1
|
Lim KRQ, Mann DL, Kenzaka T, Hayashi T. The Immunology of Takotsubo Syndrome. Front Immunol 2023; 14:1254011. [PMID: 37868970 PMCID: PMC10588665 DOI: 10.3389/fimmu.2023.1254011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/19/2023] [Indexed: 10/24/2023] Open
Abstract
Takotsubo syndrome (TTS) is a disorder characterized by transient cardiac dysfunction with ventricular regional wall motion abnormalities, primarily thought to be caused by the effects of a sudden catecholamine surge on the heart. Although the majority of patients exhibit prompt recovery of their cardiac dysfunction, TTS remains associated with increased mortality rates acutely and at long-term, and there is currently no cure for TTS. Inflammation has been shown to play a key role in determining outcomes in TTS patients, as well as in the early pathogenesis of the disorder. There are also cases of TTS patients that have been successfully treated with anti-inflammatory therapies, supporting the importance of the inflammatory response in TTS. In this article, we provide a comprehensive review of the available clinical and pre-clinical literature on the immune response in TTS, in an effort to not only better understand the pathophysiology of TTS but also to generate insights on the treatment of patients with this disorder.
Collapse
Affiliation(s)
- Kenji Rowel Q. Lim
- Division of Cardiology, Department of Medicine, Center for Cardiovascular Research, Washington University School of Medicine, St. Louis, MO, United States
| | - Douglas L. Mann
- Division of Cardiology, Department of Medicine, Center for Cardiovascular Research, Washington University School of Medicine, St. Louis, MO, United States
| | - Tsuneaki Kenzaka
- Division of Community Medicine and Career Development, Kobe University Graduate School of Medicine, Kobe, Japan
- Department of Internal Medicine, Hyogo Prefectural Tamba Medical Center, Tamba, Japan
| | - Tomohiro Hayashi
- Division of Community Medicine and Career Development, Kobe University Graduate School of Medicine, Kobe, Japan
- Department of Internal Medicine, Hyogo Prefectural Tamba Medical Center, Tamba, Japan
| |
Collapse
|
2
|
Li Y, Tam WW, Yu Y, Zhuo Z, Xue Z, Tsang C, Qiao X, Wang X, Wang W, Li Y, Tu Y, Gao Y. The application of Aptamer in biomarker discovery. Biomark Res 2023; 11:70. [PMID: 37468977 DOI: 10.1186/s40364-023-00510-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/29/2023] [Indexed: 07/21/2023] Open
Abstract
Biomarkers are detectable molecules that can reflect specific physiological states of cells, organs, and organisms and therefore be regarded as indicators for specific diseases. And the discovery of biomarkers plays an essential role in cancer management from the initial diagnosis to the final treatment regime. Practically, reliable clinical biomarkers are still limited, restricted by the suboptimal methods in biomarker discovery. Nucleic acid aptamers nowadays could be used as a powerful tool in the discovery of protein biomarkers. Nucleic acid aptamers are single-strand oligonucleotides that can specifically bind to various targets with high affinity. As artificial ssDNA or RNA, aptamers possess unique advantages compared to conventional antibodies. They can be flexible in design, low immunogenicity, relative chemical/thermos stability, as well as modifying convenience. Several SELEX (Systematic Evolution of Ligands by Exponential Enrichment) based methods have been generated recently to construct aptamers for discovering new biomarkers in different cell locations. Secretome SELEX-based aptamers selection can facilitate the identification of secreted protein biomarkers. The aptamers developed by cell-SELEX can be used to unveil those biomarkers presented on the cell surface. The aptamers from tissue-SELEX could target intracellular biomarkers. And as a multiplexed protein biomarker detection technology, aptamer-based SOMAScan can analyze thousands of proteins in a single run. In this review, we will introduce the principle and workflow of variations of SELEX-based methods, including secretome SELEX, ADAPT, Cell-SELEX and tissue SELEX. Another powerful proteome analyzing tool, SOMAScan, will also be covered. In the second half of this review, how these methods accelerate biomarker discovery in various diseases, including cardiovascular diseases, cancer and neurodegenerative diseases, will be discussed.
Collapse
Affiliation(s)
- Yongshu Li
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing, China.
- Shenzhen Institute for Technology Innovation, National Institute of Metrology, Shenzhen, China.
| | - Winnie Wailing Tam
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases (TMBJ), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Yuanyuan Yu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases (TMBJ), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Zhenjian Zhuo
- State Key Laboratory of Chemical Oncogenomic, Peking University Shenzhen Graduate School, Shenzhen, China
- Laboratory Animal Center, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Zhichao Xue
- Shenzhen Institute for Technology Innovation, National Institute of Metrology, Shenzhen, China
| | - Chiman Tsang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiaoting Qiao
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing, China
| | - Xiaokang Wang
- Department of Pharmacy, Shenzhen Longhua District Central Hospital, Shenzhen, China
| | - Weijing Wang
- Shantou University Medical College, Shantou, China
| | - Yongyi Li
- Laboratory Animal Center, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Yanyang Tu
- Research Center, Huizhou Central People's Hospital, Guangdong Medical University, Huizhou City, China.
| | - Yunhua Gao
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing, China.
- Shenzhen Institute for Technology Innovation, National Institute of Metrology, Shenzhen, China.
| |
Collapse
|
3
|
Jiao K, Su P, Feng Y, Li C. Bioinformatics analysis and identification of hub genes associated with female acute myocardial infarction patients by using weighted gene co-expression networks. Medicine (Baltimore) 2023; 102:e33634. [PMID: 37115066 PMCID: PMC10145720 DOI: 10.1097/md.0000000000033634] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 04/05/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
To explore potential biomarkers of acute myocardial infarction (AMI) in females by using bioinformatics analysis. In this study, we explored potential biomarkers of AMI in females using bioinformatics analysis. We screened a total of 186 differentially expressed genes from the Gene Expression Omnibus. In the study, we found that weighted gene co-expression network analysis explored the co-expression network of genes and identified key modules. Simultaneously, we chose brown modules as key modules related to AMI. In this study, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis revealed that genes in the brown module were mainly enriched in "heparin" and 'complementation and coagulation cascade. Based on the protein-protein interaction network, we identified S100A9, mitogen-activated protein kinase (MAPK) 3, MAPK1, MMP3, interleukin (IL)-17A, and HSP90AB1 as hub gene sets. Whereas, polymerase chain reaction results showed that S100A9, MAPK3, MAPK1, MMP3, IL-17A, and HSP90AB1 were highly expressed compared with the control group. The IL-17 signaling pathway associated with an inflammatory response may be a potential biomarker and target for the treatment of women with myocardial infarction.
Collapse
Affiliation(s)
- Kun Jiao
- Ordos Central Hospital Cardiology Department, Ordos, China
| | - Ping Su
- Ordos Central Hospital Cardiology Department, Ordos, China
| | - Yubao Feng
- Ordos Central Hospital Cardiology Department, Ordos, China
| | - Changqing Li
- Ordos Central Hospital Cardiology Department, Ordos, China
| |
Collapse
|
4
|
Ji X, Pei Q, Zhang J, Lin P, Li B, Yin H, Sun J, Su D, Qu X, Yin D. Single-cell sequencing combined with machine learning reveals the mechanism of interaction between epilepsy and stress cardiomyopathy. Front Immunol 2023; 14:1078731. [PMID: 36776884 PMCID: PMC9911815 DOI: 10.3389/fimmu.2023.1078731] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/17/2023] [Indexed: 01/28/2023] Open
Abstract
Background Epilepsy is a disorder that can manifest as abnormalities in neurological or physical function. Stress cardiomyopathy is closely associated with neurological stimulation. However, the mechanisms underlying the interrelationship between epilepsy and stress cardiomyopathy are unclear. This paper aims to explore the genetic features and potential molecular mechanisms shared in epilepsy and stress cardiomyopathy. Methods By analyzing the epilepsy dataset and stress cardiomyopathy dataset separately, the intersection of the two disease co-expressed differential genes is obtained, the co-expressed differential genes reveal the biological functions, the network is constructed, and the core modules are identified to reveal the interaction mechanism, the co-expressed genes with diagnostic validity are screened by machine learning algorithms, and the co-expressed genes are validated in parallel on the epilepsy single-cell data and the stress cardiomyopathy rat model. Results Epilepsy causes stress cardiomyopathy, and its key pathways are Complement and coagulation cascades, HIF-1 signaling pathway, its key co-expressed genes include SPOCK2, CTSZ, HLA-DMB, ALDOA, SFRP1, ERBB3. The key immune cell subpopulations localized by single-cell data are the T_cells subgroup, Microglia subgroup, Macrophage subgroup, Astrocyte subgroup, and Oligodendrocytes subgroup. Conclusion We believe epilepsy causing stress cardiomyopathy results from a multi-gene, multi-pathway combination. We identified the core co-expressed genes (SPOCK2, CTSZ, HLA-DMB, ALDOA, SFRP1, ERBB3) and the pathways that function in them (Complement and coagulation cascades, HIF-1 signaling pathway, JAK-STAT signaling pathway), and finally localized their key cellular subgroups (T_cells subgroup, Microglia subgroup, Macrophage subgroup, Astrocyte subgroup, and Oligodendrocytes subgroup). Also, combining cell subpopulations with hypercoagulability as well as sympathetic excitation further narrowed the cell subpopulations of related functions.
Collapse
Affiliation(s)
- Xuanrui Ji
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Quanwei Pei
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Junpei Zhang
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Pengqi Lin
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Bin Li
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hongpeng Yin
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jingmei Sun
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Dezhan Su
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiufen Qu
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Dechun Yin
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
5
|
Liu X, Pan S, Xanthakis V, Vasan RS, Psaty BM, Austin TR, Newman AB, Sanders JL, Wu C, Tracy RP, Gerszten RE, Odden MC. Plasma proteomic signature of decline in gait speed and grip strength. Aging Cell 2022; 21:e13736. [PMID: 36333824 PMCID: PMC9741503 DOI: 10.1111/acel.13736] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 09/27/2022] [Accepted: 10/21/2022] [Indexed: 11/08/2022] Open
Abstract
The biological mechanisms underlying decline in physical function with age remain unclear. We examined the plasma proteomic profile associated with longitudinal changes in physical function measured by gait speed and grip strength in community-dwelling adults. We applied an aptamer-based platform to assay 1154 plasma proteins on 2854 participants (60% women, aged 76 years) in the Cardiovascular Health Study (CHS) in 1992-1993 and 1130 participants (55% women, aged 54 years) in the Framingham Offspring Study (FOS) in 1991-1995. Gait speed and grip strength were measured annually for 7 years in CHS and at cycles 7 (1998-2001) and 8 (2005-2008) in FOS. The associations of individual protein levels (log-transformed and standardized) with longitudinal changes in gait speed and grip strength in two populations were examined separately by linear mixed-effects models. Meta-analyses were implemented using random-effects models and corrected for multiple testing. We found that plasma levels of 14 and 18 proteins were associated with changes in gait speed and grip strength, respectively (corrected p < 0.05). The proteins most strongly associated with gait speed decline were GDF-15 (Meta-analytic p = 1.58 × 10-15 ), pleiotrophin (1.23 × 10-9 ), and TIMP-1 (5.97 × 10-8 ). For grip strength decline, the strongest associations were for carbonic anhydrase III (1.09 × 10-7 ), CDON (2.38 × 10-7 ), and SMOC1 (7.47 × 10-7 ). Several statistically significant proteins are involved in the inflammatory responses or antagonism of activin by follistatin pathway. These novel proteomic biomarkers and pathways should be further explored as future mechanisms and targets for age-related functional decline.
Collapse
Affiliation(s)
- Xiaojuan Liu
- Department of Epidemiology and Population HealthStanford University School of MedicineStanfordCaliforniaUSA
| | - Stephanie Pan
- Framingham Heart Study and Section of Preventive Medicine and EpidemiologyBoston University School of MedicineBostonMassachusettsUSA
- Department of BiostatisticsBoston University School of Public HealthBostonMassachusettsUSA
| | - Vanessa Xanthakis
- Framingham Heart Study and Section of Preventive Medicine and EpidemiologyBoston University School of MedicineBostonMassachusettsUSA
- Department of BiostatisticsBoston University School of Public HealthBostonMassachusettsUSA
| | - Ramachandran S. Vasan
- Framingham Heart Study and Section of Preventive Medicine and EpidemiologyBoston University School of MedicineBostonMassachusettsUSA
- Department of EpidemiologyBoston University School of Public HealthBostonMassachusettsUSA
- Section of Cardiovascular Medicine, Department of MedicineBoston University School of MedicineBostonMassachusettsUSA
| | - Bruce M. Psaty
- Cardiovascular Health Research Unit, Departments of Medicine, Epidemiology, and Health Systems and Population HealthUniversity of WashingtonSeattleWashingtonUSA
| | - Thomas R. Austin
- Department of EpidemiologyUniversity of WashingtonSeattleWashingtonUSA
| | - Anne B. Newman
- Department of EpidemiologyUniversity of PittsburghPittsburghPennsylvaniaUSA
| | | | - Chenkai Wu
- Global Health Research CenterDuke Kunshan UniversityKunshanChina
| | - Russell P. Tracy
- Department of Pathology and Laboratory Medicine, The Robert Larner M.D. College of MedicineUniversity of VermontBurlingtonVermontUSA
- Department of Biochemistry, The Robert Larner M.D. College of MedicineUniversity of VermontBurlingtonVermontUSA
| | - Robert E. Gerszten
- Division of Cardiovascular MedicineBeth Israel Deaconess Medical CenterBostonMassachusettsUSA
| | - Michelle C. Odden
- Department of Epidemiology and Population HealthStanford University School of MedicineStanfordCaliforniaUSA
| |
Collapse
|
6
|
Austin TR, McHugh CP, Brody JA, Bis JC, Sitlani CM, Bartz TM, Biggs ML, Bansal N, Buzkova P, Carr SA, deFilippi CR, Elkind MSV, Fink HA, Floyd JS, Fohner AE, Gerszten RE, Heckbert SR, Katz DH, Kizer JR, Lemaitre RN, Longstreth WT, McKnight B, Mei H, Mukamal KJ, Newman AB, Ngo D, Odden MC, Vasan RS, Shojaie A, Simon N, Smith GD, Davies NM, Siscovick DS, Sotoodehnia N, Tracy RP, Wiggins KL, Zheng J, Psaty BM. Proteomics and Population Biology in the Cardiovascular Health Study (CHS): design of a study with mentored access and active data sharing. Eur J Epidemiol 2022; 37:755-765. [PMID: 35790642 PMCID: PMC9255954 DOI: 10.1007/s10654-022-00888-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 06/03/2022] [Indexed: 11/08/2022]
Abstract
BACKGROUND In the last decade, genomic studies have identified and replicated thousands of genetic associations with measures of health and disease and contributed to the understanding of the etiology of a variety of health conditions. Proteins are key biomarkers in clinical medicine and often drug-therapy targets. Like genomics, proteomics can advance our understanding of biology. METHODS AND RESULTS In the setting of the Cardiovascular Health Study (CHS), a cohort study of older adults, an aptamer-based method that has high sensitivity for low-abundance proteins was used to assay 4979 proteins in frozen, stored plasma from 3188 participants (61% women, mean age 74 years). CHS provides active support, including central analysis, for seven phenotype-specific working groups (WGs). Each CHS WG is led by one or two senior investigators and includes 10 to 20 early or mid-career scientists. In this setting of mentored access, the proteomic data and analytic methods are widely shared with the WGs and investigators so that they may evaluate associations between baseline levels of circulating proteins and the incidence of a variety of health outcomes in prospective cohort analyses. We describe the design of CHS, the CHS Proteomics Study, characteristics of participants, quality control measures, and structural characteristics of the data provided to CHS WGs. We additionally highlight plans for validation and replication of novel proteomic associations. CONCLUSION The CHS Proteomics Study offers an opportunity for collaborative data sharing to improve our understanding of the etiology of a variety of health conditions in older adults.
Collapse
Affiliation(s)
- Thomas R Austin
- Cardiovascular Health Research Unit, University of Washington, Seattle, WA, USA. .,Department of Epidemiology, University of Washington, Seattle, WA, USA.
| | | | - Jennifer A Brody
- Cardiovascular Health Research Unit, University of Washington, Seattle, WA, USA.,Department of Medicine, University of Washington, Seattle, WA, USA
| | - Joshua C Bis
- Cardiovascular Health Research Unit, University of Washington, Seattle, WA, USA.,Department of Medicine, University of Washington, Seattle, WA, USA
| | - Colleen M Sitlani
- Cardiovascular Health Research Unit, University of Washington, Seattle, WA, USA.,Department of Medicine, University of Washington, Seattle, WA, USA
| | - Traci M Bartz
- Cardiovascular Health Research Unit, University of Washington, Seattle, WA, USA.,Department of Medicine, University of Washington, Seattle, WA, USA.,Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Mary L Biggs
- Cardiovascular Health Research Unit, University of Washington, Seattle, WA, USA.,Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Nisha Bansal
- Division of Nephrology, University of Washington, Seattle, WA, USA
| | - Petra Buzkova
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | | | | | | | - Howard A Fink
- Geriatric Research Education & Clinical Center, Minneapolis VA Healthcare System, Minneapolis, MN, USA
| | - James S Floyd
- Cardiovascular Health Research Unit, University of Washington, Seattle, WA, USA.,Department of Epidemiology, University of Washington, Seattle, WA, USA.,Department of Medicine, University of Washington, Seattle, WA, USA
| | - Alison E Fohner
- Cardiovascular Health Research Unit, University of Washington, Seattle, WA, USA.,Department of Epidemiology, University of Washington, Seattle, WA, USA.,Institute of Public Health Genetics, University of Washington, Seattle, WA, USA
| | - Robert E Gerszten
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Susan R Heckbert
- Cardiovascular Health Research Unit, University of Washington, Seattle, WA, USA.,Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Daniel H Katz
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Jorge R Kizer
- Cardiology Section, San Francisco VA Health Care System, San Francisco, CA, USA.,Department of Biostatistics, University of California San Francisco, San Francisco, CA, USA.,Department of Epidemology, University of California San Francisco, San Francisco, CA, USA.,Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Rozenn N Lemaitre
- Cardiovascular Health Research Unit, University of Washington, Seattle, WA, USA.,Department of Medicine, University of Washington, Seattle, WA, USA
| | - W T Longstreth
- Department of Epidemiology, University of Washington, Seattle, WA, USA.,Department of Neurology, University of Washington, Seattle, WA, USA
| | - Barbara McKnight
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Hao Mei
- Department of Data Science, University of Mississippi Medical Center, Jackson, MS, USA
| | | | - Anne B Newman
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Debby Ngo
- Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Michelle C Odden
- Department of Epidemiology and Population Health, Stanford University, Stanford, CA, USA
| | - Ramachandran S Vasan
- Department of Epidemiology, School of Public Health, Boston University, Boston, MA, USA.,Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Ali Shojaie
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Noah Simon
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - George Davey Smith
- MRC Integrative Epidemiology Unit, Bristol Medical School, University of Bristol, Bristol, UK
| | - Neil M Davies
- MRC Integrative Epidemiology Unit, Bristol Medical School, University of Bristol, Bristol, UK.,K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Norwegian, Norway.,Bristol Medical School, Population Health Sciences, University of Bristol, Bristol, UK
| | | | - Nona Sotoodehnia
- Cardiovascular Health Research Unit, University of Washington, Seattle, WA, USA.,Division of Cardiology, University of Washington, Seattle, WA, USA
| | - Russell P Tracy
- Departments of Pathology & Laboratory Medicine, and Biochemistry, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Kerri L Wiggins
- Cardiovascular Health Research Unit, University of Washington, Seattle, WA, USA.,Department of Medicine, University of Washington, Seattle, WA, USA
| | - Jie Zheng
- MRC Integrative Epidemiology Unit, Bristol Medical School, University of Bristol, Bristol, UK
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, University of Washington, Seattle, WA, USA.,Department of Epidemiology, University of Washington, Seattle, WA, USA.,Department of Medicine, University of Washington, Seattle, WA, USA.,Department of Health Systems and Population Health, University of Washington, Seattle, WA, USA
| |
Collapse
|
7
|
Roh JD, Kitchen RR, Guseh JS, McNeill JN, Aid M, Martinot AJ, Yu A, Platt C, Rhee J, Weber B, Trager LE, Hastings MH, Ducat S, Xia P, Castro C, Singh A, Atlason B, Churchill TW, Di Carli MF, Ellinor PT, Barouch DH, Ho JE, Rosenzweig A. Plasma Proteomics of COVID-19-Associated Cardiovascular Complications: Implications for Pathophysiology and Therapeutics. JACC Basic Transl Sci 2022; 7:425-441. [PMID: 35530264 PMCID: PMC9067411 DOI: 10.1016/j.jacbts.2022.01.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 12/30/2022]
Abstract
To gain insights into the mechanisms driving cardiovascular complications in COVID-19, we performed a case-control plasma proteomics study in COVID-19 patients. Our results identify the senescence-associated secretory phenotype, a marker of biological aging, as the dominant process associated with disease severity and cardiac involvement. FSTL3, an indicator of senescence-promoting Activin/TGFβ signaling, and ADAMTS13, the von Willebrand Factor-cleaving protease whose loss-of-function causes microvascular thrombosis, were among the proteins most strongly associated with myocardial stress and injury. Findings were validated in a larger COVID-19 patient cohort and the hamster COVID-19 model, providing new insights into the pathophysiology of COVID-19 cardiovascular complications with therapeutic implications.
Collapse
Affiliation(s)
- Jason D. Roh
- Corrigan Minehan Heart Center, Division of Cardiology, Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Robert R. Kitchen
- Corrigan Minehan Heart Center, Division of Cardiology, Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - J. Sawalla Guseh
- Corrigan Minehan Heart Center, Division of Cardiology, Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jenna N. McNeill
- Division of Pulmonary and Critical Care, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Malika Aid
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Amanda J. Martinot
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
- Department of Biomedical Sciences, Section of Pathology, Tufts University Cummings School of Veterinary Medicine, North Grafton, Massachusetts, USA
| | - Andy Yu
- Corrigan Minehan Heart Center, Division of Cardiology, Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Colin Platt
- Corrigan Minehan Heart Center, Division of Cardiology, Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - James Rhee
- Corrigan Minehan Heart Center, Division of Cardiology, Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Brittany Weber
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Lena E. Trager
- Corrigan Minehan Heart Center, Division of Cardiology, Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Margaret H. Hastings
- Corrigan Minehan Heart Center, Division of Cardiology, Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Sarah Ducat
- Department of Biomedical Sciences, Section of Pathology, Tufts University Cummings School of Veterinary Medicine, North Grafton, Massachusetts, USA
| | - Peng Xia
- Corrigan Minehan Heart Center, Division of Cardiology, Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Claire Castro
- Corrigan Minehan Heart Center, Division of Cardiology, Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Abhilasha Singh
- Corrigan Minehan Heart Center, Division of Cardiology, Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Bjarni Atlason
- Corrigan Minehan Heart Center, Division of Cardiology, Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Timothy W. Churchill
- Corrigan Minehan Heart Center, Division of Cardiology, Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Marcelo F. Di Carli
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Radiology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Patrick T. Ellinor
- Corrigan Minehan Heart Center, Division of Cardiology, Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Dan H. Barouch
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
| | - Jennifer E. Ho
- Corrigan Minehan Heart Center, Division of Cardiology, Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Anthony Rosenzweig
- Corrigan Minehan Heart Center, Division of Cardiology, Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
8
|
Porter TR. The Potential for Retained Microbubbles: To Imaging . . . and Beyond. J Am Coll Cardiol 2021; 78:2001-2003. [PMID: 34763777 DOI: 10.1016/j.jacc.2021.08.069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 11/16/2022]
Affiliation(s)
- Thomas R Porter
- University of Nebraska Medical Center, Omaha, Nebraska, USA.
| |
Collapse
|
9
|
Yalta K, Ozkan U, Yalta T, Yetkin E. Cardiac myxoma as a potential trigger of takotsubo cardiomyopathy: A brief review on mechanistic and clinical perspectives. Monaldi Arch Chest Dis 2021; 92. [PMID: 34579518 DOI: 10.4081/monaldi.2021.1961] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/04/2021] [Indexed: 11/23/2022] Open
Abstract
In clinical practice, cardiac myxomas constitute the majority of benign cardiac neoplasms, and might potentially present with a variety of embolic, obstructive as well as constitutional symptoms. On the other hand, these neoplasms might be potentially associated with the evolution of takotsubo cardiomyopathy (TTC) that is universally considered as a transient form of acute myocardial dysfunction. Accordingly, the present paper primarily aims to focus on potential mechanisms and associated clinical implications of TTC evolution in the setting of cardiac myxomas.
Collapse
Affiliation(s)
- Kenan Yalta
- Cardiology Department, Trakya University, Edirne.
| | - Ugur Ozkan
- Cardiology Department, Trakya University, Edirne.
| | - Tülin Yalta
- Pathology Department, Trakya University, Edirne.
| | - Ertan Yetkin
- Cardiology Department, Derindere Hospital, Istanbul.
| |
Collapse
|
10
|
Roh J, Kitchen R, Guseh JS, McNeill J, Aid M, Martinot A, Yu A, Platt C, Rhee J, Weber B, Trager L, Hastings M, Ducat S, Xia P, Castro C, Atlason B, Churchill T, Di Carli M, Ellinor P, Barouch D, Ho J, Rosenzweig A. Plasma Proteomics of COVID-19 Associated Cardiovascular Complications: Implications for Pathophysiology and Therapeutics. RESEARCH SQUARE 2021:rs.3.rs-539712. [PMID: 34127963 PMCID: PMC8202429 DOI: 10.21203/rs.3.rs-539712/v1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Cardiovascular complications are common in COVID-19 and strongly associated with disease severity and mortality. However, the mechanisms driving cardiac injury and failure in COVID-19 are largely unknown. We performed plasma proteomics on 80 COVID-19 patients and controls, grouped according to disease severity and cardiac involvement. Findings were validated in 305 independent COVID-19 patients and investigated in an animal model. Here we show that senescence-associated secretory proteins, markers of biological aging, strongly associate with disease severity and cardiac involvement even in age-matched cohorts. FSTL3, an indicator of Activin/TGFβ signaling, was the most significantly upregulated protein associated with the heart failure biomarker, NTproBNP (β = 0.4;p adj =4.6x10 - 7 ), while ADAMTS13, a vWF-cleaving protease whose loss-of-function causes microvascular thrombosis, was the most downregulated protein associated with myocardial injury (β=-0.4;p adj =8x10 - 7 ). Mendelian randomization supported a causal role for ADAMTS13 in myocardial injury. These data provide important new insights into the pathophysiology of COVID-19 cardiovascular complications with therapeutic implications.
Collapse
Affiliation(s)
| | | | | | | | - Malika Aid
- Beth Israel Deaconess Medical Center BIDMC
| | | | - Andy Yu
- Massachusetts General Hospital
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Yalta K, Yetkin E, Yalta T. Systemic inflammation in patients with Takotsubo syndrome: a review of mechanistic and clinical implications. Monaldi Arch Chest Dis 2021; 91. [PMID: 33728882 DOI: 10.4081/monaldi.2021.1718] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 01/10/2021] [Indexed: 11/23/2022] Open
Abstract
Over recent decades, systemic inflammation as quantified with inflammation markers or indices has been extensively investigated in the setting of various cardiovascular conditions including heart failure (HF), acute coronary syndromes (ACS). In contrast, systemic inflammation in patients with takotsubo syndrome (TTS) has been an underrated phenomenon in clinical practice. On the other hand, experimental and clinical data have been rapidly accumulating in the recent years regarding pathogenetic, prognostic as well as therapeutic implications of systemic inflammation in TTS. Accordingly, the present article aims to provide a general perspective on mechanistic and clinical aspects of systemic inflammation in the setting of TTS.
Collapse
Affiliation(s)
- Kenan Yalta
- CardiologyDepartment, Trakya University, Edirne.
| | - Ertan Yetkin
- Cardiology Department, Derindere Hospital, Istanbul.
| | - Tulin Yalta
- Pathology Department, Trakya University, Edirne.
| |
Collapse
|
12
|
Rawish E, Stiermaier T, Santoro F, Brunetti ND, Eitel I. Current Knowledge and Future Challenges in Takotsubo Syndrome: Part 1-Pathophysiology and Diagnosis. J Clin Med 2021; 10:jcm10030479. [PMID: 33525539 PMCID: PMC7865728 DOI: 10.3390/jcm10030479] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/08/2021] [Accepted: 01/15/2021] [Indexed: 02/06/2023] Open
Abstract
First recognized in 1990, takotsubo syndrome (TTS) constitutes an acute cardiac condition that mimics acute myocardial infarction commonly in the absence of obstructive coronary artery disease; it is characterized by temporary left ventricular dysfunction, regularly in a circumferential apical, midventricular, or basal distribution. Considering its acute clinical presentation, coronary angiography with left ventriculography constitutes the gold standard diagnostic tool to exclude or confirm TTS. Frequently, TTS is related to severe emotional or physical stress and a subsequent increased adrenergic stimulation affecting cardiac function. Beyond clinical presentation, epidemiology, and novel diagnostic biomarkers, this review draws attention to potential pathophysiological mechanisms for the observed reversible myocardial dysfunction such as sympathetic overdrive-mediated multi-vessel epicardial spasms, microvascular dysfunction, the direct toxicity of catecholamines, lipotoxicity, and inflammation. Considering the long-term prognosis, further experimental and clinical research is indispensable to elucidate further pathophysiological mechanisms underlying TTS before randomized control trials with evidence-based therapeutic management can be performed.
Collapse
Affiliation(s)
- Elias Rawish
- Medical Clinic II (Cardiology/Angiology/Intensive Care Medicine) University Heart Center, 23538 Lübeck, Germany; (E.R.); (T.S.)
- DZHK (German Centre for Cardiovascular Research), 23538 Lübeck, Germany
| | - Thomas Stiermaier
- Medical Clinic II (Cardiology/Angiology/Intensive Care Medicine) University Heart Center, 23538 Lübeck, Germany; (E.R.); (T.S.)
- DZHK (German Centre for Cardiovascular Research), 23538 Lübeck, Germany
| | - Francesco Santoro
- Department of Medical & Surgery Sciences, University of Foggia, 71121 Foggia, Italy
| | - Natale D. Brunetti
- Department of Medical & Surgery Sciences, University of Foggia, 71121 Foggia, Italy
| | - Ingo Eitel
- Medical Clinic II (Cardiology/Angiology/Intensive Care Medicine) University Heart Center, 23538 Lübeck, Germany; (E.R.); (T.S.)
- DZHK (German Centre for Cardiovascular Research), 23538 Lübeck, Germany
- Correspondence: ; Tel.: +49-451-500-44501
| |
Collapse
|
13
|
Prokudina ES, Kurbatov BK, Zavadovsky KV, Vrublevsky AV, Naryzhnaya NV, Lishmanov YB, Maslov LN, Oeltgen PR. Takotsubo Syndrome: Clinical Manifestations, Etiology and Pathogenesis. Curr Cardiol Rev 2021; 17:188-203. [PMID: 31995013 PMCID: PMC8226199 DOI: 10.2174/1573403x16666200129114330] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 12/02/2019] [Accepted: 12/12/2019] [Indexed: 12/15/2022] Open
Abstract
The purpose of the review is the analysis of clinical and experimental data on the etiology and pathogenesis of takotsubo syndrome (TS). TS is characterized by contractile dysfunction, which usually affects the apical region of the heart without obstruction of coronary artery, moderate increase in myocardial necrosis markers, prolonged QTc interval (in 50% of patients), sometimes elevation of ST segment (in 19% of patients), increase N-Terminal Pro-B-Type Natriuretic Peptide level, microvascular dysfunction, sometimes spasm of the epicardial coronary arteries (in 10% of patients), myocardial edema, and life-threatening ventricular arrhythmias (in 11% of patients). Stress cardiomyopathy is a rare disease, it is observed in 0.6 - 2.5% of patients with acute coronary syndrome. The occurrence of takotsubo syndrome is 9 times higher in women, who are aged 60-70 years old, than in men. The hospital mortality among patients with TS corresponds to 3.5% - 12%. Physical or emotional stress do not precede disease in all patients with TS. Most of patients with TS have neurological or mental illnesses. The level of catecholamines is increased in patients with TS, therefore, the occurrence of TS is associated with excessive activation of the adrenergic system. The negative inotropic effect of catecholamines is associated with the activation of β2 adrenergic receptors. An important role of the adrenergic system in the pathogenesis of TS is confirmed by studies which were performed using 125I-metaiodobenzylguanidine (125I -MIBG). TS causes edema and inflammation of the myocardium. The inflammatory response in TS is systemic. TS causes impaired coronary microcirculation and reduces coronary reserve. There is a reason to believe that an increase in blood viscosity may play an important role in the pathogenesis of microcirculatory dysfunction in patients with TS. Epicardial coronary artery spasm is not obligatory for the occurrence of TS. Cortisol, endothelin-1 and microRNAs are challengers for the role of TS triggers. A decrease in estrogen levels is a factor contributing to the onset of TS. The central nervous system appears to play an important role in the pathogenesis of TS.
Collapse
Affiliation(s)
- Ekaterina S Prokudina
- Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk National Research Medical Center of the RAS, Tomsk, Russian Federation
| | - Boris K Kurbatov
- Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk National Research Medical Center of the RAS, Tomsk, Russian Federation
| | - Konstantin V Zavadovsky
- Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk National Research Medical Center of the RAS, Tomsk, Russian Federation
| | - Alexander V Vrublevsky
- Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk National Research Medical Center of the RAS, Tomsk, Russian Federation
| | - Natalia V Naryzhnaya
- Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk National Research Medical Center of the RAS, Tomsk, Russian Federation
| | - Yuri B Lishmanov
- Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk National Research Medical Center of the RAS, Tomsk, Russian Federation
| | - Leonid N Maslov
- Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk National Research Medical Center of the RAS, Tomsk, Russian Federation
| | - Peter R Oeltgen
- Department of Pathology, University of Kentucky College of Medicine, Lexington, KY 40506, United States
| |
Collapse
|
14
|
Prokudina ES, Kurbatov BK, Maslov LN. [Clinical Manifestation of Stressful Cardiomyopathy (Takotsubo Syndrome) and the Problem of Differential Diagnosis with Acute Myocardial Infarction]. ACTA ACUST UNITED AC 2020; 60:777. [PMID: 33487160 DOI: 10.18087/cardio.2020.11.n777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 12/28/2019] [Accepted: 01/09/2020] [Indexed: 11/18/2022]
Abstract
The presented data show that tacotsubo syndrome (TS) is characterized by the absence of coronary artery obstruction, cardiac contractile dysfunction, apical ballooning, and heart failure, and in some patients, ST-segment elevation and prolongation of the QTc interval. Every tenth patient with TS develops ventricular arrhythmias. Most of TS patients have elevated markers of necrosis (troponin I, troponin Т, and creatine kinase МВ (CK-МВ), which are considerably lower than in patients with acute myocardial infarction (AMI) with ST-segment elevation. The level of N-terminal pro-B-type natriuretic peptide (NT-proBNP), in contrast, is considerably higher in patients with TS than with AMI. Differential diagnosis of TS and AMI should be based on a multifaceted approach using coronary angiography, echocardiography, analysis of ECG, magnetic resonance imaging, single-photon emission computed tomography, and measurement of troponins, CK-MB, and NT-proBNP.
Collapse
Affiliation(s)
- E S Prokudina
- Cardiology Research Institute, Tomsk National Research Medical Center, Tomsk, Russia
| | - B K Kurbatov
- Cardiology Research Institute, Tomsk National Research Medical Center, Tomsk, Russia
| | - L N Maslov
- Cardiology Research Institute, Tomsk National Research Medical Center, Tomsk, Russia
| |
Collapse
|
15
|
Pan XY, Zhang ZW. MFGE8, ALB, APOB, APOE, SAA1, A2M, and C3 as Novel Biomarkers for Stress Cardiomyopathy. Cardiovasc Ther 2020; 2020:1615826. [PMID: 32695227 PMCID: PMC7350165 DOI: 10.1155/2020/1615826] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 06/02/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Stress cardiomyopathy (SCM) is a transient reversible left ventricular dysfunction that more often occurs in women. Symptoms of SCM patients are similar to those of acute coronary syndrome (ACS), but little is known about biomarkers. The goals of this study were to identify the potentially crucial genes and pathways associated with SCM. METHODS We analyzed microarray datasets GSE95368 derived from the Gene Expression Omnibus (GEO) database. Firstly, identify the differentially expressed genes (DEGs) between SCM patients in normal patients. Then, the DEGs were used for Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. Finally, the protein-protein interaction (PPI) network was constructed and Cytoscape was used to find the key genes. RESULTS In total, 25 DEGs were identified, including 10 upregulated genes and 15 downregulated genes. These DEGs were mainly enriched in ECM-receptor interaction, dilated cardiomyopathy (DCM), human papillomavirus infection, and focal adhesion, whereas in GO function classification, they were mainly enriched in the extracellular region, positive regulation of the multicellular organismal process, establishment of localization, and intracellular vesicle. CONCLUSION Seven hub genes contained APOE, MFGE8, ALB, APOB, SAA1, A2M, and C3 identified as hub genes of SCM, which might be used as diagnostic biomarkers or molecular targets for the treatment of SCM.
Collapse
Affiliation(s)
- Xiao-Yu Pan
- Department of Clinical Medical College, Jining Medical University, Jining, Shandong 272067, China
- Department of Cardiology, Jining No. 1 People's Hospital, Jining, Shandong 272011, China
| | - Zai-Wei Zhang
- Department of Cardiology, Jining No. 1 People's Hospital, Jining, Shandong 272011, China
- Cardiovascular Research Institute, Jining No.1 People's Hospital, Jining, Shandong 272011, China
| |
Collapse
|
16
|
Ciutac AM, Dawson D. The role of inflammation in stress cardiomyopathy. Trends Cardiovasc Med 2020; 31:225-230. [PMID: 32276825 DOI: 10.1016/j.tcm.2020.03.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 02/25/2020] [Accepted: 03/12/2020] [Indexed: 02/08/2023]
Abstract
Stress cardiomyopathy (SC) is an increasingly recognized form of acute heart failure, which has been linked to a wide variety of emotional and physical triggers. The pathophysiological mechanisms of the disease remain incompletely understood, however, inflammation has been recently shown to play a pivotal role. This review summarizes the most notable findings of myocardial inflammation, demonstrated from biopsies and cardiac magnetic resonance imaging in humans. In the acute stage macrophage infiltration appears to represent the substrate for myocardial edema, together defining the local myocardial inflammation. This appears to evolve into a low grade systemic chronic inflammation which could explain the protracted clinical course of these patients and raises hope for finding a specific SC cardiac biomarker as well as a therapeutic breakthrough. As a parallel to the human findings the review covers some of the emerging mechanistic insights from experimental models, which, albeit not proven in the human condition, highlight the possible importance in pursuing distinct paths of investigation such as the beta-receptor signaling, aberrations of nitric oxide generation and signaling and the contribution of the vascular endothelium/permeability to edema and inflammation during the acute stage.
Collapse
Affiliation(s)
- Andra Maria Ciutac
- School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill, Aberdeen, Scotland, United Kingdom
| | - Dana Dawson
- School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill, Aberdeen, Scotland, United Kingdom.
| |
Collapse
|