1
|
Hairul Hisham HI, Lim SM, Neoh CF, Abdul Majeed AB, Shahar S, Ramasamy K. Effects of non-pharmacological interventions on gut microbiota and intestinal permeability in older adults: A systematic review: Non-pharmacological interventions on gut microbiota/barrier. Arch Gerontol Geriatr 2025; 128:105640. [PMID: 39305569 DOI: 10.1016/j.archger.2024.105640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/21/2024] [Accepted: 09/13/2024] [Indexed: 11/03/2024]
Abstract
This systematic review appraised previous findings of non-pharmacological interventions on gut microbiota and/ or intestinal permeability in older adults. A literature search was performed using PubMed, Scopus, ScienceDirect and the Cochrane Library. Relevant studies were shortlisted based on the inclusion and exclusion criteria, and evaluated for risks of bias using the "Cochrane Collaboration's Risk of Bias 2" and the "NIH Quality Assessment Tool for Before-After (Pre-Post) Studies with No Control Group". The primary outcomes were the effects of non-pharmacological interventions on gut microbiota diversity and composition, and intestinal permeability in older adults. Out of 85,114 studies, 38 were shortlisted. Generally, the non-pharmacological interventions were beneficial against dysbiosis and the leaky gut in older adults. Considering specific interventions with two or more studies that reported consistent outcomes, a pattern was observed amongst the Mediterranean diet (MD), polyphenol-rich (PR) diet and supplements (i.e., probiotics, prebiotics and synbiotics). As for the other interventions, the very few studies that have been conducted did not allow a strong conclusion to be made just yet. The MD (single and multidomain interventions) restored gut microbiota by increasing species richness (alpha diversity) and reduced intestinal permeability (zonulin) and inflammation (CRP). The PR diet only showed slight changes in the gut microbiota but improved the gut barrier by reducing zonulin, CRP and IL-6. Probiotics, prebiotics and synbiotics increased the genus Bifidobacterium spp. which are considered beneficial bacteria. This review has uncovered insights into the relationship between gut microbiota and intestinal epithelial barriers of specific non-pharmacological interventions in older adults.
Collapse
Affiliation(s)
- Hazwanie Iliana Hairul Hisham
- Collaborative Drug Discovery Research (CDDR) Group, Faculty of Pharmacy, Universiti Teknologi MARA (UiTM) Cawangan Selangor, Kampus Puncak Alam, 42300 Bandar Puncak Alam, Selangor Darul Ehsan, Malaysia
| | - Siong Meng Lim
- Collaborative Drug Discovery Research (CDDR) Group, Faculty of Pharmacy, Universiti Teknologi MARA (UiTM) Cawangan Selangor, Kampus Puncak Alam, 42300 Bandar Puncak Alam, Selangor Darul Ehsan, Malaysia
| | - Chin Fen Neoh
- Collaborative Drug Discovery Research (CDDR) Group, Faculty of Pharmacy, Universiti Teknologi MARA (UiTM) Cawangan Selangor, Kampus Puncak Alam, 42300 Bandar Puncak Alam, Selangor Darul Ehsan, Malaysia
| | - Abu Bakar Abdul Majeed
- Brain Degeneration and Therapeutics Group, Faculty of Pharmacy, Universiti Teknologi MARA (UiTM) Cawangan Selangor, Kampus Puncak Alam, 42300 Bandar Puncak Alam, Selangor Darul Ehsan, Malaysia.
| | - Suzana Shahar
- Centre of Healthy Aging and Wellness, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, 50300 Kuala Lumpur, Malaysia
| | - Kalavathy Ramasamy
- Collaborative Drug Discovery Research (CDDR) Group, Faculty of Pharmacy, Universiti Teknologi MARA (UiTM) Cawangan Selangor, Kampus Puncak Alam, 42300 Bandar Puncak Alam, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
2
|
Hannawi Y. Cerebral Small Vessel Disease: a Review of the Pathophysiological Mechanisms. Transl Stroke Res 2024; 15:1050-1069. [PMID: 37864643 DOI: 10.1007/s12975-023-01195-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/02/2023] [Accepted: 09/18/2023] [Indexed: 10/23/2023]
Abstract
Cerebral small vessel disease (cSVD) refers to the age-dependent pathological processes involving the brain small vessels and leading to vascular cognitive impairment, intracerebral hemorrhage, and acute lacunar ischemic stroke. Despite the significant public health burden of cSVD, disease-specific therapeutics remain unavailable due to the incomplete understanding of the underlying pathophysiological mechanisms. Recent advances in neuroimaging acquisition and processing capabilities as well as findings from cSVD animal models have revealed critical roles of several age-dependent processes in cSVD pathogenesis including arterial stiffness, vascular oxidative stress, low-grade systemic inflammation, gut dysbiosis, and increased salt intake. These factors interact to cause a state of endothelial cell dysfunction impairing cerebral blood flow regulation and breaking the blood brain barrier. Neuroinflammation follows resulting in neuronal injury and cSVD clinical manifestations. Impairment of the cerebral waste clearance through the glymphatic system is another potential process that has been recently highlighted contributing to the cognitive decline. This review details these mechanisms and attempts to explain their complex interactions. In addition, the relevant knowledge gaps in cSVD mechanistic understanding are identified and a systematic approach to future translational and early phase clinical research is proposed in order to reveal new cSVD mechanisms and develop disease-specific therapeutics.
Collapse
Affiliation(s)
- Yousef Hannawi
- Division of Cerebrovascular Diseases and Neurocritical Care, Department of Neurology, The Ohio State University, 333 West 10th Ave, Graves Hall 3172C, Columbus, OH, 43210, USA.
| |
Collapse
|
3
|
Nogueira Silva Lima MT, Delayre-Orthez C, Howsam M, Jacolot P, Niquet-Léridon C, Okwieka A, Anton PM, Perot M, Barbezier N, Mathieu H, Ghinet A, Fradin C, Boulanger E, Jaisson S, Gillery P, Tessier FJ. Early- and life-long intake of dietary advanced glycation end-products (dAGEs) leads to transient tissue accumulation, increased gut sensitivity to inflammation, and slight changes in gut microbial diversity, without causing overt disease. Food Res Int 2024; 195:114967. [PMID: 39277266 DOI: 10.1016/j.foodres.2024.114967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/13/2024] [Accepted: 08/20/2024] [Indexed: 09/17/2024]
Abstract
Dietary advanced glycation end-products (dAGEs) accumulate in organs and are thought to initiate chronic low-grade inflammation (CLGI), induce glycoxidative stress, drive immunosenescence, and influence gut microbiota. Part of the toxicological interest in glycation products such as dietary carboxymethyl-lysine (dCML) relies on their interaction with receptor for advanced glycation end-products (RAGE). It remains uncertain whether early or lifelong exposure to dAGEs contributes physiological changes and whether such effects are reversible or permanent. Our objective was to examine the physiological changes in Wild-Type (WT) and RAGE KO mice that were fed either a standard diet (STD - 20.8 ± 5.1 µg dCML/g) or a diet enriched with dCML (255.2 ± 44.5 µg dCML/g) from the perinatal period for up to 70 weeks. Additionally, an early age (6 weeks) diet switch (dCML→STD) was explored to determine whether potential harmful effects of dCML could be reversed. Previous dCML accumulation patterns described by our group were confirmed here, with significant RAGE-independent accumulation of dCML in kidneys, ileum and colon over the 70-week dietary intervention (respectively 3-fold, 17-fold and 20-fold increases compared with controls). Diet switching returned tissue dCML concentrations to their baseline levels. The dCML-enriched diet had no significative effect on endogenous glycation, inflammation, oxidative stress or senescence parameters. The relative expression of TNFα, VCAM1, IL6, and P16 genes were all upregulated (∼2-fold) in an age-dependent manner, most notably in the kidneys of WT animals. RAGE knockout seemed protective in this regard, diminishing age-related renal expression of TNFα. Significant increases in TNFα expression were detectable in the intestinal tract of the Switch group (∼2-fold), suggesting a higher sensitivity to inflammation perhaps related to the timing of the diet change. Minor fluctuations were observed at family level within the caecal microbiota, including Eggerthellaceae, Anaerovoracaceae and Marinifilaceae communities, indicating slight changes in composition. Despite chronic dCML consumption resulting in higher free CML levels in tissues, there were no substantial increases in parameters related to inflammageing. Age was a more important factor in inflammation status, notably in the kidneys, while the early-life dietary switch may have influenced intestinal susceptibility to inflammation. This study affirms the therapeutic potential of RAGE modulation and corroborates evidence for the disruptive effect of dietary changes occurring too early in life. Future research should prioritize the potential influence of dAGEs on disease aetiology and development, notably any exacerbating effects they may have upon existing health conditions.
Collapse
Affiliation(s)
- M T Nogueira Silva Lima
- U1167-RID-AGE-Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, Institut Pasteur de Lille, University Lille, Inserm, CHU Lille, F-59000 Lille, France
| | - C Delayre-Orthez
- Institut Polytechnique UniLaSalle, Université d'Artois, ULR 7519, Equipe PETALES, 60000 Beauvais, France
| | - M Howsam
- U1167-RID-AGE-Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, Institut Pasteur de Lille, University Lille, Inserm, CHU Lille, F-59000 Lille, France
| | - P Jacolot
- Institut Polytechnique UniLaSalle, Université d'Artois, ULR 7519, Equipe PETALES, 60000 Beauvais, France
| | - C Niquet-Léridon
- Institut Polytechnique UniLaSalle, Université d'Artois, ULR 7519, Equipe PETALES, 60000 Beauvais, France
| | - A Okwieka
- University of Reims Champagne-Ardenne, Laboratory of Biochemistry and Molecular Biology, CNRS/URCA UMR 7369 MEDyC, Faculté de Médecine, 51095 Reims, France
| | - P M Anton
- Institut Polytechnique UniLaSalle, Université d'Artois, ULR 7519, Equipe PETALES, 60000 Beauvais, France
| | - M Perot
- Institut Polytechnique UniLaSalle, Université d'Artois, ULR 7519, Equipe PETALES, 60000 Beauvais, France
| | - N Barbezier
- Institut Polytechnique UniLaSalle, Université d'Artois, ULR 7519, Equipe PETALES, 60000 Beauvais, France
| | - H Mathieu
- Institut Polytechnique UniLaSalle, Université d'Artois, ULR 7519, Equipe PETALES, 60000 Beauvais, France
| | - A Ghinet
- U1167-RID-AGE-Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, Institut Pasteur de Lille, University Lille, Inserm, CHU Lille, F-59000 Lille, France; Junia, Health and Environment, Laboratory of Sustainable Chemistry and Health, 59000 Lille, France
| | - C Fradin
- U1167-RID-AGE-Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, Institut Pasteur de Lille, University Lille, Inserm, CHU Lille, F-59000 Lille, France
| | - E Boulanger
- U1167-RID-AGE-Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, Institut Pasteur de Lille, University Lille, Inserm, CHU Lille, F-59000 Lille, France
| | - S Jaisson
- University of Reims Champagne-Ardenne, Laboratory of Biochemistry and Molecular Biology, CNRS/URCA UMR 7369 MEDyC, Faculté de Médecine, 51095 Reims, France; University Hospital of Reims, Laboratory of Biochemistry-Pharmacology-Toxicology, 51092 Reims, France
| | - P Gillery
- University of Reims Champagne-Ardenne, Laboratory of Biochemistry and Molecular Biology, CNRS/URCA UMR 7369 MEDyC, Faculté de Médecine, 51095 Reims, France; University Hospital of Reims, Laboratory of Biochemistry-Pharmacology-Toxicology, 51092 Reims, France
| | - F J Tessier
- U1167-RID-AGE-Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, Institut Pasteur de Lille, University Lille, Inserm, CHU Lille, F-59000 Lille, France.
| |
Collapse
|
4
|
DeLano FA, Schmid-Schönbein GW. Aging by autodigestion. PLoS One 2024; 19:e0312149. [PMID: 39418235 PMCID: PMC11486419 DOI: 10.1371/journal.pone.0312149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024] Open
Abstract
The mechanism that triggers the progressive dysregulation of cell functions, inflammation, and breakdown of tissues during aging is currently unknown. We propose here a previously unknown mechanism due to tissue autodigestion by the digestive enzymes. After synthesis in the pancreas, these powerful enzymes are activated and transported inside the lumen of the small intestine to which they are compartmentalized by the mucin/epithelial barrier. We hypothesize that this barrier leaks active digestive enzymes (e.g. during meals) and leads to their accumulation in tissues outside the gastrointestinal tract. Using immune-histochemistry we provide evidence in young (4 months) and old (24 months) rats for significant accumulation of pancreatic trypsin, elastase, lipase, and amylase in peripheral organs, including liver, lung, heart, kidney, brain, and skin. The mucin layer density on the small intestine barrier is attenuated in the old and trypsin leaks across the tip region of intestinal villi with depleted mucin. The accumulation of digestive enzymes is accompanied in the same tissues of the old by damage to collagen, as detected with collagen fragment hybridizing peptides. We provide evidence that the hyperglycemia in the old is accompanied by proteolytic cleavage of the extracellular domain of the insulin receptor. Blockade of pancreatic trypsin in the old by a two-week oral treatment with a serine protease inhibitor (tranexamic acid) serves to significantly reduce trypsin accumulation in organs outside the intestine, collagen damage, as well as hyperglycemia and insulin receptor cleavage. These results support the hypothesis that the breakdown of tissues in aging is due to autodigestion and a side-effect of the fundamental requirement for digestion.
Collapse
Affiliation(s)
- Frank A. DeLano
- Shu Chien-Gene Ley Department of Bioengineering, Center for Autodigestion Innovation, University of California San Diego, La Jolla, California, United States of America
| | - Geert W. Schmid-Schönbein
- Shu Chien-Gene Ley Department of Bioengineering, Center for Autodigestion Innovation, University of California San Diego, La Jolla, California, United States of America
| |
Collapse
|
5
|
Gu L, Du Y, Liang F. Meta-Analysis and Network Analysis Differentially Detect Various Pro-Inflammatory Mediators and Risk Factors for Type 2 Diabetes in the Elderly. Horm Metab Res 2024; 56:727-736. [PMID: 38195796 DOI: 10.1055/a-2241-5281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Type 2 diabetes (T2D) has a pathophysiological component that includes inflammation. Inflammation-sensitive marker measurement may be helpful in determining the risk of complications for both older T2D patients and the public. This study aimed to investigate the association between blood pro-inflammatory mediators and the characteristics of elderly patients with T2D using meta and network analyses. The Web of Science, Scopus, PubMed, and Cochrane Library databases were selected as study methodology. The Quality in Prognosis Studies (QUIPS) tool in the meta-analysis assessed the studies' methodological quality. The selected studies were statistically analyzed using the META-MAR tool based on the standardized mean difference (SMD). The selected studies included nine examinations involving 6399 old people [+>+55 years old, 65.9+±+4.09 (mean+±+SD)]. The meta-analysis showed that pro-inflammatory mediators (SMD 0.82) and patient-related variables [risk factors (SMD 0.71)] were significantly associated with T2D (p+<+0.05). Subgroup analysis revealed that tumor necrosis factor alpha (TNF-α; SMD 1.08), body mass index (SMD 0.64), high-density lipoprotein (HDL; SMD -0.61), body weight (SMD 0.50), and blood pressure (SMD 1.11) were factors significantly associated with T2D (p+<+0.05). Network analysis revealed that among patient characteristics, diastolic blood pressure and, among inflammatory mediators, leptin were the most closely associated factors with T2D in older adults. Moreover, network analysis showed that TNF-α and systolic blood pressure were most closely associated with leptin. Overall, alternate techniques, such as meta-analysis and network analysis, might identify different markers for T2D in older people. A therapeutic decision-making process needs to consider these differences in advance.
Collapse
Affiliation(s)
- Linlin Gu
- Endocrine Metabolism Department and Geriatric Department, 7th People's Hospital of Chengdu, Chengdu, China
| | - Yue Du
- Endocrine Metabolism Department and Geriatric Department, 7th People's Hospital of Chengdu, Chengdu, China
| | - Fang Liang
- General Medicine Department, 7th People's Hospital of Chengdu, Chengdu, China
| |
Collapse
|
6
|
Lee K, Mun S, Kim Y, Kim H, Jin Q, Lee M, Park SN. Functional Properties and Components of Koenigia alpina Extract. Skin Res Technol 2024; 30:e70102. [PMID: 39387830 PMCID: PMC11465873 DOI: 10.1111/srt.70102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 10/15/2024]
Abstract
BACKGROUND Koenigia alpina (All.) T.M.Schust. & Reveal (alpine knotweed) is a perennial herb belonging to the Polygonaceae family. Several studies have examined Polygonaceae species' potential applications as cosmeceutical materials; however, the potential of K. alpina as a cosmeceutical has not yet been studied. MATERIALS AND METHODS Hydrogen peroxide (H2O2) and lipopolysaccharide were used to induce an inflammatory response in RAW 264.7 cells. 2,2-Diphenyl-1-picrylhydrazyl (DPPH) radicals and H2O2 were used to evaluate the free-radical scavenging activity of K. alpina extract and its protective effect against reactive oxygen species (ROS)-induced cell damage. The whitening, antiaging, and cell proliferation/migration effects of the extracts were evaluated via tyrosinase inhibition, collagenase/elastase inhibition, and wound healing assays, respectively. The anti-inflammatory effect was confirmed by evaluating nitric oxide (NO) production in RAW 264.7 cells. High-performance liquid chromatography (HPLC), UV, and MS/MS were used to determine the main components of the extract and fractions. RESULTS The ethyl acetate (EA) fraction and its aglycone fraction showed very high free-radical scavenging activities (47.5 and 47.1 µg/mL, respectively). The extract/fractions also showed significant tyrosinase inhibition (IC50 = 0.38 mg/mL in EA fraction), collagenase inhibition (IC50 = 0.21 mg/mL in EA fraction), and elastase inhibition (IC50 = 0.57 mg/mL in aglycone fraction). NO production in lipopolysaccharide-induced RAW 264.7 cells was inhibited by the extract/fractions. The extract also promoted the closure of scratch wounds in HaCaT cells. The K. alpina extract/fractions contained cardamonin, quercetin, and quercitrin. CONCLUSION K. alpina extracts/fractions showed antioxidant, antiaging, whitening, and anti-inflammatory activities, suggesting they may have potential as antiaging cosmeceuticals.
Collapse
Affiliation(s)
- Kwan‐Woo Lee
- ISTY ON NATURESuwon‐siGyeonggi‐doRepublic of Korea
| | - Su‐Hyun Mun
- NBBIO CompanySuwon‐siGyeonggi‐doRepublic of Korea
| | - Yeon‐A Kim
- NBBIO CompanySuwon‐siGyeonggi‐doRepublic of Korea
| | - Hyo‐Rim Kim
- NBBIO CompanySuwon‐siGyeonggi‐doRepublic of Korea
| | - Qinglong Jin
- NBBIO CompanySuwon‐siGyeonggi‐doRepublic of Korea
| | - Min‐Ki Lee
- NBBIO CompanySuwon‐siGyeonggi‐doRepublic of Korea
| | - Soo Nam Park
- Department of Biohealth EngineeringCollege of Science and Convergence TechnologySeoul Women's UniversityNowon‐guSeoulRepublic of Korea
| |
Collapse
|
7
|
Hatanaka S, Shida T, Osuka Y, Kojima N, Motokawa K, Okamura T, Hirano H, Awata S, Sasai H. Association between phase angle and inflammatory blood biomarkers in community-dwelling older adults: Itabashi Longitudinal Study on Aging. Clin Nutr ESPEN 2024; 64:114-121. [PMID: 39341597 DOI: 10.1016/j.clnesp.2024.09.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/19/2024] [Accepted: 09/19/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND & AIM Bioelectrical impedance analysis-derived phase angle (PhA) reflects the disruption of the cell membrane and intra- and extracellular fluid imbalances caused by chronic inflammation. This study examined the association between PhA and inflammatory markers in community-dwelling older adults. METHODS A sex-stratified logistic regression analysis was conducted, with elevated C-reactive protein (CRP; ≥3.0 mg/L) and interleukin-6 (IL-6; >4.0 pg/mL) levels as the outcomes and whole-body and local PhAs as the exposures. The same analysis was conducted with further stratification for age, overweight status, history of inflammation-related non-communicable diseases, and dietary inflammatory index. The ability to identify inflammation in whole-body and local PhAs was assessed using a receiver operating characteristic (ROC) curve. RESULTS This study included 1664 participants (age: 76 [73-80] years; 855 women). In men, significant odds ratios (ORs) at the 95 % confidence interval (95 % CI) were observed for abnormal CRP and IL-6 levels for both whole-body and leg PhAs in the third quartile compared with the lowest quartile (OR [95 % CI] for abnormal CRP levels: 0.36 [0.18, 0.68] for whole-body PhA, 0.51 [0.27, 0.95] for leg PhA; OR [95 % CI] for abnormal IL-6 levels: 0.36 [0.15, 0.81] for whole-body PhA, 0.33 [0.12, 0.78] for leg PhA). The areas under the ROC curves (95 % CI) for identifying abnormal IL-6 were mild in men (0.62 [0.54, 0.70] for whole-body PhA and 0.62 [0.55, 0.70] for leg PhA). In men without a history of inflammation-related non-communicable diseases, it was 0.72 (0.59, 0.85) for whole-body PhA and 0.68 (0.54, 0.81) for leg PhA. In women, the PhA was not significantly associated with inflammatory markers. CONCLUSION PhA is associated with inflammation in community-dwelling older men, but may need to be combined with other information to identify inflammation.
Collapse
Affiliation(s)
- Sho Hatanaka
- Research Team for Promoting Independence and Mental Health, Tokyo Metropolitan Institute for Geriatrics and Gerontology, 35-2 Sakae-cho, Itabashi, Tokyo, 173-0015, Japan; Integrated Research Initiative for Living Well with Dementia, Tokyo Metropolitan Institute for Geriatrics and Gerontology, 35-2 Sakae-cho, Itabashi, Tokyo, 173-0015, Japan.
| | - Takashi Shida
- Research Team for Promoting Independence and Mental Health, Tokyo Metropolitan Institute for Geriatrics and Gerontology, 35-2 Sakae-cho, Itabashi, Tokyo, 173-0015, Japan
| | - Yosuke Osuka
- Research Team for Promoting Independence and Mental Health, Tokyo Metropolitan Institute for Geriatrics and Gerontology, 35-2 Sakae-cho, Itabashi, Tokyo, 173-0015, Japan; Department of Frailty Research, Center for Gerontology and Social Science, Research Institute, National Center for Geriatrics and Gerontology, 7-430 Morioka, Obu, Aichi, 474-8511, Japan
| | - Narumi Kojima
- Research Team for Promoting Independence and Mental Health, Tokyo Metropolitan Institute for Geriatrics and Gerontology, 35-2 Sakae-cho, Itabashi, Tokyo, 173-0015, Japan
| | - Keiko Motokawa
- Research Team for Promoting Independence and Mental Health, Tokyo Metropolitan Institute for Geriatrics and Gerontology, 35-2 Sakae-cho, Itabashi, Tokyo, 173-0015, Japan
| | - Tsuyoshi Okamura
- Research Team for Promoting Independence and Mental Health, Tokyo Metropolitan Institute for Geriatrics and Gerontology, 35-2 Sakae-cho, Itabashi, Tokyo, 173-0015, Japan
| | - Hirohiko Hirano
- Research Team for Promoting Independence and Mental Health, Tokyo Metropolitan Institute for Geriatrics and Gerontology, 35-2 Sakae-cho, Itabashi, Tokyo, 173-0015, Japan
| | - Shuichi Awata
- Integrated Research Initiative for Living Well with Dementia, Tokyo Metropolitan Institute for Geriatrics and Gerontology, 35-2 Sakae-cho, Itabashi, Tokyo, 173-0015, Japan
| | - Hiroyuki Sasai
- Research Team for Promoting Independence and Mental Health, Tokyo Metropolitan Institute for Geriatrics and Gerontology, 35-2 Sakae-cho, Itabashi, Tokyo, 173-0015, Japan.
| |
Collapse
|
8
|
García-Domínguez M. Chronic pain in the elderly: Exploring cellular and molecular mechanisms and therapeutic perspectives. FRONTIERS IN AGING 2024; 5:1477017. [PMID: 39328834 PMCID: PMC11424521 DOI: 10.3389/fragi.2024.1477017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 08/29/2024] [Indexed: 09/28/2024]
Abstract
Chronic pain is a debilitating condition frequently observed in the elderly, involving numerous pathological mechanisms within the nervous system. Diminished local blood flow, nerve degeneration, variations in fiber composition, alterations in ion channels and receptors, accompanied by the sustained activation of immune cells and release of pro-inflammatory cytokines, lead to overactivation of the peripheral nervous system. In the central nervous system, chronic pain is strongly associated with the activation of glial cells, which results in central sensitization and increased pain perception. Moreover, age-related alterations in neural plasticity and disruptions in pain inhibitory pathways can exacerbate chronic pain in older adults. Finally, the environmental influences on the development of chronic pain in the elderly must be considered. An understanding of these mechanisms is essential for developing novel treatments for chronic pain, which can significantly improve the quality of life for this vulnerable population.
Collapse
Affiliation(s)
- Mario García-Domínguez
- Program of Immunology and Immunotherapy, CIMA-Universidad de Navarra, Pamplona, Spain
- Department of Immunology and Immunotherapy, Clínica Universidad de Navarra, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| |
Collapse
|
9
|
Dhasmana A, Preetam S, Malik S, Jadon VS, Joshi N, Bhandari G, Gupta S, Mishra R, Rustagi S, Samal SK. Revitalizing elixir with orange peel amplification of alginate fish oil beads for enhanced anti-aging efficacy. Sci Rep 2024; 14:20404. [PMID: 39223248 PMCID: PMC11369103 DOI: 10.1038/s41598-024-71042-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024] Open
Abstract
The research introduces a novel method for creating drug-loaded hydrogel beads that target anti-aging, anti-oxidative, and anti-inflammatory effects, addressing the interconnected processes underlying various pathological conditions. The study focuses on the development of hydrogel beads containing anti-aging compounds, antioxidants, and anti-inflammatory drugs to effectively mitigate various processes. The synthesis, characterization and in vitro evaluations, and potential applications of these multifunctional hydrogel beads are discussed. A polymeric alginate-orange peel extract (1:1) hydrogel was synthesized for encapsulating fish oil. Beads prepared with variable fish oil concentrations (0.1, 0.3, and 0.5 ml) were characterized, showing no significant decrease in size i.e., 0.5 mm and a reduction in pore size from 23 to 12 µm. Encapsulation efficiency reached up to 98% within 2 min, with controlled release achieved upto 45 to 120 min with increasing oil concentration, indicating potential for sustained delivery. Fourier-transform infrared spectroscopy confirmed successful encapsulation by revealing peak shifting, interaction between constituents. In vitro degradation studies showed the hydrogel's biodegradability improved from 30 to 120 min, alongside anti-inflammatory, anti-oxidative, anti-collagenase and anti-elastase activities, cell proliferation rate enhanced after entrapping fish oil. In conclusion, the synthesized hydrogel beads are a promising drug delivery vehicle because they provide stable and effective oil encapsulation with controlled release for notable anti-aging and regenerative potential. Targeted delivery for inflammatory and oxidative stress-related illnesses is one set of potential uses. Further research may optimize this system for broader applications in drug delivery and tissue engineering.
Collapse
Affiliation(s)
- Archna Dhasmana
- Himalayan School of Biosciences, Swami Rama Himalayan University, Swami Ram Nagar, Jollygrant, Dehradun, Uttarakhand, India, 248140.
| | - Subham Preetam
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Dalseong-gun, Daegu, 42988, South Korea
| | - Sumira Malik
- Amity Institute of Biotechnology, Amity University Jharkhand, Ranchi, 834002, India.
| | - Vikash Singh Jadon
- Himalayan School of Biosciences, Swami Rama Himalayan University, Swami Ram Nagar, Jollygrant, Dehradun, Uttarakhand, India, 248140
| | - Nupur Joshi
- Himalayan School of Biosciences, Swami Rama Himalayan University, Swami Ram Nagar, Jollygrant, Dehradun, Uttarakhand, India, 248140
| | - Geeta Bhandari
- Himalayan School of Biosciences, Swami Rama Himalayan University, Swami Ram Nagar, Jollygrant, Dehradun, Uttarakhand, India, 248140
| | - Sanjay Gupta
- Himalayan School of Biosciences, Swami Rama Himalayan University, Swami Ram Nagar, Jollygrant, Dehradun, Uttarakhand, India, 248140
| | - Richa Mishra
- Department of Computer Engineering, Parul Institute of Engineering and Technology ( PIET), Parul University, Ta. Waghodia, Vadodara, Gujarat, 391760, India
| | - Sarvesh Rustagi
- School of Applied and Life Sciences, Uttaranchal University, 22 Dehradun, Uttarakhand, India
| | - Shailesh Kumar Samal
- Unit of Immunology and Chronic Disease, Institute of Environmental Medicine, Karolinska Institutet, 171 77, Stockholm, Sweden.
| |
Collapse
|
10
|
Kujawowicz K, Mirończuk-Chodakowska I, Cyuńczyk M, Witkowska AM. Identifying Malnutrition Risk in the Elderly: A Single- and Multi-Parameter Approach. Nutrients 2024; 16:2537. [PMID: 39125416 PMCID: PMC11314023 DOI: 10.3390/nu16152537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/23/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024] Open
Abstract
Malnutrition is a significant concern affecting the elderly, necessitating a complex assessment. This study aims to deepen the understanding of factors associated with the assessment of malnutrition in the elderly by comparing single- and multi-parameter approaches. In this cross-sectional study, 154 individuals underwent a comprehensive geriatric assessment (CGA). Malnutrition risk was determined using the mini nutritional assessment (MNA). Additional factors assessed included sarcopenia, polypharmacy, depression, appetite, handgrip strength, and gait speed. Phase angle (PA) and body composition were measured using bioelectrical impedance analysis (BIA). The MNA identified a malnutrition risk in 36.8% of individuals. The geriatric depression scale (GDS) and PA demonstrated moderate effectiveness in assessing malnutrition risk, with AUC values of 0.69 (95% CI: 0.60-0.78) and 0.62 (95% CI: 0.54-0.72), respectively. A logistic regression model incorporating handgrip strength, skeletal muscle mass, sarcopenia, osteoporosis, depression, specific antidepressant use, mobility, appetite, and smoking achieved superior performance in predicting malnutrition risk, with an AUC of 0.84 (95% CI: 0.77-0.91). In conclusion, this study demonstrates that integrating multiple parameters into a composite model provides a more accurate and comprehensive assessment of malnutrition risk in elderly adults.
Collapse
Affiliation(s)
- Karolina Kujawowicz
- Department of Food Biotechnology, Medical University of Białystok, 15-089 Białystok, Poland; (I.M.-C.); (M.C.); (A.M.W.)
| | | | | | | |
Collapse
|
11
|
Wiciński M, Fajkiel-Madajczyk A, Kurant Z, Liss S, Szyperski P, Szambelan M, Gromadzki B, Rupniak I, Słupski M, Sadowska-Krawczenko I. Ashwagandha's Multifaceted Effects on Human Health: Impact on Vascular Endothelium, Inflammation, Lipid Metabolism, and Cardiovascular Outcomes-A Review. Nutrients 2024; 16:2481. [PMID: 39125360 PMCID: PMC11314093 DOI: 10.3390/nu16152481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
Withania somnifera, commonly known as Ashwagandha, has been popular for many years. Numerous studies have shown that the extract of this plant, due to its wealth of active substances, can induce anti-inflammatory, neuroprotective, immunomodulatory, hepatoprotective, cardioprotective, anti-diabetic, adaptogenic, anti-arthritic, anti-stress, and antimicrobial effects. This review examines the impact of Ashwagandha extract on the vascular endothelium, inflammation, lipid metabolism, and cardiovascular outcomes. Studies have shown that Ashwagandha extracts exhibit an anti-angiogenic effect by inhibiting vascular endothelial growth factor (VEGF)-induced capillary sprouting and formation by lowering the mean density of microvessels. Furthermore, the results of numerous studies highlight the anti-inflammatory role of Ashwagandha extract, as the action of this plant causes a decrease in the expression of pro-inflammatory cytokines. Interestingly, withanolides, present in Ashwagandha root, have shown the ability to inhibit the differentiation of preadipocytes into adipocytes. Research results have also proved that W. somnifera demonstrates cardioprotective effects due to its antioxidant properties and reduces ischemia/reperfusion-induced apoptosis. It seems that this plant can be successfully used as a potential treatment for several conditions, mainly those with increased inflammation. More research is needed to elucidate the exact mechanisms by which the substances contained in W. somnifera extracts can act in the human body.
Collapse
Affiliation(s)
- Michał Wiciński
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie Skłodowskiej 9, 85-094 Bydgoszcz, Poland; (M.W.); (Z.K.); (S.L.); (P.S.); (M.S.); (B.G.)
| | - Anna Fajkiel-Madajczyk
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie Skłodowskiej 9, 85-094 Bydgoszcz, Poland; (M.W.); (Z.K.); (S.L.); (P.S.); (M.S.); (B.G.)
| | - Zuzanna Kurant
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie Skłodowskiej 9, 85-094 Bydgoszcz, Poland; (M.W.); (Z.K.); (S.L.); (P.S.); (M.S.); (B.G.)
| | - Sara Liss
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie Skłodowskiej 9, 85-094 Bydgoszcz, Poland; (M.W.); (Z.K.); (S.L.); (P.S.); (M.S.); (B.G.)
| | - Paweł Szyperski
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie Skłodowskiej 9, 85-094 Bydgoszcz, Poland; (M.W.); (Z.K.); (S.L.); (P.S.); (M.S.); (B.G.)
| | - Monika Szambelan
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie Skłodowskiej 9, 85-094 Bydgoszcz, Poland; (M.W.); (Z.K.); (S.L.); (P.S.); (M.S.); (B.G.)
| | - Bartłomiej Gromadzki
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie Skłodowskiej 9, 85-094 Bydgoszcz, Poland; (M.W.); (Z.K.); (S.L.); (P.S.); (M.S.); (B.G.)
| | - Iga Rupniak
- Department of Neonatology, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, ul. Ujejskiego 75, 85-168 Bydgoszcz, Poland; (I.R.); (I.S.-K.)
| | - Maciej Słupski
- Department of Hepatobiliary and General Surgery, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie Skłodowskiej 9, 85-094 Bydgoszcz, Poland;
| | - Iwona Sadowska-Krawczenko
- Department of Neonatology, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, ul. Ujejskiego 75, 85-168 Bydgoszcz, Poland; (I.R.); (I.S.-K.)
| |
Collapse
|
12
|
Tan Q, Wellmerling JH, Song S, Dresler SR, Meridew JA, Choi KM, Li Y, Prakash Y, Tschumperlin DJ. Targeting CEBPA to restore cellular identity and tissue homeostasis in pulmonary fibrosis. JCI Insight 2024; 9:e175290. [PMID: 39012710 PMCID: PMC11343593 DOI: 10.1172/jci.insight.175290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 07/03/2024] [Indexed: 07/18/2024] Open
Abstract
Fibrosis in the lung is thought to be driven by epithelial cell dysfunction and aberrant cell-cell interactions. Unveiling the molecular mechanisms of cellular plasticity and cell-cell interactions is imperative to elucidating lung regenerative capacity and aberrant repair in pulmonary fibrosis. By mining publicly available RNA-Seq data sets, we identified loss of CCAAT enhancer-binding protein alpha (CEBPA) as a candidate contributor to idiopathic pulmonary fibrosis (IPF). We used conditional KO mice, scRNA-Seq, lung organoids, small-molecule inhibition, and potentially novel gene manipulation methods to investigate the role of CEBPA in lung fibrosis and repair. Long-term (6 months or more) of Cebpa loss in AT2 cells caused spontaneous fibrosis and increased susceptibility to bleomycin-induced fibrosis. Cebpa knockout (KO) in these mice significantly decreased AT2 cell numbers in the lung and reduced expression of surfactant homeostasis genes, while increasing inflammatory cell recruitment as well as upregulating S100a8/a9 in AT2 cells. In vivo treatment with an S100A8/A9 inhibitor alleviated experimental lung fibrosis. Restoring CEBPA expression in lung organoids ex vivo and during experimental lung fibrosis in vivo rescued CEBPA deficiency-mediated phenotypes. Our study establishes a direct mechanistic link between CEBPA repression, impaired AT2 cell identity, disrupted tissue homeostasis, and lung fibrosis.
Collapse
Affiliation(s)
- Qi Tan
- The Hormel Institute, University of Minnesota, Austin, Minnesota, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | - Jack H. Wellmerling
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | - Shengren Song
- The Hormel Institute, University of Minnesota, Austin, Minnesota, USA
| | - Sara R. Dresler
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | - Jeffrey A. Meridew
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | - Kyoung M. Choi
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | - Yong Li
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | - Y.S. Prakash
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Daniel J. Tschumperlin
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
13
|
Izadi M, Sadri N, Abdi A, Zadeh MMR, Jalaei D, Ghazimoradi MM, Shouri S, Tahmasebi S. Longevity and anti-aging effects of curcumin supplementation. GeroScience 2024; 46:2933-2950. [PMID: 38409646 PMCID: PMC11009219 DOI: 10.1007/s11357-024-01092-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 02/03/2024] [Indexed: 02/28/2024] Open
Abstract
Aging is a gradual and irreversible process that is accompanied by an overall decline in cellular function and a significant increase in the risk of age-associated disorders. Generally, delaying aging is a more effective method than treating diseases associated with aging. Currently, researchers are focused on natural compounds and their therapeutic and health benefits. Curcumin is the main active substance that is present in turmeric, a spice that is made up of the roots and rhizomes of the Curcuma longa plant. Curcumin demonstrated a positive impact on slowing down the aging process by postponing age-related changes. This compound may have anti-aging properties by changing levels of proteins involved in the aging process, such as sirtuins and AMPK, and inhibiting pro-aging proteins, such as NF-κB and mTOR. In clinical research, this herbal compound has been extensively examined in terms of safety, efficacy, and pharmacokinetics. There are numerous effects of curcumin on mechanisms related to aging and human diseases, so we discuss many of them in detail in this review.
Collapse
Affiliation(s)
- Mehran Izadi
- Department of Infectious and Tropical Diseases, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Synapse Laboratory Diagnostic Technologies Accelerator, Tehran, Iran
- Department of Research & Technology, Zeenome Longevity Research Institute, Tehran, Iran
| | - Nariman Sadri
- Synapse Laboratory Diagnostic Technologies Accelerator, Tehran, Iran
- Department of Research & Technology, Zeenome Longevity Research Institute, Tehran, Iran
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amirhossein Abdi
- Synapse Laboratory Diagnostic Technologies Accelerator, Tehran, Iran
- Department of Research & Technology, Zeenome Longevity Research Institute, Tehran, Iran
- School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mahdi Raeis Zadeh
- Synapse Laboratory Diagnostic Technologies Accelerator, Tehran, Iran
- Department of Research & Technology, Zeenome Longevity Research Institute, Tehran, Iran
- School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Dorsa Jalaei
- Synapse Laboratory Diagnostic Technologies Accelerator, Tehran, Iran
- Department of Research & Technology, Zeenome Longevity Research Institute, Tehran, Iran
- School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mohammad Mahdi Ghazimoradi
- Synapse Laboratory Diagnostic Technologies Accelerator, Tehran, Iran
- Department of Research & Technology, Zeenome Longevity Research Institute, Tehran, Iran
- School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Sara Shouri
- Synapse Laboratory Diagnostic Technologies Accelerator, Tehran, Iran
- Department of Research & Technology, Zeenome Longevity Research Institute, Tehran, Iran
- School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Safa Tahmasebi
- Synapse Laboratory Diagnostic Technologies Accelerator, Tehran, Iran.
- Department of Research & Technology, Zeenome Longevity Research Institute, Tehran, Iran.
- Student Research Committee, Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
14
|
Yoon S, Ko NG, Lee YJ. Geriatric Nutritional Risk Index as a Possible Predictor of Decline in Kidney Function in Older People. Ann Geriatr Med Res 2024; 28:164-170. [PMID: 38419389 PMCID: PMC11217657 DOI: 10.4235/agmr.23.0215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/30/2024] [Accepted: 02/24/2024] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND The Geriatric Nutritional Risk Index (GNRI) is associated with morbidity and mortality in older individuals. Our study explored the relationship between GNRI, decline in kidney function, and all-cause mortality in older individuals. METHODS This retrospective cohort study analyzed data from participants aged ≥60 years who underwent a general health checkup between 2002 and 2018. The primary exposure was the GNRI, divided into quartiles. The primary and secondary outcomes were a decline in kidney function assessed using the 5-year estimated glomerular filtration rate (eGFR) and all-cause mortality, respectively. RESULTS The analysis included a total of 1,599 participants (median age, 63 years; interquartile range [IQR], 61-67; 54% males). The mean±standard deviation of GNRI was 114±7. Compared with the highest GNRI quartile, the lower GNRI quartiles were associated with steeper 5-year slopes in eGFR, with a fully adjusted beta coefficient and 95% confidence intervals (CIs) of -0.50 (-0.86, -0.14), -0.29 (-0.63, 0.05), and -0.19 (-0.53, 0.14) for the first, second, and third GNRI quartiles, respectively. The median follow-up duration was 7.4 years (IQR, 4.6-12.4). During this period, we identified 108 deaths (7.8 per 1,000 person-years). The first GNRI quartile was associated with all-cause mortality compared to the highest GNRI quartile (hazard ratio of 2.20; 95% CI 1.23, 3.95). CONCLUSION Nutritional status, as evaluated using the GNRI, was associated with 5-year changes in kidney function and all-cause mortality in older individuals.
Collapse
Affiliation(s)
- Sukmin Yoon
- Division of Nephrology, Department of Medicine, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Republic of Korea
| | - Nak Gyeong Ko
- Department of Research & Support, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Republic of Korea
| | - Yu-Ji Lee
- Division of Nephrology, Department of Medicine, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Republic of Korea
| |
Collapse
|
15
|
Pradhan S, Ali SA, Rachamalla M, Niyogi S, Datusalia AK. Oral arsenite exposure induces inflammation and apoptosis in pulmonary tissue: acute and chronic evaluation in young and adult mice. Biometals 2024; 37:587-607. [PMID: 38267778 DOI: 10.1007/s10534-023-00577-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/22/2023] [Indexed: 01/26/2024]
Abstract
Inorganic arsenic is a well-known environmental toxicant, and exposure to this metalloid is strongly linked with severe and extensive toxic effects in various organs including the lungs. In the present study, we aimed to investigate the acute and chronic effects of arsenite exposure on pulmonary tissue in young and adult mice. In brief, young and adult female Balb/C mice were exposed to 3 and 30 ppm arsenite daily via drinking water for 30 and 90 days. Subsequently, the animals were sacrificed and various histological and immunohistochemistry (IHC) analyses were performed using lung tissues. Our findings showed arsenite was found to cause dose-dependent pathological changes such as thickening of the alveolar septum, inflammatory cell infiltrations and lung fibrosis in young and adult mice. In addition, arsenite exposure significantly increased the expression of inflammatory markers NF-κB and TNF-α, indicating that arsenite-exposed mice suffered from severe lung inflammation. Moreover, the IHC analysis of fibrotic proteins demonstrated an increased expression of TGF-β1, α-SMA, vimentin and collagen-I in the arsenite-exposed mice compared to the control mice. This was accompanied by apoptosis, which was indicated by the upregulated expression of caspase-3 in arsenite-exposed mice compared to the control. Adult mice were generally found to be more prone to arsenite toxicity during chronic exposure relative to their younger counterparts. Overall, our findings suggest that arsenite in drinking water may induce dose-dependent and age-dependent structural and functional impairment in the lungs through elevating inflammation and fibrotic proteins.
Collapse
Affiliation(s)
- Samata Pradhan
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, Uttar Pradesh, 226002, India
| | - Syed Afroz Ali
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, Uttar Pradesh, 226002, India
| | - Mahesh Rachamalla
- Department of Biology, University of Saskatchewan, Saskatoon, SK, S7N 5E2, Canada
| | - Som Niyogi
- Department of Biology, University of Saskatchewan, Saskatoon, SK, S7N 5E2, Canada.
| | - Ashok Kumar Datusalia
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, Uttar Pradesh, 226002, India.
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, Uttar Pradesh, 226002, India.
| |
Collapse
|
16
|
Huo Z, Yang W, Harati J, Nene A, Borghi F, Piazzoni C, Milani P, Guo S, Galluzzi M, Boraschi D. Biomechanics of Macrophages on Disordered Surface Nanotopography. ACS APPLIED MATERIALS & INTERFACES 2024; 16:27164-27176. [PMID: 38750662 DOI: 10.1021/acsami.4c04330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Macrophages are involved in every stage of the innate/inflammatory immune responses in the body tissues, including the resolution of the reaction, and they do so in close collaboration with the extracellular matrix (ECM). Simplified substrates with nanotopographical features attempt to mimic the structural properties of the ECM to clarify the functional features of the interaction of the ECM with macrophages. We still have a limited understanding of the macrophage behavior upon interaction with disordered nanotopography, especially with features smaller than 10 nm. Here, we combine atomic force microscopy (AFM), finite element modeling (FEM), and quantitative biochemical approaches in order to understand the mechanotransduction from the nanostructured surface into cellular responses. AFM experiments show a decrease of macrophage stiffness, measured with the Young's modulus, as a biomechanical response to a nanostructured (ns-) ZrOx surface. FEM experiments suggest that ZrOx surfaces with increasing roughness represent weaker mechanical boundary conditions. The mechanical cues from the substrate are transduced into the cell through the formation of integrin-regulated focal adhesions and cytoskeletal reorganization, which, in turn, modulate cell biomechanics by downregulating cell stiffness. Surface nanotopography and consequent biomechanical response impact the overall behavior of macrophages by increasing movement and phagocytic ability without significantly influencing their inflammatory behavior. Our study suggests a strong potential of surface nanotopography for the regulation of macrophage functions, which implies a prospective application relative to coating technology for biomedical devices.
Collapse
Affiliation(s)
- Zixin Huo
- Shenzhen Key Laboratory of Smart Sensing and Intelligent Systems, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenjie Yang
- Laboratory of Inflammation and Vaccines, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Javad Harati
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Ajinkya Nene
- Laboratory of Inflammation and Vaccines, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Francesca Borghi
- CIMaINa and Dipartimento di Fisica "Aldo Pontremoli", Università degli Studi di Milano, Via Celoria 16, 20133 Milan, Italy
| | - Claudio Piazzoni
- CIMaINa and Dipartimento di Fisica "Aldo Pontremoli", Università degli Studi di Milano, Via Celoria 16, 20133 Milan, Italy
| | - Paolo Milani
- CIMaINa and Dipartimento di Fisica "Aldo Pontremoli", Università degli Studi di Milano, Via Celoria 16, 20133 Milan, Italy
| | - Shifeng Guo
- Shenzhen Key Laboratory of Smart Sensing and Intelligent Systems, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Guangdong Provincial Key Lab of Robotics and Intelligent System, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- The Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Massimiliano Galluzzi
- Laboratory of Inflammation and Vaccines, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Diana Boraschi
- Laboratory of Inflammation and Vaccines, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Department of Pharmacology, Shenzhen University of Advanced Technology, Shenzhen 518055, China
- China-Italy Joint Laboratory of Pharmacobiotechnology for Medical Immunomodulation, Shenzhen 518055, China
- Institute of Biomolecular Chemistry, National Research Council, 80078 Pozzuoli, Italy
- Stazione Zoologica Anton Dohrn, 80122 Napoli, Italy
| |
Collapse
|
17
|
Thirugnanam S, Rout N. A Perfect Storm: The Convergence of Aging, Human Immunodeficiency Virus Infection, and Inflammasome Dysregulation. Curr Issues Mol Biol 2024; 46:4768-4786. [PMID: 38785555 PMCID: PMC11119826 DOI: 10.3390/cimb46050287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/12/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024] Open
Abstract
The emergence of combination antiretroviral therapy (cART) has greatly transformed the life expectancy of people living with HIV (PWH). Today, over 76% of the individuals with HIV have access to this life-saving therapy. However, this progress has come with a new challenge: an increase in age-related non-AIDS conditions among patients with HIV. These conditions manifest earlier in PWH than in uninfected individuals, accelerating the aging process. Like PWH, the uninfected aging population experiences immunosenescence marked by an increased proinflammatory environment. This phenomenon is linked to chronic inflammation, driven in part by cellular structures called inflammasomes. Inflammatory signaling pathways activated by HIV-1 infection play a key role in inflammasome formation, suggesting a crucial link between HIV and a chronic inflammatory state. This review outlines the inflammatory processes triggered by HIV-1 infection and aging, with a focus on the inflammasomes. This review also explores current research regarding inflammasomes and potential strategies for targeting inflammasomes to mitigate inflammation. Further research on inflammasome signaling presents a unique opportunity to develop targeted interventions and innovative therapeutic modalities for combating HIV and aging-associated inflammatory processes.
Collapse
Affiliation(s)
- Siva Thirugnanam
- Division of Microbiology, Tulane National Primate Research Center, Covington, LA 70433, USA;
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Namita Rout
- Division of Microbiology, Tulane National Primate Research Center, Covington, LA 70433, USA;
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA
- Tulane Center for Aging, Tulane University School of Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
18
|
Mohammadyari P, Vieceli Dalla Sega F, Fortini F, Minghini G, Rizzo P, Cimaglia P, Mikus E, Tremoli E, Campo G, Calore E, Schifano SF, Zambelli C. Deep-learning survival analysis for patients with calcific aortic valve disease undergoing valve replacement. Sci Rep 2024; 14:10902. [PMID: 38740898 DOI: 10.1038/s41598-024-61685-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 05/08/2024] [Indexed: 05/16/2024] Open
Abstract
Calcification of the aortic valve (CAVDS) is a major cause of aortic stenosis (AS) leading to loss of valve function which requires the substitution by surgical aortic valve replacement (SAVR) or transcatheter aortic valve intervention (TAVI). These procedures are associated with high post-intervention mortality, then the corresponding risk assessment is relevant from a clinical standpoint. This study compares the traditional Cox Proportional Hazard (CPH) against Machine Learning (ML) based methods, such as Deep Learning Survival (DeepSurv) and Random Survival Forest (RSF), to identify variables able to estimate the risk of death one year after the intervention, in patients undergoing either to SAVR or TAVI. We found that with all three approaches the combination of six variables, named albumin, age, BMI, glucose, hypertension, and clonal hemopoiesis of indeterminate potential (CHIP), allows for predicting mortality with a c-index of approximately 80 % . Importantly, we found that the ML models have a better prediction capability, making them as effective for statistical analysis in medicine as most state-of-the-art approaches, with the additional advantage that they may expose non-linear relationships. This study aims to improve the early identification of patients at higher risk of death, who could then benefit from a more appropriate therapeutic intervention.
Collapse
Affiliation(s)
| | | | | | - Giada Minghini
- Department of Environmental and Prevention Sciences, Università di Ferrara, Ferrara, Italy
| | - Paola Rizzo
- Maria Cecilia Hospital, GVM Care and Research, Cotignola, Italy.
- Department of Translational Medicine, Università di Ferrara, Ferrara, Italy.
- Laboratory for Technologies of Advanced Therapies (LTTA), Ferrara, Italy.
| | - Paolo Cimaglia
- Maria Cecilia Hospital, GVM Care and Research, Cotignola, Italy
| | - Elisa Mikus
- Maria Cecilia Hospital, GVM Care and Research, Cotignola, Italy
| | - Elena Tremoli
- Maria Cecilia Hospital, GVM Care and Research, Cotignola, Italy
| | - Gianluca Campo
- Department of Translational Medicine, Università di Ferrara, Ferrara, Italy
- Azienda Ospedaliero-Universitaria di Ferrara, Ferrara, Italy
| | - Enrico Calore
- Istituto Nazionale di Fisica Nucleare (INFN), Ferrara, Italy
| | - Sebastiano Fabio Schifano
- Istituto Nazionale di Fisica Nucleare (INFN), Ferrara, Italy.
- Department of Environmental and Prevention Sciences, Università di Ferrara, Ferrara, Italy.
| | | |
Collapse
|
19
|
Petrova M, Lassanova M, Tisonova J, Liskova S. Ca 2+-Dependent Cl - Channels in Vascular Tone Regulation during Aging. Int J Mol Sci 2024; 25:5093. [PMID: 38791133 PMCID: PMC11121552 DOI: 10.3390/ijms25105093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/26/2024] [Accepted: 04/30/2024] [Indexed: 05/26/2024] Open
Abstract
Identifying alterations caused by aging could be an important tool for improving the diagnosis of cardiovascular diseases. Changes in vascular tone regulation involve various mechanisms, like NO synthase activity, activity of the sympathetic nervous system, production of prostaglandin, endothelium-dependent relaxing, and contracting factors, etc. Surprisingly, Ca2+-dependent Cl- channels (CaCCs) are involved in all alterations of the vascular tone regulation mentioned above. Furthermore, we discuss these mechanisms in the context of ontogenetic development and aging. The molecular and electrophysiological mechanisms of CaCCs activation on the cell membrane of the vascular smooth muscle cells (VSMC) and endothelium are explained, as well as the age-dependent changes that imply the activation or inhibition of CaCCs. In conclusion, due to the diverse intracellular concentration of chloride in VSMC and endothelial cells, the activation of CaCCs depends, in part, on intracellular Ca2+ concentration, and, in part, on voltage, leading to fine adjustments of vascular tone. The activation of CaCCs declines during ontogenetic development and aging. This decline in the activation of CaCCs involves a decrease in protein level, the impairment of Ca2+ influx, and probably other alterations in vascular tone regulation.
Collapse
Affiliation(s)
- Miriam Petrova
- Faculty of Medicine, Institute of Pharmacology and Clinical Pharmacology, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia; (M.P.); (M.L.); (J.T.)
| | - Monika Lassanova
- Faculty of Medicine, Institute of Pharmacology and Clinical Pharmacology, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia; (M.P.); (M.L.); (J.T.)
| | - Jana Tisonova
- Faculty of Medicine, Institute of Pharmacology and Clinical Pharmacology, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia; (M.P.); (M.L.); (J.T.)
| | - Silvia Liskova
- Faculty of Medicine, Institute of Pharmacology and Clinical Pharmacology, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia; (M.P.); (M.L.); (J.T.)
- Centre of Experimental Medicine, v.v.i., Institute of Normal and Pathological Physiology, Slovak Academy of Sciences, Sienkiewiczova 1, 813 71 Bratislava, Slovakia
| |
Collapse
|
20
|
North HF, Weissleder C, Bitar M, Barry G, Fullerton JM, Webster MJ, Weickert CS. RNA-sequencing suggests extracellular matrix and vasculature dysregulation could impair neurogenesis in schizophrenia cases with elevated inflammation. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2024; 10:50. [PMID: 38704390 PMCID: PMC11069512 DOI: 10.1038/s41537-024-00466-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/25/2024] [Indexed: 05/06/2024]
Abstract
A subgroup of schizophrenia cases with elevated inflammation have reduced neurogenesis markers and increased macrophage density in the human subependymal zone (SEZ; also termed subventricular zone or SVZ) neurogenic niche. Inflammation can impair neurogenesis; however, it is unclear which other pathways are associated with reduced neurogenesis. This research aimed to discover transcriptomic differences between inflammatory subgroups of schizophrenia in the SEZ. Total RNA sequencing was performed on SEZ tissue from schizophrenia cases, designated into low inflammation (n = 13) and high inflammation (n = 14) subgroups, based on cluster analysis of inflammation marker gene expression. 718 genes were differentially expressed in high compared to low inflammation schizophrenia (FDR p < 0.05) and were most significantly over-represented in the pathway 'Hepatic Fibrosis/Hepatic Stellate-Cell Activation'. Genes in this pathway relate to extracellular matrix stability (including ten collagens) and vascular remodelling suggesting increased angiogenesis. Collagen-IV, a key element of the basement membrane and fractones, had elevated gene expression. Immunohistochemistry revealed novel collagen-IV+ fractone bulbs within the human SEZ hypocellular gap. Considering the extracellular matrix's regulatory role in SEZ neurogenesis, fibrosis-related alterations in high inflammation schizophrenia may disrupt neurogenesis. Increased angiogenesis could facilitate immune cell transmigration, potentially explaining elevated macrophages in high inflammation schizophrenia. This discovery-driven analysis sheds light on how inflammation may contribute to schizophrenia neuropathology in the neurogenic niche.
Collapse
Affiliation(s)
- Hayley F North
- Neuroscience Research Australia, Sydney, NSW, Australia
- Discipline of Psychiatry and Mental Health, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Christin Weissleder
- Neuroscience Research Australia, Sydney, NSW, Australia
- Mechanism and therapy for genetic brain diseases, Institut Imagine, Paris, France
| | | | - Guy Barry
- OncoLife Therapeutics, Yeronga, QLD, Australia
| | - Janice M Fullerton
- Neuroscience Research Australia, Sydney, NSW, Australia
- School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Maree J Webster
- Laboratory of Brain Research, Stanley Medical Research Institute, 9800, Medical Center Drive, Rockville, MD, USA
| | - Cynthia Shannon Weickert
- Neuroscience Research Australia, Sydney, NSW, Australia.
- Discipline of Psychiatry and Mental Health, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia.
- Department of Neuroscience and Physiology, Upstate Medical University, Syracuse, NY, USA.
| |
Collapse
|
21
|
Saha P, Ajgaonkar S, Maniar D, Sahare S, Mehta D, Nair S. Current insights into transcriptional role(s) for the nutraceutical Withania somnifera in inflammation and aging. Front Nutr 2024; 11:1370951. [PMID: 38765810 PMCID: PMC11099240 DOI: 10.3389/fnut.2024.1370951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/15/2024] [Indexed: 05/22/2024] Open
Abstract
The health-beneficial effects of nutraceuticals in various diseases have received enhanced attention in recent years. Aging is a continuous process wherein physiological activity of an individual declines over time and is characterized by various indefinite hallmarks which contribute toward aging-related comorbidities in an individual which include many neurodegenerative diseases, cardiac problems, diabetes, bone-degeneration, and cancer. Cellular senescence is a homeostatic biological process that has an important function in driving aging. Currently, a growing body of evidence substantiates the connection between epigenetic modifications and the aging process, along with aging-related diseases. These modifications are now being recognized as promising targets for emerging therapeutic interventions. Considering that almost all the biological processes are modulated by RNAs, numerous RNA-binding proteins have been found to be linked to aging and age-related complexities. Currently, studies have shed light on the ability of the nutraceutical Withania somnifera (Ashwagandha) to influence RNA expression, stability, and processing, offering insights into its mechanisms of action. By targeting RNA-related pathways, Withania somnifera may exhibit promising effects in ameliorating age-associated molecular changes, which include modifications in gene expression and signaling networks. This review summarizes the potential role of Withania somnifera as a nutraceutical in modulating RNA-level changes associated with aging, encompassing both in vitro and in vivo studies. Taken together, the putative role(s) of Withania in modulation of key RNAs will provide insights into understanding the aging process and facilitate the development of various preventive and therapeutic strategies employing nutraceuticals for healthy aging.
Collapse
Affiliation(s)
- Praful Saha
- PhytoVeda Pvt. Ltd., Mumbai, India
- Viridis Biopharma Pvt. Ltd., Mumbai, India
| | - Saiprasad Ajgaonkar
- PhytoVeda Pvt. Ltd., Mumbai, India
- Viridis Biopharma Pvt. Ltd., Mumbai, India
| | - Dishant Maniar
- PhytoVeda Pvt. Ltd., Mumbai, India
- Viridis Biopharma Pvt. Ltd., Mumbai, India
| | - Simran Sahare
- PhytoVeda Pvt. Ltd., Mumbai, India
- Viridis Biopharma Pvt. Ltd., Mumbai, India
| | - Dilip Mehta
- PhytoVeda Pvt. Ltd., Mumbai, India
- Viridis Biopharma Pvt. Ltd., Mumbai, India
| | - Sujit Nair
- PhytoVeda Pvt. Ltd., Mumbai, India
- Viridis Biopharma Pvt. Ltd., Mumbai, India
| |
Collapse
|
22
|
Rodriguez J, Baldini C, Bayle A, Pages A, Danlos FX, Vasseur D, Rouleau E, Lacroix L, Alonso de Castro B, Goldschmidt V, Seknazi L, Hollebecque A, Michot JM, Champiat S, Marabelle A, Ouali K, Marzac C, Ponce S, Micol JB, Chaput N, Massard C, Italiano A. Impact of Clonal Hematopoiesis-Associated Mutations in Phase I Patients Treated for Solid Tumors: An Analysis of the STING Trial. JCO Precis Oncol 2024; 8:e2300631. [PMID: 38815178 DOI: 10.1200/po.23.00631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/29/2024] [Accepted: 04/05/2024] [Indexed: 06/01/2024] Open
Abstract
PURPOSE With liquid biopsy's widespread adoption in oncology, an increased number of clonal hematopoiesis-associated mutations (CHm) have been identified in patients with solid tumors. However, its impact on patient outcomes remains unclear. This study aimed to analyze and describe CHm in a cohort of phase I patients. METHODS Retrospective data collection from medical records and molecular profiles (Foundation One Liquid CDx Assay) was performed before first study drug administration at the Drug Development Department of Gustave Roussy (France) within the STING trial (ClinicalTrials.gov identifier: NCT04932525). CHm prevalence was assessed using any and ≥1% variant allele frequency (VAF) in epigenetic modifier genes (DNMT3A, TET2, and ASXL1). RESULTS From January 2021 to December 2022, 255 patients were enrolled in a phase I clinical trial. A total of 55% were male, with a median age of 62 years (24-86). Principal tumor locations were GI (27%) and genitourinary (21%). Overall, 104 patients (41%) had at least one CHm in liquid biopsy, with 55 patients (22%) having a VAF of ≥ 1%. The most frequent mutation was DNMT3A 73% at any VAF (n = 76) and 22% at 1% VAF (n = 23). Median progression-free survival (PFS) and overall survival were 3.8 months (m) for the CHm group versus 3.2 m for nonclonal hematopoiesis (CH; P = .08) and 18.26 m CHm versus 15.8 m non-CH (P = .9), respectively. PFS increased in the CHm population treated with targeted therapy (hazard ratio, 0.6 [95% CI, 0.42 to 0.84]; P = .004). CONCLUSION CHm was commonly found in patients with solid tumors treated in phase I trials, with a prevalence of 41% in our cohort. The most frequently mutated gene was DNMT3A. The presence of CHm had no impact on the population of patients treated in the phase I trials.
Collapse
Affiliation(s)
| | - Capucine Baldini
- Drug Development Department, Gustave Roussy, Villejuif, France
- Laboratory of Immunomonitoring in Oncology, Gustave Roussy, Villejuif, France
| | - Arnaud Bayle
- Drug Development Department, Gustave Roussy, Villejuif, France
| | - Arnaud Pages
- Department of Biostatistics and Epidemiology, Gustave Roussy, Villejuif, France
| | | | - Damien Vasseur
- Department of Medical Biology and Pathology, Gustave Roussy, Villejuif, France
| | - Etienne Rouleau
- Department of Medical Biology and Pathology, Gustave Roussy, Villejuif, France
| | - Ludovic Lacroix
- Department of Medical Biology and Pathology, Gustave Roussy, Villejuif, France
| | | | | | - Lauren Seknazi
- Drug Development Department, Gustave Roussy, Villejuif, France
| | | | | | | | | | - Kaissa Ouali
- Drug Development Department, Gustave Roussy, Villejuif, France
| | - Christophe Marzac
- Department of Medical Biology and Pathology, Gustave Roussy, Villejuif, France
| | - Santiago Ponce
- Drug Development Department, Gustave Roussy, Villejuif, France
| | | | - Nathalie Chaput
- Laboratory of Immunomonitoring in Oncology, Gustave Roussy, Villejuif, France
- Department of Biostatistics and Epidemiology, Gustave Roussy, Villejuif, France
- Department of Medical Biology and Pathology, Gustave Roussy, Villejuif, France
- A Coruña University Complex, Coruña, Spain
- Department of Hematology, Gustave Roussy, Villejuif, France
- Paris-Saclay University, School of Pharmacy, Orsay, France
| | | | | |
Collapse
|
23
|
Zeidan RS, Martenson M, Tamargo JA, McLaren C, Ezzati A, Lin Y, Yang JJ, Yoon HS, McElroy T, Collins JF, Leeuwenburgh C, Mankowski RT, Anton S. Iron homeostasis in older adults: balancing nutritional requirements and health risks. J Nutr Health Aging 2024; 28:100212. [PMID: 38489995 DOI: 10.1016/j.jnha.2024.100212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 03/17/2024]
Abstract
Iron plays a crucial role in many physiological processes, including oxygen transport, bioenergetics, and immune function. Iron is assimilated from food and also recycled from senescent red blood cells. Iron exists in two dietary forms: heme (animal based) and non-heme (mostly plant based). The body uses iron for metabolic purposes, and stores the excess mainly in splenic and hepatic macrophages. Physiologically, iron excretion in humans is inefficient and not highly regulated, so regulation of intestinal absorption maintains iron homeostasis. Iron losses occur at a steady rate via turnover of the intestinal epithelium, blood loss, and exfoliation of dead skin cells, but overall iron homeostasis is tightly controlled at cellular and systemic levels. Aging can have a profound impact on iron homeostasis and induce a dyshomeostasis where iron deficiency or overload (sometimes both simultaneously) can occur, potentially leading to several disorders and pathologies. To maintain physiologically balanced iron levels, reduce risk of disease, and promote healthy aging, it is advisable for older adults to follow recommended daily intake guidelines and periodically assess iron levels. Clinicians can evaluate body iron status using different techniques but selecting an assessment method primarily depends on the condition being examined. This review provides a comprehensive overview of the forms, sources, and metabolism of dietary iron, associated disorders of iron dyshomeostasis, assessment of iron levels in older adults, and nutritional guidelines and strategies to maintain iron balance in older adults.
Collapse
Affiliation(s)
- Rola S Zeidan
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL, USA; Department of Health Outcomes and Biomedical Informatics, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Matthew Martenson
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Javier A Tamargo
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Christian McLaren
- Department of Clinical and Health Psychology, College of Health and Health Professions, University of Florida, Gainesville, Florida, USA
| | - Armin Ezzati
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL, USA; Department of Food, Nutrition, Dietetics and Health, Kansas State University, Manhattan, KS, USA
| | - Yi Lin
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Jae Jeong Yang
- UF Health Cancer Center, Gainesville, FL, USA; Department of Surgery, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Hyung-Suk Yoon
- UF Health Cancer Center, Gainesville, FL, USA; Department of Surgery, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Taylor McElroy
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL, USA; Department of Health Outcomes and Biomedical Informatics, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - James F Collins
- Department of Food Science & Human Nutrition, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA
| | - Christiaan Leeuwenburgh
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Robert T Mankowski
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Stephen Anton
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL, USA; Department of Clinical and Health Psychology, College of Health and Health Professions, University of Florida, Gainesville, Florida, USA.
| |
Collapse
|
24
|
Wang Q, Xu J, Luo M, Jiang Y, Gu Y, Wang Q, He J, Sun Y, Lin Y, Feng L, Chen S, Hou T. Fasting mimicking diet extends lifespan and improves intestinal and cognitive health. Food Funct 2024; 15:4503-4514. [PMID: 38567489 DOI: 10.1039/d4fo00483c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Caloric restriction is an effective means of extending a healthy lifespan. Fasting mimicking diet (FMD) is a growing pattern of caloric restriction. We found that FMD significantly prolonged the lifespan of prematurely aging mice. In naturally aging mice, FMD improved cognitive and intestinal health. Through a series of behavioral experiments, we found that FMD relieved anxiety and enhanced cognition in aged mice. In the intestine, the FMD cycles enhanced the barrier function, reduced senescence markers, and maintained T cell naïve-memory balance in the lamina propria mucosa. To further explore the causes of immune alterations, we examined changes in the stool microbiota using 16S rRNA sequencing. We found that FMD remodeled gut bacterial composition and significantly expanded the abundance of Lactobacillus johnsonii. Our research revealed that FMD has in-depth investigative value as an anti-aging intervention for extending longevity and improving cognition, intestinal function, and gut microbiota composition.
Collapse
Affiliation(s)
- Qingyi Wang
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang Province, China.
- Institute of Gastroenterology, Zhejiang University, Hangzhou 310016, Zhejiang Province, China
- Prevention and Treatment Research Center of Senescent Disease, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
| | - Jilei Xu
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang Province, China.
- Institute of Gastroenterology, Zhejiang University, Hangzhou 310016, Zhejiang Province, China
- Prevention and Treatment Research Center of Senescent Disease, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
| | - Man Luo
- Prevention and Treatment Research Center of Senescent Disease, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
- Department of Clinical Nutrition, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Yao Jiang
- Institute of Gastroenterology, Zhejiang University, Hangzhou 310016, Zhejiang Province, China
- Prevention and Treatment Research Center of Senescent Disease, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
- Department of Gastroenterology, Second Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
| | - Yanrou Gu
- Department of Gastroenterology, Wenzhou No. 3 Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou, China
| | - Qiwen Wang
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang Province, China.
- Institute of Gastroenterology, Zhejiang University, Hangzhou 310016, Zhejiang Province, China
- Prevention and Treatment Research Center of Senescent Disease, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
| | - Jiamin He
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang Province, China.
- Institute of Gastroenterology, Zhejiang University, Hangzhou 310016, Zhejiang Province, China
- Prevention and Treatment Research Center of Senescent Disease, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
| | - Yong Sun
- Institute of Gastroenterology, Zhejiang University, Hangzhou 310016, Zhejiang Province, China
- Prevention and Treatment Research Center of Senescent Disease, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
- Department of Gastroenterology, Second Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
| | - Yifeng Lin
- Institute of Gastroenterology, Zhejiang University, Hangzhou 310016, Zhejiang Province, China
- Prevention and Treatment Research Center of Senescent Disease, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
- Department of Gastroenterology, Second Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
| | - Lijun Feng
- Prevention and Treatment Research Center of Senescent Disease, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
- Department of Clinical Nutrition, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Shujie Chen
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang Province, China.
- Institute of Gastroenterology, Zhejiang University, Hangzhou 310016, Zhejiang Province, China
- Prevention and Treatment Research Center of Senescent Disease, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
| | - Tongyao Hou
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang Province, China.
- Institute of Gastroenterology, Zhejiang University, Hangzhou 310016, Zhejiang Province, China
- Prevention and Treatment Research Center of Senescent Disease, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
| |
Collapse
|
25
|
Lee Y, Sarkar A, Tassey J, Levi JN, Lee S, Liu NQ, Drake AC, Magallanes J, Stevic U, Lu J, Ge D, Tang H, Mkaratigwa T, Bian F, Shkhyan R, Bonaguidi M, Evseenko D. Inactivation of a non-canonical gp130 signaling arm attenuates chronic systemic inflammation and multimorbidity induced by a high-fat diet. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.08.588362. [PMID: 38645030 PMCID: PMC11030339 DOI: 10.1101/2024.04.08.588362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Interleukin-6 (IL-6) is a major pro-inflammatory cytokine for which the levels in plasma demonstrate a robust correlation with age and body mass index (BMI) as part of the senescence-associated secretory phenotype. IL-6 cytokines also play a crucial role in metabolic homeostasis and regenerative processes, primarily via the canonical STAT3 pathway. Thus, selective modulation of IL-6 signaling may offer a unique opportunity for therapeutic interventions. Recently, we discovered that a non-canonical signaling pathway downstream of tyrosine (Y) 814 within the intracellular domain of gp130, the IL-6 co-receptor, is responsible for the recruitment and activation of SRC family of kinases (SFK). Mice with constitutive genetic inactivation of gp130 Y814 (F814 mice) show accelerated resolution of inflammatory response and superior regenerative outcomes in skin wound healing and posttraumatic models of osteoarthritis. The current study was designed to explore if selective genetic or pharmacological inhibition of the non-canonical gp130-Y814/SFK signaling reduces systemic chronic inflammation and multimorbidity in a high-fat diet (HFD)-induced model of accelerated aging. F814 mice showed significantly reduced inflammatory response to HFD in adipose and liver tissue, with significantly reduced levels of systemic inflammation compared to wild type mice. F814 mice were also protected from HFD-induced bone loss and cartilage degeneration. Pharmacological inhibition of gp130-Y814/SFK in mice on HFD mirrored the effects observed in F814 mice on HFD; furthermore, this pharmacological treatment also demonstrated a marked increase in physical activity levels and protective effects against inflammation-associated suppression of neurogenesis in the brain tissue compared to the control group. These findings suggest that selective inhibition of SFK signaling downstream of gp130 receptor represents a promising strategy to alleviate systemic chronic inflammation. Increased degenerative changes and tissue senescence are inevitable in obese and aged organisms, but we demonstrated that the systemic response and inflammation-associated multi-morbidity can be therapeutically mitigated.
Collapse
|
26
|
Davidson-Turner KJ, Farina MP, Hayward MD. Racial/Ethnic differences in inflammation levels among older adults 56+: an examination of sociodemographic differences across inflammation measure. BIODEMOGRAPHY AND SOCIAL BIOLOGY 2024; 69:75-89. [PMID: 38807566 PMCID: PMC11257156 DOI: 10.1080/19485565.2024.2356672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
OBJECTIVE Chronic inflammation is a key biological risk factor for many widespread adult health conditions. This study examines racial/ethnic differences in inflammation across several inflammatory markers, including selected cytokines that are identified as important for aging and age-related health outcomes. METHODS Data came from the 2016 Venous Blood Collection Subsample of the Health and Retirement Study. Using logistic regression models, we compared high-risk categories of C-reactive protein and cytokine markers (IL-6, IL-10, IL-1RA, TNFR1, and TGF-Beta), across race/ethnicity and whether these differences persisted among men and women. RESULTS The findings provided evidence of significant race/ethnic differences in inflammatory measures, but the patterns differed across marker types. CONCLUSIONS These findings emphasize that race/ethnic differences are not consistently captured across markers of inflammation and that researchers should proceed with caution when using individual markers of inflammation in an effort to not overlook potential racial/ethnic differences in biological risk.
Collapse
Affiliation(s)
- KJ Davidson-Turner
- Department of Sociology, University of Texas at Austin, Austin, Texas, USA
| | - Mateo P. Farina
- Department of Human Development and Family Sciences, University of Texas at Austin, Austin, Texas, USA
| | - Mark D. Hayward
- Department of Sociology, University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
27
|
Xie L, Chandrasekhar A, Ernest D, Patel J, Afolabi F, Almandoz JP, Fernandez TM, Gelfand A, Messiah SE. Association between asthma, obesity, and metabolic syndrome in adolescents and young adults. J Asthma 2024; 61:368-376. [PMID: 37930803 PMCID: PMC10939864 DOI: 10.1080/02770903.2023.2280763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/21/2023] [Accepted: 11/02/2023] [Indexed: 11/07/2023]
Abstract
BACKGROUND The association of asthma and metabolic syndrome (MetS) among adolescents and young adults (AYAs) remains unclear, as well as the role of obesity in this relationship. METHODS AYAs aged 12-25 years who participated in the 2011-2020 National Health and Nutrition Examination Survey were included in this cross-sectional analysis. The moderating effect of obesity (age- and sex-adjusted body mass index ≥ 95th%ile for adolescents or ≥ 30 kg/m2 for adults) on asthma and MetS were evaluated in four groups: 1) both asthma and obesity; 2) asthma and no obesity; 3) obesity and no asthma; and 4) healthy controls with no obesity/asthma. RESULTS A total of 7,709 AYAs (53.9% aged 12-18 years, 51.1% males, and 54.4% non-Hispanic White) were included in this analysis. 3.6% (95% CI 2.8-4.3%) had obesity and asthma, 7.6% (95% CI 6.8-8.4%) had asthma and no obesity, 21.4% (95% CI 19.6-23.2%) had obesity and no asthma, and 67.4% (95% CI 65.4-69.4%) had neither obesity nor asthma. The estimated prevalence of MetS was greater among those with both obesity and asthma versus those with only asthma (4.5% [95% CI 1.7-7.3%] vs. 0.2% [95% CI 0-0.5%], p < 0.001). Compared to healthy controls, those with both obesity and asthma had ∼10 times higher odds of having MetS (aOR 10.5, 95% CI 3.9-28.1). CONCLUSIONS Our results show the association between MetS and asthma is stronger in AYAs with BMI-defined obesity. Efforts to prevent and treat obesity may reduce MetS occurrence in AYAs with asthma.
Collapse
Affiliation(s)
- Luyu Xie
- University of Texas Health Science Center at Houston, School of Public Health, Dallas, TX, USA
- Center for Pediatric Population Health, UTHealth School of Public Health, Dallas, TX, USA
| | - Aparajita Chandrasekhar
- University of Texas Health Science Center at Houston, School of Public Health, Dallas, TX, USA
- Center for Pediatric Population Health, UTHealth School of Public Health, Dallas, TX, USA
| | - Deepali Ernest
- University of Texas Health Science Center at Houston, School of Public Health, Houston, TX, USA
| | - Jenil Patel
- University of Texas Health Science Center at Houston, School of Public Health, Dallas, TX, USA
- Center for Pediatric Population Health, UTHealth School of Public Health, Dallas, TX, USA
| | - Folashade Afolabi
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Jaime P Almandoz
- Department of Internal Medicine, Division of Endocrinology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | | | - Andrew Gelfand
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Sarah E. Messiah
- University of Texas Health Science Center at Houston, School of Public Health, Dallas, TX, USA
- Center for Pediatric Population Health, UTHealth School of Public Health, Dallas, TX, USA
- Department of Pediatrics, McGovern Medical School, Houston, Texas USA
| |
Collapse
|
28
|
Fekete M, Lehoczki A, Major D, Fazekas-Pongor V, Csípő T, Tarantini S, Csizmadia Z, Varga JT. Exploring the Influence of Gut-Brain Axis Modulation on Cognitive Health: A Comprehensive Review of Prebiotics, Probiotics, and Symbiotics. Nutrients 2024; 16:789. [PMID: 38542700 PMCID: PMC10975805 DOI: 10.3390/nu16060789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 04/01/2024] Open
Abstract
Recent research exploring the relationship between the gut and the brain suggests that the condition of the gut microbiota can influence cognitive health. A well-balanced gut microbiota may help reduce inflammation, which is linked to neurodegenerative conditions. Prebiotics, probiotics, and symbiotics are nutritional supplements and functional food components associated with gastrointestinal well-being. The bidirectional communication of the gut-brain axis is essential for maintaining homeostasis, with pre-, pro-, and symbiotics potentially affecting various cognitive functions such as attention, perception, and memory. Numerous studies have consistently shown that incorporating pre-, pro-, and symbiotics into a healthy diet can lead to improvements in cognitive functions and mood. Maintaining a healthy gut microbiota can support optimal cognitive function, which is crucial for disease prevention in our fast-paced, Westernized society. Our results indicate cognitive benefits in healthy older individuals with probiotic supplementation but not in healthy older individuals who have good and adequate levels of physical activity. Additionally, it appears that there are cognitive benefits in patients with mild cognitive impairment and Alzheimer's disease, while mixed results seem to arise in younger and healthier individuals. However, it is important to acknowledge that individual responses may vary, and the use of these dietary supplements should be tailored to each individual's unique health circumstances and needs.
Collapse
Affiliation(s)
- Mónika Fekete
- Department of Public Health, Faculty of Medicine, Semmelweis University, 1089 Budapest, Hungary; (M.F.); (A.L.); (D.M.); (V.F.-P.); (T.C.); (S.T.)
| | - Andrea Lehoczki
- Department of Public Health, Faculty of Medicine, Semmelweis University, 1089 Budapest, Hungary; (M.F.); (A.L.); (D.M.); (V.F.-P.); (T.C.); (S.T.)
- National Institute for Haematology and Infectious Diseases, Department of Haematology and Stem Cell Transplantation, South Pest Central Hospital, 1097 Budapest, Hungary
| | - Dávid Major
- Department of Public Health, Faculty of Medicine, Semmelweis University, 1089 Budapest, Hungary; (M.F.); (A.L.); (D.M.); (V.F.-P.); (T.C.); (S.T.)
| | - Vince Fazekas-Pongor
- Department of Public Health, Faculty of Medicine, Semmelweis University, 1089 Budapest, Hungary; (M.F.); (A.L.); (D.M.); (V.F.-P.); (T.C.); (S.T.)
| | - Tamás Csípő
- Department of Public Health, Faculty of Medicine, Semmelweis University, 1089 Budapest, Hungary; (M.F.); (A.L.); (D.M.); (V.F.-P.); (T.C.); (S.T.)
| | - Stefano Tarantini
- Department of Public Health, Faculty of Medicine, Semmelweis University, 1089 Budapest, Hungary; (M.F.); (A.L.); (D.M.); (V.F.-P.); (T.C.); (S.T.)
- Department of Neurosurgery, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Department of Health Promotion Sciences, College of Public Health, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Peggy and Charles Stephenson Oklahoma Cancer Center, Oklahoma City, OK 73104, USA
| | - Zoltán Csizmadia
- Faculty of Health Sciences, University of Pécs, 7621 Pécs, Hungary;
| | - János Tamás Varga
- Department of Pulmonology, Semmelweis University, 1083 Budapest, Hungary
| |
Collapse
|
29
|
Saleh Z, Mirzazadeh S, Mirzaei F, Heidarnejad K, Meri S, Kalantar K. Alterations in metabolic pathways: a bridge between aging and weaker innate immune response. FRONTIERS IN AGING 2024; 5:1358330. [PMID: 38505645 PMCID: PMC10949225 DOI: 10.3389/fragi.2024.1358330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 02/06/2024] [Indexed: 03/21/2024]
Abstract
Aging is a time-dependent progressive physiological process, which results in impaired immune system function. Age-related changes in immune function increase the susceptibility to many diseases such as infections, autoimmune diseases, and cancer. Different metabolic pathways including glycolysis, tricarboxylic acid cycle, amino acid metabolism, pentose phosphate pathway, fatty acid oxidation and fatty acid synthesis regulate the development, differentiation, and response of adaptive and innate immune cells. During aging all these pathways change in the immune cells. In addition to the changes in metabolic pathways, the function and structure of mitochondria also have changed in the immune cells. Thereby, we will review changes in the metabolism of different innate immune cells during the aging process.
Collapse
Affiliation(s)
- Zahra Saleh
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sara Mirzazadeh
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Mirzaei
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Kamran Heidarnejad
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seppo Meri
- Department of Bacteriology and Immunology and the Translational Immunology Research Program (TRIMM), The University of Helsinki and HUSLAB, Helsinki University Hospital, Helsinki, Finland
| | - Kurosh Kalantar
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Bacteriology and Immunology and the Translational Immunology Research Program (TRIMM), The University of Helsinki and HUSLAB, Helsinki University Hospital, Helsinki, Finland
- Autoimmune Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
30
|
Filipek-Gorzała J, Kwiecińska P, Szade A, Szade K. The dark side of stemness - the role of hematopoietic stem cells in development of blood malignancies. Front Oncol 2024; 14:1308709. [PMID: 38440231 PMCID: PMC10910019 DOI: 10.3389/fonc.2024.1308709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 01/02/2024] [Indexed: 03/06/2024] Open
Abstract
Hematopoietic stem cells (HSCs) produce all blood cells throughout the life of the organism. However, the high self-renewal and longevity of HSCs predispose them to accumulate mutations. The acquired mutations drive preleukemic clonal hematopoiesis, which is frequent among elderly people. The preleukemic state, although often asymptomatic, increases the risk of blood cancers. Nevertheless, the direct role of preleukemic HSCs is well-evidenced in adult myeloid leukemia (AML), while their contribution to other hematopoietic malignancies remains less understood. Here, we review the evidence supporting the role of preleukemic HSCs in different types of blood cancers, as well as present the alternative models of malignant evolution. Finally, we discuss the clinical importance of preleukemic HSCs in choosing the therapeutic strategies and provide the perspective on further studies on biology of preleukemic HSCs.
Collapse
Affiliation(s)
- Jadwiga Filipek-Gorzała
- Laboratory of Stem Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Krakow, Poland
| | - Patrycja Kwiecińska
- Laboratory of Stem Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Agata Szade
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Krzysztof Szade
- Laboratory of Stem Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
31
|
Ding W, Chen J, Zhao L, Wu S, Chen X, Chen H. Mitochondrial DNA leakage triggers inflammation in age-related cardiovascular diseases. Front Cell Dev Biol 2024; 12:1287447. [PMID: 38425502 PMCID: PMC10902119 DOI: 10.3389/fcell.2024.1287447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 01/23/2024] [Indexed: 03/02/2024] Open
Abstract
Mitochondrial dysfunction is one of the hallmarks of cardiovascular aging. The leakage of mitochondrial DNA (mtDNA) is increased in senescent cells, which are resistant to programmed cell death such as apoptosis. Due to its similarity to prokaryotic DNA, mtDNA could be recognized by cellular DNA sensors and trigger innate immune responses, resulting in chronic inflammatory conditions during aging. The mechanisms include cGAS-STING signaling, TLR-9 and inflammasomes activation. Mitochondrial quality controls such as mitophagy could prevent mitochondria from triggering harmful inflammatory responses, but when this homeostasis is out of balance, mtDNA-induced inflammation could become pathogenic and contribute to age-related cardiovascular diseases. Here, we summarize recent studies on mechanisms by which mtDNA promotes inflammation and aging-related cardiovascular diseases, and discuss the potential value of mtDNA in early screening and as therapeutic targets.
Collapse
Affiliation(s)
- Wanyue Ding
- Heilongjiang Academy of Traditional Chinese Medicine, Harbin, China
| | - Jingyu Chen
- Department of Chinese Medicine Internal Medicine, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lei Zhao
- Heilongjiang Academy of Traditional Chinese Medicine, Harbin, China
| | - Shuang Wu
- Southern Medical University Affiliated Qiqihar Hospital, The First Hospital of Qiqihar, Qiqihaer, Heilongjiang, China
| | - Xiaomei Chen
- Integrated Traditional Chinese and Western Medicine Syndrome Laboratory, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Hong Chen
- Heilongjiang Academy of Traditional Chinese Medicine, Harbin, China
| |
Collapse
|
32
|
Khor YS, Wong PF. MicroRNAs-associated with FOXO3 in cellular senescence and other stress responses. Biogerontology 2024; 25:23-51. [PMID: 37646881 DOI: 10.1007/s10522-023-10059-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/01/2023] [Indexed: 09/01/2023]
Abstract
FOXO3 is a member of the FOXO transcription factor family and is known for regulating cellular survival in response to stress caused by various external and biological stimuli. FOXO3 decides cell fate by modulating cellular senescence, apoptosis and autophagy by transcriptional regulation of genes involved in DNA damage response and oxidative stress resistance. These cellular processes are tightly regulated physiologically, with FOXO3 acting as the hub that integrates signalling networks controlling them. The activity of FOXO3 is influenced by post-translational modifications, altering its subcellular localisation. In addition, FOXO3 can also be regulated directly or indirectly by microRNAs (miRNAs) or vice versa. This review discusses the involvement of various miRNAs in FOXO3-driven cellular responses such as senescence, apoptosis, autophagy, redox and inflammation defence. Given that these responses are linked and influence cell fate, a thorough understanding of the complex regulation by miRNAs would provide key information for developing therapeutic strategy and avoid unintended consequences caused by off-site targeting of FOXO3.
Collapse
Affiliation(s)
- Yi-Sheng Khor
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, 50603, Wilayah Persekutuan Kuala Lumpur, Malaysia
| | - Pooi-Fong Wong
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, 50603, Wilayah Persekutuan Kuala Lumpur, Malaysia.
| |
Collapse
|
33
|
Conde-Torres D, Blanco-González A, Seco-González A, Suárez-Lestón F, Cabezón A, Antelo-Riveiro P, Piñeiro Á, García-Fandiño R. Unraveling lipid and inflammation interplay in cancer, aging and infection for novel theranostic approaches. Front Immunol 2024; 15:1320779. [PMID: 38361953 PMCID: PMC10867256 DOI: 10.3389/fimmu.2024.1320779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 01/15/2024] [Indexed: 02/17/2024] Open
Abstract
The synergistic relationships between Cancer, Aging, and Infection, here referred to as the CAIn Triangle, are significant determinants in numerous health maladies and mortality rates. The CAIn-related pathologies exhibit close correlations with each other and share two common underlying factors: persistent inflammation and anomalous lipid concentration profiles in the membranes of affected cells. This study provides a comprehensive evaluation of the most pertinent interconnections within the CAIn Triangle, in addition to examining the relationship between chronic inflammation and specific lipidic compositions in cellular membranes. To tackle the CAIn-associated diseases, a suite of complementary strategies aimed at diagnosis, prevention, and treatment is proffered. Our holistic approach is expected to augment the understanding of the fundamental mechanisms underlying these diseases and highlight the potential of shared features to facilitate the development of novel theranostic strategies.
Collapse
Affiliation(s)
- Daniel Conde-Torres
- Departamento de Física Aplicada, Facultade de Física, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Organic Chemistry Department, Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Alexandre Blanco-González
- Departamento de Física Aplicada, Facultade de Física, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Organic Chemistry Department, Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- MD.USE Innovations S.L., Edificio Emprendia, Santiago de Compostela, Spain
| | - Alejandro Seco-González
- Organic Chemistry Department, Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Fabián Suárez-Lestón
- Departamento de Física Aplicada, Facultade de Física, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Organic Chemistry Department, Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- MD.USE Innovations S.L., Edificio Emprendia, Santiago de Compostela, Spain
| | - Alfonso Cabezón
- Organic Chemistry Department, Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Paula Antelo-Riveiro
- Departamento de Física Aplicada, Facultade de Física, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Organic Chemistry Department, Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Ángel Piñeiro
- Departamento de Física Aplicada, Facultade de Física, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Rebeca García-Fandiño
- Organic Chemistry Department, Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
34
|
Bi J, Zhang C, Lu C, Mo C, Zeng J, Yao M, Jia B, Liu Z, Yuan P, Xu S. Age-related bone diseases: Role of inflammaging. J Autoimmun 2024; 143:103169. [PMID: 38340675 DOI: 10.1016/j.jaut.2024.103169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/03/2024] [Accepted: 01/19/2024] [Indexed: 02/12/2024]
Abstract
Bone aging is characterized by an imbalance in the physiological and pathological processes of osteogenesis, osteoclastogenesis, adipogenesis, and chondrogenesis, resulting in exacerbated bone loss and the development of age-related bone diseases, including osteoporosis, osteoarthritis, rheumatoid arthritis, and periodontitis. Inflammaging, a novel concept in the field of aging research, pertains to the persistent and gradual escalation of pro-inflammatory reactions during the aging process. This phenomenon is distinguished by its low intensity, systemic nature, absence of symptoms, and potential for management. The mechanisms by which inflammaging contribute to age-related chronic diseases, particularly in the context of age-related bone diseases, remain unclear. The precise manner in which systemic inflammation induces bone aging and consequently contributes to the development of age-related bone diseases has yet to be fully elucidated. This article primarily examines the mechanisms underlying inflammaging and its association with age-related bone diseases, to elucidate the potential mechanisms of inflammaging in age-related bone diseases and offer insights for developing preventive and therapeutic strategies for such conditions.
Collapse
Affiliation(s)
- Jiaming Bi
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Caimei Zhang
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Caihong Lu
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Chuzi Mo
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Jiawei Zeng
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Mingyan Yao
- Department of Endocrinology, The Third Hospital of Hebei Medical University, Shijiazhuang, China; Department of Endocrinology, Baoding No.1 Central Hospital, Baoding, China
| | - Bo Jia
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhongjun Liu
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Peiyan Yuan
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China.
| | - Shuaimei Xu
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
35
|
Yadav P, Shah R, Roy A, Jani S, Chatterjee K, Saini DK. Cellular Senescence Program is Sensitive to Physical Differences in Polymeric Tissue Scaffolds. ACS MATERIALS AU 2024; 4:35-44. [PMID: 38221924 PMCID: PMC10786134 DOI: 10.1021/acsmaterialsau.3c00057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/19/2023] [Accepted: 09/22/2023] [Indexed: 01/16/2024]
Abstract
A typical cellular senescence program involves exposing cells to DNA-damaging agents such as ionization radiation or chemotherapeutic drugs, which cause multipronged changes, including increased cell size and volume, the onset of enhanced oxidative stress, and inflammation. In the present study, we examined if the senescence onset decision is sensitive to the design, porosity, and architecture of the substrate. To address this, we generated a library of polymeric scaffolds widely used in tissue engineering of varied stiffness, architecture, and porosity. Using irradiated A549 lung cancer cells, we examined the differences between cellular responses in these 3D scaffold systems and observed that senescence onset is equally diminished. When compared to the two-dimensional (2D) culture formats, there were profound changes in cell size and senescence induction in three-dimensional (3D) scaffolds. We further establish that these observed differences in the senescence state can be attributed to the altered cell spreading and cellular interactions on these substrates. This study elucidates the role of scaffold architecture in the cellular senescence program.
Collapse
Affiliation(s)
- Parul Yadav
- Department
of Bioengineering, Indian Institute of Science, C.V Raman Avenue, Bangalore, India 560012
| | - Rahul Shah
- Department
of Materials Engineering, Indian Institute
of Science, C.V Raman
Avenue, Bangalore, India 560012
| | - Anindo Roy
- Department
of Materials Engineering, Indian Institute
of Science, C.V Raman
Avenue, Bangalore, India 560012
| | - Sibani Jani
- Department
of Bioengineering, Indian Institute of Science, C.V Raman Avenue, Bangalore, India 560012
| | - Kaushik Chatterjee
- Department
of Bioengineering, Indian Institute of Science, C.V Raman Avenue, Bangalore, India 560012
- Department
of Materials Engineering, Indian Institute
of Science, C.V Raman
Avenue, Bangalore, India 560012
| | - Deepak Kumar Saini
- Department
of Bioengineering, Indian Institute of Science, C.V Raman Avenue, Bangalore, India 560012
- Department
of Developmental Biology and Genetics, C.V Raman Avenue, Indian Institute of Science, Bangalore, India 560012
| |
Collapse
|
36
|
Tenchov R, Sasso JM, Wang X, Zhou QA. Aging Hallmarks and Progression and Age-Related Diseases: A Landscape View of Research Advancement. ACS Chem Neurosci 2024; 15:1-30. [PMID: 38095562 PMCID: PMC10767750 DOI: 10.1021/acschemneuro.3c00531] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 01/04/2024] Open
Abstract
Aging is a dynamic, time-dependent process that is characterized by a gradual accumulation of cell damage. Continual functional decline in the intrinsic ability of living organisms to accurately regulate homeostasis leads to increased susceptibility and vulnerability to diseases. Many efforts have been put forth to understand and prevent the effects of aging. Thus, the major cellular and molecular hallmarks of aging have been identified, and their relationships to age-related diseases and malfunctions have been explored. Here, we use data from the CAS Content Collection to analyze the publication landscape of recent aging-related research. We review the advances in knowledge and delineate trends in research advancements on aging factors and attributes across time and geography. We also review the current concepts related to the major aging hallmarks on the molecular, cellular, and organismic level, age-associated diseases, with attention to brain aging and brain health, as well as the major biochemical processes associated with aging. Major age-related diseases have been outlined, and their correlations with the major aging features and attributes are explored. We hope this review will be helpful for apprehending the current knowledge in the field of aging mechanisms and progression, in an effort to further solve the remaining challenges and fulfill its potential.
Collapse
Affiliation(s)
- Rumiana Tenchov
- CAS, a Division of the American Chemical
Society, 2540 Olentangy River Road, Columbus, Ohio 43202, United States
| | - Janet M. Sasso
- CAS, a Division of the American Chemical
Society, 2540 Olentangy River Road, Columbus, Ohio 43202, United States
| | - Xinmei Wang
- CAS, a Division of the American Chemical
Society, 2540 Olentangy River Road, Columbus, Ohio 43202, United States
| | - Qiongqiong Angela Zhou
- CAS, a Division of the American Chemical
Society, 2540 Olentangy River Road, Columbus, Ohio 43202, United States
| |
Collapse
|
37
|
Teawcharoensopa C, Srisuwan T. The potential use of ascorbic acid to recover the cellular senescence of lipopolysaccharide-induced human apical papilla cells: an in vitro study. Clin Oral Investig 2023; 28:49. [PMID: 38153550 DOI: 10.1007/s00784-023-05455-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 12/18/2023] [Indexed: 12/29/2023]
Abstract
OBJECTIVES To examine the effect of lipopolysaccharide (LPS) on cellular senescence induction of human apical papilla cells (hAPCs) and evaluate the potential use of 50 μg/ml ascorbic acid to recover cellular senescence and regenerative functions. MATERIALS AND METHODS hAPCs were treated with LPS at 1 and 10 μg/ml either with or without 50 μg/ml ascorbic acid for 48 h. The cellular senescence biomarkers were analyzed by senescence-associated β-galactosidase (SA-β-gal) staining and senescence-related gene expression, p16 and p21. Cell migration, at 12 h and 24 h, was evaluated using a scratch wound assay. Mineralization potential was assessed at 21 days using Alizarin red S staining and dentine sialophosphoprotein (DSPP) and bone sialoprotein (BSP) gene expression. RESULTS 1 μg/ml and 10 μg/ml LPS stimulation for 48 h induced cellular senescence, as shown by remarkable SA-β-gal staining and p16 and p21 gene expression. The percentage of wound closure and mineralized formation was reduced. The co-incubation with ascorbic acid significantly down-regulated the level of SA-β-gal staining. The reduction of senescence-associated gene expressions was observed. Ascorbic acid improved cell migration, mineralized nodule formation, and the expression of DSPP and BSP genes in LPS-treated hAPCs. CONCLUSIONS LPS significantly promoted cellular senescence on hAPCs and diminished the cell function capacity. Co-presence of ascorbic acid could impede cellular senescence and possibly improve the regenerative capacity of LPS-induced senescent hAPCs in vitro. CLINICAL RELEVANCE The data support the in vitro potential benefit of ascorbic acid on cellular senescence recovery of apical papilla cells.
Collapse
Affiliation(s)
- Chananporn Teawcharoensopa
- Department of Restorative Dentistry and Periodontology, Faculty of Dentistry, Chiang Mai University, Chiang Mai, TH, Thailand
- Sikhoraphum Hospital Dental Department, Surin, TH, Thailand
| | - Tanida Srisuwan
- Department of Restorative Dentistry and Periodontology, Faculty of Dentistry, Chiang Mai University, Chiang Mai, TH, Thailand.
| |
Collapse
|
38
|
Mercer HM, Nair AM, Ridgel A, Piontkivska H. Alterations in RNA editing in skeletal muscle following exercise training in individuals with Parkinson's disease. PLoS One 2023; 18:e0287078. [PMID: 38134032 PMCID: PMC10745226 DOI: 10.1371/journal.pone.0287078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 09/01/2023] [Indexed: 12/24/2023] Open
Abstract
Parkinson's Disease (PD) is the second most common neurodegenerative disease behind Alzheimer's Disease, currently affecting more than 10 million people worldwide and 1.5 times more males than females. The progression of PD results in the loss of function due to neurodegeneration and neuroinflammation. The etiology of PD is multifactorial, including both genetic and environmental origins. Here we explored changes in RNA editing, specifically editing through the actions of the Adenosine Deaminases Acting on RNA (ADARs), in the progression of PD. Analysis of ADAR editing of skeletal muscle transcriptomes from PD patients and controls, including those that engaged in a rehabilitative exercise training program revealed significant differences in ADAR editing patterns based on age, disease status, and following rehabilitative exercise. Further, deleterious editing events in protein coding regions were identified in multiple genes with known associations to PD pathogenesis. Our findings of differential ADAR editing complement findings of changes in transcriptional networks identified by a recent study and offer insights into dynamic ADAR editing changes associated with PD pathogenesis.
Collapse
Affiliation(s)
- Heather Milliken Mercer
- Department of Biological Sciences, Kent State University, Kent, OH, United States of America
- Department of Biological and Environmental Sciences, University of Mount Union, Alliance, OH, United States of America
- Healthy Communities Research Institute, Kent State University, Kent, OH, United States of America
| | - Aiswarya Mukundan Nair
- Department of Biological Sciences, Kent State University, Kent, OH, United States of America
| | - Angela Ridgel
- School of Health Sciences, Kent State University, Kent, OH, United States of America
- Brain Health Research Institute, Kent State University, Kent, OH, United States of America
- Healthy Communities Research Institute, Kent State University, Kent, OH, United States of America
| | - Helen Piontkivska
- Department of Biological Sciences, Kent State University, Kent, OH, United States of America
- Brain Health Research Institute, Kent State University, Kent, OH, United States of America
- Healthy Communities Research Institute, Kent State University, Kent, OH, United States of America
| |
Collapse
|
39
|
Souza ACR, Vasconcelos AR, Dias DD, Komoni G, Name JJ. The Integral Role of Magnesium in Muscle Integrity and Aging: A Comprehensive Review. Nutrients 2023; 15:5127. [PMID: 38140385 PMCID: PMC10745813 DOI: 10.3390/nu15245127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/09/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
Aging is characterized by significant physiological changes, with the degree of decline varying significantly among individuals. The preservation of intrinsic capacity over the course of an individual's lifespan is fundamental for healthy aging. Locomotion, which entails the capacity for independent movement, is intricately connected with various dimensions of human life, including cognition, vitality, sensory perception, and psychological well-being. Notably, skeletal muscle functions as a pivotal nexus within this intricate framework. Any perturbation in its functionality can manifest as compromised physical performance and an elevated susceptibility to frailty. Magnesium is an essential mineral that plays a central role in approximately 800 biochemical reactions within the human body. Its distinctive physical and chemical attributes render it an indispensable stabilizing factor in the orchestration of diverse cellular reactions and organelle functions, thereby rendering it irreplaceable in processes directly impacting muscle health. This narrative review offers a comprehensive exploration of the pivotal role played by magnesium in maintaining skeletal muscle integrity, emphasizing the critical importance of maintaining optimal magnesium levels for promoting healthy aging.
Collapse
Affiliation(s)
| | | | | | | | - José João Name
- Kilyos Assessoria, Cursos e Palestras, São Paulo 01311-100, Brazil; (A.C.R.S.); (A.R.V.); (D.D.D.); (G.K.)
| |
Collapse
|
40
|
Casipit BA, Lo KB, Casipit CG, Idowu A, Amanullah A. Impact of comorbid heart failure among hospitalized patients with sarcoidosis: A United States population-based cohort study. IJC HEART & VASCULATURE 2023; 49:101275. [PMID: 37822667 PMCID: PMC10562780 DOI: 10.1016/j.ijcha.2023.101275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/05/2023] [Accepted: 09/25/2023] [Indexed: 10/13/2023]
Abstract
Background There is paucity of data regarding the impact of concomitant heart failure (HF) on the in-hospital outcomes among hospitalized sarcoidosis patients. We aim to investigate the factors associated with concomitant HF and its impact on in-hospital outcomes among hospitalized sarcoidosis patients. Methods We utilized the 2018-2020 National Inpatient Sample (NIS) Database in conducting this study. Multivariable logistic and linear regression models were used to examine the factors associated with HF and hospital-associated outcomes among patients with sarcoidosis. Results A total of 36,864 hospitalized patients with sarcoidosis were identified, of which 24.78 % (n = 9135/36,864) had concomitant HF. Factors associated with concomitant HF were age (aOR 1.03; 95 % CI: 1.02-1.03, p value ≤ 0.001), black race (aOR 1.74; 95 % CI: 1.47-2.05, p value ≤ 0.001), not being female (aOR 0.79; 95 % CI: 0.69-0.91, p value ≤ 0.001), and arrhythmias (aOR 2.50; 95 % CI: 2.10-2.98, p value ≤ 0.001) specifically atrial fibrillation and ventricular tachycardia. Comorbidities associated with concomitant HF in this population were hyperlipidemia, obesity, coronary artery disease, cardiac device implantation history, and chronic kidney disease stage 1-4. Concomitant HF was not an independent predictor of in-hospital mortality or length of stay (LOS). However, age (aOR 1.04; 95 % CI, 1.03-1.06; p ≤ 0.001) and arrhythmia burden (aOR 2.08; 95 % CI, 1.47-2.95; p ≤ 0.001), specifically ventricular tachycardia and fibrillation, were independently associated with in-hospital mortality among sarcoidosis patients. Conclusion Traditional cardiovascular risk factors were associated with concomitant HF among hospitalized sarcoidosis patients. Moreover, concomitant HF among sarcoidosis patients was not significantly associated with in-hospital mortality or LOS.
Collapse
Affiliation(s)
- Bruce Adrian Casipit
- Department of Medicine, Einstein Medical Center Philadelphia, Philadelphia, PA, United States
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
| | - Kevin Bryan Lo
- Department of Medicine, Einstein Medical Center Philadelphia, Philadelphia, PA, United States
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
| | | | - Abdiodun Idowu
- Department of Medicine, Einstein Medical Center Philadelphia, Philadelphia, PA, United States
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
| | - Aman Amanullah
- Department of Cardiovascular Disease, Einstein Medical Center Philadelphia, Philadelphia, PA, United States
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
41
|
Harnett MM, Lumb FE, Crowe J, Doonan J, Buitrago G, Brown S, Thom G, MacDonald A, Suckling CJ, Selman C, Harnett W. Protection against lung pathology during obesity-accelerated ageing in mice by the parasitic worm product ES-62. Front Immunol 2023; 14:1285069. [PMID: 38077318 PMCID: PMC10701379 DOI: 10.3389/fimmu.2023.1285069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 11/07/2023] [Indexed: 12/18/2023] Open
Abstract
Mice develop pathology in the lungs as they age and this may be accelerated by a high calorie diet (HCD). ES-62 is a protein secreted by the parasitic worm Acanthocheilonema viteae that is immunomodulatory by virtue of covalently attached phosphorylcholine (PC) moieties. In this study, we show that weekly treatment of C57BL/6J mice with ES-62 protected against pathology in the lungs in male but not female mice fed a HCD from 10 weeks of age as shown by reductions in cellular infiltration and airway remodelling, particularly up to 160 days of age. ES-62 also reduced gene expression of the cytokines IL-4 and IL-17 and in addition the TLR/IL-1R adaptor MyD88, in the lungs of male mice although HCD-induced increases in these inflammatory markers were not detected until between 340 and 500 days of age. A combination of two drug-like ES-62 PC-based small molecule analogues (SMAs), produced broadly similar protective effects in the lungs of male mice with respect to both lung pathology and inflammatory markers, in addition to a decrease in HCD-induced IL-5 expression. Overall, our data show that ES-62 and its SMAs offer protection against HCD-accelerated pathological changes in the lungs during ageing. Given the targeting of Th2 cytokines and IL-17, we discuss this protection in the context of ES-62's previously described amelioration of airway hyper-responsiveness in mouse models of asthma.
Collapse
Affiliation(s)
- Margaret M. Harnett
- School of Infection and Immunity, University of Glasgow, Glasgow, United Kingdom
| | - Felicity E. Lumb
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Jenny Crowe
- School of Infection and Immunity, University of Glasgow, Glasgow, United Kingdom
| | - James Doonan
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Geraldine Buitrago
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Stephanie Brown
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Gillian Thom
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Amy MacDonald
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Colin J. Suckling
- Department of Pure & Applied Chemistry, University of Strathclyde, Glasgow, United Kingdom
| | - Colin Selman
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, United Kingdom
| | - William Harnett
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| |
Collapse
|
42
|
Napodano C, Carnazzo V, Basile V, Pocino K, Stefanile A, Gallucci S, Natali P, Basile U, Marino M. NLRP3 Inflammasome Involvement in Heart, Liver, and Lung Diseases-A Lesson from Cytokine Storm Syndrome. Int J Mol Sci 2023; 24:16556. [PMID: 38068879 PMCID: PMC10706560 DOI: 10.3390/ijms242316556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 12/18/2023] Open
Abstract
Inflammation and inflammasomes have been proposed as important regulators of the host-microorganism interaction, playing a key role in morbidity and mortality due to the coronavirus disease 2019 (COVID-19) in subjects with chronic conditions and compromised immune system. The inflammasome consists of a multiprotein complex that finely regulates the activation of caspase-1 and the production and secretion of potent pro-inflammatory cytokines such as IL-1β and IL-18. The pyrin containing NOD (nucleotide-binding oligomerization domain) like receptor (NLRP) is a family of intracellular receptors, sensing patterns associated to pathogens or danger signals and NLRP3 inflammasome is the most deeply analyzed for its involvement in the innate and adaptive immune system as well as its contribution to several autoinflammatory and autoimmune diseases. It is highly expressed in leukocytes and up-regulated in sentinel cells upon inflammatory stimuli. NLRP3 expression has also been reported in B and T lymphocytes, in epithelial cells of oral and genital mucosa, in specific parenchymal cells as cardiomyocytes, and keratinocytes, and chondrocytes. It is well known that a dysregulated activation of the inflammasome is involved in the pathogenesis of different disorders that share the common red line of inflammation in their pathogenetic fingerprint. Here, we review the potential roles of the NLRP3 inflammasome in cardiovascular events, liver damage, pulmonary diseases, and in that wide range of systemic inflammatory syndromes named as a cytokine storm.
Collapse
Affiliation(s)
- Cecilia Napodano
- Department of Laboratory of Medicine and Pathology, S. Agostino Estense Hospital, 41126 Modena, Italy;
| | - Valeria Carnazzo
- Department of Clinical Pathology, Santa Maria Goretti Hospital, AUSL Latina, 04100 Latina, Italy; (V.C.); (U.B.)
| | - Valerio Basile
- Clinical Pathology Unit and Cancer Biobank, Department of Research and Advanced Technologies, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy;
| | - Krizia Pocino
- Unità Operativa Complessa di Patologia Clinica, Ospedale Generale di Zona San Pietro Fatebenefratelli, 00189 Rome, Italy; (K.P.); (A.S.)
| | - Annunziata Stefanile
- Unità Operativa Complessa di Patologia Clinica, Ospedale Generale di Zona San Pietro Fatebenefratelli, 00189 Rome, Italy; (K.P.); (A.S.)
| | - Stefania Gallucci
- Laboratory of Dendritic Cell Biology, Division of Innate Immunity, Department of Medicine, UMass Chan Medical School, Worcester, MA 01655, USA;
| | - Patrizia Natali
- Diagnostic Hematology and Clinical Genomics, Department of Laboratory Medicine and Pathology, AUSL/AOU Modena, 41124 Modena, Italy;
| | - Umberto Basile
- Department of Clinical Pathology, Santa Maria Goretti Hospital, AUSL Latina, 04100 Latina, Italy; (V.C.); (U.B.)
| | - Mariapaola Marino
- Dipartimento di Medicina e Chirurgia Traslazionale, Sezione di Patologia Generale, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
43
|
Huang JH, Li RH, Tsai LC. Dual nature of ferritin for hematologic, liver functional, and metabolic parameters in older diabetic patients. Sci Rep 2023; 13:20207. [PMID: 37980447 PMCID: PMC10657432 DOI: 10.1038/s41598-023-47678-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 11/16/2023] [Indexed: 11/20/2023] Open
Abstract
This study explored the association between ferritin with hematologic, liver functional, and metabolic parameters in older diabetic patients. A total of 210 diabetic patients aged 65 or older were classified into four groups according to the reference range of serum ferritin. Demographic variables and health-related lifestyle factors were obtained through the utilization of a standardized questionnaire. Anthropometric measures, blood pressure, hematology test, and biochemical assessment were also performed. Among all patients, 29.5% had anemia. The percentage of anemia in groups low ferritin (< 40 μg/L), lower side within the reference range (40-120 μg/L), higher side within the reference range (121-200 μg/L), and high ferritin levels (> 200 μg/L) were 50.0, 27.7, 20.5, and 24.2% (P = 0.025), respectively. Low ferritin levels had a higher risk of anemia and a high red blood cell distribution width (RDW). High ferritin levels were associated with a higher risk of high glutamate pyruvate transaminase, obesity, high fasting blood glucose (FBG), and high postprandial blood glucose. The higher side within the reference range of ferritin also showed a higher risk of high FBG and high glycated hemoglobin. Nevertheless, there was no significant association between ferritin and inflammation marker, serum lipids or blood pressure. Overall, ferritin demonstrates a dual nature in older diabetic patients: low ferritin levels are linked to anemia or elevated RDW, while high levels are linked to obesity, increased liver enzymes, and worse glycemia control.
Collapse
Affiliation(s)
- Jui-Hua Huang
- Department of Golden-Ager Industry Management, Chaoyang University of Technology, Taichung, 413, Taiwan
| | - Ren-Hau Li
- Department of Psychology, Chung Shan Medical University, Taichung, 402, Taiwan
| | - Leih-Ching Tsai
- Division of Endocrine and Metabolism, Department of Internal Medicine, Erlin-Branch, Changhua Christian Hospital, Changhua, Taiwan.
| |
Collapse
|
44
|
Rudolph A, Stengel A, Suhs M, Schaper S, Wölk E, Rose M, Hofmann T. Circulating Neuronatin Levels Are Positively Associated with BMI and Body Fat Mass but Not with Psychological Parameters. Nutrients 2023; 15:3657. [PMID: 37630847 PMCID: PMC10459747 DOI: 10.3390/nu15163657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
Human genetic studies have associated Neuronatin gene variants with anorexia nervosa (AN) and obesity. Studies on the expression of the Neuronatin gene product, a proteolipid, are lacking. We investigated the relationship between circulating Neuronatin, body mass index (BMI), body composition (BC), physical activity (PA), and psychometric outcomes in patients with AN, normal weight, and obesity. Plasma Neuronatin was measured by ELISA in (1) 79 subjects of five BMI categories (AN/BMI < 17.5 kg/m2; normal weight/BMI 18.5-25 kg/m2; obesity/BMI 30-40 kg/m2; obesity/BMI 40-50 kg/m2; obesity/BMI > 50 kg/m2) with assessment of BC (bioimpedance analysis; BIA); (2) 49 women with AN (BMI 14.5 ± 1.8 kg/m2) with measurements of BC (BIA) and PA (accelerometry); (3) 79 women with obesity (BMI 48.8 ± 7.8 kg/m2) with measurements of anxiety (GAD-7), stress (PSQ-20), depression (PHQ-9) and eating behavior (EDI-2). Overall, a positive correlation was found between Neuronatin and BMI (p = 0.006) as well as total fat mass (FM; p = 0.036). In AN, Neuronatin did not correlate with BMI, FM, or PA (p > 0.05); no correlations were found between Neuronatin and psychometric outcomes in obesity (p > 0.05). The findings suggest an FM-dependent peripheral Neuronatin expression. The decreased Neuronatin expression in AN provides evidence that Neuronatin is implicated in the pathogenesis of eating disorders.
Collapse
Affiliation(s)
- Amelie Rudolph
- Center for Internal Medicine and Dermatology, Department of Psychosomatic Medicine, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12203 Berlin, Germany; (A.S.)
| | - Andreas Stengel
- Center for Internal Medicine and Dermatology, Department of Psychosomatic Medicine, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12203 Berlin, Germany; (A.S.)
- Department of Psychosomatic Medicine and Psychotherapy, University Hospital Tübingen, 72076 Tübingen, Germany
| | - Maria Suhs
- Center for Internal Medicine and Dermatology, Department of Psychosomatic Medicine, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12203 Berlin, Germany; (A.S.)
| | - Selina Schaper
- Center for Internal Medicine and Dermatology, Department of Psychosomatic Medicine, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12203 Berlin, Germany; (A.S.)
| | - Ellen Wölk
- Center for Internal Medicine and Dermatology, Department of Psychosomatic Medicine, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12203 Berlin, Germany; (A.S.)
| | - Matthias Rose
- Center for Internal Medicine and Dermatology, Department of Psychosomatic Medicine, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12203 Berlin, Germany; (A.S.)
- Quantitative Health Sciences, Outcomes Measurement Science, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Tobias Hofmann
- Center for Internal Medicine and Dermatology, Department of Psychosomatic Medicine, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12203 Berlin, Germany; (A.S.)
- Department of Psychosomatic Medicine, DRK Kliniken Berlin Wiegmann Klinik, 14050 Berlin, Germany
| |
Collapse
|
45
|
Decker K, Murata S, Baig N, Hasan S, Halaris A. Utilizing the Systemic Immune-Inflammation Index and Blood-Based Biomarkers in Association with Treatment Responsiveness amongst Patients with Treatment-Resistant Bipolar Depression. J Pers Med 2023; 13:1245. [PMID: 37623494 PMCID: PMC10455950 DOI: 10.3390/jpm13081245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/28/2023] [Accepted: 08/03/2023] [Indexed: 08/26/2023] Open
Abstract
(1) Background: Inflammation is associated with depressive illness and treatment resistance. This study assessed a novel inflammatory index, the Systemic Immune-Inflammation Index (SII), in patients diagnosed with treatment-resistant bipolar depression (TRBDD) before and after treatment with escitalopram (ESC) and celecoxib (CBX) add-on or ESC and placebo (PBO), and compared them to healthy control (HC) subjects. (2) Methods: This is a secondary biological analysis from a double-blind randomized placebo-controlled trial of CBX augmentation in TRBDD. Our subsample with available complete blood count (CBC) data included 52 TRBDD subjects, randomized into an ESC + CBX, (n = 29), an ESC + PBO arm (n = 23), and an HC group (n = 32). SII was calculated from the CBC with differential (SII = platelets x neutrophils/lymphocytes) at baseline and end of treatment (8 weeks). Blood inflammation biomarkers, growth factors, and kynurenine metabolites were determined at both timepoints. Depressive symptom severity was the primary outcome, using the HAMD-17 rating scale score to quantitate treatment response and remission rates. (3) Results: Baseline SII did not discriminate TRBDD from HC, nor was it associated with HAMD-17 score at any timepoint, although it was significantly associated with lower baseline VEGF (p = 0.011) and higher week 8 levels of IL1-β (p = 0.03) and CRP (p = 0.048). Post-treatment HAMD-17 was not independently predicted using baseline SII unless an interaction with age was present (p = 0.003 was included), even after relevant adjustments. A similar effect was seen with baseline neutrophils. (4) Conclusions: While SII was not an independent predictor of treatment outcome, elevated baseline SII was a predictor of poor treatment response amongst older patients with TRBDD.
Collapse
Affiliation(s)
- Kyle Decker
- Department of Psychiatry and Behavioral Neurosciences, Loyola University Chicago Stritch School of Medicine, Loyola University Medical Center, Maywood, IL 60153, USA; (K.D.); (N.B.); (A.H.)
- Stritch School of Medicine, Loyola University, Maywood, IL 60153, USA
| | - Stephen Murata
- Pine Rest Christian Mental Health Services, Michigan State University, Grand Rapids, MI 49548, USA
| | - Nausheen Baig
- Department of Psychiatry and Behavioral Neurosciences, Loyola University Chicago Stritch School of Medicine, Loyola University Medical Center, Maywood, IL 60153, USA; (K.D.); (N.B.); (A.H.)
- Stritch School of Medicine, Loyola University, Maywood, IL 60153, USA
| | - Sakibur Hasan
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI 48824, USA;
| | - Angelos Halaris
- Department of Psychiatry and Behavioral Neurosciences, Loyola University Chicago Stritch School of Medicine, Loyola University Medical Center, Maywood, IL 60153, USA; (K.D.); (N.B.); (A.H.)
| |
Collapse
|
46
|
Godala M, Gaszyńska E, Walczak K, Małecka-Wojciesko E. Evaluation of Albumin, Transferrin and Transthyretin in Inflammatory Bowel Disease Patients as Disease Activity and Nutritional Status Biomarkers. Nutrients 2023; 15:3479. [PMID: 37571416 PMCID: PMC10421392 DOI: 10.3390/nu15153479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/03/2023] [Accepted: 08/05/2023] [Indexed: 08/13/2023] Open
Abstract
Inflammatory bowel disease (IBD), which includes Crohn's disease (CD) and ulcerative colitis (UC), is often accompanied by malnutrition that manifests itself as nutrient deficiencies and body mass loss or deficit. The purpose of this study is to evaluate the utility of albumin, transferrin and transthyretin levels in the assessment of nutritional status and IBD activity. The case-control study included 82 IBD patients. The serum concentrations of albumin, transferrin and transthyretine were determined by a quantitative sandwich enzyme-linked immunosorbent assay (ELISA). Significantly lower median concentrations of albumin were found in the IBD patients vs. controls and in CD patients compared to the UC patients. Significantly higher median transthyretin concentrations were found in the IBD patients compared to the healthy subjects. There were no significant differences in median transferrin concentrations between the IBD patients and the healthy subjects. Significantly higher albumin levels were found in IBD patients in remission compared to patients with moderate and severe exacerbation of IBD symptoms. There were no significant differences in the median transferrin or transthyretin levels in patients with IBD depending on disease activity. No differences were identified in the median transferrin or transthyretin levels in the IBD patients according to nutritional status. The median albumin concentrations in the IBD subjects were significantly higher in patients with normal body fat, normal BMI and normal waist circumferences compared to those with an abnormal nutritional status. The albumin levels reflect both nutritional status and disease activity and therefore cannot be considered a prognostic marker of malnutrition in IBD. As regards the utility of transferrin and transthyretin as markers of activity and nutritional status in IBD patients, further studies are required.
Collapse
Affiliation(s)
- Małgorzata Godala
- Department of Nutrition and Epidemiology, Medical University of Lodz, 90-752 Lodz, Poland;
| | - Ewelina Gaszyńska
- Department of Nutrition and Epidemiology, Medical University of Lodz, 90-752 Lodz, Poland;
| | - Konrad Walczak
- Department of Internal Medicine and Nephrodiabetology, Medical University of Lodz, 90-419 Lodz, Poland;
| | - Ewa Małecka-Wojciesko
- Department of Digestive Tract Diseases, Medical University of Lodz, 90-647 Lodz, Poland;
| |
Collapse
|
47
|
Feldman MJ, Jolink TA, Alvarez GM, Fendinger NJ, Gaudier-Diaz MM, Lindquist KA, Muscatell KA. The roles of inflammation, affect, and interoception in predicting social perception. Brain Behav Immun 2023; 112:246-253. [PMID: 37263364 PMCID: PMC10528976 DOI: 10.1016/j.bbi.2023.05.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 04/20/2023] [Accepted: 05/22/2023] [Indexed: 06/03/2023] Open
Abstract
"Sickness behavior" is an orchestrated suite of symptoms that commonly occur in the context of inflammation, and is characterized by changes in affect, social experience, and behavior. However, recent evidence suggests that inflammation may not always produce the same set of sickness behavior (e.g., fatigue, anhedonia, and social withdrawal). Rather, inflammation may be linked with different behavior across contexts and/or across individuals, though research in this area is under-developed to-date. In the present study (n = 30), we evaluated the influence of affective context and individual differences in difficulty detecting bodily sensations (i.e., interoceptive difficulty) on social perception following an inflammatory challenge. Inflammation was induced using the influenza vaccine and inflammatory reactivity was operationalized as changes in circulating levels of interleukin-6 (IL-6) before the vaccine and approximately 24 h later. Twenty-four hours after administration of the influenza vaccine, we manipulated affective context using a well-validated affect misattribution task in which participants made trustworthiness judgments of individuals with neutral facial expressions following the rapid presentation of "prime" images that were positive or negative in affective content. Interoceptive difficulty was measured at baseline using a validated self-report measure. Results revealed significant interactions between inflammatory reactivity to the influenza vaccine and affective context on social perception. Specifically, individuals with greater inflammatory reactivity were more biased by affective context when judging the trustworthiness of neutral faces. In addition, interoceptive difficulty and affective context interacted to predict social perception such that individuals with greater interoceptive difficulty were more biased by affective context in these judgments. In sum, we provide some of the first evidence that inflammation may amplify the saliency of affective cues during social decision making. Our findings also replicate prior work linking interoceptive ability to the use of affect-as-information during social perception, but in the novel context of inflammation.
Collapse
Affiliation(s)
| | - Tatum A Jolink
- University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | | | | | | | - Keely A Muscatell
- University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Carolina Population Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
48
|
Lee S, Choi YJ, Huo C, Alishir A, Kang KS, Park IH, Jang T, Kim KH. Laricitrin 3-Rutinoside from Ginkgo biloba Fruits Prevents Damage in TNF-α-Stimulated Normal Human Dermal Fibroblasts. Antioxidants (Basel) 2023; 12:1432. [PMID: 37507970 PMCID: PMC10376084 DOI: 10.3390/antiox12071432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Human skin comprises the epidermis and dermis, which perform interactive functional activities with each other in order to maintain the skin's tensile strength. In particular, the dermal layer is crucial for skin protection. However, skin aging destroys collagen and elastin fibers, causing wrinkles, pigments, and sagging. Skin aging-related factors, such as tumor necrosis factor-α (TNF-α), promote the generation of intercellular reactive oxygen species (ROS). These are known to stimulate the hypersecretion of matrix metalloproteinase-1 (MMP-1), which degrades collagen and inhibits collagen synthesis. In this study, as part of our ongoing discovery of natural products, we investigated potential natural products derived from ginkgo fruit (Ginkgo biloba fruit) with protective effects against TNF-α-induced skin aging. Phytochemical investigation of the MeOH extract of G. biloba fruits, aided by liquid chromatography-mass spectrometry, led to the isolation of 14 compounds (1-14) from the n-butanol-soluble fraction. These were structurally determined to be: (E)-coniferin (1), syringin (2), 4-hydroxybenzoic acid 4-O-β-D-glucopyranoside (3), vanillic acid 4-O-β-D-glucopyranoside (4), glucosyringic acid (5), (E)-ferulic acid 4-O-β-D-glucoside (6), (E)-sinapic acid 4-O-β-D-glucopyranoside (7), ginkgotoxin-5-glucoside (8), ginkgopanoside (9), (Z)-4-coumaric acid 4-O-β-D-glucopyranoside (10), (1'R,2'S,5'R,8'S,2'Z,4'E)-dihydrophaseic acid 3'-O-β-D-glucopyranoside (11), eucomic acid (12), rutin (13), and laricitrin 3-rutinoside (L3R) (14). Biological evaluation of the isolated compounds for their effects on intracellular ROS generation showed that, of these 14 compounds, L3R (14) inhibited TNF-α-stimulated ROS generation (p < 0.001 at 100 μM). Inhibition of ROS generation by L3R led to the suppression of MMP-1 secretion and protection against collagen degradation. The inhibitory effect of L3R was mediated by the inhibition of extracellular signal regulated kinase (ERK) phosphorylation. Furthermore, L3R diminished the secretion of pro-inflammatory cytokines interleukin 6 (IL-6) and interleukin 8 (IL-8). Based on these experimental results, L3R is a potential bioactive natural product that can be used to protect against skin damage, including aging, in cosmetics and pharmaceuticals.
Collapse
Affiliation(s)
- Sullim Lee
- Department of Life Science, College of Bio-Nano Technology, Gachon University, Seongnam 13120, Republic of Korea
| | - Yea Jung Choi
- College of Korean Medicine, Gachon University, Seongnam 13120, Republic of Korea
| | - Chen Huo
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Akida Alishir
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Ki Sung Kang
- College of Korean Medicine, Gachon University, Seongnam 13120, Republic of Korea
| | - Il-Ho Park
- College of Pharmacy, Sahmyook University, 815, Hwarang-ro, Nowon-gu, Seoul 01795, Republic of Korea
| | - Taesu Jang
- Health Administration, Dankook University, Cheonan 31116, Republic of Korea
| | - Ki Hyun Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
49
|
Aristov VV, Karnaukhov AV, Buchelnikov AS, Levchenko VF, Nechipurenko YD. The Degradation and Aging of Biological Systems as a Process of Information Loss and Entropy Increase. ENTROPY (BASEL, SWITZERLAND) 2023; 25:1067. [PMID: 37510014 PMCID: PMC10378089 DOI: 10.3390/e25071067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/06/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023]
Abstract
The problem of the degradation and aging of bioorganisms is herein considered from the viewpoint of statistical physics. Two typical timescales in biological systems-the time of metabolic processes and the time of the life cycle-are used. A kinetic equation describing the small timescales of the systems' characteristic processes in is proposed. Maintaining a biosystem in a time-stable state requires a constant inflow of negative entropy (negentropy). Ratios are proposed to evaluate the aging and degradation of systems in terms of entropy. As an example, the aging of the epithelium is studied. The connection of our approach to the information theory of aging is discussed, as well as theoretical constructions related to the concept of cooperon and its changing with time.
Collapse
Affiliation(s)
- Vladimir V Aristov
- Federal Research Center "Computer Science and Control" of Russian Academy of Sciences, Vavilova Str. 40, 119333 Moscow, Russia
| | - Alexey V Karnaukhov
- Institute of Cell Biophysics of the Russian Academy of Sciences, Moskovskaya obl., Institutskaya Str. 3, 142290 Pushchino, Russia
| | - Anatoly S Buchelnikov
- Laboratory of Molecular and Cellular Biophysics, Sevastopol State University, Universitetskaya Str. 33, 299053 Sevastopol, Russia
- Laboratory of DNA-Protein Interactions, Engelhardt Institute of Molecular Biology of Russian Academy of Sciences, Vavilova Str. 32, 119991 Moscow, Russia
| | - Vladimir F Levchenko
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Russian Federation, Thorez 44, 194223 St. Petersburg, Russia
| | - Yury D Nechipurenko
- Laboratory of DNA-Protein Interactions, Engelhardt Institute of Molecular Biology of Russian Academy of Sciences, Vavilova Str. 32, 119991 Moscow, Russia
| |
Collapse
|
50
|
Bach RR, Rudquist RR. Gulf war illness inflammation reduction trial: A phase 2 randomized controlled trial of low-dose prednisone chronotherapy, effects on health-related quality of life. PLoS One 2023; 18:e0286817. [PMID: 37319244 PMCID: PMC10270619 DOI: 10.1371/journal.pone.0286817] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 02/28/2023] [Indexed: 06/17/2023] Open
Abstract
BACKGROUND Gulf War illness (GWI) is a deployment-related chronic multisymptom illness impacting the health-related quality of life (HRQOL) of many U.S. Military Veterans of the 1990-91 Gulf War. A proinflammatory blood biomarker fingerprint was discovered in our initial study of GWI. This led to the hypothesis that chronic inflammation is a component of GWI pathophysiology. OBJECTIVES The GWI inflammation hypothesis was tested in this Phase 2 randomized controlled trial (RCT) by measuring the effects of an anti-inflammatory drug and placebo on the HRQOL of Veterans with GWI. The trial is registered at ClinicalTrials.gov, Identifier: NCT02506192. RCT DESIGN AND METHODS Gulf War Veterans meeting the Kansas case definition for GWI were randomized to receive either 10 mg modified-release prednisone or matching placebo. The Veterans RAND 36-Item Health Survey was used to assess HRQOL. The primary outcome was a change from baseline in the physical component summary (PCS) score, a measure of physical functioning and symptoms. A PCS increase indicates improved physical HRQOL. RESULTS For subjects with a baseline PCS <40, there was a 15.2% increase in the mean PCS score from 32.9±6.0 at baseline to 37.9±9.0 after 8 weeks on modified-release prednisone. Paired t-test analysis determined the change was statistically significant (p = 0.004). Eight weeks after cessation of the treatment, the mean PCS score declined to 32.7±5.8. CONCLUSIONS The prednisone-associated improvement in physical HRQOL supports the GWI inflammation hypothesis. Determining the efficacy of prednisone as a treatment for GWI will require a Phase 3 RCT.
Collapse
Affiliation(s)
- Ronald R. Bach
- Minneapolis Veterans Affairs Health Care System, Minneapolis, Minnesota, United States of America
| | - Rebecca R. Rudquist
- Minneapolis Veterans Affairs Health Care System, Minneapolis, Minnesota, United States of America
| |
Collapse
|