1
|
Zhang L, Zou W, Zhang S, Wu H, Gao Y, Zhang J, Zheng J. Maternal high-fat diet orchestrates offspring hepatic cholesterol metabolism via MEF2A hypermethylation-mediated CYP7A1 suppression. Cell Mol Biol Lett 2024; 29:154. [PMID: 39695937 DOI: 10.1186/s11658-024-00673-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 11/25/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Maternal overnutrition, prevalent among women of childbearing age, significantly impacts offspring health throughout their lifetime. While DNA methylation of metabolic-related genes mediates the transmission of detrimental effects from maternal high-fat diet (HFD), its role in programming hepatic cholesterol metabolism in offspring, particularly during weaning, remains elusive. METHODS Female C57BL/6 J mice were administered a HFD or control diet, before and during, gestation and lactation. Hepatic cholesterol metabolism genes in the liver of offspring were evaluated in terms of their expression. The potential regulator of cholesterol metabolism in the offspring's liver was identified, and the function of the targeted transcription factor was evaluated through in vitro experiments. The methylation level of the target transcription factor was assessed using the MassARRAY EpiTYPER platform. To determine whether transcription factor expression is influenced by DNA methylation, in vitro experiments were performed using 5-azacitidine and Lucia luciferase activity assays. RESULTS Here, we demonstrate that maternal HFD results in higher body weight and hypercholesterolemia in the offspring as early as weaning age. Maternal HFD feeding exacerbates hepatic cholesterol accumulation in offspring primarily by inhibiting cholesterol elimination to bile acids, with a significant decrease of hepatic cholesterol 7α-hydroxylase (CYP7A1). RNA-seq analysis identified myocyte enhancer factor 2A (MEF2A) as a key transcription factor in the offspring liver, which was significantly downregulated in offspring of HFD-fed dams. MEF2A knockdown led to CYP7A1 downregulation and lipid accumulation in HepG2 cells, while MEF2A overexpression reversed this effect. Dual luciferase reporter assays confirmed direct modulation of CYP7A1 transcription by MEF2A. Furthermore, the reduced MEF2A expression was attributed to DNA hypermethylation in the Mef2a promoter region. This epigenetic modification manifested as early as the fetal stage. CONCLUSIONS This study provides novel insights into how maternal HFD orchestrates hepatic cholesterol metabolism via MEF2A hypermethylation-mediated CYP7A1 suppression in offspring at weaning.
Collapse
Affiliation(s)
- Ling Zhang
- Department of Endocrinology, Peking University First Hospital, No. 8 Xishiku Ave, Xicheng, Beijing, 100034, People's Republic of China
| | - Wenyu Zou
- Department of Endocrinology, Peking University First Hospital, No. 8 Xishiku Ave, Xicheng, Beijing, 100034, People's Republic of China
| | - Shixuan Zhang
- Department of Endocrinology, Peking University First Hospital, No. 8 Xishiku Ave, Xicheng, Beijing, 100034, People's Republic of China
| | - Honghua Wu
- Department of Endocrinology, Peking University First Hospital, No. 8 Xishiku Ave, Xicheng, Beijing, 100034, People's Republic of China
| | - Ying Gao
- Department of Endocrinology, Peking University First Hospital, No. 8 Xishiku Ave, Xicheng, Beijing, 100034, People's Republic of China
| | - Junqing Zhang
- Department of Endocrinology, Peking University First Hospital, No. 8 Xishiku Ave, Xicheng, Beijing, 100034, People's Republic of China
| | - Jia Zheng
- Department of Endocrinology, Peking University First Hospital, No. 8 Xishiku Ave, Xicheng, Beijing, 100034, People's Republic of China.
| |
Collapse
|
2
|
Ren J, Zhou L, Li S, Zhang Q, Xiao X. The roles of the gut microbiota, metabolites, and epigenetics in the effects of maternal exercise on offspring metabolism. Am J Physiol Endocrinol Metab 2024; 327:E760-E772. [PMID: 39535269 DOI: 10.1152/ajpendo.00200.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/20/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024]
Abstract
Metabolic diseases, including obesity, dyslipidemia, and type 2 diabetes, have become severe challenges worldwide. The Developmental Origins of Health and Disease (DOHaD) hypothesis suggests that an adverse intrauterine environment can increase the risk of metabolic disorders in offspring. Studies have demonstrated that maternal exercise is an effective intervention for improving the offspring metabolic health. However, the pathways through which exercise works are unclear. It has been reported that the gut microbiota mediates the effect of maternal exercise on offspring metabolism, and epigenetic modifications have also been proposed to be important molecular mechanisms. Microbial metabolites can influence epigenetics by providing substrates for DNA or histone modifications, binding to G-protein-coupled receptors to affect downstream pathways, or regulating the activity of epigenetic modifying enzymes. This review aims to summarize the intergenerational effect of maternal exercise and proposes that gut microbiota-metabolites-epigenetic regulation is an important mechanism by which maternal exercise improves offspring metabolism, which may yield novel targets for the early prevention and intervention of metabolic diseases.
Collapse
Affiliation(s)
- Jing Ren
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Liyuan Zhou
- Department of Endocrinology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Shunhua Li
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Qian Zhang
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xinhua Xiao
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
3
|
Zhang L, Zhang S, Zou W, Hu Y, Gao Y, Zhang J, Zheng J. Maternal high-fat diet regulates offspring hepatic ABCG5 expression and cholesterol metabolism via the gut microbiota and its derived butyrate. Clin Sci (Lond) 2024; 138:1039-1054. [PMID: 39136693 DOI: 10.1042/cs20240997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/05/2024] [Accepted: 08/09/2024] [Indexed: 08/24/2024]
Abstract
Maternal high-fat diet intake has profound effects on the long-term health of offspring, predisposing them to a higher susceptibility to obesity and metabolic dysfunction-associated steatotic liver disease. However, the detailed mechanisms underlying the role of a maternal high-fat diet in hepatic lipid accumulation in offspring, especially at the weaning age, remain largely unclear. In this study, female C57BL/6J mice were randomly assigned to either a high-fat diet or a control diet, and lipid metabolism parameters were assessed in male offspring at weaning. Gut microbiota analysis and targeted metabolomics of short-chain fatty acids (SCFAs) in these offspring were further performed. Both in vivo and in vitro studies were conducted to explore the role of butyrate in hepatic cholesterol excretion in the liver and HepG2 cells. Our results showed that maternal high-fat feeding led to obesity and dyslipidemia, and exacerbated hepatic lipid accumulation in the livers of offspring at weaning. We observed significant decreases in the abundance of the Firmicutes phylum and the Allobaculum genus, known as producers of SCFAs, particularly butyrate, in the offspring of dams fed a high-fat diet. Additionally, maternal high-fat diet feeding markedly decreased serum butyrate levels and down-regulated ATP-binding cassette transporters G5 (ABCG5) in the liver, accompanied by decreased phosphorylated AMP-activated protein kinase (AMPK) and histone deacetylase 5 (HADC5) expressions. Subsequent in vitro studies revealed that butyrate could induce ABCG5 activation and alleviate lipid accumulation via the AMPK-pHDAC5 pathway in HepG2 cells. Moreover, knockdown of HDAC5 up-regulated ABCG5 expression and promoted cholesterol excretion in HepG2 cells. In conclusion, our study provides novel insights into how maternal high-fat diet feeding inhibits hepatic cholesterol excretion and down-regulates ABCG5 through the butyrate-AMPK-pHDAC5 pathway in offspring at weaning.
Collapse
Affiliation(s)
- Ling Zhang
- Department of Endocrinology, Peking University First Hospital, Beijing 100034, China
| | - Shixuan Zhang
- Department of Endocrinology, Peking University First Hospital, Beijing 100034, China
| | - Wenyu Zou
- Department of Endocrinology, Peking University First Hospital, Beijing 100034, China
| | - Yongyan Hu
- Laboratory Animal Facility, Peking University First Hospital, Beijing 100034, China
| | - Ying Gao
- Department of Endocrinology, Peking University First Hospital, Beijing 100034, China
| | - Junqing Zhang
- Department of Endocrinology, Peking University First Hospital, Beijing 100034, China
| | - Jia Zheng
- Department of Endocrinology, Peking University First Hospital, Beijing 100034, China
| |
Collapse
|
4
|
Lin X, Han H, Wang N, Wang C, Qi M, Wang J, Liu G. The Gut Microbial Regulation of Epigenetic Modification from a Metabolic Perspective. Int J Mol Sci 2024; 25:7175. [PMID: 39000282 PMCID: PMC11241073 DOI: 10.3390/ijms25137175] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024] Open
Abstract
Obesity is a global health challenge that has received increasing attention in contemporary research. The gut microbiota has been implicated in the development of obesity, primarily through its involvement in regulating various host metabolic processes. Recent research suggests that epigenetic modifications may serve as crucial pathways through which the gut microbiota and its metabolites contribute to the pathogenesis of obesity and other metabolic disorders. Hence, understanding the interplay between gut microbiota and epigenetic mechanisms is crucial for elucidating the impact of obesity on the host. This review primarily focuses on the understanding of the relationship between the gut microbiota and its metabolites with epigenetic mechanisms in several obesity-related pathogenic mechanisms, including energy dysregulation, metabolic inflammation, and maternal inheritance. These findings could serve as novel therapeutic targets for probiotics, prebiotics, and fecal microbiota transplantation tools in treating metabolic disruptions. It may also aid in developing therapeutic strategies that modulate the gut microbiota, thereby regulating the metabolic characteristics of obesity.
Collapse
Affiliation(s)
- Xingtong Lin
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (X.L.); (H.H.); (N.W.); (C.W.); (M.Q.)
- Yuelushan Laboratory, Changsha 410128, China
| | - Hui Han
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (X.L.); (H.H.); (N.W.); (C.W.); (M.Q.)
- Yuelushan Laboratory, Changsha 410128, China
| | - Nan Wang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (X.L.); (H.H.); (N.W.); (C.W.); (M.Q.)
- Yuelushan Laboratory, Changsha 410128, China
| | - Chengming Wang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (X.L.); (H.H.); (N.W.); (C.W.); (M.Q.)
- Yuelushan Laboratory, Changsha 410128, China
| | - Ming Qi
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (X.L.); (H.H.); (N.W.); (C.W.); (M.Q.)
- Yuelushan Laboratory, Changsha 410128, China
| | - Jing Wang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (X.L.); (H.H.); (N.W.); (C.W.); (M.Q.)
- Yuelushan Laboratory, Changsha 410128, China
| | - Gang Liu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (X.L.); (H.H.); (N.W.); (C.W.); (M.Q.)
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
5
|
Wang S, Cui Z, Yang H. Interactions between host and gut microbiota in gestational diabetes mellitus and their impacts on offspring. BMC Microbiol 2024; 24:161. [PMID: 38730357 PMCID: PMC11083820 DOI: 10.1186/s12866-024-03255-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 03/08/2024] [Indexed: 05/12/2024] Open
Abstract
Gestational diabetes mellitus (GDM) is characterized by insulin resistance and low-grade inflammation, and most studies have demonstrated gut dysbiosis in GDM pregnancies. Overall, they were manifested as a reduction in microbiome diversity and richness, depleted short chain fatty acid (SCFA)-producing genera and a dominant of Gram-negative pathogens releasing lipopolysaccharide (LPS). The SCFAs functioned as energy substance or signaling molecules to interact with host locally and beyond the gut. LPS contributed to pathophysiology of diseases through activating Toll-like receptor 4 (TLR4) and involved in inflammatory responses. The gut microbiome dysbiosis was not only closely related with GDM, it was also vital to fetal health through vertical transmission. In this review, we summarized gut microbiota signature in GDM pregnancies of each trimester, and presented a brief introduction of microbiome derived SCFAs. We then discussed mechanisms of microbiome-host interactions in the physiopathology of GDM and associated metabolic disorders. Finally, we compared offspring microbiota composition from GDM with that from normal pregnancies, and described the possible mechanism.
Collapse
Affiliation(s)
- Shuxian Wang
- Department of Obstetrics and Gynaecology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Maternal Fetal Medicine of Gestational Diabetes Mellitus, Beijing, China
| | - Zifeng Cui
- Department of Obstetrics and Gynaecology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Maternal Fetal Medicine of Gestational Diabetes Mellitus, Beijing, China
| | - Huixia Yang
- Department of Obstetrics and Gynaecology, Peking University First Hospital, Beijing, China.
- Beijing Key Laboratory of Maternal Fetal Medicine of Gestational Diabetes Mellitus, Beijing, China.
| |
Collapse
|
6
|
Mei X, Li Y, Zhang X, Zhai X, Yang Y, Li Z, Li L. Maternal Phlorizin Intake Protects Offspring from Maternal Obesity-Induced Metabolic Disorders in Mice via Targeting Gut Microbiota to Activate the SCFA-GPR43 Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:4703-4725. [PMID: 38349207 DOI: 10.1021/acs.jafc.3c06370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Maternal obesity increases the risk of obesity and metabolic disorders (MDs) in offspring, which can be mediated by the gut microbiota. Phlorizin (PHZ) can improve gut dysbiosis and positively affect host health; however, its transgenerational metabolic benefits remain largely unclear. This study aimed to investigate the potential of maternal PHZ intake in attenuating the adverse impacts of a maternal high-fat diet on obesity-related MDs in dams and offspring. The results showed that maternal PHZ reduced HFD-induced body weight gain and fat accumulation and improved glucose intolerance and abnormal lipid profiles in both dams and offspring. PHZ improved gut dysbiosis by promoting expansion of SCFA-producing bacteria, Akkermansia and Blautia, while inhibiting LPS-producing and pro-inflammatory bacteria, resulting in significantly increased fecal SCFAs, especially butyric acid, and reduced serum lipopolysaccharide levels and intestinal inflammation. PHZ also promoted intestinal GLP-1/2 secretion and intestinal development and enhanced gut barrier function by activating G protein-coupled receptor 43 (GPR43) in the offspring. Antibiotic-treated mice receiving FMT from PHZ-regulated offspring could attenuate MDs induced by receiving FMT from HFD offspring through the gut microbiota to activate the GPR43 pathway. It can be regarded as a promising functional food ingredient for preventing intergenerational transmission of MDs and breaking the obesity cycle.
Collapse
Affiliation(s)
- Xueran Mei
- Department of Obstetrics, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen 518020, China
- Post-Doctoral Scientific Research Station of Clinical Medicine, Jinan University, Guangzhou 510632, China
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, China
| | - Yi Li
- Graduate School of Biomedical Engineering, Faculty of Engineering, University of New South Wales, Sydney 2052, Australia
- ARC Centre of Excellence for Nanoscale Biophotonics, University of New South Wales, Sydney 2052, Australia
| | - Xiaoyu Zhang
- College of Life Sciences, Sichuan Normal University, Chengdu 610101, China
| | - Xiwen Zhai
- Graduate School of Biomedical Engineering, Faculty of Engineering, University of New South Wales, Sydney 2052, Australia
- ARC Centre of Excellence for Nanoscale Biophotonics, University of New South Wales, Sydney 2052, Australia
| | - Yi Yang
- Department of Obstetrics, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen 518020, China
- Post-Doctoral Scientific Research Station of Clinical Medicine, Jinan University, Guangzhou 510632, China
| | - Zhengjuan Li
- Department of Obstetrics, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen 518020, China
- Post-Doctoral Scientific Research Station of Clinical Medicine, Jinan University, Guangzhou 510632, China
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, China
| | - Liping Li
- Department of Obstetrics, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen 518020, China
- Post-Doctoral Scientific Research Station of Clinical Medicine, Jinan University, Guangzhou 510632, China
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, China
| |
Collapse
|
7
|
Lian V, Hinrichs H, Young M, Faerber A, Özler O, Xie Y, Ballentine SJ, Tarr PI, Davidson NO, Thompson MD. Maternal Obesogenic Diet Attenuates Microbiome-Dependent Offspring Weaning Reaction with Worsening of Steatotic Liver Disease. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:209-224. [PMID: 38029921 PMCID: PMC10835466 DOI: 10.1016/j.ajpath.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/15/2023] [Accepted: 11/07/2023] [Indexed: 12/01/2023]
Abstract
The mechanisms by which maternal obesity increases the susceptibility to steatotic liver disease in offspring are incompletely understood. Models using different maternal obesogenic diets (MODEs) display phenotypic variability, likely reflecting the influence of timing and diet composition. This study compared three maternal obesogenic diets using standardized exposure times to identify differences in offspring disease progression. This study found that the severity of hepatic inflammation and fibrosis in the offspring depends on the composition of the maternal obesogenic diet. Offspring cecal microbiome composition was shifted in all MODE groups relative to control. Decreased α-diversity in some MODE offspring with shifts in abundance of multiple genera were suggestive of delayed maturation of the microbiome. The weaning reaction typically characterized by a spike in intestinal expression of Tnfa and Ifng was attenuated in MODE offspring in an early microbiome-dependent manner using cross-fostering. Cross-fostering also switched the severity of disease progression in offspring dependent on the diet of the fostering dam. These results identify maternal diet composition and timing of exposure as modifiers in mediating transmissible changes in the microbiome. These changes in the early microbiome alter a critical window during weaning that drives susceptibility to progressive liver disease in the offspring.
Collapse
Affiliation(s)
- Vung Lian
- Division of Endocrinology and Diabetes, Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri
| | - Holly Hinrichs
- Division of Endocrinology and Diabetes, Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri
| | - Monica Young
- Division of Endocrinology and Diabetes, Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri
| | - Austin Faerber
- Division of Endocrinology and Diabetes, Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri
| | - Oğuz Özler
- Division of Endocrinology and Diabetes, Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri
| | - Yan Xie
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Samuel J Ballentine
- Department of Pathology, Washington University School of Medicine, St. Louis, Missouri
| | - Phillip I Tarr
- Division of Gastroenterology, Hepatology, & Nutrition, Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri
| | - Nicholas O Davidson
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Michael D Thompson
- Division of Endocrinology and Diabetes, Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri.
| |
Collapse
|
8
|
Gao C, Wei J, Lu C, Wang L, Dong D, Sun M. A new perspective in intestinal microecology: lifting the veil of exercise regulation of cardiometabolic diseases. Gut Microbes 2024; 16:2404141. [PMID: 39305272 PMCID: PMC11418258 DOI: 10.1080/19490976.2024.2404141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 09/02/2024] [Accepted: 09/09/2024] [Indexed: 09/25/2024] Open
Abstract
Cardiometabolic diseases (CMDs), encompassing cardiovascular and metabolic dysfunctions, characterized by insulin resistance, dyslipidemia, hepatic steatosis, and inflammation, have been identified with boosting morbidity and mortality due to the dearth of efficacious therapeutic interventions. In recent years, studies have shown that variations in gut microbiota and its own metabolites can influence the occurrence of CMDs. Intriguingly, the composition and function of the gut microbiota are susceptible to exercise patterns, thus affecting inflammatory, immune, and metabolic responses within the host. In this review, we introduce the key mechanisms of intestinal microecology involved in the onset and development of CMDs, discuss the relationship between exercise and intestinal microecology, and then analyze the role of intestinal microecology in the beneficial effects of exercise on CMDs, aiming at elucidating the gut-heart axis mechanisms of exercise mediated protective effect on CMDs, building avenues for the application of exercise in the management of CMDs.
Collapse
Affiliation(s)
- Can Gao
- College of Exercise and Health, Shenyang Sport University, Shenyang, Liaoning, P. R. China
| | - Jinwen Wei
- College of Exercise and Health, Shenyang Sport University, Shenyang, Liaoning, P. R. China
| | - Changxu Lu
- College of Exercise and Health, Shenyang Sport University, Shenyang, Liaoning, P. R. China
| | - Lijie Wang
- Department of Cardiology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, P. R. China
| | - Dan Dong
- College of Basic Medical Science, China Medical University, Shenyang, Liaoning, P. R. China
| | - Mingli Sun
- College of Exercise and Health, Shenyang Sport University, Shenyang, Liaoning, P. R. China
| |
Collapse
|
9
|
Zhang L, Zou W, Hu Y, Wu H, Gao Y, Zhang J, Zheng J. Maternal voluntary wheel running modulates glucose homeostasis, the gut microbiota and its derived fecal metabolites in offspring. Clin Sci (Lond) 2023; 137:1151-1166. [PMID: 37505199 PMCID: PMC10412464 DOI: 10.1042/cs20230372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/14/2023] [Accepted: 07/28/2023] [Indexed: 07/29/2023]
Abstract
Maternal overnutrition can dramatically increase the susceptibility of offspring to metabolic diseases, whereas maternal exercise may improve glucose metabolism in offspring. However, the underlying mechanism programming the intergenerational effects of maternal exercise on the benefits of glucose metabolism has not been fully elaborated. C57BL/6 female mice were randomly assigned to four subgroups according to a diet and exercise paradigm before and during pregnancy as follows: NC (fed with normal chow diet and sedentary), NCEx (fed with normal chow diet and running), HF (fed with high-fat diet and sedentary), and HFEx (fed with high-fat diet and running). Integrative 16S rDNA sequencing and mass spectrometry-based metabolite profiling were synchronously performed to characterize the effects of maternal exercise on the gut microbiota composition and metabolite alterations in offspring. Maternal exercise, acting as a natural pharmaceutical intervention, prevented deleterious effects on glucose metabolism in offspring. 16S rDNA sequencing revealed remarkable changes in the gut microbiota composition in offspring. Metabolic profiling indicated multiple altered metabolites, which were enriched in butanoate metabolism signaling in offspring. We further found that maternal exercise could mediate gene expression related to intestinal gluconeogenesis in offspring. In conclusion, our study indicated that maternal running significantly improved glucose metabolism in offspring and counteracted the detrimental effects of maternal high-fat feeding before and during pregnancy. We further demonstrated that maternal voluntary wheel running could integratively program the gut microbiota composition and fecal metabolite changes and then regulate butanoate metabolism and mediate intestinal gluconeogenesis in offspring.
Collapse
Affiliation(s)
- Ling Zhang
- Department of Endocrinology, Peking University First Hospital, Beijing, China
| | - Wenyu Zou
- Department of Endocrinology, Peking University First Hospital, Beijing, China
| | - Yongyan Hu
- Laboratory Animal Facility, Peking University First Hospital, Beijing 100034, China
| | - Honghua Wu
- Department of Endocrinology, Peking University First Hospital, Beijing, China
| | - Ying Gao
- Department of Endocrinology, Peking University First Hospital, Beijing, China
| | - Junqing Zhang
- Department of Endocrinology, Peking University First Hospital, Beijing, China
| | - Jia Zheng
- Department of Endocrinology, Peking University First Hospital, Beijing, China
| |
Collapse
|
10
|
Ding L, Liu J, Zhou L, Zhang Q, Yu M, Xiao X. Maternal High-Fat Diet Results in Long-Term Sex-Specific Alterations to Metabolic and Gut Microbial Diurnal Oscillations in Adult Offspring. Mol Nutr Food Res 2023; 67:e2200753. [PMID: 37334884 DOI: 10.1002/mnfr.202200753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 05/09/2023] [Indexed: 06/21/2023]
Abstract
SCOPE Circadian rhythms profoundly impact metabolism and the gut microbiota. A maternal high-fat diet (HFD) exerts effects on the metabolic syndrome of adult offspring in a sex-specific manner, the underlying mechanisms, however, remain unclear. METHODS AND RESULTS Female mice are fed an HFD and raise their offspring on a standard chow diet until 24 weeks. The glucose tolerance, insulin sensitivity, and diurnal rhythms of serum metabolic profiles are assessed in male and female adult offspring. Simultaneously, 16S rRNA is applied to characterize gut microbiota diurnal rhythms. The study finds that maternal HFD tends to deteriorate glucose tolerance and impairs insulin sensitivity in male offspring, but not female offspring, which can be associated with the circadian alterations of serum metabolic profiles in male offspring. As expected, maternal HFD sex-specifically alters diurnal rhythms of the gut microbiota, which exhibits putative associations with metabolic profiles in males. CONCLUSIONS The present study identifies the critical role of gut microbiota diurnal rhythms in triggering sex-biased metabolic diurnal rhythms in response to maternal HFD, at least in part. As early life may be a critical window for preventing metabolic diseases, these findings provide the basis for developing chronobiology applications targeting the gut microbiota to combat early metabolic alterations, especially in males.
Collapse
Affiliation(s)
- Lu Ding
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Jieying Liu
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
- Department of Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Liyuan Zhou
- Department of Endocrinology, Beijing Chao-yang Hospital, Capital Medical University, Beijing, China
| | - Qian Zhang
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Miao Yu
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xinhua Xiao
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
11
|
Ding L, Liu J, Zhou L, Xiao X. Maternal Exercise Impacts Offspring Metabolic Health in Adulthood: A Systematic Review and Meta-Analysis of Animal Studies. Nutrients 2023; 15:2793. [PMID: 37375697 DOI: 10.3390/nu15122793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 05/27/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Maternal exercise benefits offspring's metabolic health with long-term repercussions. Here, we systematically reviewed the effects of maternal exercise on offspring obesity outcomes in adulthood. The primary outcome is body weight. The secondary outcomes are glucose and lipid profiles. Two independent authors performed a search in the databases PubMed, EMBASE, and Web of Science. A total of nine studies with 17 different cohorts consisting of 369 animals (two species) were included. Study quality was assessed using the SYRCLE risk of bias. The PRISMA statement was used to report this systematic review. The results showed that maternal exercise contributes to improved glucose tolerance, reduced insulin concentration, and lower total cholesterol and low density lipoprotein levels in adult offspring in mice, which are independent of maternal body weight and offspring dietary condition. Additionally, in rats, maternal exercise leads to a higher body weight in adult offspring, which might be attributed to the high-fat diet of offspring after weaning. These findings further support the metabolic beneficial role of maternal exercise on offspring in adulthood, although the issue of translating the results to the human population is still yet to be addressed.
Collapse
Affiliation(s)
- Lu Ding
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Xin-Hua Xiao, No. 1 Shuaifuyuan, Wangfujing Street, Dongcheng District, Beijing 100730, China
| | - Jieying Liu
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Xin-Hua Xiao, No. 1 Shuaifuyuan, Wangfujing Street, Dongcheng District, Beijing 100730, China
- Department of Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Liyuan Zhou
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Xin-Hua Xiao, No. 1 Shuaifuyuan, Wangfujing Street, Dongcheng District, Beijing 100730, China
| | - Xinhua Xiao
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Xin-Hua Xiao, No. 1 Shuaifuyuan, Wangfujing Street, Dongcheng District, Beijing 100730, China
| |
Collapse
|
12
|
Agarwal M, Hoffman J, Ngo Tenlep SY, Santarossa S, Pearson KJ, Sitarik AR, Cassidy-Bushrow AE, Petriello MC. Maternal polychlorinated biphenyl 126 (PCB 126) exposure modulates offspring gut microbiota irrespective of diet and exercise. Reprod Toxicol 2023; 118:108384. [PMID: 37061048 PMCID: PMC10257154 DOI: 10.1016/j.reprotox.2023.108384] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/07/2023] [Accepted: 04/12/2023] [Indexed: 04/17/2023]
Abstract
The gut microbiota plays an important role throughout the lifespan in maintaining host health, and several factors can modulate microbiota composition including diet, exercise, and environmental exposures. Maternal microbiota is transferred to offspring during early life; thus, environmental exposures before gestation may also modulate offspring microbiota. Here we aimed to investigate the effects of maternal exposure to dioxin-like polychlorinated biphenyls (PCBs) on the microbiota of aged offspring and to determine if lifestyle factors, including maternal exercise or offspring high-fat feeding alter these associations. To test this, dams were exposed to PCB 126 (0.5 μmole/kg body weight) or vehicle oil by oral gavage during preconception, gestation, and during lactation. Half of each group was allowed access to running wheels for ≥ 7 days before and during pregnancy and up through day 14 of lactation. Female offspring born from the 4 maternal groups (PCB exposure or not, with/without exercise) were subsequently placed either on regular diet or switched to a high-fat diet during adulthood. Microbiota composition was quantified in female offspring at 49 weeks of age by 16 S rRNA sequencing. Maternal exposure to PCB 126 resulted in significantly reduced richness and diversity in offspring microbiota regardless of diet or exercise. Overall compositional differences were largely driven by offspring diet, but alterations in specific taxa due to maternal PCB 126 exposure, included the depletion of Verrucomicrobiaceae and Akkermansia muciniphila, and an increase in Anaeroplasma. Perturbation of microbiota due to PCB 126 may predispose offspring to a variety of chronic diseases later in adulthood.
Collapse
Affiliation(s)
- Manisha Agarwal
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, MI, 48202, USA
| | - Jessie Hoffman
- Department of Human Nutrition, Winthrop University, Rock Hill, SC 29733, USA
| | - Sara Y Ngo Tenlep
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, USA
| | - Sara Santarossa
- Department of Public Health Sciences, Henry Ford Health, Detroit, MI 48202, USA
| | - Kevin J Pearson
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, USA
| | - Alexandra R Sitarik
- Department of Public Health Sciences, Henry Ford Health, Detroit, MI 48202, USA
| | | | - Michael C Petriello
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, MI, 48202, USA; Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48202, USA.
| |
Collapse
|
13
|
Santarossa S, Sitarik AR, Cassidy-Bushrow AE, Comstock SS. Prenatal physical activity and the gut microbiota of pregnant women: results from a preliminary investigation. Phys Act Nutr 2023; 27:1-7. [PMID: 37583065 PMCID: PMC10440177 DOI: 10.20463/pan.2023.0011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/05/2023] [Accepted: 05/15/2023] [Indexed: 08/17/2023] Open
Abstract
PURPOSE To determine whether physical activity (PA), specifically meeting the recommended 150 minutes of moderate-intensity PA per week, is associated with gut microbiota composition in pregnant women. METHODS In an ongoing birth cohort study, questions from the Behavioral Risk Factor Surveillance System, which provides data on PA variables, were used to determine whether pregnant women met or exceeded the PA recommendations. To profile the composition of gut bacterial microbiota, 16S rRNA sequencing was performed on stool samples obtained from pregnant women. Differences in alpha diversity metrics (richness, Pielou's evenness, and Shannon's diversity) according to PA were determined using linear regression, whereas beta diversity relationships (Canberra and Bray-Curtis) were assessed using Permutational multivariate analysis of variance (PERMANOVA). Differences in relative taxon abundance were determined using DESeq2. RESULTS The complete analytical sample included 23 women that were evaluated for both PA and 16S rRNA sequencing data (median age [Q1; Q3] = 30.5 [26.6; 34.0] years; 17.4% Black), and 11 (47.8%) met or exceeded the PA recommendations. Meeting or exceeding the PA recommendations during pregnancy was not associated with gut microbiota richness, evenness, or diversity, but it was related to distinct bacterial composition using both Canberra (p = 0.005) and Bray-Curtis (p = 0.022) distances. Significantly lower abundances of Bacteroidales, Bifidobacteriaceae, Lactobacillaceae, and Streptococcaceae were observed in women who met or exceeded the PA recommendations (all false discovery rates adjusted, p < 0.02). CONCLUSION Pregnant women who met or exceeded the PA recommendations showed altered gut microbiota composition. This study forms the basis for future studies on the impact of PA on gut microbiota during pregnancy.
Collapse
Affiliation(s)
- Sara Santarossa
- Department of Public Health Sciences, Henry Ford Health System, Michigan, USA
| | | | | | - Sarah S. Comstock
- Department of Food Science and Human Nutrition, Michigan State University, Michigan, USA
| |
Collapse
|
14
|
Hinrichs H, Faerber A, Young M, Ballentine SJ, Thompson MD. Maternal Exercise Protects Male Offspring From Maternal Diet-Programmed Nonalcoholic Fatty Liver Disease Progression. Endocrinology 2023; 164:6991827. [PMID: 36655378 PMCID: PMC10091505 DOI: 10.1210/endocr/bqad010] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/09/2023] [Accepted: 01/12/2023] [Indexed: 01/20/2023]
Abstract
Maternal obesity programs the risk for development of nonalcoholic fatty liver disease (NAFLD) in offspring. Maternal exercise is a potential intervention to prevent developmentally programmed phenotypes. We hypothesized that maternal exercise would protect from progression of NAFLD in offspring previously exposed to a maternal obesogenic diet. Female mice were fed chow (CON) or high fat, fructose, cholesterol (HFFC) and bred with lean males. A subset had an exercise wheel introduced 4 weeks after starting the diet to allow for voluntary exercise. The offspring were weaned to the HFFC diet for 7 weeks to induce NAFLD. Serum, adipose, and liver tissue were collected for metabolic, histologic, and gene expression analyses. Cecal contents were collected for 16S sequencing. Global metabolomics was performed on liver. Female mice fed the HFFC diet had increased body weight prior to adding an exercise wheel. Female mice fed the HFFC diet had an increase in exercise distance relative to CON during the preconception period. Exercise distance was similar between groups during pregnancy and lactation. CON-active and HFFC-active offspring exhibited decreased inflammation compared with offspring from sedentary dams. Fibrosis increased in offspring from HFFC-sedentary dams compared with CON-sedentary. Offspring from exercised HFFC dams exhibited less fibrosis than offspring from sedentary HFFC dams. While maternal diet significantly affected the microbiome of offspring, the effect of maternal exercise was minimal. Metabolomics analysis revealed shifts in multiple metabolites including several involved in bile acid, 1-carbon, histidine, and acylcarnitine metabolism. This study provides preclinical evidence that maternal exercise is a potential approach to prevent developmentally programmed liver disease progression in offspring.
Collapse
Affiliation(s)
- Holly Hinrichs
- Division of Endocrinology and Diabetes, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Austin Faerber
- Division of Endocrinology and Diabetes, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Monica Young
- Division of Endocrinology and Diabetes, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Samuel J Ballentine
- Department of Pathology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Michael D Thompson
- Division of Endocrinology and Diabetes, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
15
|
Duan X, Xu J, Yang P, Liang X, Zeng Z, Luo H, Tang X, Wu X, Xiao X. The effects of a set amount of regular maternal exercise during pregnancy on gut microbiota are diet-dependent in mice and do not cause significant diversity changes. PeerJ 2022; 10:e14459. [PMID: 36518263 PMCID: PMC9744166 DOI: 10.7717/peerj.14459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 11/02/2022] [Indexed: 12/03/2022] Open
Abstract
Background Diet and exercise can affect the gut microbiota (GM); however, the effects of the same amount of exercise on gut microbiota changes in people on a low-fat diet (LFD) and high-fat diet (HFD) during pregnancy are unknown. Do different nutritional conditions respond equally to exercise intervention? This study aimed to investigate the effects of regular maternal exercise during pregnancy on the GM in mice fed different diets during pregnancy. Methods Six-week-old nulliparous female KunMing mice were fed either a HFD or LFD before and during pregnancy. Each group of mice were then randomly divided into two groups upon confirmation of pregnancy: sedentary (HFD or LFD; n = 4 and 5, respectively) and exercised (HFDex or LFDex, n = 5 and 6, respectively). Mice were sacrificed on day 19 of gestation and their colon contents were collected. We then performed 16S rDNA gene sequencing of the V3 and V4 regions of the GM. Results The pregnancy success rate was 60% for LFDex and 100% for HFDex. Both Chao1 and Simpson indices were not significantly different for either LFD vs. LFDex or HFD vs. HFDex. Desulfobacterota, Desulfovibrionia Desulfovibrionales, Desulfovibrionaceae, Desulfovibrio, Coriobacteriia, Coriobacteriales, and Eggerthellaceae were markedly decreased after exercise intervention in LFDex vs. LFD, whereas Actinobacteria, Bifidobacteriales, Bifidobacteriaceae, Bifidobacterium, and Bifidobacterium pseudolongum were significantly increased in LFDex vs. LFD. Furthermore, decreased Peptostreptococcales-Tissierellales and Peptostreptococcaceae and increased Bacteroides dorei were identified in the HFDex vs. HFD group. p_Desulfobacterota, c_Desulfovibrionia, o_Desulfovibrionales, f_Desulfovibrionaceae and g_Desulfovibrio were markedly decreased in the LFDex group vs. HFDex group. Conclusions Our data suggested that quantitative maternal exercise during pregnancy resulted in alterations in GM composition, but did not significantly change the diversity of the GM. These findings may have important implications when considering an individual's overall diet when recommending exercise during pregnancy.
Collapse
Affiliation(s)
- Xia Duan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Jingjing Xu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Ping Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xinyuan Liang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Zichun Zeng
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Huijuan Luo
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xiaomei Tang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xin Wu
- Guangdong Medical Laboratory Animal Center, Foshan, China
| | - Xiaomin Xiao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
16
|
Li H, Wang S, Wang S, Yu H, Yu W, Ma X, He X. Atorvastatin Inhibits High-Fat Diet-Induced Lipid Metabolism Disorders in Rats by Inhibiting Bacteroides Reduction and Improving Metabolism. Drug Des Devel Ther 2022; 16:3805-3816. [PMID: 36349306 PMCID: PMC9637332 DOI: 10.2147/dddt.s379335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 10/19/2022] [Indexed: 11/25/2022] Open
Abstract
PURPOSE The prevalence of hyperlipidemia and related illnesses is on its rise, and atorvastatin is the frequently used hypolipidemic agent. However, there is still uncertainty about the mechanisms, especially the relationship between the lipid-lowering effect, intestinal microbiome, and metabolic profiles. We aim to intensively explain the mechanism of the hypolipidemic effect of atorvastatin through multi-omics perspective of intestinal microbiome and metabolomics. METHODS Multi-omics methods play an increasingly important role in the analysis of intestinal triggers and evaluation of metabolic disorders such as obesity, hyperlipidemia, and diabetes. Therefore, we were prompted to explore intestinal triggers, underlying biomarkers, and potential intervention targets of atorvastatin in the treatment of dyslipidemia through multi-omics. To achieve this, SPF Wistar rats were fed a high-fat diet or normal diet for 8 weeks. Atorvastatin was then administered to high-fat diet-fed rats. RESULTS By altering intestinal microbiome, a high-fat diet can affect feces and plasma metabolic profiles. Treatment with atorvastatin possibly increases the abundance of Bacteroides, thereby improving "propanoate metabolism" and "glycine, serine and threonine metabolism" in feces and plasma, and contributing to blood lipid reduction. CONCLUSION Our study elucidated the intestinal triggers and metabolites of high-fat diet-induced dyslipidemia from the perspective of intestinal microbiome and metabolomics. It equally identified potential intervention targets of atorvastatin. This further explains the mechanism of the hypolipidemic effect of atorvastatin from a multi-omics perspective.
Collapse
Affiliation(s)
- Huimin Li
- Department of Physical and Chemical Inspection, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, People’s Republic of China,National Human Genetic Resources Center; National Research Institute for Health and Family Planning; Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| | - Shue Wang
- Preventive Medicine Experimental Teaching Center, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, People’s Republic of China
| | - Shuai Wang
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, People’s Republic of China
| | - Hai Yu
- Department of Physical and Chemical Inspection, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, People’s Republic of China
| | - Wenhao Yu
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, People’s Republic of China,Institute for Medical Dataology, Shandong University, National Institute of Health Data Science of China, Jinan, Shandong, 250012, People's Republic of China
| | - Xiaomin Ma
- Preventive Medicine Experimental Teaching Center, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, People’s Republic of China
| | - Xiaodong He
- Department of Physical and Chemical Inspection, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, People’s Republic of China,Institute for Medical Dataology, Shandong University, National Institute of Health Data Science of China, Jinan, Shandong, 250012, People's Republic of China,Correspondence: Xiaodong He, Tel/Fax +86 531 88382554, Email
| |
Collapse
|
17
|
Ding L, Liu J, Zhou L, Jia X, Li S, Zhang Q, Yu M, Xiao X. A high-fat diet disrupts the hepatic and adipose circadian rhythms and modulates the diurnal rhythm of gut microbiota-derived short-chain fatty acids in gestational mice. Front Nutr 2022; 9:925390. [PMID: 36245521 PMCID: PMC9554467 DOI: 10.3389/fnut.2022.925390] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
The prevalence of gestational obesity has reached epidemic proportions. Evidence supported that the interactions between the gut microbiota and circadian clocks far reached, affecting host metabolism. Our study aimed to investigate the effect of a high-fat diet (HF) on the hepatic and adipose circadian rhythms in gestational mice and to explore the role of gut microbiota-derived short-chain fatty acids (SCFAs) in mediating the effects. C57BL/6 female mice were randomly fed a standard chow diet (Ctr) or HF prior to and during pregnancy. Samples were collected every 4 h over 24 h (six time points), and 16S rRNA and metabonomics were carried out. Rhythmic patterns were identified and compared using CircaCompare. The results showed that the HF before and during pregnancy significantly induced obesity and worsen glucose tolerance, insulin sensitivity, and lipid metabolism in the gestational mice. Furthermore, the HF significantly disrupted the rhythmic pattern of hepatic and adipose circadian clock genes and downstream metabolic genes. Importantly, our results revealed that the HF altered the diurnal rhythm of the gut microbiota in a diverse manner, which was assessed across three categories: phase shift, loss rhythmicity, and gained rhythmicity. We report here, for the first time, a parallel alteration of the rhythmic phase of butyric acid and butyrate-producing Clostridiaceae_1, which was confirmed by a positive correlation between them. Overall, our research emphasized the importance of the rhythmicity of gut microbiota-derived SCFAs in mediating circadian disruption in response to the HF in gestational mice, which may provide novel insights into the prevention and treatment of gestational obesity.
Collapse
Affiliation(s)
- Lu Ding
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jieying Liu
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Liyuan Zhou
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xinmiao Jia
- Department of Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shunhua Li
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qian Zhang
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Miao Yu
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xinhua Xiao
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Xinhua Xiao,
| |
Collapse
|
18
|
Eow SY, Gan WY, Jiang T, Loh SP, Lee LJ, Chin YS, Than LTL, How KN, Thong PL, Liu Y, Zhao J, Chen L. MYBIOTA: A birth cohort on maternal and infant microbiota and its impact on infant health in Malaysia. Front Nutr 2022; 9:994607. [PMID: 36238465 PMCID: PMC9552002 DOI: 10.3389/fnut.2022.994607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/12/2022] [Indexed: 11/15/2022] Open
Abstract
Background The microbiota plays a key role in early immunity maturation that affects infant health and is associated with the development of non-communicable diseases and allergies in later life. Objective The MYBIOTA is a prospective mother-infant cohort study in Malaysia aiming to determine the association between gut microbiota with infant health (temperament, gastrointestinal disorders, eczema, asthma, and developmental delays) in Selangor, Malaysia. Methods Pregnant mothers will be enrolled in their first trimester of pregnancy, and follow-ups will be done for infants during their first year of life. Maternal-infant biological samples (blood, feces, saliva, urine, and breast milk), anthropometric, dietary, and clinical information will be collected at different time points from early pregnancy to 12 months postpartum. Discussion This study could provide a better understanding of the colonization and development of the gut microbiome during early life and its impact on infant health. Clinical trial registration https://clinicaltrials.gov/, identifier NCT04919265.
Collapse
Affiliation(s)
- Shiang Yen Eow
- Department of Nutrition, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Wan Ying Gan
- Department of Nutrition, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Tiemin Jiang
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Yinghai, Beijing, China
- South Asia Branch of National Engineering Center of Dairy for Maternal and Child Health, Guilin University of Technology, Guilin, China
| | - Su Peng Loh
- Department of Nutrition, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Ling Jun Lee
- Department of Nutrition, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Yit Siew Chin
- Department of Nutrition, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Research Center of Excellence, Nutrition and Non-communicable Diseases, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Leslie Thian Lung Than
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Kang Nien How
- Unit of Dermatology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Pui Ling Thong
- Department of Pediatrics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Yanpin Liu
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Yinghai, Beijing, China
- Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Yinghai, Beijing, China
| | - Junying Zhao
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Yinghai, Beijing, China
- Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Yinghai, Beijing, China
| | - Lijun Chen
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Yinghai, Beijing, China
- Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Yinghai, Beijing, China
| |
Collapse
|
19
|
Maternal Treatment with Metformin Persistently Ameliorates High-Fat Diet-Induced Metabolic Symptoms and Modulates Gut Microbiota in Rat Offspring. Nutrients 2022; 14:nu14173612. [PMID: 36079869 PMCID: PMC9460832 DOI: 10.3390/nu14173612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 11/17/2022] Open
Abstract
A maternal high-fat (HF) diet has long-term deleterious effect on offspring. This study aims to evaluate whether maternal metformin (MT) treatment ameliorates the adverse effects of maternal HF diet on offspring and the role of gut microbiota in it. Pregnant Sprague-Dawley rats were randomly assigned to a HF diet (60% fat) or a standard chow diet (11.8% fat) group, and part of the HF diet group rats were co-treated with MT via drinking water (300 mg/kg/day), resulting in three groups according to maternal diet and MT treatment during gestation and lactation. All offspring were weaned on a chow diet. A maternal HF diet showed a significant deleterious effect on offspring’s metabolic phenotype and induced colonic inflammation and gut-barrier disruption through the reshaped gut microbiota. The daily oral administration of MT to HF-fed dams during gestation and lactation reversed the dysbiosis of gut microbiota in both dams and adult offspring. The hypothalamic TGR5 expression and plasma bile acids composition in adult male offspring was restored by maternal MT treatment, which could regulate hypothalamic appetite-related peptides expression and alleviate inflammation, thereby improving male offspring’s metabolic phenotype. The present study indicates that targeting the gut–brain axis through the mother may be an effective strategy to control the metabolic phenotype of offspring.
Collapse
|
20
|
Zheng J, Zhang L, Gao Y, Wu H, Zhang J. The dynamic effects of maternal high-calorie diet on glycolipid metabolism and gut microbiota from weaning to adulthood in offspring mice. Front Nutr 2022; 9:941969. [PMID: 35928844 PMCID: PMC9343994 DOI: 10.3389/fnut.2022.941969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/11/2022] [Indexed: 12/04/2022] Open
Abstract
Dysbiosis of gut microbiota can contribute to the progression of diabetes and obesity. Previous studies have shown that maternal high-fat (HF) diet during the perinatal period can alter the microbiota and induce metabolic disorders at weaning. However, whether dysbiosis of gut microbiota and metabolism could be recovered by a normal diet after weaning and the dynamic changes of gut microbiota have not been fully studied. In this study, C57BL/6J female mice were fed with a normal chow (NC) or HF diet for 4 weeks preconception, during gestation, and until pup weaning. After weaning, male offspring were fed with an NC diet until 9 weeks of age. The microbiota of offspring at weaning and 9 weeks of age was collected for 16S rRNA gene amplicon sequencing. We found that dams fed with an HF diet showed glucose intolerance after lactation. Compared with the offspring from NC dams, the offspring from HF dams exhibited a higher body weight, hyperglycemia, glucose intolerance, hyperinsulinemia, hypercholesterolemia, and leptin resistance and lower adiponectin at weaning. Fecal analysis indicated altered microbiota composition between the offspring of the two groups. The decrease in favorable bacteria (such as norank f Bacteroidales S24-7 group) and increase in unfavorable bacteria (such as Lachnoclostridium and Desulfovibrio) were strongly associated with a disturbance of glucose and lipid metabolism. After 6 weeks of normal diet, no difference in body weight, glucose, and lipid profiles was observed between the offspring of the two groups. However, the microbiota composition of offspring in the HF group was still different from that in the NC group, and microbiota diversity was lower in offspring of the HF group. The abundance of Lactobacillus was lower in the offspring of the HF group. In conclusion, a maternal HF diet can induce metabolic homeostasis and gut microbiota disturbance in offspring at weaning. Gut microbiota dysbiosis can persist into adulthood in the offspring, which might have a role in the promotion of susceptibility to obesity and diabetes in the later life of the offspring.
Collapse
Affiliation(s)
- Jia Zheng
- Department of Endocrinology, Peking University First Hospital, Beijing, China
| | - Ling Zhang
- Department of Endocrinology, Peking University First Hospital, Beijing, China
| | - Ying Gao
- Department of Endocrinology, Peking University First Hospital, Beijing, China
| | - Honghua Wu
- Department of Endocrinology, Peking University First Hospital, Beijing, China
| | - Junqing Zhang
- Department of Endocrinology, Peking University First Hospital, Beijing, China
| |
Collapse
|
21
|
Urbonaite G, Knyzeliene A, Bunn FS, Smalskys A, Neniskyte U. The impact of maternal high-fat diet on offspring neurodevelopment. Front Neurosci 2022; 16:909762. [PMID: 35937892 PMCID: PMC9354026 DOI: 10.3389/fnins.2022.909762] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/27/2022] [Indexed: 12/11/2022] Open
Abstract
A maternal high-fat diet affects offspring neurodevelopment with long-term consequences on their brain health and behavior. During the past three decades, obesity has rapidly increased in the whole human population worldwide, including women of reproductive age. It is known that maternal obesity caused by a high-fat diet may lead to neurodevelopmental disorders in their offspring, such as autism spectrum disorder, attention deficit hyperactivity disorder, anxiety, depression, and schizophrenia. A maternal high-fat diet can affect offspring neurodevelopment due to inflammatory activation of the maternal gut, adipose tissue, and placenta, mirrored by increased levels of pro-inflammatory cytokines in both maternal and fetal circulation. Furthermore, a maternal high fat diet causes gut microbial dysbiosis further contributing to increased inflammatory milieu during pregnancy and lactation, thus disturbing both prenatal and postnatal neurodevelopment of the offspring. In addition, global molecular and cellular changes in the offspring's brain may occur due to epigenetic modifications including the downregulation of brain-derived neurotrophic factor (BDNF) expression and the activation of the endocannabinoid system. These neurodevelopmental aberrations are reflected in behavioral deficits observed in animals, corresponding to behavioral phenotypes of certain neurodevelopmental disorders in humans. Here we reviewed recent findings from rodent models and from human studies to reveal potential mechanisms by which a maternal high-fat diet interferes with the neurodevelopment of the offspring.
Collapse
Affiliation(s)
- Gintare Urbonaite
- Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Agne Knyzeliene
- Centre for Cardiovascular Science, The Queen’s Medical Research Centre, The University of Edinburgh, Edinburgh, United Kingdom
| | - Fanny Sophia Bunn
- Faculty of Science and Engineering, University of Groningen, Groningen, Netherlands
| | - Adomas Smalskys
- Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Urte Neniskyte
- Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
- VU LSC-EMBL Partnership for Genome Editing Technologies, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
22
|
Chaves A, Weyrauch LA, Zheng D, Biagioni EM, Krassovskaia PM, Davidson BL, Broskey NT, Boyle KE, May LE, Houmard JA. Influence of Maternal Exercise on Glucose and Lipid Metabolism in Offspring Stem Cells: ENHANCED by Mom. J Clin Endocrinol Metab 2022; 107:e3353-e3365. [PMID: 35511592 DOI: 10.1210/clinem/dgac270] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Indexed: 02/06/2023]
Abstract
CONTEXT Recent preclinical data suggest exercise during pregnancy can improve the metabolic phenotype not only of the mother, but of the developing offspring as well. However, investigations in human offspring are lacking. OBJECTIVE To characterize the effect of maternal aerobic exercise on the metabolic phenotype of the offspring's mesenchymal stem cells (MSCs). DESIGN Randomized controlled trial. SETTING Clinical research facility. PATIENTS Healthy female adults between 18 and 35 years of age and ≤ 16 weeks' gestation. INTERVENTION Mothers were randomized into 1 of 2 groups: aerobic exercise (AE, n = 10) or nonexercise control (CTRL, n = 10). The AE group completed 150 minutes of weekly moderate-intensity exercise, according to American College of Sports Medicine guidelines, during pregnancy, whereas controls attended stretching sessions. MAIN OUTCOME MEASURES Following delivery, MSCs were isolated from the umbilical cord of the offspring and metabolic tracer and immunoblotting experiments were completed in the undifferentiated (D0) or myogenically differentiated (D21) state. RESULTS AE-MSCs at D0 had an elevated fold-change over basal in insulin-stimulated glycogen synthesis and reduced nonoxidized glucose metabolite (NOGM) production (P ≤ 0.05). At D21, AE-MSCs had a significant elevation in glucose partitioning toward oxidation (oxidation/NOGM ratio) compared with CTRL (P ≤ 0.05). Immunoblot analysis revealed elevated complex I expression in the AE-MSCs at D21 (P ≤ 0.05). Basal and palmitate-stimulated lipid metabolism was similar between groups at D0 and D21. CONCLUSIONS These data provide evidence of a programmed metabolic phenotype in human offspring with maternal AE during pregnancy.
Collapse
Affiliation(s)
- Alec Chaves
- Department of Kinesiology, East Carolina University, Greenville, NC 27834, USA
- Human Performance Laboratory, East Carolina University, Greenville, NC 27834, USA
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC 27834, USA
| | - Luke A Weyrauch
- Department of Kinesiology, East Carolina University, Greenville, NC 27834, USA
- Human Performance Laboratory, East Carolina University, Greenville, NC 27834, USA
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC 27834, USA
| | - Donghai Zheng
- Department of Kinesiology, East Carolina University, Greenville, NC 27834, USA
- Human Performance Laboratory, East Carolina University, Greenville, NC 27834, USA
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC 27834, USA
| | - Ericka M Biagioni
- Department of Kinesiology, East Carolina University, Greenville, NC 27834, USA
- Human Performance Laboratory, East Carolina University, Greenville, NC 27834, USA
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC 27834, USA
| | - Polina M Krassovskaia
- Department of Kinesiology, East Carolina University, Greenville, NC 27834, USA
- Human Performance Laboratory, East Carolina University, Greenville, NC 27834, USA
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC 27834, USA
| | - Breanna L Davidson
- Department of Kinesiology, East Carolina University, Greenville, NC 27834, USA
- Human Performance Laboratory, East Carolina University, Greenville, NC 27834, USA
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC 27834, USA
| | - Nicholas T Broskey
- Department of Kinesiology, East Carolina University, Greenville, NC 27834, USA
- Human Performance Laboratory, East Carolina University, Greenville, NC 27834, USA
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC 27834, USA
| | - Kristen E Boyle
- The Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, Aurora, CO 80045, USA
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Linda E May
- Department of Kinesiology, East Carolina University, Greenville, NC 27834, USA
- Human Performance Laboratory, East Carolina University, Greenville, NC 27834, USA
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC 27834, USA
| | - Joseph A Houmard
- Department of Kinesiology, East Carolina University, Greenville, NC 27834, USA
- Human Performance Laboratory, East Carolina University, Greenville, NC 27834, USA
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC 27834, USA
| |
Collapse
|
23
|
Korgan AC, Foxx CL, Hashmi H, Sago SA, Stamper CE, Heinze JD, O'Leary E, King JL, Perrot TS, Lowry CA, Weaver ICG. Effects of paternal high-fat diet and maternal rearing environment on the gut microbiota and behavior. Sci Rep 2022; 12:10179. [PMID: 35715467 PMCID: PMC9205913 DOI: 10.1038/s41598-022-14095-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 06/01/2022] [Indexed: 11/17/2022] Open
Abstract
Exposing a male rat to an obesogenic high-fat diet (HFD) influences attractiveness to potential female mates, the subsequent interaction of female mates with infant offspring, and the development of stress-related behavioral and neural responses in offspring. To examine the stomach and fecal microbiome's potential roles, fecal samples from 44 offspring and stomach samples from offspring and their fathers were collected and bacterial community composition was studied by 16 small subunit ribosomal RNA (16S rRNA) gene sequencing. Paternal diet (control, high-fat), maternal housing conditions (standard or semi-naturalistic housing), and maternal care (quality of nursing and other maternal behaviors) affected the within-subjects alpha-diversity of the offspring stomach and fecal microbiomes. We provide evidence from beta-diversity analyses that paternal diet and maternal behavior induced community-wide shifts to the adult offspring gut microbiome. Additionally, we show that paternal HFD significantly altered the adult offspring Firmicutes to Bacteroidetes ratio, an indicator of obesogenic potential in the gut microbiome. Additional machine-learning analyses indicated that microbial species driving these differences converged on Bifidobacterium pseudolongum. These results suggest that differences in early-life care induced by paternal diet and maternal care significantly influence the microbiota composition of offspring through the microbiota-gut-brain axis, having implications for adult stress reactivity.
Collapse
Affiliation(s)
- Austin C Korgan
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, B3H 4R2, Canada
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA
| | - Christine L Foxx
- Department of Integrative Physiology and Center for Microbial Exploration, University of Colorado Boulder, Boulder, CO, 80309, USA
- Oak Ridge Institute for Science and Education Research Participation Program, Oak Ridge, TN, 37830, USA
- U.S. Department of Agriculture (USDA), National Animal Health Laboratory Network (NAHLN), Animal and Plant Health Inspection Service (APHIS), Ames, IA, 50010, USA
| | - Heraa Hashmi
- Department of Integrative Physiology and Center for Microbial Exploration, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Saydie A Sago
- Department of Integrative Physiology and Center for Microbial Exploration, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Christopher E Stamper
- Department of Integrative Physiology and Center for Microbial Exploration, University of Colorado Boulder, Boulder, CO, 80309, USA
- Rocky Mountain MIRECC for Veteran Suicide Prevention, 1700 N Wheeling St, G-3-116M, Aurora, CO, 80045, USA
| | - Jared D Heinze
- Department of Integrative Physiology and Center for Microbial Exploration, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Elizabeth O'Leary
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Jillian L King
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, B3H 4R2, Canada
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA
| | - Tara S Perrot
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, B3H 4R2, Canada
- Brain Repair Centre, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Christopher A Lowry
- Department of Integrative Physiology and Center for Microbial Exploration, University of Colorado Boulder, Boulder, CO, 80309, USA
- Department of Psychology and Neuroscience and Center for Neuroscience, University of Colorado Boulder, Boulder, CO, 80309, USA
- Department of Physical Medicine and Rehabilitation and Center for Neuroscience, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
- Veterans Health Administration, Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), The Rocky Mountain Regional Veterans Affairs Medical Center (RMRVAMC), Aurora, CO, 80045, USA
- Military and Veteran Microbiome Consortium for Research and Education (MVM-CoRE), Aurora, CO, 80045, USA
| | - Ian C G Weaver
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, B3H 4R2, Canada.
- Brain Repair Centre, Dalhousie University, Halifax, NS, B3H 4R2, Canada.
- Department of Psychiatry, Dalhousie University, Halifax, NS, B3H 4R2, Canada.
- Department of Pathology, Dalhousie University, Halifax, NS, B3H 4R2, Canada.
| |
Collapse
|
24
|
Gan L, Bo T, Liu W, Wang D. The Gut Microbiota May Affect Personality in Mongolian Gerbils. Microorganisms 2022; 10:1054. [PMID: 35630496 PMCID: PMC9146877 DOI: 10.3390/microorganisms10051054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/01/2022] [Accepted: 05/03/2022] [Indexed: 12/22/2022] Open
Abstract
The "gut-microbiota-brain axis" reveals that gut microbiota plays a critical role in the orchestrating behavior of the host. However, the correlation between the host personalities and the gut microbiota is still rarely known. To investigate whether the gut microbiota of Mongolian gerbils (Meriones unguiculatus) differs between bold and shy personalities, we compared the gut microbiota of bold and shy gerbils, and then we transplanted the gut microbiota of bold and shy gerbils into middle group gerbils (individuals with less bold and shy personalities). We found a significant overall correlation between host boldness and gut microbiota. Even though there were no significant differences in alpha diversity and beta diversity of gut microbiota between bold and shy gerbils, the Firmicutes/Bacteroidetes phyla and Odoribacter and Blautia genus were higher in bold gerbils, and Escherichia_shigella genus was lower. Furthermore, the fecal microbiota transplantation showed that changes in gut microbiota could not evidently cause the increase or decrease in the gerbil's boldness score, but it increased the part of boldness behaviors by gavaging the "bold fecal microbiota". Overall, these data demonstrated that gut microbiota were significantly correlated with the personalities of the hosts, and alteration of microbiota could alter host boldness to a certain extent.
Collapse
Affiliation(s)
- Lin Gan
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (L.G.); (T.B.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tingbei Bo
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (L.G.); (T.B.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Liu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (L.G.); (T.B.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dehua Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (L.G.); (T.B.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
- School of Life Sciences, Shandong University, Qingdao 266237, China
| |
Collapse
|
25
|
Liu J, Ding L, Zhai X, Wang D, Xiao C, Hui X, Sun T, Yu M, Zhang Q, Li M, Xiao X. Maternal Dietary Betaine Prevents High-Fat Diet-Induced Metabolic Disorders and Gut Microbiota Alterations in Mouse Dams and Offspring From Young to Adult. Front Microbiol 2022; 13:809642. [PMID: 35479641 PMCID: PMC9037091 DOI: 10.3389/fmicb.2022.809642] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/24/2022] [Indexed: 12/20/2022] Open
Abstract
Early life is a critical window for preventing the intergenerational transmission of metabolic diseases. Betaine has been proven to play a role in improving glucose and lipid metabolism disorders in animal models. However, whether maternal betaine supplementation plays a role in regulating gut microbiota in both dams and offspring remains unclear. In this study, C57BL/6 female mice were fed with control diet (Ctr), high-fat diet (HF), and high-fat with betaine supplementation (0.3% betaine in the diet, HFB) from 3 weeks prior to mating and lasted throughout pregnancy and lactation. After weaning, the offspring got free access to normal chow diet until 20 weeks of age. We found that maternal dietary betaine supplementation significantly improved glucose and insulin resistance, as well as reduced free fatty acid (FFA) concentration in dams and offspring from young to adult. When compared to the HF group, Intestinimonas and Acetatifactor were reduced by betaine supplementation in dams; Desulfovibrio was reduced in 4-week-old offspring of the HFB group; and Lachnoclostridium was enriched in 20-week-old offspring of the HFB group. Moreover, the persistent elevated genus Romboutsia in both dams and offspring in the HFB group was reported for the first time. Overall, maternal betaine could dramatically alleviate the detrimental effects of maternal overnutrition on metabolism in both dams and offspring. The persistent alterations in gut microbiota might play critical roles in uncovering the intergenerational metabolic benefits of maternal betaine, which highlights evidence for combating generational metabolic diseases.
Collapse
Affiliation(s)
- Jieying Liu
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.,Department of Medical Research Center, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Lu Ding
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiao Zhai
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Dongmei Wang
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Cheng Xiao
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiangyi Hui
- Department of Medical Research Center, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Tianshu Sun
- Department of Medical Research Center, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Miao Yu
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Qian Zhang
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Ming Li
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xinhua Xiao
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
26
|
Xiong Y, Ji L, Zhao Y, Liu A, Wu D, Qian J. Sodium Butyrate Attenuates Taurocholate-Induced Acute Pancreatitis by Maintaining Colonic Barrier and Regulating Gut Microorganisms in Mice. Front Physiol 2022; 13:813735. [PMID: 35370779 PMCID: PMC8969109 DOI: 10.3389/fphys.2022.813735] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 02/09/2022] [Indexed: 12/12/2022] Open
Abstract
BackgroundAcute pancreatitis (AP) damages the intestinal barrier, which aggravates AP. Butyrate exhibits anti-inflammatory effects in AP, but it is unknown if such a protective effect is associated with the regulation of gut microorganisms. We aim to investigate the effects of sodium butyrate (SB) on pancreatic inflammation, colonic barrier, and gut microorganisms.MethodsC57BL/6 mice were divided into groups of sham operation (Sham), AP, 200 mg/kg SB intervention (SB-200), and 500 mg/kg SB intervention group (SB-500). Samples were harvested 24 h after the model was established. The gut microbiota was analyzed using 16S rRNA gene sequencing.ResultsPancreatic infiltration of neutrophils, macrophages, and M2-type macrophages was significantly reduced in the SB-500 intervention group. Supplementation of SB-500 improved colon mucosal histology and the expression of ZO-1 and occluding. The relative abundance of Alloprevotella and Muribaculaceae was increased and that of Akkermansia was decreased in the SB-500 group compared with the AP group. Ruminococcaceae was the most significantly increased species and Prevotellaceae was the most significantly decreased species in the SB-500 group compared with the AP group.ConclusionHigh dose of SB inhibits pancreatic inflammation probably by maintaining the intestinal barrier and regulating gut microbiota in mice with AP.
Collapse
|
27
|
Zhou L, Li S, Zhang Q, Yu M, Xiao X. Maternal Exercise Programs Glucose and Lipid Metabolism and Modulates Hepatic miRNAs in Adult Male Offspring. Front Nutr 2022; 9:853197. [PMID: 35299765 PMCID: PMC8923645 DOI: 10.3389/fnut.2022.853197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/07/2022] [Indexed: 12/14/2022] Open
Abstract
Detrimental exposures in mothers are recognized as risk factors for the development of metabolic dysfunction in offspring. In contrast, maternal exercise has been reported to be an effective strategy to maintain offspring health. However, the mechanisms underlying the protective effects of maternal exercise on adult offspring metabolic homeostasis are largely unclear. This study aims to investigate whether maternal exercise before and during pregnancy could combat the adverse effects of maternal high-fat diet (HFD) on metabolism in 24-week-old male offspring and to explore the role of miRNAs in mediating the effects. Female C57BL/6 mice were fed with either control diet or HFD 3-week prior to breeding and throughout pregnancy and lactation, among whom half of the HFD-fed mice were submitted to voluntary wheel running training 3-week before and during pregnancy. Male offspring were sedentary and fed with a control diet from weaning to 24 weeks. Body weight, the content of inguinal subcutaneous adipose tissue and perirenal visceral adipose tissue, glucose tolerance, and serum insulin and lipids in offspring were analyzed. Hepatic tissues were collected for transcriptome and miRNA sequencing and reverse transcription-quantitative polymerase chain reaction validation. The results showed that maternal HFD resulted in significant glucose intolerance, insulin resistance, and dyslipidemia in adult offspring, which were negated by maternal exercise. Transcriptome sequencing showed that maternal exercise reversed perinatal HFD-regulated genes in adult offspring, which were enriched in glucose and lipid metabolic-related signaling pathways. At the same time, maternal exercise significantly rescued the changes in the expression levels of 3 hepatic miRNAs in adult offspring, and their target genes were involved in the regulation of cholesterol biosynthesis and epigenetic modification, which may play an important role in mediating the intergenerational metabolic regulation of exercise. Overall, our research pioneered the role of miRNAs in mediating the programming effects of maternal exercise on adult offspring metabolism, which might provide novel insight into the prevention and treatment of metabolic disorders in early life.
Collapse
|
28
|
Dreisbach C, Morgan H, Cochran C, Gyamfi A, Henderson WA, Prescott S. Metabolic and Microbial Changes Associated With Diet and Obesity During Pregnancy: What Can We Learn From Animal Studies? Front Cell Infect Microbiol 2022; 11:795924. [PMID: 35118010 PMCID: PMC8804207 DOI: 10.3389/fcimb.2021.795924] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/13/2021] [Indexed: 12/22/2022] Open
Abstract
The intestinal microbiota changes throughout pregnancy and influences maternal metabolic adaptations to support fetal growth. Obesity induces alterations to the microbiota that include decreased microbial diversity and shifts in microbial composition, though specific species changes are inconsistent between published studies. In animal models, probiotics and exercise moderate maternal weight gain and partially correct the maternal microbiota. Supplemental Escherichia coli, however, exacerbate maternal obesity during the perinatal period, lending weight to the theory that inflammation-induced gut epithelial barrier leak influences metabolic dysregulation. Although birth weight is not always altered when offspring are exposed to an obesogenic diet during gestation, insulin resistance and lipid metabolism are impacted through adulthood in association with this exposure and can lead to increased body weight in adulthood. Postnatal offspring growth is accelerated in response to maternal overnutrition during lactation. Offspring microbiota, metabolism, and behavior are altered in response to early exposure to high fat and high sucrose diets. Consequences to this exposure include impaired glucose and insulin homeostasis, fatty liver, and neurobehavioral deficits that can be ameliorated by improving the microbial environment. In this mini review, we provide an overview of the use of translational animal models to understand the mechanisms associated with changes to the gastrointestinal microbiota due to maternal obesity and the microbial impact on the metabolic changes of pregnancy.
Collapse
Affiliation(s)
- Caitlin Dreisbach
- Data Science Institute, Columbia University, New York, NY, United States
| | - Hailey Morgan
- College of Nursing, University of South Florida, Tampa, FL, United States
| | - Caroline Cochran
- School of Nursing, Columbia University, New York, NY, United States
| | - Adwoa Gyamfi
- School of Medicine, University of Connecticut, Farmington, CT, United States
| | - Wendy Ann Henderson
- School of Medicine, University of Connecticut, Farmington, CT, United States
- School of Nursing, University of Connecticut, Storrs, CT, United States
| | - Stephanie Prescott
- College of Nursing, University of South Florida, Tampa, FL, United States
- *Correspondence: Stephanie Prescott,
| |
Collapse
|
29
|
Zhang Q, Xiao X, Zheng J, Li M, Yu M, Ping F, Wang T, Wang X. Improvement in glucose metabolism in adult male offspring of maternal mice fed diets supplemented with inulin via regulation of the hepatic long noncoding RNA profile. FASEB J 2021; 35:e22003. [PMID: 34706105 DOI: 10.1096/fj.202100355rrr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 09/22/2021] [Accepted: 10/06/2021] [Indexed: 11/11/2022]
Abstract
Maternal overnutrition during pregnancy and lactation is an important risk factor for the later development of metabolic disease, especially diabetes, among mothers and their offspring. As a fructan-type plant polysaccharide, inulin has prebiotic functions and is widely used as a natural antidiabetic supplement. However, to date, the mechanism of maternal inulin treatment in the livers of offspring has not been addressed, especially with respect to long noncoding RNAs (lncRNAs). In this study, female C57BL6/J mice were fed either a high-fat diet (HFD) with or without inulin supplementation or a standard rodent diet (SD) during gestation and lactation. After the offspring were weaned, they were fed a SD for 5 weeks. At 8 weeks of age, the glucose metabolism indexes of the offspring were assessed, and their livers were collected to assay lncRNA and mRNA profiles to investigate the effects of early maternal inulin intervention on offspring. Our results indicate that male offspring from HFD-fed dams displayed glucose intolerance and an insulin resistance phenotype at 8 weeks of age. Early maternal inulin intervention improved glucose metabolism in male offspring of mothers fed a HFD during gestation and lactation. The lncRNA and mRNA profile data revealed that compared with the offspring from HFD dams, offspring from the early inulin intervention dams had 99 differentially expressed hepatic lncRNAs and 529 differentially expressed mRNAs. The differentially expressed lncRNA-mRNA coexpression analysis demonstrated that early maternal inulin intervention may change hepatic lncRNA expression in offspring; there lncRNAs are involved in metabolic pathways and the AMP-activated protein kinase signaling pathway. Importantly, the early maternal inulin intervention alleviated glucose metabolism by inhibiting the lncRNA Serpina4-ps1/let-7b-5p/Ppargc1a as a competing endogenous RNA in male offspring.
Collapse
Affiliation(s)
- Qian Zhang
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xinhua Xiao
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Jia Zheng
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Ming Li
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Miao Yu
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Fan Ping
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Tong Wang
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaojing Wang
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
30
|
Cheng CK, Huang Y. The gut-cardiovascular connection: new era for cardiovascular therapy. MEDICAL REVIEW (BERLIN, GERMANY) 2021; 1:23-46. [PMID: 37724079 PMCID: PMC10388818 DOI: 10.1515/mr-2021-0002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 06/02/2021] [Indexed: 09/20/2023]
Abstract
Our gut microbiome is constituted by trillions of microorganisms including bacteria, archaea and eukaryotic microbes. Nowadays, gut microbiome has been gradually recognized as a new organ system that systemically and biochemically interact with the host. Accumulating evidence suggests that the imbalanced gut microbiome contributes to the dysregulation of immune system and the disruption of cardiovascular homeostasis. Specific microbiome profiles and altered intestinal permeability are often observed in the pathophysiology of cardiovascular diseases. Gut-derived metabolites, toxins, peptides and immune cell-derived cytokines play pivotal roles in the induction of inflammation and the pathogenesis of dysfunction of heart and vasculature. Impaired crosstalk between gut microbiome and multiple organ systems, such as gut-vascular, heart-gut, gut-liver and brain-gut axes, are associated with higher cardiovascular risks. Medications and strategies that restore healthy gut microbiome might therefore represent novel therapeutic options to lower the incidence of cardiovascular and metabolic disorders.
Collapse
Affiliation(s)
- Chak Kwong Cheng
- School of Biomedical Sciences and Li Ka Shing Institute of Health Science; The Chinese University of Hong Kong, Hong Kong SAR999077, China
- Heart and Vascular Institute and Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR999077, China
| | - Yu Huang
- School of Biomedical Sciences and Li Ka Shing Institute of Health Science; The Chinese University of Hong Kong, Hong Kong SAR999077, China
- Heart and Vascular Institute and Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR999077, China
| |
Collapse
|
31
|
Shrestha N, Melvin SD, McKeating DR, Holland OJ, Cuffe JSM, Perkins AV, McAinch AJ, Hryciw DH. Sex-Specific Differences in Lysine, 3-Hydroxybutyric Acid and Acetic Acid in Offspring Exposed to Maternal and Postnatal High Linoleic Acid Diet, Independent of Diet. Int J Mol Sci 2021; 22:10223. [PMID: 34638563 PMCID: PMC8508705 DOI: 10.3390/ijms221910223] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/18/2021] [Accepted: 09/21/2021] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Linoleic acid (LA) is an essential polyunsaturated fatty acid (PUFA) that is required for foetal growth and development. Excess intake of LA can be detrimental for metabolic health due to its pro-inflammatory properties; however, the effect of a diet high in LA on offspring metabolites is unknown. In this study, we aimed to determine the role of maternal or postnatal high linoleic acid (HLA) diet on plasma metabolites in adult offspring. METHODS Female Wistar Kyoto (WKY) rats were fed with either low LA (LLA) or HLA diet for 10 weeks prior to conception and during gestation/lactation. Offspring were weaned at postnatal day 25 (PN25), treated with either LLA or HLA diets and sacrificed at PN180. Metabolite analysis was performed in plasma samples using Nuclear Magnetic Resonance. RESULTS Maternal and postnatal HLA diet did not alter plasma metabolites in male and female adult offspring. There was no specific clustering among different treatment groups as demonstrated by principal component analysis. Interestingly, there was clustering among male and female offspring independent of maternal and postnatal dietary intervention. Lysine was higher in female offspring, while 3-hydroxybutyric acid and acetic acid were significantly higher in male offspring. CONCLUSION In summary, maternal or postnatal HLA diet did not alter the plasma metabolites in the adult rat offspring; however, differences in metabolites between male and female offspring occurred independently of dietary intervention.
Collapse
Affiliation(s)
- Nirajan Shrestha
- School of Medical Science, Griffith University, Southport, QLD 4222, Australia; (N.S.); (D.R.M.); (O.J.H.); (A.V.P.)
| | - Steven D Melvin
- Australian Rivers Institute, School of Environment and Science, Griffith University, Brisbane, QLD 4111, Australia;
| | - Daniel R. McKeating
- School of Medical Science, Griffith University, Southport, QLD 4222, Australia; (N.S.); (D.R.M.); (O.J.H.); (A.V.P.)
| | - Olivia J. Holland
- School of Medical Science, Griffith University, Southport, QLD 4222, Australia; (N.S.); (D.R.M.); (O.J.H.); (A.V.P.)
| | - James S. M. Cuffe
- School of Biomedical Science, The University of Queensland, Brisbane, QLD 4061, Australia;
| | - Anthony V. Perkins
- School of Medical Science, Griffith University, Southport, QLD 4222, Australia; (N.S.); (D.R.M.); (O.J.H.); (A.V.P.)
| | - Andrew J. McAinch
- Institute for Health and Sport, Victoria University, Melbourne, VIC 8001, Australia;
- Australian Institute for Musculoskeletal Science (AIMSS), Victoria University, Melbourne, VIC 8001, Australia
| | - Deanne H. Hryciw
- Institute for Health and Sport, Victoria University, Melbourne, VIC 8001, Australia;
- School of Environment and Science, Griffith University, Nathan, QLD 4111, Australia
- Centre for Planetary Health and Food Security, Griffith University, Nathan, QLD 4111, Australia
| |
Collapse
|
32
|
Krassovskaia PM, Chaves AB, Houmard JA, Broskey NT. Exercise during Pregnancy: Developmental Programming Effects and Future Directions in Humans. Int J Sports Med 2021; 43:107-118. [PMID: 34344043 DOI: 10.1055/a-1524-2278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Epidemiological studies show that low birth weight is associated with mortality from cardiovascular disease in adulthood, indicating that chronic diseases could be influenced by hormonal or metabolic insults encountered in utero. This concept, now known as the Developmental Origins of Health and Disease hypothesis, postulates that the intrauterine environment may alter the structure and function of the organs of the fetus as well as the expression of genes that impart an increased vulnerability to chronic diseases later in life. Lifestyle interventions initiated during the prenatal period are crucial as there is the potential to attenuate progression towards chronic diseases. However, how lifestyle interventions such as physical activity directly affect human offspring metabolism and the potential mechanisms involved in regulating metabolic balance at the cellular level are not known. The purpose of this review is to highlight the effects of exercise during pregnancy on offspring metabolic health and emphasize gaps in the current human literature and suggestions for future research.
Collapse
Affiliation(s)
- Polina M Krassovskaia
- Human Performance Laboratory, Department of Kinesiology, East Carolina University, Greenville, United States.,East Carolina Diabetes & Obesity Institute, East Carolina University, Greenville, United States
| | - Alec B Chaves
- Human Performance Laboratory, Department of Kinesiology, East Carolina University, Greenville, United States.,East Carolina Diabetes & Obesity Institute, East Carolina University, Greenville, United States
| | - Joseph A Houmard
- Human Performance Laboratory, Department of Kinesiology, East Carolina University, Greenville, United States.,East Carolina Diabetes & Obesity Institute, East Carolina University, Greenville, United States
| | - Nicholas T Broskey
- Human Performance Laboratory, Department of Kinesiology, East Carolina University, Greenville, United States.,East Carolina Diabetes & Obesity Institute, East Carolina University, Greenville, United States
| |
Collapse
|
33
|
Kasper P, Breuer S, Hoffmann T, Vohlen C, Janoschek R, Schmitz L, Appel S, Fink G, Hünseler C, Quaas A, Demir M, Lang S, Steffen HM, Martin A, Schramm C, Bürger M, Mahabir E, Goeser T, Dötsch J, Hucklenbruch-Rother E, Bae-Gartz I. Maternal Exercise Mediates Hepatic Metabolic Programming via Activation of AMPK-PGC1α Axis in the Offspring of Obese Mothers. Cells 2021; 10:1247. [PMID: 34069390 PMCID: PMC8158724 DOI: 10.3390/cells10051247] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/11/2021] [Accepted: 05/11/2021] [Indexed: 12/13/2022] Open
Abstract
Maternal obesity is associated with an increased risk of hepatic metabolic dysfunction for both mother and offspring and targeted interventions to address this growing metabolic disease burden are urgently needed. This study investigates whether maternal exercise (ME) could reverse the detrimental effects of hepatic metabolic dysfunction in obese dams and their offspring while focusing on the AMP-activated protein kinase (AMPK), representing a key regulator of hepatic metabolism. In a mouse model of maternal western-style-diet (WSD)-induced obesity, we established an exercise intervention of voluntary wheel-running before and during pregnancy and analyzed its effects on hepatic energy metabolism during developmental organ programming. ME prevented WSD-induced hepatic steatosis in obese dams by alterations of key hepatic metabolic processes, including activation of hepatic ß-oxidation and inhibition of lipogenesis following increased AMPK and peroxisome-proliferator-activated-receptor-γ-coactivator-1α (PGC-1α)-signaling. Offspring of exercised dams exhibited a comparable hepatic metabolic signature to their mothers with increased AMPK-PGC1α-activity and beneficial changes in hepatic lipid metabolism and were protected from WSD-induced adipose tissue accumulation and hepatic steatosis in later life. In conclusion, this study demonstrates that ME provides a promising strategy to improve the metabolic health of both obese mothers and their offspring and highlights AMPK as a potential metabolic target for therapeutic interventions.
Collapse
Affiliation(s)
- Philipp Kasper
- Clinic for Gastroenterology and Hepatology, Faculty of Medicine and University Hospital Cologne, University of Cologne, D-50937 Cologne, Germany; (P.K.); (S.L.); (H.-M.S.); (A.M.); (C.S.); (M.B.); (T.G.)
| | - Saida Breuer
- Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, D-50937 Cologne, Germany; (S.B.); (T.H.); (C.V.); (R.J.); (L.S.); (S.A.); (G.F.); (C.H.); (J.D.); (E.H.-R.)
| | - Thorben Hoffmann
- Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, D-50937 Cologne, Germany; (S.B.); (T.H.); (C.V.); (R.J.); (L.S.); (S.A.); (G.F.); (C.H.); (J.D.); (E.H.-R.)
| | - Christina Vohlen
- Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, D-50937 Cologne, Germany; (S.B.); (T.H.); (C.V.); (R.J.); (L.S.); (S.A.); (G.F.); (C.H.); (J.D.); (E.H.-R.)
| | - Ruth Janoschek
- Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, D-50937 Cologne, Germany; (S.B.); (T.H.); (C.V.); (R.J.); (L.S.); (S.A.); (G.F.); (C.H.); (J.D.); (E.H.-R.)
| | - Lisa Schmitz
- Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, D-50937 Cologne, Germany; (S.B.); (T.H.); (C.V.); (R.J.); (L.S.); (S.A.); (G.F.); (C.H.); (J.D.); (E.H.-R.)
| | - Sarah Appel
- Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, D-50937 Cologne, Germany; (S.B.); (T.H.); (C.V.); (R.J.); (L.S.); (S.A.); (G.F.); (C.H.); (J.D.); (E.H.-R.)
| | - Gregor Fink
- Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, D-50937 Cologne, Germany; (S.B.); (T.H.); (C.V.); (R.J.); (L.S.); (S.A.); (G.F.); (C.H.); (J.D.); (E.H.-R.)
| | - Christoph Hünseler
- Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, D-50937 Cologne, Germany; (S.B.); (T.H.); (C.V.); (R.J.); (L.S.); (S.A.); (G.F.); (C.H.); (J.D.); (E.H.-R.)
| | - Alexander Quaas
- Department of Pathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, D-50937 Cologne, Germany;
| | - Münevver Demir
- Charité Campus Mitte and Campus Virchow Clinic, Department of Hepatology and Gastroenterology, Charité University Medicine Berlin, D-13353 Berlin, Germany;
| | - Sonja Lang
- Clinic for Gastroenterology and Hepatology, Faculty of Medicine and University Hospital Cologne, University of Cologne, D-50937 Cologne, Germany; (P.K.); (S.L.); (H.-M.S.); (A.M.); (C.S.); (M.B.); (T.G.)
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Hans-Michael Steffen
- Clinic for Gastroenterology and Hepatology, Faculty of Medicine and University Hospital Cologne, University of Cologne, D-50937 Cologne, Germany; (P.K.); (S.L.); (H.-M.S.); (A.M.); (C.S.); (M.B.); (T.G.)
| | - Anna Martin
- Clinic for Gastroenterology and Hepatology, Faculty of Medicine and University Hospital Cologne, University of Cologne, D-50937 Cologne, Germany; (P.K.); (S.L.); (H.-M.S.); (A.M.); (C.S.); (M.B.); (T.G.)
| | - Christoph Schramm
- Clinic for Gastroenterology and Hepatology, Faculty of Medicine and University Hospital Cologne, University of Cologne, D-50937 Cologne, Germany; (P.K.); (S.L.); (H.-M.S.); (A.M.); (C.S.); (M.B.); (T.G.)
| | - Martin Bürger
- Clinic for Gastroenterology and Hepatology, Faculty of Medicine and University Hospital Cologne, University of Cologne, D-50937 Cologne, Germany; (P.K.); (S.L.); (H.-M.S.); (A.M.); (C.S.); (M.B.); (T.G.)
| | - Esther Mahabir
- Comparative Medicine, Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, D-50937 Cologne, Germany;
| | - Tobias Goeser
- Clinic for Gastroenterology and Hepatology, Faculty of Medicine and University Hospital Cologne, University of Cologne, D-50937 Cologne, Germany; (P.K.); (S.L.); (H.-M.S.); (A.M.); (C.S.); (M.B.); (T.G.)
| | - Jörg Dötsch
- Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, D-50937 Cologne, Germany; (S.B.); (T.H.); (C.V.); (R.J.); (L.S.); (S.A.); (G.F.); (C.H.); (J.D.); (E.H.-R.)
| | - Eva Hucklenbruch-Rother
- Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, D-50937 Cologne, Germany; (S.B.); (T.H.); (C.V.); (R.J.); (L.S.); (S.A.); (G.F.); (C.H.); (J.D.); (E.H.-R.)
| | - Inga Bae-Gartz
- Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, D-50937 Cologne, Germany; (S.B.); (T.H.); (C.V.); (R.J.); (L.S.); (S.A.); (G.F.); (C.H.); (J.D.); (E.H.-R.)
| |
Collapse
|
34
|
Sousa Neto I, Fontes W, Prestes J, Marqueti R. Impact of paternal exercise on physiological systems in the offspring. Acta Physiol (Oxf) 2021; 231:e13620. [PMID: 33606364 DOI: 10.1111/apha.13620] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/04/2021] [Accepted: 02/01/2021] [Indexed: 02/06/2023]
Abstract
A significant number of studies have demonstrated that paternal exercise modulates future generations via effects on the sperm epigenome. However, comprehensive information regarding the effects of exercise performed by the father on different tissues and their clinical relevance has not yet been explored in detail. This narrative review is focused on the effects of paternal exercise training on various physiological systems of offspring. A detailed mechanistic understanding of these effects could provide crucial clues for the exercise physiology field and aid the development of therapeutic approaches to mitigate disorders in future generations. Non-coding RNA and DNA methylation are major routes for transmitting epigenetic information from parents to offspring. Resistance and treadmill exercise are the most frequently used modalities of planned and structured exercise in controlled experiments. Paternal exercise orchestrated protective effects over changes in fetus development and placenta inflammatory status. Moreover paternal exercise promoted modifications in the ncRNA profiles, gene and protein expression in the hippocampus, left ventricle, skeletal muscle, tendon, liver and pancreas in the offspring, while the transgenerational effects are unknown. Paternal exercise demonstrates clinical benefits to the offspring and provides a warning on the harmful effects of a paternal unhealthy lifestyle. Exercise in fathers is presented as one of the most logical and cost-effective ways of restoring health in the offspring and, consequently, modifying the phenotype. It is important to consider that paternal programming might have unique significance in the developmental origins of offspring diseases.
Collapse
Affiliation(s)
- Ivo Sousa Neto
- Laboratory of Molecular Analysis Graduate Program of Sciences and Technology of Health Faculdade de Ceilândia ‐ Universidade de Brasília Brasília Distrito Federal Brazil
| | - Wagner Fontes
- Laboratory of Protein Chemistry and Biochemistry Department of Cell Biology Institute of Biology Universidade de Brasília Brasília Distrito Federal Brazil
| | - Jonato Prestes
- Graduate Program on Physical Education Universidade Católica de Brasília Brasília Distrito Federal Brazil
| | - Rita Marqueti
- Laboratory of Molecular Analysis Graduate Program of Sciences and Technology of Health Faculdade de Ceilândia ‐ Universidade de Brasília Brasília Distrito Federal Brazil
| |
Collapse
|