1
|
Uc-Cachón AH, Chan-Bacab MJ, Lezama-Dávila CM, Isaac-Márquez AP, González-Sánchez AA, Dzul-Beh ÁDJ, Molina-Salinas GM. Anti- Leishmania activity of the Mayan medicinal plant Thouinia paucidentata Radlk extracts. Nat Prod Res 2024; 38:3444-3448. [PMID: 37565472 DOI: 10.1080/14786419.2023.2245537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 07/13/2023] [Accepted: 07/31/2023] [Indexed: 08/12/2023]
Abstract
Mexico's Yucatan Peninsula is an endemic area of cutaneous leishmaniasis, locally known as the chiclero's ulcer, and Mayan traditional medicine which refers to the use of Thouinia paucidentata Radlk, known as k'an chuunup. Aqueous and organic leaves extracts were evaluated against promastigotes and amastigotes of Leishmania mexicana. Toxicity tests of extracts were performed using Vero and J774A.1 macrophage cell lines. The composition of the most active extracts was analysed by GC-MS. The n-hexane and ethyl acetate extracts showed potent anti-Leishmania activity against the promastigote form, and remarkably, n-hexane extract exhibited potent activity against the amastigote form. Both extracts showed low toxicity on Vero both not on J774A.1 cells. Analysis of both bioactive extracts identified as more abundant compounds, germacrene D-4-ol and thunbergen in n-hexane, and thunbergol in ethyl acetate extracts. Our study presents T. paucidentata as anti-Leishmania phytomedicine supporting its medicinal use and contributes to the understanding of its phytochemical composition.
Collapse
Affiliation(s)
- Andrés Humberto Uc-Cachón
- Unidad de Investigación Médica Yucatán, Instituto Mexicano del Seguro Social, Mérida, Yucatán, México
| | - Manuel Jesús Chan-Bacab
- Centro de Investigación en Microbiología Ambiental y Biotecnología, Universidad Autónoma de Campeche, San Francisco de Campeche, Campeche, México
| | - Claudio Manuel Lezama-Dávila
- Centro de Investigaciones Biomédicas, Universidad Autónoma de Campeche, San Francisco de Campeche, Campeche, México
| | | | | | - Ángel de Jesús Dzul-Beh
- Unidad de Investigación Médica Yucatán, Instituto Mexicano del Seguro Social, Mérida, Yucatán, México
| | | |
Collapse
|
2
|
Santos HLC, Pereira GL, do Reis RB, Rodrigues IC, Masini d’Avila C, Vidal VE. Using Acanthamoeba spp. as a cell model to evaluate Leishmania infections. PLoS Negl Trop Dis 2024; 18:e0012517. [PMID: 39356724 PMCID: PMC11472918 DOI: 10.1371/journal.pntd.0012517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/14/2024] [Accepted: 09/06/2024] [Indexed: 10/04/2024] Open
Abstract
Leishmaniasis represents a severe global health problem. In the last decades, there have been significant challenges in controlling this disease due to the unavailability of licensed vaccines, the high toxicity of the available drugs, and an unrestrained surge of drug-resistant parasites, and human immunodeficiency virus (HIV)-Leishmania co-infections. Leishmania spp. preferentially invade macrophage lineage cells of vertebrates for replication after subverting cellular functions of humans and other mammals. These early events in host-parasite interactions are likely to influence the future course of the disease. Thus, there is a continuing need to discover a simple cellular model that reproduces the in vivo pathogenesis. Acanthamoeba spp. are non-mammalian phagocytic amoeba with remarkable similarity to the cellular and functional aspects of macrophages. We aimed to assess whether the similarity reported between macrophages and Acanthamoeba spp. is sufficient to reproduce the infectivity of Leishmania spp. Herein, we analyzed co-cultures of Acanthamoeba castellanii or Acanthamoeba polyphaga with Leishmania infantum, Leishmania amazonensis, Leishmania major, and Leishmania braziliensis. Light and fluorescence microscopy revealed that the flagellated promastigotes attach to the A. castellanii and/or A. polyphaga in a bipolar and or random manner, which initiates their uptake via pseudopods. Once inside the cells, the promastigotes undergo significant changes, which result in the obligatory amastigote-like intracellular form. There was a productive infection with a continuous increase in intracellular parasites. However, we frequently observed intracellular amastigotes in vacuoles, phagolysosomes, and the cytosol of Acanthamoeba spp. Our findings corroborate that Leishmania spp. infects Acanthamoeba spp. and replicates in them but does not cause their rapid degeneration or lysis. Overall, the evidence presented here confirms that Acanthamoeba spp. have all prerequisites and can help elucidate how Leishmania spp. infect mammalian cells. Future work exposing the mechanisms of these interactions should yield novel insights into how these pathogens exploit amoebae.
Collapse
Affiliation(s)
- Helena Lúcia Carneiro Santos
- Laboratório de Doenças Parasitárias, Instituto Oswaldo Cruz/FIOCRUZ, Rio de Janeiro, Rio de Janeiro, Brazil
- Coleção de Protozoários da FIOCRUZ, Instituto Oswaldo Cruz/FIOCRUZ, Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratório de Parasitologia, Departamento de Patologia da Faculdade de Medicina da Universidade Federal Fluminense, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gabriela Linhares Pereira
- Laboratório de Doenças Parasitárias, Instituto Oswaldo Cruz/FIOCRUZ, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rhagner Bonono do Reis
- Laboratório de Doenças Parasitárias, Instituto Oswaldo Cruz/FIOCRUZ, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Igor Cardoso Rodrigues
- Laboratório de Doenças Parasitárias, Instituto Oswaldo Cruz/FIOCRUZ, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Claudia Masini d’Avila
- Laboratório de Doenças Parasitárias, Instituto Oswaldo Cruz/FIOCRUZ, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vitor Ennes Vidal
- Laboratório de Doenças Parasitárias, Instituto Oswaldo Cruz/FIOCRUZ, Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
3
|
Scheiffer G, Domingues KZA, Gorski D, Cobre ADF, Lazo REL, Borba HHL, Ferreira LM, Pontarolo R. In silico approaches supporting drug repurposing for Leishmaniasis: a scoping review. EXCLI JOURNAL 2024; 23:1117-1169. [PMID: 39421030 PMCID: PMC11484518 DOI: 10.17179/excli2024-7552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 08/08/2024] [Indexed: 10/19/2024]
Abstract
The shortage of treatment options for leishmaniasis, especially those easy to administer and viable for deployment in the world's poorest regions, highlights the importance of employing these strategies to cost-effectively investigate repurposing candidates. This scoping review aims to map the studies using in silico methodologies for drug repurposing against leishmaniasis. This study followed JBI recommendations for scoping reviews. Articles were searched on PubMed, Scopus, and Web of Science databases using keywords related to leishmaniasis and in silico methods for drug discovery, without publication date restrictions. The selection was based on primary studies involving computational methods for antileishmanial drug repurposing. Information about methodologies, obtained data, and outcomes were extracted. After the full-text appraisal, 34 studies were included in this review. Molecular docking was the preferred method for evaluating repurposing candidates (n=25). Studies reported 154 unique ligands and 72 different targets, sterol 14-alpha demethylase and trypanothione reductase being the most frequently reported. In silico screening was able to correctly pinpoint some known active pharmaceutical classes and propose previously untested drugs. Fifteen drugs investigated in silico exhibited low micromolar inhibition (IC50 < 10 µM) of Leishmania spp. in vitro. In conclusion, several in silico repurposing candidates are yet to be investigated in vitro and in vivo. Future research could expand the number of targets screened and employ advanced methods to optimize drug selection, offering new starting points for treatment development. See also the graphical abstract(Fig. 1).
Collapse
Affiliation(s)
- Gustavo Scheiffer
- Postgraduate Program in Pharmaceutical Sciences, Department of Pharmacy, Federal University of Paraná, Curitiba 80210-170, Paraná, Brazil
| | - Karime Zeraik Abdalla Domingues
- Postgraduate Program in Pharmaceutical Sciences, Department of Pharmacy, Federal University of Paraná, Curitiba 80210-170, Paraná, Brazil
| | - Daniela Gorski
- Postgraduate Program in Pharmaceutical Sciences, Department of Pharmacy, Federal University of Paraná, Curitiba 80210-170, Paraná, Brazil
| | - Alexandre de Fátima Cobre
- Postgraduate Program in Pharmaceutical Sciences, Department of Pharmacy, Federal University of Paraná, Curitiba 80210-170, Paraná, Brazil
| | - Raul Edison Luna Lazo
- Postgraduate Program in Pharmaceutical Sciences, Department of Pharmacy, Federal University of Paraná, Curitiba 80210-170, Paraná, Brazil
| | - Helena Hiemisch Lobo Borba
- Postgraduate Program in Pharmaceutical Sciences, Department of Pharmacy, Federal University of Paraná, Curitiba 80210-170, Paraná, Brazil
| | - Luana Mota Ferreira
- Postgraduate Program in Pharmaceutical Sciences, Department of Pharmacy, Federal University of Paraná, Curitiba 80210-170, Paraná, Brazil
| | - Roberto Pontarolo
- Postgraduate Program in Pharmaceutical Sciences, Department of Pharmacy, Federal University of Paraná, Curitiba 80210-170, Paraná, Brazil
| |
Collapse
|
4
|
Bogdan C, Islam NAK, Barinberg D, Soulat D, Schleicher U, Rai B. The immunomicrotope of Leishmania control and persistence. Trends Parasitol 2024; 40:788-804. [PMID: 39174373 DOI: 10.1016/j.pt.2024.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/21/2024] [Accepted: 07/22/2024] [Indexed: 08/24/2024]
Abstract
Leishmania is an intracellular protozoan transmitted by sand fly vectors; it causes cutaneous, mucocutaneous, or visceral disease. Its growth and survival are impeded by type 1 T helper cell responses, which entail interferon (IFN)-γ-mediated macrophage activation. Leishmania partially escapes this host defense by triggering immune cell and cytokine responses that favor parasite replication rather than killing. Novel methods for in situ analyses have revealed that the pathways of immune control and microbial evasion are strongly influenced by the tissue context, the micro milieu factors, and the metabolism at the site of infection, which we collectively term the 'immunomicrotope'. Understanding the components and the impact of the immunomicrotope will enable the development of novel strategies for the treatment of chronic leishmaniasis.
Collapse
Affiliation(s)
- Christian Bogdan
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Wasserturmstraße 3/5, D-91054 Erlangen, Germany; FAU Profile Center Immunomedicine, FAU Erlangen-Nürnberg, Schlossplatz 1, D-91054 Erlangen, Germany.
| | - Noor-A-Kasida Islam
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Wasserturmstraße 3/5, D-91054 Erlangen, Germany
| | - David Barinberg
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Wasserturmstraße 3/5, D-91054 Erlangen, Germany
| | - Didier Soulat
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Wasserturmstraße 3/5, D-91054 Erlangen, Germany; FAU Profile Center Immunomedicine, FAU Erlangen-Nürnberg, Schlossplatz 1, D-91054 Erlangen, Germany
| | - Ulrike Schleicher
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Wasserturmstraße 3/5, D-91054 Erlangen, Germany; FAU Profile Center Immunomedicine, FAU Erlangen-Nürnberg, Schlossplatz 1, D-91054 Erlangen, Germany
| | - Baplu Rai
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Wasserturmstraße 3/5, D-91054 Erlangen, Germany
| |
Collapse
|
5
|
Sanz CR, Sarquis J, Daza MÁ, Miró G. Exploring the impact of epidemiological and clinical factors on the progression of canine leishmaniosis by statistical and whole genome analyses: from breed predisposition to comorbidities. Int J Parasitol 2024; 54:401-414. [PMID: 38570155 DOI: 10.1016/j.ijpara.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 02/25/2024] [Accepted: 03/26/2024] [Indexed: 04/05/2024]
Abstract
Canine leishmaniosis (CanL), caused by Leishmania infantum, is a complex disease of growing importance in Europe. Clinical manifestations result from the down-modulation of the host immune response through multiple host-parasite interactions. Although several factors might influence CanL progression, this is the first known study evaluating risk factors for its different clinical stages in a large referral hospital population (n = 35.669) from an endemic area, over a 20 year period. Genome-wide scans for selection signatures were also conducted to explore the genomic component of clinical susceptibility to L. infantum infection. The prevalence of CanL was 3.2% (16.7% stage I; 43.6% stage II; 32.1% stage III; 7.6% stage IV). Dog breed (crossbreed), bodyweight (<10 kg), living conditions (indoors), regular deworming treatment, and being vaccinated against Leishmania significantly decreased the transmission risk and the risk for developing severe clinical forms. Conversely, the detection of comorbidities was associated with advanced clinical forms, particularly chronic kidney disease, neoplasia, cryptorchidism, infectious tracheobronchitis and urate urolithiasis, although those did not impact the clinical outcome. Significant associations between an increased risk of severe clinical stages and findings in the anamnesis (renal or skin-related manifestations) and physical examination (ocular findings) were also detected, highlighting their diagnostic value in referred cases of CanL. Sixteen breeds were found to be significantly more susceptible to developing severe stages of leishmaniosis (e.g. Great Dane, Rottweiler, English Springer Spaniel, Boxer, American Staffordshire Terrier, Golden Retriever), while 20 breeds displayed a clinical resistantance phenotype and, thus, are more likely to mount an efficient immune response against L. infantum (e.g. Pointer, Samoyed, Spanish Mastiff, Spanish Greyhound, English Setter, Siberian Husky). Genomic analyses of these breeds retrieved 12 regions under selection, 63 candidate genes and pinpointed multiple biological pathways such as the IRE1 branch of the unfolded protein response, which could play a critical role in clinical susceptibility to L. infantum infection.
Collapse
Affiliation(s)
- Carolina R Sanz
- Animal Health Department, Veterinary Faculty, Complutense University of Madrid, Av. Puerta de Hierro s/n, Madrid 28040, Spain.
| | - Juliana Sarquis
- Animal Health Department, Veterinary Faculty, Complutense University of Madrid, Av. Puerta de Hierro s/n, Madrid 28040, Spain
| | - María Ángeles Daza
- Veterinary Teaching Hospital, Veterinary Faculty, Complutense University of Madrid, Av. Puerta Hierro s/n, Madrid 28040, Spain; Department of Animal Medicine and Surgery, Veterinary Faculty, Complutense University of Madrid, Av. Puerta de Hierro s/n, Madrid 28040, Spain
| | - Guadalupe Miró
- Animal Health Department, Veterinary Faculty, Complutense University of Madrid, Av. Puerta de Hierro s/n, Madrid 28040, Spain; Veterinary Teaching Hospital, Veterinary Faculty, Complutense University of Madrid, Av. Puerta Hierro s/n, Madrid 28040, Spain.
| |
Collapse
|
6
|
Rouzbahani AK, Hosseini SZ, Bandehpour M, Kazemi B, Tavasoli A, Mamaghani AJ, Kheirandish F. Heterologous Expression of Human IFNγ and Anti-IL17 Antibody in Leishmania tarentolae Promastigote. Acta Parasitol 2024; 69:1107-1114. [PMID: 38536611 DOI: 10.1007/s11686-024-00822-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 01/31/2024] [Indexed: 06/18/2024]
Abstract
BACKGROUND Leishmania is an intracellular flagellate protozoan parasite that causes a wide range of clinical diseases in humans. The basis of immunological resistance against leishmaniasis depends on Thl reactions and is within the time period of cytokine function. METHODS In this study, human anti-IL17 antibody and IFNγ-producing promastigote were produced to be used in leishmanization. A sequence of light and heavy chains' gene of anti-IL17 antibody and human IFNγ (hIFNγ) was obtained from the NCBI database and synthesized in the ECORV reaction site in the plasmid pGH, which it's called pGH-hIFNγ-antiIL17. The synthesized part using the restriction enzyme ECORV was extracted from the plasmid and after purification by electroporation was transferred to Iranian lizard Leishmania (I.L.L). Evaluation of structural presence in the I.L.L genome at the level of DNA and mRNA was assessed. The expressions of hIFNγ and anti-IL17 were evaluated and confirmed using ELISA and western blot analysis. The hIFNγ secreted from the culture medium was collected at high concentrations of 124.36 ± 6.47 pg/mL. RESULTS Targeted gene replacement into the I.L.L genome was successfully performed for the first time using the pGH-hIFNγ-antiIL17 plasmid in an identical replacement process. Stabilized recombinant DNA contains a target gene that has no toxicity to the parasite. CONCLUSIONS The effective achievement of producing a recombinant gene was done for the first time by replacing the I.L.L-CPC gene with plasmid pGH-hIFNγ-antiIL17 by targeted gene replacement. This cab can regulate the production of hIFNγ and anti-IL17. This makes it a viable choice for eliminating leishmania.
Collapse
Affiliation(s)
- Arian Karimi Rouzbahani
- Student Research Committee, Lorestan University of Medical Sciences, Khorramabad, Iran
- USERN Office, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Seyedeh-Zeinab Hosseini
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Mojgan Bandehpour
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bahram Kazemi
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Afsaneh Tavasoli
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Biotechnology, Faculty of Pharmacy, Alborz University of Medical Sciences, Karaj, Iran
| | - Amirreza Javadi Mamaghani
- Hepatitis Research Center, Department of Medical Parasitology and Mycology, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Farnaz Kheirandish
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran.
- Department of Medical Parasitology and Mycology, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran.
| |
Collapse
|
7
|
Guo G, Lin Y, Zhu X, Ding F, Xue X, Zhang Q. Emerging roles of the epitranscriptome in parasitic protozoan biology and pathogenesis. Trends Parasitol 2024; 40:214-229. [PMID: 38355313 DOI: 10.1016/j.pt.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 02/16/2024]
Abstract
RNA modifications (epitranscriptome) - such as N6-methyladenosine (m6A), 5-methylcytosine (m5C), and pseudouridine (Ψ) - modulate RNA processing, stability, interaction, and translation, thereby playing critical roles in the development, replication, virulence, metabolism, and life cycle adaptations of parasitic protozoa. Here, we summarize potential homologs of the major human RNA modification regulatory factors in parasites, outline current knowledge on how RNA modifications affect parasitic protozoa, highlight the regulation of RNA modifications and their crosstalk, and discuss current progress in exploring RNA modifications as potential drug targets. This review contributes to our understanding of epitranscriptomic regulation of parasitic protozoa biology and pathogenesis and provides new perspectives for the treatment of parasitic diseases.
Collapse
Affiliation(s)
- Gangqiang Guo
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yutong Lin
- First Clinical College, Wenzhou Medical University, Wenzhou, China
| | - Xinqi Zhu
- First Clinical College, Wenzhou Medical University, Wenzhou, China
| | - Feng Ding
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xiangyang Xue
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China.
| | - Qingfeng Zhang
- Laboratory of Molecular Parasitology, State Key Laboratory of Cardiology and Research Center for Translational Medicine, Shanghai East Hospital; Clinical Center for Brain and Spinal Cord Research, School of Medicine, Tongji University, Shanghai 200120, China.
| |
Collapse
|
8
|
Pawłowska M, Mila-Kierzenkowska C, Szczegielniak J, Woźniak A. Oxidative Stress in Parasitic Diseases-Reactive Oxygen Species as Mediators of Interactions between the Host and the Parasites. Antioxidants (Basel) 2023; 13:38. [PMID: 38247462 PMCID: PMC10812656 DOI: 10.3390/antiox13010038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 01/23/2024] Open
Abstract
Oxidative stress plays a significant role in the development and course of parasitic infections, both in the attacked host organism and the parasite organism struggling to survive. The host uses large amounts of reactive oxygen species (ROS), mainly superoxide anion (O2•-) and hydrogen peroxide (H2O2), to fight the developing parasitic disease. On the other hand, the parasite develops the most effective defense mechanisms and resistance to the effects of ROS and strives to survive in the host organism it has colonized, using the resources and living environment available for its development and causing the host's weakening. The paper reviews the literature on the role of oxidative stress in parasitic diseases, which are the most critical epidemiological problem worldwide. The most common parasitosis in the world is malaria, with 300-500 million new cases and about 1 million deaths reported annually. In Europe and Poland, the essential problem is intestinal parasites. Due to a parasitic infection, the concentration of antioxidants in the host decreases, and the concentration of products of cellular components oxidation increases. In response to the increased number of reactive oxygen species attacking it, the parasites have developed effective defense mechanisms, including primarily the action of antioxidant enzymes, especially superoxide dismutase and nicotinamide adenine dinucleotide phosphate hydrogen (NADPH)-dependent complexes glutathione and thioredoxin.
Collapse
Affiliation(s)
- Marta Pawłowska
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-092 Bydgoszcz, Poland; (C.M.-K.); (A.W.)
| | - Celestyna Mila-Kierzenkowska
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-092 Bydgoszcz, Poland; (C.M.-K.); (A.W.)
| | - Jan Szczegielniak
- Physiotherapy Department, Faculty of Physical Education and Physiotherapy, Opole University of Technology, 45-758 Opole, Poland;
- Ministry of Internal Affairs and Administration’s Specialist Hospital of St. John Paul II, 48-340 Glucholazy, Poland
| | - Alina Woźniak
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-092 Bydgoszcz, Poland; (C.M.-K.); (A.W.)
| |
Collapse
|
9
|
Divenuto F, Marascio N, Quirino A, Giancotti A, Filice S, Gigliotti S, Campolo MP, Campolo M, Barreca GS, Lamberti AG, Castelli G, Bruno F, Matera G. Cellular mediators in human leishmaniasis: Critical determinants in parasite killing or disease progression. Acta Trop 2023; 248:107037. [PMID: 37805040 DOI: 10.1016/j.actatropica.2023.107037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/29/2023] [Accepted: 10/04/2023] [Indexed: 10/09/2023]
Abstract
Data on cellular immunity mediators in the early phase of human leishmaniasis are still limited and controversial. In order to mimic the changes of humoral mediators during the early phase of human natural infection, some Th1, Th2, Treg, and Breg cytokines, MCP-1, and the nitric oxide (NO) from human PBMC, stimulated by Leishmania infantum, Leishmania major, Leishmania donovani and Leishmania tropica infective metacyclic promastigotes, were determined. After 4 h of L. major, L. donovani, and L. tropica challenge, TNFα, IL-1β, IL-6 levels were significantly higher than negative control cultures with saline (SF) instead of Leishmania promastigotes, unlike L. infantum-stimulated TNFα and L. major-stimulated IL-1β. We obtained higher levels of IL-4 and IL-10 cytokines after stimulation of human PBMCs by L. infantum and L. donovani, compared to those observed after the challenge of PBMCs by L. major and L. tropica. Regarding IL-35, such cytokine levels were significantly increased following infection with L. infantum and L. donovani, in contrast to L. major and L. tropica. Up to our knowledge, we are the first to study the effect of four different species of Leishmania on IL-35 levels in human cells. Our study highlights how several Leishmania species can up-regulate different groups of cytokines (Th1, Th2, Treg and Breg) and modulate NO release in a different way. This original aspect can be explained by different Leishmania cell products, such as LPG, obtained from different strains/species of live parasites. Our findings would contribute to the development of new therapeutics or vaccination strategies.
Collapse
Affiliation(s)
- F Divenuto
- Clinical Microbiology Unit, Department of Health Sciences, "Magna Græcia" University of Catanzaro, 88100 Catanzaro, Italy
| | - N Marascio
- Clinical Microbiology Unit, Department of Health Sciences, "Magna Græcia" University of Catanzaro, 88100 Catanzaro, Italy
| | - A Quirino
- Clinical Microbiology Unit, Department of Health Sciences, "Magna Græcia" University of Catanzaro, 88100 Catanzaro, Italy.
| | - A Giancotti
- Clinical Microbiology Unit, Department of Health Sciences, "Magna Græcia" University of Catanzaro, 88100 Catanzaro, Italy
| | - S Filice
- Clinical Microbiology Unit, Department of Health Sciences, "Magna Græcia" University of Catanzaro, 88100 Catanzaro, Italy
| | - S Gigliotti
- Clinical Microbiology Unit, Department of Health Sciences, "Magna Græcia" University of Catanzaro, 88100 Catanzaro, Italy
| | - M P Campolo
- Clinical Microbiology Unit, Department of Health Sciences, "Magna Græcia" University of Catanzaro, 88100 Catanzaro, Italy
| | - M Campolo
- Clinical Microbiology Unit, Department of Health Sciences, "Magna Græcia" University of Catanzaro, 88100 Catanzaro, Italy
| | - G S Barreca
- Clinical Microbiology Unit, Department of Health Sciences, "Magna Græcia" University of Catanzaro, 88100 Catanzaro, Italy
| | - A G Lamberti
- Clinical Microbiology Unit, Department of Health Sciences, "Magna Græcia" University of Catanzaro, 88100 Catanzaro, Italy
| | - G Castelli
- National Reference Center for Leishmaniasis (C.Re.Na.L.), Istituto Zooprofilattico Sperimentale della Sicilia, 90129 Palermo, Italy
| | - F Bruno
- National Reference Center for Leishmaniasis (C.Re.Na.L.), Istituto Zooprofilattico Sperimentale della Sicilia, 90129 Palermo, Italy
| | - G Matera
- Clinical Microbiology Unit, Department of Health Sciences, "Magna Græcia" University of Catanzaro, 88100 Catanzaro, Italy
| |
Collapse
|
10
|
Romero AH, Aguilera E, Gotopo L, Cabrera G, Dávila B, Cerecetto H. Optimization of the 2-arylquinazoline-4(3 H)one scaffold for a selective and potent antitrypanosomal agent: modulation of the mechanism of action through chemical functionalization. RSC Med Chem 2023; 14:1992-2006. [PMID: 37859724 PMCID: PMC10583831 DOI: 10.1039/d3md00243h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/07/2023] [Indexed: 10/21/2023] Open
Abstract
We sought to identify a potent and selective antitrypanosomal agent through modulation of the mechanism of action of a 2-arylquinazoline scaffold as an antitrypanosomal agent via chemical functionalization at the 4-position. We wished to use the: (i) susceptibility of trypanosomatids towards nitric oxide (NO) and reactive oxygen species (ROS); (ii) capacity of the 4-substituted quinazoline system to act as an antifolate agent. Three quinazolin-based moieties that differed from each other by having at the 4-position key pharmacophores targeting the induction of NO and ROS production were evaluated in vitro against Leishmania infantum and Trypanosoma cruzi parasites and their modes of action were explored. Replacement of an oxygen moiety at the 4-position of the antifolate 2-arylquinazolin-4(3H)one by hydrazinyl and 5-nitrofuryl-hydrazinyl pharmacophores enhanced antitrypanosomatid activity significantly due to promotion of an additional mechanism beyond the antifolate response such as NO or ROS production, respectively. Among the three types of chemical functionalization, the 5-nitrofuryl-hydrazinyl moiety generated the most potent compounds. Compound 3b was a potential candidate thanks to its sub-micromolar response against the promastigotes/amastigotes of L. infantum and epimastigote of T. cruzi, moderate toxicity on macrophages (J774.1), good selectivity index (∼15.1-17.6) and, importantly, non-mutagenic effects. 2-Arylquinazoline could be an attractive platform to design new anti-trypanosomatid agents with the use of key pharmacophores.
Collapse
Affiliation(s)
- Angel H Romero
- Grupo de Química Orgánica Medicinal, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la Republica Igual 4225 11400 Montevideo Uruguay
| | - Elena Aguilera
- Grupo de Química Orgánica Medicinal, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la Republica Igual 4225 11400 Montevideo Uruguay
| | - Lourdes Gotopo
- Laboratorio de Síntesis de Orgánica, Facultad de Ciencias, Universidad Central de Venezuela Los Chaguaramos Caracas 1041-A Venezuela
| | - Gustavo Cabrera
- Laboratorio de Síntesis de Orgánica, Facultad de Ciencias, Universidad Central de Venezuela Los Chaguaramos Caracas 1041-A Venezuela
| | - Belén Dávila
- Grupo de Química Orgánica Medicinal, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la Republica Igual 4225 11400 Montevideo Uruguay
| | - Hugo Cerecetto
- Grupo de Química Orgánica Medicinal, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la Republica Igual 4225 11400 Montevideo Uruguay
- Área de Radiofarmacia, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la Republica Mataojo 42055 11400 Montevideo Uruguay
| |
Collapse
|
11
|
Rodrigues ACJ, Carloto ACM, Gonçalves MD, Concato VM, Detoni MB, dos Santos YM, Cruz EMS, Madureira MB, Nunes AP, Pires MFMK, Santos NC, Marques REDS, Bidoia DL, Borges Figueiredo F, Pavanelli WR. Exploring the leishmanicidal potential of terpenoids: a comprehensive review on mechanisms of cell death. Front Cell Infect Microbiol 2023; 13:1260448. [PMID: 37799331 PMCID: PMC10550302 DOI: 10.3389/fcimb.2023.1260448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 08/24/2023] [Indexed: 10/07/2023] Open
Abstract
Leishmaniasis is a neglected tropical disease with a wide spectrum of clinical manifestations, ranging from visceral to cutaneous, with millions of new cases and thousands of deaths reported each year. The species of Leishmania and the immune response of the host determine the severity of the disease. Leishmaniasis remains challenging to diagnose and treat, and there is no vaccine available. Several studies have been conducted on the use of herbal medicines for the treatment of leishmaniasis. Natural products can provide an inexhaustible source of chemical diversity with therapeutic potential. Terpenes are a class of natural products derived from a single isoprene unit, a five-carbon compound that forms the basic structure of isoprenoids. This review focuses on the most important and recent advances in the treatment of parasites of the genus Leishmania with different subclasses of terpenes. Several mechanisms have been proposed in the literature, including increased oxidative stress, immunomodulatory role, and induction of different types of parasite cell death. However, this information needs to be brought together to provide an overview of how these compounds can be used as therapeutic tools for drug development and as a successful adjuvant strategy against Leishmania sp.
Collapse
Affiliation(s)
- Ana Carolina Jacob Rodrigues
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer, Department of Pathological Sciences, State University of Londrina, Londrina, Brazil
- Cell Biology Laboratory, Carlos Chagas Institute- Fiocruz, Curitiba, Brazil
| | - Amanda Cristina Machado Carloto
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer, Department of Pathological Sciences, State University of Londrina, Londrina, Brazil
| | | | - Virgínia Márcia Concato
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer, Department of Pathological Sciences, State University of Londrina, Londrina, Brazil
| | - Mariana Barbosa Detoni
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer, Department of Pathological Sciences, State University of Londrina, Londrina, Brazil
| | - Yasmin Munhoz dos Santos
- Laboratory of Experimental Immunoparasitology, Department of Pathological Sciences, State University of Londrina, Londrina, Brazil
| | - Ellen Mayara Souza Cruz
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer, Department of Pathological Sciences, State University of Londrina, Londrina, Brazil
| | - Maria Beatriz Madureira
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer, Department of Pathological Sciences, State University of Londrina, Londrina, Brazil
| | - Angélica Paulina Nunes
- Laboratory for Metabolic Disorders of Reproduction, Department of Pathological Sciences, State University of Londrina, Londrina, Brazil
| | - Maria Fernanda Maya Kuriki Pires
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer, Department of Pathological Sciences, State University of Londrina, Londrina, Brazil
| | - Natália Concimo Santos
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer, Department of Pathological Sciences, State University of Londrina, Londrina, Brazil
| | | | - Danielle Lazarin Bidoia
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer, Department of Pathological Sciences, State University of Londrina, Londrina, Brazil
| | | | - Wander Rogério Pavanelli
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer, Department of Pathological Sciences, State University of Londrina, Londrina, Brazil
| |
Collapse
|
12
|
Henriquez-Figuereo A, Moreno E, Sanmartin C, Plano D. Exploring Novel Drug Combinations: The Therapeutic Potential of Selanyl Derivatives for Leishmania Treatment. Molecules 2023; 28:5845. [PMID: 37570815 PMCID: PMC10420963 DOI: 10.3390/molecules28155845] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023] Open
Abstract
This work describes the design, synthesis, and biological activities of new selenoester derivatives and its homologs thioesters. Thirty-two compounds were developed following an economical synthetic route, achieving small molecules, with structural characteristics similar to those present in antileishmanial drugs such as miltefosine (MIL) and paromomycin (PMN). These compounds were tested in vitro against strains of Leishmania major (L. major) and Leishmania infantum (L. infantum). The L. infantum strain (causative agent of visceral leishmaniasis) exhibited the highest sensitivity. Thus, four selanylacetic acid derivatives (A4, A5, A6 and A8) presented IC50 values below 40 µM in this strain. These derivatives also demonstrated low toxicity and high selectivity in PMA-differentiated THP-1 macrophages. The A4-A6 and A8 derivatives were evaluated in order to determine their pharmacological behavior, using drug combination studies with the reference drugs amphotericin B (AMB), MIL and PMN. Compounds A6 and A8 presented a potent synergistic interaction with MIL, which is the only oral drug available for the treatment of visceral leishmaniasis. Therefore, compounds A6 and A8 present significant potential as therapeutic candidates for the treatment of leishmaniasis based on their remarkable leishmanicidal characteristics and pharmacological synergism.
Collapse
Affiliation(s)
- Andreina Henriquez-Figuereo
- Department of Pharmaceutical Technology and Chemistry, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain; (A.H.-F.); (E.M.)
- Institute of Tropical Health (ISTUN), University of Navarra, 31008 Pamplona, Spain
| | - Esther Moreno
- Department of Pharmaceutical Technology and Chemistry, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain; (A.H.-F.); (E.M.)
- Institute of Tropical Health (ISTUN), University of Navarra, 31008 Pamplona, Spain
- Navarra Institute for Health Research (IdisNA), 31008 Pamplona, Spain
| | - Carmen Sanmartin
- Department of Pharmaceutical Technology and Chemistry, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain; (A.H.-F.); (E.M.)
- Institute of Tropical Health (ISTUN), University of Navarra, 31008 Pamplona, Spain
- Navarra Institute for Health Research (IdisNA), 31008 Pamplona, Spain
| | - Daniel Plano
- Department of Pharmaceutical Technology and Chemistry, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain; (A.H.-F.); (E.M.)
- Institute of Tropical Health (ISTUN), University of Navarra, 31008 Pamplona, Spain
- Navarra Institute for Health Research (IdisNA), 31008 Pamplona, Spain
| |
Collapse
|
13
|
Leite-Silva J, Oliveira-Ribeiro C, Morgado FN, Pimentel MIF, Lyra MR, Fagundes A, Miranda LFC, Valete-Rosalino CM, Schubach AO, Conceição-Silva F. Is There Any Difference in the In Situ Immune Response in Active Localized Cutaneous Leishmaniasis That Respond Well or Poorly to Meglumine Antimoniate Treatment or Spontaneously Heal? Microorganisms 2023; 11:1631. [PMID: 37512804 PMCID: PMC10384164 DOI: 10.3390/microorganisms11071631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 07/30/2023] Open
Abstract
Localized cutaneous leishmaniasis caused by Leishmania braziliensis can either respond well or poorly to the treatment or heal spontaneously; It seems to be dependent on the parasite and/or host factors, but the mechanisms are not fully understood. We evaluated the in situ immune response in eighty-two active lesions from fifty-eight patients prior to treatment classified as early spontaneous regression (SRL-n = 14); treatment responders (GRL-n = 20); and non-responders (before first treatment/relapse, PRL1/PRL2-n = 24 each). Immunohistochemistry was used to identify cell/functional markers which were correlated with the clinical characteristics. PRL showed significant differences in lesion number/size, clinical evolution, and positive parasitological examinations when compared with the other groups. SRL presented a more efficient immune response than GRL and PRL, with higher IFN-γ/NOS2 and a lower percentage of macrophages, neutrophils, NK, B cells, and Ki-67+ cells. Compared to SRL, PRL had fewer CD4+ Tcells and more CD163+ macrophages. PRL1 had more CD68+ macrophages and Ki-67+ cells but less IFN-γ than GRL. PRL present a less efficient immune profile, which could explain the poor treatment response, while SRL had a more balanced immune response profile for lesion healing. Altogether, these evaluations suggest a differentiated profile of the organization of the inflammatory process for lesions of different tegumentary leishmaniasis evolution.
Collapse
Affiliation(s)
- Jéssica Leite-Silva
- Laboratory of Immunoparasitology, Oswaldo Cruz Institute (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21041-250, RJ, Brazil
| | - Carla Oliveira-Ribeiro
- Service of Oncological Dermatology-National Institute of Cancer (INCA), Rio de Janeiro 20570-120, RJ, Brazil
| | - Fernanda Nazaré Morgado
- Laboratory of Immunoparasitology, Oswaldo Cruz Institute (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21041-250, RJ, Brazil
| | - Maria Inês Fernandes Pimentel
- Laboratory of Clinical Research and Surveillance in Leishmaniasis (LAPCLIN VIGILEISH) National Institute of Infectology Evandro Chagas (INI), Fiocruz Rio de Janeiro 21041-250, RJ, Brazil
| | - Marcelo Rosandiski Lyra
- Laboratory of Clinical Research and Surveillance in Leishmaniasis (LAPCLIN VIGILEISH) National Institute of Infectology Evandro Chagas (INI), Fiocruz Rio de Janeiro 21041-250, RJ, Brazil
| | - Aline Fagundes
- Laboratory of Clinical Research and Surveillance in Leishmaniasis (LAPCLIN VIGILEISH) National Institute of Infectology Evandro Chagas (INI), Fiocruz Rio de Janeiro 21041-250, RJ, Brazil
| | - Luciana Freitas Campos Miranda
- Laboratory of Clinical Research and Surveillance in Leishmaniasis (LAPCLIN VIGILEISH) National Institute of Infectology Evandro Chagas (INI), Fiocruz Rio de Janeiro 21041-250, RJ, Brazil
| | - Claudia Maria Valete-Rosalino
- Laboratory of Clinical Research and Surveillance in Leishmaniasis (LAPCLIN VIGILEISH) National Institute of Infectology Evandro Chagas (INI), Fiocruz Rio de Janeiro 21041-250, RJ, Brazil
| | - Armando Oliveira Schubach
- Laboratory of Clinical Research and Surveillance in Leishmaniasis (LAPCLIN VIGILEISH) National Institute of Infectology Evandro Chagas (INI), Fiocruz Rio de Janeiro 21041-250, RJ, Brazil
| | - Fátima Conceição-Silva
- Laboratory of Immunoparasitology, Oswaldo Cruz Institute (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21041-250, RJ, Brazil
| |
Collapse
|
14
|
Feng H, Dai W. Case Report: FDG-PET/CT findings in co-infection of visceral leishmaniasis and chronic hepatitis B. Front Cell Infect Microbiol 2023; 13:1175897. [PMID: 37325515 PMCID: PMC10264663 DOI: 10.3389/fcimb.2023.1175897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/16/2023] [Indexed: 06/17/2023] Open
Abstract
Visceral leishmaniasis is an opportunistic infection in immunocompromised patients. Herein, we report a case of an adult male patient with a persistent fever of unknown origin, along with chronic hepatitis B. The patient underwent bone marrow aspiration twice, which revealed hemophagocytosis. Abdomen enhanced CT revealed splenomegaly with a persistent strengthening of multiple nodules, and hemangiomas were diagnosed. A subsequent 18-fluoro-deoxyglucose (18F-FDG) PET/CT scan, which was implemented to search for the reason for the fever, showed diffuse splenic disease uptake, and splenic lymphoma was considered as the diagnosis. His clinical symptoms improved after receiving hemophagocytic lymphohistiocytosis (HLH) chemotherapy. However, the patient was readmitted for fever again only 2 months later. Splenectomy surgery is performed to confirm the diagnosis and classification of lymphoma. Visceral leishmaniasis was eventually diagnosed in a spleen specimen and the third bone marrow biopsy. He received treatment with lipid amphotericin B and remained recurrence-free for 1 year. In this paper, we aim to provide detailed information that will help further our understanding of the clinical symptoms and radiographic findings of visceral leishmaniasis.
Collapse
Affiliation(s)
| | - Wenli Dai
- Department of Nuclear Medicine, The First College of Clinical Medical Science, China Three Gorges University, Yichang, Hubei, China
| |
Collapse
|
15
|
Valigurová A, Kolářová I. Unrevealing the Mystery of Latent Leishmaniasis: What Cells Can Host Leishmania? Pathogens 2023; 12:pathogens12020246. [PMID: 36839518 PMCID: PMC9967396 DOI: 10.3390/pathogens12020246] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023] Open
Abstract
Leishmania spp. (Kinetoplastida) are unicellular parasites causing leishmaniases, neglected tropical diseases of medical and veterinary importance. In the vertebrate host, Leishmania parasites multiply intracellularly in professional phagocytes, such as monocytes and macrophages. However, their close relative with intracellular development-Trypanosoma cruzi-can unlock even non-professional phagocytes. Since Leishmania and T. cruzi have similar organelle equipment, is it possible that Leishmania can invade and even proliferate in cells other than the professional phagocytes? Additionally, could these cells play a role in the long-term persistence of Leishmania in the host, even in cured individuals? In this review, we provide (i) an overview of non-canonical Leishmania host cells and (ii) an insight into the strategies that Leishmania may use to enter them. Many studies point to fibroblasts as already established host cells that are important in latent leishmaniasis and disease epidemiology, as they support Leishmania transformation into amastigotes and even their multiplication. To invade them, Leishmania causes damage to their plasma membrane and exploits the subsequent repair mechanism via lysosome-triggered endocytosis. Unrevealing the interactions between Leishmania and its non-canonical host cells may shed light on the persistence of these parasites in vertebrate hosts, a way to control latent leishmaniasis.
Collapse
Affiliation(s)
- Andrea Valigurová
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
- Correspondence: (A.V.); (I.K.)
| | - Iva Kolářová
- Department of Parasitology, Faculty of Science, Charles University, Albertov 6, 128 44 Prague, Czech Republic
- Correspondence: (A.V.); (I.K.)
| |
Collapse
|
16
|
Beyzay F, Zavaran Hosseini A, Hazrati A, Karimi M, Soudi S. Autophagy induced macrophages by α-alumina(α-AL2O3) conjugated cysteine peptidase, enhances the cytotoxic activity of CD8 + T lymphocytes against Leishmania major. BIOIMPACTS : BI 2023; 13:393-403. [PMID: 37736336 PMCID: PMC10509742 DOI: 10.34172/bi.2023.25282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 08/15/2022] [Accepted: 08/17/2022] [Indexed: 09/23/2023]
Abstract
Introduction Induction of a protective immune response against Leishmania major requires the activation of both TH1 and CD8+ T lymphocytes. Because L. major is an intra-phagosomal parasite, its antigens do not have access to MHC-I. The present study aimed to evaluate the effect of cysteine peptidase A (CPA)/cysteine peptidase B (CPB) conjugated to α-AL2O3 on autophagy induction in L. major infected macrophages and subsequent activation of cytotoxic CD8+ T lymphocytes. Methods Recombinant CPA and CPB of L. major were produced in expression vectors and purified. Aldehyde functionalized α-AL2O3 were conjugated to hydrazine-modified CPA/CPB by a chemical bond was confirmed by Fourier-transform infrared spectroscopy (FTIR). The High efficient internalization of α-AL2O3 conjugated CPA/CPB to macrophages was confirmed using a fluorescence microscope and flowcytometry. Induction of the acidic autophagosome and LC3 conversion in macrophages was determined by acridine orange (AO) staining and western blot. Autophagy-activated macrophages were used for CD8+ T cell priming. Cytotoxic activity of the primed CD8+ T cell against L. major infected macrophages was measured using apoptosis assay. Results α-AL2O3 conjugated CPA/CPB enhances macrophages antigen uptake and increases acidic vacuole formation and LC-3I to LC-3II conversion. Co-culture of autophagy-activated macrophages with CD8+ T cells augmented CD8+ T cells priming and proliferation more than in other study groups. These primed CD8+ T cells induce significant apoptotic death of L. major infected macrophages compared with non-primed CD8+ T cells. Conclusion α-AL2O3 nanoparticles enhance the cross-presentation of L. major antigens to CD8+ T cells by inducing autophagy. This finding supports the positive role of autophagy and encourages the use of α-AL2O3 in vaccine design.
Collapse
Affiliation(s)
- Fatemeh Beyzay
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ahmad Zavaran Hosseini
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ali Hazrati
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mozhdeh Karimi
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Sara Soudi
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
17
|
Lai C, Heinemann J, Schleicher U, Schett G, Bogdan C, Bozec A, Soulat D. Chronic Systemic Infection of Mice with Leishmania infantum Leads to Increased Bone Mass. J Bone Miner Res 2023; 38:86-102. [PMID: 36332102 DOI: 10.1002/jbmr.4733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 10/20/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022]
Abstract
Vector-borne infections of humans with the protozoan parasite Leishmania (L.) infantum can cause a systemic and potentially lethal disease termed visceral leishmaniasis. In the corresponding mouse model, an intravenous infection with L. infantum leads to the persistence of parasites in various organs, including bone marrow (BM). Considering the anatomical proximity between the BM and the cortical bone, we investigated whether a chronic infection with L. infantum affected bone homeostasis. Unexpectedly, chronic infection with L. infantum caused an increase in bone mass in mice. In vivo, an increased number of osteoblasts and osteocytes and a decreased maturation of osteoclasts characterized the phenotype. Confocal laser scanning fluorescence microscopy confirmed the infection of BM macrophages but also revealed the presence of parasites in osteoclasts. In vitro, mature osteoclasts took up L. infantum parasites. However, infection of osteoclast progenitors abolished their differentiation and function. In addition, secretory products of infected BM-derived macrophages inhibited the maturation of osteoclasts. Both in vitro and in vivo, infected macrophages and osteoclasts showed an enhanced expression of the anti-osteoclastogenic chemokine CCL5 (RANTES). Neutralization of CCL5 prevented the inhibition of osteoclast generation seen in the presence of culture supernatants from L. infantum-infected macrophages. Altogether, our study shows that chronic infection with Leishmania increases bone mass by inducing bone formation and impairing osteoclast differentiation and function. © 2022 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Chaobo Lai
- Mikrobiologisches Institut-Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
- Department of Internal Medicine 3, Rheumatology and Immunology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Jennifer Heinemann
- Mikrobiologisches Institut-Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Ulrike Schleicher
- Mikrobiologisches Institut-Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
- Medical Immunology Campus Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Georg Schett
- Department of Internal Medicine 3, Rheumatology and Immunology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
- Medical Immunology Campus Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Christian Bogdan
- Mikrobiologisches Institut-Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
- Medical Immunology Campus Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Aline Bozec
- Department of Internal Medicine 3, Rheumatology and Immunology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
- Medical Immunology Campus Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Didier Soulat
- Mikrobiologisches Institut-Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
- Medical Immunology Campus Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
18
|
Kumari D, Mahajan S, Kour P, Singh K. Virulence factors of Leishmania parasite: Their paramount importance in unraveling novel vaccine candidates and therapeutic targets. Life Sci 2022; 306:120829. [PMID: 35872004 DOI: 10.1016/j.lfs.2022.120829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/15/2022] [Accepted: 07/17/2022] [Indexed: 12/30/2022]
Abstract
Leishmaniasis is a neglected tropical disease and remains a global concern for healthcare. It is caused by an opportunistic protozoan parasite belonging to the genus Leishmania and affects millions worldwide. This disease is mainly prevalent in tropical and subtropical regions and is associated with a high risk of public morbidity and mortality if left untreated. Transmission of this deadly disease is aggravated by the bite of female sand-fly vectors (Phlebotomus and Lutzomyia). With time, significant advancement in leishmaniasis-related research has been carried out to cope with the disease burden. Still, the Leishmania parasite has also co-evolved with its host and adapted successfully within the host's lethal milieu/environment. Thus, understanding and knowledge of various leishmanial virulence factors responsible for the parasitic infection are essential for exploring drug targets and vaccine candidates. The present review elucidates the importance of virulence factors in pathogenesis and summarizes the major leishmanial virulence molecules contributing to the parasitic infection during host-pathogen interaction. Furthermore, we have also elaborated on the potential contribution of leishmanial virulence proteins in developing vaccine candidates and exploring novel therapeutics against this parasitic disease. We aim to represent a clearer picture of parasite pathogenesis within the human host that can further aid in unraveling new strategies to fight against the deadly infection of leishmaniasis.
Collapse
Affiliation(s)
- Diksha Kumari
- Infectious Diseases Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shavi Mahajan
- Infectious Diseases Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Parampreet Kour
- Infectious Diseases Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Kuljit Singh
- Infectious Diseases Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
19
|
Preliminary study for the application of Raman spectroscopy for the identification of Leishmania infected dogs. Sci Rep 2022; 12:7489. [PMID: 35523983 PMCID: PMC9076911 DOI: 10.1038/s41598-022-11525-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/15/2022] [Indexed: 11/09/2022] Open
Abstract
Raman spectroscopy is a rapid qualitative and quantitative technique that allows the simultaneous determination of several components in biological fluids. This methodology concerns an alternative technique to distinguish between non-healthy and healthy subjects. Leishmaniasis is a zoonosis of world interest, the most important agent is L. infantum. Dogs are the principal reservoirs affected by a broad spectrum of clinical features. During a clinical exam, blood samples were collected in tubes without anticoagulants, from twenty two dogs. One aliquot was used for serological test for Leishmaniasis, one aliquot was subjected to the Raman spectroscopic analysis. Animals were divided into two groups of equal subjects, Leishmania group (LG) constituted by infected dogs, and control group (CG) constituted by healthy dogs. The acquired spectra were different in the region 1200-1370 cm-1, in which it is possible to distinguish the amide III vibration (~ 1300 cm-1). In LG, an evident shift to the shortwave region is observed in spectral frequencies of the band centered at ~ 1250 cm-1. Our results distinguished between LD group and CG. Further studies are necessary to exclude the effect of metabolic modification due to disease on the recorded spectra changes and to consolidate the achievability of Raman spectroscopy as rapid and less expensive diagnosis of Leishmaniasis.
Collapse
|
20
|
Maruyama SR, Fuzo CA, Oliveira AER, Rogerio LA, Takamiya NT, Pessenda G, de Melo EV, da Silva AM, Jesus AR, Carregaro V, Nakaya HI, Almeida RP, da Silva JS. Insight Into the Long Noncoding RNA and mRNA Coexpression Profile in the Human Blood Transcriptome Upon Leishmania infantum Infection. Front Immunol 2022; 13:784463. [PMID: 35370994 PMCID: PMC8965071 DOI: 10.3389/fimmu.2022.784463] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 02/11/2022] [Indexed: 12/13/2022] Open
Abstract
Visceral leishmaniasis (VL) is a vector-borne infectious disease that can be potentially fatal if left untreated. In Brazil, it is caused by Leishmania infantum parasites. Blood transcriptomics allows us to assess the molecular mechanisms involved in the immunopathological processes of several clinical conditions, namely, parasitic diseases. Here, we performed mRNA sequencing of peripheral blood from patients with visceral leishmaniasis during the active phase of the disease and six months after successful treatment, when the patients were considered clinically cured. To strengthen the study, the RNA-seq data analysis included two other non-diseased groups composed of healthy uninfected volunteers and asymptomatic individuals. We identified thousands of differentially expressed genes between VL patients and non-diseased groups. Overall, pathway analysis corroborated the importance of signaling involving interferons, chemokines, Toll-like receptors and the neutrophil response. Cellular deconvolution of gene expression profiles was able to discriminate cellular subtypes, highlighting the contribution of plasma cells and NK cells in the course of the disease. Beyond the biological processes involved in the immunopathology of VL revealed by the expression of protein coding genes (PCGs), we observed a significant participation of long noncoding RNAs (lncRNAs) in our blood transcriptome dataset. Genome-wide analysis of lncRNAs expression in VL has never been performed. lncRNAs have been considered key regulators of disease progression, mainly in cancers; however, their pattern regulation may also help to understand the complexity and heterogeneity of host immune responses elicited by L. infantum infections in humans. Among our findings, we identified lncRNAs such as IL21-AS1, MIR4435-2HG and LINC01501 and coexpressed lncRNA/mRNA pairs such as CA3-AS1/CA1, GASAL1/IFNG and LINC01127/IL1R1-IL1R2. Thus, for the first time, we present an integrated analysis of PCGs and lncRNAs by exploring the lncRNA–mRNA coexpression profile of VL to provide insights into the regulatory gene network involved in the development of this inflammatory and infectious disease.
Collapse
Affiliation(s)
- Sandra Regina Maruyama
- Department of Genetics and Evolution, Center for Biological Sciences and Health, Federal University of São Carlos, São Carlos, Brazil
| | - Carlos Alessandro Fuzo
- Department of Clinical Analyses, Toxicology and Food Sciences, Ribeirão Preto School of Pharmaceutics Sciences, University of São Paulo, Ribeirão Preto, Brazil
| | - Antonio Edson R Oliveira
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Luana Aparecida Rogerio
- Department of Genetics and Evolution, Center for Biological Sciences and Health, Federal University of São Carlos, São Carlos, Brazil
| | - Nayore Tamie Takamiya
- Department of Genetics and Evolution, Center for Biological Sciences and Health, Federal University of São Carlos, São Carlos, Brazil
| | - Gabriela Pessenda
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Enaldo Vieira de Melo
- Department of Medicine, University Hospital-Empresa Brasileira de Serviços Hospitalares (EBSERH), Federal University of Sergipe, Aracaju, Brazil
| | - Angela Maria da Silva
- Department of Medicine, University Hospital-Empresa Brasileira de Serviços Hospitalares (EBSERH), Federal University of Sergipe, Aracaju, Brazil
| | - Amélia Ribeiro Jesus
- Department of Medicine, University Hospital-Empresa Brasileira de Serviços Hospitalares (EBSERH), Federal University of Sergipe, Aracaju, Brazil
| | - Vanessa Carregaro
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | | | - Roque Pacheco Almeida
- Department of Medicine, University Hospital-Empresa Brasileira de Serviços Hospitalares (EBSERH), Federal University of Sergipe, Aracaju, Brazil
| | - João Santana da Silva
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Fiocruz-Bi-Institutional Translational Medicine Platform, Ribeirão Preto, Brazil
| |
Collapse
|
21
|
Conceição-Silva F, Morgado FN, Pinheiro RO, Tacchini-Cottier F. Editorial: The Skin Immune Response to Infectious Agents. Front Immunol 2022; 12:810059. [PMID: 35095901 PMCID: PMC8790154 DOI: 10.3389/fimmu.2021.810059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/23/2021] [Indexed: 11/17/2022] Open
Affiliation(s)
- Fatima Conceição-Silva
- Immunoparasitology Laboratory, Oswaldo Cruz Institute, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Fernanda N Morgado
- Immunoparasitology Laboratory, Oswaldo Cruz Institute, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Roberta O Pinheiro
- Leprosy Laboratory, Oswaldo Cruz Institute, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | | |
Collapse
|
22
|
Montakhab-Yeganeh H, Shafiei R, Najm M, Masoori L, Aspatwar A, Badirzadeh A. Immunogenic properties of empty pcDNA3 plasmid against zoonotic cutaneous leishmaniasis in mice. PLoS One 2022; 17:e0263993. [PMID: 35167596 PMCID: PMC8846536 DOI: 10.1371/journal.pone.0263993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 02/01/2022] [Indexed: 11/18/2022] Open
Abstract
Background Leishmania (L) parasite, the causative agent of zoonotic cutaneous leishmaniasis (ZCL), effectively stimulates the mammalian cells to mount strong humoral responses by enhancing T-helper-2 (Th2)-associated cytokines for its survival. The best strategy to decrease the intensity of infection in the host is induction of cellular immunity. Methods We evaluated the effects of the empty bacterial pcDNA3 plasmid on mice infected with L. major and quantified the immune mediators including IFN-γ, IL-4, IL-10, IgG2a, IgG1, arginase activity and nitric oxide (NO) in the mice. Moreover, the footpad lesion size and parasite load were assessed. Results We observed that pcDNA3 could modulate the immune responses in favor of host cells and decrease the disease severity. Th2- associated mediators, including arginase, IL-4, and IL-10 are downregulated, while cellular responses are upregulated in line with an increase in the levels of nitric oxide (NO) and interfero-gamma (IFN-γ). Interestingly, pcDNA3 induced specific Th1-associated antibodies, IgG2a isotype; however, it suppressed the production of humoral IgG1. The stimulation of the immune response by the empty pcDNA3 is able to shift the immune function to predominant cellular responses caused by Th1, and it had a positive effect on the treatment of zoonotic cutaneous leishmaniasis (ZCL). Conclusions Altogether, we introduced the pcDNA3 as a potential interfering factor in the modulation of the immune system against ZCL. Since this vector has been widely used as a control group in different studies, we suggest that the potential function of the empty vector should be deeply assessed, as it exerts anti-parasitic effects on mice infected with L. major.
Collapse
Affiliation(s)
- Hossein Montakhab-Yeganeh
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
- Department of Biochemistry, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Reza Shafiei
- Vector-borne Diseases Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Mehdi Najm
- Department of Parasitology and Mycology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Leila Masoori
- Department of Laboratory Sciences, School of Allied Medical Sciences, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Ashok Aspatwar
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Alireza Badirzadeh
- Department of Parasitology and Mycology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- * E-mail: ,
| |
Collapse
|
23
|
Bamigbola IE, Ali S. Paradoxical immune response in leishmaniasis: the role of toll-like receptors in disease progression. Parasite Immunol 2022; 44:e12910. [PMID: 35119120 PMCID: PMC9285711 DOI: 10.1111/pim.12910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 01/30/2022] [Accepted: 01/31/2022] [Indexed: 11/30/2022]
Abstract
Toll-like receptors (TLRs), members of pattern recognition receptors, are expressed on many cells of the innate immune system and their engagements with antigens regulates specific immune responses. TLRs signalling influences species-specific immune responses during Leishmania infection, thus, TLRs play a decisive role towards elimination or exacerbation of Leishmania infection. To date, there is no single therapeutic or prophylactic approach that fully effective against Leishmaniasis. An in-depth understanding of the mechanisms by which Leishmania species evade, or exploit host immune machinery could lead to the development of novel therapeutic approaches for the prevention and management of leishmaniasis. In this review, the role of TLRs in the induction of a paradoxical immune response in leishmaniasis was discussed. This review focuses on highlighting the novel interplay of TLR2/TLR9 driven resistance or susceptibility to 5 clinically important Leishmania species in human. The activation of TLR2/TLR9 can induce a diverse anti-Leishmania activities depending on the species of infecting Leishmania parasite. Infection with L. infantum and L. mexicana initiate TLR2/9 activation leading to host protective immune response while infection with L. major, L. donovani, and L. amazonensis trigger either a TLR2/9 related protective or non-protective immune responses. These findings suggest that TLR2 and TLR9 are targets worth pursuing either for modulation or blockage to trigger host protective immune response towards leishmaniasis.
Collapse
Affiliation(s)
- Ifeoluwa E Bamigbola
- Interdisciplinary Biomedical Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Selman Ali
- Interdisciplinary Biomedical Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| |
Collapse
|
24
|
Sanz CR, Miró G, Sevane N, Reyes-Palomares A, Dunner S. Modulation of Host Immune Response during Leishmania infantum Natural Infection: A Whole-Transcriptome Analysis of the Popliteal Lymph Nodes in Dogs. Front Immunol 2022; 12:794627. [PMID: 35058931 PMCID: PMC8763708 DOI: 10.3389/fimmu.2021.794627] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/10/2021] [Indexed: 12/21/2022] Open
Abstract
Leishmania infantum, the etiological agent of canine leishmaniosis (CanL) in Europe, was responsible of the largest outbreak of human leishmaniosis in Spain. The parasite infects and survives within myeloid lineage cells, causing a potentially fatal disease if left untreated. The only treatment option relies on chemotherapy, although immunotherapy strategies are being considered as novel approaches to prevent progression of the disease. To this aim, a deeper characterization of the molecular mechanisms behind the immunopathogenesis of leishmaniosis is necessary. Thus, we evaluated, for the first time, the host immune response during L. infantum infection through transcriptome sequencing of the popliteal lymph nodes aspirates of dogs with CanL. Differential expression and weighted gene co-expression network analyses were performed, resulting in the identification of 5,461 differentially expressed genes (DEGs) and four key modules in sick dogs, compared to controls. As expected, defense response was the highest enriched biological process in the DEGs, with six genes related to immune response against pathogens (CHI3L1, SLPI, ACOD1, CCL5, MPO, BPI) included among the ten most expressed genes; and two of the key co-expression modules were associated with regulation of immune response, which also positively correlated with clinical stage and blood monocyte concentration. In particular, sick dogs displayed significant changes in the expression of Th1, Th2, Th17 and Tr1 cytokines (e. g. TNF-α, IFN-γ, IL-21, IL-17, IL-15), markers of T cell and NK cell exhaustion (e. g. LAG3, CD244, Blimp-1, JUN), and B cell, monocyte and macrophage disrupted functionality (e. g. CD40LG, MAPK4, IL-1R, NLRP3, BCMA). In addition, we found an overexpression of XBP1 and some other genes involved in endoplasmic reticulum stress and the IRE1 branch of the unfolded protein response, as well as one co-expression module associated with these processes, which could be induced by L. infantum to prevent host cell apoptosis and modulate inflammation-induced lymphangiogenesis at lymph nodes. Moreover, 21 lncRNAs were differentially expressed in sick dogs, and one key co-expression module was associated with chromatin organization, suggesting that epigenetic mechanisms could also contribute to dampening host immune response during natural L. infantum infection in the lymph nodes of dogs suffering from clinical leishmaniosis.
Collapse
Affiliation(s)
- Carolina R Sanz
- Animal Health Department, Veterinary Faculty, Complutense University of Madrid, Madrid, Spain
| | - Guadalupe Miró
- Animal Health Department, Veterinary Faculty, Complutense University of Madrid, Madrid, Spain
| | - Natalia Sevane
- Department of Animal Production, Veterinary Faculty, Complutense University of Madrid, Madrid, Spain
| | - Armando Reyes-Palomares
- Department of Biochemistry and Molecular Biology, Complutense University of Madrid, Madrid, Spain
| | - Susana Dunner
- Department of Animal Production, Veterinary Faculty, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
25
|
Bichiou H, Rabhi S, Ben Hamda C, Bouabid C, Belghith M, Piquemal D, Trentin B, Rabhi I, Guizani-Tabbane L. Leishmania Parasites Differently Regulate Antioxidant Genes in Macrophages Derived From Resistant and Susceptible Mice. Front Cell Infect Microbiol 2021; 11:748738. [PMID: 34722338 PMCID: PMC8554229 DOI: 10.3389/fcimb.2021.748738] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/20/2021] [Indexed: 12/30/2022] Open
Abstract
Macrophage-Leishmania interactions are central to parasite growth and disease outcome. Macrophages have developed various strategies to fight invaders, including oxidative burst. While some microorganisms seem to survive and even thrive in an oxidative environment, others are susceptible and get killed. To counter oxidative stress, macrophages switch the expressions of cytoprotective and detoxifying enzymes, which are downstream targets of the nuclear factor erythroid 2-related factor 2 (Nrf2), to enhance cell survival. We have explored the transcription of NRF2 and of its target genes and compared the effect of the parasite on their transcription in bone marrow-derived macrophages (BMdMs) from Leishmania-resistant and Leishmania-susceptible mice. While heme oxygenase 1 (HO-1) transcription is independent of the genetic background, the transcription of glutathione reductase (Gsr) and of cysteine/glutamate exchange transporter (Slc7a11), involved in glutathione accumulation, was differentially regulated in BMdMs from both mouse strains. We also show that, except for HO-1, known to favor the survival of the parasite, the transcription of the selected genes, including Gsr, CD36, and catalase (CAT), was actively repressed, if not at all time points at least at the later ones, by the parasite, especially in Balb/c BMdMs. Consistent with these results, we found that the silencing of NRF2 in this study increases the survival and multiplication of the parasite.
Collapse
Affiliation(s)
- Haifa Bichiou
- Laboratory of Medical Parasitology, Biotechnology and Biomolecules, Institut Pasteur de Tunis, Tunis-Belvedere, Tunisia.,Faculty of Sciences of Tunis, Université de Tunis El Manar, Tunis, Tunisia
| | - Sameh Rabhi
- Laboratory of Medical Parasitology, Biotechnology and Biomolecules, Institut Pasteur de Tunis, Tunis-Belvedere, Tunisia
| | - Cherif Ben Hamda
- Laboratory of Medical Parasitology, Biotechnology and Biomolecules, Institut Pasteur de Tunis, Tunis-Belvedere, Tunisia
| | - Cyrine Bouabid
- Laboratory of Medical Parasitology, Biotechnology and Biomolecules, Institut Pasteur de Tunis, Tunis-Belvedere, Tunisia.,Faculty of Sciences of Tunis, Université de Tunis El Manar, Tunis, Tunisia
| | - Meriam Belghith
- Department of Immunology, Institut Pasteur de Tunis, University Tunis El-Manar, Tunis, Tunisia
| | | | | | - Imen Rabhi
- Laboratory of Medical Parasitology, Biotechnology and Biomolecules, Institut Pasteur de Tunis, Tunis-Belvedere, Tunisia.,Higher Institute of Biotechnology at Sidi-Thabet, Biotechpole Sidi-Thabet, University of Manouba, Sidi-Thabet, Tunisia
| | - Lamia Guizani-Tabbane
- Laboratory of Medical Parasitology, Biotechnology and Biomolecules, Institut Pasteur de Tunis, Tunis-Belvedere, Tunisia
| |
Collapse
|
26
|
Gabriel ÁM, Galué-Parra A, Pereira WLA, Pedersen KW, da Silva EO. Leishmania 360°: Guidelines for Exosomal Research. Microorganisms 2021; 9:2081. [PMID: 34683402 PMCID: PMC8537887 DOI: 10.3390/microorganisms9102081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/29/2021] [Accepted: 09/29/2021] [Indexed: 11/16/2022] Open
Abstract
Leishmania parasites are a group of kinetoplastid pathogens that cause a variety of clinical disorders while maintaining cell communication by secreting extracellular vesicles. Emerging technologies have been adapted for the study of Leishmania-host cell interactions, to enable the broad-scale analysis of the extracellular vesicles of this parasite. Leishmania extracellular vesicles (LEVs) are spheroidal nanoparticles of polydispersed suspensions surrounded by a layer of lipid membrane. Although LEVs have attracted increasing attention from researchers, many aspects of their biology remain unclear, including their bioavailability and function in the complex molecular mechanisms of pathogenesis. Given the importance of LEVs in the parasite-host interaction, and in the parasite-parasite relationships that have emerged during the evolutionary history of these organisms, the present review provides an overview of the available data on Leishmania, and formulates guidelines for LEV research. We conclude by reporting direct methods for the isolation of specific LEVs from the culture supernatant of the promastigotes and amastigotes that are suitable for a range of different downstream applications, which increases the compatibility and reproducibility of the approach for the establishment of optimal and comparable isolation conditions and the complete characterization of the LEV, as well as the critical immunomodulatory events triggered by this important group of parasites.
Collapse
Affiliation(s)
- Áurea Martins Gabriel
- Global Health and Tropical Medicine, GHTM, Institute of Hygiene and Tropical Medicine of NOVA University of Lisbon, IHMT-UNL, 1349-008 Lisbon, Portugal
- Laboratory of Structural Biology of Institute of Biological Sciences of Federal University of Pará, Av. Augusto Correa 01, Belém 66075-110, PA, Brazil; (A.G.-P.); (E.O.d.S.)
| | - Adan Galué-Parra
- Laboratory of Structural Biology of Institute of Biological Sciences of Federal University of Pará, Av. Augusto Correa 01, Belém 66075-110, PA, Brazil; (A.G.-P.); (E.O.d.S.)
| | | | | | - Edilene Oliveira da Silva
- Laboratory of Structural Biology of Institute of Biological Sciences of Federal University of Pará, Av. Augusto Correa 01, Belém 66075-110, PA, Brazil; (A.G.-P.); (E.O.d.S.)
- National Institute of Science and Technology in Structural Biology and Bioimaging, UFRJ, Rio de Janeiro 21941-902, RJ, Brazil
| |
Collapse
|
27
|
Biral NV, Azevedo Santos H, Senne NA, Paulino PG, Camilo TA, Tassinari WDS, Silva VL, Santos FN, Angelo IDC. A cross-sectional study of Leishmania spp. in draft horses from the Distrito Federal, Brazil: Seroprevalence, spatial distribution, and associated factors. Prev Vet Med 2021; 195:105467. [PMID: 34416652 DOI: 10.1016/j.prevetmed.2021.105467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 07/18/2021] [Accepted: 08/15/2021] [Indexed: 11/25/2022]
Abstract
Equine leishmaniasis is a neglected tropical disease caused by the protozoan of the Leishmania genus, and it has been reported in several countries around the world, especially Brazil. Therefore, the present investigation aims to conduct a cross-sectional study to determine the prevalence, spatial distribution, and associated factors with seropositivity for Leishmania spp. in draft horses from the Distrito Federal, Brazil. The serological survey was conducted on 411 animals, employing the Indirect Immunofluorescence Test (IFA) and Enzyme-Linked Immunosorbent Assay (ELISA). The Kappa (κ) and gross agreement indexes evaluated the Leishmania spp. seropositivity by IFA and ELISA test. The statistical analysis was performed using the Chi-square test and logistic regression. The spatial analysis showed the areas with the highest number of seropositive and the Moran autocorrelation analyses between the spatial distribution and the epidemiological model's explanatory variables. A 27.01 % co-positivity was observed with a κ index of 52.64 %. The final model considered the variables: access to water bodies (p-value = 0.008, Odds Ratio (OR) = 2.26, Confidence Interval (CI) = 1.24-4.13), the absence of the use of ectoparasiticide (p-value = 0.008, OR = 1.93 CI = 1.18-3.15) and traveling animal (p-value = 0.059, OR = 1.54, CI = 0.98-2.41). The Kernel map showed hot areas with a high concentration of nine positive animals per area and some lighter areas ranging from five to seven positive animals per area where control measures should be performed. The Moran autocorrelation analysis was significant for the variables: traveling animal (Moran's I = 0.540 and pseudo-p-value = 0.001) and the absence of use ectoparasiticide (Moran's I = 0.259 and pseudo-p-value = 0.005). The current study exposes a high seroprevalence of Leishmania spp. in horses in the Distrito Federal, Brazil. Moreover, it proposes that traveling animal, the access to water bodies and the absence of the use of ectoparasiticide are significantly associated with seropositivity for Leishmania spp. in draft horses, which may contribute to the implementation of prophylactic and controls measures where leishmaniasis is already stalled.
Collapse
Affiliation(s)
- Nádia Valesca Biral
- Department of Epidemiology and Public Health, Veterinary Institute, Federal Rural University of Rio de Janeiro, Road BR 465, Km 07, Seropedica - RJ, 23890-000, Brazil
| | - Huarrisson Azevedo Santos
- Department of Epidemiology and Public Health, Veterinary Institute, Federal Rural University of Rio de Janeiro, Road BR 465, Km 07, Seropedica - RJ, 23890-000, Brazil.
| | - Nathália Alves Senne
- Department of Epidemiology and Public Health, Veterinary Institute, Federal Rural University of Rio de Janeiro, Road BR 465, Km 07, Seropedica - RJ, 23890-000, Brazil
| | - Patrícia Gonzaga Paulino
- Department of Epidemiology and Public Health, Veterinary Institute, Federal Rural University of Rio de Janeiro, Road BR 465, Km 07, Seropedica - RJ, 23890-000, Brazil
| | - Tays Araújo Camilo
- Department of Epidemiology and Public Health, Veterinary Institute, Federal Rural University of Rio de Janeiro, Road BR 465, Km 07, Seropedica - RJ, 23890-000, Brazil
| | - Wagner de Souza Tassinari
- Department of Mathematics, Institute of Exact Sciences, Federal Rural University of Rio de Janeiro, Road BR 465, Km 07, Seropedica - RJ, 23890-000, Brazil
| | - Valmir Laurentino Silva
- Laboratory of Clinical Research and Surveillance in Leishmaniasis, Fundação Oswaldo Cruz (FIOCRUZ), National Institute of Infectious Diseases Evandro Chagas, Av. Brazil, 4365, Manguinhos-RJ, 21040-900, Brazil
| | - Fernanda Nunes Santos
- Laboratory of Clinical Research and Surveillance in Leishmaniasis, Fundação Oswaldo Cruz (FIOCRUZ), National Institute of Infectious Diseases Evandro Chagas, Av. Brazil, 4365, Manguinhos-RJ, 21040-900, Brazil
| | - Isabele da Costa Angelo
- Department of Epidemiology and Public Health, Veterinary Institute, Federal Rural University of Rio de Janeiro, Road BR 465, Km 07, Seropedica - RJ, 23890-000, Brazil
| |
Collapse
|
28
|
de Araújo Albuquerque LP, da Silva AM, de Araújo Batista FM, de Souza Sene I, Costa DL, Costa CHN. Influence of sex hormones on the immune response to leishmaniasis. Parasite Immunol 2021; 43:e12874. [PMID: 34309860 DOI: 10.1111/pim.12874] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/23/2021] [Accepted: 07/06/2021] [Indexed: 12/11/2022]
Abstract
The differences in morbidity and mortality patterns and life expectancy between the sexes are well established in different infectious and parasitic conditions, such as in leishmaniases, in which biological, genetic, sexual and hormonal variations can modulate the immune response indicating greater infectivity, prevalence and clinical severity in men. In this regard, in seeking the understanding of factors related to protection and susceptibility to infection, this review aimed to discuss the influence of sex hormones on the immune response to leishmaniases. In the literature, sex hormone variations promote differences in the innate, humoral and cell-mediated immune response, leading to greater susceptibility, mortality and complications in males. Epidemiological estimates confirm these results, showing a predominance of the disease, in its different clinical forms, in men and suggesting that sexual variations influence immunomodulatory mechanisms since the prevalence of cases comprises the post-puberty and adulthood period. In this perspective, the action of sex hormones has been investigated in different clinical models, highlighting the potential of testosterone in immunosuppression, given its association with greater susceptibility and poor control of parasite load and the induction of cell apoptosis and attenuation of pro-inflammatory signalling pathways. Therefore, hormonal variations influence the immune response among males and females against leishmaniases, in which androgens may present immunosuppressive potential, while steroids present immunomodulatory characteristics.
Collapse
Affiliation(s)
| | - Amanda Miranda da Silva
- Postgraduate Program in Biotechnology, Northeast Network of Biotechnology, Federal University of Piauí, Teresina, Brazil.,Leishmaniasis Laboratory, Federal University of Piauí, Teresina, Brazil
| | | | | | - Dorcas Lamounier Costa
- Maternal and Child Department, Federal University of Piauí and Intelligence Center in Emerging and Neglected Tropical Conditions (CIATEN, Teresina, Brazil
| | - Carlos Henrique Nery Costa
- Community Medicine Department, Federal University of Piauí and Intelligence Center in Emerging and Neglected Tropical Conditions (CIATEN, Teresina, Brazil
| |
Collapse
|
29
|
Magalhães LS, Bomfim LGS, Santos CNO, Dos Santos PL, Tanajura DM, Lipscomb MW, de Jesus AR, de Almeida RP, de Moura TR. Antimony resistance associated with persistence of Leishmania (Leishmania) infantum infection in macrophages. Parasitol Res 2021; 120:2959-2964. [PMID: 34272999 DOI: 10.1007/s00436-021-07231-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 06/16/2021] [Indexed: 10/20/2022]
Abstract
Visceral leishmaniasis is a severe disease caused by protozoan parasites that include Leishmania (L.) infantum. The disease is established when parasites subvert the immune response of the host. Notably, chemotherapy-based use of antimonial compounds can partially alleviate disease burden. Unfortunately, the resistance to drug treatments is increasing in areas endemic to the disease. In this report, we investigated immune responses within macrophages infected with antimony-resistant L. infantum isolates from patients with a relapse in the disease. Results revealed that antimony-resistant parasites persist in the first 24 h of infection. Activation of macrophage or blocking of thiol production during infection shows enhanced clearance of parasites, which is coordinately associated with increased production of pro-inflammatory cytokines. Taken together, these results suggest that the mechanism of antimony resistance in L. infantum isolates may be related to a decrease in macrophage microbicidal functions.
Collapse
Affiliation(s)
- Lucas Sousa Magalhães
- Laboratory of Molecular Biology and Immunology, Federal University of Sergipe, Aracaju, Brazil
| | | | | | - Priscila Lima Dos Santos
- Health Sciences Graduate Program, Federal University of Sergipe, Aracaju, Brazil.,Department of Health Education, Federal University of Sergipe, Lagarto, Brazil
| | | | | | - Amélia Ribeiro de Jesus
- Health Sciences Graduate Program, Federal University of Sergipe, Aracaju, Brazil.,Instituto de Investigação Em Imunologia, São Paulo, Brazil
| | - Roque Pacheco de Almeida
- Health Sciences Graduate Program, Federal University of Sergipe, Aracaju, Brazil.,Instituto de Investigação Em Imunologia, São Paulo, Brazil
| | - Tatiana Rodrigues de Moura
- Health Sciences Graduate Program, Federal University of Sergipe, Aracaju, Brazil. .,Department of Morphology, Federal University of Sergipe, São Cristóvão, Brazil.
| |
Collapse
|
30
|
Dos Santos AGA, da Silva MGL, Carneiro EL, de Lima LL, Fernandes ACBS, Silveira TGV, Sant'Ana DDMG, Nogueira-Melo GDA. A New Target Organ of Leishmania (Viannia) braziliensis Chronic Infection: The Intestine. Front Cell Infect Microbiol 2021; 11:687499. [PMID: 34336715 PMCID: PMC8317265 DOI: 10.3389/fcimb.2021.687499] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/22/2021] [Indexed: 01/22/2023] Open
Abstract
Leishmania (Viannia) braziliensis is one of the main causes of cutaneous leishmaniasis in the Americas. This species presents genetic polymorphism that can cause destructive lesions in oral, nasal, and oropharyngeal tracts. In a previous study, the parasite caused several histopathological changes to hamster ileums. Our study evaluates immune response components, morphological changes, and effects on neurons in the ileums of hamsters infected by three different strains of L. (V.) braziliensis in two infection periods. For the experiment, we separated hamsters into four groups: a control group and three infected groups. Infected hamsters were euthanized 90- or 120-days post infection. We used three strains of L. (V.) braziliensis: the reference MHOM/BR/1975/M2903 and two strains isolated from patients who had different responses to Glucantime® treatment (MHOM/BR/2003/2314 and MHOM/BR/2000/1655). After laparotomy, ileums were collected for histological processing, biochemical analysis, and evaluation of neurons in the myenteric and submucosal plexuses of the enteric nervous system (ENS). The results demonstrated the increase of blood leukocytes after the infection. Optical microscopy analysis showed histopathological changes with inflammatory infiltrates, edemas, ganglionitis, and Leishmania amastigotes in the ileums of infected hamsters. We observed changes in the organ histoarchitecture of infected hamsters when compared to control groups, such as thicker muscular and submucosa layers, deeper and wider crypts, and taller and broader villi. The number of intraepithelial lymphocytes and TGF-β-immunoreactive cells increased in all infected groups when compared to the control groups. Mast cells increased with longer infection periods. The infection also caused remodeling of intestinal collagen and morphometry of myenteric and submucosal plexus neurons; but this effect was dependent on infection duration. Our results show that L. (V.) braziliensis infection caused time-dependent alterations in hamster ileums. This was demonstrated by the reduction of inflammatory cells and the increase of tissue regeneration factors at 120 days of infection. The infected groups demonstrated different profiles in organ histoarchitecture, migration of immune cells, and morphometry of ENS neurons. These findings suggest that the small intestine (or at least the ileum) is a target organ for L. (V.) braziliensis infection, as the infection caused changes that were dependent on duration and strain.
Collapse
Affiliation(s)
| | | | - Erick Lincoln Carneiro
- Department of Clinical Analysis and Biomedicine, Universidade Estadual de Maringá, Maringá, Brazil
| | - Lainy Leiny de Lima
- Department of Morphological Sciences, Universidade Estadual de Maringá, Maringá, Brazil
| | | | | | - Debora de Mello Gonçales Sant'Ana
- Biosciences and Physiopathology Program, Universidade Estadual de Maringá, Maringá, Brazil.,Department of Morphological Sciences, Universidade Estadual de Maringá, Maringá, Brazil
| | - Gessilda de Alcantara Nogueira-Melo
- Biosciences and Physiopathology Program, Universidade Estadual de Maringá, Maringá, Brazil.,Department of Clinical Analysis and Biomedicine, Universidade Estadual de Maringá, Maringá, Brazil
| |
Collapse
|
31
|
Gélvez APC, Diniz Junior JAP, Brígida RTSS, Rodrigues APD. AgNP-PVP-meglumine antimoniate nanocomposite reduces Leishmania amazonensis infection in macrophages. BMC Microbiol 2021; 21:211. [PMID: 34253188 DOI: 10.1186/s12866-021-02267-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 06/10/2021] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Leishmaniasis is an infectious disease caused by parasites of the genus Leishmania and presents different clinical manifestations. The adverse effects, immunosuppression and resistant strains associated with this disease necessitate the development of new drugs. Nanoparticles have shown potential as alternative antileishmanial drugs. We showed in a previous study the biosynthesis, characterization and ideal concentration of a nanocomposite that promoted leishmanicidal activity. In the present study, we conducted a specific analysis to show the mechanism of action of AgNP-PVP-MA (silver nanoparticle-polyvinylpyrrolidone-[meglumine antimoniate (Glucantime®)]) nanocomposite during Leishmania amazonensis infection in vitro. RESULTS Through ultrastructural analysis, we observed significant alterations, such as the presence of small vesicles in the flagellar pocket and in the extracellular membrane, myelin-like structure formation in the Golgi complex and mitochondria, flagellum and plasma membrane rupture, and electrodense material deposition at the edges of the parasite nucleus in both evolutive forms. Furthermore, the Leishmania parasite infection index in macrophages decreased significantly after treatment, and nitric oxide and reactive oxygen species production levels were determined. Additionally, inflammatory, and pro-inflammatory cytokine and chemokine production levels were evaluated. The IL-4, TNF-α and MIP-1α levels increased significantly, while the IL-17 A level decreased significantly after treatment. CONCLUSIONS Thus, we demonstrate in this study that the AgNP-PVP-MA nanocomposite has leishmanial potential, and the mechanism of action was demonstrated for the first time, showing that this bioproduct seems to be a potential alternative treatment for leishmaniasis.
Collapse
Affiliation(s)
- Ana Patricia Cacua Gélvez
- Evandro Chagas Institute, Secretary of Health Surveillance, Laboratory of Electron Microscopy, Ministry of Health, Av. Almirante Barroso, 492, Marco, Pará, 66090-000, Belém, Brazil.,Postgraduate Program in Biology of Infectious and Parasitic Agents, Federal University of Pará, R. Augusto Corrêa, 01 - Guamá, Pará, CEP: 66075-110, Belém, Brazil
| | - José Antonio Picanço Diniz Junior
- Evandro Chagas Institute, Secretary of Health Surveillance, Laboratory of Electron Microscopy, Ministry of Health, Av. Almirante Barroso, 492, Marco, Pará, 66090-000, Belém, Brazil
| | - Rebecca Thereza Silva Santa Brígida
- Evandro Chagas Institute, Secretary of Health Surveillance, Laboratory of Electron Microscopy, Ministry of Health, Av. Almirante Barroso, 492, Marco, Pará, 66090-000, Belém, Brazil.,Postgraduate Program in Biology of Infectious and Parasitic Agents, Federal University of Pará, R. Augusto Corrêa, 01 - Guamá, Pará, CEP: 66075-110, Belém, Brazil
| | - Ana Paula Drummond Rodrigues
- Evandro Chagas Institute, Secretary of Health Surveillance, Laboratory of Electron Microscopy, Ministry of Health, Av. Almirante Barroso, 492, Marco, Pará, 66090-000, Belém, Brazil.
| |
Collapse
|
32
|
Tirado TC, Bavia L, Ambrosio AR, Campos MP, de Almeida Santiago M, Messias-Reason IJ, Figueiredo FB. A comparative approach on the activation of the three complement system pathways in different hosts of Visceral Leishmaniasis after stimulation with Leishmania infantum. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 120:104061. [PMID: 33667529 DOI: 10.1016/j.dci.2021.104061] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/25/2021] [Accepted: 02/25/2021] [Indexed: 06/12/2023]
Abstract
Visceral Leishmaniasis is an infectious disease that affects mainly humans and dogs, with the latter being important reservoirs of the parasite. Conversely, cats are naturally resistant. The immune system can offer important explanation to this problematic as there is no evidence on the role that the complement system plays in cats. In this context, effect of the complement system from human, dog and cat sera on Leishmania infantum was evaluated. Activation of the classical, alternative and lectin pathways was assessed through hemolytic and ELISA assays. Lytic activity of the complement on the parasite's viability was investigated by Transmission Electron Microscopy and Flow Cytometry. Complement proteins were more consumed in dog serum on the classical and alternative pathways, leading to less hemolytic activity, and only in cat serum they were consumed on the lectin pathway when incubated with L. infantum. Lytic activity on the parasite's surface was more accentuated in human serum, and varied throughout the parasite's developmental stages.
Collapse
Affiliation(s)
- Thais Cristina Tirado
- Laboratório de Biologia Celular, Instituto Carlos Chagas, Fundação Oswaldo Cruz (FIOCruz), Curitiba, Paraná, Brazil.
| | - Lorena Bavia
- Laboratório de Imunopatologia Molecular, Departamento de Patologia Médica, Universidade Federal Do Paraná (UFPR), Curitiba, Paraná, Brazil.
| | - Altair Rogerio Ambrosio
- Laboratório de Imunopatologia Molecular, Departamento de Patologia Médica, Universidade Federal Do Paraná (UFPR), Curitiba, Paraná, Brazil
| | - Monique Paiva Campos
- Laboratório de Biologia Celular, Instituto Carlos Chagas, Fundação Oswaldo Cruz (FIOCruz), Curitiba, Paraná, Brazil
| | | | - Iara Jose Messias-Reason
- Laboratório de Imunopatologia Molecular, Departamento de Patologia Médica, Universidade Federal Do Paraná (UFPR), Curitiba, Paraná, Brazil
| | - Fabiano Borges Figueiredo
- Laboratório de Biologia Celular, Instituto Carlos Chagas, Fundação Oswaldo Cruz (FIOCruz), Curitiba, Paraná, Brazil
| |
Collapse
|
33
|
Torrellas A, Ferrer E, Cruz I, De Lima H, Borges R, Delgado O, Moffi P, Miles MA, Feliciangeli MD. Surveillance for Leishmania asymptomatic infection in endemic foci of cutaneous leishmaniasis in Venezuela: a combination of leishmanin skin test and PCR using blood clots improves detection and enables identification of species. Trans R Soc Trop Med Hyg 2021; 114:433-439. [PMID: 31974548 DOI: 10.1093/trstmh/trz130] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 11/06/2019] [Accepted: 11/15/2019] [Indexed: 10/25/2022] Open
Abstract
BACKGROUND Little is known about the prevalence of asymptomatic leishmaniasis in Venezuela. The objective of this study was to quantify Leishmania asymptomatic infection in six endemic foci of cutaneous leishmaniasis (CL) in Portuguesa State, Venezuela, where no previous data were available. METHODS Study of the prevalence of Leishmania asymptomatic infection was carried out in 841 individuals from six endemic foci of CL in the municipalities Sucre and Ospino, Portuguesa State. We applied the leishmanin skin test (LST) and the internal transcribed spacer 1 (ITS1) PCR to DNA from sera and blood clots of all LST-positive and 20% of LST-negative patients. RESULTS Of 841 inhabitants tested by LST, 197 returned a positive reaction (23.42%); all of the LST-positives (197) and 121 negatives were screened by nested PCR using serum and blood clots. Among the LST-positive group, 2.54% were PCR-positive with sera, while 44.67% were positive with blood clots. In the LST-negative group, PCR was positive in 2.48% of serum samples and in 38.84% of blood clots. CONCLUSIONS It is recommended that LST and PCR on blood clots are used together to detect exposure and asymptomatic infection and for identification of the Leishmania species.
Collapse
Affiliation(s)
- Annhymariet Torrellas
- Centro Nacional de Referencia de Flebotomos y otros Vectores (CNRFV), Instituto de Investigaciones Biomedicas "Dr. Francisco J.Triana-Alonso" (BIOMED), Facultad de Ciencias de la Salud, Universidad de Carabobo, Maracay, Venezuela
| | - Elizabeth Ferrer
- Instituto de Investigaciones Biomedicas "Dr. Francisco J.Triana-Alonso" (BIOMED), Facultad de Ciencas de la Salud Sede Aragua, Universidad de Carabobo, Maracay, Venezuela
| | - Israel Cruz
- WHO Collaborating Centre for Leishmaniasis, National Center for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Hector De Lima
- Servicio Autónomo, Instituto de Biomedicina, Ministerio del Poder Popular para la Salud (MPPS), Caracas, Venezuela
| | - Rafael Borges
- Escuela de Estadística, Universidad de Los Andes, Mérida, Venezuela
| | - Olinda Delgado
- Instituto de Medicina Tropical, Universidad Central de Venezuela, Caracas, Venezuela
| | - Pablo Moffi
- Servicio de Dermatología Sanitaria, Guanare, Portuguesa, Venezuela
| | - Michael A Miles
- Department of Pathogen Molecular Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - M Dora Feliciangeli
- Centro Nacional de Referencia de Flebotomos y otros Vectores (CNRFV), Instituto de Investigaciones Biomedicas "Dr. Francisco J.Triana-Alonso" (BIOMED), Facultad de Ciencias de la Salud, Universidad de Carabobo, Maracay, Venezuela
| |
Collapse
|
34
|
Arraché Gonçalves G, Eifler-Lima VL, von Poser GL. Revisiting nature: a review of iridoids as a potential antileishmanial class. PHYTOCHEMISTRY REVIEWS : PROCEEDINGS OF THE PHYTOCHEMICAL SOCIETY OF EUROPE 2021; 21:101-126. [PMID: 33746658 PMCID: PMC7960493 DOI: 10.1007/s11101-021-09750-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 03/02/2021] [Indexed: 06/12/2023]
Abstract
Leishmaniasis still stands as one of the most prevalent neglected tropical diseases in the least developed and emerging countries. The recommended therapeutic arsenal to treat leishmaniasis is characterized by several shortcomings, and resistance has already been reported. Hence, this dramatic background highlights the pressing need to develop novel, affordable, and safe antileishmanial drugs. Multiple classes of natural compounds have been reported to possess antileishmanial activity. Among these classes, iridoids stand out as a special type of monoterpenoids with diverse biological properties-including their antileishmanial potential. This review aims to discuss the available literature between 1991 and 2020 related to the antileishmanial activity of the iridoid class. Throughout the past decades, various investigations attributed antileishmanial action to assorted iridoid types, including inhibitory potential towards validated drug targets and immunomodulatory activity. The latter deserves special attention due to the ability of some iridoids to improve the host's immune response against parasites. It opens the possibility of iridoids become adjuncts in leishmaniasis treatments by improving the efficacy of currently employed drugs. Furthermore, the present study intends to provide a convenient visual representation of which iridoids and Leishmania spp. species have been most investigated as a guide for further researches.
Collapse
Affiliation(s)
- Guilherme Arraché Gonçalves
- Laboratório de Síntese Orgânica Medicinal (LaSOM), Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90610-000 Brazil
| | - Vera Lucia Eifler-Lima
- Laboratório de Síntese Orgânica Medicinal (LaSOM), Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90610-000 Brazil
| | - Gilsane Lino von Poser
- Laboratório de Farmacognosia, Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90610-000 Brazil
| |
Collapse
|
35
|
Bogdan C. Macrophages as host, effector and immunoregulatory cells in leishmaniasis: Impact of tissue micro-environment and metabolism. Cytokine X 2020; 2:100041. [PMID: 33604563 PMCID: PMC7885870 DOI: 10.1016/j.cytox.2020.100041] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 12/13/2022] Open
Abstract
Leishmania are protozoan parasites that predominantly reside in myeloid cells within their mammalian hosts. Monocytes and macrophages play a central role in the pathogenesis of all forms of leishmaniasis, including cutaneous and visceral leishmaniasis. The present review will highlight the diverse roles of macrophages in leishmaniasis as initial replicative niche, antimicrobial effectors, immunoregulators and as safe hideaway for parasites persisting after clinical cure. These multiplex activities are either ascribed to defined subpopulations of macrophages (e.g., Ly6ChighCCR2+ inflammatory monocytes/monocyte-derived dendritic cells) or result from different activation statuses of tissue macrophages (e.g., macrophages carrying markers of of classical [M1] or alternative activation [M2]). The latter are shaped by immune- and stromal cell-derived cytokines (e.g., IFN-γ, IL-4, IL-10, TGF-β), micro milieu factors (e.g., hypoxia, tonicity, amino acid availability), host cell-derived enzymes, secretory products and metabolites (e.g., heme oxygenase-1, arginase 1, indoleamine 2,3-dioxygenase, NOS2/NO, NOX2/ROS, lipids) as well as by parasite products (e.g., leishmanolysin/gp63, lipophosphoglycan). Exciting avenues of current research address the transcriptional, epigenetic and translational reprogramming of macrophages in a Leishmania species- and tissue context-dependent manner.
Collapse
Key Words
- (L)CL, (localized) cutaneous leishmaniasis
- AHR, aryl hydrocarbon receptor
- AMP, antimicrobial peptide
- Arg, arginase
- Arginase
- CAMP, cathelicidin-type antimicrobial peptide
- CR, complement receptor
- DC, dendritic cells
- DCL, diffuse cutaneous leishmaniasis
- HO-1, heme oxygenase 1
- Hypoxia
- IDO, indoleamine-2,3-dioxygenase
- IFN, interferon
- IFNAR, type I IFN (IFN-α/β) receptor
- IL, interleukin
- Interferon-α/β
- Interferon-γ
- JAK, Janus kinase
- LPG, lipophosphoglycan
- LRV1, Leishmania RNA virus 1
- Leishmaniasis
- Macrophages
- Metabolism
- NCX1, Na+/Ca2+ exchanger 1
- NFAT5, nuclear factor of activated T cells 5
- NK cell, natural killer cell
- NO, nitric oxide
- NOS2 (iNOS), type 2 (or inducible) nitric oxide synthase
- NOX2, NADPH oxidase 2 (gp91 or cytochrome b558 β-subunit of Phox)
- Nitric oxide
- OXPHOS, mitochondrial oxidative phosphorylation
- PKDL, post kala-azar dermal leishmaniasis
- Phagocyte NADPH oxidase
- Phox, phagocyte NADPH oxidase
- RNS, reactive nitrogen species
- ROS, reactive oxygen species
- SOCS, suppressor of cytokine signaling
- STAT, signal transducer and activator of transcription
- TGF-β, transforming growth factor-beta
- TLR, toll-like receptor
- Th1 (Th2), type 1 (type2) T helper cell
- Tonicity
- VL, visceral leishmaniasis
- mTOR, mammalian/mechanistic target of rapamycin
Collapse
Affiliation(s)
- Christian Bogdan
- Mikrobiologisches Institut - klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, D-91054 Erlangen, Germany.,Medical Immunology Campus Erlangen, FAU Erlangen-Nürnberg, D-91054 Erlangen, Germany
| |
Collapse
|
36
|
Should an intersection between visceral leishmaniasis endemicity and the COVID-19 pandemic be considered? Med Hypotheses 2020; 144:110289. [PMID: 33254591 PMCID: PMC7501079 DOI: 10.1016/j.mehy.2020.110289] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 09/16/2020] [Indexed: 12/13/2022]
Abstract
The COVID-19 pandemic caused by the infection with the novel Coronavirus SARS-CoV-2, revealed individual and global vulnerabilities, in which we highlight the social, economic, and political aspects and the health systems’ organization in the countries. Brazil remains with a high transmission rate and presents a centripetal distribution as observed through a more sustained growth in the number of municipalities affected, outlining a profile of invasion of poor communities. Several vulnerabilities overlap with precarious housing conditions, lack of basic sanitation, malnutrition, and endemicity for neglected chronic diseases such as visceral leishmaniasis (VL). COVID-19 and VL evidently do not share clinical features, but exactly because of the distinct immunopathogenesis between the diseases, patients with VL may present a vulnerability in the immune system against antiviral responses. Considering that VL susceptibility seems to be related to an inefficient and polarized immune response, it is likely that in endemic areas, the overlap of social weaknesses added to individual vulnerability by immune polarization may aggravate the COVID-19 condition. In this sense, we reinforce that possible relationships between endemic neglected diseases such as VL and pandemic SARS-CoV-2 infection need to be further considered and investigated.
Collapse
|
37
|
Drabe CH, Marvig RL, Borgwardt L, Lundgren JD, Maquart HVH, Katzenstein TL, Helleberg M. Case Report: Hyper IgM Syndrome Identified by Whole Genome Sequencing in a Young Syrian Man Presenting With Atypical, Severe and Recurrent Mucosal Leishmaniasis. Front Immunol 2020; 11:567856. [PMID: 33013931 PMCID: PMC7516301 DOI: 10.3389/fimmu.2020.567856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 08/13/2020] [Indexed: 11/13/2022] Open
Abstract
A previously healthy 19-year-old Syrian man presented with atypical and severe mucosal leishmaniasis caused by Leishmania tropica. During a 2-year period, he had three severe relapses despite various treatment strategies, including liposomal amphotericin B and Miltefosine. Because of the unusual clinical presentation, potential underlying immunodeficiency was investigated. Normal T and NK cell counts were found. The B cell count was slightly elevated at 0.7 × 109 cells/L (0.09 × 109 to 0.57 × 109 cells/L), but the proportions of memory and isotype switched memory B cells were severely diminished IgG levels were low, at 309 mg/dL (610-1490 mg/dL). The initial IgM and IgA levels were within normal range, but the IgA levels decreased to 57 mg/dL (70-430 mg/dL) during follow up. Common variable immunodeficiency (CVID) was initially suspected, because the immunological results of low IgG and IgA, low switched memory B cells, no profound T cell deficiency found and absence of secondary cause of hypogammaglobulinemia were compatible with this diagnosis (ESID 2019). However, the highly unusual and severe clinical presentation of L. tropica is not suggestive of B-cell deficiency or CVID. Eventually a pathogenic nonsense variant in the CD40 ligand gene [p.(Arg11∗)] was identified by whole genome sequencing, thus enabling the diagnosis of X-linked hyper IgM syndrome. This case illustrates and supports the potential for the use of whole genome sequencing in accurate diagnosis of primary immunodeficiencies.
Collapse
Affiliation(s)
- Camilla Heldbjerg Drabe
- Department of Infectious Diseases, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Rasmus L. Marvig
- Center for Genomic Medicine, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Line Borgwardt
- Center for Genomic Medicine, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Jens D. Lundgren
- Department of Infectious Diseases, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Infectious Diseases, PERSIMUNE, Centre of Excellence for Personalised Medicine of Infectious Complications in Immune Deficiency, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | | | - Terese Lea Katzenstein
- Department of Infectious Diseases, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Marie Helleberg
- Department of Infectious Diseases, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Infectious Diseases, PERSIMUNE, Centre of Excellence for Personalised Medicine of Infectious Complications in Immune Deficiency, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
38
|
Masoudzadeh N, Mizbani A, Rafati S. Transcriptomic profiling in Cutaneous Leishmaniasis patients. Expert Rev Proteomics 2020; 17:533-541. [PMID: 32886890 DOI: 10.1080/14789450.2020.1812390] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Cutaneous leishmaniasis (CL), caused by different Leishmania parasite species, is associated with parasite-induced immune-mediated skin inflammation and ulceration. Whereas many CL studies focus on gene expression signatures in mouse models, the transcriptional response driving human patients in the field is less characterized. Human studies in CL disease provide the opportunity to directly investigate the host-pathogen interaction in the cutaneous lesion site. AREAS COVERED Advances in high-throughput sequencing technologies, particularly their application for evaluation of the global gene expression changes, have made transcriptomics as a powerful tool to understand the pathogen-host molecular interactions. EXPERT COMMENTARY In this review, we focus on the transcriptomics studies that have been performed so far on human blood or tissue-driven samples to investigate Leishmania parasites interplay with the CL patients. Further, we summarize microarray and RNA-seq studies associated with lesion biopsies of CL patients to discuss how current whole genome analysis along with systems biology approaches have developed novel CL biomarkers for further applications, not only for research, but also for accelerating vaccine development.
Collapse
Affiliation(s)
- Nasrin Masoudzadeh
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran , Tehran, Iran
| | - Amir Mizbani
- Department of Health Sciences and Technology, ETH Zurich , Switzerland
| | - Sima Rafati
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran , Tehran, Iran
| |
Collapse
|
39
|
Pessenda G, da Silva JS. Arginase and its mechanisms in Leishmania persistence. Parasite Immunol 2020; 42:e12722. [PMID: 32294247 DOI: 10.1111/pim.12722] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 02/14/2020] [Accepted: 04/07/2020] [Indexed: 12/12/2022]
Abstract
Leishmaniasis is a neglected infectious disease with clinical presentations ranging from asymptomatic or mild symptoms to chronic infection and eventual death. The mechanisms of disease susceptibility and pathology have been extensively studied, but there are no steadfast rules regarding leishmaniasis. A Th1 response is usually associated with infection control, while a predominant Th2 response is detrimental to the patient. In this scenario, the enzymes arginase and inducible nitric oxide synthase represent two possible pathways of immune response. While the former contributes to parasite replication, the latter is crucial for its control. In the present review, we collected study results that associate arginase expression in patients and in experimental models with disease susceptibility/chronicity and show some proposed mechanisms that explain the role of arginase in maintaining Leishmania infection, including polyamine and thiol synthesis, tissue-resident macrophage (TRM) proliferation and activation and T-cell suppression and exhaustion.
Collapse
Affiliation(s)
- Gabriela Pessenda
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - João Santana da Silva
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Fundação Oswaldo Cruz Bi-institucional, Ribeirão Preto, Brazil
| |
Collapse
|
40
|
Phylloseptin-1 is Leishmanicidal for Amastigotes of Leishmania amazonensis Inside Infected Macrophages. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17134856. [PMID: 32640562 PMCID: PMC7370015 DOI: 10.3390/ijerph17134856] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/25/2020] [Accepted: 07/01/2020] [Indexed: 12/26/2022]
Abstract
Leishmania protozoans are the causal agents of neglected diseases that represent an important public health issue worldwide. The growing occurrence of drug-resistant strains of Leishmania and severe side effects of available treatments represent an important challenge for the leishmaniases treatment. We have previously reported the leishmanicidal activity of phylloseptin-1 (PSN-1), a peptide found in the skin secretion of Phyllomedusa azurea (=Pithecopus azureus), against Leishmania amazonensis promastigotes. However, its impact on the amastigote form of L. amazonensis and its impact on infected macrophages are unknown. In this work, we evaluated the effects of PSN-1 on amastigotes of L. amazonensis inside macrophages infected in vitro. We assessed the production of hydrogen peroxide and nitric oxide, as well as the levels of inflammatory and immunomodulatory markers (TGF-β, TNF-α and IL-12), in infected and non-infected macrophages treated with PSN-1. Treatment with PSN-1 decreased the number of infected cells and the number of ingested amastigotes per cell when compared with the untreated cells. At 32 µM (64 µg/mL), PSN-1 reduced hydrogen peroxide levels in both infected and uninfected macrophages, whereas it had little effect on NO production or TGF-β release. The effect of PSN-1 on IL-12 and TNF-α secretion depended on its concentration, but, in general, their levels tended to increase as PSN-1 concentration increased. Further in vitro and in vivo studies are needed to clarify the mechanisms of action of PSN-1 and its interaction with the immune system aiming to develop pharmacological applications.
Collapse
|
41
|
Parthasarathy A, Kalesh K. Defeating the trypanosomatid trio: proteomics of the protozoan parasites causing neglected tropical diseases. RSC Med Chem 2020; 11:625-645. [PMID: 33479664 PMCID: PMC7549140 DOI: 10.1039/d0md00122h] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 05/12/2020] [Indexed: 12/20/2022] Open
Abstract
Mass spectrometry-based proteomics enables accurate measurement of the modulations of proteins on a large scale upon perturbation and facilitates the understanding of the functional roles of proteins in biological systems. It is a particularly relevant methodology for studying Leishmania spp., Trypanosoma cruzi and Trypanosoma brucei, as the gene expression in these parasites is primarily regulated by posttranscriptional mechanisms. Large-scale proteomics studies have revealed a plethora of information regarding modulated proteins and their molecular interactions during various life processes of the protozoans, including stress adaptation, life cycle changes and interactions with the host. Important molecular processes within the parasite that regulate the activity and subcellular localisation of its proteins, including several co- and post-translational modifications, are also accurately captured by modern proteomics mass spectrometry techniques. Finally, in combination with synthetic chemistry, proteomic techniques facilitate unbiased profiling of targets and off-targets of pharmacologically active compounds in the parasites. This provides important data sets for their mechanism of action studies, thereby aiding drug development programmes.
Collapse
Affiliation(s)
- Anutthaman Parthasarathy
- Rochester Institute of Technology , Thomas H. Gosnell School of Life Sciences , 85 Lomb Memorial Dr , Rochester , NY 14623 , USA
| | - Karunakaran Kalesh
- Department of Chemistry , Durham University , Lower Mount Joy, South Road , Durham DH1 3LE , UK .
| |
Collapse
|