1
|
Wang JK, Zhang D, Wang JF, Lu WL, Wang JY, Liang SF, Liu R, Jiang JX, Li HT, Yang X. Clinical study on the effect of jejunoileal side-to-side anastomosis on metabolic parameters in patients with type 2 diabetes. World J Diabetes 2025; 16:99526. [DOI: 10.4239/wjd.v16.i1.99526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/04/2024] [Accepted: 11/08/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND At present, the existing internal medicine drug treatment can alleviate the high glucose toxicity of patients to a certain extent, to explore the efficacy of laparoscopic jejunoileal side to side anastomosis in the treatment of type 2 diabetes, the report is as follows.
AIM To investigate the effect of jejunoileal side-to-side anastomosis on metabolic parameters in patients with type 2 diabetes mellitus (T2DM).
METHODS We retrospectively analyzed the clinical data of 78 patients with T2DM who were treated via jejunoileal lateral anastomosis. Metabolic indicators were collected preoperatively, as well as at 3 and 6 months postoperative. The metabolic indicators analyzed included body mass index (BMI), systolic blood pressure (SBP), diastolic blood pressure (DBP), fasting blood glucose (FBG), 2-hour blood glucose (PBG), glycated hemoglobin (HbA1c), fasting C-peptide, 2-hour C-peptide (PCP), fasting insulin (Fins), 2-hour insulin (Pins), insulin resistance index (HOMA-IR), β Cellular function index (HOMA-β), alanine aminotransferase, aspartate aminotransferase, serum total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), triglycerides (TG), high-density lipoprotein, and uric acid (UA) levels.
RESULTS SBP, DBP, PBG, HbA1c, LDL-C, and TG were all significantly lower 3 months postoperative vs preoperative values; body weight, BMI, SBP, DBP, FBG, PBG, HbA1c, TC, TG, UA, and HOMA-IR values were all significantly lower 6 months postoperative vs at 3 months; and PCP, Fins, Pins, and HOMA-β were all significantly higher 6 months postoperative vs at 3 months (all P < 0.05).
CONCLUSION Side-to-side anastomosis of the jejunum and ileum can effectively treat T2DM and improve the metabolic index levels associated with it.
Collapse
Affiliation(s)
- Ji-Kui Wang
- Department of General Thoracic Surgery, Liaoning Electric Power Center Hospital, Shenyang 110000, Liaoning Province, China
| | - Di Zhang
- Department of Health Management Center, Liaoning Electric Power Center Hospital, Shenyang 110000, Liaoning Province, China
| | - Jin-Feng Wang
- Department of General Thoracic Surgery, Liaoning Electric Power Center Hospital, Shenyang 110000, Liaoning Province, China
| | - Wan-Lin Lu
- Department of General Thoracic Surgery, Liaoning Electric Power Center Hospital, Shenyang 110000, Liaoning Province, China
| | - Jing-Yuan Wang
- Department of General Thoracic Surgery, Liaoning Electric Power Center Hospital, Shenyang 110000, Liaoning Province, China
| | - Shi-Feng Liang
- Department of General Thoracic Surgery, Liaoning Electric Power Center Hospital, Shenyang 110000, Liaoning Province, China
| | - Ran Liu
- Department of General Thoracic Surgery, Liaoning Electric Power Center Hospital, Shenyang 110000, Liaoning Province, China
| | - Jing-Xin Jiang
- Department of General Thoracic Surgery, Liaoning Electric Power Center Hospital, Shenyang 110000, Liaoning Province, China
| | - Hong-Tao Li
- Department of General Thoracic Surgery, Liaoning Electric Power Center Hospital, Shenyang 110000, Liaoning Province, China
| | - Xuan Yang
- Department of General Thoracic Surgery, Liaoning Electric Power Center Hospital, Shenyang 110000, Liaoning Province, China
| |
Collapse
|
2
|
Momeni N, Mousavi SN, Chiti H, Heidarzadeh S. A maternal sweet diet is associated with the gut dysbiosis in the first trimester of pregnancy. BMC Nutr 2024; 10:162. [PMID: 39695908 DOI: 10.1186/s40795-024-00972-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 12/08/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND The composition of maternal gut phylum in each trimester of pregnancy has been associated with fetal development, separately. Diet is a main effective factor on the gut composition of phylum. However, associations between dietary glycemic index (GI), load (GL) and total antioxidant capacity (TAC) not studied with the gut population of phylum in mothers at the first trimester of pregnancy. MATERIALS AND METHODS Ninety healthy pregnant women aged 18-40 yrs, in the first trimester, were participated. Stool samples were gathered in a fasting state. Population of dominant phylum was determined after DNA extraction based on the 16SrRNA expression, as a housekeeping gene. Dietary intake was collected by a validated food frequency questionnaire and dietary indices were computed. RESULTS The Proteobacteria population was significantly higher in the gut of pregnant mothers than the other phylum (p < 0.001). Participants in the highest level of dietary GI had lower Bacteroidetes (p < 0.001) and Actinobacteria (p = 0.04) in their gut compared to the lowest level. Participants in the lowest level of dietary GL had higher Bacteroidetes (p < 0.001) and lower proteobacteria (p = 0.04) in their gut than the highest level. Dietary selenium showed a significant negative effect on the Firmicutes (p = 0.04) and Proteobacteria (p = 0.04), however positively affected the Actinobacteria (p = 0.01) population. Dietary zinc and manganese showed a negative effect on the Firmicutes population (p = 0.01 and p = 0.003). Zinc and vitamin E showed a negative effect on the Proteobacteria population (p = 0.04 and p = 0.03). CONCLUSIONS A maternal diet with high GI and GL have been associated with the gut dysbiosis, however dietary intake of selenium, zinc, manganese and vitamin E act in favor of the intestinal eubiosis in the first trimester of pregnancy.
Collapse
Affiliation(s)
- Navid Momeni
- Zanjan Metabolic Diseases Research Center, Health and Metabolic Diseases Research Institute, Zanjan University of Medical Sciences, Parvin Etesami St, Azadi Square, Zanjan, Iran
| | - Seyedeh Neda Mousavi
- Zanjan Metabolic Diseases Research Center, Health and Metabolic Diseases Research Institute, Zanjan University of Medical Sciences, Parvin Etesami St, Azadi Square, Zanjan, Iran.
- Department of Nutrition, School of Public Health, Zanjan University of Medical Sciences, Zanjan, Iran.
| | - Hossein Chiti
- Zanjan Metabolic Diseases Research Center, Health and Metabolic Diseases Research Institute, Zanjan University of Medical Sciences, Parvin Etesami St, Azadi Square, Zanjan, Iran.
| | - Siamak Heidarzadeh
- Department of Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
3
|
Yi C, Huang S, Zhang W, Guo L, Xia T, Huang F, Yan Y, Li H, Yu B. Synergistic interactions between gut microbiota and short chain fatty acids: Pioneering therapeutic frontiers in chronic disease management. Microb Pathog 2024; 199:107231. [PMID: 39681288 DOI: 10.1016/j.micpath.2024.107231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 12/04/2024] [Accepted: 12/12/2024] [Indexed: 12/18/2024]
Abstract
Microorganisms in the gut play a pivotal role in human health, influencing various pathophysiological processes. Certain microorganisms are particularly essential for maintaining intestinal homeostasis, reducing inflammation, supporting nervous system function, and regulating metabolic processes. Short-chain fatty acids (SCFAs) are a subset of fatty acids produced by the gut microbiota (GM) during the fermentation of indigestible polysaccharides. The interaction between GM and SCFAs is inherently bidirectional: the GM not only shapes SCFAs composition and metabolism but SCFAs also modulate microbiota's diversity, stability, growth, proliferation, and metabolism. Recent research has shown that GM and SCFAs communicate through various pathways, mainly involving mechanisms related to inflammation and immune responses, intestinal barrier function, the gut-brain axis, and metabolic regulation. An imbalance in GM and SCFA homeostasis can lead to the development of several chronic diseases, including inflammatory bowel disease, colorectal cancer, systemic lupus erythematosus, Alzheimer's disease, and type 2 diabetes mellitus. This review explores the synergistic interactions between GM and SCFAs, and how these interactions directly or indirectly influence the onset and progression of various diseases through the regulation of the mechanisms mentioned above.
Collapse
Affiliation(s)
- Chunmei Yi
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Shanshan Huang
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Wenlan Zhang
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Lin Guo
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Tong Xia
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Fayin Huang
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yijing Yan
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Huhu Li
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Bin Yu
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
4
|
Zhong S, Yang B, Liu Y, Dai W, Li G, Yang J, Yang A, Wang Y, Wang M, Xu C, Deng Y. Dynamic changes of gut microbiota between the first and second trimester for women with gestational diabetes mellitus and their correlations with BMI: a nested cohort study in China. Front Microbiol 2024; 15:1467414. [PMID: 39723141 PMCID: PMC11669307 DOI: 10.3389/fmicb.2024.1467414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 11/18/2024] [Indexed: 12/28/2024] Open
Abstract
Introduction Gut microbiota (GM) has been implicated in gestational diabetes mellitus (GDM), yet longitudinal changes across trimesters remain insufficiently explored. Methods This nested cohort study aimed to investigate GM alterations before 24 weeks of gestation and their association with GDM. Ninety-three Chinese participants provided fecal samples during the first and second trimesters. Based on oral glucose tolerance tests, 11 participants were classified as GDM, and 82 as non-diabetic (ND). Using 16S rRNA sequencing, we analyzed both cross-sectional and longitudinal differences in GM structure between those two groups. Results In the first trimester, GDM group exhibited lower levels of Bacteroides_H and Acetatifactor compared to ND group (p < 0.05). In the second trimester, GDM individuals showed increased abundance of Fusobacteriota and Firmicutes_D, and genera including Fusobacterium_A and Fournierella, while Anaerotruncus and others decreased (P<0.05). Inflammation-associated genera like Gemmiger_A_73129 and Enterocloster increased, while Megamonas decreased in overweight or obese GDM women, which was not identified in normal-weight women. The ratios of relative abundance of genera Streptococcus, Enterocloster, and Collinsella exceeded 1.5 in the GDM group, particularly in overweight or obese individuals. Inflammatory pathways related to African trypanosomiasis and Staphylococcus aureus infection were predicted to be up-regulated in overweight or obese GDM individuals but not in normal-weight GDM women. Discussion This study suggests that GM of women with GDM undergoes significant alterations between the first and second trimesters, potentially linked to inflammation, with more pronounced changes observed in overweight or obese individuals.
Collapse
Affiliation(s)
- Shilin Zhong
- Center of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China
- Institute of Obstetrics and Gynecology, Shenzhen PKU-HKUST Medical Center, Shenzhen, China
- Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecologic Diseases, Shenzhen, China
| | - Bingcai Yang
- Center of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China
- Institute of Obstetrics and Gynecology, Shenzhen PKU-HKUST Medical Center, Shenzhen, China
- Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecologic Diseases, Shenzhen, China
| | - Yuzhen Liu
- Center of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China
- Institute of Obstetrics and Gynecology, Shenzhen PKU-HKUST Medical Center, Shenzhen, China
- Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecologic Diseases, Shenzhen, China
| | - Wenkui Dai
- Center of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China
- Institute of Obstetrics and Gynecology, Shenzhen PKU-HKUST Medical Center, Shenzhen, China
- Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecologic Diseases, Shenzhen, China
| | - Guanglei Li
- CheerLand Biological Technology Co., Ltd., Shenzhen, China
| | - Juan Yang
- Center of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China
- Institute of Obstetrics and Gynecology, Shenzhen PKU-HKUST Medical Center, Shenzhen, China
- Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecologic Diseases, Shenzhen, China
| | - Ao Yang
- Center of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China
- Institute of Obstetrics and Gynecology, Shenzhen PKU-HKUST Medical Center, Shenzhen, China
- Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecologic Diseases, Shenzhen, China
| | - Ying Wang
- Center of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China
- Institute of Obstetrics and Gynecology, Shenzhen PKU-HKUST Medical Center, Shenzhen, China
- Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecologic Diseases, Shenzhen, China
| | - Min Wang
- Center of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China
- Institute of Obstetrics and Gynecology, Shenzhen PKU-HKUST Medical Center, Shenzhen, China
- Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecologic Diseases, Shenzhen, China
| | - Chang Xu
- Intelligent Hospital Research Academy, Peking University Shenzhen Hospital, Shenzhen, China
| | - Yuqing Deng
- Center of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China
- Institute of Obstetrics and Gynecology, Shenzhen PKU-HKUST Medical Center, Shenzhen, China
- Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecologic Diseases, Shenzhen, China
| |
Collapse
|
5
|
Kim N, Yang C. Butyrate as a Potential Modulator in Gynecological Disease Progression. Nutrients 2024; 16:4196. [PMID: 39683590 DOI: 10.3390/nu16234196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 11/30/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024] Open
Abstract
This review investigates the therapeutic potential of butyrate, a short-chain fatty acid (SCFA) produced by gut microbiota, in the prevention and treatment of various gynecological diseases, including polycystic ovary syndrome (PCOS), endometriosis, and gynecologic cancers like cervical and ovarian cancer. These conditions often pose treatment challenges, with conventional therapies offering limited and temporary relief, significant side effects, and a risk of recurrence. Emerging evidence highlights butyrate's unique biological activities, particularly its role as a histone deacetylase (HDAC) inhibitor, which allows it to modulate gene expression, immune responses, and inflammation. In PCOS, butyrate aids in restoring hormonal balance, enhancing insulin sensitivity, and reducing chronic inflammation. For endometriosis, butyrate appears to suppress immune dysregulation and minimize lesion proliferation. Additionally, in cervical and ovarian cancers, butyrate demonstrates anticancer effects through mechanisms such as cell cycle arrest, apoptosis induction, and suppression of tumor progression. Dietary interventions, particularly high-fiber and Mediterranean diets, that increase butyrate production are proposed as complementary approaches, supporting natural microbiota modulation to enhance therapeutic outcomes. However, butyrate's short half-life limits its clinical application, spurring interest in butyrate analogs and probiotics to maintain stable levels and extend its benefits. This review consolidates current findings on butyrate's multifaceted impact across gynecological health, highlighting the potential for microbiota-centered therapies in advancing treatment strategies and improving women's reproductive health.
Collapse
Affiliation(s)
- Nayeon Kim
- Department of Science Education, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Changwon Yang
- Department of Science Education, Ewha Womans University, Seoul 03760, Republic of Korea
| |
Collapse
|
6
|
Beldie LA, Dica CC, Moța M, Pirvu BF, Burticală MA, Mitrea A, Clenciu D, Efrem IC, Vladu BE, Timofticiuc DCP, Roșu MM, Gheonea TC, Amzolini AM, Moța E, Vladu IM. The Interactions Between Diet and Gut Microbiota in Preventing Gestational Diabetes Mellitus: A Narrative Review. Nutrients 2024; 16:4131. [PMID: 39683525 DOI: 10.3390/nu16234131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
Recent studies have revealed that dysbiosis, defined as alterations in gut microbiota, plays an important role in the development and the progression of many non-communicable diseases, including metabolic disorders, such as type 2 diabetes mellitus and gestational diabetes mellitus (GDM). The high frequency of GDM makes this disorder an important public health issue, which needs to be addressed in order to reduce both the maternal and fetal complications that are frequently associated with this disease. The studies regarding the connections between gut dysbiosis and GDM are still in their early days, with new research continuously emerging. This narrative review seeks to outline the mechanisms through which a healthy diet that protects the gut microbiota is able to prevent the occurrence of GDM, thus providing medical nutritional therapeutic perspectives for the management of GDM.
Collapse
Affiliation(s)
- Luiza-Andreea Beldie
- Department of Diabetes, Nutrition and Metabolic Diseases, County Clinical Emergency Hospital of Craiova, 200642 Craiova, Romania
| | - Cristina-Camelia Dica
- Department of Diabetes, Nutrition and Metabolic Diseases, County Clinical Emergency Hospital of Craiova, 200642 Craiova, Romania
| | - Maria Moța
- Doctoral School, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Bianca-Florentina Pirvu
- Department of Diabetes, Nutrition and Metabolic Diseases, County Clinical Emergency Hospital of Craiova, 200642 Craiova, Romania
| | - Marilena-Alexandra Burticală
- Department of Diabetes, Nutrition and Metabolic Diseases, County Clinical Emergency Hospital of Craiova, 200642 Craiova, Romania
| | - Adina Mitrea
- Department of Diabetes, Nutrition and Metabolic Diseases, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Diana Clenciu
- Department of Diabetes, Nutrition and Metabolic Diseases, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Ion Cristian Efrem
- Department of Medical Semiology, Faculty of Dentistry, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Beatrice Elena Vladu
- Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Diana Cristina Protasiewicz Timofticiuc
- Department of Diabetes, Nutrition and Metabolic Diseases, County Clinical Emergency Hospital of Craiova, 200642 Craiova, Romania
- Department of Diabetes, Nutrition and Metabolic Diseases, Faculty of Midwives and Nursing, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Maria Magdalena Roșu
- Department of Diabetes, Nutrition and Metabolic Diseases, Faculty of Midwives and Nursing, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Theodora Claudia Gheonea
- Department of Diabetes, Nutrition and Metabolic Diseases, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Anca Maria Amzolini
- Department of Medical Semiology, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Eugen Moța
- Doctoral School, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Ionela Mihaela Vladu
- Department of Diabetes, Nutrition and Metabolic Diseases, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| |
Collapse
|
7
|
Sun G, Hou H, Yang S. The effect of probiotics on gestational diabetes mellitus: an umbrella meta-analysis. BMC Endocr Disord 2024; 24:253. [PMID: 39582003 PMCID: PMC11587629 DOI: 10.1186/s12902-024-01751-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 10/10/2024] [Indexed: 11/26/2024] Open
Abstract
BACKGROUND Prior studies indicated the positive effects of probiotics on glycemic regulation in patients with gestational diabetes mellitus (GDM). Nonetheless, the results remain inconclusive. To address this, we conducted an umbrella meta-analysis to evaluate the impact of probiotics on glycemic indicators in GDM. METHODS A comprehensive search was conducted on the PubMed and Scopus databases to identify all relevant meta-analyses of randomized clinical trials published until July 2024. The outcomes included serum hemoglobin A1C (HbA1c), fasting blood insulin (FBI), fasting blood sugar (FBS), homeostatic model assessment for insulin resistance (HOMA-IR), quantitative insulin sensitivity check index (QUICKI), homeostatic model assessment of beta cell function (HOMA-B), C-peptide, and oral glucose tolerance test (OGTT). Standardized mean difference (SMD) was used to test the effects. RESULTS In total, 27 studies, comprising 33,378 participants, were included in the analysis. Probiotics resulted in a significant decrease in FBS (SMD: -0.39, 95% CI: -0.56 to -0.23), especially when administered for ≤ 7 weeks. Significant reductions were also observed in FBI (SMD: -1.99, 95% CI: -2.41 to -1.58), HOMA-IR (SMD: -0.61, 95% CI: -0.72 to -0.50), and HOMA-B (SMD: -24.58, 95% CI: -30.59 to -18.56). Moreover, supplementation with probiotics significantly improved QUICKI (SMD: 0.007, 95% CI: 0.004 to 0.01). There was significant evidence of heterogeneity and publication bias. No significant effects were observed on 1-h OGTT, 2-h OGTT, HbA1c, and C-peptide. No dose-specific effect was observed. CONCLUSIONS Supplementation with probiotics could improve glycemic control in women with GDM. The effects of probiotics on HOMA-IR, HOMA-B, and fasting insulin were clinically important, while, their effect on FBS was not clinically important.
Collapse
Affiliation(s)
- Guixia Sun
- Department of Gynecology and Obstetrics, Shanxi Provincial Children's Hospital (Shanxi Provincial Maternal and Child Health Hospital), No.13 Xinmin North Street, Taiyuan, Shanxi, 030001, China.
| | - Hongli Hou
- Department of Gynecology and Obstetrics, Shanxi Provincial Children's Hospital (Shanxi Provincial Maternal and Child Health Hospital), No.13 Xinmin North Street, Taiyuan, Shanxi, 030001, China
| | - Shanshan Yang
- Department of Gynecology and Obstetrics, Shanxi Provincial Children's Hospital (Shanxi Provincial Maternal and Child Health Hospital), No.13 Xinmin North Street, Taiyuan, Shanxi, 030001, China
| |
Collapse
|
8
|
Chang CJ, Bai YC, Jiang H, Ma QW, Hsieh CH, Liu CC, Huang HC, Chen TJ. Microbiome analysis of serum extracellular vesicles in gestational diabetes patients. Acta Diabetol 2024:10.1007/s00592-024-02358-2. [PMID: 39570375 DOI: 10.1007/s00592-024-02358-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 08/07/2024] [Indexed: 11/22/2024]
Abstract
AIM Gestational Diabetes Mellitus (GDM) is among the most common complications during pregnancy, posing serious risks to both the patient's and offspring's health and well-being. Alterations in the maternal microbiome are closely associated with the pathogenesis of GDM, with Extracellular Vesicles (EVs) facilitating communication between microbiota and the host. However, little is known about the relationship between the microbial composition within EVs and the pathogenesis of GDM. Therefore, this study aims to characterize the microbiota within serum EVs of GDM Patients (GDM group) and to identify microbial communities that significantly differ from those in Women With Normal Pregnancies (NonGDM group). METHODS Blood samples were collected from both groups of patients, and EVs derived from serum were isolated via centrifugation. Identification and characterization of EVs were performed using transmission electron microscopy and nanoparticle flow cytometry. Microbiome analysis of serum EVs from both groups was conducted using 16S rRNA sequencing. RESULTS Results indicated altered diversity in microbial communities within serum EVs of GDM patients. Further analysis at the phylum, family, genus, and species levels revealed that Proteobacteria, Actinobacteria, Bacteroidetes, and Firmicutes were the dominant taxa in the EVs of both the NonGDM and GDM groups. Specifically, Actinobacteria and Firmicutes showed increased relative abundance in GDM group EVs compared to NonGDM, leading to a higher Firmicutes/Bacteroidetes ratio, while Proteobacteria and Bacteroidetes exhibited decreased relative abundance. Tax4Fun analysis revealed enrichment of microbial functions related to amino acid metabolism, carbohydrate metabolism, energy metabolism, and metabolism of cofactors and vitamins in both patient groups. CONCLUSION In conclusion, this study reveals a potential correlation between changes in the microbial composition and diversity of serum EVs and the onset and development of GDM. Furthermore, changes in the relative abundance of Actinobacteria, Proteobacteria, Bacteroidetes, and Firmicutes may play an important role in the pathogenesis of GDM.
Collapse
Affiliation(s)
- Chih-Jung Chang
- School of Medicine and Medical Research Center, Xiamen Chang Gung Hospital Huaqiao University, Fujian, China
| | - Yu-Ci Bai
- Department of Obstetrics and Gynecology, Xiamen Chang Gung Hospital Huaqiao University, Fujian, China
| | - Hong Jiang
- Reproductive Medicine Center, The First Affiliated Hospital of Fujian Medical University, Fujian, China
| | - Qi-Wen Ma
- School of Medicine and Medical Research Center, Xiamen Chang Gung Hospital Huaqiao University, Fujian, China
| | - Cheng-Hsien Hsieh
- Department of Emergency Medicine, En Chu Kong Hospital, New Taipei City, Taiwan
| | - Chien-Chun Liu
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
| | - Hung-Chien Huang
- Department of Emergency Medicine, En Chu Kong Hospital, New Taipei City, Taiwan.
| | - Tien-Jui Chen
- Department of Laboratory Medicine, Yeezen General Hospital, Taoyuan, Taiwan.
| |
Collapse
|
9
|
Chen H, Wang SH, Li HL, Zhou XB, Zhou LW, Chen C, Mansell T, Novakovic B, Saffery R, Baker PN, Han TL, Zhang H. The attenuation of gut microbiota-derived short-chain fatty acids elevates lipid transportation through suppression of the intestinal HDAC3-H3K27ac-PPAR-γ axis in gestational diabetes mellitus. J Nutr Biochem 2024; 133:109708. [PMID: 39059479 DOI: 10.1016/j.jnutbio.2024.109708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 07/20/2024] [Accepted: 07/22/2024] [Indexed: 07/28/2024]
Abstract
Gut flora is considered to modulate lipid transport from the intestine into the bloodstream, and thus may potentially participate in the development of GDM. Although previous studies have shown that the intestinal microbiota influences lipid transport and metabolism in GDM, the precise mechanisms remain elusive. To address this, we used a high-fat diet (HFD)-induced GDM mouse model and conducted 16s rRNA sequencing and fecal metabolomics to assess gut microbial community shifts and associated metabolite changes. Western blot, ELISA, and chromatin immunoprecipitation (ChIP) were utilized to elucidate how gut microbiota affect intestinal lipid transport and the insulin sensitivity of hepatic, adipose, and skeletal muscle tissues. We found that HFD impaired the oral glucose tolerance test (OGTT) and insulin tolerance test (ITT) in pregnant mice. 16s rRNA sequencing demonstrated profound compositional changes, especially in the relative abundances of Firmicutes and Bacteroidetes. Metabolomics analysis presented a decline in the concentration of short-chain fatty acids (SCFAs) in the GDM group. Western blot analyses showed an upregulation of HDAC3 and a concurrent reduction in H3K27 acetylation in the intestine. ChIP-qPCR showed that PPAR-γ was inhibited, which in turn activated lipid-transporter CD36. ELISA and insulin signaling pathway detection in insulin-target organs showed high concentrations of circulating fatty acids and triglycerides and insulin resistance in insulin-target organs. Our results suggest that gut microbiota is closely associated with the development of GDM, partly because decreased gut flora-associated SCFAs activate CD36 by suppressing the HDAC3-H3K27ac-PPAR-γ axis to transport excessive fatty acids and triglycerides into blood circulation, thereby dysregulating the insulin sensitivity of insulin target organs.
Collapse
Affiliation(s)
- Hao Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Canada-China-New Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China; Reproductive Medicine Center, Department of Obstetrics and Gynecology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550009, China
| | - Shi-Han Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Canada-China-New Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China; Department of Obstetrics and Gynecology, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Hong-Li Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Canada-China-New Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China
| | - Xiao-Bo Zhou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Canada-China-New Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China
| | - Lin-Wei Zhou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Canada-China-New Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China
| | - Chang Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Canada-China-New Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China; Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Toby Mansell
- Murdoch Children's Research Institute and Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - Boris Novakovic
- Murdoch Children's Research Institute and Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - Richard Saffery
- Murdoch Children's Research Institute and Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - Philip N Baker
- Canada-China-New Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China; College of Life Sciences, University of Leicester, Great Britain, UK
| | - Ting-Li Han
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Hua Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Canada-China-New Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
10
|
de Albuquerque Lemos DE, de Brito Alves JL, de Souza EL. Probiotic therapy as a promising strategy for gestational diabetes mellitus management. Expert Opin Biol Ther 2024; 24:1207-1219. [PMID: 39323363 DOI: 10.1080/14712598.2024.2409880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 08/16/2024] [Accepted: 09/24/2024] [Indexed: 09/27/2024]
Abstract
INTRODUCTION Gestational diabetes mellitus (GDM) has become the most common pregnancy medical complication, and its prevalence has increased in recent years. The GDM treatment primarily relies on adopting healthy eating habits, physical exercise, and insulin therapy. However, using probiotics to modulate the gut microbiota has been the subject of clinical trials as a promising therapeutic strategy for GDM management. AREAS COVERED Due to the adverse effects of gut dysbiosis in women with GDM, strategies targeting the gut microbiota to mitigate hyperglycemia, low-grade inflammation, and adverse pregnancy outcomes have been explored. Probiotic supplementation may improve glucose metabolism, lipid profile, oxidative stress, inflammation, and blood pressure in women with GDM. Furthermore, decreased fasting blood glucose, insulin resistance, and inflammatory markers, such as TNF-α and CRP, as well as increased total antioxidant capacity, lipid profile modulation, and improved blood pressure in women with GDM, are some of the important results reported in the available literature. EXPERT OPINION To fill the knowledge gap, further studies are needed focusing on modulating gut microbiota composition and metabolic activity and their systemic repercussions in GDM.
Collapse
Affiliation(s)
| | - José Luiz de Brito Alves
- Department of Nutrition, Health Sciences Center, Federal University of Paraiba, João Pessoa, Brazil
| | - Evandro Leite de Souza
- Department of Nutrition, Health Sciences Center, Federal University of Paraiba, João Pessoa, Brazil
| |
Collapse
|
11
|
Wang Z, Chen P, Liang Y, Wang F, Zhang Y. Negative energy balance affects perinatal ewe performance, rumen morphology, rumen flora structure, and placental function. J Anim Physiol Anim Nutr (Berl) 2024; 108:1747-1760. [PMID: 38958108 DOI: 10.1111/jpn.14009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/14/2024] [Accepted: 06/09/2024] [Indexed: 07/04/2024]
Abstract
This study investigated the effects of negative energy balance (NEB) on perinatal ewes, with a focus on changes in growth performance, serum biochemical parameters, rumen fermentation, ruminal bacteria composition, placental phenotype-related indicators, and expression levels of genes related to placental function. Twenty ewes at 130 days of gestation were randomly allocated to either the positive energy balance (PEB) or NEB groups. In the experiment, ewes in the PEB group were fed the same amount as their intake during the pre-feeding baseline period, while ewes in the NEB group were restricted to 70% of their individual baseline feed intake. The experiment was conducted until 42 days postpartum, and five double-lamb ewes per group were selected for slaughter. The results demonstrated that NEB led to a significant decrease in body weight, carcass weight, and the birth and weaning weights of lambs (P < 0.05). Additionally, NEB caused alterations in serum biochemical parameters, such as increased non-esterified fatty acids and β-hydroxybutyrate levels and decreased cholesterol and albumin levels (P < 0.05). Rumen fermentation and epithelial parameters were also affected, with a reduction in the concentrations of acetic acid, butyric acid, total acid and a decrease in the length of the rumen papilla (P < 0.05). Moreover, NEB induced changes in the structure and composition of ruminal bacteria, with significant differences in α-diversity indices and rumen microbial community composition (P < 0.05). Gene expression in rumen papilla and ewe placenta was also affected, impacting genes associated with glucose and amino acid transport, proliferation, apoptosis, and angiogenesis (P < 0.05). These findings screened the key microbiota in the rumen of ewes following NEB and highlighted the critical genes associated with rumen function. Furthermore, this study revealed the impact of NEB on placental function in ewes, providing a foundation for investigating how nutrition in ewes influences reproductive performance. This research demonstrates how nutrition regulates reproductive performance by considering the combined perspectives of rumen microbiota and placental function.
Collapse
Affiliation(s)
- Zhibo Wang
- Institute of Goats and Sheep Science, Nanjing Agricultural University, Nanjing, China
| | - Peiyong Chen
- Institute of Goats and Sheep Science, Nanjing Agricultural University, Nanjing, China
| | - Yaxu Liang
- Institute of Goats and Sheep Science, Nanjing Agricultural University, Nanjing, China
| | - Feng Wang
- Institute of Goats and Sheep Science, Nanjing Agricultural University, Nanjing, China
| | - Yanli Zhang
- Institute of Goats and Sheep Science, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
12
|
Torres-Torres J, Monroy-Muñoz IE, Perez-Duran J, Solis-Paredes JM, Camacho-Martinez ZA, Baca D, Espino-Y-Sosa S, Martinez-Portilla R, Rojas-Zepeda L, Borboa-Olivares H, Reyes-Muñoz E. Cellular and Molecular Pathophysiology of Gestational Diabetes. Int J Mol Sci 2024; 25:11641. [PMID: 39519193 PMCID: PMC11546748 DOI: 10.3390/ijms252111641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/25/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Gestational diabetes (GD) is a metabolic disorder characterized by glucose intolerance during pregnancy, significantly impacting maternal and fetal health. Its global prevalence is approximately 14%, with risk factors including obesity, family history of diabetes, advanced maternal age, and ethnicity, which are linked to cellular and molecular disruptions in glucose regulation and insulin resistance. GD is associated with short- and long-term complications for both the mother and the newborn. For mothers, GD increases the risk of developing type 2 diabetes, cardiovascular diseases, and metabolic syndrome. In the offspring, exposure to GD in utero predisposes them to obesity, glucose intolerance, and metabolic disorders later in life. This review aims to elucidate the complex cellular and molecular mechanisms underlying GD to inform the development of effective therapeutic strategies. A systematic review was conducted using medical subject headings (MeSH) terms related to GD's cellular and molecular pathophysiology. Inclusion criteria encompassed original studies, systematic reviews, and meta-analyses focusing on GD's impact on maternal and fetal health, adhering to PRISMA guidelines. Data extraction captured study characteristics, maternal and fetal outcomes, key findings, and conclusions. GD disrupts insulin signaling pathways, leading to impaired glucose uptake and insulin resistance. Mitochondrial dysfunction reduces ATP production and increases reactive oxygen species, exacerbating oxidative stress. Hormonal influences, chronic inflammation, and dysregulation of the mammalian target of rapamycin (mTOR) pathway further impair insulin signaling. Gut microbiota alterations, gene expression, and epigenetic modifications play significant roles in GD. Ferroptosis and placental dysfunction primarily contribute to intrauterine growth restriction. Conversely, fetal macrosomia arises from maternal hyperglycemia and subsequent fetal hyperinsulinemia, resulting in excessive fetal growth. The chronic inflammatory state and oxidative stress associated with GD exacerbate these complications, creating a hostile intrauterine environment. GD's complex pathophysiology involves multiple disruptions in insulin signaling, mitochondrial function, inflammation, and oxidative stress. Effective management requires early detection, preventive strategies, and international collaboration to standardize care and improve outcomes for mothers and babies.
Collapse
Affiliation(s)
- Johnatan Torres-Torres
- Department of Reproductive and Perinatal Health Research, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Mexico City 11000, Mexico
- Obstetric and Gynecology Department, Hospital General de México Dr. Eduardo Liceaga, Mexico City 06720, Mexico
| | - Irma Eloisa Monroy-Muñoz
- Department of Reproductive and Perinatal Health Research, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Mexico City 11000, Mexico
| | - Javier Perez-Duran
- Department of Reproductive and Perinatal Health Research, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Mexico City 11000, Mexico
| | - Juan Mario Solis-Paredes
- Department of Reproductive and Perinatal Health Research, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Mexico City 11000, Mexico
| | | | - Deyanira Baca
- Obstetric and Gynecology Department, Hospital General de México Dr. Eduardo Liceaga, Mexico City 06720, Mexico
| | - Salvador Espino-Y-Sosa
- Department of Reproductive and Perinatal Health Research, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Mexico City 11000, Mexico
- Centro de Investigacion en Ciencias de la Salud, Universidad Anahuac Mexico, Campus Norte, Huixquilucan 52786, Mexico
| | - Raigam Martinez-Portilla
- Department of Reproductive and Perinatal Health Research, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Mexico City 11000, Mexico
| | - Lourdes Rojas-Zepeda
- Maternal-Fetal Department, Instituto Materno Infantil del Estado de Mexico, Toluca 50170, Mexico
| | - Hector Borboa-Olivares
- Community Interventions Research Branch, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Mexico City 11000, Mexico
| | - Enrique Reyes-Muñoz
- Research Division, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Mexico City 11000, Mexico
| |
Collapse
|
13
|
Chaudhary S, Kaur P, Singh TA, Bano KS, Vyas A, Mishra AK, Singh P, Mehdi MM. The dynamic crosslinking between gut microbiota and inflammation during aging: reviewing the nutritional and hormetic approaches against dysbiosis and inflammaging. Biogerontology 2024; 26:1. [PMID: 39441393 DOI: 10.1007/s10522-024-10146-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 10/01/2024] [Indexed: 10/25/2024]
Abstract
The early-life gut microbiota (GM) is increasingly recognized for its contributions to human health and disease over time. Microbiota composition, influenced by factors like race, geography, lifestyle, and individual differences, is subject to change. The GM serves dual roles, defending against pathogens and shaping the host immune system. Disruptions in microbial composition can lead to immune dysregulation, impacting defense mechanisms. Additionally, GM aids digestion, releasing nutrients and influencing physiological systems like the liver, brain, and endocrine system through microbial metabolites. Dysbiosis disrupts intestinal homeostasis, contributing to age-related diseases. Recent studies are elucidating the bacterial species that characterize a healthy microbiota, defining what constitutes a 'healthy' colonic microbiota. The present review article focuses on the importance of microbiome composition for the development of homeostasis and the roles of GM during aging and the age-related diseases caused by the alteration in gut microbial communities. This article might also help the readers to find treatments targeting GM for the prevention of various diseases linked to it effectively.
Collapse
Affiliation(s)
- Sakshi Chaudhary
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Pardeep Kaur
- Department of Biotechnology, Chandigarh University, Mohali, Punjab, 140413, India
| | - Thokchom Arjun Singh
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Kaniz Shahar Bano
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Ashish Vyas
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Alok Kumar Mishra
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Prabhakar Singh
- Department of Biotechnology, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, 600119, India
| | - Mohammad Murtaza Mehdi
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India.
| |
Collapse
|
14
|
Liu J, Chen Y, Laurent I, Yang P, Xiao X, Li X. Gestational diabetes exacerbates intrauterine microbial exposure induced intestinal microbiota change in offspring contributing to increased immune response. Nutr Diabetes 2024; 14:87. [PMID: 39424815 PMCID: PMC11489853 DOI: 10.1038/s41387-024-00346-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 09/20/2024] [Accepted: 10/09/2024] [Indexed: 10/21/2024] Open
Abstract
BACKGROUND maternal health during pregnancy can affect the intestinal microbial community of offspring, but currently the impact of intrauterine environmental changes resulting from gestational diabetes mellitus (GDM) on the microbiota of offspring as well as its interaction with the immune system remains unclear. AIMS to explore the impact of intrauterine microbial exposure during pregnancy of gestational diabetes mellitus on the development of neonate's intestinal microbiota and activation of immune responses. METHODS Levels of lipopolysaccharides in cord blood from GDM and expression of microbial recognition-related proteins in the placenta were measured. To evaluate embryonic intestinal colonization, pregnant mice with GDM were administered with labeled Escherichia coli or Lactobacillus. The intestinal colonization of pups was analyzed through 16S rRNA gene sequencing and labeled microbial culture. Additionally, memory T lymphocyte and dendritic cell co-culture experiments were conducted to elucidate the immune memory of intestinal microbes during the embryonic stages. RESULT Gestational diabetes mellitus led to elevated umbilical cord blood LPS level and increased GFP labeled Escherichia coli in the offspring's intestine after gestational microbial exposure. The mouse model of GDM exhibited increased immune markers including TLR4, TLR5, IL-22 and IL-23 in the placenta and a recall response from memory T cells in offspring's intestines, with similar observations found in human experiments. Furthermore, reduced intestinal microbiome diversity and an increased ratio of Firmicutes/Bacteroidetes was found in GDM progeny, with the stability of bacterial colonization been interfered. CONCLUSIONS Our investigation has revealed a noteworthy correlation between gestational diabetes and intrauterine microbial exposure, as well as alterations in the neonatal microbiota and activation of immune responses. These findings highlight the gestational diabetes's role on offspring's gut microbiota and immune system interactions with early-life pathogen exposure.
Collapse
Affiliation(s)
- Juncheng Liu
- Department of Endocrinology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Gastroenterology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Yan Chen
- The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Endocrinology and Nephrology, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, China
| | - Irakoze Laurent
- Department of Endocrinology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ping Yang
- Yongchuan Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Xiaoqiu Xiao
- Department of Endocrinology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
- The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Xinyu Li
- The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
- Department of Pharmacy, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
15
|
Li J, Sun Z, Sun F, Lai Y, Yi X, Wang Z, Yuan J, Hu Y, Pan A, Pan XF, Zheng Y, Chen D. Gut antibiotic resistome during pregnancy associates with the risk of gestational diabetes mellitus: New evidence from a prospective nested case-control study. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135434. [PMID: 39146585 DOI: 10.1016/j.jhazmat.2024.135434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 07/24/2024] [Accepted: 08/04/2024] [Indexed: 08/17/2024]
Abstract
Antibiotic resistome has emerged as a global threat to public health. However, gestational antibiotic resistome and potential link with adverse pregnancy outcomes remains poorly understood. Our study reports for the first time an association between gut antibiotic resistome during early pregnancy and the risk of gestational diabetes mellitus (GDM) based on a prospective nested case-control cohort including 120 cases and 120 matched controls. A total of 214 antibiotic resistance gene (ARG) subtypes belonging to 17 ARG types were identified in > 10 % fecal samples collected during each trimester. The data revealed dynamic profiles of gut antibiotic resistome through pregnancy, and significant positive associations between selected features (i.e., ARG abundances and a GDM-ARG score which is a new feature characterizing the association between ARGs and GDM) of gut antibiotic resistome during early pregnancy and GDM risk as well as selected endogenous metabolites. The findings demonstrate ubiquitous presence of ARGs in pregnant women and suggest it could constitute an important risk factor for the development of GDM.
Collapse
Affiliation(s)
- Jing Li
- College of Environment and Climate, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, Guangdong, China; School of Public Health, Health Science Center, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Zhonghan Sun
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome Institute, Fudan University, 200433, Shanghai, China
| | - Fengjiang Sun
- College of Environment and Climate, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, Guangdong, China
| | - Yuwei Lai
- Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Xinzhu Yi
- Institute of Ecological Sciences, School of Life Sciences, South China Normal University, Guangzhou 510631, Guangdong, China
| | - Zhang Wang
- Institute of Ecological Sciences, School of Life Sciences, South China Normal University, Guangzhou 510631, Guangdong, China
| | - Jiaying Yuan
- Department of Science and Education, Shuangliu Maternal and Child Health Hospital, Chengdu 610200, Sichuan, China
| | - Yayi Hu
- Department of Gynecology and Obstetrics, Ministry of Education Key Laboratory of Birth Defects and Related Diseases of Women and Children, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - An Pan
- Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Xiong-Fei Pan
- Shuangliu Institute of Women's and Children's Health, Shuangliu Maternal and Child Health Hospital, Chengdu 610041, Sichuan, China; Section of Epidemiology and Population Health & Department of Gynecology and Obstetrics, Ministry of Education Key Laboratory of Birth Defects and Related Diseases of Women and Children & National Medical Products Administration Key Laboratory for Technical Research on Drug Products In Vitro and In Vivo Correlation, West China Second University Hospital, Sichuan University, Shuangliu Maternal and Child Health Hospital, Chengdu 610041, Sichuan, China.
| | - Yan Zheng
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome Institute, Fudan University, 200433, Shanghai, China.
| | - Da Chen
- College of Environment and Climate, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, Guangdong, China.
| |
Collapse
|
16
|
Gilley SP, Ruebel ML, Chintapalli SV, Wright CJ, Rozance PJ, Shankar K. Calorie restriction during gestation impacts maternal and offspring fecal microbiome in mice. Front Endocrinol (Lausanne) 2024; 15:1423464. [PMID: 39429739 PMCID: PMC11487197 DOI: 10.3389/fendo.2024.1423464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/28/2024] [Indexed: 10/22/2024] Open
Abstract
Background Maternal undernutrition is the most common cause of fetal growth restriction (FGR) worldwide. FGR increases morbidity and mortality during infancy, as well as contributes to adult-onset diseases including obesity and type 2 diabetes. The role of the maternal or offspring microbiome in growth outcomes following FGR is not well understood. Methods FGR was induced by 30% maternal calorie restriction (CR) during the second half of gestation in C57BL/6 mice. Pup weights were obtained on day of life 0, 1, and 7 and ages 3, 4 and 16 weeks. Fecal pellets were collected from pregnant dams at gestational day 18.5 and from offspring at ages 3 and 4 weeks of age. Bacterial genomic DNA was used for amplification of the V4 variable region of the 16S rRNA gene. Multivariable associations between maternal CR and taxonomic abundance were assessed using the MaAsLin2 package. Associations between microbial taxa and offspring outcomes were performed using distance-based redundancy analysis and Pearson correlations. Results FGR pups weighed about 20% less than controls. Beta but not alpha diversity differed between control and CR dam microbiomes. CR dams had lower relative abundance of Turicibacter, Flexispira, and Rikenella, and increased relative abundance of Parabacteroides and Prevotella. Control and FGR offspring microbiota differed by beta diversity at ages 3 and 4 weeks. At 3 weeks, FGR offspring had decreased relative abundance of Akkermansia and Sutterella and increased relative abundance of Anaerostipes and Paraprevotella. At 4 weeks, FGR animals had decreased relative abundance of Allobaculum, Sutterella, Bifidobacterium, and Lactobacillus, among others, and increased relative abundance of Turcibacter, Dorea, and Roseburia. Maternal Helicobacter abundance was positively associated with offspring weight. Akkermansia abundance at age 3 and 4 weeks was negatively associated with adult weight. Conclusions We demonstrate gut microbial dysbiosis in pregnant dams and offspring at two timepoints following maternal calorie restriction. Additional research is needed to test for functional roles of the microbiome in offspring growth outcomes.
Collapse
Affiliation(s)
- Stephanie P. Gilley
- Department of Pediatrics, Section of Nutrition, University of Colorado School of Medicine, Aurora, CO, United States
| | - Meghan L. Ruebel
- Microbiome and Metabolism Research Unit (MMRU), United States Department of Agriculture - Agricultural Research Service (USDA-ARS), Southeast Area, Little Rock, AR, United States
- Arkansas Children’s Nutrition Center, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Sree V. Chintapalli
- Arkansas Children’s Nutrition Center, University of Arkansas for Medical Sciences, Little Rock, AR, United States
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Clyde J. Wright
- Department of Pediatrics, Section of Neonatology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Paul J. Rozance
- Department of Pediatrics, Section of Neonatology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Kartik Shankar
- Department of Pediatrics, Section of Nutrition, University of Colorado School of Medicine, Aurora, CO, United States
| |
Collapse
|
17
|
Zhang K, Hu M, Yang W, Hu Z, Rong Y, Luo B, Wang M, Cheng Y, Zhang R, Lv N, Zhou Q, Zhang X. Clinical significance of the genetically variable landscape of the gut microbiome in patients with gestational diabetes mellitus patients. Heliyon 2024; 10:e37986. [PMID: 39347390 PMCID: PMC11438002 DOI: 10.1016/j.heliyon.2024.e37986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 09/14/2024] [Accepted: 09/16/2024] [Indexed: 10/01/2024] Open
Abstract
Background The composition of the gut microbiome has been recorted to be strongly associated with gestational diabetes mellitus (GDM), but mutational characterization of the microbiome in patients with GDM has been overlooked. Here, we revealed the genetic variation landscape of the gut microbiome and assessed its clinical significance in a cohort of patients with GDM. Methods We employed a macrogenomic dataset made up of a discovery cohort of 54 cases and a validation cohort of 220 cases to screen for high-abundance microbial flora and identified single nucleotide variants (SNVs) and insertions/deletions (indels). Subsequently, we analyzed the mutation spectra of genomes of the intestinal flora by using the previously identified SNVs and identified mutation signatures. Additionally, we utilized the Random Forest algorithm to identify key differential SNVs and elucidated their biological functions and associations with the clinicopathological parameters of GDM. Results We screened 15 key microbial flora and found that the GDM group had more SNVs and indels in the intestinal flora than the control group, with a significant increase in C > T and T > C base mutations and were more susceptible to sequence mutations. Compared to the control group, the GDM group underwent a more significant evolution, as evidenced by the presence of a unique mutational spectrum and mutational characteristics. Random Forest algorithm analysis showed that the combined characterization of five gut microbial species and 21 SNV-related markers was effective in distinguishing between GDM and control subjects in both discovery (area under the curve (AUC) = 0.86) and validation (AUC = 0.73) sets. These markers also revealed that GDM is strongly associated with sphingolipids, galactose, and proteins containing the DUF structural domain. Conclusions The GDM intestinal flora has unique mutational features that correlate significantly with clinicopathological involvement and may be involved in the development of the disease.
Collapse
Affiliation(s)
- Kunna Zhang
- Department of Obstetrics, the First Hospital of Yongnian District, Handan, Hebei Province, China
| | - Menglu Hu
- School of Medicine, Southeast University, Nanjing Province, China
| | - Wentao Yang
- School of Medicine, Southeast University, Nanjing Province, China
| | - Zhexia Hu
- Department of Obstetrics and Gynecology, the Fourth Hospital of Shijiazhuang, Shijiazhuang, Hebei Province, China
| | - Yun Rong
- Department of Obstetrics and Gynecology, the Fourth Hospital of Shijiazhuang, Shijiazhuang, Hebei Province, China
| | - Biyun Luo
- Department of Obstetrics and Gynecology, the Fourth Hospital of Shijiazhuang, Shijiazhuang, Hebei Province, China
| | - Mengjia Wang
- Department of Obstetrics and Gynecology, the Fourth Hospital of Shijiazhuang, Shijiazhuang, Hebei Province, China
| | - Yajuan Cheng
- Department of Obstetrics, the First Hospital of Yongnian District, Handan, Hebei Province, China
| | - Rui Zhang
- Department of Obstetrics, the First Hospital of Yongnian District, Handan, Hebei Province, China
| | - Ning Lv
- Department of Obstetrics & Gynecology Peking Union Medical College Hospital Chinese Academy of Medical Sciences Peking Union Medical College National Clinical Research Center for Obstetric & Gynecologic Diseases, Beijing, China
| | - Qian Zhou
- Department of Obstetrics & Gynecology Peking Union Medical College Hospital Chinese Academy of Medical Sciences Peking Union Medical College National Clinical Research Center for Obstetric & Gynecologic Diseases, Beijing, China
| | - Xueling Zhang
- Department of Obstetrics and Gynecology, the Fourth Hospital of Shijiazhuang, Shijiazhuang, Hebei Province, China
| |
Collapse
|
18
|
Jiang H, Feng S, Zhang P, Wang J, Jiang Y, Zhang H, Song X, Huang W, Xie Y, Deng C. Petroleum ether extract of Schisandra sphenanthera prevents hyperglycemia and insulin resistance in association with modulation of sweet taste receptors and gut microbiota in T2DM rats. JOURNAL OF ETHNOPHARMACOLOGY 2024; 331:118300. [PMID: 38718889 DOI: 10.1016/j.jep.2024.118300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 04/26/2024] [Accepted: 05/05/2024] [Indexed: 05/14/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Schisandra sphenanthera (Schisandra sphenanthera Rehd. et Wils.) is the dried mature fruit of Schisandra sphenanthera, a plant in the Magnoliaceae family. It was used in the treatment of diabetes mellitus in the Jade Fluid Decoction and the Xiaoke pills, which were recorded in ancient books. However, its mechanism of action in the treatment of type 2 diabetes mellitus (T2DM) was unclear and needs further study. AIM OF THE STUDY This research aimed to investigate the chemical composition and lignan content of Schisandra sphenanthera petroleum ether parts (SPEP) and to evaluate the effects of SPEP on sweet taste receptors (STRs) and intestinal flora in rats on a high-fat diet (HFD). Additionally, the relationships between SPEP and hyperglycemia and insulin resistance were examined. MATERIALS AND METHODS GC-MS was used to determine the chemical composition of SPEP, and HPLC was used to determine the lignin content. A combination of the HFD and the administration of streptozotocin (STZ) was employed to generate a rat model of T2DM. Petroleum ether extracts from Schisandra sphenanthera were used as the focus of the research to evaluate the effects of these extracts on the glucolipid metabolism of T2DM rats, as well as the underlying mechanisms. RESULTS Analysis of the GC-MS spectrum of SESP revealed a total of 58 compounds. HPLC analysis revealed that SPEP had the highest concentration of Schisandrin A and the lowest concentration of Schisandrol A. The drug administration intervention resulted in a significant decrease in body weight and pancreatic weight of diabetic rats compared to the Normal group. When compared to the Model group, the body weight of rats in the drug administration group and the Metformin group had a more moderate decrease, while the pancreatic weight and pancreatic-to-body ratio increased. The Model group shown significant increases in FBG, OGTT, GHb, TC, TG, LDL-C, ALT, AST, MDA, FINS, and NEFA, as well as significant decreases in HDL-C and SOD, when compared to the Normal group (P < 0.05). The administration of each group was found to be significantly effective in decreasing FBG, OGTT, GHb, TC, TG, LDL-C, ALT, AST, MDA, FINS, NEFA, while increasing HDL-C and SOD when compared to the Model group. The application of SPEP had a positive impact on hepatocyte swelling, hepatocyte degeneration, and necrosis, as well as the morphological structure of pancreatic islet cells. Furthermore, the protein expression levels of T1R2, TRPM5 and GLP-1 in the small intestine of the Model group were reduced. After a period of six weeks, the protein expression levels began to align more closely with those of the Normal group of rats. Analysis of 16S rRNA sequencing revealed that the intestinal microbiota of diabetic rats was significantly disrupted, with a decrease in the abundance of the Firmicutes phylum and an increase in the abundance of the Bacteroidetes phylum. Furthermore, the composition of the dominant genus was distinct from that of the control group. After the drug intervention, the microbiota of diabetic rats was significantly altered, exhibiting a higher abundance and diversity, as well as a significant enrichment of the community. The SPEP treatment resulted in a significant increase in acetic acid, propionic acid, and butyric acid. CONCLUSIONS The findings of this research indicated that SPEP could be effective in treating T2DM through the regulation of STRs, the adjustment of disturbed metabolite levels, and the alteration of intestinal flora.
Collapse
Affiliation(s)
- Haihui Jiang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Shibo Feng
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Panpan Zhang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Jiaojiao Wang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Yi Jiang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, China; Shaanxi Key Lab. of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xianyang, 712046, China; Key Research Laboratory of the Administration of Traditional Chinese Medicine of Shaanxi Province: Research and Application of Tai Bai Seven Medicines, Xianyang, 712046, China
| | - Huawei Zhang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, China; Key Research Laboratory of the Administration of Traditional Chinese Medicine of Shaanxi Province: Research and Application of Tai Bai Seven Medicines, Xianyang, 712046, China
| | - Xiaomei Song
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, China; Shaanxi Key Lab. of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xianyang, 712046, China; Key Research Laboratory of the Administration of Traditional Chinese Medicine of Shaanxi Province: Research and Application of Tai Bai Seven Medicines, Xianyang, 712046, China
| | - Wenli Huang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, China; Key Research Laboratory of the Administration of Traditional Chinese Medicine of Shaanxi Province: Research and Application of Tai Bai Seven Medicines, Xianyang, 712046, China
| | - Yundong Xie
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, China.
| | - Chong Deng
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, China; Shaanxi Key Lab. of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xianyang, 712046, China; College of Pharmacy and Shaanxi Qinling Application Development and Engineering Center of Chinese Herbal Medicine, Shaanxi University of Chinese Medicine, Xianyang, 712046, China; Shaanxi Provincial Administration of Traditional Chinese Medicine Key Laboratory of Mechanical and Material Basis of Chinese Medicine, Xianyang, 712046, China; Key Research Laboratory of the Administration of Traditional Chinese Medicine of Shaanxi Province: Research and Application of Tai Bai Seven Medicines, Xianyang, 712046, China.
| |
Collapse
|
19
|
Kobyliak N, Khomenko M, Falalyeyeva T, Fedchenko A, Savchuk O, Tseyslyer Y, Ostapchenko L. Probiotics for pancreatic β-cell function: from possible mechanism of action to assessment of effectiveness. Crit Rev Microbiol 2024; 50:663-683. [PMID: 37705353 DOI: 10.1080/1040841x.2023.2257776] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 07/27/2023] [Accepted: 09/06/2023] [Indexed: 09/15/2023]
Abstract
Type 2 diabetes (T2D) is a metabolic disease characterized by chronic hyperglycemia because of insulin resistance (IR) and\or pancreatic β-cell dysfunction. Last century research showed that gut microbiota has a direct effect on metabolism and metabolic diseases. New studies into the human microbiome and its connection with the host is making it possible to develop new therapies for a wide variety of diseases. Inflammation is a well-known precursor to metabolic syndrome, which increases the risk of hypertension, visceral obesity, and dyslipidemia, which can lead to T2D through the damage of pancreatic β-cell and reduce insulin secretion. Current understanding for beneficial effects of probiotics in T2D strictly rely on both animal and clinical data, which mostly focused on their impact on IR, anthropometric parameters, glycemic control and markers of chronic systemic inflammation. From the other hand, there is a lack of evidence-based probiotic efficacy on pancreatic β-cell function in terms of T2D and related metabolic disorders. Therefore, current review will focus on the efficacy of probiotics for the protection of β-cells damage and it`s mechanism in patients with T2D.
Collapse
Affiliation(s)
- Nazarii Kobyliak
- Endocrinology Department, Bogomolets National Medical University, Kyiv, Ukraine
- Medical Laboratory CSD, Kyiv, Ukraine
| | - Maria Khomenko
- Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Tetyana Falalyeyeva
- Medical Laboratory CSD, Kyiv, Ukraine
- Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | | | | | | | | |
Collapse
|
20
|
Liu R, Wang J, Zhao Y, Zhou Q, Yang X, Gao Y, Li Q, Bai M, Liu J, Liang Y, Zhu X. Study on the mechanism of modified Gegen Qinlian decoction in regulating the intestinal flora-bile acid-TGR5 axis for the treatment of type 2 diabetes mellitus based on macro genome sequencing and targeted metabonomics integration. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 132:155329. [PMID: 38853123 DOI: 10.1016/j.phymed.2023.155329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 12/12/2023] [Accepted: 12/30/2023] [Indexed: 06/11/2024]
Abstract
BACKGROUND Currently, there are many drugs available for the treatment of type 2 diabetes mellitus (T2DM), but most of them cause various side effects due to the need for long-term use. As a traditional Chinese medicine, Gegen Qinlian Decoction (GQD) has shown good efficacy and low side effects in the treatment of T2DM in both clinical and basic research. Based on relevant traditional Chinese medicine theories, dried ginger is innovatively added the formula of traditional GQD to create a modified GQD. This modification reduces the side effects of traditional GQD while exerting its therapeutic effect on T2DM. Previous studies have found that the modified GQD can regulate endoplasmic reticulum stress in the liver, inhibit hepatic gluconeogenesis, protect pancreatic islet β cells, and control blood sugar levels by inhibiting the FXR/neuronal ceramide signaling pathway. GQD can also regulate the intestinal microbiota to achieve therapeutic and protective effects in various gastrointestinal diseases. However, there is no research exploring whether the modified GQD achieves its therapeutic mechanism for T2DM by regulating the intestinal microbiota. PURPOSE To explore the mechanism of modified GQD in the treatment of T2DM based on multi-omics, focusing on its effect on the "intestinal flora bile acid TGR5'' axis. METHODS The T2DM model was established using db/db mice, which were randomly divided into a model group, metformin group, high-dose GQD group, medium-dose GQD group, low-dose GQD group, while m/m mice were used as blank control. The drug intervention lasted for 12 weeks, during which the general conditions, oral glucose tolerance (OGT), blood glucose, and lipid-related indexes were recorded. Additionally, the fasting insulin (FINS), c-peptide, GLP-1 in serum, and cAMP in the ileum were measured by ELISA assay. Furthermore, the composition, abundance, and function of the intestinal microbiota were determined by macro genome sequencing, while bile acid was detected by targeted metabonomics. For histological evaluation, HE staining was used to observe the pathological changes of the ileum and pancreas, and the ultrastructure of the ileum and pancreas was observed by transmission electron microscopy. Apoptosis in the ileum tissue was detected by Tunel staining. Moreover, the mRNA and protein expressions of TGR5, PKA, CREB, PC1/3, GLP-1, and their phosphorylation levels in the ileum were detected by qPCR, immunohistochemistry, and Western blot; The expression of INS in the pancreas was also evaluated using immunohistochemistry. Finally, double immunofluorescence staining was used to detect the co-localization expression of TGR5 and GLP-1, NeuroD1, and GLP-1 in the ileum. RESULTS The modified GQD was found to significantly reduce blood glucose, improve oral glucose tolerance, and blood lipid levels, as well as alleviate the injury of the ileum and pancreas in T2DM mice. Furthermore, modified GQD was found to effectively regulate intestinal flora, improve bile acid metabolism, activate the TRG5/cAMP/PKA/CREB signal pathway, and stimulate GLP-1 secretion. CONCLUSION GQD can regulate the "intestinal flora-bile acid-TGR5" axis and has a therapeutic effect on T2DM in mice.
Collapse
Affiliation(s)
- Rong Liu
- Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi, PR China; Gansu University of Chinese Medicine, Lanzhou 730000, Gansu, PR China; Research Center of Traditional Chinese Medicine, Gansu Province, Lanzhou 730000, Gansu, PR China
| | - Jiahui Wang
- Gansu University of Chinese Medicine, Lanzhou 730000, Gansu, PR China
| | - Yikun Zhao
- Gansu University of Chinese Medicine, Lanzhou 730000, Gansu, PR China
| | - Qi Zhou
- Gansu University of Chinese Medicine, Lanzhou 730000, Gansu, PR China
| | - Xia Yang
- Gansu University of Chinese Medicine, Lanzhou 730000, Gansu, PR China
| | - Yankui Gao
- Gansu University of Chinese Medicine, Lanzhou 730000, Gansu, PR China
| | - Qin Li
- Gansu University of Chinese Medicine, Lanzhou 730000, Gansu, PR China; Gansu Health Vocational College, Gansu Province, Lanzhou 730000, Gansu, PR China
| | - Min Bai
- Gansu University of Chinese Medicine, Lanzhou 730000, Gansu, PR China
| | - Jiahui Liu
- Research Center of Traditional Chinese Medicine, Gansu Province, Lanzhou 730000, Gansu, PR China
| | - Yonglin Liang
- Gansu University of Chinese Medicine, Lanzhou 730000, Gansu, PR China; Research Center of Traditional Chinese Medicine, Gansu Province, Lanzhou 730000, Gansu, PR China.
| | - Xiangdong Zhu
- Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, PR China.
| |
Collapse
|
21
|
Sokou R, Moschari E, Palioura AE, Palioura AP, Mpakosi A, Adamakidou T, Vlachou E, Theodoraki M, Iacovidou N, Tsartsalis AN. The Impact of Gestational Diabetes Mellitus (GDM) on the Development and Composition of the Neonatal Gut Microbiota: A Systematic Review. Microorganisms 2024; 12:1564. [PMID: 39203408 PMCID: PMC11356352 DOI: 10.3390/microorganisms12081564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/23/2024] [Accepted: 07/29/2024] [Indexed: 09/03/2024] Open
Abstract
Gestational diabetes mellitus (GDM) is an important health issue, as it is connected with adverse effects to the mother as well as the fetus. A factor of essence for the pathology of this disorder is the gut microbiota, which seems to have an impact on the development and course of GDM. The role of the gut microbiota on maternal reproductive health and all the changes that happen during pregnancy as well as during the neonatal period is of high interest. The correct establishment and maturation of the gut microbiota is of high importance for the development of basic biological systems. The aim of this study is to provide a systematic review of the literature on the effect of GDM on the gut microbiota of neonates, as well as possible links to morbidity and mortality of neonates born to mothers with GDM. Systematic research took place in databases including PubMed and Scopus until June 2024. Data that involved demographics, methodology, and changes to the microbiota were derived and divided based on patients with exposure to or with GDM. The research conducted on online databases revealed 316 studies, of which only 16 met all the criteria and were included in this review. Research from the studies showed great heterogeneity and varying findings at the level of changes in α and β diversity and enrichment or depletion in phylum, gene, species, and operational taxonomic units in the neonatal gut microbiota of infants born to mothers with GDM. The ways in which the microbiota of neonates and infants are altered due to GDM remain largely unclear and require further investigation. Future studies are needed to explore and clarify these mechanisms.
Collapse
Affiliation(s)
- Rozeta Sokou
- Neonatal Intensive Care Unit, General Hospital of Nikea “Agios Panteleimon”, 18454 Piraeus, Greece; (E.M.); (A.E.P.); (A.-P.P.); (M.T.)
- Neonatal Department, National and Kapodistrian University of Athens, Aretaieio Hospital, 11528 Athens, Greece;
| | - Eirini Moschari
- Neonatal Intensive Care Unit, General Hospital of Nikea “Agios Panteleimon”, 18454 Piraeus, Greece; (E.M.); (A.E.P.); (A.-P.P.); (M.T.)
| | - Alexia Eleftheria Palioura
- Neonatal Intensive Care Unit, General Hospital of Nikea “Agios Panteleimon”, 18454 Piraeus, Greece; (E.M.); (A.E.P.); (A.-P.P.); (M.T.)
| | - Aikaterini-Pothiti Palioura
- Neonatal Intensive Care Unit, General Hospital of Nikea “Agios Panteleimon”, 18454 Piraeus, Greece; (E.M.); (A.E.P.); (A.-P.P.); (M.T.)
| | - Alexandra Mpakosi
- Department of Microbiology, General Hospital of Nikea “Agios Panteleimon”, 18454 Piraeus, Greece;
| | - Theodoula Adamakidou
- Department of Nursing, School of Health Sciences, University of West Attica, Ag. Spydironos 28, 12243 Athens, Greece; (T.A.); (E.V.)
| | - Eugenia Vlachou
- Department of Nursing, School of Health Sciences, University of West Attica, Ag. Spydironos 28, 12243 Athens, Greece; (T.A.); (E.V.)
| | - Martha Theodoraki
- Neonatal Intensive Care Unit, General Hospital of Nikea “Agios Panteleimon”, 18454 Piraeus, Greece; (E.M.); (A.E.P.); (A.-P.P.); (M.T.)
| | - Nicoletta Iacovidou
- Neonatal Department, National and Kapodistrian University of Athens, Aretaieio Hospital, 11528 Athens, Greece;
| | - Athanasios N. Tsartsalis
- Department of Endocrinology Diabetes and Metabolism, Naval Hospital of Athens, Dinokratous 70, 11521 Athens, Greece;
| |
Collapse
|
22
|
Biete M, Vasudevan S. Gestational diabetes mellitus: Impacts on fetal neurodevelopment, gut dysbiosis, and the promise of precision medicine. Front Mol Biosci 2024; 11:1420664. [PMID: 39055983 PMCID: PMC11269231 DOI: 10.3389/fmolb.2024.1420664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 06/11/2024] [Indexed: 07/28/2024] Open
Abstract
Gestational diabetes mellitus (GDM) is a common metabolic disorder affecting approximately 16.5% of pregnancies worldwide and causing significant health concerns. GDM is a serious pregnancy complication caused by chronic insulin resistance in the mother and has been associated with the development of neurodevelopmental disorders in offspring. Emerging data support the notion that GDM affects both the maternal and fetal microbiome, altering the composition and function of the gut microbiota, resulting in dysbiosis. The observed dysregulation of microbial presence in GDM pregnancies has been connected to fetal neurodevelopmental problems. Several reviews have focused on the intricate development of maternal dysbiosis affecting the fetal microbiome. Omics data have been instrumental in deciphering the underlying relationship among GDM, gut dysbiosis, and fetal neurodevelopment, paving the way for precision medicine. Microbiome-associated omics analyses help elucidate how dysbiosis contributes to metabolic disturbances and inflammation, linking microbial changes to adverse pregnancy outcomes such as those seen in GDM. Integrating omics data across these different layers-genomics, transcriptomics, proteomics, metabolomics, and microbiomics-offers a comprehensive view of the molecular landscape underlying GDM. This review outlines the affected pathways and proposes future developments and possible personalized therapeutic interventions by integrating omics data on the maternal microbiome, genetics, lifestyle factors, and other relevant biomarkers aimed at identifying women at high risk of developing GDM. For example, machine learning tools have emerged with powerful capabilities to extract meaningful insights from large datasets.
Collapse
Affiliation(s)
| | - Sona Vasudevan
- Department of Biochemistry, Molecular and Cellular Biology, Georgetown University Medical Center, Washington, DC, United States
| |
Collapse
|
23
|
Mendes-Frias A, Moreira M, Vieira MC, Gaifem J, Costa P, Lopes L, Silvestre R. Akkermansia muciniphila and Parabacteroides distasonis as prognostic markers for relapse in ulcerative colitis patients. Front Cell Infect Microbiol 2024; 14:1367998. [PMID: 39027140 PMCID: PMC11254828 DOI: 10.3389/fcimb.2024.1367998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 06/10/2024] [Indexed: 07/20/2024] Open
Abstract
Introduction Ulcerative colitis is an inflammatory disorder characterized by chronic inflammation in the gastrointestinal tract, mainly in the colon and rectum. Although the precise etiology of ulcerative colitis remains unclear, recent research has underscored the significant role of the microbiome in its development and progression. Methods The aim of this study was to establish a relationship between the levels of specific gut bacterial species and disease relapse in ulcerative colitis. For this study, we recruited 105 ulcerative colitis patients in remission and collected clinical data, blood, and stool samples. Akkermansia muciniphila and Parabacteroides distasonis levels were quantified in the stool samples of ulcerative colitis patients. Binary logistic regression was applied to collected data to predict disease remission. Results The median time in remission in this cohort was four years. A predictive model incorporating demographic information, clinical data, and the levels of Akkermansia muciniphila and Parabacteroides distasonis was developed to understand remission patterns. Discussion Our findings revealed a negative correlation between the levels of these two microorganisms and the duration of remission. These findings highlight the importance of the gut microbiota in ulcerative colitis for disease prognosis and for personalized treatments based on microbiome interventions.
Collapse
Affiliation(s)
- Ana Mendes-Frias
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Marta Moreira
- Department of Gastroenterology, Hospital Santa Luzia, Unidade Local de Saúde do Alto Minho, Viana do Castelo, Portugal
| | - Maria C. Vieira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Joana Gaifem
- i3S - Institute for Research and Innovation in Health, University of Porto, Porto, Portugal
| | - Patrício Costa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Luís Lopes
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, Braga/Guimarães, Portugal
- Department of Gastroenterology, Hospital Santa Luzia, Unidade Local de Saúde do Alto Minho, Viana do Castelo, Portugal
| | - Ricardo Silvestre
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
24
|
Gerede A, Nikolettos K, Vavoulidis E, Margioula-Siarkou C, Petousis S, Giourga M, Fotinopoulos P, Salagianni M, Stavros S, Dinas K, Nikolettos N, Domali E. Vaginal Microbiome and Pregnancy Complications: A Review. J Clin Med 2024; 13:3875. [PMID: 38999442 PMCID: PMC11242209 DOI: 10.3390/jcm13133875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/12/2024] [Accepted: 06/29/2024] [Indexed: 07/14/2024] Open
Abstract
Background/Objectives: There are indications that the microbial composition of the maternal mucosal surfaces is associated with adverse events during pregnancy. The aim of this review is to investigate the link between vaginal microbiome alterations and gestational complication risk. Methods: This comprehensive literature review was performed using Medline and Scopus databases. The following search algorithm was used, "Pregnancy Complications" [Mesh] AND (Vagin*), and after the literature screening, 44 studies were included in the final review. Results: The studies that were included investigated the association between vaginal microbial composition and preterm birth, miscarriage, preeclampsia, ectopic pregnancy, gestational diabetes mellitus, chorioamnionitis, and preterm premature rupture of membranes. In most of the studies, it was well established that increased microbial diversity is associated with these conditions. Also, the depletion of Lactobacillus species is linked to most of the gestational complications, while the increased relative abundance and especially Lactobacillus crispatus may exert a protective effect in favor of the pregnant woman. Several pathogenic taxa including Gardnerella, Prevotella, Sneathia, Bacterial Vaginosis-Associated Bacteria-2, Atopobium, and Megasphera seem to be correlated to higher maternal morbidity. Conclusions: Vaginal microbiome aberrations seem to have an association with pregnancy-related adverse events, but more high-quality homogenous studies are necessary to reliably verify this link.
Collapse
Affiliation(s)
- Angeliki Gerede
- Unit of Maternal-Fetal-Medicine, Department of Obstetrics and Gynecology, Medical School, Democritus University of Thrake, GR-68100 Alexandroupolis, Greece
| | - Konstantinos Nikolettos
- Unit of Maternal-Fetal-Medicine, Department of Obstetrics and Gynecology, Medical School, Democritus University of Thrake, GR-68100 Alexandroupolis, Greece
| | - Eleftherios Vavoulidis
- Second Department of Obstetrics and Gynecology, Medical School, Aristotle University of Thessaloniki, GR-54640 Thessaloniki, Greece
| | - Chrysoula Margioula-Siarkou
- Second Department of Obstetrics and Gynecology, Medical School, Aristotle University of Thessaloniki, GR-54640 Thessaloniki, Greece
| | - Stamatios Petousis
- Second Department of Obstetrics and Gynecology, Medical School, Aristotle University of Thessaloniki, GR-54640 Thessaloniki, Greece
| | - Maria Giourga
- First Department of Obstetrics and Gynecology, Medical School, National and Kapodistrian University of Athens, GR-11528 Athens, Greece
| | - Panagiotis Fotinopoulos
- First Department of Obstetrics and Gynecology, Medical School, National and Kapodistrian University of Athens, GR-11528 Athens, Greece
| | - Maria Salagianni
- First Department of Obstetrics and Gynecology, Medical School, National and Kapodistrian University of Athens, GR-11528 Athens, Greece
| | - Sofoklis Stavros
- First Department of Obstetrics and Gynecology, Medical School, National and Kapodistrian University of Athens, GR-11528 Athens, Greece
| | - Konstantinos Dinas
- Second Department of Obstetrics and Gynecology, Medical School, Aristotle University of Thessaloniki, GR-54640 Thessaloniki, Greece
| | - Nikolaos Nikolettos
- Unit of Maternal-Fetal-Medicine, Department of Obstetrics and Gynecology, Medical School, Democritus University of Thrake, GR-68100 Alexandroupolis, Greece
| | - Ekaterini Domali
- First Department of Obstetrics and Gynecology, Medical School, National and Kapodistrian University of Athens, GR-11528 Athens, Greece
| |
Collapse
|
25
|
Powell AM, Khan FZA, Ravel J, Elovitz MA. Untangling Associations of Microbiomes of Pregnancy and Preterm Birth. Clin Perinatol 2024; 51:425-439. [PMID: 38705650 PMCID: PMC11070640 DOI: 10.1016/j.clp.2024.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
This review illuminates the complex interplay between various maternal microbiomes and their influence on preterm birth (PTB), a driving and persistent contributor to neonatal morbidity and mortality. Here, we examine the dynamics of oral, gastrointestinal (gut), placental, and vaginal microbiomes, dissecting their roles in the pathogenesis of PTB. Importantly, focusing on the vaginal microbiome and PTB, the review highlights (1) a protective role of Lactobacillus species; (2) an increased risk with select anaerobes; and (3) the influence of social health determinants on the composition of vaginal microbial communities.
Collapse
Affiliation(s)
- Anna Maya Powell
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Phipps 249, Baltimore, MD 21287, USA
| | - Fouzia Zahid Ali Khan
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Phipps 249, Baltimore, MD 21287, USA
| | - Jacques Ravel
- Department of Microbiology and Immunology, Institute for Genome Sciences, 670 West Baltimore Street, 3rd Floor, Room 3173, Baltimore, MD 21201, USA
| | - Michal A Elovitz
- Department of Obstetrics and Gynecology, Women's Health Research, Icahn School of Medicine at Mount Sinai, Women's Biomedical Research Institute, 1468 Madison Avenue, New York, NY 10029, USA.
| |
Collapse
|
26
|
Liang Y, Jiang Z, Fu Y, Lu S, Miao Z, Shuai M, Liang X, Gou W, Zhang K, Shi RQ, Gao C, Shi MQ, Wang XH, Hu WS, Zheng JS. Cross-Sectional and Prospective Association of Serum 25-Hydroxyvitamin D with Gut Mycobiota during Pregnancy among Women with Gestational Diabetes. Mol Nutr Food Res 2024; 68:e2400022. [PMID: 38763911 DOI: 10.1002/mnfr.202400022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/30/2024] [Indexed: 05/21/2024]
Abstract
SCOPE Little is known about the effect of blood vitamin D status on the gut mycobiota (i.e., fungi), a crucial component of the gut microbial ecosystem. The study aims to explore the association between 25-hydroxyvitamin D [25(OH)D] and gut mycobiota and to investigate the link between the identified mycobial features and blood glycemic traits. METHODS AND RESULTS The study examines the association between serum 25(OH)D levels and the gut mycobiota in the Westlake Precision Birth Cohort, which includes pregnant women with gestational diabetes mellitus (GDM). The study develops a genetic risk score (GRS) for 25(OH)D to validate the observational results. In both the prospective and cross-sectional analyses, the vitamin D is associated with gut mycobiota diversity. Specifically, the abundance of Saccharomyces is significantly lower in the vitamin D-sufficient group than in the vitamin D-deficient group. The GRS of 25(OH)D is inversely associated with the abundance of Saccharomyces. Moreover, the Saccharomyces is positively associated with blood glucose levels. CONCLUSION Blood vitamin D status is associated with the diversity and composition of gut mycobiota in women with GDM, which may provide new insights into the mechanistic understanding of the relationship between vitamin D levels and metabolic health.
Collapse
Affiliation(s)
- Yuhui Liang
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
- Westlake Intelligent Biomarker Discovery Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, 310030, China
| | - Zengliang Jiang
- Westlake Intelligent Biomarker Discovery Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, 310030, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, 310024, China
| | - Yuanqing Fu
- Westlake Intelligent Biomarker Discovery Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, 310030, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, 310024, China
| | - Sha Lu
- Department of Obstetrics and Gynecology, Hangzhou Women's Hospital (Hangzhou Maternity and Child Health Care Hospital), Hangzhou, 310012, China
- Department of Obstetrics and Gynecology, The Affiliated Hangzhou Women's Hospital of Hangzhou Normal University, Hangzhou, 310012, China
| | - Zelei Miao
- Westlake Intelligent Biomarker Discovery Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, 310030, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, 310024, China
| | - Menglei Shuai
- Westlake Intelligent Biomarker Discovery Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, 310030, China
| | - Xinxiu Liang
- Westlake Intelligent Biomarker Discovery Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, 310030, China
| | - Wanglong Gou
- Westlake Intelligent Biomarker Discovery Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, 310030, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, 310024, China
| | - Ke Zhang
- Westlake Intelligent Biomarker Discovery Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, 310030, China
| | - Rui-Qi Shi
- Westlake Intelligent Biomarker Discovery Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, 310030, China
| | - Chang Gao
- Westlake Intelligent Biomarker Discovery Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, 310030, China
| | - Mei-Qi Shi
- Department of Nutrition, Hangzhou Women's Hospital (Hangzhou Maternity and Child Health Care Hospital), Hangzhou, 310012, China
| | - Xu-Hong Wang
- Department of Nutrition, Hangzhou Women's Hospital (Hangzhou Maternity and Child Health Care Hospital), Hangzhou, 310012, China
| | - Wen-Sheng Hu
- Department of Obstetrics and Gynecology, Hangzhou Women's Hospital (Hangzhou Maternity and Child Health Care Hospital), Hangzhou, 310012, China
- Department of Obstetrics and Gynecology, The Affiliated Hangzhou Women's Hospital of Hangzhou Normal University, Hangzhou, 310012, China
| | - Ju-Sheng Zheng
- Westlake Intelligent Biomarker Discovery Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, 310030, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, 310024, China
| |
Collapse
|
27
|
Balleza-Alejandri LR, Peña-Durán E, Beltrán-Ramírez A, Reynoso-Roa AS, Sánchez-Abundis LD, García-Galindo JJ, Suárez-Rico DO. Decoding the Gut Microbiota-Gestational Diabetes Link: Insights from the Last Seven Years. Microorganisms 2024; 12:1070. [PMID: 38930451 PMCID: PMC11205738 DOI: 10.3390/microorganisms12061070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/04/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024] Open
Abstract
The human microbiome, a complex ecosystem of bacteria, viruses, and protozoans living in symbiosis with the host, plays a crucial role in human health, influencing everything from metabolism to immune function. Dysbiosis, or an imbalance in this ecosystem, has been linked to various health issues, including diabetes and gestational diabetes (GD). In diabetes, dysbiosis affects the function of adipose tissue, leading to the release of adipokines and cytokines, which increase inflammation and insulin resistance. During pregnancy, changes to the microbiome can exacerbate glucose intolerance, a common feature of GD. Over the past years, burgeoning insights into the gut microbiota have unveiled its pivotal role in human health. This article comprehensively reviews literature from the last seven years, highlighting the association between gut microbiota dysbiosis and GD, as well as the metabolism of antidiabetic drugs and the potential influences of diet and probiotics. The underlying pathophysiological mechanisms discussed include the impact of dysbiosis on systemic inflammation and the interplay with genetic and environmental factors. By focusing on recent studies, the importance of considering microbial health in the prevention and treatment of GD is emphasized, providing insights into future research directions and clinical applications to improve maternal-infant health outcomes.
Collapse
Affiliation(s)
- Luis Ricardo Balleza-Alejandri
- Doctorado en Farmacología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (L.R.B.-A.); (A.S.R.-R.)
| | - Emiliano Peña-Durán
- Licenciatura en Médico Cirujano y Partero, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara, Guadalajara 44340, Mexico;
| | - Alberto Beltrán-Ramírez
- Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Calle Sierra Mojada 950, Independencia Oriente, Guadalajara 44340, Mexico; (A.B.-R.); (J.J.G.-G.)
| | - Africa Samantha Reynoso-Roa
- Doctorado en Farmacología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (L.R.B.-A.); (A.S.R.-R.)
| | - Luis Daniel Sánchez-Abundis
- Hospital Civil de Guadalajara, Fray Antonio Alcalde, Instituto de Patología Infecciosa y Experimental, Guadalajara 44200, Mexico;
| | - Jesús Jonathan García-Galindo
- Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Calle Sierra Mojada 950, Independencia Oriente, Guadalajara 44340, Mexico; (A.B.-R.); (J.J.G.-G.)
| | - Daniel Osmar Suárez-Rico
- Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Calle Sierra Mojada 950, Independencia Oriente, Guadalajara 44340, Mexico; (A.B.-R.); (J.J.G.-G.)
| |
Collapse
|
28
|
Adhikary K, Sarkar R, Maity S, Banerjee I, Chatterjee P, Bhattacharya K, Ahuja D, Sinha NK, Maiti R. The underlying causes, treatment options of gut microbiota and food habits in type 2 diabetes mellitus: a narrative review. J Basic Clin Physiol Pharmacol 2024; 35:153-168. [PMID: 38748886 DOI: 10.1515/jbcpp-2024-0043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 05/01/2024] [Indexed: 07/05/2024]
Abstract
Type 2 diabetes mellitus is a long-lasting endocrine disorder characterized by persistent hyperglycaemia, which is often triggered by an entire or relative inadequacy of insulin production or insulin resistance. As a result of resistance to insulin (IR) and an overall lack of insulin in the body, type 2 diabetes mellitus (T2DM) is a metabolic illness that is characterized by hyperglycaemia. Notably, the occurrence of vascular complications of diabetes and the advancement of IR in T2DM are accompanied by dysbiosis of the gut microbiota. Due to the difficulties in managing the disease and the dangers of multiple accompanying complications, diabetes is a chronic, progressive immune-mediated condition that plays a significant clinical and health burden on patients. The frequency and incidence of diabetes among young people have been rising worldwide. The relationship between the gut microbiota composition and the physio-pathological characteristics of T2DM proposes a novel way to monitor the condition and enhance the effectiveness of therapies. Our knowledge of the microbiota of the gut and how it affects health and illness has changed over the last 20 years. Species of the genus Eubacterium, which make up a significant portion of the core animal gut microbiome, are some of the recently discovered 'generation' of possibly helpful bacteria. In this article, we have focused on pathogenesis and therapeutic approaches towards T2DM, with a special reference to gut bacteria from ancient times to the present day.
Collapse
Affiliation(s)
- Krishnendu Adhikary
- Department of Interdisciplinary Science, Centurion University of Technology & Management, Bhubaneswar, Odisha, India
| | - Riya Sarkar
- Department of Medical Laboratory Technology, 231513 Dr. B. C. Roy Academy of Professional Courses , Durgapur, West Bengal, India
| | - Sriparna Maity
- Department of Medical Laboratory Technology, 231513 Dr. B. C. Roy Academy of Professional Courses , Durgapur, West Bengal, India
| | - Ipsita Banerjee
- Department of Nutrition, Paramedical College Durgapur, Durgapur, West Bengal, India
| | - Prity Chatterjee
- Department of Biotechnology, Paramedical College Durgapur, Durgapur, West Bengal, India
| | - Koushik Bhattacharya
- School of Paramedics and Allied Health Sciences, Centurion University of Technology & Management, Bhubaneswar, Odisha, India
| | - Deepika Ahuja
- School of Paramedics and Allied Health Sciences, Centurion University of Technology & Management, Bhubaneswar, Odisha, India
| | - Nirmalya Kumar Sinha
- Department of Nutrition and Department of NSS, Raja Narendra Lal Khan Women's College (Autonomous), Midnapore, West Bengal, India
| | - Rajkumar Maiti
- Department of Physiology, 326624 Bankura Christian College , Bankura, West Bengal, India
| |
Collapse
|
29
|
Ma X, Wen G, Zhao Z, Lu L, Li T, Gao N, Han G. Alternations in the human skin, gut and vaginal microbiomes in perimenopausal or postmenopausal Vulvar lichen sclerosus. Sci Rep 2024; 14:8429. [PMID: 38600101 PMCID: PMC11006835 DOI: 10.1038/s41598-024-58983-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/05/2024] [Indexed: 04/12/2024] Open
Abstract
Vulvar lichen sclerosus (VLS) is a chronic and progressive dermatologic condition that can cause physical dysfunction, disfigurement, and impaired quality of life. However, the etiology of VLS remains unknown. The vulvar skin, intestinal and vaginal microbiomes have been postulated to play important roles in the pathogenesis of this disease. The aim of this study was to compare the compositional characteristics of the vulvar skin, vagina, and gut microbiota between perimenopausal or postmenopausal VLS patients and healthy controls. The study involved six perimenopausal or postmenopausal VLS patients which were based on characteristic clinical manifestations and histologic confirmation and five healthy controls. The pruritus severity of each patient was evaluated using the NRS scale, and the dermatology-specific health-related quality of life was assessed using the Skindex-16. Metagenomic sequencing was performed, and the results were analyzed for alpha and beta diversity. LEfSe analysis were used to investigate the microbial alterations in vulvar skin, gut and vagina. KEGG databases were used to analyze differences in functional abundance. The study found significant differences in alpha diversity between the two groups in stool and vaginal samples (P < 0.05). Patients with VLS had a higher abundance of Enterobacter cloacae, Flavobacterium_branchiophilum, Mediterranea_sp._An20, Parabacteroides_johnsoniiand Streptococcus_bovimastitidis on the vulvar skin, while Corynebacterium_sp._zg-913 was less abundant compared to the control group. The relative abundance of Sphingomonas_sp._SCN_67_18, Sphingobium_sp._Ant17, and Pontibacter_sp_BT213 was significantly higher in the gut samples of patients with VLS.Paenibacillus_popilliae,Gemella_asaccharolytica, and Coriobacteriales_bacterium_DNF00809 compared to the control group. Additionally, the vaginal samples of patients with VLS exhibited a significantly lower relative abundance of Bacteroidales_bacterium_43_8, Bacteroides_sp._CAG:20, Blautia_sp._AM28-10, Fibrobacter_sp._UWB16, Lachnospiraceae_bacterium_AM25-39, Holdemania_filiformis, Lachnospiraceae_bacterium_GAM79, and Tolumonas_sp. Additionally, the butyrate-producing bacterium SS3/4 showed a significant difference compared to the controls. The study found a negative relationship between Sphingobium_sp._Ant17 in stool and Skindex-16 (P < 0.05), while Mediterranea_sp._An20 had a positive correlation with Skindex-16 (P < 0.05) in the skin. Additionally, our functional analysis revealed alterations in Aminoacyl_tRNA_biosynthesis, Glutathione_metabolism, the pentose phosphate pathway, and Alanine__aspartate_and_glutamate_metabolism in the VLS patient group. The study suggests that perimenopausal or postmenopausal patients with VLS have a modified microbiome in the vulvar skin, gut, and vagina. This modification is linked to abnormal energy metabolism, increased oxidative stress, and abnormal amino acid metabolism.
Collapse
Affiliation(s)
- Xiaolei Ma
- Department of Dermatology, Peking University International Hospital, Life Park Road No.1 Life Science Park of Zhong Guancun, Chang Ping District, Beijing, People's Republic of China.
| | - Guangdong Wen
- Department of Dermatology, Peking University People's Hospital, Beijing, People's Republic of China
| | - Zheng Zhao
- Department of Dermatology, Peking University International Hospital, Life Park Road No.1 Life Science Park of Zhong Guancun, Chang Ping District, Beijing, People's Republic of China
| | - Lulu Lu
- Department of Dermatology, Peking University International Hospital, Life Park Road No.1 Life Science Park of Zhong Guancun, Chang Ping District, Beijing, People's Republic of China
| | - Tianying Li
- Department of Pathology, Peking University International Hospital, Beijing, People's Republic of China
| | - Na Gao
- Department of Dermatology, Peking University International Hospital, Life Park Road No.1 Life Science Park of Zhong Guancun, Chang Ping District, Beijing, People's Republic of China
| | - Gangwen Han
- Department of Dermatology, Peking University International Hospital, Life Park Road No.1 Life Science Park of Zhong Guancun, Chang Ping District, Beijing, People's Republic of China
| |
Collapse
|
30
|
Tian Z, Zhang X, Yao G, Jin J, Zhang T, Sun C, Wang Z, Zhang Q. Intestinal flora and pregnancy complications: Current insights and future prospects. IMETA 2024; 3:e167. [PMID: 38882493 PMCID: PMC11170975 DOI: 10.1002/imt2.167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/27/2023] [Accepted: 12/22/2023] [Indexed: 06/18/2024]
Abstract
Numerous studies have demonstrated the pivotal roles of intestinal microbiota in many physiopathological processes through complex interactions with the host. As a unique period in a woman's lifespan, pregnancy is characterized by changes in hormones, immunity, and metabolism. The gut microbiota also changes during this period and plays a crucial role in maintaining a healthy pregnancy. Consequently, anomalies in the composition and function of the gut microbiota, namely, gut microbiota dysbiosis, can predispose individuals to various pregnancy complications, posing substantial risks to both maternal and neonatal health. However, there are still many controversies in this field, such as "sterile womb" versus "in utero colonization." Therefore, a thorough understanding of the roles and mechanisms of gut microbiota in pregnancy and its complications is essential to safeguard the health of both mother and child. This review provides a comprehensive overview of the changes in gut microbiota during pregnancy, its abnormalities in common pregnancy complications, and potential etiological implications. It also explores the potential of gut microbiota in diagnosing and treating pregnancy complications and examines the possibility of gut-derived bacteria residing in the uterus/placenta. Our aim is to expand knowledge in maternal and infant health from the gut microbiota perspective, aiding in developing new preventive and therapeutic strategies for pregnancy complications based on intestinal microecology.
Collapse
Affiliation(s)
- Zhenyu Tian
- National Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology Qilu Hospital of Shandong University Jinan China
| | - Xinjie Zhang
- Department of Biology University College London London UK
| | - Guixiang Yao
- National Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology Qilu Hospital of Shandong University Jinan China
| | - Jiajia Jin
- National Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology Qilu Hospital of Shandong University Jinan China
| | - Tongxue Zhang
- National Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology Qilu Hospital of Shandong University Jinan China
| | - Chunhua Sun
- Department of Health Management Center, Qilu Hospital, Cheeloo College of Medicine Shandong University Jinan China
| | - Zhe Wang
- Department of Geriatrics Shandong Provincial Hospital Affiliated to Shandong First Medical University Jinan China
| | - Qunye Zhang
- National Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology Qilu Hospital of Shandong University Jinan China
- Cardiovascular Disease Research Center of Shandong First Medical University Central Hospital Affiliated to Shandong First Medical University Jinan China
| |
Collapse
|
31
|
Chen D, Wang A, Lv J, Tang C, Jin CH, Liu J, Zeng X, Wang L. Structural and digestive characters of a heteropolysaccharide fraction from tea ( Camellia sinensis L.) flower. Food Chem X 2024; 21:101058. [PMID: 38178927 PMCID: PMC10765012 DOI: 10.1016/j.fochx.2023.101058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/25/2023] [Accepted: 12/06/2023] [Indexed: 01/06/2024] Open
Abstract
Tea (Camellia sinensis L.) flower polysaccharides (TFPS) have various health-promoting functions. In the present work, the structure of a purified TFPS fraction, namely TFPS-1-3p, and its in vitro digestive properties were investigated. The results demonstrated that TFPS-1-3p was a typical heteropolysaccharide consisting of rhamnose (Rha), arabinose (Ara), galactose (Gal) and galacturonic acid (GalA) with a molecular weight of 47.77 kDa. The backbone of TFPS-1-3p contained → 4)-α-d-GalpA(-6-OMe)-(1 → 4)-α-GalpA-(1 → and → 4)-α-d-GalpA(-6-OMe)-(1 → 2,4)-α-l-Rhap-(1 → linkages. The branch linkages in TFPS-1-3p contained → 6)-β-d-Galp-(1→, →3,6)-β-d-Galp-(1→, →5)-α-l-Araf-(1 → and → 3,5)-α-l-Araf-(1 →. Subsequently, TFPS-1-3p could not be degraded under simulated human gastrointestinal conditions but could be of use to human fecal microbes, thereby lowering the pH and increasing the production of short-chain fatty acids (SCFAs) of the gut microenvironment and altering the composition of the gut microbiota. The relative abundance of Fusobacterium_mortiferum Megasphaera_elsdenii_DSM_20460, Bacteroides thetaiotaomicron, Bacteroides plebeius and Collinsella aerofaciens increased significantly, potentially contributing to the degradation of TFPS-1-3p.
Collapse
Affiliation(s)
- Dan Chen
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Ao Wang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Jialiang Lv
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Chao Tang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Chang-hai Jin
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Jun Liu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Xiaoxiong Zeng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Li Wang
- Key Laboratory of Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products Processing, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, Anhui, China
| |
Collapse
|
32
|
Pheiffer C, Riedel S, Dias S, Adam S. Gestational Diabetes and the Gut Microbiota: Fibre and Polyphenol Supplementation as a Therapeutic Strategy. Microorganisms 2024; 12:633. [PMID: 38674578 PMCID: PMC11051981 DOI: 10.3390/microorganisms12040633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/17/2024] [Accepted: 03/18/2024] [Indexed: 04/28/2024] Open
Abstract
Gestational diabetes mellitus (GDM) is an escalating public health concern due to its association with short- and long-term adverse maternal and child health outcomes. Dysbiosis of microbiota within the gastrointestinal tract has been linked to the development of GDM. Modification of microbiota dysbiosis through dietary adjustments has attracted considerable attention as adjunct strategies to improve metabolic disease. Diets high in fibre and polyphenol content are associated with increased gut microbiota alpha diversity, reduced inflammation and oxidative processes and improved intestinal barrier function. This review explores the potential of fibre and polyphenol supplementation to prevent GDM by investigating their impact on gut microbiota composition and function.
Collapse
Affiliation(s)
- Carmen Pheiffer
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council, Tygerberg, Cape Town 7505, South Africa; (S.R.); (S.D.)
- Department of Obstetrics and Gynaecology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria 0028, South Africa;
- Centre for Cardio-Metabolic Research in Africa (CARMA), Division of Medical Physiology, Faculty of Health Sciences, Stellenbosch University, Tygerberg, Cape Town 7505, South Africa
| | - Sylvia Riedel
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council, Tygerberg, Cape Town 7505, South Africa; (S.R.); (S.D.)
- Centre for Cardio-Metabolic Research in Africa (CARMA), Division of Medical Physiology, Faculty of Health Sciences, Stellenbosch University, Tygerberg, Cape Town 7505, South Africa
| | - Stephanie Dias
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council, Tygerberg, Cape Town 7505, South Africa; (S.R.); (S.D.)
| | - Sumaiya Adam
- Department of Obstetrics and Gynaecology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria 0028, South Africa;
- Diabetes Research Centre, Faculty of Health Sciences, University of Pretoria, Pretoria 0028, South Africa
| |
Collapse
|
33
|
Kunasegaran T, Balasubramaniam VRMT, Thirunavuk Arasoo VJ, Palanisamy UD, Tan YK, Ramadas A. Diet, lifestyle and gut microbiota composition among Malaysian women with gestational diabetes mellitus: a prospective cohort study. Sci Rep 2024; 14:6891. [PMID: 38519592 PMCID: PMC10959929 DOI: 10.1038/s41598-024-57627-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/20/2024] [Indexed: 03/25/2024] Open
Abstract
The study addressed a significant gap in the profiling and understanding of the gut microbiota's influence on Malaysian Malay women with gestational diabetes mellitus (GDM). This prospective cohort study aimed to explore the intricate relationship between gut microbiota, dietary choices, and lifestyle factors among Malay women, both with and without GDM. The research specifically focused on participants during the second (T0) and third (T1) trimesters of pregnancy in Johor Bahru, Malaysia. In Part 1 of the study, a diverse pool of pregnant women at T0 was categorized into two groups: those diagnosed with GDM and those without GDM, with a total sample size of 105 individuals. The assessments encompassed demographic, clinical, lifestyle, and dietary factors at the T0 and T1 trimesters. Part 2 of the study delved into microbiome analysis, targeting a better understanding of the gut microbiota among the participants. Stool samples were randomly collected from 50% of the individuals in each group (GDM and non-GDM) at T0 and T1. The collected samples underwent processing, and 16s rRNA metagenomic analysis was employed to study the microbial composition. The results suggested an association between elevated body weight and glucose levels, poor sleep quality, lack of physical activity, greater intake of iron and meat, and reduced fruit consumption among women with GDM compared to non-GDM groups. The microbiome analysis revealed changes in microbial composition over time, with reduced diversity observed in the GDM group during the third trimester. The genera Lactiplantibacillus, Parvibacter, Prevotellaceae UCG001, and Vagococcus positively correlated with physical activity levels in GDM women in the second trimester. Similarly, the genus Victivallis exhibited a strong positive correlation with gravida and parity. On the contrary, the genus Bacteroides and Roseburia showed a negative correlation with omega-3 polyunsaturated fatty acids (PUFAs) in women without GDM in the third trimester. The study highlighted the multifaceted nature of GDM, involving a combination of lifestyle factors, dietary choices, and changes in gut microbiota composition. The findings emphasized the importance of considering these interconnected elements in understanding and managing gestational diabetes among Malaysian Malay women. Further exploration is essential to comprehend the mechanisms underlying this relationship and develop targeted interventions for effective GDM management.
Collapse
Affiliation(s)
- Thubasni Kunasegaran
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500, Bandar Sunway, Malaysia
| | - Vinod R M T Balasubramaniam
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500, Bandar Sunway, Malaysia
| | | | - Uma Devi Palanisamy
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500, Bandar Sunway, Malaysia
| | - Yen Ker Tan
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500, Bandar Sunway, Malaysia
- Mackay Base Hospital, Mackay, QLD, 4740, Australia
| | - Amutha Ramadas
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500, Bandar Sunway, Malaysia.
| |
Collapse
|
34
|
Yang J, Wang J, Wu W, Su C, Wu Y, Li Q. Xylooligosaccharides ameliorate insulin resistance by increasing Akkermansia muciniphila and improving intestinal barrier dysfunction in gestational diabetes mellitus mice. Food Funct 2024; 15:3122-3129. [PMID: 38426554 DOI: 10.1039/d3fo04681h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Little is known regarding the effects of xylooligosaccharides (XOS) on insulin resistance (IR) in gestational diabetes mellitus (GDM). We aimed to investigate this issue and its mechanism. Sixty female mice were randomly allotted to 4 groups (n = 15): control, high fat diet (HFD), GDM, and GDM + XOS. The control mice were fed an AIN-93 diet, while the mice in the other groups were fed 45% HFD. After pregnancy, mice in GDM and GDM + XOS groups were intraperitoneally injected with 30 mg kg-1 streptozocin for 3 days from the first day of pregnancy. Mice in the GDM + XOS group were then fed an HFD containing 2% XOS. Fasting glucose and insulin levels were monitored. The fecal Akkermansia muciniphila (Akk. muciniphila) and Bifidobacterium were measured by qPCR. The Chiu scores were calculated from hematoxylin-eosin (HE)-stained ileal tissues. Phosphorylated Akt in the liver and occludin and ZO-1 in the intestinal tissues were determined by western blotting. XOS reduced (p < 0.05) fasting blood glucose and insulin and HOMA-IR, and increased (p < 0.05) Akt phosphorylation in the livers of GDM mice. Moreover, XOS decreased (p < 0.05) TNFα, IL-1β, IL-15 and LPS in the serum, increased (p < 0.05) fecal Akk. muciniphila abundance, lowered (p < 0.05) Chiu's scores, and enhanced (p < 0.05) occludin and ZO-1 expression. XOS ameliorate IR by increasing Akk. muciniphila and improving intestinal barrier dysfunction in GDM mice.
Collapse
Affiliation(s)
- Junyi Yang
- Department of Clinical Nutrition, Nanfang Hospital, Southern Medical University, China.
- Department of Nutrition and Food Hygiene, School of Public Health, Southern Medical University, China
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, China
- Guangdong Provincial Key Laboratory of Tropical Disease Research, China
| | - Jiexian Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Southern Medical University, China
- Guangdong Provincial Key Laboratory of Tropical Disease Research, China
| | - Weiliang Wu
- Food Safety and Health Research Center, School of Public Health, Southern Medical University, China
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, China
- Guangdong-Hongkong-Macao Joint Laboratory for Contaminants Exposure and Health, China
- Guangdong Provincial Key Laboratory of Tropical Disease Research, China
| | - Chuhong Su
- Department of Nutrition and Food Hygiene, School of Public Health, Southern Medical University, China
- Guangdong Provincial Key Laboratory of Tropical Disease Research, China
| | - Yanhua Wu
- Department of Clinical Nutrition, Nanfang Hospital, Southern Medical University, China.
- Department of Nutrition and Food Hygiene, School of Public Health, Southern Medical University, China
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, China
- Guangdong Provincial Key Laboratory of Tropical Disease Research, China
| | - Qing Li
- Department of Clinical Nutrition, Nanfang Hospital, Southern Medical University, China.
| |
Collapse
|
35
|
Ling S, Dai Y, Weng R, Li Y, Wu W, Zhou Z, Zhong Z, Zheng Y. Epidemiologic and genetic associations of female reproductive disorders with depression or dysthymia: a Mendelian randomization study. Sci Rep 2024; 14:5984. [PMID: 38472314 DOI: 10.1038/s41598-024-55993-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
Observational studies have previously reported an association between depression and certain female reproductive disorders. However, the causal relationships between depression and different types of female reproductive disorders remain unclear in terms of direction and magnitude. We conducted a comprehensive investigation using a two-sample bi-directional Mendelian randomization analysis, incorporating publicly available GWAS summary statistics. Our aim was to establish a causal relationship between genetically predicted depression and the risk of various female reproductive pathological conditions, such as ovarian dysfunction, polycystic ovary syndrome(PCOS), ovarian cysts, abnormal uterine and vaginal bleeding(AUB), endometriosis, leiomyoma of the uterus, female infertility, spontaneous abortion, eclampsia, pregnancy hypertension, gestational diabetes, excessive vomiting in pregnancy, cervical cancer, and uterine/endometrial cancer. We analyzed a substantial sample size, ranging from 111,831 to 210,870 individuals, and employed robust statistical methods, including inverse variance weighted, MR-Egger, weighted median, and MR-PRESSO, to estimate causal effects. Sensitivity analyses, such as Cochran's Q test, MR-Egger intercept test, MR-PRESSO, leave-one-out analysis, and funnel plots, were also conducted to ensure the validity of our results. Furthermore, risk factor analyses were performed to investigate potential mediators associated with these observed relationships. Our results demonstrated that genetic predisposition to depression or dysthymia was associated with an increased risk of developing PCOS (OR = 1.43, 95% CI 1.28-1.59; P = 6.66 × 10-11), ovarian cysts (OR = 1.36, 95% CI 1.20-1.55; P = 1.57 × 10-6), AUB (OR = 1.41, 95% CI 1.20-1.66; P = 3.01 × 10-5), and endometriosis (OR = 1.43, 95% CI 1.27-1.70; P = 2.21 × 10-7) after Bonferroni correction, but no evidence for reverse causality. Our study did not find any evidence supporting a causal or reverse causal relationship between depression/dysthymia and other types of female reproductive disorders. In summary, our study provides evidence for a causal relationship between genetically predicted depression and specific types of female reproductive disorders. Our findings emphasize the importance of depression management in the prevention and treatment of female reproductive disorders, notably including PCOS, ovarian cysts, AUB, and endometriosis.
Collapse
Affiliation(s)
- Shuyi Ling
- Reproductive Health Department, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518000, Guangdong, China
| | - Yuqing Dai
- Reproductive Health Department, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518000, Guangdong, China
| | - Ruoxin Weng
- Reproductive Health Department, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518000, Guangdong, China
| | - Yuan Li
- Reproductive Health Department, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518000, Guangdong, China
| | - Wenbo Wu
- Reproductive Health Department, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518000, Guangdong, China
| | - Ziqiong Zhou
- Reproductive Health Department, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518000, Guangdong, China
| | - Zhisheng Zhong
- Reproductive Health Department, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518000, Guangdong, China.
| | - Yuehui Zheng
- Reproductive Health Department, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518000, Guangdong, China.
| |
Collapse
|
36
|
Bhatia Z, Kumar S, Seshadri S. Composition and interaction of maternal microbiota with immune mediators during pregnancy and their outcome: A narrative review. Life Sci 2024; 340:122440. [PMID: 38278350 DOI: 10.1016/j.lfs.2024.122440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/26/2023] [Accepted: 01/14/2024] [Indexed: 01/28/2024]
Abstract
The connection between maternal microbiota and infant health has been greatly garnered interest for therapeutic purposes. The early resident microbiota perpetually exhibits much more flexibility as compared to that of the adults, and therefore, constant need of understanding the infant as well as maternal microbiota and their implications however has increased. In this review, we focus mainly on the diversity of overall maternal microbiota including the gut, vaginal, colostrum microbiota and how inflammatory markers fluctuate throughout the normal pregnancy as well in pregnancy with complications. The maternal body undergoes a cascade of physiological changes including hormonal, immunological and metabolic events to support the fetal development. These changes at the time of pregnancy have been correlated with alteration in the composition and diversity of maternal microbiota. Along with alteration in microbiome, the levels of circulatory cytokines fluctuate by complex network of inflammation, in order to prevent the fetal allograft throughout the pregnancy. The dynamic relationship of gut microbiota with the host and its immune system allows one to have greater insights of their role in pregnancy and newborn's health. Emerging evidence suggests that the vertical transmission of bacterial community from mother to newborn may begin in-utero which contributes in developing the immune system and infant gut microbiota.
Collapse
Affiliation(s)
- Zeel Bhatia
- Institute of Science, Nirma University, Ahmedabad, Gujarat 382481, India
| | - Sunny Kumar
- Institute of Science, Nirma University, Ahmedabad, Gujarat 382481, India
| | - Sriram Seshadri
- Institute of Science, Nirma University, Ahmedabad, Gujarat 382481, India.
| |
Collapse
|
37
|
Savytska M, Kyriienko D, Zaychenko G, Ostapchenko D, Falalyeyeva T, Kobyliak N. Probiotic co-supplementation with absorbent smectite for pancreatic beta-cell function in type 2 diabetes: a secondary-data analysis of a randomized double-blind controlled trials. Front Endocrinol (Lausanne) 2024; 15:1276642. [PMID: 38405158 PMCID: PMC10890794 DOI: 10.3389/fendo.2024.1276642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 01/18/2024] [Indexed: 02/27/2024] Open
Abstract
Introduction There is growing evidence from animal and clinical studies suggesting probiotics can positively affect type 2 diabetes (T2D). In a previous randomized clinical study, we found that administering a live multistrain probiotic and absorbent smectite once a day for eight weeks to patients with T2D could reduce chronic systemic inflammatory state, insulin resistance, waist circumference and improve the glycemic profile. However, there is a lack of evidence supporting the efficacy of probiotic co-supplementation with absorbent smectite on pancreatic β-cell function in T2D. Aim This secondary analysis aimed to assess the effectiveness of an alive multistrain probiotic co-supplementation with absorbent smectite vs placebo on β-cell function in T2D patients. Material and methods We performed a secondary analysis on a previously published randomized controlled trial (NCT04293731, NCT03614039) involving 46 patients with T2D. The main inclusion criteria were the presence of β-cell dysfunction (%B<60%) and insulin therapy alone or combined with oral anti-diabetic drugs. The primary outcome was assessing β-cell function as change C-peptide and %B. Results We observed only a tendency for improving β-cell function (44.22 ± 12.80 vs 55.69 ± 25.75; р=0.094). The effectiveness of the therapy probiotic-smectite group was confirmed by fasting glycemia decreased by 14% (p=0.019), HbA1c - 5% (p=0.007), HOMA-2 - 17% (p=0.003) and increase of insulin sensitivity by 23% (p=0.005). Analysis of the cytokine profile showed that statistical differences after treatment were in the concentration of both pro-inflammatory cytokines: IL-1β (22.83 ± 9.04 vs 19.03 ± 5.57; p=0.045) and TNF-α (31.25 ± 11.32 vs 26.23 ± 10.13; p=0.041). Conclusion Adding a live multistrain probiotic and absorbent smectite supplement slightly improved β-cell function and reduced glycemic-related parameters in patients with T2D. This suggests that adjusting the gut microbiota could be a promising treatment for diabetes and warrants further investigation through more extensive studies.
Collapse
Affiliation(s)
- Maryana Savytska
- Normal Physiology Department, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | | | - Ganna Zaychenko
- Pharmacology Department, Bogomolets National Medical University, Kyiv, Ukraine
| | - Danylo Ostapchenko
- Educational-Scientific Center “Institute of Biology and Medicine” Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Tetyana Falalyeyeva
- Educational-Scientific Center “Institute of Biology and Medicine” Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
- Medical Laboratory CSD, Kyiv, Ukraine
| | - Nazarii Kobyliak
- Medical Laboratory CSD, Kyiv, Ukraine
- Endocrinology Department, Bogomolets National Medical University, Kyiv, Ukraine
| |
Collapse
|
38
|
Suastika AV, Widiana IGR, Fatmawati NND, Suastika K, Paulus IB, Sujaya IN. The role of probiotics and synbiotics on treatment of gestational diabetes: systematic review and meta-analysis. AJOG GLOBAL REPORTS 2024; 4:100285. [PMID: 38322777 PMCID: PMC10844859 DOI: 10.1016/j.xagr.2023.100285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024] Open
Abstract
OBJECTIVE This review investigated the efficacy of probiotics and/or synbiotics in gestational diabetes mellitus treatment by targeting insulin resistance, lipid metabolism, and anti-inflammatory effects in an updated trial. DATA SOURCES The literature review was performed using the key words "Probiotics," "Synbiotics," and "Gestational Diabetes" in several databases, including PubMed, ScienceDirect, and the Cochrane Central Register of Controlled Trials. STUDY ELIGIBILITY CRITERIA Eligible publication was screened independently by 2 reviewers. Studies included provided at least 1 of the following outcomes: (1) blood glucose marker, including fasting blood glucose level, fasting serum insulin level, and homeostasis model assessment insulin resistance; (2) blood lipid profiles, including triglycerides, low-density lipoprotein cholesterol, and high-density lipoprotein cholesterol; and (3) nitric oxide and C-reactive protein. METHODS All studies were reviewed using the critical appraisal Cochrane risk-of-bias tool for randomized trials. The descriptions of the extracted data were guided by the Preferred Reporting Items for Systematic Reviews 2020 statement with the Grading of Recommendations Assessment, Development, and Evaluation approach. This study was registered on the International Prospective Register of Systematic Reviews database (identification number: CRD42022375665). RESULTS From 13 randomized controlled trials involving 896 patients, individuals with probiotic had significant reduction on homeostasis model assessment insulin resistance (mean difference, -0.72; 95% confidence interval, -1.07 to -0.38; I2, 96%; P=.00), fasting blood glucose level (mean difference, -3.79; 95% confidence interval, -6.24 to -1.34; I2, 93%; P=.00), and insulin level (mean difference, -2.43 mg/dL; 95% confidence interval, -3.37 to -1.48; I2, 54%; P=.00). Meanwhile for profile lipid, significant reduction of the mean difference was observed in the triglyceride (mean difference, -17.73 mg/dL; 95% confidence interval, -29.55 to - 5.9; P=.003) and C-reactive protein (mean difference, -1.93 dL; 95% confidence interval, -2.3 to -1.56; P=.00). CONCLUSION Probiotic and synbiotic supplementations reduced the risk of insulin resistance and improved glycemic control, blood lipid profiles, and inflammation in women with gestational diabetes mellitus. Probiotics may be a viable option for gestational diabetes mellitus treatment; however, large-scale, well-designed randomized controlled trials with longer follow-up periods are required before they can be recommended to patients.
Collapse
Affiliation(s)
| | - I Gde Raka Widiana
- Department of Internal Medicine, Udayana University, Bali, Indonesia (Drs I Widiana and K Suastika)
| | - Ni Nengah Dwi Fatmawati
- Faculty of Medicine, Department of Microbiology, Udayana University, Bali, Indonesia (Dr N Fatmawati)
| | - Ketut Suastika
- Department of Internal Medicine, Udayana University, Bali, Indonesia (Drs I Widiana and K Suastika)
| | | | - I Nengah Sujaya
- Faculty of Medicine, School of Public Health, Udayana University, Bali, Indonesia (N Sujaya PhD)
| |
Collapse
|
39
|
Wang Z, Jiang D, Wang X, Jiang Y, Sun Q, Ling W, An X, Ji C, Li S, Qi Y, Kang B. Spermidine improves the antioxidant capacity and morphology of intestinal tissues and regulates intestinal microorganisms in Sichuan white geese. Front Microbiol 2024; 14:1292984. [PMID: 38293560 PMCID: PMC10824853 DOI: 10.3389/fmicb.2023.1292984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/29/2023] [Indexed: 02/01/2024] Open
Abstract
Introduction Intestinal health is very important to the health of livestock and poultry, and is even a major determining factor in the performance of livestock and poultry production. Spermidine is a type of polyamine that is commonly found in a variety of foods, and can resist oxidative stress, promote cell proliferation and regulate intestinal flora. Methods In this study, we explored the effects of spermidine on intestinal health under physiological states or oxidative stress conditions by irrigation with spermidine and intraperitoneal injection of 3-Nitropropionic acid (3-NPA) in Sichuan white goose. Results and discussion Our results showed that spermidine could increase the ratio of intestinal villus to crypt and improve intestinal morphology. In addition, spermidine can also reduce malondialdehyde (MDA) accumulation caused by 3-NPA by increasing superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPX) enzyme activity, thus alleviating intestinal damage. Furthermore, spermidine can regulate intestinal digestive enzyme activities and affect intestinal digestion and absorption ability. Spermidine can also promote an increase in intestinal microbial diversity and abundance and alleviate the change of microflora structure caused by 3-NPA. In conclusion, spermidine promotes the production of beneficial intestinal metabolites such as Wikstromol, Alpha-bisabolol and AS 1-5, thus improving the level of intestinal health. Taken together, these results indicate that spermidine can improve intestinal health by improving intestinal morphology, increasing antioxidant capacity and regulating intestinal flora structure.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Bo Kang
- State Key Laboratory of Swine and Poultry Breeding Industry, Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
40
|
Hong L, Zhu L, Zhang J, Fu Y, Qi X, Zhao M. Association of dietary inflammatory index with risk of gestational diabetes mellitus and preeclampsia: a systematic review and meta-analysis. Br J Nutr 2024; 131:54-62. [PMID: 37519248 DOI: 10.1017/s0007114523001678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Findings from observational studies have suggested a possible association between dietary inflammatory index (DII) and risk of gestational diabetes mellitus (GDM) and preeclampsia (PE). However, the results of these studies were inconclusive. A systematic review and meta-analysis was carried out to illuminate this association. Systematic literature search was conducted in PubMed, Web of Science, Cochrane Library, EMBASE, Scopus and other databases from inception until January 2023. The qualities of included studies were assessed using the Newcastle-Ottawa scale. Nine studies (seven cohort, two case-control) were included in the meta-analysis, including 11 423 participants from five different countries. The meta-analysis indicated that a 1-unit increase in the DII score, representing pro-inflammatory diet, was associated with 13 % higher risk of GDM (OR = 1·13; 95 % CI 1·02, 1·25, I2 = 68·4 %, P = 0·004) and 24 % higher risk of PE (OR = 1·24; 95 % CI 1·14, 1·35, I2 = 52·0 %, P = 0·125). Subgroup analysis found that this association was evident among studies with Chinese populations (OR = 1·16; 95 % CI 1·06, 1·28) and studies with mid pregnancy (OR = 1·20; 95 % CI 1·07, 1·34). The findings indicate that pro-inflammatory diet can increase the risk of GDM and PE. Considering some limitations in this study, more studies are needed to verify this association.
Collapse
Affiliation(s)
- Li Hong
- School of Nursing, Anhui Medical University, Hefei, People's Republic of China
| | - Liyuan Zhu
- Department of Nursing, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, People's Republic of China
| | - Jinru Zhang
- School of Nursing, Anhui Medical University, Hefei, People's Republic of China
| | - Yueqi Fu
- School of Nursing, Anhui Medical University, Hefei, People's Republic of China
| | - Xiaoyan Qi
- School of Nursing, Anhui Medical University, Hefei, People's Republic of China
| | - Mei Zhao
- School of Nursing, Anhui Medical University, Hefei, People's Republic of China
| |
Collapse
|
41
|
Wang M, Chen L, Li J, You Y, Qian Z, Liu J, Jiang Y, Zhou T, Gu Y, Zhang Y. An omics review and perspective of researches on intrahepatic cholestasis of pregnancy. Front Endocrinol (Lausanne) 2024; 14:1267195. [PMID: 38260124 PMCID: PMC10801044 DOI: 10.3389/fendo.2023.1267195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 12/19/2023] [Indexed: 01/24/2024] Open
Abstract
Intrahepatic cholestasis of pregnancy (ICP) is one of the common pregnancy complications that may threaten the health of both pregnant women and their fetuses. Hence, it is of vital importance to identify key moleculars and the associated functional pathways of ICP, which will help us to better understand the pathological mechanisms as well as to develop precise clinical biomarkers. The emerging and developing of multiple omics approaches enable comprehensive studies of the genome, transcriptome, proteome and metabolome of clinical samples. The present review collected and summarized the omics based studies of ICP, aiming to provide an overview of the current progress, limitations and future directions. Briefly, these studies covered a broad range of research contents by the comparing of different experimental groups including ICP patients, ICP subtypes, ICP fetuses, ICP models and other complications. Correspondingly, the studied samples contain various types of clinical samples, in vitro cultured tissues, cell lines and the samples from animal models. According to the main research objectives, we further categorized these studies into two groups: pathogenesis and diagnosis analyses. The pathogenesis studies identified tens of functional pathways that may represent the key regulatory events for the occurrence, progression, treatment and fetal effects of ICP. On the other hand, the diagnosis studies tested more than 40 potential models for the early-prediction, diagnosis, grading, prognosis or differential diagnosis of ICP. Apart from these achievements, we also evaluated the limitations of current studies, and emphasized that many aspects of clinical characteristics, sample processing, and analytical method can greatly affect the reliability and repeatability of omics results. Finally, we also pointed out several new directions for the omics based analyses of ICP and other perinatal associated conditions in the future.
Collapse
Affiliation(s)
- Min Wang
- Center for Reproductive Medicine, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, China
| | - Lingyan Chen
- Department of Gynaecology and Obstetrics, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, China
| | - Jingyang Li
- Department of Gynaecology and Obstetrics, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, China
| | - Yilan You
- Department of Gynaecology and Obstetrics, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, China
| | - Zhiwen Qian
- Department of Gynaecology and Obstetrics, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, China
| | - Jiayu Liu
- Wuxi Maternity and Child Health Care Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Ying Jiang
- Department of Gynaecology and Obstetrics, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, China
| | - Tao Zhou
- Wuxi Maternity and Child Health Care Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Ying Gu
- Department of Gynaecology and Obstetrics, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, China
- Wuxi Maternity and Child Health Care Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Yan Zhang
- Department of Gynaecology and Obstetrics, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, China
- Wuxi Maternity and Child Health Care Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| |
Collapse
|
42
|
Tanaka A, Sanada K, Miyaho K, Tachibana T, Kurokawa S, Ishii C, Noda Y, Nakajima S, Fukuda S, Mimura M, Kishimoto T, Iwanami A. The relationship between sleep, gut microbiota, and metabolome in patients with depression and anxiety: A secondary analysis of the observational study. PLoS One 2023; 18:e0296047. [PMID: 38117827 PMCID: PMC10732403 DOI: 10.1371/journal.pone.0296047] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 12/05/2023] [Indexed: 12/22/2023] Open
Abstract
BACKGROUND Growing attention is paid to the association between alterations in the gut microbiota and their metabolites in patients with psychiatric disorders. Our study aimed to determine how gut microbiota and metabolomes are related to the sleep quality among patients with depression and anxiety disorders by analyzing the datasets of our previous study. METHODS Samples were collected from 40 patients (depression: 32 patients [80.0%]); anxiety disorders: 8 patients [20.0%]) in this study. Gut microbiomes were analyzed using 16S rRNA gene sequencing and gut metabolomes were analyzed by a mass spectrometry approach. Based on the Pittsburgh Sleep Quality Index (PSQI), patients were categorized into two groups: the insomnia group (PSQI score ≥ 9, n = 20) and the non-insomnia group (PSQI score < 9, n = 20). RESULTS The insomnia group showed a lower alpha diversity in the Chao1 and Shannon indices than the non-insomnia group after the false discovery rate (FDR) correction. The relative abundance of genus Bacteroides showed a positive correlation with PSQI scores in the non-insomnia group. The concentrations of glucosamine and N-methylglutamate were significantly higher in the insomnia group than in the non-insomnia group. CONCLUSIONS Our findings suggest that specific taxa could affect the sleep quality among patients with depression and anxiety disorders. Further studies are needed to elucidate the impact of sleep on specific gut microbiota and metabolomes in depression and anxiety disorders.
Collapse
Affiliation(s)
- Arisa Tanaka
- Department of Psychiatry, Showa University Karasuyama Hospital, Tokyo, Japan
| | - Kenji Sanada
- Department of Psychiatry, Showa University Karasuyama Hospital, Tokyo, Japan
| | - Katsuma Miyaho
- Department of Psychiatry, Showa University Karasuyama Hospital, Tokyo, Japan
| | - Tomoyuki Tachibana
- Department of Psychiatry, Showa University Karasuyama Hospital, Tokyo, Japan
| | - Shunya Kurokawa
- Department of Neuropsychiatry, Keio University Hospital, Tokyo, Japan
| | - Chiharu Ishii
- Institute for Advanced Biosciences, Keio University, Yamagata, Japan
| | - Yoshihiro Noda
- Department of Neuropsychiatry, Keio University Hospital, Tokyo, Japan
| | | | - Shinji Fukuda
- Institute for Advanced Biosciences, Keio University, Yamagata, Japan
- Intestinal Microbiota Project, Kanagawa Institute of Industrial Science and Technology, Kanagawa, Japan
- Transborder Medical Research Center, University of Tsukuba, Ibaraki, Japan
| | - Masaru Mimura
- Department of Neuropsychiatry, Keio University Hospital, Tokyo, Japan
| | | | - Akira Iwanami
- Department of Psychiatry, Showa University Karasuyama Hospital, Tokyo, Japan
| |
Collapse
|
43
|
Wan J, Zhu J, Zeng J, Zhou H, He Y. Effect of Galactooligosaccharide on PPARs/PI3K/Akt Pathway and Gut Microbiota in High-Fat and High-Sugar Diet Combined with STZ-Induced GDM Rat Model. Probiotics Antimicrob Proteins 2023:10.1007/s12602-023-10186-z. [PMID: 37953344 DOI: 10.1007/s12602-023-10186-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/23/2023] [Indexed: 11/14/2023]
Abstract
Gestational diabetes mellitus (GDM) is a metabolic disorder, characterized by underlying glucose intolerance, diabetes onset or first diagnosis during pregnancy. Galactooligosaccharide (GOS) is essential for consumer protection as food supplementation. However, there is limited understanding of the effects of GOS on GDM. We successfully established a GDM rat model to explore GOS whether participated in PPARs/PI3K/Akt pathway and gut microbiota metabolites to treat for GDM. In this study, compared with the GDM group, GOS administration lowered the levels of TG, LDL-C, and HDL-C in rat serum, as well as improved the pathological changes pancreatic, liver, and kidney tissues. Compared with the GDM group, the protein expressions of PPARα, PPARγ, and PPARβ/δ markedly enhanced in GOS-treated groups (P < 0.01). Moreover, GOS administration upregulated the protein expressions of PPARα, PPARβ, PPARγ, PI3K, Akt, GLUT4, Bax, and Bcl2. GOS administration altered gut microbiota metabolites, including both SCFAs and BAs. Correlation analysis revealed close relationships between gut microbiota and experimental indicators. This study indicated that GOS effectively improved GDM in rats through the modulation of PPARs/PI3K/Akt pathway and gut microbiota. Thus, the GOS could be recommended as a candidate for novel therapy of GDM.
Collapse
Affiliation(s)
- Jiayang Wan
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jiaqi Zhu
- School of Basic Medicine Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jieqiong Zeng
- School of Basic Medicine Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Huifen Zhou
- School of Basic Medicine Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Yu He
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
44
|
Savytska M, Kyriienko D, Komisarenko I, Kovalchuk O, Falalyeyeva T, Kobyliak N. Probiotic for Pancreatic β-Cell Function in Type 2 Diabetes: A Randomized, Double-Blinded, Placebo-Controlled Clinical Trial. Diabetes Ther 2023; 14:1915-1931. [PMID: 37713103 PMCID: PMC10570251 DOI: 10.1007/s13300-023-01474-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 09/01/2023] [Indexed: 09/16/2023] Open
Abstract
INTRODUCTION Many clinical studies have proved the effectiveness of probiotics in metabolic disorders associated with insulin resistance. However, the impact of probiotic therapy on pancreatic β-cell function is ambiguous. The influence of probiotic supplementation vs. placebo on β-cell function in people with type 2 diabetes (T2D) was assessed in a double-blind, single-center, randomized, placebo-controlled trial (RCT). METHODS Sixty-eight patients with T2D were selected for participation in the RCT. Patients were randomly allocated to consumption of live multistrain probiotics or a placebo for 8 weeks, administered as a sachet formulation in double-blind treatment. The primary main outcome was the assessment of β-cell function as change in C-peptide and HOMA-β (homeostasis model assessment-estimated β-cell function), which was calculated using the HOMA2 calculator (Diabetes Trials Unit, University of Oxford). Secondary outcomes were the changes in glycemic control-related parameters, anthropomorphic variables, and cytokines levels. Analysis of covariance was used to assess the difference between groups. RESULTS Supplementation with live multiprobiotic was associated with slight significant improvement of β-cell function (HOMA-β increased from 32.48 ± 13.12 to 45.71 ± 25.18; p = 0.003) and reduction of fasting glucose level (13.03 ± 3.46 vs 10.66 ± 2.63 mmol/L and 234.63 ± 62.36 vs 192.07 ± 47.46 mg/dL; p < 0.001) and HbA1c (8.86 ± 1.28 vs 8.48 ± 1.22; p = 0.043) as compared to placebo. Probiotic therapy significantly affects chronic systemic inflammation in people with T2D by reducing pro-inflammatory cytokine levels. CONCLUSIONS Probiotic therapies modestly improved β-cell function in patients with T2D. Modulating the gut microbiota represents a new diabetes treatment and should be tested in more extensive studies. TRIAL REGISTRATION NCT05765292.
Collapse
Affiliation(s)
- Maryana Savytska
- Normal Physiology Department, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | | | - Iuliia Komisarenko
- Endocrinology Department, Bogomolets National Medical University, Kyiv, Ukraine
| | | | - Tetyana Falalyeyeva
- Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
- Medical Laboratory CSD, Kyiv, Ukraine
| | - Nazarii Kobyliak
- Endocrinology Department, Bogomolets National Medical University, Kyiv, Ukraine.
- Medical Laboratory CSD, Kyiv, Ukraine.
| |
Collapse
|
45
|
Hadley M, Oppong AY, Coleman J, Powell AM. Structural Racism and Adverse Pregnancy Outcomes Through the Lens of the Maternal Microbiome. Obstet Gynecol 2023; 142:911-919. [PMID: 37678901 PMCID: PMC10510805 DOI: 10.1097/aog.0000000000005345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/22/2023] [Accepted: 05/04/2023] [Indexed: 09/09/2023]
Abstract
Microbiome science offers a glimpse into personalized medicine by characterizing health and disease states according to an individual's microbial signatures. Without a critical examination of the use of race as a variable, microbiome studies may be susceptible to the same pitfalls as other areas of science grounded in racist biology. We will examine the use of race as a biological variable in pregnancy-related microbiome research. Emerging data from studies that investigate the intestinal microbiome in pregnancy suggest strong influence of a poor diet on adverse pregnancy outcomes. Differences in the vaginal microbiome implicated in adverse pregnancy outcomes are frequently attributed to race. We review evidence that links systemic racism to pregnancy health outcome differences with a focus on the vaginal and intestinal microbiomes as well as diet. We also review how structural racism ultimately contributes to inequitable access to healthy food and higher risk environmental exposures among pregnant people of lower socioeconomic status and exacerbates common pregnancy comorbidities.
Collapse
Affiliation(s)
- Megan Hadley
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, Maryland; and the University of Chicago School of Medicine, Chicago, Illinois
| | | | | | | |
Collapse
|
46
|
Liu PY, Xia D, McGonigle K, Carroll AB, Chiango J, Scavello H, Martins R, Mehta S, Krespan E, Lunde E, LeVine D, Fellman CL, Goggs R, Beiting DP, Garden OA. Immune-mediated hematological disease in dogs is associated with alterations of the fecal microbiota: a pilot study. Anim Microbiome 2023; 5:46. [PMID: 37770990 PMCID: PMC10540429 DOI: 10.1186/s42523-023-00268-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 09/20/2023] [Indexed: 09/30/2023] Open
Abstract
BACKGROUND The dog is the most popular companion animal and is a valuable large animal model for several human diseases. Canine immune-mediated hematological diseases, including immune-mediated hemolytic anemia (IMHA) and immune thrombocytopenia (ITP), share many features in common with autoimmune hematological diseases of humans. The gut microbiome has been linked to systemic illness, but few studies have evaluated its association with immune-mediated hematological disease. To address this knowledge gap, 16S rRNA gene sequencing was used to profile the fecal microbiota of dogs with spontaneous IMHA and ITP at presentation and following successful treatment. In total, 21 affected and 13 healthy control dogs were included in the study. RESULTS IMHA/ITP is associated with remodeling of fecal microbiota, marked by decreased relative abundance of the spirochete Treponema spp., increased relative abundance of the pathobionts Clostridium septicum and Escherichia coli, and increased overall microbial diversity. Logistic regression analysis demonstrated that Treponema spp. were associated with decreased risk of IMHA/ITP (odds ratio [OR] 0.24-0.34), while Ruminococcaceae UCG-009 and Christensenellaceae R-7 group were associated with increased risk of disease (OR = 6.84 [95% CI 2-32.74] and 8.36 [95% CI 1.85-71.88] respectively). CONCLUSIONS This study demonstrates an association of immune-mediated hematological diseases in dogs with fecal dysbiosis, and points to specific bacterial genera as biomarkers of disease. Microbes identified as positive or negative risk factors for IMHA/ITP represent an area for future research as potential targets for new diagnostic assays and/or therapeutic applications.
Collapse
Affiliation(s)
- P-Y Liu
- Department of Pathobiology and Population Sciences, The Royal Veterinary College, Royal College Street, London, NW1 0TU, UK
- School of Medicine, College of Medicine, National Sun Yat-sen University, Kaohsiung, 804201, Taiwan
| | - D Xia
- Department of Pathobiology and Population Sciences, The Royal Veterinary College, Royal College Street, London, NW1 0TU, UK
| | - K McGonigle
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, 3900 Spruce Street, Philadelphia, PA, 19104, USA
| | - A B Carroll
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, 3900 Spruce Street, Philadelphia, PA, 19104, USA
| | - J Chiango
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, 3900 Spruce Street, Philadelphia, PA, 19104, USA
| | - H Scavello
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, 3900 Spruce Street, Philadelphia, PA, 19104, USA
| | - R Martins
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, 3900 Spruce Street, Philadelphia, PA, 19104, USA
| | - S Mehta
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 380 South University Avenue, Philadelphia, 19104, USA
| | - E Krespan
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 380 South University Avenue, Philadelphia, 19104, USA
| | - E Lunde
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, 1809 South Riverside Drive, Ames, IA, 50011, USA
| | - D LeVine
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, 1809 South Riverside Drive, Ames, IA, 50011, USA
- Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, 1220 Wire Road, Auburn, AL, 36849, USA
| | - C L Fellman
- Department of Clinical Sciences, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA, 01536, USA
| | - R Goggs
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, 930 Campus Road, Box 31, Ithaca, NY, 14853, USA
| | - D P Beiting
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 380 South University Avenue, Philadelphia, 19104, USA
| | - O A Garden
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, 3900 Spruce Street, Philadelphia, PA, 19104, USA.
- Dean's Office, School of Veterinary Medicine, Louisiana State University, Skip Bertman Drive, Baton Rouge, LA, 70803, USA.
| |
Collapse
|
47
|
Tocci V, Mirabelli M, Salatino A, Sicilia L, Giuliano S, Brunetti FS, Chiefari E, De Sarro G, Foti DP, Brunetti A. Metformin in Gestational Diabetes Mellitus: To Use or Not to Use, That Is the Question. Pharmaceuticals (Basel) 2023; 16:1318. [PMID: 37765126 PMCID: PMC10537239 DOI: 10.3390/ph16091318] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/12/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
In recent years, there has been a dramatic increase in the number of pregnancies complicated by gestational diabetes mellitus (GDM). GDM occurs when maternal insulin resistance develops and/or progresses during gestation, and it is not compensated by a rise in maternal insulin secretion. If not properly managed, this condition can cause serious short-term and long-term problems for both mother and child. Lifestyle changes are the first line of treatment for GDM, but if ineffective, insulin injections are the recommended pharmacological treatment choice. Some guidance authorities and scientific societies have proposed the use of metformin as an alternative pharmacological option for treating GDM, but there is not yet a unanimous consensus on this. Although the use of metformin appears to be safe for the mother, concerns remain about its long-term metabolic effects on the child that is exposed in utero to the drug, given that metformin, contrary to insulin, crosses the placenta. This review article describes the existing lines of evidence about the use of metformin in pregnancies complicated by GDM, in order to clarify its potential benefits and limits, and to help clinicians make decisions about who could benefit most from this drug treatment.
Collapse
Affiliation(s)
- Vera Tocci
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (V.T.); (M.M.)
- Operative Unit of Endocrinology, Diabetes in Pregnancy Ambulatory Care Center, Renato Dulbecco University Hospital, 88100 Catanzaro, Italy
| | - Maria Mirabelli
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (V.T.); (M.M.)
- Operative Unit of Endocrinology, Diabetes in Pregnancy Ambulatory Care Center, Renato Dulbecco University Hospital, 88100 Catanzaro, Italy
| | - Alessandro Salatino
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (V.T.); (M.M.)
| | - Luciana Sicilia
- Operative Unit of Endocrinology, Diabetes in Pregnancy Ambulatory Care Center, Renato Dulbecco University Hospital, 88100 Catanzaro, Italy
| | - Stefania Giuliano
- Operative Unit of Endocrinology, Diabetes in Pregnancy Ambulatory Care Center, Renato Dulbecco University Hospital, 88100 Catanzaro, Italy
| | - Francesco S. Brunetti
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (V.T.); (M.M.)
| | - Eusebio Chiefari
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (V.T.); (M.M.)
| | - Giovambattista De Sarro
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (V.T.); (M.M.)
| | - Daniela P. Foti
- Department of Experimental and Clinical Medicine, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy;
| | - Antonio Brunetti
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (V.T.); (M.M.)
- Operative Unit of Endocrinology, Diabetes in Pregnancy Ambulatory Care Center, Renato Dulbecco University Hospital, 88100 Catanzaro, Italy
| |
Collapse
|
48
|
Lingasamy P, Modhukur V, Mändar R, Salumets A. Exploring Immunome and Microbiome Interplay in Reproductive Health: Current Knowledge, Challenges, and Novel Diagnostic Tools. Semin Reprod Med 2023; 41:172-189. [PMID: 38262441 PMCID: PMC10846929 DOI: 10.1055/s-0043-1778017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
The dynamic interplay between the immunome and microbiome in reproductive health is a complex and rapidly advancing research field, holding tremendously vast possibilities for the development of reproductive medicine. This immunome-microbiome relationship influences the innate and adaptive immune responses, thereby affecting the onset and progression of reproductive disorders. However, the mechanisms governing these interactions remain elusive and require innovative approaches to gather more understanding. This comprehensive review examines the current knowledge on reproductive microbiomes across various parts of female reproductive tract, with special consideration of bidirectional interactions between microbiomes and the immune system. Additionally, it explores innate and adaptive immunity, focusing on immunoglobulin (Ig) A and IgM antibodies, their regulation, self-antigen tolerance mechanisms, and their roles in immune homeostasis. This review also highlights ongoing technological innovations in microbiota research, emphasizing the need for standardized detection and analysis methods. For instance, we evaluate the clinical utility of innovative technologies such as Phage ImmunoPrecipitation Sequencing (PhIP-Seq) and Microbial Flow Cytometry coupled to Next-Generation Sequencing (mFLOW-Seq). Despite ongoing advancements, we emphasize the need for further exploration in this field, as a deeper understanding of immunome-microbiome interactions holds promise for innovative diagnostic and therapeutic strategies for reproductive health, like infertility treatment and management of pregnancy.
Collapse
Affiliation(s)
| | - Vijayachitra Modhukur
- Competence Centre on Health Technologies, Tartu, Estonia
- Department of Obstetrics and Gynecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Reet Mändar
- Competence Centre on Health Technologies, Tartu, Estonia
- Department of Microbiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Andres Salumets
- Competence Centre on Health Technologies, Tartu, Estonia
- Department of Obstetrics and Gynecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institute and Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
49
|
Joshi NP, Madiwale SD, Sundrani DP, Joshi SR. Fatty acids, inflammation and angiogenesis in women with gestational diabetes mellitus. Biochimie 2023; 212:31-40. [PMID: 37059350 DOI: 10.1016/j.biochi.2023.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 03/01/2023] [Accepted: 04/11/2023] [Indexed: 04/16/2023]
Abstract
Gestational diabetes mellitus (GDM) is a metabolic disorder in pregnancy whose prevalence is on the rise. Reports suggest a likely association between inflammation and maternal GDM. A balance between pro and anti-inflammatory cytokines is necessary for the regulation of maternal inflammation system throughout pregnancy. Along with various inflammatory markers, fatty acids also act as pro-inflammatory molecules. However, studies reporting the role of inflammatory markers in GDM are contradictory, suggesting the need of more studies to better understand the role of inflammation in pregnancies complicated by GDM. Inflammatory response can be regulated by angiopoietins suggesting a link between inflammation and angiogenesis. Placental angiogenesis is a normal physiological process which is tightly regulated during pregnancy. Various pro and anti-angiogenic factors influence the regulation of the feto-placental vascular development. Studies evaluating the levels of angiogenic markers in women with GDM are limited and the findings are inconsistent. This review summarizes the available literature on fatty acids, inflammatory markers and angiogenesis in women with GDM. We also discuss the possible link between them and their influence on placental development in GDM.
Collapse
Affiliation(s)
- Nikita P Joshi
- Mother and Child Health, Interactive Research School for Health Affairs, Bharati Vidyapeeth University, Pune, India
| | - Shweta D Madiwale
- Mother and Child Health, Interactive Research School for Health Affairs, Bharati Vidyapeeth University, Pune, India
| | - Deepali P Sundrani
- Mother and Child Health, Interactive Research School for Health Affairs, Bharati Vidyapeeth University, Pune, India
| | - Sadhana R Joshi
- Mother and Child Health, Interactive Research School for Health Affairs, Bharati Vidyapeeth University, Pune, India.
| |
Collapse
|
50
|
Dias S, Pheiffer C, Adam S. The Maternal Microbiome and Gestational Diabetes Mellitus: Cause and Effect. Microorganisms 2023; 11:2217. [PMID: 37764061 PMCID: PMC10535124 DOI: 10.3390/microorganisms11092217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/27/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
Gestational diabetes mellitus (GDM) is a growing public health concern that affects many pregnancies globally. The condition is associated with adverse maternal and neonatal outcomes including gestational hypertension, preeclampsia, placental abruption, preterm birth, stillbirth, and fetal growth restriction. In the long-term, mothers and children have an increased risk of developing metabolic diseases such as type 2 diabetes and cardiovascular disease. Accumulating evidence suggest that alterations in the maternal microbiome may play a role in the pathogenesis of GDM and adverse pregnancy outcomes. This review describes changes in the maternal microbiome during the physiological adaptations of pregnancy, GDM and adverse maternal and neonatal outcomes. Findings from this review highlight the importance of understanding the link between the maternal microbiome and GDM. Furthermore, new therapeutic approaches to prevent or better manage GDM are discussed. Further research and clinical trials are necessary to fully realize the therapeutic potential of the maternal microbiome and translate these findings into clinical practice.
Collapse
Affiliation(s)
- Stephanie Dias
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council, Tygerberg, Cape Town 7505, South Africa; (S.D.); (C.P.)
| | - Carmen Pheiffer
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council, Tygerberg, Cape Town 7505, South Africa; (S.D.); (C.P.)
- Centre for Cardio-Metabolic Research in Africa (CARMA), Division of Medical Physiology, Faculty of Health Sciences, Stellenbosch University, Tygerberg, Cape Town 7505, South Africa
- Department of Obstetrics and Gynaecology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria 0028, South Africa
| | - Sumaiya Adam
- Department of Obstetrics and Gynaecology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria 0028, South Africa
- Diabetes Research Centre, Faculty of Health Sciences, University of Pretoria, Pretoria 0028, South Africa
| |
Collapse
|