess or are developing high resistance against conventional antibiotics. It is, therefore, important to implement and develop models that allow us to effectively examine the fundamental questions of NTM virulence, as well as to apply them for the discovery of new and improved therapies. This literature review will focus on the known molecular mechanisms behind drug resistance in NTM and the current models that may be used to test new effective antimicrobial therapies.
Collapse
|
27
|
Crilly NP, Ayeh SK, Karakousis PC. The New Frontier of Host-Directed Therapies for Mycobacterium avium Complex. Front Immunol 2021; 11:623119. [PMID: 33552087 PMCID: PMC7862709 DOI: 10.3389/fimmu.2020.623119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 12/14/2020] [Indexed: 01/03/2023] Open
Abstract
Mycobacterium avium complex (MAC) is an increasingly important cause of morbidity and mortality, and is responsible for pulmonary infection in patients with underlying lung disease and disseminated disease in patients with AIDS. MAC has evolved various virulence strategies to subvert immune responses and persist in the infected host. Current treatment for MAC is challenging, requiring a combination of multiple antibiotics given over a long time period (for at least 12 months after negative sputum culture conversion). Moreover, even after eradication of infection, many patients are left with residual lung dysfunction. In order to address similar challenges facing the management of patients with tuberculosis, recent attention has focused on the development of novel adjunctive, host-directed therapies (HDTs), with the goal of accelerating the clearance of mycobacteria by immune defenses and reducing or reversing mycobacterial-induced lung damage. In this review, we will summarize the evidence supporting specific adjunctive, HDTs for MAC, with a focus on the repurposing of existing immune-modulatory agents targeting a variety of different cellular pathways. We also highlight areas meriting further investigation.
Collapse
Affiliation(s)
- Nathan P Crilly
- Department of Molecular and Comparative Pathobiology, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Samuel K Ayeh
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Petros C Karakousis
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States.,Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| |
Collapse
|
28
|
Lopez A, Shoen C, Cynamon M, Dimitrakopoulou D, Paiola M, Pavelka MS, Robert J. Developing Tadpole Xenopus laevis as a Comparative Animal Model to Study Mycobacterium abscessus Pathogenicity. Int J Mol Sci 2021; 22:E806. [PMID: 33467397 PMCID: PMC7829954 DOI: 10.3390/ijms22020806] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 12/19/2022] Open
Abstract
Mycobacterium abscessus (Mab) is an emerging, nontuberculosis mycobacterium (NTM) that infects humans. Mab has two morphotypes, smooth (S) and rough (R), related to the production of glycopeptidolipid (GPL), that differ in pathogenesis. To further understand the pathogenicity of these morphotypes in vivo, the amphibian Xenopus laevis was used as an alternative animal model. Mab infections have been previously modeled in zebrafish embryos and mice, but Mab are cleared early from immunocompetent mice, preventing the study of chronic infection, and the zebrafish model cannot be used to model a pulmonary infection and T cell involvement. Here, we show that X. laevis tadpoles, which have lungs and T cells, can be used as a complementary model for persistent Mab infection and pathogenesis. Intraperitoneal (IP) inoculation of S and R Mab morphotypes disseminated to tadpole tissues including liver and lungs, persisting for up to 40 days without significant mortality. Furthermore, the R morphotype was more persistent, maintaining a higher bacterial load at 40 days postinoculation. In contrast, the intracardiac (IC) inoculation with S Mab induced significantly greater mortality than inoculation with the R Mab form. These data suggest that X. laevis tadpoles can serve as a useful comparative experimental organism to investigate pathogenesis and host resistance to M. abscessus.
Collapse
Affiliation(s)
- Arianna Lopez
- Department of Immunology and Microbiology, Medical Center, University of Rochester, Rochester, NY 14642, USA; (A.L.); (D.D.); (M.P.); (M.S.P.J.)
| | - Carolyn Shoen
- Central New York Research Corporation, Syracuse, NY 13210, USA; (C.S.); (M.C.)
| | - Michael Cynamon
- Central New York Research Corporation, Syracuse, NY 13210, USA; (C.S.); (M.C.)
- Veterans Affairs Medical Center, Syracuse, NY 13210, USA
| | - Dionysia Dimitrakopoulou
- Department of Immunology and Microbiology, Medical Center, University of Rochester, Rochester, NY 14642, USA; (A.L.); (D.D.); (M.P.); (M.S.P.J.)
| | - Matthieu Paiola
- Department of Immunology and Microbiology, Medical Center, University of Rochester, Rochester, NY 14642, USA; (A.L.); (D.D.); (M.P.); (M.S.P.J.)
| | - Martin S. Pavelka
- Department of Immunology and Microbiology, Medical Center, University of Rochester, Rochester, NY 14642, USA; (A.L.); (D.D.); (M.P.); (M.S.P.J.)
| | - Jacques Robert
- Department of Immunology and Microbiology, Medical Center, University of Rochester, Rochester, NY 14642, USA; (A.L.); (D.D.); (M.P.); (M.S.P.J.)
| |
Collapse
|
29
|
Küssau T, Van Wyk N, Johansen MD, Alsarraf HMAB, Neyret A, Hamela C, Sørensen KK, Thygesen MB, Beauvineau C, Kremer L, Blaise M. Functional Characterization of the N-Acetylmuramyl-l-Alanine Amidase, Ami1, from Mycobacterium abscessus. Cells 2020; 9:cells9112410. [PMID: 33158165 PMCID: PMC7694207 DOI: 10.3390/cells9112410] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 10/27/2020] [Accepted: 10/29/2020] [Indexed: 11/08/2022] Open
Abstract
Peptidoglycan (PG) is made of a polymer of disaccharides organized as a three-dimensional mesh-like network connected together by peptidic cross-links. PG is a dynamic structure that is essential for resistance to environmental stressors. Remodeling of PG occurs throughout the bacterial life cycle, particularly during bacterial division and separation into daughter cells. Numerous autolysins with various substrate specificities participate in PG remodeling. Expression of these enzymes must be tightly regulated, as an excess of hydrolytic activity can be detrimental for the bacteria. In non-tuberculous mycobacteria such as Mycobacterium abscessus, the function of PG-modifying enzymes has been poorly investigated. In this study, we characterized the function of the PG amidase, Ami1 from M. abscessus. An ami1 deletion mutant was generated and the phenotypes of the mutant were evaluated with respect to susceptibility to antibiotics and virulence in human macrophages and zebrafish. The capacity of purified Ami1 to hydrolyze muramyl-dipeptide was demonstrated in vitro. In addition, the screening of a 9200 compounds library led to the selection of three compounds inhibiting Ami1 in vitro. We also report the structural characterization of Ami1 which, combined with in silico docking studies, allows us to propose a mode of action for these inhibitors.
Collapse
Affiliation(s)
- Tanja Küssau
- Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, CNRS UMR 9004, CEDEX 5, 34293 Montpellier, France; (T.K.); (N.V.W.); (M.D.J.); (H.M.A.B.A.); (C.H.)
| | - Niël Van Wyk
- Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, CNRS UMR 9004, CEDEX 5, 34293 Montpellier, France; (T.K.); (N.V.W.); (M.D.J.); (H.M.A.B.A.); (C.H.)
| | - Matt D. Johansen
- Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, CNRS UMR 9004, CEDEX 5, 34293 Montpellier, France; (T.K.); (N.V.W.); (M.D.J.); (H.M.A.B.A.); (C.H.)
| | - Husam M. A. B. Alsarraf
- Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, CNRS UMR 9004, CEDEX 5, 34293 Montpellier, France; (T.K.); (N.V.W.); (M.D.J.); (H.M.A.B.A.); (C.H.)
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | - Aymeric Neyret
- CEMIPAI CNRS UM UMS3725, CEDEX 5, 34293 Montpellier, France;
| | - Claire Hamela
- Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, CNRS UMR 9004, CEDEX 5, 34293 Montpellier, France; (T.K.); (N.V.W.); (M.D.J.); (H.M.A.B.A.); (C.H.)
| | - Kasper K. Sørensen
- Department of Chemistry, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark; (K.K.S.); (M.B.T.)
| | - Mikkel B. Thygesen
- Department of Chemistry, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark; (K.K.S.); (M.B.T.)
| | - Claire Beauvineau
- Chemical Library Institut Curie/CNRS, CNRS UMR9187, INSERM U1196 and CNRS UMR3666, INSERM U1193, Université Paris-Saclay, F-91405 Orsay, France;
| | - Laurent Kremer
- Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, CNRS UMR 9004, CEDEX 5, 34293 Montpellier, France; (T.K.); (N.V.W.); (M.D.J.); (H.M.A.B.A.); (C.H.)
- INSERM, IRIM, 34293 Montpellier, France
- Correspondence: (L.K.); (M.B.); Tel.: +33-(0)-434-359-447 (L.K. & M.B.)
| | - Mickaël Blaise
- Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, CNRS UMR 9004, CEDEX 5, 34293 Montpellier, France; (T.K.); (N.V.W.); (M.D.J.); (H.M.A.B.A.); (C.H.)
- Correspondence: (L.K.); (M.B.); Tel.: +33-(0)-434-359-447 (L.K. & M.B.)
| |
Collapse
|
30
|
Brzostek J, Fatin A, Chua WH, Tan HY, Dick T, Gascoigne NRJ. Single Cell Analysis of Drug Susceptibility of Mycobacterium Abscessus During Macrophage Infection. Antibiotics (Basel) 2020; 9:antibiotics9100711. [PMID: 33080864 PMCID: PMC7650608 DOI: 10.3390/antibiotics9100711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 11/16/2022] Open
Abstract
Mycobacterium abscessus is an emerging health risk to immunocompromised individuals and to people with pre-existing pulmonary conditions. As M. abscessus possesses multiple mechanisms of drug resistance, treatments of M. abscessus are of poor efficacy. Therefore, there is an urgent need for new therapeutic strategies targeting M. abscessus. We describe an experimental system for screening of compounds for their antimicrobial activity against intracellular M. abscessus using flow cytometry and imaging flow cytometry. The assay allows simultaneous analysis of multiple parameters, such as proportion of infected host cells, bacterial load per host cell from the infected population, and host cell viability. We verified the suitability of this method using two antibiotics with known activity against M. abscessus: clarithromycin and amikacin. Our analysis revealed a high degree of infection heterogeneity, which correlated with host cell size. A higher proportion of the larger host cells is infected with M. abscessus as compared to smaller host cells, and infected larger cells have higher intracellular bacterial burden than infected smaller cells. Clarithromycin treatment has a more pronounced effect on smaller host cells than on bigger host cells, suggesting that heterogeneity within the host cell population has an effect on antibiotic susceptibility of intracellular bacteria.
Collapse
Affiliation(s)
- Joanna Brzostek
- Department of Microbiology and Immunology, Yong Loo Lin School of Medcine, National University of Singapore, 5 Science Drive 2, Singapore 117545, Singapore; (A.F.); (W.H.C.); (H.Y.T.); (T.D.)
- Correspondence: (J.B.); (N.R.J.G.)
| | - Amierah Fatin
- Department of Microbiology and Immunology, Yong Loo Lin School of Medcine, National University of Singapore, 5 Science Drive 2, Singapore 117545, Singapore; (A.F.); (W.H.C.); (H.Y.T.); (T.D.)
| | - Wen Hui Chua
- Department of Microbiology and Immunology, Yong Loo Lin School of Medcine, National University of Singapore, 5 Science Drive 2, Singapore 117545, Singapore; (A.F.); (W.H.C.); (H.Y.T.); (T.D.)
| | - Hui Yi Tan
- Department of Microbiology and Immunology, Yong Loo Lin School of Medcine, National University of Singapore, 5 Science Drive 2, Singapore 117545, Singapore; (A.F.); (W.H.C.); (H.Y.T.); (T.D.)
| | - Thomas Dick
- Department of Microbiology and Immunology, Yong Loo Lin School of Medcine, National University of Singapore, 5 Science Drive 2, Singapore 117545, Singapore; (A.F.); (W.H.C.); (H.Y.T.); (T.D.)
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
- Department of Medical Sciences, Hackensack Meridian School of Medicine at Seton Hall University, Nutley, NJ 07110, USA
| | - Nicholas R. J. Gascoigne
- Department of Microbiology and Immunology, Yong Loo Lin School of Medcine, National University of Singapore, 5 Science Drive 2, Singapore 117545, Singapore; (A.F.); (W.H.C.); (H.Y.T.); (T.D.)
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore 117545, Singapore
- Correspondence: (J.B.); (N.R.J.G.)
| |
Collapse
|
31
|
Daher W, Leclercq LD, Viljoen A, Karam J, Dufrêne YF, Guérardel Y, Kremer L. O-Methylation of the Glycopeptidolipid Acyl Chain Defines Surface Hydrophobicity of Mycobacterium abscessus and Macrophage Invasion. ACS Infect Dis 2020; 6:2756-2770. [PMID: 32857488 DOI: 10.1021/acsinfecdis.0c00490] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Mycobacterium abscessus, an emerging pathogen responsible for severe lung infections in cystic fibrosis patients, displays either smooth (S) or rough (R) morphotypes. The S-to-R transition is associated with reduced levels of glycopeptidolipid (GPL) production and is correlated with increased pathogenicity in animal and human hosts. While the structure of GPL is well established, its biosynthetic pathway is incomplete. In addition, the biological functions of the distinct structural parts of this complex lipid remain elusive. Herein, the fmt gene encoding a putative O-methyltransferase was deleted in the M. abscessus S variant. Subsequent biochemical and structural analyses demonstrated that methoxylation of the fatty acyl chain of GPL was abrogated in the Δfmt mutant, and this defect was rescued upon complementation with a functional fmt gene. In contrast, the introduction of fmt derivatives mutated at residues essential for methyltransferase activity failed to complement GPL defects, indicating that fmt encodes an O-methyltransferase. Unexpectedly, phenotypic analyses showed that Δfmt was more hydrophilic than its parental progenitor, as demonstrated by hexadecane-aqueous buffer partitioning and atomic force microscopy experiments with hydrophobic probes. Importantly, the invasion rate of THP-1 macrophages by Δfmt was reduced by 50% when compared to the wild-type strain. Together, these results indicate that Fmt O-methylates the lipid moiety of GPL and plays a substantial role in conditioning the surface hydrophobicity of M. abscessus as well as in the early steps of the interaction between the bacilli and macrophages.
Collapse
Affiliation(s)
- Wassim Daher
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, 1919 route de Mende, 34293 Montpellier, France
- INSERM, IRIM, 34293 Montpellier, France
| | - Louis-David Leclercq
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France
| | - Albertus Viljoen
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, 1919 route de Mende, 34293 Montpellier, France
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, Croix du Sud, 4-5, bte L7.07.07, B-1348 Louvain-la-Neuve, Belgium
| | - Jona Karam
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, 1919 route de Mende, 34293 Montpellier, France
| | - Yves F. Dufrêne
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, Croix du Sud, 4-5, bte L7.07.07, B-1348 Louvain-la-Neuve, Belgium
| | - Yann Guérardel
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France
| | - Laurent Kremer
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, 1919 route de Mende, 34293 Montpellier, France
- INSERM, IRIM, 34293 Montpellier, France
| |
Collapse
|
32
|
Riva C, Tortoli E, Cugnata F, Sanvito F, Esposito A, Rossi M, Colarieti A, Canu T, Cigana C, Bragonzi A, Loré NI, Miotto P, Cirillo DM. A New Model of Chronic Mycobacterium abscessus Lung Infection in Immunocompetent Mice. Int J Mol Sci 2020; 21:ijms21186590. [PMID: 32916885 PMCID: PMC7554715 DOI: 10.3390/ijms21186590] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/04/2020] [Accepted: 09/07/2020] [Indexed: 12/13/2022] Open
Abstract
Pulmonary infections caused by Mycobacterium abscessus (MA) have increased over recent decades, affecting individuals with underlying pathologies such as chronic obstructive pulmonary disease, bronchiectasis and, especially, cystic fibrosis. The lack of a representative and standardized model of chronic infection in mice has limited steps forward in the field of MA pulmonary infection. To overcome this challenge, we refined the method of agar beads to establish MA chronic infection in immunocompetent mice. We evaluated bacterial count, lung pathology and markers of inflammation and we performed longitudinal studies with magnetic resonance imaging (MRI) up to three months after MA infection. In this model, MA was able to establish a persistent lung infection for up to two months and with minimal systemic spread. Lung histopathological analysis revealed granulomatous inflammation around bronchi characterized by the presence of lymphocytes, aggregates of vacuolated histiocytes and a few neutrophils, mimicking the damage observed in humans. Furthermore, MA lung lesions were successfully monitored for the first time by MRI. The availability of this murine model and the introduction of the successfully longitudinal monitoring of the murine lung lesions with MRI pave the way for further investigations on the impact of MA pathogenesis and the efficacy of novel treatments.
Collapse
Affiliation(s)
- Camilla Riva
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; (C.R.); (E.T.); (M.R.); (N.I.L.); (P.M.)
| | - Enrico Tortoli
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; (C.R.); (E.T.); (M.R.); (N.I.L.); (P.M.)
| | - Federica Cugnata
- Centre of Statistics for Biomedical Sciences (CUSSB), Vita-Salute San Raffaele University, 20132 Milan, Italy;
| | - Francesca Sanvito
- Pathology Unit, Department of Experimental Oncology, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy;
| | - Antonio Esposito
- Preclinical Imaging Facility, Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; (A.E.); (A.C.); (T.C.)
- School of Medicine, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Marco Rossi
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; (C.R.); (E.T.); (M.R.); (N.I.L.); (P.M.)
| | - Anna Colarieti
- Preclinical Imaging Facility, Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; (A.E.); (A.C.); (T.C.)
| | - Tamara Canu
- Preclinical Imaging Facility, Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; (A.E.); (A.C.); (T.C.)
| | - Cristina Cigana
- Infections and Cystic Fibrosis Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; (C.C.); (A.B.)
| | - Alessandra Bragonzi
- Infections and Cystic Fibrosis Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; (C.C.); (A.B.)
| | - Nicola Ivan Loré
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; (C.R.); (E.T.); (M.R.); (N.I.L.); (P.M.)
| | - Paolo Miotto
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; (C.R.); (E.T.); (M.R.); (N.I.L.); (P.M.)
| | - Daniela Maria Cirillo
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; (C.R.); (E.T.); (M.R.); (N.I.L.); (P.M.)
- Correspondence: ; Tel.: +39-02-2443-7947
| |
Collapse
|
33
|
Rampacci E, Stefanetti V, Passamonti F, Henao-Tamayo M. Preclinical Models of Nontuberculous Mycobacteria Infection for Early Drug Discovery and Vaccine Research. Pathogens 2020; 9:E641. [PMID: 32781698 PMCID: PMC7459799 DOI: 10.3390/pathogens9080641] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/03/2020] [Accepted: 08/04/2020] [Indexed: 12/11/2022] Open
Abstract
Nontuberculous mycobacteria (NTM) represent an increasingly prevalent etiology of soft tissue infections in animals and humans. NTM are widely distributed in the environment and while, for the most part, they behave as saprophytic organisms, in certain situations, they can be pathogenic, so much so that the incidence of NTM infections has surpassed that of Mycobacterium tuberculosis in developed countries. As a result, a growing body of the literature has focused attention on the critical role that drug susceptibility tests and infection models play in the design of appropriate therapeutic strategies against NTM diseases. This paper is an overview of the in vitro and in vivo models of NTM infection employed in the preclinical phase for early drug discovery and vaccine development. It summarizes alternative methods, not fully explored, for the characterization of anti-mycobacterial compounds.
Collapse
Affiliation(s)
- Elisa Rampacci
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy; (E.R.); (V.S.)
| | - Valentina Stefanetti
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy; (E.R.); (V.S.)
| | - Fabrizio Passamonti
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy; (E.R.); (V.S.)
| | - Marcela Henao-Tamayo
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, USA;
| |
Collapse
|
34
|
Bonfield TL. Preclinical Modeling for Therapeutic Development in Cystic Fibrosis. Am J Respir Crit Care Med 2020; 201:267-268. [PMID: 31697560 PMCID: PMC6999106 DOI: 10.1164/rccm.201910-2056ed] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Tracey L Bonfield
- Department of Genetics and Genome SciencesCase Western Reserve UniversityCleveland, Ohio
| |
Collapse
|
35
|
Hanh BTB, Park JW, Kim TH, Kim JS, Yang CS, Jang K, Cui J, Oh DC, Jang J. Rifamycin O, An Alternative Anti- Mycobacterium abscessus Agent. Molecules 2020; 25:molecules25071597. [PMID: 32244387 PMCID: PMC7181020 DOI: 10.3390/molecules25071597] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/26/2020] [Accepted: 03/30/2020] [Indexed: 02/07/2023] Open
Abstract
Mycobacterium abscessus is the most difficult-to-treat nontuberculous mycobacteria because of its resistance to many antibiotics. In this study, we screened the Korea Chemical Bank library for a bioluminescent reporter assay to identify molecules capable of acting against M. abscessus. On application of the assay, rifamycin O showed excellent in vitro activity with a narrow range of the minimum inhibitory concentration required to inhibit the growth of 90% of the bacterium (MIC90 = 4.0-6.2 μM); its in vivo efficacy in the zebrafish (Danio rerio) infection model was comparable to that of rifabutin at 25 μM. Furthermore, rifamycin O did not show significant toxicity in cells and the zebrafish model. These results are the first in vivo indication that rifamycin O may be a drug candidate for treating M. abscessus infections.
Collapse
Affiliation(s)
- Bui Thi Bich Hanh
- Molecular Mechanisms of Antibiotics, Division of Life Science, Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Korea; (B.T.B.H.); (T.H.K.)
- Division of Applied Life Science (BK21plus Program), Gyeongsang National University, Jinju 52828, Korea
| | - June-Woo Park
- Environmental Biology Research Group, Korea Institute of Toxicology, Jinju 52834, Korea;
- Human and Environmental Toxicology Program, Korea University of Science and Technology (UST), Daejeon 34113, Korea
| | - Tae Ho Kim
- Molecular Mechanisms of Antibiotics, Division of Life Science, Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Korea; (B.T.B.H.); (T.H.K.)
- Division of Applied Life Science (BK21plus Program), Gyeongsang National University, Jinju 52828, Korea
| | - Jae-Sung Kim
- Department of Bionano Technology, Hanyang University, Seoul 04763, Korea; (J.-S.K.); (C.-S.Y.)
- Department of Molecular & Life Science, Hanyang University, Ansan 15588, Korea
| | - Chul-Su Yang
- Department of Bionano Technology, Hanyang University, Seoul 04763, Korea; (J.-S.K.); (C.-S.Y.)
- Department of Molecular & Life Science, Hanyang University, Ansan 15588, Korea
| | - Kiseok Jang
- Department of Pathology, Hanyang University College of Medicine, Seoul 04763, Korea;
| | - Jinsheng Cui
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Korea; (J.C.); (D.-C.O.)
| | - Dong-Chan Oh
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Korea; (J.C.); (D.-C.O.)
| | - Jichan Jang
- Molecular Mechanisms of Antibiotics, Division of Life Science, Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Korea; (B.T.B.H.); (T.H.K.)
- Division of Applied Life Science (BK21plus Program), Gyeongsang National University, Jinju 52828, Korea
- Correspondence: ; Tel.: +82-(0)55-772-1368
| |
Collapse
|
36
|
Larsen MH, Lacourciere K, Parker TM, Kraigsley A, Achkar JM, Adams LB, Dupnik KM, Hall-Stoodley L, Hartman T, Kanipe C, Kurtz SL, Miller MA, Salvador LCM, Spencer JS, Robinson RT. The Many Hosts of Mycobacteria 8 (MHM8): A conference report. Tuberculosis (Edinb) 2020; 121:101914. [PMID: 32279870 PMCID: PMC7428850 DOI: 10.1016/j.tube.2020.101914] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 02/07/2020] [Accepted: 02/09/2020] [Indexed: 12/18/2022]
Abstract
Mycobacteria are important causes of disease in human and animal hosts. Diseases caused by mycobacteria include leprosy, tuberculosis (TB), nontuberculous mycobacteria (NTM) infections and Buruli Ulcer. To better understand and treat mycobacterial disease, clinicians, veterinarians and scientists use a range of discipline-specific approaches to conduct basic and applied research, including conducting epidemiological surveys, patient studies, wildlife sampling, animal models, genetic studies and computational simulations. To foster the exchange of knowledge and collaboration across disciplines, the Many Hosts of Mycobacteria (MHM) conference series brings together clinical, veterinary and basic scientists who are dedicated to advancing mycobacterial disease research. Started in 2007, the MHM series recently held its 8th conference at the Albert Einstein College of Medicine (Bronx, NY). Here, we review the diseases discussed at MHM8 and summarize the presentations on research advances in leprosy, NTM and Buruli Ulcer, human and animal TB, mycobacterial disease comorbidities, mycobacterial genetics and 'omics, and animal models. A mouse models workshop, which was held immediately after MHM8, is also summarized. In addition to being a resource for those who were unable to attend MHM8, we anticipate this review will provide a benchmark to gauge the progress of future research concerning mycobacteria and their many hosts.
Collapse
Affiliation(s)
- Michelle H Larsen
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Karen Lacourciere
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20892, USA
| | - Tina M Parker
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20892, USA
| | - Alison Kraigsley
- Center for Infectious Disease Research and Policy, University of Minnesota, Minneapolis, MN, USA
| | - Jacqueline M Achkar
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA; Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Linda B Adams
- Department of Health and Human Services, Health Resources and Services Administration, Healthcare Systems Bureau, National Hansen's Disease Programs, Baton Rouge, LA, USA
| | - Kathryn M Dupnik
- Center for Global Health, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Luanne Hall-Stoodley
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, USA
| | - Travis Hartman
- Center for Global Health, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Carly Kanipe
- Department of Immunobiology, Iowa State University, Ames, IA, USA; Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA; Bacterial Diseases of Livestock Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, USA
| | - Sherry L Kurtz
- Laboratory of Mucosal Pathogens and Cellular Immunology, Division of Bacterial, Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Washington, DC, USA
| | - Michele A Miller
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Liliana C M Salvador
- Department of Infectious Diseases, University of Georgia, Athens, GA, USA; Institute of Bioinformatics, University of Georgia, Athens, GA, USA; Center for the Ecology of Infectious Diseases, University of Georgia, Athens, GA, USA
| | - John S Spencer
- Department of Microbiology, Immunology, and Pathology, Mycobacteria Research Laboratories, Colorado State University, Fort Collins, CO, USA
| | - Richard T Robinson
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
37
|
Johansen MD, Herrmann JL, Kremer L. Non-tuberculous mycobacteria and the rise of Mycobacterium abscessus. Nat Rev Microbiol 2020; 18:392-407. [PMID: 32086501 DOI: 10.1038/s41579-020-0331-1] [Citation(s) in RCA: 412] [Impact Index Per Article: 103.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/15/2020] [Indexed: 12/17/2022]
Abstract
Infections caused by non-tuberculous mycobacteria (NTM) are increasing globally and are notoriously difficult to treat due to intrinsic resistance of these bacteria to many common antibiotics. NTM are diverse and ubiquitous in the environment, with only a few species causing serious and often opportunistic infections in humans, including Mycobacterium abscessus. This rapidly growing mycobacterium is one of the most commonly identified NTM species responsible for severe respiratory, skin and mucosal infections in humans. It is often regarded as one of the most antibiotic-resistant mycobacteria, leaving us with few therapeutic options. In this Review, we cover the proposed infection process of M. abscessus, its virulence factors and host interactions and highlight the commonalities and differences of M. abscessus with other NTM species. Finally, we discuss drug resistance mechanisms and future therapeutic options. Taken together, this knowledge is essential to further our understanding of this overlooked and neglected global threat.
Collapse
Affiliation(s)
- Matt D Johansen
- Institut de Recherche en Infectiologie de Montpellier, Centre National de la Recherche Scientifique UMR 9004, Université de Montpellier, Montpellier, France
| | - Jean-Louis Herrmann
- Université Paris-Saclay, UVSQ, Inserm, Infection et Inflammation, Montigny-Le-Bretonneux, France.,AP-HP. GHU Paris Saclay, Hôpital Raymond Poincaré, Garches, France
| | - Laurent Kremer
- Institut de Recherche en Infectiologie de Montpellier, Centre National de la Recherche Scientifique UMR 9004, Université de Montpellier, Montpellier, France. .,Inserm, Institut de Recherche en Infectiologie de Montpellier, Montpellier, France.
| |
Collapse
|
38
|
Daniel-Wayman S, Abate G, Barber DL, Bermudez LE, Coler RN, Cynamon MH, Daley CL, Davidson RM, Dick T, Floto RA, Henkle E, Holland SM, Jackson M, Lee RE, Nuermberger EL, Olivier KN, Ordway DJ, Prevots DR, Sacchettini JC, Salfinger M, Sassetti CM, Sizemore CF, Winthrop KL, Zelazny AM. Advancing Translational Science for Pulmonary Nontuberculous Mycobacterial Infections. A Road Map for Research. Am J Respir Crit Care Med 2020; 199:947-951. [PMID: 30428263 DOI: 10.1164/rccm.201807-1273pp] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Shelby Daniel-Wayman
- 1 Epidemiology Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases
| | - Getahun Abate
- 2 Division of Infectious Diseases, Allergy, and Immunology, Department of Internal Medicine, Saint Louis University, Saint Louis, Missouri
| | - Daniel L Barber
- 3 T Lymphocyte Biology Unit, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases
| | - Luiz E Bermudez
- 4 Department of Biomedical Sciences and.,5 Department of Microbiology, Oregon State University, Corvallis, Oregon
| | - Rhea N Coler
- 6 Infectious Disease Research Institute, Seattle, Washington.,7 Department of Global Health, University of Washington, Seattle, Washington
| | - Michael H Cynamon
- 8 Veterans Administration Medical Center, Syracuse, New York.,9 State University of New York Upstate Medical Center, Syracuse, New York
| | - Charles L Daley
- 10 Division of Mycobacterial and Respiratory Infections, Department of Medicine
| | | | - Thomas Dick
- 12 Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,13 Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, New Jersey
| | - R Andres Floto
- 14 Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | | | - Steven M Holland
- 16 Division of Intramural Research, National Institute of Allergy and Infectious Diseases
| | - Mary Jackson
- 17 Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado
| | - Richard E Lee
- 18 Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Eric L Nuermberger
- 19 Center for Tuberculosis Research, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland.,20 Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Kenneth N Olivier
- 21 Laboratory of Chronic Airway Infection, Pulmonary Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, and
| | - Diane J Ordway
- 17 Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado
| | - D Rebecca Prevots
- 1 Epidemiology Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases
| | - James C Sacchettini
- 22 Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas
| | - Max Salfinger
- 23 Mycobacteriology and Pharmacokinetics Laboratories, National Jewish Health, Denver, Colorado.,24 College of Public Health, University of South Florida, Tampa, Florida
| | - Christopher M Sassetti
- 25 Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts; and
| | - Christine F Sizemore
- 26 Tuberculosis, Leprosy, and other Mycobacterial Diseases Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland
| | - Kevin L Winthrop
- 15 OHSU-PSU School of Public Health and.,27 Division of Infectious Disease, Department of Medicine, Oregon Health & Science University, Portland, Oregon
| | - Adrian M Zelazny
- 28 Microbiology Service, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
39
|
Kim TH, Hanh BTB, Kim G, Lee DG, Park JW, Lee SE, Kim JS, Kim BS, Ryoo S, Jo EK, Jang J. Thiostrepton: A Novel Therapeutic Drug Candidate for Mycobacterium abscessus Infection. Molecules 2019; 24:molecules24244511. [PMID: 31835481 PMCID: PMC6943738 DOI: 10.3390/molecules24244511] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 12/06/2019] [Accepted: 12/06/2019] [Indexed: 02/03/2023] Open
Abstract
Mycobacterium abscessus is a rapid-growing, multidrug-resistant, non-tuberculous mycobacterial species responsible for a variety of human infections, such as cutaneous and pulmonary infections. M. abscessus infections are very difficult to eradicate due to the natural and acquired multidrug resistance profiles of M. abscessus. Thus, there is an urgent need for the development of effective drugs or regimens against M. abscessus infections. Here, we report the activity of a US Food and Drug Administration approved drug, thiostrepton, against M. abscessus. We found that thiostrepton significantly inhibited the growth of M. abscessus wild-type strains, subspecies, clinical isolates, and drug-resistant mutants in vitro and in macrophages. In addition, treatment of macrophages with thiostrepton significantly decreased proinflammatory cytokine production in a dose-dependent manner, suggesting an inhibitory effect of thiostrepton on inflammation induced during M. abscessus infection. We further showed that thiostrepton exhibits antimicrobial effects in vivo using a zebrafish model of M. abscessus infection.
Collapse
Affiliation(s)
- Tae Ho Kim
- Molecular Mechanisms of Antibiotics, Division of Life Science, Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Korea
- Division of Applied Life Science (BK21plus Program), Gyeongsang National University, Jinju 52828, Korea
| | - Bui Thi Bich Hanh
- Molecular Mechanisms of Antibiotics, Division of Life Science, Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Korea
- Division of Applied Life Science (BK21plus Program), Gyeongsang National University, Jinju 52828, Korea
| | - Guehye Kim
- Molecular Mechanisms of Antibiotics, Division of Life Science, Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Korea
- Division of Applied Life Science (BK21plus Program), Gyeongsang National University, Jinju 52828, Korea
| | - Da-Gyum Lee
- Molecular Mechanisms of Antibiotics, Division of Life Science, Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Korea
- Clinical Research Centre, Masan National Tuberculosis Hospital, Changwon 51755, Korea
| | - June-Woo Park
- Future Environmental Research Center, Korea Institute of Toxicology, Jinju 52834, Korea
- Human and Environmental Toxicology Program, Korea University of Science and Technology (UST), Daejeon 34113, Korea
| | - So Eui Lee
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon 35015, Korea (E.-K.J.)
- Infection Control Convergence Research Center, Chungnam National University, Daejeon 35015, Korea
| | - Jae-Sung Kim
- Department of Bionano Technology, Hanyang University, Seoul 04763, Korea
| | - Byoung Soo Kim
- Department of Radiopharmaceutical Research, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Korea
| | - Sungweon Ryoo
- Clinical Research Centre, Masan National Tuberculosis Hospital, Changwon 51755, Korea
| | - Eun-Kyeong Jo
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon 35015, Korea (E.-K.J.)
- Infection Control Convergence Research Center, Chungnam National University, Daejeon 35015, Korea
| | - Jichan Jang
- Molecular Mechanisms of Antibiotics, Division of Life Science, Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Korea
- Division of Applied Life Science (BK21plus Program), Gyeongsang National University, Jinju 52828, Korea
- Correspondence: ; Tel.: +82-553-772-1368
| |
Collapse
|
40
|
Degiacomi G, Sammartino JC, Chiarelli LR, Riabova O, Makarov V, Pasca MR. Mycobacterium abscessus, an Emerging and Worrisome Pathogen among Cystic Fibrosis Patients. Int J Mol Sci 2019; 20:ijms20235868. [PMID: 31766758 PMCID: PMC6928860 DOI: 10.3390/ijms20235868] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/20/2019] [Accepted: 11/20/2019] [Indexed: 01/09/2023] Open
Abstract
Nontuberculous mycobacteria (NTM) have recently emerged as important pathogens among cystic fibrosis (CF) patients worldwide. Mycobacterium abscessus is becoming the most worrisome NTM in this cohort of patients and recent findings clarified why this pathogen is so prone to this disease. M. abscessus drug therapy takes up to 2 years and its failure causes an accelerated lung function decline. The M. abscessus colonization of lung alveoli begins with smooth strains producing glycopeptidolipids and biofilm, whilst in the invasive infection, "rough" mutants are responsible for the production of trehalose dimycolate, and consequently, cording formation. Human-to-human M. abscessus transmission was demonstrated among geographically separated CF patients by whole-genome sequencing of clinical isolates worldwide. Using a M. abscessus infected CF zebrafish model, it was demonstrated that CFTR (cystic fibrosis transmembrane conductance regulator) dysfunction seems to have a specific role in the immune control of M. abscessus infections only. This pathogen is also intrinsically resistant to many drugs, thanks to its physiology and to the acquisition of new mechanisms of drug resistance. Few new compounds or drug formulations active against M. abscessus are present in preclinical and clinical development, but recently alternative strategies have been investigated, such as phage therapy and the use of β-lactamase inhibitors.
Collapse
Affiliation(s)
- Giulia Degiacomi
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, 27100 Pavia, Italy; (G.D.); (J.C.S.); (L.R.C.)
| | - José Camilla Sammartino
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, 27100 Pavia, Italy; (G.D.); (J.C.S.); (L.R.C.)
- IUSS—University School for Advanced Studies, 27100 Pavia, Italy
| | - Laurent Roberto Chiarelli
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, 27100 Pavia, Italy; (G.D.); (J.C.S.); (L.R.C.)
| | - Olga Riabova
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (O.R.); (V.M.)
| | - Vadim Makarov
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (O.R.); (V.M.)
| | - Maria Rosalia Pasca
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, 27100 Pavia, Italy; (G.D.); (J.C.S.); (L.R.C.)
- Correspondence: ; Tel.: +39-0382-985576
| |
Collapse
|
41
|
Batalha IL, Bernut A, Schiebler M, Ouberai MM, Passemar C, Klapholz C, Kinna S, Michel S, Sader K, Castro-Hartmann P, Renshaw SA, Welland ME, Floto RA. Polymeric nanobiotics as a novel treatment for mycobacterial infections. J Control Release 2019; 314:116-124. [PMID: 31647980 PMCID: PMC6899522 DOI: 10.1016/j.jconrel.2019.10.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 09/10/2019] [Accepted: 10/03/2019] [Indexed: 12/17/2022]
Abstract
Mycobacterium tuberculosis (Mtb) remains a major challenge to global health, made worse by the spread of multi-drug resistance. Currently, the efficacy and safety of treatment is limited by difficulties in achieving and sustaining adequate tissue antibiotic concentrations while limiting systemic drug exposure to tolerable levels. Here we show that nanoparticles generated from a polymer-antibiotic conjugate (‘nanobiotics’) deliver sustained release of active drug upon hydrolysis in acidic environments, found within Mtb-infected macrophages and granulomas, and can, by encapsulation of a second antibiotic, provide a mechanism of synchronous drug delivery. Nanobiotics are avidly taken up by infected macrophages, enhance killing of intracellular Mtb, and are efficiently delivered to granulomas and extracellular mycobacterial cords in vivo in an infected zebrafish model. We demonstrate that isoniazid (INH)-derived nanobiotics, alone or with additional encapsulation of clofazimine (CFZ), enhance killing of mycobacteria in vitro and in infected zebrafish, supporting the use of nanobiotics for Mtb therapy and indicating that nanoparticles generated from polymer-small molecule conjugates might provide a more general solution to delivering co-ordinated combination chemotherapy.
Collapse
Affiliation(s)
- Iris L Batalha
- Nanoscience Centre, Department of Engineering, University of Cambridge, 11 J.J. Thomson Avenue, Cambridge, CB3 0FF, United Kingdom; Molecular Immunity Unit, Department of Medicine, University of Cambridge, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, CB2 0QH, United Kingdom
| | - Audrey Bernut
- Dept. of Infection, Immunity & Cardiovascular Disease, Bateson Centre, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, United Kingdom; Medical School, University of Sheffield, Sheffield, S10 2RX, United Kingdom
| | - Mark Schiebler
- Nanoscience Centre, Department of Engineering, University of Cambridge, 11 J.J. Thomson Avenue, Cambridge, CB3 0FF, United Kingdom; Molecular Immunity Unit, Department of Medicine, University of Cambridge, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, CB2 0QH, United Kingdom
| | - Myriam M Ouberai
- Nanoscience Centre, Department of Engineering, University of Cambridge, 11 J.J. Thomson Avenue, Cambridge, CB3 0FF, United Kingdom
| | - Charlotte Passemar
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, CB2 0QH, United Kingdom
| | - Catherine Klapholz
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, CB2 0QH, United Kingdom
| | - Sonja Kinna
- Nanoscience Centre, Department of Engineering, University of Cambridge, 11 J.J. Thomson Avenue, Cambridge, CB3 0FF, United Kingdom
| | - Sarah Michel
- Nanoscience Centre, Department of Engineering, University of Cambridge, 11 J.J. Thomson Avenue, Cambridge, CB3 0FF, United Kingdom
| | - Kasim Sader
- Cambridge CryoEM Pharmaceutical Consortium, Thermo Fisher Scientific, Nanoscience Centre, Department of Engineering, University of Cambridge, 11 J.J. Thomson Avenue, Cambridge, CB3 0FF, United Kingdom
| | - Pablo Castro-Hartmann
- Cambridge CryoEM Pharmaceutical Consortium, Thermo Fisher Scientific, Nanoscience Centre, Department of Engineering, University of Cambridge, 11 J.J. Thomson Avenue, Cambridge, CB3 0FF, United Kingdom
| | - Stephen A Renshaw
- Dept. of Infection, Immunity & Cardiovascular Disease, Bateson Centre, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, United Kingdom; Medical School, University of Sheffield, Sheffield, S10 2RX, United Kingdom
| | - Mark E Welland
- Nanoscience Centre, Department of Engineering, University of Cambridge, 11 J.J. Thomson Avenue, Cambridge, CB3 0FF, United Kingdom.
| | - R Andres Floto
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, CB2 0QH, United Kingdom; Cambridge Centre for Lung Infection, Royal Papworth Hospital, Cambridge, CB23 3RE, United Kingdom.
| |
Collapse
|
42
|
Synergistic Efficacy of β-Lactam Combinations against Mycobacterium abscessus Pulmonary Infection in Mice. Antimicrob Agents Chemother 2019; 63:AAC.00614-19. [PMID: 31109979 DOI: 10.1128/aac.00614-19] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 05/11/2019] [Indexed: 01/31/2023] Open
Abstract
Mycobacterium abscessus is an emerging pathogen capable of causing invasive pulmonary infections in patients with chronic lung diseases. These infections are difficult to treat, necessitating prolonged multidrug therapy, which is further complicated by extensive intrinsic and acquired resistance exhibited by clinical M. abscessus isolates. Therefore, development of novel treatment regimens effective against drug-resistant strains is crucial. Prior studies have demonstrated synergistic efficacy of several β-lactams against M. abscessus in vitro; however, these combinations have never been tested in an animal model of M. abscessus pulmonary disease. We utilized a recently developed murine system of sustained M. abscessus lung infection delivered via an aerosol route to test the bactericidal efficacy of four novel dual β-lactam combinations and one β-lactam/β-lactamase inhibitor combination. All five of the novel combinations exhibited synergy and resulted in at least 6-log10 reductions in bacterial burden in the lungs of mice at 4 weeks compared to untreated controls (P = 0.038).
Collapse
|
43
|
Hodgkinson JW, Belosevic M, Elks PM, Barreda DR. Teleost contributions to the understanding of mycobacterial diseases. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 96:111-125. [PMID: 30776420 DOI: 10.1016/j.dci.2019.02.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 02/15/2019] [Accepted: 02/15/2019] [Indexed: 06/09/2023]
Abstract
Few pathogens have shaped human medicine as the mycobacteria. From understanding biological phenomena driving disease spread, to mechanisms of host-pathogen interactions and antibiotic resistance, the Mycobacterium genus continues to challenge and offer insights into the basis of health and disease. Teleost fish models of mycobacterial infections have progressed significantly over the past three decades, now supplying a range of unique tools and new opportunities to define the strategies employed by these Gram-positive bacteria to overcome host defenses, as well as those host antimicrobial pathways that can be used to limit its growth and spread. Herein, we take a comparative perspective and provide an update on the contributions of teleost models to our understanding of mycobacterial diseases.
Collapse
Affiliation(s)
- Jordan W Hodgkinson
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Miodrag Belosevic
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Philip M Elks
- The Bateson Centre, University of Sheffield, Western Bank, Sheffield, United Kingdom; Department of Infection and Immunity and Cardiovascular Disease, University of Sheffield, Western Bank, Sheffield, United Kingdom
| | - Daniel R Barreda
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada; Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
44
|
Ganapathy US, Dartois V, Dick T. Repositioning rifamycins for Mycobacterium abscessus lung disease. Expert Opin Drug Discov 2019; 14:867-878. [PMID: 31195849 DOI: 10.1080/17460441.2019.1629414] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Introduction: The treatment of Mycobacterium abscessus lung disease faces significant challenges due to intrinsic antibiotic resistance. New drugs are needed to cure this incurable disease. The key anti-tubercular rifamycin, rifampicin, suffers from low potency against M. abscessus and is not used clinically. Recently, another member of the rifamycin class, rifabutin, was shown to be active against the opportunistic pathogen. Areas covered: In this review, the authors discuss the rifamycins as a reemerging drug class for treating M. abscessus infections. The authors focus on the differential potency of rifampicin and rifabutin against M. abscessus in the context of intrinsic antibiotic resistance and bacterial uptake and metabolism. Reports of rifamycin-based drug synergies and rifamycin potentiation by host-directed therapy are evaluated. Expert opinion: While repurposing rifabutin for M. abscessus lung disease may provide some immediate relief, the repositioning (chemical optimization) of rifamycins offers long-term potential for improving clinical outcomes. Repositioning will require a multifaceted approach involving renewed screening of rifamycin libraries, medicinal chemistry to improve 'bacterial cell pharmacokinetics', better models of bacterial pathophysiology and infection, and harnessing of drug synergies and host-directed therapy towards the development of a better drug regimen.
Collapse
Affiliation(s)
- Uday S Ganapathy
- a Center for Discovery and Innovation, Hackensack Meridian Health , Nutley , NJ , USA
| | - Véronique Dartois
- a Center for Discovery and Innovation, Hackensack Meridian Health , Nutley , NJ , USA
| | - Thomas Dick
- a Center for Discovery and Innovation, Hackensack Meridian Health , Nutley , NJ , USA
| |
Collapse
|
45
|
Liu H, Dong F, Liu J, Liu J, Pang Y, Zhao S, Lu J, Li H. Successful management of Mycobacterium abscessus complex lung disease in an otherwise healthy infant. Infect Drug Resist 2019; 12:1277-1283. [PMID: 31190915 PMCID: PMC6529672 DOI: 10.2147/idr.s198461] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 04/10/2019] [Indexed: 12/14/2022] Open
Abstract
Mycobacterium abscessus complex (MABC) is an uncommon but increasingly important cause of invasive pulmonary disease, a condition associated with diagnostic and management challenges. MABC has mainly been reported in children with certain medical conditions, such as preexisting structural lung disorders and immunocompromised status. In this article, we describe a rare case of MABC pulmonary disease in an otherwise healthy infant. A 4-month-old female presented with cough and fever for 4 days. Computed tomography showed multiple masses and small nodules across both lungs. Isolated mycobacteria from her bronchoalveolar lavage fluid and gastric aspirate were identified as MABC by using matrix-assisted laser desorption ionization time-of-flight mass spectrometry and M. abscessus subsp. massiliense was ultimately identified by DNA sequence analysis. Prolonged treatment with a combination of azithromycin, cefoxitin, and moxifloxacin achieved a successful treatment outcome.
Collapse
Affiliation(s)
- Hui Liu
- Department of Respiratory Medicine, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, People's Republic of China
| | - Fang Dong
- Department of Laboratory Medicine, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, People's Republic of China
| | - Jinrong Liu
- Department of Respiratory Medicine, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, People's Republic of China
| | - Jianhua Liu
- Department of Pediatrics, Maternal and Child Health Care Hospital of Shunyi District, Beijing, People's Republic of China
| | - Yu Pang
- Beijing Chest Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Shunying Zhao
- Department of Respiratory Medicine, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, People's Republic of China
| | - Jie Lu
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, People's Republic of China
| | - Huimin Li
- Department of Respiratory Medicine, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, People's Republic of China
| |
Collapse
|
46
|
Le Moigne V, Bernut A, Cortès M, Viljoen A, Dupont C, Pawlik A, Gaillard JL, Misguich F, Crémazy F, Kremer L, Herrmann JL. Lsr2 Is an Important Determinant of Intracellular Growth and Virulence in Mycobacterium abscessus. Front Microbiol 2019; 10:905. [PMID: 31114557 PMCID: PMC6503116 DOI: 10.3389/fmicb.2019.00905] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Accepted: 04/09/2019] [Indexed: 12/30/2022] Open
Abstract
Mycobacterium abscessus, a pathogen responsible for severe lung infections in cystic fibrosis patients, exhibits either smooth (S) or rough (R) morphotypes. The S-to-R transition correlates with inhibition of the synthesis and/or transport of glycopeptidolipids (GPLs) and is associated with an increase of pathogenicity in animal and human hosts. Lsr2 is a small nucleoid-associated protein highly conserved in mycobacteria, including M. abscessus, and is a functional homolog of the heat-stable nucleoid-structuring protein (H-NS). It is essential in Mycobacterium tuberculosis but not in the non-pathogenic model organism Mycobacterium smegmatis. It acts as a master transcriptional regulator of multiple genes involved in virulence and immunogenicity through binding to AT-rich genomic regions. Previous transcriptomic studies, confirmed here by quantitative PCR, showed increased expression of lsr2 (MAB_0545) in R morphotypes when compared to their S counterparts, suggesting a possible role of this protein in the virulence of the R form. This was addressed by generating lsr2 knock-out mutants in both S (Δlsr2-S) and R (Δlsr2-R) variants, demonstrating that this gene is dispensable for M. abscessus growth. We show that the wild-type S variant, Δlsr2-S and Δlsr2-R strains were more sensitive to H2O2 as compared to the wild-type R variant of M. abscessus. Importantly, virulence of the Lsr2 mutants was considerably diminished in cellular models (macrophage and amoeba) as well as in infected animals (mouse and zebrafish). Collectively, these results emphasize the importance of Lsr2 in M. abscessus virulence.
Collapse
Affiliation(s)
| | - Audrey Bernut
- UMR 9004, Centre National de la Recherche Scientifique, Institut de Recherche en Infectiologie de Montpellier, Université de Montpellier, Montpellier, France
| | | | - Albertus Viljoen
- UMR 9004, Centre National de la Recherche Scientifique, Institut de Recherche en Infectiologie de Montpellier, Université de Montpellier, Montpellier, France
| | - Christian Dupont
- UMR 9004, Centre National de la Recherche Scientifique, Institut de Recherche en Infectiologie de Montpellier, Université de Montpellier, Montpellier, France
| | - Alexandre Pawlik
- Unité de Pathogénomique Mycobactérienne, Institut Pasteur, Paris, France
| | - Jean-Louis Gaillard
- 2I, UVSQ, INSERM, Université Paris-Saclay, Versailles, France.,APHP, GHU PIFO, Hôpital Raymond-Poincaré - Hôpital Ambroise-Paré, Boulogne-Billancourt, France
| | | | | | - Laurent Kremer
- UMR 9004, Centre National de la Recherche Scientifique, Institut de Recherche en Infectiologie de Montpellier, Université de Montpellier, Montpellier, France.,INSERM, Institut de Recherche en Infectiologie de Montpellier, Montpellier, France
| | - Jean-Louis Herrmann
- 2I, UVSQ, INSERM, Université Paris-Saclay, Versailles, France.,APHP, GHU PIFO, Hôpital Raymond-Poincaré - Hôpital Ambroise-Paré, Boulogne-Billancourt, France
| |
Collapse
|
47
|
Baldwin SL, Larsen SE, Ordway D, Cassell G, Coler RN. The complexities and challenges of preventing and treating nontuberculous mycobacterial diseases. PLoS Negl Trop Dis 2019; 13:e0007083. [PMID: 30763316 PMCID: PMC6375572 DOI: 10.1371/journal.pntd.0007083] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Seemingly innocuous nontuberculous mycobacteria (NTM) species, classified by their slow or rapid growth rates, can cause a wide range of illnesses, from skin ulceration to severe pulmonary and disseminated disease. Despite their worldwide prevalence and significant disease burden, NTM do not garner the same financial or research focus as Mycobacterium tuberculosis. In this review, we outline the most abundant of over 170 NTM species and inadequacies of diagnostics and treatments and weigh the advantages and disadvantages of currently available in vivo animal models of NTM. In order to effectively combat this group of mycobacteria, more research focused on appropriate animal models of infection, screening of chemotherapeutic compounds, and development of anti-NTM vaccines and diagnostics is urgently needed.
Collapse
Affiliation(s)
- Susan L. Baldwin
- Infectious Disease Research Institute, Seattle, Washington, United States of America
| | - Sasha E. Larsen
- Infectious Disease Research Institute, Seattle, Washington, United States of America
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
| | - Diane Ordway
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Gail Cassell
- Infectious Disease Research Institute, Seattle, Washington, United States of America
- Department of Global Health and Social Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Rhea N. Coler
- Infectious Disease Research Institute, Seattle, Washington, United States of America
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
- PAI Life Sciences, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
48
|
Dubois V, Viljoen A, Laencina L, Le Moigne V, Bernut A, Dubar F, Blaise M, Gaillard JL, Guérardel Y, Kremer L, Herrmann JL, Girard-Misguich F. MmpL8 MAB controls Mycobacterium abscessus virulence and production of a previously unknown glycolipid family. Proc Natl Acad Sci U S A 2018; 115:E10147-E10156. [PMID: 30301802 PMCID: PMC6205491 DOI: 10.1073/pnas.1812984115] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Mycobacterium abscessus is a peculiar rapid-growing Mycobacterium (RGM) capable of surviving within eukaryotic cells thanks to an arsenal of virulence genes also found in slow-growing mycobacteria (SGM), such as Mycobacterium tuberculosis A screen based on the intracellular survival in amoebae and macrophages (MΦ) of an M. abscessus transposon mutant library revealed the important role of MAB_0855, a yet uncharacterized Mycobacterial membrane protein Large (MmpL). Large-scale comparisons with SGM and RGM genomes uncovered MmpL12 proteins as putative orthologs of MAB_0855 and a locus-scale synteny between the MAB_0855 and Mycobacterium chelonae mmpL8 loci. A KO mutant of the MAB_0855 gene, designated herein as mmpL8MAB , had impaired adhesion to MΦ and displayed a decreased intracellular viability. Despite retaining the ability to block phagosomal acidification, like the WT strain, the mmpL8MAB mutant was delayed in damaging the phagosomal membrane and in making contact with the cytosol. Virulence attenuation of the mutant was confirmed in vivo by impaired zebrafish killing and a diminished propensity to induce granuloma formation. The previously shown role of MmpL in lipid transport prompted us to investigate the potential lipid substrates of MmpL8MAB Systematic lipid analysis revealed that MmpL8MAB was required for the proper expression of a glycolipid entity, a glycosyl diacylated nonadecyl diol (GDND) alcohol comprising different combinations of oleic and stearic acids. This study shows the importance of MmpL8MAB in modifying interactions between the bacteria and phagocytic cells and in the production of a previously unknown glycolipid family.
Collapse
Affiliation(s)
- Violaine Dubois
- Université de Versailles Saint Quentin en Yvelines, INSERM UMR1173, 78000 Versailles, France
| | - Albertus Viljoen
- CNRS UMR 9004, Institut de Recherche en Infectiologie de Montpellier, Université de Montpellier, 34293 Montpellier, France
| | - Laura Laencina
- Université de Versailles Saint Quentin en Yvelines, INSERM UMR1173, 78000 Versailles, France
| | - Vincent Le Moigne
- Université de Versailles Saint Quentin en Yvelines, INSERM UMR1173, 78000 Versailles, France
| | - Audrey Bernut
- CNRS UMR 9004, Institut de Recherche en Infectiologie de Montpellier, Université de Montpellier, 34293 Montpellier, France
| | - Faustine Dubar
- Université de Lille, CNRS UMR 8576, Unité de Glycobiologie Structurale et Fonctionnelle, 59000 Lille, France
| | - Mickaël Blaise
- CNRS UMR 9004, Institut de Recherche en Infectiologie de Montpellier, Université de Montpellier, 34293 Montpellier, France
| | - Jean-Louis Gaillard
- Université de Versailles Saint Quentin en Yvelines, INSERM UMR1173, 78000 Versailles, France
- Assistance Publique-Hôpitaux de Paris, Groupement Hospitalier Universitaire Paris Ile de France Ouest, Hôpital Raymond Poincaré, Hôpital Ambroise Paré, 92380 Garches, Boulogne Billancourt, France
| | - Yann Guérardel
- Université de Lille, CNRS UMR 8576, Unité de Glycobiologie Structurale et Fonctionnelle, 59000 Lille, France
| | - Laurent Kremer
- CNRS UMR 9004, Institut de Recherche en Infectiologie de Montpellier, Université de Montpellier, 34293 Montpellier, France
- INSERM, Institut de Recherche en Infectiologie de Montpellier, 34293 Montpellier, France
| | - Jean-Louis Herrmann
- Université de Versailles Saint Quentin en Yvelines, INSERM UMR1173, 78000 Versailles, France;
- Assistance Publique-Hôpitaux de Paris, Groupement Hospitalier Universitaire Paris Ile de France Ouest, Hôpital Raymond Poincaré, Hôpital Ambroise Paré, 92380 Garches, Boulogne Billancourt, France
| | | |
Collapse
|
49
|
Gutiérrez AV, Viljoen A, Ghigo E, Herrmann JL, Kremer L. Glycopeptidolipids, a Double-Edged Sword of the Mycobacterium abscessus Complex. Front Microbiol 2018; 9:1145. [PMID: 29922253 PMCID: PMC5996870 DOI: 10.3389/fmicb.2018.01145] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 05/14/2018] [Indexed: 01/14/2023] Open
Abstract
Mycobacterium abscessus is a rapidly-growing species causing a diverse panel of clinical manifestations, ranging from cutaneous infections to severe respiratory disease. Its unique cell wall, contributing largely to drug resistance and to pathogenicity, comprises a vast panoply of complex lipids, among which the glycopeptidolipids (GPLs) have been the focus of intense research. These lipids fulfill various important functions, from sliding motility or biofilm formation to interaction with host cells and intramacrophage trafficking. Being highly immunogenic, the induction of a strong humoral response is likely to select for rough low-GPL producers. These, in contrast to the smooth high-GPL producers, display aggregative properties, which strongly impacts upon intracellular survival. A propensity to grow as extracellular cords allows these low-GPL producing bacilli to escape the innate immune defenses. Transitioning from high-GPL to low-GPL producers implicates mutations within genes involved in biosynthesis or transport of GPL. This leads to induction of an intense pro-inflammatory response and robust and lethal infections in animal models, explaining the presence of rough isolates in patients with decreased pulmonary functions. Herein, we will discuss how, thanks to the generation of defined GPL mutants and the development of appropriate cellular and animal models to study pathogenesis, GPL contribute to M. abscessus biology and physiopathology.
Collapse
Affiliation(s)
- Ana Victoria Gutiérrez
- Centre National de la Recherche Scientifique, Institut de Recherche en Infectiologie de Montpellier, UMR 9004, Université de Montpellier, Montpellier, France.,CNRS, IRD 198, INSERM U1095, APHM, Institut Hospitalo-Universitaire Méditerranée Infection, UMR 7278, Aix-Marseille Université, Marseille, France
| | - Albertus Viljoen
- Centre National de la Recherche Scientifique, Institut de Recherche en Infectiologie de Montpellier, UMR 9004, Université de Montpellier, Montpellier, France
| | - Eric Ghigo
- CNRS, Campus Joseph Aiguier, Marseille, France
| | | | - Laurent Kremer
- Centre National de la Recherche Scientifique, Institut de Recherche en Infectiologie de Montpellier, UMR 9004, Université de Montpellier, Montpellier, France.,INSERM, IRIM, Montpellier, France
| |
Collapse
|
50
|
Malcolm KC, Caceres SM, Pohl K, Poch KR, Bernut A, Kremer L, Bratton DL, Herrmann JL, Nick JA. Neutrophil killing of Mycobacterium abscessus by intra- and extracellular mechanisms. PLoS One 2018; 13:e0196120. [PMID: 29672589 PMCID: PMC5909612 DOI: 10.1371/journal.pone.0196120] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 04/06/2018] [Indexed: 12/23/2022] Open
Abstract
Mycobacterium abscessus, a rapidly growing nontuberculous mycobacterium, are increasingly present in soft tissue infections and chronic lung diseases, including cystic fibrosis, and infections are characterized by growth in neutrophil-rich environments. M. abscessus is observed as two distinct smooth and rough morphotypes. The environmental smooth morphotype initiates infection and has a relatively limited ability to activate neutrophils. The rough morphotype has increased virulence and immunogenicity. However, the neutrophil response to the rough morphotype has not been explored. Killing of the smooth and rough strains, including cystic fibrosis clinical isolates, was equivalent. Neutrophil uptake of M. abscessus was similar between morphotypes. Mechanistically, both rough and smooth morphotypes enhanced neutrophil reactive oxygen species generation but inhibition of NADPH oxidase activity did not affect M. abscessus viability. However, inhibition of phagocytosis and extracellular traps reduced killing of the smooth morphotype with lesser effects against the rough morphotype. Neutrophils treated with M. abscessus released a heat-labile mycobactericidal activity against the rough morphotype, but the activity was heat-tolerant against the smooth morphotype. Overall, M. abscessus stimulates ineffective neutrophil reactive oxygen species generation, and key mechanisms differ in killing of the smooth (phagocytosis-dependent, extracellular traps, and heat-tolerant secreted factor) and rough (extracellular traps and a heat-labile secreted factor) morphotypes. These studies represent an essential advancement in understanding the host response to M. abscessus, and help explain the recalcitrance of infection.
Collapse
Affiliation(s)
- Kenneth C Malcolm
- Department of Medicine, National Jewish Health, Denver, CO, United States of America.,Department of Medicine, University of Colorado, Denver, Aurora, CO, United States of America
| | - Silvia M Caceres
- Department of Medicine, National Jewish Health, Denver, CO, United States of America
| | - Kerstin Pohl
- Department of Medicine, National Jewish Health, Denver, CO, United States of America
| | - Katie R Poch
- Department of Medicine, National Jewish Health, Denver, CO, United States of America
| | - Audrey Bernut
- Institut de Recherche en Infectiologie de Montpellier (IRIM), Centre National de la Recherche Scientifique UMR 9004, Université de Montpellier, Montpellier, France
| | - Laurent Kremer
- Institut de Recherche en Infectiologie de Montpellier (IRIM), Centre National de la Recherche Scientifique UMR 9004, Université de Montpellier, Montpellier, France.,INSERM, IRIM, Montpellier, France
| | - Donna L Bratton
- Department of Pediatrics, National Jewish Health, Denver, CO, United States of America
| | - Jean-Louis Herrmann
- Infection et Inflammation Chronique (2I), Université de Versailles St Quentin, INSERM, Université Paris-Saclay, Versailles, France
| | - Jerry A Nick
- Department of Medicine, National Jewish Health, Denver, CO, United States of America.,Department of Medicine, University of Colorado, Denver, Aurora, CO, United States of America
| |
Collapse
|