1
|
Anis A, Shamroop KM, Saba A, Mohammed A, Misha A, Sandra M, Alan P, Youssef HZ, Alessia F, Brian M. Radiation-induced nephrotoxicity: Role of SMPDL3b. Int J Radiat Oncol Biol Phys 2024:S0360-3016(24)03712-X. [PMID: 39667585 DOI: 10.1016/j.ijrobp.2024.11.105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 10/18/2024] [Accepted: 11/29/2024] [Indexed: 12/14/2024]
Abstract
BACKGROUND Radiation nephropathy (RN) can be a significant late complication after radiotherapy for abdominal and paraspinal tumors. The mechanisms for the development of RN are thought to involve disruption of podocyte function, leading to podocyte cell death and, finally, impaired renal function. This study investigated the mechanistic role of SMPDL3b in regulating podocyte injury and renal function after irradiation. The aim of the study was to investigate the potential linkage between (1) RT-induced renal dysfunction and podocyte SMPDL3b expression and (2) RT-induced podocyte injury and expansion of the glomerular basement membrane (GBM). METHODS SMPDL3b WT, siSMPDL3b, and SMPDL3b-overexpressing podocytes were irradiated in cell culture, and cell death was assessed. SMPDL3b WT and podocyte-specific SMPDL3b KO (pSMPDL3b KO) mice were treated with focal bilateral kidney X-irradiation (14 Gy, or 6 × 5Gy), and podocyte apoptosis, renal function parameters, glomerular filtration rate (GFR), glomerular histology, and GBM ultrastructural changes via transmission electron microscopy were assessed. RESULTS Following RT treatment, a notable decrease in SMPDL3b expression was observed, accompanied by heightened levels of DNA damage, cytoskeletal alterations, and apoptotic events in cultured podocytes. SMPDL3b overexpression notably prevented DNA damage and apoptosis in cultured podocytes. Additionally, in vivo, RT exposure led to a significant decline in SMPDL3b expression, podocyte count, and renal function while concomitantly elevating glomerular basement membrane (GBM) thickness, mesangial expansion, and renal fibrosis at the 20-week post-RT. Furthermore, in vivo, rituximab pretreatment before RT prevented SMPDL3b downregulation, podocyte loss, mesangial expansion, GBM expansion, and renal fibrosis and ultimately enhanced renal function post-RT. CONCLUSION Our findings collectively suggest a novel function for SMPDL3b in orchestrating the DNA damage response triggered by radiation. This study proposes that SMPDL3b exerts a regulatory influence on the repair of double-strand breaks (DSBs) within podocytes, consequently averting podocyte loss, glomerular basement membrane (GBM) expansion, and the onset of radiation nephropathy.
Collapse
Affiliation(s)
- Ahmad Anis
- Department of Radiation Oncology, University of Miami, Sylvester Comprehensive Cancer Center/ Miller School of Medicine, Miami, FL, USA
| | - Kumar Mallela Shamroop
- Peggy and Harold Katz Family Drug Discovery Center and Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miami, FL, USA
| | - Ansari Saba
- Department of Radiation Oncology, University of Miami, Sylvester Comprehensive Cancer Center/ Miller School of Medicine, Miami, FL, USA
| | - Alnukhali Mohammed
- Department of Radiation Oncology, University of Miami, Sylvester Comprehensive Cancer Center/ Miller School of Medicine, Miami, FL, USA
| | - Ali Misha
- Department of Radiation Oncology, University of Miami, Sylvester Comprehensive Cancer Center/ Miller School of Medicine, Miami, FL, USA
| | - Merscher Sandra
- Peggy and Harold Katz Family Drug Discovery Center and Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miami, FL, USA
| | - Pollack Alan
- Department of Radiation Oncology, University of Miami, Sylvester Comprehensive Cancer Center/ Miller School of Medicine, Miami, FL, USA
| | - H Zeidan Youssef
- Department of Radiation Oncology, American University of Beirut, Beirut, Lebanon and Baptist Health, Lynn Cancer Institute, Boca Raton, Florida
| | - Fornoni Alessia
- Peggy and Harold Katz Family Drug Discovery Center and Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miami, FL, USA
| | - Marples Brian
- Department of Radiation Oncology, University of Miami, Sylvester Comprehensive Cancer Center/ Miller School of Medicine, Miami, FL, USA; Department of Radiation Oncology, University of Rochester, 601 Elmwood Ave. Box 647 Rochester, NY, USA.
| |
Collapse
|
2
|
Nüsken E, Voggel J, Saschin L, Weber LT, Dötsch J, Alcazar MAA, Nüsken KD. Kidney lipid metabolism: impact on pediatric kidney diseases and modulation by early-life nutrition. Pediatr Nephrol 2024:10.1007/s00467-024-06595-z. [PMID: 39601825 DOI: 10.1007/s00467-024-06595-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 10/04/2024] [Accepted: 10/22/2024] [Indexed: 11/29/2024]
Abstract
Our review summarizes and evaluates the current state of knowledge on lipid metabolism in relation to the pathomechanisms of kidney disease with a focus on common pediatric kidney diseases. In addition, we discuss how nutrition in early childhood can alter kidney development and permanently shape kidney lipid and protein metabolism, which in turn affects kidney health and disease throughout life. Comprehensive integrated lipidomics and proteomics network analyses are becoming increasingly available and offer exciting new insights into metabolic signatures. Lipid accumulation, lipid peroxidation, oxidative stress, and dysregulated pro-inflammatory lipid mediator signaling have been identified as important mechanisms influencing the progression of minimal change disease, focal segmental glomerulosclerosis, membranous nephropathy, diabetic kidney disease, and acute kidney injury. We outline key features of metabolic homeostasis and lipid metabolic physiology in renal cells and discuss pathophysiological aspects in the pediatric context. On the one hand, special vulnerabilities such as reduced antioxidant capacity in neonates must be considered. On the other hand, there is a unique window of opportunity during kidney development, as nutrition in early life influences the composition of cellular phospholipid membranes in the growing kidney and thus affects local signaling pathways far beyond the growth phase.
Collapse
Affiliation(s)
- Eva Nüsken
- Clinic and Polyclinic for Pediatric and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Jenny Voggel
- Clinic and Polyclinic for Pediatric and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Leon Saschin
- Clinic and Polyclinic for Pediatric and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Lutz T Weber
- Clinic and Polyclinic for Pediatric and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Jörg Dötsch
- Clinic and Polyclinic for Pediatric and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Miguel A Alejandre Alcazar
- Clinic and Polyclinic for Pediatric and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Institute for Lung Health, University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Kai-Dietrich Nüsken
- Clinic and Polyclinic for Pediatric and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany.
| |
Collapse
|
3
|
Šakić Z, Atić A, Potočki S, Bašić-Jukić N. Sphingolipids and Chronic Kidney Disease. J Clin Med 2024; 13:5050. [PMID: 39274263 PMCID: PMC11396415 DOI: 10.3390/jcm13175050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 09/16/2024] Open
Abstract
Sphingolipids (SLs) are bioactive signaling molecules essential for various cellular processes, including cell survival, proliferation, migration, and apoptosis. Key SLs such as ceramides, sphingosine, and their phosphorylated forms play critical roles in cellular integrity. Dysregulation of SL levels is implicated in numerous diseases, notably chronic kidney disease (CKD). This review focuses on the role of SLs in CKD, highlighting their potential as biomarkers for early detection and prognosis. SLs maintain renal function by modulating the glomerular filtration barrier, primarily through the activity of podocytes. An imbalance in SLs can lead to podocyte damage, contributing to CKD progression. SL metabolism involves complex enzyme-catalyzed pathways, with ceramide serving as a central molecule in de novo and salvage pathways. Ceramides induce apoptosis and are implicated in oxidative stress and inflammation, while sphingosine-1-phosphate (S1P) promotes cell survival and vascular health. Studies have shown that SL metabolism disorders are linked to CKD progression, diabetic kidney disease, and glomerular diseases. Targeting SL pathways could offer novel therapeutic approaches for CKD. This review synthesizes recent research on SL signaling regulation in kidney diseases, emphasizing the importance of maintaining SL balance for renal health and the potential therapeutic benefits of modulating SL pathways.
Collapse
Affiliation(s)
- Zrinka Šakić
- Vuk Vrhovac University Clinic, Dugi dol 4a, 10000 Zagreb, Croatia
| | - Armin Atić
- Division of Nephrology, Arterial Hypertension, Dialysis and Transplantation, University Hospital Center Zagreb, 10000 Zagreb, Croatia
| | - Slavica Potočki
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Nikolina Bašić-Jukić
- Division of Nephrology, Arterial Hypertension, Dialysis and Transplantation, University Hospital Center Zagreb, 10000 Zagreb, Croatia
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| |
Collapse
|
4
|
Lee AM, Xu Y, Hu J, Xiao R, Hooper SR, Hartung EA, Coresh J, Rhee EP, Vasan RS, Kimmel PL, Warady BA, Furth SL, Denburg MR. Longitudinal Plasma Metabolome Patterns and Relation to Kidney Function and Proteinuria in Pediatric CKD. Clin J Am Soc Nephrol 2024; 19:837-850. [PMID: 38709558 PMCID: PMC11254025 DOI: 10.2215/cjn.0000000000000463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 04/29/2024] [Indexed: 05/08/2024]
Abstract
Key Points Longitudinal untargeted metabolomics. Children with CKD have a circulating metabolome that changes over time. Background Understanding plasma metabolome patterns in relation to changing kidney function in pediatric CKD is important for continued research for identifying novel biomarkers, characterizing biochemical pathophysiology, and developing targeted interventions. There are a limited number of studies of longitudinal metabolomics and virtually none in pediatric CKD. Methods The CKD in Children study is a multi-institutional, prospective cohort that enrolled children aged 6 months to 16 years with eGFR 30–90 ml/min per 1.73 m2. Untargeted metabolomics profiling was performed on plasma samples from the baseline, 2-, and 4-year study visits. There were technologic updates in the metabolomic profiling platform used between the baseline and follow-up assays. Statistical approaches were adopted to avoid direct comparison of baseline and follow-up measurements. To identify metabolite associations with eGFR or urine protein-creatinine ratio (UPCR) among all three time points, we applied linear mixed-effects (LME) models. To identify metabolites associated with time, we applied LME models to the 2- and 4-year follow-up data. We applied linear regression analysis to examine associations between change in metabolite level over time (∆level) and change in eGFR (∆eGFR) and UPCR (∆UPCR). We reported significance on the basis of both the false discovery rate (FDR) <0.05 and P < 0.05. Results There were 1156 person-visits (N : baseline=626, 2-year=254, 4-year=276) included. There were 622 metabolites with standardized measurements at all three time points. In LME modeling, 406 and 343 metabolites associated with eGFR and UPCR at FDR <0.05, respectively. Among 530 follow-up person-visits, 158 metabolites showed differences over time at FDR <0.05. For participants with complete data at both follow-up visits (n =123), we report 35 metabolites with ∆level–∆eGFR associations significant at FDR <0.05. There were no metabolites with significant ∆level–∆UPCR associations at FDR <0.05. We report 16 metabolites with ∆level–∆UPCR associations at P < 0.05 and associations with UPCR in LME modeling at FDR <0.05. Conclusions We characterized longitudinal plasma metabolomic patterns associated with eGFR and UPCR in a large pediatric CKD population. Many of these metabolite signals have been associated with CKD progression, etiology, and proteinuria in previous CKD Biomarkers Consortium studies. There were also novel metabolite associations with eGFR and proteinuria detected.
Collapse
Affiliation(s)
- Arthur M. Lee
- Division of Nephrology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Yunwen Xu
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland
| | - Jian Hu
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia
| | - Rui Xiao
- Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Stephen R. Hooper
- Department of Health Sciences, School of Medicine, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina
| | - Erum A. Hartung
- Division of Nephrology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Josef Coresh
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
- NYU Grossman School of Medicine, New York, New York
| | - Eugene P. Rhee
- Division of Nephrology, Massachusetts General Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Ramachandran S. Vasan
- Boston University School of Medicine, Boston, Massachusetts
- Boston University School of Public Health, Boston, Massachusetts
| | - Paul L. Kimmel
- Division of Kidney, Urologic, and Hematologic Diseases, National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland
| | - Bradley A. Warady
- Division of Nephrology, Children’s Mercy Kansas City, Kansas City, Missouri
- University of Missouri-Kansas City School of Medicine, Kansas City, Missouri
| | - Susan L. Furth
- Division of Nephrology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Children’s Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania
- Department of Pediatrics and Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Michelle R. Denburg
- Division of Nephrology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Pediatrics and Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
5
|
Tolerico M, Merscher S, Fornoni A. Normal and Dysregulated Sphingolipid Metabolism: Contributions to Podocyte Injury and Beyond. Cells 2024; 13:890. [PMID: 38891023 PMCID: PMC11171506 DOI: 10.3390/cells13110890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/09/2024] [Accepted: 05/16/2024] [Indexed: 06/20/2024] Open
Abstract
Podocyte health is vital for maintaining proper glomerular filtration in the kidney. Interdigitating foot processes from podocytes form slit diaphragms which regulate the filtration of molecules through size and charge selectivity. The abundance of lipid rafts, which are ordered membrane domains rich in cholesterol and sphingolipids, near the slit diaphragm highlights the importance of lipid metabolism in podocyte health. Emerging research shows the importance of sphingolipid metabolism to podocyte health through structural and signaling roles. Dysregulation in sphingolipid metabolism has been shown to cause podocyte injury and drive glomerular disease progression. In this review, we discuss the structure and metabolism of sphingolipids, as well as their role in proper podocyte function and how alterations in sphingolipid metabolism contributes to podocyte injury and drives glomerular disease progression.
Collapse
Affiliation(s)
| | - Sandra Merscher
- Peggy and Harold Katz Family Drug Discovery Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA;
| | - Alessia Fornoni
- Peggy and Harold Katz Family Drug Discovery Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA;
| |
Collapse
|
6
|
Ren X, Chen J, Abraham AG, Xu Y, Siewe A, Warady BA, Kimmel PL, Vasan RS, Rhee EP, Furth SL, Coresh J, Denburg M, Rebholz CM. Plasma Metabolomics of Dietary Intake of Protein-Rich Foods and Kidney Disease Progression in Children. J Ren Nutr 2024; 34:95-104. [PMID: 37944769 PMCID: PMC10960708 DOI: 10.1053/j.jrn.2023.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/12/2023] [Accepted: 10/21/2023] [Indexed: 11/12/2023] Open
Abstract
OBJECTIVE Evidence regarding the efficacy of a low-protein diet for patients with CKD is inconsistent and recommending a low-protein diet for pediatric patients is controversial. There is also a lack of objective biomarkers of dietary intake. The purpose of this study was to identify plasma metabolites associated with dietary intake of protein and to assess whether protein-related metabolites are associated with CKD progression. METHODS Nontargeted metabolomics was conducted in plasma samples from 484 Chronic Kidney Disease in Children (CKiD) participants. Multivariable linear regression estimated the cross-sectional association between 949 known, nondrug metabolites and dietary intake of total protein, animal protein, plant protein, chicken, dairy, nuts and beans, red and processed meat, fish, and eggs, adjusting for demographic, clinical, and dietary covariates. Cox proportional hazards models assessed the prospective association between protein-related metabolites and CKD progression defined as the initiation of kidney replacement therapy or 50% eGFR reduction, adjusting for demographic and clinical covariates. RESULTS One hundred and twenty-seven (26%) children experienced CKD progression during 5 years of follow-up. Sixty metabolites were significantly associated with dietary protein intake. Among the 60 metabolites, 10 metabolites were significantly associated with CKD progression (animal protein: n = 1, dairy: n = 7, red and processed meat: n = 2, nuts and beans: n = 1), including one amino acid, one cofactor and vitamin, 4 lipids, 2 nucleotides, one peptide, and one xenobiotic. 1-(1-enyl-palmitoyl)-2-oleoyl-glycerophosphoethanolamine (GPE, P-16:0/18:1) was positively associated with dietary intake of red and processed meat, and a doubling of its abundance was associated with 88% higher risk of CKD progression. 3-ureidopropionate was inversely associated with dietary intake of red and processed meat, and a doubling of its abundance was associated with 48% lower risk of CKD progression. CONCLUSIONS Untargeted plasma metabolomic profiling revealed metabolites associated with dietary intake of protein and CKD progression in a pediatric population.
Collapse
Affiliation(s)
- Xuyuehe Ren
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Jingsha Chen
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Alison G Abraham
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland; Department of Epidemiology, University of Colorado School of Public Health, Aurora, Colorado
| | - Yunwen Xu
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Aisha Siewe
- Division of Cardiology, Department of Medicine, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Bradley A Warady
- Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Children's Mercy Kansas City, Kansas City, Missouri
| | - Paul L Kimmel
- Division of Kidney, Urologic, and Hematologic Diseases, National Institute of Diabetes, Digestive, and Kidney Disorders, National Institutes of Health, Bethesda, Maryland; Division of Renal Diseases and Hypertension, Department of Medicine, George Washington University Medical Center, Washington, District of Columbia
| | | | - Eugene P Rhee
- Nephrology Division and Endocrinology Unit, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Susan L Furth
- Division of Nephrology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania; Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Josef Coresh
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Michelle Denburg
- Division of Nephrology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania; Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania; Center for Pediatric Clinical Effectiveness, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Casey M Rebholz
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland.
| |
Collapse
|
7
|
Hu L, Peng Z, Bai G, Fu H, Tan DJ, Wang J, Li W, Cao Z, Huang G, Liu F, Xie Y, Lin L, Sun J, Gao L, Chen Y, Zhu R, Mao J. Lipidomic profiles in serum and urine in children with steroid sensitive nephrotic syndrome. Clin Chim Acta 2024; 555:117804. [PMID: 38316288 DOI: 10.1016/j.cca.2024.117804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/11/2024] [Accepted: 01/23/2024] [Indexed: 02/07/2024]
Abstract
BACKGROUND Steroid-sensitive nephrotic syndrome (SSNS) accounts for approximately 80% of cases of nephrotic syndrome. The involvement of aberrant lipid metabolism in early SSNS is poorly understood, warranting further investigation. This study aimed to explore alterations in lipid metabolism associated with SSNS pathogenesis. METHODS A screening cohort containing serum (50 SSNS, 37 controls) and urine samples (27 SSNS, 26 controls) was analyzed by untargeted lipidomic profiling using UHPLC-QTOF-MS. Then, a validation cohort (20 SSNS, 56 controls) underwent further analysis to check the potential clinical application by ROC curve analysis. RESULTS Lipidomic profiling of serum and urine samples revealed significant lipid alterations in SSNS patients, with the alterations in the serum samples being more significant. An elevated concentration of PE and PG and downregulated concentration of FA were observed in SSNS serum. A total of 38 dysregulated lipids and 5 lipid metabolic pathways were identified in the serum samples in SSNS patients. Validation in the second cohort confirmed differential regulation of nine kinds of lipids, including 5 up-regulated substances [SM d33:2 (m/z = 686.5361), SHexCer d34:1 (m/z = 779.521), PI 20:4_22:4 (m/z = 934.5558), Cer_NS d18:1_23:0 (m/z = 635.6216), and GM3 d36:1 (m/z = 1180.7431)], as well as 4 down-regulated substances: [CE 18:1 (m/z = 650.601), PE 38:6 (m/z = 763.5205), PC 17:0_20:4 (m/z = 795.5868) and EtherPC 16:2e_20:4 (m/z = 763.5498)]. CONCLUSIONS Untargeted lipidomic analysis successfully identified specific lipid class changes in patients with SSNS, providing a deeper understanding of lipid alterations and underlying mechanisms associated with SSNS.
Collapse
Affiliation(s)
- Lidan Hu
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang Province, China.
| | - Zhaoyang Peng
- Clinical Laboratory, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang Province, China
| | - Guannan Bai
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang Province, China
| | - Haidong Fu
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang Province, China
| | - Danny Junyi Tan
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang Province, China
| | - Jingjing Wang
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang Province, China
| | - Wei Li
- Clinical Laboratory, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang Province, China
| | - Zhongkai Cao
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang Province, China
| | - Guoping Huang
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang Province, China
| | - Fei Liu
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang Province, China
| | - Yi Xie
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang Province, China
| | - Li Lin
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang Province, China
| | - Jingmiao Sun
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang Province, China
| | - Langping Gao
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang Province, China
| | - Yixuan Chen
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang Province, China
| | - Ruihan Zhu
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang Province, China
| | - Jianhua Mao
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang Province, China.
| |
Collapse
|
8
|
Chen Y, Checa A, Zhang P, Huang M, Kelly RS, Kim M, Chen YCS, Lee-Sarwar KA, Prince N, Mendez KM, Begum S, Kachroo P, Chu SH, Stokholm J, Bønnelykke K, Litonjua AA, Bisgaard H, Weiss ST, Chawes BL, Wheelock CE, Lasky-Su JA. Sphingolipid classes and the interrelationship with pediatric asthma and asthma risk factors. Allergy 2024; 79:404-418. [PMID: 38014461 PMCID: PMC11175620 DOI: 10.1111/all.15942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 10/10/2023] [Accepted: 10/15/2023] [Indexed: 11/29/2023]
Abstract
BACKGROUND While dysregulated sphingolipid metabolism has been associated with risk of childhood asthma, the specific sphingolipid classes and/or mechanisms driving this relationship remain unclear. We aimed to understand the multifaceted role between sphingolipids and other established asthma risk factors that complicate this relationship. METHODS We performed targeted LC-MS/MS-based quantification of 77 sphingolipids in plasma from 997 children aged 6 years from two independent cohorts (VDAART and COPSAC2010 ). We examined associations of circulatory sphingolipids with childhood asthma, lung function, and three asthma risk factors: functional SNPs in ORMDL3, low vitamin D levels, and reduced gut microbial maturity. Given racial differences between these cohorts, association analyses were performed separately and then meta-analyzed together. RESULTS We observed elevations in circulatory sphingolipids with asthma phenotypes and risk factors; however, there were differential associations of sphingolipid classes with clinical outcomes and/or risk factors. While elevations from metabolites involved in ceramide recycling and catabolic pathways were associated with asthma and worse lung function [meta p-value range: 1.863E-04 to 2.24E-3], increased ceramide levels were associated with asthma risk factors [meta p-value range: 7.75E-5 to .013], but not asthma. Further investigation identified that some ceramides acted as mediators while some interacted with risk factors in the associations with asthma outcomes. CONCLUSION This study demonstrates the differential role that sphingolipid subclasses may play in asthma and its risk factors. While overall elevations in sphingolipids appeared to be deleterious overall; elevations in ceramides were uniquely associated with increases in asthma risk factors only; while elevations in asthma phenotypes were associated with recycling sphingolipids. Modification of asthma risk factors may play an important role in regulating sphingolipid homeostasis via ceramides to affect asthma. Further function work may validate the observed associations.
Collapse
Affiliation(s)
- Yulu Chen
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Antonio Checa
- Unit of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institute, 171 77, Stockholm, Sweden
- Department of Respiratory Medicine and Allergy, Karolinska University Hospital, 171 76, Stockholm, Sweden
| | - Pei Zhang
- Unit of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institute, 171 77, Stockholm, Sweden
- Gunma University Initiative for Advanced Research (GIAR), Gunma University, Maebashi, Gunma, 371-8511, Japan
| | - Mengna Huang
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Rachel S. Kelly
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Min Kim
- Copenhagen Prospective Studies on Asthma in Childhood (COPSAC), Herlev and Gentofte Hospital, University of Copenhagen, 2820 Gentofte, Denmark
| | - Yih-Chieh S. Chen
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Division of Allergy and Clinical Immunology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Kathleen A. Lee-Sarwar
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Division of Allergy and Clinical Immunology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Nicole Prince
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Kevin M. Mendez
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Sofina Begum
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Priyadarshini Kachroo
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Su H. Chu
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Jakob Stokholm
- Copenhagen Prospective Studies on Asthma in Childhood (COPSAC), Herlev and Gentofte Hospital, University of Copenhagen, 2820 Gentofte, Denmark
| | - Klaus Bønnelykke
- Copenhagen Prospective Studies on Asthma in Childhood (COPSAC), Herlev and Gentofte Hospital, University of Copenhagen, 2820 Gentofte, Denmark
| | - Augusto A. Litonjua
- Division of Pediatric Pulmonary Medicine, Department of Pediatrics, Golisano Children’s Hospital and University of Rochester Medical Center, Rochester, NY, USA
| | - Hans Bisgaard
- Copenhagen Prospective Studies on Asthma in Childhood (COPSAC), Herlev and Gentofte Hospital, University of Copenhagen, 2820 Gentofte, Denmark
| | - Scott T. Weiss
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Bo L. Chawes
- Copenhagen Prospective Studies on Asthma in Childhood (COPSAC), Herlev and Gentofte Hospital, University of Copenhagen, 2820 Gentofte, Denmark
| | - Craig E. Wheelock
- Unit of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institute, 171 77, Stockholm, Sweden
- Department of Respiratory Medicine and Allergy, Karolinska University Hospital, 171 76, Stockholm, Sweden
- Gunma University Initiative for Advanced Research (GIAR), Gunma University, Maebashi, Gunma, 371-8511, Japan
| | - Jessica A. Lasky-Su
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
9
|
Luo Z, Chen Z, Hu J, Ding G. Interplay of lipid metabolism and inflammation in podocyte injury. Metabolism 2024; 150:155718. [PMID: 37925142 DOI: 10.1016/j.metabol.2023.155718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/12/2023] [Accepted: 10/28/2023] [Indexed: 11/06/2023]
Abstract
Podocytes are critical for maintaining permselectivity of the glomerular filtration barrier, and podocyte injury is a major cause of proteinuria in various primary and secondary glomerulopathies. Lipid dysmetabolism and inflammatory activation are the distinctive hallmarks of podocyte injury. Lipid accumulation and lipotoxicity trigger cytoskeletal rearrangement, insulin resistance, mitochondrial oxidative stress, and inflammation. Subsequently, inflammation promotes the progression of glomerulosclerosis and renal fibrosis via multiple pathways. These data suggest that lipid dysmetabolism positively or negatively regulates inflammation during podocyte injury. In this review, we summarize recent advances in the understanding of lipid metabolism and inflammation, and highlight the potential association between lipid metabolism and podocyte inflammation.
Collapse
Affiliation(s)
- Zilv Luo
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Nephrology and Urology Research Institute of Wuhan University, Wuhan 430060, China
| | - Zhaowei Chen
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Nephrology and Urology Research Institute of Wuhan University, Wuhan 430060, China.
| | - Jijia Hu
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Nephrology and Urology Research Institute of Wuhan University, Wuhan 430060, China
| | - Guohua Ding
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Nephrology and Urology Research Institute of Wuhan University, Wuhan 430060, China.
| |
Collapse
|
10
|
Moellmann J, Krueger K, Wong DWL, Klinkhammer BM, Buhl EM, Dehairs J, Swinnen JV, Noels H, Jankowski J, Lebherz C, Boor P, Marx N, Lehrke M. 2,8-Dihydroxyadenine-induced nephropathy causes hexosylceramide accumulation with increased mTOR signaling, reduced levels of protective SirT3 expression and impaired renal mitochondrial function. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166825. [PMID: 37536502 DOI: 10.1016/j.bbadis.2023.166825] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 08/05/2023]
Abstract
AIM Chronic kidney disease (CKD) is accompanied by increased cardiovascular risk and heart failure (HF). In rodents, 2,8-dihydroxyadenine (DHA)-induced nephropathy is a frequently used CKD model. Cardiac and kidney tubular cells share high energy demand to guarantee constant contractive force of the heart or reabsorption/secretion of primary filtrated molecules and waste products by the kidney. Here we analyze time-dependent mechanisms of kidney damage and cardiac consequences under consideration of energetic pathways with the focus on mitochondrial function and lipid metabolism in mice. METHODS AND RESULTS CKD was induced by alternating dietary adenine supplementation (0.2 % or 0.05 % of adenine) in C57BL/6J mice for 9 weeks. Progressive kidney damage led to reduced creatinine clearance, kidney fibrosis and renal inflammation after 3, 6, and 9 weeks. No difference in cardiac function, mitochondrial respiration nor left ventricular fibrosis was observed at any time point. Investigating mechanisms of renal damage, protective SirT3 was decreased in CKD, which contrasted an increase in protein kinase B (AKT) expression, mechanistic target of rapamycin (mTOR) downstream signaling, induction of oxidative and endoplasmic reticulum (ER) stress. This occurred together with impaired renal mitochondrial function and accumulation of hexosylceramides (HexCer) as an established mediator of inflammation and mitochondrial dysfunction in the kidney. CONCLUSIONS 2,8-DHA-induced CKD results in renal activation of the mTOR downstream signaling, endoplasmic reticulum stress, tubular injury, fibrosis, inflammation, oxidative stress and impaired kidney mitochondrial function in conjunction with renal hexosylceramide accumulation in C57BL/6J mice.
Collapse
Affiliation(s)
- Julia Moellmann
- Department of Internal Medicine I, University Hospital Aachen, RWTH Aachen University, Aachen, Germany
| | - Katja Krueger
- Department of Internal Medicine I, University Hospital Aachen, RWTH Aachen University, Aachen, Germany
| | - Dickson W L Wong
- Institute of Pathology, University Hospital Aachen, RWTH Aachen University, Aachen, Germany
| | - Barbara M Klinkhammer
- Institute of Pathology, University Hospital Aachen, RWTH Aachen University, Aachen, Germany
| | - Eva M Buhl
- Institute of Pathology, University Hospital Aachen, RWTH Aachen University, Aachen, Germany; Department of Nephrology, RWTH Aachen University, Aachen, Germany; Electron Microscopy Facility, RWTH Aachen University, Aachen, Germany
| | - Jonas Dehairs
- Laboratory of Lipid Metabolism and Cancer, Department of Oncology, LKI - Leuven Cancer Institute, KU Leuven - University of Leuven, Leuven, Belgium
| | - Johan V Swinnen
- Laboratory of Lipid Metabolism and Cancer, Department of Oncology, LKI - Leuven Cancer Institute, KU Leuven - University of Leuven, Leuven, Belgium
| | - Heidi Noels
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, Aachen, Germany
| | - Joachim Jankowski
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, Aachen, Germany
| | - Corinna Lebherz
- Department of Internal Medicine I, University Hospital Aachen, RWTH Aachen University, Aachen, Germany
| | - Peter Boor
- Institute of Pathology, University Hospital Aachen, RWTH Aachen University, Aachen, Germany; Department of Nephrology, RWTH Aachen University, Aachen, Germany
| | - Nikolaus Marx
- Department of Internal Medicine I, University Hospital Aachen, RWTH Aachen University, Aachen, Germany
| | - Michael Lehrke
- Department of Internal Medicine I, University Hospital Aachen, RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
11
|
Xie X, Wang Y, Chen S, Liu Y, Li F, Zeng C, Zhang L, Wang X. Network pharmacology and molecular docking of endogenous active metabolites in diabetic kidney disease. Ren Fail 2023; 45:2290927. [PMID: 38152048 PMCID: PMC10763839 DOI: 10.1080/0886022x.2023.2290927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 11/29/2023] [Indexed: 12/29/2023] Open
Abstract
OBJECTIVES Network pharmacology and molecular docking were used to predict endogenous active metabolites with protective effects in diabetic kidney disease (DKD). METHODS We utilized metabolomics to screen differentially expressed metabolites in kidney tissues of mice with type 2 DKD and predicted potential targets using relevant databases. The interaction network between endogenous active metabolites and target proteins was established by integrating differentially expressed metabolites and proteins associated with DKD identified through proteomics. Gene ontology (GO) and signaling pathway enrichment analysis were performed. The biological functions of the active candidate metabolites and their effects on downstream pathways were also verified. RESULTS Metabolomics revealed 130 differentially expressed metabolites. Through co-expression network analysis coupled with the investigation of differentially expressed proteins in proteomics, 2-hydroxyphenylpropionylglycine (2-HPG) emerged as a key regulator of DKD. 2-HPG was found to modulate the progression of DKD by regulating the conformation and activity of synaptophysin 1 (SYNJ1), with a correlation coefficient of 0.974. In vivo experiments revealed that SYNJ1 expression was significantly downregulated in the Macroalbuminuria Group compared to the Control Group and negatively correlated with proteinuria (r = -0.7137), indicating its important role in DKD progression. Immunofluorescence demonstrated that treatment with 2-HPG restores the expression of the foot process marker protein Wilms tumor-1 (WT-1) in podocytes injured by high glucose levels. Western blot and polymerase chain reaction support the involvement of SYNJ1 in this process. CONCLUSIONS This study demonstrated the significance of the 2-HPG/SYNJ1 signaling axis in safeguarding the foot process of podocytes in DKD.
Collapse
Affiliation(s)
- Xinmiao Xie
- Department of Nephrology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Yanzhe Wang
- Department of Nephrology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Sijia Chen
- Department of Nephrology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Yuyuan Liu
- Department of Nephrology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, PR China
| | - Fengqin Li
- Department of Nephrology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Chuchu Zeng
- Department of Nephrology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Ling Zhang
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Xiaoxia Wang
- Department of Nephrology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| |
Collapse
|
12
|
Kaya M, Girişgen İ, Yalçın N, Becerir T, Şenol H, Gülten G, Yüksel S. The Importance of Sphingomyelin Phosphodiesterase Acid-Like 3b (SMPDL-3b) Levels in Kidney Biopsy Specimens of Children With Nephrotic Syndrome. Fetal Pediatr Pathol 2023; 42:936-949. [PMID: 37818552 DOI: 10.1080/15513815.2023.2267683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 09/29/2023] [Indexed: 10/12/2023]
Abstract
OBJECTIVE It remains unclear whether the low amount of SMPDL-3b required for rituximab binding is the cause of treatment resistance in patients with treatment-resistant nephrotic syndrome with advanced podocyte injury. Given the limited number of studies on the relationship between rituximab and SMPDL-3b, this study was conducted to assess whether SMPDL-3b levels in pretreatment renal biopsy specimens can be used to predict the clinical effectiveness of immunosuppressive drugs, especially rituximab, in children with nephrotic syndrome. METHODS Kidney biopsy specimens from 44 patients diagnosed with idiopatic nephrotic syndrome were analyzed using immunohistochemical staining with an anti-SMPDL-3b antibody and real-time polymerase chain reaction (PCR) for SMPDL-3b mRNA expression. RESULTS We showed that SMPDL-3b mRNA expression and anti-SMPDL-3b antibody staining did not differ significantly between the patient groups with different responses to immunosuppressive therapies. CONCLUSION Our results suggest that SMPDL-3b may actually be an indicator of disease progression rather than a marker for predicting response to a particular immunosuppressive agent.
Collapse
Affiliation(s)
- Muhammet Kaya
- Department of Pediatric Nephrology, Faculty of Medicine, Pamukkale University, Denizli, Turkey
| | - İlknur Girişgen
- Department of Pediatric Nephrology, Faculty of Medicine, Pamukkale University, Denizli, Turkey
| | - Nagihan Yalçın
- Department of Pathology, Faculty of Medicine, Pamukkale University, Denizli, Turkey
| | - Tülay Becerir
- Department of Pediatric Nephrology, Faculty of Medicine, Pamukkale University, Denizli, Turkey
| | - Hande Şenol
- Department of Biostatistics, Faculty of Medicine, Pamukkale University, Denizli, Turkey
| | - Gülsün Gülten
- Department of Pathology, Faculty of Medicine, Pamukkale University, Denizli, Turkey
| | - Selcuk Yüksel
- Department of Pediatric Nephrology, Faculty of Medicine, Pamukkale University, Denizli, Turkey
| |
Collapse
|
13
|
Wang L, Yu X, Li H, He D, Zeng S, Xiang Z. Cell and rat serum, urine and tissue metabolomics analysis elucidates the key pathway changes associated with chronic nephropathy and reveals the mechanism of action of rhein. Chin Med 2023; 18:158. [PMID: 38041193 PMCID: PMC10691122 DOI: 10.1186/s13020-023-00862-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/21/2023] [Indexed: 12/03/2023] Open
Abstract
BACKGROUND Rhein can significantly delay the progression of chronic nephropathy. However, its mechanism of action has not been adequately elaborated, which hinders its extensive clinical application. In this work, the effects of rhein on models of TGF-β-induced NRK-49F cellular fibrosis and rat renal ischemia-reperfusion fibrosis were evaluated using metabolomics and western blotting. METHODS The metabolic profiles of NRK-49F cells and rat urine, serum, and kidney tissues in the control, model, and rhein groups were investigated using UPLC-QTOF-MS. The levels of p-P65, p-IKK, p-AKT, p-P38, p-JNK and AP-1 in NRK-49F cells were measured using western blotting and immunofluorescence methods. Molecular docking and network pharmacology methods were employed to explore the relationship between the potential targets of rhein and key proteins in the NF-κB and MAPK signaling pathways. RESULTS Various potential metabolites, including sphingolipids, ceramides, phosphatidylcholine, and lysophosphatidylcholine,14-hydroxy-E4-neuroprostane E, and 5-HPETE, were present in the cell, tissue, urine, and serum samples; however, few metabolites matches exactly among the four type of biological samples. These differential metabolites can effectively differentiated between the control, model, and rhein groups. Pathway enrichment analysis of differential metabolites unveiled that sphingolipid metabolism, arachidonic acid metabolism, and glycerophospholipid metabolism were closely related to nephropathy. Phosphorylation levels of AKT, IKK, P65 and AP-1 in NRK-49F cells was reduced by rhein treatment. Network pharmacology and molecular docking showed that the potential targets of rhein might regulated the expression of MAPK and AKT in the NF-κB and MAPK signaling pathways. CONCLUSION In brief, rhein might delays the progression of chronic nephropathy via the metabolic pathways, NF-κB and MAPKs signaling pathways, which provides the foundation for its development and clinical application.
Collapse
Affiliation(s)
- Li Wang
- Department of Pharmaceutical Analysis and Drug Metabolism, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, People's Republic of China
- Medical School, Hangzhou City University, Hangzhou, 310015, China
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, 310015, China
| | - Xixi Yu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Hongju Li
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Dahong He
- Medical School, Hangzhou City University, Hangzhou, 310015, China
| | - Su Zeng
- Department of Pharmaceutical Analysis and Drug Metabolism, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, People's Republic of China.
| | - Zheng Xiang
- Medical School, Hangzhou City University, Hangzhou, 310015, China.
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, 310015, China.
| |
Collapse
|
14
|
Li J, Huang Y, Zhang Y, Liu P, Liu M, Zhang M, Wu R. S1P/S1PR signaling pathway advancements in autoimmune diseases. BIOMOLECULES & BIOMEDICINE 2023; 23:922-935. [PMID: 37504219 PMCID: PMC10655875 DOI: 10.17305/bb.2023.9082] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/06/2023] [Accepted: 07/06/2023] [Indexed: 07/29/2023]
Abstract
Sphingosine-1-phosphate (S1P) is a versatile sphingolipid that is generated through the phosphorylation of sphingosine by sphingosine kinase (SPHK). S1P exerts its functional effects by binding to the G protein-coupled S1P receptor (S1PR). This lipid mediator plays a pivotal role in various cellular activities. The S1P/S1PR signaling pathway is implicated in the pathogenesis of immune-mediated diseases, significantly contributing to the functioning of the immune system. It plays a crucial role in diverse physiological and pathophysiological processes, including cell survival, proliferation, migration, immune cell recruitment, synthesis of inflammatory mediators, and the formation of lymphatic and blood vessels. However, the full extent of the involvement of this signaling pathway in the development of autoimmune diseases remains to be fully elucidated. Therefore, this study aims to comprehensively review recent research on the S1P/S1PR axis in diseases related to autoimmunity.
Collapse
Affiliation(s)
- Jianbin Li
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yiping Huang
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yueqin Zhang
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Pengcheng Liu
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Mengxia Liu
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Min Zhang
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Rui Wu
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
15
|
Khan R, Oskouian B, Lee JY, Hodgin JB, Yang Y, Tassew G, Saba JD. AAV-SPL 2.0, a Modified Adeno-Associated Virus Gene Therapy Agent for the Treatment of Sphingosine Phosphate Lyase Insufficiency Syndrome. Int J Mol Sci 2023; 24:15560. [PMID: 37958544 PMCID: PMC10648410 DOI: 10.3390/ijms242115560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/17/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Sphingosine-1-phosphate lyase insufficiency syndrome (SPLIS) is an inborn error of metabolism caused by inactivating mutations in SGPL1, the gene encoding sphingosine-1-phosphate lyase (SPL), an essential enzyme needed to degrade sphingolipids. SPLIS features include glomerulosclerosis, adrenal insufficiency, neurological defects, ichthyosis, and immune deficiency. Currently, there is no cure for SPLIS, and severely affected patients often die in the first years of life. We reported that adeno-associated virus (AAV) 9-mediated SGPL1 gene therapy (AAV-SPL) given to newborn Sgpl1 knockout mice that model SPLIS and die in the first few weeks of life prolonged their survival to 4.5 months and prevented or delayed the onset of SPLIS phenotypes. In this study, we tested the efficacy of a modified AAV-SPL, which we call AAV-SPL 2.0, in which the original cytomegalovirus (CMV) promoter driving the transgene is replaced with the synthetic "CAG" promoter used in several clinically approved gene therapy agents. AAV-SPL 2.0 infection of human embryonic kidney (HEK) cells led to 30% higher SPL expression and enzyme activity compared to AAV-SPL. Newborn Sgpl1 knockout mice receiving AAV-SPL 2.0 survived ≥ 5 months and showed normal neurodevelopment, 85% of normal weight gain over the first four months, and delayed onset of proteinuria. Over time, treated mice developed nephrosis and glomerulosclerosis, which likely resulted in their demise. Our overall findings show that AAV-SPL 2.0 performs equal to or better than AAV-SPL. However, improved kidney targeting may be necessary to achieve maximally optimized gene therapy as a potentially lifesaving SPLIS treatment.
Collapse
Affiliation(s)
- Ranjha Khan
- Department of Pediatrics, Division of Hematology/Oncology, University of California, San Francisco, CA 94143, USA
| | - Babak Oskouian
- Department of Pediatrics, Division of Hematology/Oncology, University of California, San Francisco, CA 94143, USA
| | - Joanna Y Lee
- Department of Pediatrics, Division of Hematology/Oncology, University of California, San Francisco, CA 94143, USA
| | - Jeffrey B Hodgin
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA
| | - Yingbao Yang
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA
| | - Gizachew Tassew
- Department of Pediatrics, Division of Hematology/Oncology, University of California, San Francisco, CA 94143, USA
| | - Julie D Saba
- Department of Pediatrics, Division of Hematology/Oncology, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
16
|
Vincenti F, Angeletti A, Ghiggeri GM. State of the art in childhood nephrotic syndrome: concrete discoveries and unmet needs. Front Immunol 2023; 14:1167741. [PMID: 37503337 PMCID: PMC10368981 DOI: 10.3389/fimmu.2023.1167741] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 06/21/2023] [Indexed: 07/29/2023] Open
Abstract
Nephrotic syndrome (NS) is a clinical entity characterized by proteinuria, hypoalbuminemia, and peripheral edema. NS affects about 2-7 per 100,000 children aged below 18 years old yearly and is classified, based on the response to drugs, into steroid sensitive (SSNS), steroid dependent, (SDNS), multidrug dependent (MDNS), and multidrug resistant (MRNS). Forms of NS that are more difficult to treat are associated with a worse outcome with respect to renal function. In particular, MRNS commonly progresses to end stage renal failure requiring renal transplantation, with recurrence of the original disease in half of the cases. Histological presentations of NS may vary from minimal glomerular lesions (MCD) to focal segmental glomerulosclerosis (FSGS) and, of relevance, the histological patterns do not correlate with the response to treatments. Moreover, around half of MRNS cases are secondary to causative pathogenic variants in genes involved in maintaining the glomerular structure. The pathogenesis of NS is still poorly understood and therapeutic approaches are mostly based on clinical experience. Understanding of pathogenetic mechanisms of NS is one of the 'unmet needs' in nephrology and represents a significant challenge for the scientific community. The scope of the present review includes exploring relevant findings, identifying unmet needs, and reviewing therapeutic developments that characterize NS in the last decades. The main aim is to provide a basis for new perspectives and mechanistic studies in NS.
Collapse
Affiliation(s)
- Flavio Vincenti
- Division of Nephrology, Department of Medicine and Department of Surgery, University of California San Francisco, San Francisco, CA, United States
| | - Andrea Angeletti
- Nephrology Dialysis and Transplantation, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS) Istituto Giannina Gaslini, Genoa, Italy
| | - Gian Marco Ghiggeri
- Nephrology Dialysis and Transplantation, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS) Istituto Giannina Gaslini, Genoa, Italy
| |
Collapse
|
17
|
Baalmann F, Brendler J, Butthof A, Popkova Y, Engel KM, Schiller J, Winter K, Lede V, Ricken A, Schöneberg T, Schulz A. Reduced urine volume and changed renal sphingolipid metabolism in P2ry14-deficient mice. Front Cell Dev Biol 2023; 11:1128456. [PMID: 37250906 PMCID: PMC10213973 DOI: 10.3389/fcell.2023.1128456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 04/28/2023] [Indexed: 05/31/2023] Open
Abstract
The UDP-glucose receptor P2RY14, a rhodopsin-like G protein-coupled receptor (GPCR), was previously described as receptor expressed in A-intercalated cells of the mouse kidney. Additionally, we found P2RY14 is abundantly expressed in mouse renal collecting duct principal cells of the papilla and epithelial cells lining the renal papilla. To better understand its physiological function in kidney, we took advantage of a P2ry14 reporter and gene-deficient (KO) mouse strain. Morphometric studies showed that the receptor function contributes to kidney morphology. KO mice had a broader cortex relative to the total kidney area than wild-type (WT) mice. In contrast, the area of the outer stripe of the outer medulla was larger in WT compared to KO mice. Transcriptome comparison of the papilla region of WT and KO mice revealed differences in the gene expression of extracellular matrix proteins (e.g., decorin, fibulin-1, fibulin-7) and proteins involved in sphingolipid metabolism (e.g., small subunit b of the serine palmitoyltransferase) and other related GPCRs (e.g., GPR171). Using mass spectrometry, changes in the sphingolipid composition (e.g., chain length) were detected in the renal papilla of KO mice. At the functional level, we found that KO mice had a reduced urine volume but an unchanged glomerular filtration rate under normal chow and salt diets. Our study revealed P2ry14 as a functionally important GPCR in collecting duct principal cells and cells lining the renal papilla and the possible involvement of P2ry14 in nephroprotection by regulation of decorin.
Collapse
Affiliation(s)
- Fabian Baalmann
- Rudolf Schönheimer Institute of Biochemistry, Faculty of Medicine, Leipzig University, Leipzig, Germany
| | - Jana Brendler
- Institute of Anatomy, Faculty of Medicine, Leipzig University, Leipzig, Germany
| | - Anne Butthof
- Rudolf Schönheimer Institute of Biochemistry, Faculty of Medicine, Leipzig University, Leipzig, Germany
| | - Yulia Popkova
- Institute of Medical Physics and Biophysics, Faculty of Medicine, Leipzig University, Leipzig, Germany
| | - Kathrin M. Engel
- Institute of Medical Physics and Biophysics, Faculty of Medicine, Leipzig University, Leipzig, Germany
| | - Jürgen Schiller
- Institute of Medical Physics and Biophysics, Faculty of Medicine, Leipzig University, Leipzig, Germany
| | - Karsten Winter
- Institute of Anatomy, Faculty of Medicine, Leipzig University, Leipzig, Germany
| | - Vera Lede
- Rudolf Schönheimer Institute of Biochemistry, Faculty of Medicine, Leipzig University, Leipzig, Germany
| | - Albert Ricken
- Institute of Anatomy, Faculty of Medicine, Leipzig University, Leipzig, Germany
| | - Torsten Schöneberg
- Rudolf Schönheimer Institute of Biochemistry, Faculty of Medicine, Leipzig University, Leipzig, Germany
| | - Angela Schulz
- Rudolf Schönheimer Institute of Biochemistry, Faculty of Medicine, Leipzig University, Leipzig, Germany
| |
Collapse
|
18
|
Mondal S, Singh MP, Kumar A, Chattopadhyay S, Nandy A, Sthanikam Y, Pandey U, Koner D, Marisiddappa L, Banerjee S. Rapid Molecular Evaluation of Human Kidney Tissue Sections by In Situ Mass Spectrometry and Machine Learning to Classify the Nephrotic Syndrome. J Proteome Res 2023; 22:967-976. [PMID: 36696358 DOI: 10.1021/acs.jproteome.2c00768] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Nephrotic syndrome (NS) is classified based on morphological changes of glomeruli in biopsied kidney tissues evaluated by time-consuming microscopy methods. In contrast, we employed desorption electrospray ionization mass spectrometry (DESI-MS) directly on renal biopsy specimens obtained from 37 NS patients to rapidly differentiate lipid profiles of three prevalent forms of NS: IgA nephropathy (n = 9), membranous glomerulonephritis (n = 7), and lupus nephritis (n = 8), along with other types of glomerular diseases (n = 13). As we noted molecular heterogeneity in regularly spaced renal tissue regions, multiple sections from each biopsy specimen were collected, providing a total of 973 samples for investigation. Using multivariate analysis, we report differential expressions of glycerophospholipids, sphingolipids, and glycerolipids among the above four classes of NS kidneys, which were otherwise overlooked in several past studies correlating lipid abnormalities with glomerular diseases. We developed machine learning (ML) models with the top 100 features using the support vector machine, which enabled us to discriminate the concerned glomerular diseases with 100% overall accuracy in the training, validation, and holdout test set. This DESI-MS/ML-based tissue analysis can be completed in a few minutes, in sharp contrast to a daylong procedure followed in the conventional histopathology of NS.
Collapse
Affiliation(s)
- Supratim Mondal
- Department of Chemistry, Indian Institute of Science Education and Research Tirupati, Tirupati 517507, India
| | - Mithlesh Prasad Singh
- Department of Chemistry, Indian Institute of Science Education and Research Tirupati, Tirupati 517507, India
| | - Anubhav Kumar
- Department of Chemistry, Indian Institute of Science Education and Research Tirupati, Tirupati 517507, India
| | - Sutirtha Chattopadhyay
- Department of Chemistry, Indian Institute of Science Education and Research Tirupati, Tirupati 517507, India
| | - Abhijit Nandy
- Department of Chemistry, Indian Institute of Science Education and Research Tirupati, Tirupati 517507, India
| | - Yeswanth Sthanikam
- Department of Chemistry, Indian Institute of Science Education and Research Tirupati, Tirupati 517507, India
| | - Uddeshya Pandey
- Department of Chemistry, Indian Institute of Science Education and Research Tirupati, Tirupati 517507, India
| | - Debasish Koner
- Department of Chemistry, Indian Institute of Science Education and Research Tirupati, Tirupati 517507, India
| | - Limesh Marisiddappa
- Department of Nephrology, St. John's Medical College Hospital, Bangalore 560034, India
| | - Shibdas Banerjee
- Department of Chemistry, Indian Institute of Science Education and Research Tirupati, Tirupati 517507, India
| |
Collapse
|
19
|
Barreiro K, Lay AC, Leparc G, Tran VDT, Rosler M, Dayalan L, Burdet F, Ibberson M, Coward RJM, Huber TB, Krämer BK, Delic D, Holthofer H. An in vitro approach to understand contribution of kidney cells to human urinary extracellular vesicles. J Extracell Vesicles 2023; 12:e12304. [PMID: 36785873 PMCID: PMC9925963 DOI: 10.1002/jev2.12304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/26/2022] [Accepted: 01/05/2023] [Indexed: 02/15/2023] Open
Abstract
Extracellular vesicles (EV) are membranous particles secreted by all cells and found in body fluids. Established EV contents include a variety of RNA species, proteins, lipids and metabolites that are considered to reflect the physiological status of their parental cells. However, to date, little is known about cell-type enriched EV cargo in complex EV mixtures, especially in urine. To test whether EV secretion from distinct human kidney cells in culture differ and can recapitulate findings in normal urine, we comprehensively analysed EV components, (particularly miRNAs, long RNAs and protein) from conditionally immortalised human kidney cell lines (podocyte, glomerular endothelial, mesangial and proximal tubular cells) and compared to EV secreted in human urine. EV from cell culture media derived from immortalised kidney cells were isolated by hydrostatic filtration dialysis (HFD) and characterised by electron microscopy (EM), nanoparticle tracking analysis (NTA) and Western blotting (WB). RNA was isolated from EV and subjected to miRNA and RNA sequencing and proteins were profiled by tandem mass tag proteomics. Representative sets of EV miRNAs, RNAs and proteins were detected in each cell type and compared to human urinary EV isolates (uEV), EV cargo database, kidney biopsy bulk RNA sequencing and proteomics, and single-cell transcriptomics. This revealed that a high proportion of the in vitro EV signatures were also found in in vivo datasets. Thus, highlighting the robustness of our in vitro model and showing that this approach enables the dissection of cell type specific EV cargo in biofluids and the potential identification of cell-type specific EV biomarkers of kidney disease.
Collapse
Affiliation(s)
- Karina Barreiro
- Institute for Molecular Medicine Finland (FIMM)University of HelsinkiHelsinkiFinland
| | - Abigail C. Lay
- Bristol RenalBristol Medical SchoolFaculty of Health SciencesUniversity of BristolBristolUK
| | - German Leparc
- Boehringer Ingelheim Pharma GmbH & Co. KG BiberachBiberachGermany
| | - Van Du T. Tran
- Vital‐IT GroupSIB Swiss Institute of BioinformaticsLausanneSwitzerland
| | - Marcel Rosler
- Boehringer Ingelheim Pharma GmbH & Co. KG BiberachBiberachGermany
| | - Lusyan Dayalan
- Bristol RenalBristol Medical SchoolFaculty of Health SciencesUniversity of BristolBristolUK
| | - Frederic Burdet
- Vital‐IT GroupSIB Swiss Institute of BioinformaticsLausanneSwitzerland
| | - Mark Ibberson
- Vital‐IT GroupSIB Swiss Institute of BioinformaticsLausanneSwitzerland
| | - Richard J. M. Coward
- Bristol RenalBristol Medical SchoolFaculty of Health SciencesUniversity of BristolBristolUK
| | - Tobias B. Huber
- III Department of MedicineUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Bernhard K. Krämer
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology/Pneumology)University Medical Centre MannheimUniversity of HeidelbergMannheimGermany
| | - Denis Delic
- Boehringer Ingelheim Pharma GmbH & Co. KG BiberachBiberachGermany
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology/Pneumology)University Medical Centre MannheimUniversity of HeidelbergMannheimGermany
| | - Harry Holthofer
- Institute for Molecular Medicine Finland (FIMM)University of HelsinkiHelsinkiFinland
- III Department of MedicineUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| |
Collapse
|
20
|
Yu C, Zhang H, Liu S, Li R, Zhao X, Chen Y, Li Z, Ma J, Wang W, Ye Z, Liang X, Zhang L, Shi W. Flot2 acts as a novel mediator of podocyte injury in proteinuric kidney disease. Int J Biol Sci 2023; 19:502-520. [PMID: 36632460 PMCID: PMC9830511 DOI: 10.7150/ijbs.78945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022] Open
Abstract
Podocyte injury is a common hallmark of chronic kidney disease (CKD). The podocin-nephrin complex localized in lipid rafts of podocyte is vital to reduce podocyte injury and proteinuria, however, the mechanism underlying its localization remains unclear. This study uncovers an important role of Flot2 in stabilizing the podocin-nephrin complex localized in lipid rafts. We first confirmed that Flot2 was expressed in podocyte and demenstrated that podocyte-specific Flot2 deletion worsen albuminuria, podocyte injury and glomerular pathology in LPS/ADR-induced nephropathy mouse models. Meanwhile, podocyte injury, albuminuria and pathologic aberrance were prevented in podocyte-specific Flot2 overexpression transgenic mice when challenged with LPS or ADR. Further found that Flot2 was vital to recruit podocin and nephrin into rafts and ameliorated podocyte injury. Flot2 and podocin directly interacted with each other via their SPFH domain. Meanwhile, we also showed that Flot-2 is a direct target of Krüppel-like factor (KLF15). Importanly, we observed that Flot2 was downregulated in renal biopsies from patients with podocytopathies and its expression negatively correlated with proteinuria and positively correlated with eGFR, indicating that Flot2 may be a novel therapeutic target for proteinuric kidney disease.
Collapse
Affiliation(s)
- Chunping Yu
- Department of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan No. 2 Road, Guangzhou, 510080, China.,State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Hong Zhang
- Department of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan No. 2 Road, Guangzhou, 510080, China
| | - Shuangxin Liu
- Department of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan No. 2 Road, Guangzhou, 510080, China
| | - Ruizhao Li
- Department of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan No. 2 Road, Guangzhou, 510080, China
| | - Xingchen Zhao
- Department of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan No. 2 Road, Guangzhou, 510080, China
| | - Yuanhan Chen
- Department of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan No. 2 Road, Guangzhou, 510080, China
| | - Zhuo Li
- Department of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan No. 2 Road, Guangzhou, 510080, China
| | - Jianchao Ma
- Department of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan No. 2 Road, Guangzhou, 510080, China
| | - Wenjian Wang
- Department of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan No. 2 Road, Guangzhou, 510080, China
| | - Zhiming Ye
- Department of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan No. 2 Road, Guangzhou, 510080, China
| | - Xinling Liang
- Department of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan No. 2 Road, Guangzhou, 510080, China.,✉ Corresponding authors: Xinling Liang, Li Zhang, or Wei Shi. Department of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan No. 2 Road, Guangzhou, 510080, China. E-mail: ; ; ; Phone: +86 13802793488; +86 13202067354; +86 13808819770; Fax: +86-20-83827812-62027
| | - Li Zhang
- Department of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan No. 2 Road, Guangzhou, 510080, China.,✉ Corresponding authors: Xinling Liang, Li Zhang, or Wei Shi. Department of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan No. 2 Road, Guangzhou, 510080, China. E-mail: ; ; ; Phone: +86 13802793488; +86 13202067354; +86 13808819770; Fax: +86-20-83827812-62027
| | - Wei Shi
- Department of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan No. 2 Road, Guangzhou, 510080, China.,Department of Nephrology, Gaozhou People's Hospital, Gaozhou, P. R. China.,✉ Corresponding authors: Xinling Liang, Li Zhang, or Wei Shi. Department of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan No. 2 Road, Guangzhou, 510080, China. E-mail: ; ; ; Phone: +86 13802793488; +86 13202067354; +86 13808819770; Fax: +86-20-83827812-62027
| |
Collapse
|
21
|
Hagmann H, Khayyat NH, Oezel C, Papadakis A, Kuczkowski A, Benzing T, Gulbins E, Dryer S, Brinkkoetter PT. Paraoxonase 2 (PON2) Deficiency Reproduces Lipid Alterations of Diabetic and Inflammatory Glomerular Disease and Affects TRPC6 Signaling. Cells 2022; 11:cells11223625. [PMID: 36429053 PMCID: PMC9688324 DOI: 10.3390/cells11223625] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/31/2022] [Accepted: 11/11/2022] [Indexed: 11/18/2022] Open
Abstract
Diabetes and inflammatory diseases are associated with an altered cellular lipid composition due to lipid peroxidation. The pathogenic potential of these lipid alterations in glomerular kidney diseases remains largely obscure as suitable cell culture and animal models are lacking. In glomerular disease, a loss of terminally differentiated glomerular epithelial cells called podocytes refers to irreversible damage. Podocytes are characterized by a complex ramified cellular architecture and highly active transmembrane signaling. Alterations in lipid composition in states of disease have been described in podocytes but the pathophysiologic mechanisms mediating podocyte damage are unclear. In this study, we employ a genetic deletion of the anti-oxidative, lipid-modifying paraoxonase 2 enzyme (PON2) as a model to study altered cellular lipid composition and its effects on cellular signaling in glomerular disease. PON2 deficiency reproduces features of an altered lipid composition of glomerular disease, characterized by an increase in ceramides and cholesterol. PON2 knockout mice are more susceptible to glomerular damage in models of aggravated oxidative stress such as adriamycin-induced nephropathy. Voltage clamp experiments in cultured podocytes reveal a largely increased TRPC6 conductance after a membrane stretch in PON2 deficiency. Correspondingly, a concomitant knockout of TRPC6 and PON2 partially rescues the aggravated glomerular phenotype of a PON2 knockout in the adriamycin model. This study establishes PON2 deficiency as a model to investigate the pathophysiologic mechanisms of podocyte dysfunction related to alterations in the lipid composition, as seen in diabetic and inflammatory glomerular disease. Expanding the knowledge on these routes and options of intervention could lead to novel treatment strategies for glomerular disease.
Collapse
Affiliation(s)
- Henning Hagmann
- Department II of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, 50937 Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine, University Hospital Cologne, 50931 Cologne, Germany
- Correspondence:
| | | | - Cem Oezel
- Department II of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, 50937 Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine, University Hospital Cologne, 50931 Cologne, Germany
| | - Antonios Papadakis
- Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine, University Hospital Cologne, 50931 Cologne, Germany
- Institute for Genetics, Faculty of Mathematics and Natural Sciences, University of Cologne, 50931 Cologne, Germany
| | - Alexander Kuczkowski
- Department II of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, 50937 Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine, University Hospital Cologne, 50931 Cologne, Germany
| | - Thomas Benzing
- Department II of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, 50937 Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine, University Hospital Cologne, 50931 Cologne, Germany
- Cologne Cluster of Excellence on Cellular Stress Responses in Ageing-Associated Diseases (CECAD) and Systems Biology of Ageing Cologne (Sybacol), 50931 Cologne, Germany
| | - Erich Gulbins
- Department of Molecular Biology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Stuart Dryer
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
- Department of Biomedical Sciences, Tilman J. Fertitta Family College of Medicine, University of Houston, Houston, TX 77204, USA
| | - Paul T. Brinkkoetter
- Department II of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, 50937 Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine, University Hospital Cologne, 50931 Cologne, Germany
| |
Collapse
|
22
|
Francis M, Ahmad A, Bodgi L, Azzam P, Youssef T, Abou Daher A, Eid AA, Fornoni A, Pollack A, Marples B, Zeidan YH. SMPDL3b modulates radiation-induced DNA damage response in renal podocytes. FASEB J 2022; 36:e22545. [PMID: 36094323 DOI: 10.1096/fj.202100186rr] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 08/24/2022] [Accepted: 08/29/2022] [Indexed: 11/17/2024]
Abstract
The kidneys are radiosensitive and dose-limiting organs for radiotherapy (RT) targeting abdominal and paraspinal tumors. Excessive radiation doses to the kidneys ultimately lead to radiation nephropathy. Our prior work unmasked a novel role for the lipid-modifying enzyme, sphingomyelin phosphodiesterase acid-like 3b (SMPDL3b), in regulating the response of renal podocytes to radiation injury. In this study, we investigated the role of SMPDL3b in DNA double-strand breaks (DSBs) repair in vitro and in vivo. We assessed the kinetics of DSBs recognition and repair along with the ATM pathway and nuclear sphingolipid metabolism in wild-type (WT) and SMPDL3b overexpressing (OE) human podocytes. We also assessed the extent of DNA damage repair in SMPDL3b knock-down (KD) human podocytes, and C57BL6 WT and podocyte-specific SMPDL3b-knock out (KO) mice after radiation injury. We found that SMPDL3b overexpression enhanced DSBs recognition and repair through modulating ATM nuclear shuttling. OE podocytes were protected against radiation-induced apoptosis by increasing the phosphorylation of p53 at serine 15 and attenuating subsequent caspase-3 cleavage. SMPDL3b overexpression prevented radiation-induced alterations in nuclear ceramide-1-phosphate (C1P) and ceramide levels. Interestingly, exogenous C1P pretreatment radiosensitized OE podocytes by delaying ATM nuclear foci formation and DSBs repair. On the other hand, SMPDL3b knock-down, in vitro and in vivo, induced a significant delay in DSBs repair. Additionally, increased activation of apoptosis was induced in podocytes of SMPDL3b-KO mice compared to WT mice at 24 h post-irradiation. Together, our results unravel a novel role for SMPDL3b in radiation-induced DNA damage response. The current work suggests that SMPDL3b modulates nuclear sphingolipid metabolism, ATM nuclear shuttling, and DSBs repair.
Collapse
Affiliation(s)
- Marina Francis
- Department of Anatomy, Cell Biology, and Physiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Anis Ahmad
- Department of Radiation Oncology, Miller School of Medicine/Sylvester Cancer Center, University of Miami, Miami, Florida, USA
| | - Larry Bodgi
- Department of Radiation Oncology, American University of Beirut, Beirut, Lebanon
| | - Patrick Azzam
- Department of Anatomy, Cell Biology, and Physiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Tarek Youssef
- Department of Anatomy, Cell Biology, and Physiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Alaa Abou Daher
- Department of Anatomy, Cell Biology, and Physiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Assaad A Eid
- Department of Anatomy, Cell Biology, and Physiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Alessia Fornoni
- Peggy and Harold Katz Family Drug Discovery Center and Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miami, Florida, USA
| | - Alan Pollack
- Department of Radiation Oncology, Miller School of Medicine/Sylvester Cancer Center, University of Miami, Miami, Florida, USA
| | - Brian Marples
- Department of Radiation Oncology, University of Rochester, Rochester, New York, USA
| | - Youssef H Zeidan
- Department of Anatomy, Cell Biology, and Physiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Department of Radiation Oncology, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
23
|
Çeker T, Yılmaz Ç, Kırımlıoglu E, Aslan M. Endoplasmic-reticulum-stress-induced lipotoxicity in human kidney epithelial cells. Toxicol Res (Camb) 2022; 11:683-695. [PMID: 36051659 PMCID: PMC9424710 DOI: 10.1093/toxres/tfac041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 06/08/2022] [Accepted: 06/21/2022] [Indexed: 07/24/2023] Open
Abstract
Accumulation of lipids and their intermediary metabolites under endoplasmic reticulum (ER) stress instigates metabolic failure, described as lipotoxicity, in the kidney. This study aimed to determine ER-stress-related sphingolipid and polyunsaturated fatty acid (PUFA) changes in human kidney cells. Tunicamycin (TM) was employed to induce ER stress and an ER stress inhibitor, tauroursodeoxycholic acid (TUDCA), was given to minimize cytotoxicity. Cell viability was determined by MTT assay. Sphingomyelin (SM), ceramide (CER), and PUFA levels were measured by LC-MS/MS. Glucose-regulated protein 78-kd (GRP78), cleaved caspase-3 and cyclooxygenase-1 (COX-1) levels were assessed by immunofluorescence. Cytosolic phospholipase A2 (cPLA2), total COX, and prostaglandin E2 (PGE2) were measured to evaluate changes in enzyme activity. Decreased cell viability was observed in TM treated cells. Administration of TUDCA following TM treatment significantly increased cell viability compared to TM treatment alone. Tunicamycin-induced ER stress was confirmed by significantly increased protein levels of GRP78. A significant increase was observed in C18-C24 CERs and caspase-3 activity, while a significant decrease occurred in sphingosine-1-phosphate (S1P) and cPLA2 activity in cells treated with TM versus controls. The decrease in cPLA2 activity was accompanied by significantly increased PUFA levels in TM treated cells. TUDCA treatment in conjunction with TM significantly decreased ER stress, C18-C24 CERs, caspase 3 activity, and increased S1P levels. Results show the buildup of long chain CERs and PUFAs in kidney cells undergoing ER stress alongside increased apoptotic activity. TUDCA administration, along with TM treatment alleviated the buildup of CERs and TM-induced apoptotic activity in kidney epithelial cells.
Collapse
Affiliation(s)
- Tuğçe Çeker
- Department of Medical Biochemistry, Akdeniz University, Faculty of Medicine, Antalya 07070, Turkey
| | - Çağatay Yılmaz
- Department of Medical Biochemistry, Akdeniz University, Faculty of Medicine, Antalya 07070, Turkey
| | - Esma Kırımlıoglu
- Department of Histology and Embryology, Akdeniz University, Faculty of Medicine, Antalya 07070, Turkey
| | - Mutay Aslan
- Corresponding author: Akdeniz University Medical School, Department of Biochemistry, Antalya 07070, Turkey.
| |
Collapse
|
24
|
Peroxisome Proliferator-Activated Receptor Gene Knockout Promotes Podocyte Injury in Diabetic Mice. BIOMED RESEARCH INTERNATIONAL 2022; 2022:9018379. [PMID: 35813229 PMCID: PMC9262558 DOI: 10.1155/2022/9018379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 05/14/2022] [Indexed: 11/17/2022]
Abstract
Objective. To investigate the effects of peroxisome proliferator-activated receptor (PPARγ) expression on renal podocyte in diabetic mice by conditionally knockout mouse PPARγ gene. Methods. Wild-type C57BL mice and PPARγ gene knockout mice were used as research objects to establish the diabetic mouse model, which was divided into normal control group (NC group), normal glucose PPARγ gene knockout group (NK group), diabetic wild-type group (DM group), and diabetic PPARγ gene knockout group (DK group), with 8 mice in each group. After 16 weeks, the mice were sacrificed for renal tissue collection. Morphological changes of renal tissue were observed by HE and Masson staining, and ultrastructure of renal tissue was observed by transmission electron microscope. Protein expressions of PPARγ, podocin, nephrin, collagen IV, and fibronectin (FN) in renal tissues were detected by immunohistochemistry and Western blot, and mRNA changes of PPARγ, podocin, and nephrin in renal tissues were detected by qRT-PCR. Results. Compared with the NC group, the protein and mRNA expressions of PPARγ, podocin, and nephrin decreased in the kidney tissue of mice in the DM group, while the protein expressions of collagen IV and FN increased. The expression of various proteins in kidney tissues of the DK group was consistent with that of the DM group, and the difference was more obvious. The expression of PPARγ protein and mRNA decreased in the NK group, while the expression of podocin, nephrin protein and mRNA, collagen IV, and FN protein showed no significant difference. Conclusion. In diabetic renal tissue, the loss of PPARγ can aggravate podocellular damage and thus promote the occurrence of diabetic renal fibrosis. Increasing the expression of PPARγ may effectively relieve renal podocyte impairment in diabetic patients, which can be used for the treatment of diabetic nephropathy.
Collapse
|
25
|
Hansen J, Sealfon R, Menon R, Eadon MT, Lake BB, Steck B, Anjani K, Parikh S, Sigdel TK, Zhang G, Velickovic D, Barwinska D, Alexandrov T, Dobi D, Rashmi P, Otto EA, Rivera M, Rose MP, Anderton CR, Shapiro JP, Pamreddy A, Winfree S, Xiong Y, He Y, de Boer IH, Hodgin JB, Barisoni L, Naik AS, Sharma K, Sarwal MM, Zhang K, Himmelfarb J, Rovin B, El-Achkar TM, Laszik Z, He JC, Dagher PC, Valerius MT, Jain S, Satlin LM, Troyanskaya OG, Kretzler M, Iyengar R, Azeloglu EU. A reference tissue atlas for the human kidney. SCIENCE ADVANCES 2022; 8:eabn4965. [PMID: 35675394 PMCID: PMC9176741 DOI: 10.1126/sciadv.abn4965] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 04/20/2022] [Indexed: 05/08/2023]
Abstract
Kidney Precision Medicine Project (KPMP) is building a spatially specified human kidney tissue atlas in health and disease with single-cell resolution. Here, we describe the construction of an integrated reference map of cells, pathways, and genes using unaffected regions of nephrectomy tissues and undiseased human biopsies from 56 adult subjects. We use single-cell/nucleus transcriptomics, subsegmental laser microdissection transcriptomics and proteomics, near-single-cell proteomics, 3D and CODEX imaging, and spatial metabolomics to hierarchically identify genes, pathways, and cells. Integrated data from these different technologies coherently identify cell types/subtypes within different nephron segments and the interstitium. These profiles describe cell-level functional organization of the kidney following its physiological functions and link cell subtypes to genes, proteins, metabolites, and pathways. They further show that messenger RNA levels along the nephron are congruent with the subsegmental physiological activity. This reference atlas provides a framework for the classification of kidney disease when multiple molecular mechanisms underlie convergent clinical phenotypes.
Collapse
Affiliation(s)
- Jens Hansen
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rachel Sealfon
- Princeton University, Princeton, NJ, USA
- Flatiron Institute, New York, NY, USA
| | - Rajasree Menon
- University of Michigan School of Medicine, Ann Arbor, MI, USA
| | | | - Blue B. Lake
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Becky Steck
- University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Kavya Anjani
- University of California San Francisco School of Medicine, San Francisco, CA, USA
| | - Samir Parikh
- Ohio State University College of Medicine, Columbus, OH, USA
| | - Tara K. Sigdel
- University of California San Francisco School of Medicine, San Francisco, CA, USA
| | - Guanshi Zhang
- University of Texas–Health San Antonio School of Medicine, San Antonio, TX, USA
| | | | - Daria Barwinska
- Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - Dejan Dobi
- University of California San Francisco School of Medicine, San Francisco, CA, USA
| | - Priyanka Rashmi
- University of California San Francisco School of Medicine, San Francisco, CA, USA
| | - Edgar A. Otto
- University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Miguel Rivera
- University of California San Francisco School of Medicine, San Francisco, CA, USA
| | - Michael P. Rose
- University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Christopher R. Anderton
- University of Texas–Health San Antonio School of Medicine, San Antonio, TX, USA
- Pacific Northwest National Laboratory, Richland, WA, USA
| | - John P. Shapiro
- Ohio State University College of Medicine, Columbus, OH, USA
| | - Annapurna Pamreddy
- University of Texas–Health San Antonio School of Medicine, San Antonio, TX, USA
| | - Seth Winfree
- Indiana University School of Medicine, Indianapolis, IN, USA
| | - Yuguang Xiong
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yongqun He
- University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Ian H. de Boer
- Schools of Medicine and Public Health, University of Washington, Seattle, WA, USA
| | | | | | - Abhijit S. Naik
- University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Kumar Sharma
- University of Texas–Health San Antonio School of Medicine, San Antonio, TX, USA
| | - Minnie M. Sarwal
- University of California San Francisco School of Medicine, San Francisco, CA, USA
| | - Kun Zhang
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Jonathan Himmelfarb
- Schools of Medicine and Public Health, University of Washington, Seattle, WA, USA
| | - Brad Rovin
- Ohio State University College of Medicine, Columbus, OH, USA
| | | | - Zoltan Laszik
- University of California San Francisco School of Medicine, San Francisco, CA, USA
| | | | | | - M. Todd Valerius
- Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA, USA
| | - Sanjay Jain
- Washington University in Saint Louis School of Medicine, St. Louis, MS, USA
| | - Lisa M. Satlin
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Olga G. Troyanskaya
- Princeton University, Princeton, NJ, USA
- Flatiron Institute, New York, NY, USA
| | | | - Ravi Iyengar
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Kidney Precision Medicine Project
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Princeton University, Princeton, NJ, USA
- Flatiron Institute, New York, NY, USA
- University of Michigan School of Medicine, Ann Arbor, MI, USA
- Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
- University of California San Francisco School of Medicine, San Francisco, CA, USA
- Ohio State University College of Medicine, Columbus, OH, USA
- University of Texas–Health San Antonio School of Medicine, San Antonio, TX, USA
- Pacific Northwest National Laboratory, Richland, WA, USA
- European Molecular Biology Laboratory, Heidelberg, Germany
- Schools of Medicine and Public Health, University of Washington, Seattle, WA, USA
- Duke University School of Medicine, Durham, NC, USA
- Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA, USA
- Washington University in Saint Louis School of Medicine, St. Louis, MS, USA
| |
Collapse
|
26
|
Krstic N, Multani K, Wishart DS, Blydt-Hansen T, Cohen Freue GV. The impact of methodological choices when developing predictive models using urinary metabolite data. Stat Med 2022; 41:3511-3526. [PMID: 35567357 DOI: 10.1002/sim.9431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 04/15/2022] [Accepted: 04/26/2022] [Indexed: 11/08/2022]
Abstract
The continuous evolution of metabolomics over the past two decades has stimulated the search for metabolic biomarkers of many diseases. Metabolomic data measured from urinary samples can provide rich information of the biological events triggered by organ rejection in pediatric kidney transplant recipients. With additional validation, metabolic markers can be used to build clinically useful diagnostic tools. However, there are many methodological steps ranging from data processing to modeling that can influence the performance of the resulting metabolomic classifiers. In this study we focus on the comparison of various classification methods that can handle the complex structure of metabolomic data, including regularized classifiers, partial least squares discriminant analysis, and nonlinear classification models. We also examine the effectiveness of a physiological normalization technique widely used in the clinical and biochemical literature but not extensively analyzed and compared in urine metabolomic studies. While the main objective of this work is to interrogate metabolomic data of pediatric kidney transplant recipients to improve the diagnosis of T cell-mediated rejection (TCMR), we also analyze three independent datasets from other disease conditions to investigate the generalizability of our findings.
Collapse
Affiliation(s)
- Nikolas Krstic
- Department of Statistics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kevin Multani
- Department of Statistics, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Physics, Stanford University, Stanford, California, USA
| | - David S Wishart
- Departments of Computing Science and Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Tom Blydt-Hansen
- Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Gabriela V Cohen Freue
- Department of Statistics, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
27
|
Assis JLD, Fernandes AM, Aniceto BS, Fernandes da Costa PP, Banchio C, Girardini J, Vieyra A, Valverde RRHF, Einicker‐Lamas M. Sphingosine 1‐Phosphate Prevents Human Embryonic Stem Cell Death Following Ischemic Injury. EUR J LIPID SCI TECH 2022. [DOI: 10.1002/ejlt.202200019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Juliane L. de Assis
- Laboratório de Biomembranas Instituto de Biofísica Carlos Chagas Filho–Universidade Federal do Rio de Janeiro Rio de Janeiro Brazil
| | - Aline M. Fernandes
- Laboratório de Biomembranas Instituto de Biofísica Carlos Chagas Filho–Universidade Federal do Rio de Janeiro Rio de Janeiro Brazil
| | - Bárbara S. Aniceto
- Laboratório de Biomembranas Instituto de Biofísica Carlos Chagas Filho–Universidade Federal do Rio de Janeiro Rio de Janeiro Brazil
| | - Pedro P. Fernandes da Costa
- Laboratório de Biomembranas Instituto de Biofísica Carlos Chagas Filho–Universidade Federal do Rio de Janeiro Rio de Janeiro Brazil
| | - Claudia Banchio
- Instituto de Biologia Molecular y Celular de Rosário Rosário Argentina
| | - Javier Girardini
- Instituto de Biologia Molecular y Celular de Rosário Rosário Argentina
| | - Adalberto Vieyra
- Laboratório de Físico‐Química Biológica Instituto de Biofísica Carlos Chagas Filho–Universidade Federal do Rio de Janeiro Rio de Janeiro Brazil
| | - Rafael R. H. F. Valverde
- Laboratório de Biomembranas Instituto de Biofísica Carlos Chagas Filho–Universidade Federal do Rio de Janeiro Rio de Janeiro Brazil
| | - Marcelo Einicker‐Lamas
- Laboratório de Biomembranas Instituto de Biofísica Carlos Chagas Filho–Universidade Federal do Rio de Janeiro Rio de Janeiro Brazil
| |
Collapse
|
28
|
Mallela SK, Merscher S, Fornoni A. Implications of Sphingolipid Metabolites in Kidney Diseases. Int J Mol Sci 2022; 23:ijms23084244. [PMID: 35457062 PMCID: PMC9025012 DOI: 10.3390/ijms23084244] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/08/2022] [Accepted: 04/10/2022] [Indexed: 12/18/2022] Open
Abstract
Sphingolipids, which act as a bioactive signaling molecules, are involved in several cellular processes such as cell survival, proliferation, migration and apoptosis. An imbalance in the levels of sphingolipids can be lethal to cells. Abnormalities in the levels of sphingolipids are associated with several human diseases including kidney diseases. Several studies demonstrate that sphingolipids play an important role in maintaining proper renal function. Sphingolipids can alter the glomerular filtration barrier by affecting the functioning of podocytes, which are key cellular components of the glomerular filtration barrier. This review summarizes the studies in our understanding of the regulation of sphingolipid signaling in kidney diseases, especially in glomerular and tubulointerstitial diseases, and the potential to target sphingolipid pathways in developing therapeutics for the treatment of renal diseases.
Collapse
Affiliation(s)
- Shamroop kumar Mallela
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL 33136, USA;
- Peggy and Harold Katz Family Drug Discovery Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Sandra Merscher
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL 33136, USA;
- Peggy and Harold Katz Family Drug Discovery Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Correspondence: (S.M.); (A.F.); Tel.: +1-305-243-6567 (S.M.); +1-305-243-3583 (A.F.); Fax: +1-305-243-3209 (S.M.); +1-305-243-3506 (A.F.)
| | - Alessia Fornoni
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL 33136, USA;
- Peggy and Harold Katz Family Drug Discovery Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Correspondence: (S.M.); (A.F.); Tel.: +1-305-243-6567 (S.M.); +1-305-243-3583 (A.F.); Fax: +1-305-243-3209 (S.M.); +1-305-243-3506 (A.F.)
| |
Collapse
|
29
|
Sex Differences in Cardiovascular Diseases: A Matter of Estrogens, Ceramides, and Sphingosine 1-Phosphate. Int J Mol Sci 2022; 23:ijms23074009. [PMID: 35409368 PMCID: PMC8999971 DOI: 10.3390/ijms23074009] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/01/2022] [Accepted: 04/04/2022] [Indexed: 12/30/2022] Open
Abstract
The medical community recognizes sex-related differences in pathophysiology and cardiovascular disease outcomes (CVD), culminating with heart failure. In general, pre-menopausal women tend to have a better prognosis than men. Explaining why this occurs is not a simple matter. For decades, sex hormones like estrogens (Es) have been identified as one of the leading factors driving these sex differences. Indeed, Es seem protective in women as their decline, during and after menopause, coincides with an increased CV risk and HF development. However, clinical trials demonstrated that E replacement in post-menopause women results in adverse cardiac events and increased risk of breast cancer. Thus, a deeper understanding of E-related mechanisms is needed to provide a vital gateway toward better CVD prevention and treatment in women. Of note, sphingolipids (SLs) and their metabolism are strictly related to E activities. Among the SLs, ceramide and sphingosine 1-phosphate play essential roles in mammalian physiology, particularly in the CV system, and appear differently modulated in males and females. In keeping with this view, here we explore the most recent experimental and clinical observations about the role of E and SL metabolism, emphasizing how these factors impact the CV system.
Collapse
|
30
|
Pereira PR, Carrageta DF, Oliveira PF, Rodrigues A, Alves MG, Monteiro MP. Metabolomics as a tool for the early diagnosis and prognosis of diabetic kidney disease. Med Res Rev 2022; 42:1518-1544. [PMID: 35274315 DOI: 10.1002/med.21883] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 01/26/2022] [Accepted: 02/22/2022] [Indexed: 01/21/2023]
Abstract
Diabetic kidney disease (DKD) is one of the most prevalent comorbidities of diabetes mellitus and the leading cause of the end-stage renal disease (ESRD). DKD results from chronic exposure to hyperglycemia, leading to progressive alterations in kidney structure and function. The early development of DKD is clinically silent and when albuminuria is detected the lesions are often at advanced stages, leading to rapid kidney function decline towards ESRD. DKD progression can be arrested or substantially delayed if detected and addressed at early stages. A major limitation of current methods is the absence of albuminuria in non-albuminuric phenotypes of diabetic nephropathy, which becomes increasingly prevalent and lacks focused therapy. Metabolomics is an ever-evolving omics technology that enables the study of metabolites, downstream products of every biochemical event that occurs in an organism. Metabolomics disclosures complex metabolic networks and provide knowledge of the very foundation of several physiological or pathophysiological processes, ultimately leading to the identification of diseases' unique metabolic signatures. In this sense, metabolomics is a promising tool not only for the diagnosis but also for the identification of pre-disease states which would confer a rapid and personalized clinical practice. Herein, the use of metabolomics as a tool to identify the DKD metabolic signature of tubule interstitial lesions to diagnose or predict the time-course of DKD will be discussed. In addition, the proficiency and limitations of the currently available high-throughput metabolomic techniques will be discussed.
Collapse
Affiliation(s)
- Pedro R Pereira
- Clinical and Experimental Endocrinology, UMIB - Unit for Multidisciplinary Research in Biomedicine, ICBAS, School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal.,ITR - Laboratory for Integrative and Translational Research in Population Health, Porto, Portugal.,Department of Nephrology, Centro Hospitalar de Trás-os-Montes e Alto Douro (CHTMAD, EPE), Vila Real, Portugal
| | - David F Carrageta
- Clinical and Experimental Endocrinology, UMIB - Unit for Multidisciplinary Research in Biomedicine, ICBAS, School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal.,ITR - Laboratory for Integrative and Translational Research in Population Health, Porto, Portugal
| | - Pedro F Oliveira
- Department of Chemistry, QOPNA & LAQV, University of Aveiro, Aveiro, Portugal
| | - Anabela Rodrigues
- Department of Nephrology and Department of Clinical Pathology, Santo António General Hospital (Hospital Center of Porto, EPE), Porto, Portugal.,Nephrology, Dialysis and Transplantation, UMIB - Unit for Multidisciplinary Research in Biomedicine, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal
| | - Marco G Alves
- Clinical and Experimental Endocrinology, UMIB - Unit for Multidisciplinary Research in Biomedicine, ICBAS, School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal.,ITR - Laboratory for Integrative and Translational Research in Population Health, Porto, Portugal.,Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, Spain.,Department of Biology, Unit of Cell Biology, Faculty of Sciences, University of Girona, Girona, Spain
| | - Mariana P Monteiro
- Clinical and Experimental Endocrinology, UMIB - Unit for Multidisciplinary Research in Biomedicine, ICBAS, School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal.,ITR - Laboratory for Integrative and Translational Research in Population Health, Porto, Portugal
| |
Collapse
|
31
|
Ceramide-1-Phosphate as a Potential Regulator of the Second Sodium Pump from Kidney Proximal Tubules by Triggering Distinct Protein Kinase Pathways in a Hierarchic Way. Curr Issues Mol Biol 2022; 44:998-1011. [PMID: 35723289 PMCID: PMC8947104 DOI: 10.3390/cimb44030066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/07/2022] [Accepted: 02/19/2022] [Indexed: 11/17/2022] Open
Abstract
Kidney proximal tubules are a key segment in the reabsorption of solutes and water from the glomerular ultrafiltrate, an essential process for maintaining homeostasis in body fluid compartments. The abundant content of Na+ in the extracellular fluid determines its importance in the regulation of extracellular fluid volume, which is particularly important for different physiological processes including blood pressure control. Basolateral membranes of proximal tubule cells have the classic Na+ + K+-ATPase and the ouabain-insensitive, K+-insensitive, and furosemide-sensitive Na+-ATPase, which participate in the active Na+ reabsorption. Here, we show that nanomolar concentrations of ceramide-1 phosphate (C1P), a bioactive sphingolipid derived in biological membranes from different metabolic pathways, promotes a strong inhibitory effect on the Na+-ATPase activity (C1P50 ≈ 10 nM), leading to a 72% inhibition of the second sodium pump in the basolateral membranes. Ceramide-1-phosphate directly modulates protein kinase A and protein kinase C, which are known to be involved in the modulation of ion transporters including the renal Na+-ATPase. Conversely, we did not observe any effect on the Na+ + K+-ATPase even at a broad C1P concentration range. The significant effect of ceramide-1-phosphate revealed a new potent physiological and pathophysiological modulator for the Na+-ATPase, participating in the regulatory network involving glycero- and sphingolipids present in the basolateral membranes of kidney tubule cells.
Collapse
|
32
|
Lee AM, Hu J, Xu Y, Abraham AG, Xiao R, Coresh J, Rebholz C, Chen J, Rhee EP, Feldman HI, Ramachandran VS, Kimmel PL, Warady BA, Furth SL, Denburg MR. Using Machine Learning to Identify Metabolomic Signatures of Pediatric Chronic Kidney Disease Etiology. J Am Soc Nephrol 2022; 33:375-386. [PMID: 35017168 PMCID: PMC8819986 DOI: 10.1681/asn.2021040538] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 11/13/2021] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Untargeted plasma metabolomic profiling combined with machine learning (ML) may lead to discovery of metabolic profiles that inform our understanding of pediatric CKD causes. We sought to identify metabolomic signatures in pediatric CKD based on diagnosis: FSGS, obstructive uropathy (OU), aplasia/dysplasia/hypoplasia (A/D/H), and reflux nephropathy (RN). METHODS Untargeted metabolomic quantification (GC-MS/LC-MS, Metabolon) was performed on plasma from 702 Chronic Kidney Disease in Children study participants (n: FSGS=63, OU=122, A/D/H=109, and RN=86). Lasso regression was used for feature selection, adjusting for clinical covariates. Four methods were then applied to stratify significance: logistic regression, support vector machine, random forest, and extreme gradient boosting. ML training was performed on 80% total cohort subsets and validated on 20% holdout subsets. Important features were selected based on being significant in at least two of the four modeling approaches. We additionally performed pathway enrichment analysis to identify metabolic subpathways associated with CKD cause. RESULTS ML models were evaluated on holdout subsets with receiver-operator and precision-recall area-under-the-curve, F1 score, and Matthews correlation coefficient. ML models outperformed no-skill prediction. Metabolomic profiles were identified based on cause. FSGS was associated with the sphingomyelin-ceramide axis. FSGS was also associated with individual plasmalogen metabolites and the subpathway. OU was associated with gut microbiome-derived histidine metabolites. CONCLUSION ML models identified metabolomic signatures based on CKD cause. Using ML techniques in conjunction with traditional biostatistics, we demonstrated that sphingomyelin-ceramide and plasmalogen dysmetabolism are associated with FSGS and that gut microbiome-derived histidine metabolites are associated with OU.
Collapse
Affiliation(s)
- Arthur M. Lee
- Division of Nephrology, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Jian Hu
- Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Yunwen Xu
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore Maryland
| | - Alison G. Abraham
- School of Public Health, University of Colorado Denver, Denver, Colorado
| | - Rui Xiao
- Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Josef Coresh
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore Maryland
| | - Casey Rebholz
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore Maryland
| | - Jingsha Chen
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore Maryland
| | - Eugene P. Rhee
- Department of Medicine, Massachusetts General Hospital, Harvard University, Boston, Massachusetts
| | - Harold I. Feldman
- Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Vasan S. Ramachandran
- Department of Medicine, Boston University School of Medicine, Boston University School of Public Health, Boston University Center for Computing and Data Science, Boston, Massachusetts
| | - Paul L. Kimmel
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Bradley A. Warady
- Department of Pediatrics, Children’s Mercy Hospital, University of Missouri-Kansas City School of Medicine, Kansas City, Missouri
| | - Susan L. Furth
- Division of Nephrology, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Michelle R. Denburg
- Division of Nephrology, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | | |
Collapse
|
33
|
Castejón-Vega B, Rubio A, Pérez-Pulido AJ, Quiles JL, Lane JD, Fernández-Domínguez B, Cachón-González MB, Martín-Ruiz C, Sanz A, Cox TM, Alcocer-Gómez E, Cordero MD. L-Arginine Ameliorates Defective Autophagy in GM2 Gangliosidoses by mTOR Modulation. Cells 2021; 10:cells10113122. [PMID: 34831346 PMCID: PMC8619250 DOI: 10.3390/cells10113122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 11/21/2022] Open
Abstract
Aims: Tay–Sachs and Sandhoff diseases (GM2 gangliosidosis) are autosomal recessive disorders of lysosomal function that cause progressive neurodegeneration in infants and young children. Impaired hydrolysis catalysed by β-hexosaminidase A (HexA) leads to the accumulation of GM2 ganglioside in neuronal lysosomes. Despite the storage phenotype, the role of autophagy and its regulation by mTOR has yet to be explored in the neuropathogenesis. Accordingly, we investigated the effects on autophagy and lysosomal integrity using skin fibroblasts obtained from patients with Tay–Sachs and Sandhoff diseases. Results: Pathological autophagosomes with impaired autophagic flux, an abnormality confirmed by electron microscopy and biochemical studies revealing the accelerated release of mature cathepsins and HexA into the cytosol, indicating increased lysosomal permeability. GM2 fibroblasts showed diminished mTOR signalling with reduced basal mTOR activity. Accordingly, provision of a positive nutrient signal by L-arginine supplementation partially restored mTOR activity and ameliorated the cytopathological abnormalities. Innovation: Our data provide a novel molecular mechanism underlying GM2 gangliosidosis. Impaired autophagy caused by insufficient lysosomal function might represent a new therapeutic target for these diseases. Conclusions: We contend that the expression of autophagy/lysosome/mTOR-associated molecules may prove useful peripheral biomarkers for facile monitoring of treatment of GM2 gangliosidosis and neurodegenerative disorders that affect the lysosomal function and disrupt autophagy.
Collapse
Affiliation(s)
- Beatriz Castejón-Vega
- Research Laboratory, Oral Medicine Department, University of Sevilla, 41009 Sevilla, Spain;
| | - Alejandro Rubio
- Centro Andaluz de Biologia del Desarrollo (CABD, UPO-CSIC-JA), Facultad de Ciencias Experimentales (Área de Genética), Universidad Pablo de Olavide, 41013 Sevilla, Spain; (A.R.); (A.J.P.-P.)
| | - Antonio J. Pérez-Pulido
- Centro Andaluz de Biologia del Desarrollo (CABD, UPO-CSIC-JA), Facultad de Ciencias Experimentales (Área de Genética), Universidad Pablo de Olavide, 41013 Sevilla, Spain; (A.R.); (A.J.P.-P.)
| | - José L. Quiles
- Department of Physiology, Institute of Nutrition and Food Technology “José Mataix Verdú”, Biomedical Research Center, University of Granada, 18071 Granada, Spain;
| | - Jon D. Lane
- Cell Biology Laboratories, School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK;
| | | | | | - Carmen Martín-Ruiz
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE4 5 PL, UK;
| | - Alberto Sanz
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow G12 8QQ, UK;
| | - Timothy M. Cox
- Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK; (M.B.C.-G.); (T.M.C.)
| | - Elísabet Alcocer-Gómez
- Departamento de Psicología Experimental, Facultad de Psicología, Universidad de Sevilla, 41009 Seville, Spain;
| | - Mario D. Cordero
- Instituto de Investigación e Innovación en Ciencias Biomédicas de Cádiz (INiBICA), 11009 Cadiz, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, 28220 Madrid, Spain
- Correspondence:
| |
Collapse
|
34
|
Eskes ECB, van der Lienden MJC, Roelofs JJTH, Vogt L, Aerts JMFG, Aten J, Hollak CEM. Renal involvement in a patient with the chronic visceral subtype of acid sphingomyelinase deficiency resembles Fabry disease. JIMD Rep 2021; 62:15-21. [PMID: 34765393 PMCID: PMC8574181 DOI: 10.1002/jmd2.12242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 06/02/2021] [Accepted: 07/06/2021] [Indexed: 11/18/2022] Open
Abstract
Acid sphingomyelinase deficiency (ASMD) is a lysosomal storage disease (LSD) in which sphingomyelin accumulates due to deficient acid sphingomyelinase. In the chronic visceral subtype, organ manifestations are generally limited to the spleen, liver, and lungs. We report a male patient with the chronic visceral subtype who developed proteinuria and renal insufficiency at the age of 49. In renal tissue, foam cells were observed in the glomeruli as well as sphingomyelin accumulation within podocytes, mesangial cells, endothelial cells, and tubular epithelial cells. Although macrophages are the primary storage cells in both ASMD and Gaucher disease, comparison to the histopathological findings in Gaucher and Fabry disease revealed a diffuse storage pattern in multiple renal cell types, closer resembling the pattern found in Fabry disease.
Collapse
Affiliation(s)
- Eline C. B. Eskes
- Department of Endocrinology and MetabolismAmsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
| | - Martijn J. C. van der Lienden
- Department of Endocrinology and MetabolismAmsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
- Department of PathologyAmsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
| | - Joris J. T. H. Roelofs
- Department of PathologyAmsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
- Amsterdam UMC, Amsterdam Cardiovascular SciencesDepartment of Internal Medicine, section Nephrology, University of AmsterdamAmsterdamThe Netherlands
| | - Liffert Vogt
- Amsterdam UMC, Amsterdam Cardiovascular SciencesDepartment of Internal Medicine, section Nephrology, University of AmsterdamAmsterdamThe Netherlands
| | - Johannes M. F. G. Aerts
- Leiden Institute of Chemistry, Department of Medical BiochemistryUniversity of LeidenLeidenThe Netherlands
| | - Jan Aten
- Department of PathologyAmsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
| | - Carla E. M. Hollak
- Department of Endocrinology and MetabolismAmsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
35
|
Sun Y, Cui S, Hou Y, Yi F. The Updates of Podocyte Lipid Metabolism in Proteinuric Kidney Disease. KIDNEY DISEASES (BASEL, SWITZERLAND) 2021; 7:438-451. [PMID: 34901191 DOI: 10.1159/000518132] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 06/24/2021] [Indexed: 12/23/2022]
Abstract
BACKGROUND Podocytes, functionally specialized and terminally differentiated glomerular visceral epithelial cells, are critical for maintaining the structure and function of the glomerular filtration barrier. Podocyte injury is considered as the most important early event contributing to proteinuric kidney diseases such as obesity-related renal disease, diabetic kidney disease, focal segmental glomerulosclerosis, membranous nephropathy, and minimal change disease. Although considerable advances have been made in the understanding of mechanisms that trigger podocyte injury, cell-specific and effective treatments are not clinically available. SUMMARY Emerging evidence has indicated that the disorder of podocyte lipid metabolism is closely associated with various proteinuric kidney diseases. Excessive lipid accumulation in podocytes leads to cellular dysfunction which is defined as lipotoxicity, a phenomenon characterized by mitochondrial oxidative stress, actin cytoskeleton remodeling, insulin resistance, and inflammatory response that can eventually result in podocyte hypertrophy, detachment, and death. In this review, we summarize recent advances in the understanding of lipids in podocyte biological function and the regulatory mechanisms leading to podocyte lipid accumulation in proteinuric kidney disease. KEY MESSAGES Targeting podocyte lipid metabolism may represent a novel therapeutic strategy for patients with proteinuric kidney disease.
Collapse
Affiliation(s)
- Yu Sun
- The Key Laboratory of Infection and Immunity of Shandong Province, Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Sijia Cui
- The Key Laboratory of Infection and Immunity of Shandong Province, Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Yunfeng Hou
- Intensive Care Unit, Shandong Provincial Qianfoshan Hospital, the First Hospital Affiliated with Shandong First Medical University, Jinan, China
| | - Fan Yi
- The Key Laboratory of Infection and Immunity of Shandong Province, Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, China
| |
Collapse
|
36
|
Guo Y, Liu F, Chen M, Tian Q, Tian X, Xiong Q, Huang C. Huangjinsan ameliorates adenine-induced chronic kidney disease by regulating metabolic profiling. J Sep Sci 2021; 44:4384-4394. [PMID: 34688222 DOI: 10.1002/jssc.202100542] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 10/01/2021] [Accepted: 10/19/2021] [Indexed: 11/08/2022]
Abstract
Chronic kidney disease is an increasingly serious public health problem worldwide. Our recent studies have shown that Huangjinsan has a renal protective effect on chronic kidney disease, but the specific mechanism by which this effect occurs is not clear. To study the therapeutic effect of Huangjinsan on chronic kidney disease and to explore its possible mechanism of action through nontargeted metabolomics methods, a chronic kidney disease rat model was induced by adenine, and the Huangjinsan extract was given by oral gavage. Body weight, the kidney index, pathological sections, and a series of biochemical indicators were measured. High-performance liquid chromatography quadrupole time-of-flight mass spectrometry was used to analyze the changes in the plasma metabolome. Huangjinsan significantly reduced indicators of kidney damage, including total protein, albumin, the total protein to creatinine ratio, and the albumin to creatinine ratio in urine, as well as IL-2, MCP-1α, and blood urea levels in plasma. Based on nontargeted metabolomics, 13 metabolites related to chronic kidney disease were discovered. These metabolites are closely related to glycerophospholipid metabolism, arginine and proline metabolism, and sphingolipid metabolism. We found that Huangjinsan can restore the renal function of adenine-induced chronic kidney disease by regulating the metabolic profile.
Collapse
Affiliation(s)
- Yuejiao Guo
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, P. R. China
| | - Fang Liu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P. R. China.,University of Chinese Academy of Sciences, Beijing, P. R. China
| | - MingCang Chen
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P. R. China.,University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Qiang Tian
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P. R. China
| | - Xiaoting Tian
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P. R. China.,University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Qiang Xiong
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, P. R. China
| | - Chenggang Huang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P. R. China.,University of Chinese Academy of Sciences, Beijing, P. R. China
| |
Collapse
|
37
|
Tian J, Huang T, Chang S, Wang Y, Fan W, Ji H, Wang J, Yang J, Kang J, Zhou Y. Role of sphingosine-1-phosphate mediated signalling in systemic lupus erythematosus. Prostaglandins Other Lipid Mediat 2021; 156:106584. [PMID: 34352381 DOI: 10.1016/j.prostaglandins.2021.106584] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 07/02/2021] [Accepted: 07/26/2021] [Indexed: 12/17/2022]
Abstract
Systemic lupus erythematosus (SLE) is a highly prevalent autoimmune disease characterized by the malfunction of the immune system and the persistent presence of an inflammatory environment. Multiple organs can be affected during SLE, leading to heterogeneous manifestations, which eventually result in the death of patients. Due to the lack of understanding regarding the pathogenesis of SLE, the currently available treatments remain suboptimal. Sphingosine-1-phosphate (S1P) is a central bioactive lipid of sphingolipid metabolism, which serves a pivotal role in regulating numerous physiological and pathological processes. As a well-recognized regulator of lymphocyte trafficking, S1P has been shown to be closely associated with autoimmune diseases, including SLE. Importantly, S1P levels have been found to be elevated in patients with SLE. In murine models of lupus, the increased levels of S1P also contribute to disease activity and organ impairment. Moreover, data from several studies also support the hypothesis that S1P receptors and its producer-sphingosine kinases (SPHK) may serve as the potential targets for the treatment of SLE and its co-morbidities. Given the significant success that intervening with S1P signaling has achieved in treating multiple sclerosis, further exploration of its role in SLE is necessary. Therefore, the aim of the present review is to summarize the recent advances in understanding the potential mechanism by which S1P influences SLE, with a primary focus on its role in immune regulation and inflammatory responses.
Collapse
Affiliation(s)
- Jihua Tian
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, Shanxi, China.
| | - Taiping Huang
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Sijia Chang
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yanhong Wang
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Weiping Fan
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - He Ji
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Juanjuan Wang
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jia Yang
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jing Kang
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yun Zhou
- Department of Nephrology, The Affiliated People's Hospital of Shanxi Medical University, Shanxi Provincial People's Hospital, Shanxi Kidney Disease Institute, Taiyuan, Shanxi, China.
| |
Collapse
|
38
|
Camacho L, Zabala-Letona A, Cortazar AR, Astobiza I, Dominguez-Herrera A, Ercilla A, Crespo J, Viera C, Fernández-Ruiz S, Martinez-Gonzalez A, Torrano V, Martín-Martín N, Gomez-Muñoz A, Carracedo A. Identification of Androgen Receptor Metabolic Correlome Reveals the Repression of Ceramide Kinase by Androgens. Cancers (Basel) 2021; 13:cancers13174307. [PMID: 34503116 PMCID: PMC8431577 DOI: 10.3390/cancers13174307] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/11/2021] [Accepted: 08/18/2021] [Indexed: 12/15/2022] Open
Abstract
Prostate cancer (PCa) is one of the most prevalent cancers in men. Androgen receptor signaling plays a major role in this disease, and androgen deprivation therapy is a common therapeutic strategy in recurrent disease. Sphingolipid metabolism plays a central role in cell death, survival, and therapy resistance in cancer. Ceramide kinase (CERK) catalyzes the phosphorylation of ceramide to ceramide 1-phosphate, which regulates various cellular functions including cell growth and migration. Here we show that activated androgen receptor (AR) is a repressor of CERK expression. We undertook a bioinformatics strategy using PCa transcriptomics datasets to ascertain the metabolic alterations associated with AR activity. CERK was among the most prominent negatively correlated genes in our analysis. Interestingly, we demonstrated through various experimental approaches that activated AR reduces the mRNA expression of CERK: (i) expression of CERK is predominant in cell lines with low or negative AR activity; (ii) AR agonist and antagonist repress and induce CERK mRNA expression, respectively; (iii) orchiectomy in wildtype mice or mice with PCa (harboring prostate-specific Pten deletion) results in elevated Cerk mRNA levels in prostate tissue. Mechanistically, we found that AR represses CERK through interaction with its regulatory elements and that the transcriptional repressor EZH2 contributes to this process. In summary, we identify a repressive mode of AR that influences the expression of CERK in PCa.
Collapse
Affiliation(s)
- Laura Camacho
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain; (L.C.); (A.Z.-L.); (A.R.C.); (I.A.); (A.E.); (J.C.); (C.V.); (S.F.-R.); (A.M.-G.); (V.T.); (N.M.-M.)
- Biochemistry and Molecular Biology Department, University of the Basque Country, 48040 Bilbao, Spain; (A.D.-H.); (A.G.-M.)
| | - Amaia Zabala-Letona
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain; (L.C.); (A.Z.-L.); (A.R.C.); (I.A.); (A.E.); (J.C.); (C.V.); (S.F.-R.); (A.M.-G.); (V.T.); (N.M.-M.)
- Centro de Investigación Biomédica En Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Ana R. Cortazar
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain; (L.C.); (A.Z.-L.); (A.R.C.); (I.A.); (A.E.); (J.C.); (C.V.); (S.F.-R.); (A.M.-G.); (V.T.); (N.M.-M.)
- Centro de Investigación Biomédica En Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Ianire Astobiza
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain; (L.C.); (A.Z.-L.); (A.R.C.); (I.A.); (A.E.); (J.C.); (C.V.); (S.F.-R.); (A.M.-G.); (V.T.); (N.M.-M.)
| | - Asier Dominguez-Herrera
- Biochemistry and Molecular Biology Department, University of the Basque Country, 48040 Bilbao, Spain; (A.D.-H.); (A.G.-M.)
| | - Amaia Ercilla
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain; (L.C.); (A.Z.-L.); (A.R.C.); (I.A.); (A.E.); (J.C.); (C.V.); (S.F.-R.); (A.M.-G.); (V.T.); (N.M.-M.)
- Centro de Investigación Biomédica En Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Jana Crespo
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain; (L.C.); (A.Z.-L.); (A.R.C.); (I.A.); (A.E.); (J.C.); (C.V.); (S.F.-R.); (A.M.-G.); (V.T.); (N.M.-M.)
| | - Cristina Viera
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain; (L.C.); (A.Z.-L.); (A.R.C.); (I.A.); (A.E.); (J.C.); (C.V.); (S.F.-R.); (A.M.-G.); (V.T.); (N.M.-M.)
| | - Sonia Fernández-Ruiz
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain; (L.C.); (A.Z.-L.); (A.R.C.); (I.A.); (A.E.); (J.C.); (C.V.); (S.F.-R.); (A.M.-G.); (V.T.); (N.M.-M.)
- Centro de Investigación Biomédica En Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Ainara Martinez-Gonzalez
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain; (L.C.); (A.Z.-L.); (A.R.C.); (I.A.); (A.E.); (J.C.); (C.V.); (S.F.-R.); (A.M.-G.); (V.T.); (N.M.-M.)
| | - Veronica Torrano
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain; (L.C.); (A.Z.-L.); (A.R.C.); (I.A.); (A.E.); (J.C.); (C.V.); (S.F.-R.); (A.M.-G.); (V.T.); (N.M.-M.)
- Biochemistry and Molecular Biology Department, University of the Basque Country, 48040 Bilbao, Spain; (A.D.-H.); (A.G.-M.)
- Centro de Investigación Biomédica En Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Natalia Martín-Martín
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain; (L.C.); (A.Z.-L.); (A.R.C.); (I.A.); (A.E.); (J.C.); (C.V.); (S.F.-R.); (A.M.-G.); (V.T.); (N.M.-M.)
- Centro de Investigación Biomédica En Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Antonio Gomez-Muñoz
- Biochemistry and Molecular Biology Department, University of the Basque Country, 48040 Bilbao, Spain; (A.D.-H.); (A.G.-M.)
| | - Arkaitz Carracedo
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain; (L.C.); (A.Z.-L.); (A.R.C.); (I.A.); (A.E.); (J.C.); (C.V.); (S.F.-R.); (A.M.-G.); (V.T.); (N.M.-M.)
- Biochemistry and Molecular Biology Department, University of the Basque Country, 48040 Bilbao, Spain; (A.D.-H.); (A.G.-M.)
- Centro de Investigación Biomédica En Red de Cáncer (CIBERONC), 28029 Madrid, Spain
- IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain
- Correspondence:
| |
Collapse
|
39
|
Li G, Kidd J, Gehr TWB, Li PL. Podocyte Sphingolipid Signaling in Nephrotic Syndrome. Cell Physiol Biochem 2021; 55:13-34. [PMID: 33861526 PMCID: PMC8193717 DOI: 10.33594/000000356] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2021] [Indexed: 11/25/2022] Open
Abstract
Podocytes play a vital role in the pathogenesis of nephrotic syndrome (NS), which is clinically characterized by heavy proteinuria, hypoalbuminemia, hyperlipidemia, and peripheral edema. The pathogenesis of NS has evolved through several hypotheses ranging from immune dysregulation theory and increased glomerular permeability theory to the current concept of podocytopathy. Podocytopathy is characterized by dysfunction or depletion of podocytes, which may be caused by unknown permeability factor, genetic disorders, drugs, infections, systemic disorders, and hyperfiltration. Over the last two decades, numerous studies have been done to explore the molecular mechanisms of podocyte injuries or NS and to develop the novel therapeutic strategies targeting podocytopathy for treatment of NS. Recent studies have shown that normal sphingolipid metabolism is essential for structural and functional integrity of podocytes. As a basic component of the plasma membrane, sphingolipids not only support the assembly of signaling molecules and interaction of receptors and effectors, but also mediate various cellular activities, such as apoptosis, proliferation, stress responses, necrosis, inflammation, autophagy, senescence, and differentiation. This review briefly summarizes current evidence demonstrating the regulation of sphingolipid metabolism in podocytes and the canonical or noncanonical roles of podocyte sphingolipid signaling in the pathogenesis of NS and associated therapeutic strategies.
Collapse
Affiliation(s)
- Guangbi Li
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Jason Kidd
- Division of Nephrology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Todd W B Gehr
- Division of Nephrology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Pin-Lan Li
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA,
| |
Collapse
|
40
|
Use of Lipid-Modifying Agents for the Treatment of Glomerular Diseases. J Pers Med 2021; 11:jpm11080820. [PMID: 34442464 PMCID: PMC8401447 DOI: 10.3390/jpm11080820] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 08/17/2021] [Indexed: 01/14/2023] Open
Abstract
Although dyslipidemia is associated with chronic kidney disease (CKD), it is more common in nephrotic syndrome (NS), and guidelines for the management of hyperlipidemia in NS are largely opinion-based. In addition to the role of circulating lipids, an increasing number of studies suggest that intrarenal lipids contribute to the progression of glomerular diseases, indicating that proteinuric kidney diseases may be a form of "fatty kidney disease" and that reducing intracellular lipids could represent a new therapeutic approach to slow the progression of CKD. In this review, we summarize recent progress made in the utilization of lipid-modifying agents to lower renal parenchymal lipid accumulation and to prevent or reduce kidney injury. The agents mentioned in this review are categorized according to their specific targets, but they may also regulate other lipid-relevant pathways.
Collapse
|
41
|
Woodhams L, Sim TF, Chalmers L, Yeap B, Green D, Schlaich M, Schultz C, Hillis G. Diabetic kidney disease in type 2 diabetes: a review of pathogenic mechanisms, patient-related factors and therapeutic options. PeerJ 2021; 9:e11070. [PMID: 33976959 PMCID: PMC8061574 DOI: 10.7717/peerj.11070] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 02/16/2021] [Indexed: 12/23/2022] Open
Abstract
The global prevalence of diabetic kidney disease is rapidly accelerating due to an increasing number of people living with type 2 diabetes. It has become a significant global problem, increasing human and financial pressures on already overburdened healthcare systems. Interest in diabetic kidney disease has increased over the last decade and progress has been made in determining the pathogenic mechanisms and patient-related factors involved in the development and pathogenesis of this disease. A greater understanding of these factors will catalyse the development of novel treatments and influence current practice. This review summarises the latest evidence for the factors involved in the development and progression of diabetic kidney disease, which will inform better management strategies targeting such factors to improve therapeutic outcomes in patients living with diabetes.
Collapse
Affiliation(s)
- Louise Woodhams
- Curtin Medical School, Curtin University of Technology, Perth, Western Australia, Australia
| | - Tin Fei Sim
- Curtin Medical School, Curtin University of Technology, Perth, Western Australia, Australia
| | - Leanne Chalmers
- Curtin Medical School, Curtin University of Technology, Perth, Western Australia, Australia
| | - Bu Yeap
- Department of Endocrinology and Diabetes, Fiona Stanley Hospital, Perth, Western Australia, Australia.,Medical School, The University of Western Australia, Perth, Western Australia, Australia
| | - Daniel Green
- School of Human Sciences (Exercise and Sport Sciences), The University of Western Australia, Perth, Western Australia, Australia
| | - Markus Schlaich
- Medical School, The University of Western Australia, Perth, Western Australia, Australia.,Department of Cardiology and Nephrology, Royal Perth Hospital, Perth, Western Australia, Australia.,Neurovascular Hypertension and Kidney Disease Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.,Dobney Hypertension Centre, School of Medicine, Royal Perth Hospital Unit/Medical Research Foundation, The University of Western Australia, Perth, Western Australia, Australia
| | - Carl Schultz
- Medical School, The University of Western Australia, Perth, Western Australia, Australia.,Department of Cardiology, Royal Perth Hospital, Perth, Western Australia, Australia
| | - Graham Hillis
- Medical School, The University of Western Australia, Perth, Western Australia, Australia.,Department of Cardiology, Royal Perth Hospital, Perth, Western Australia, Australia
| |
Collapse
|
42
|
Müller-Deile J, Sarau G, Kotb AM, Jaremenko C, Rolle-Kampczyk UE, Daniel C, Kalkhof S, Christiansen SH, Schiffer M. Novel diagnostic and therapeutic techniques reveal changed metabolic profiles in recurrent focal segmental glomerulosclerosis. Sci Rep 2021; 11:4577. [PMID: 33633212 PMCID: PMC7907124 DOI: 10.1038/s41598-021-83883-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 02/09/2021] [Indexed: 12/19/2022] Open
Abstract
Idiopathic forms of Focal Segmental Glomerulosclerosis (FSGS) are caused by circulating permeability factors, which can lead to early recurrence of FSGS and kidney failure after kidney transplantation. In the past three decades, many research endeavors were undertaken to identify these unknown factors. Even though some potential candidates have been recently discussed in the literature, "the" actual factor remains elusive. Therefore, there is an increased demand in FSGS research for the use of novel technologies that allow us to study FSGS from a yet unexplored angle. Here, we report the successful treatment of recurrent FSGS in a patient after living-related kidney transplantation by removal of circulating factors with CytoSorb apheresis. Interestingly, the classical published circulating factors were all in normal range in this patient but early disease recurrence in the transplant kidney and immediate response to CytoSorb apheresis were still suggestive for pathogenic circulating factors. To proof the functional effects of the patient's serum on podocytes and the glomerular filtration barrier we used a podocyte cell culture model and a proteinuria model in zebrafish to detect pathogenic effects on the podocytes actin cytoskeleton inducing a functional phenotype and podocyte effacement. We then performed Raman spectroscopy in the < 50 kDa serum fraction, on cultured podocytes treated with the FSGS serum and in kidney biopsies of the same patient at the time of transplantation and at the time of disease recurrence. The analysis revealed changes in podocyte metabolome induced by the FSGS serum as well as in focal glomerular and parietal epithelial cell regions in the FSGS biopsy. Several altered Raman spectra were identified in the fractionated serum and metabolome analysis by mass spectrometry detected lipid profiles in the FSGS serum, which were supported by disturbances in the Raman spectra. Our novel innovative analysis reveals changed lipid metabolome profiles associated with idiopathic FSGS that might reflect a new subtype of the disease.
Collapse
Affiliation(s)
- Janina Müller-Deile
- Department of Nephrology and Hypertension, Friedrich-Alexander-University (FAU) Erlangen-Nuremberg, Erlangen, Germany.
| | - George Sarau
- Fraunhofer Institute for Ceramic Technologies and Systems IKTS, Dresden, Germany.,Leuchs Emeritus Group, Max Planck Institute for the Science of Light, Erlangen, Germany.,Institute for Nanotechnology and Correlative Microscopy eV INAM, Forchheim, Germany
| | - Ahmed M Kotb
- Department of Nephrology and Hypertension, Friedrich-Alexander-University (FAU) Erlangen-Nuremberg, Erlangen, Germany.,Department of Anatomy and Histology, Faculty of Veterinary Medicine, Assiut University, Asyût, Egypt
| | - Christian Jaremenko
- Institute for Nanotechnology and Correlative Microscopy eV INAM, Forchheim, Germany.,Institute of Optics, Information and Photonics, Friedrich-Alexander-University (FAU) Erlangen-Nuremberg, Erlangen, Germany
| | - Ulrike E Rolle-Kampczyk
- Department Molecular Systems Biology, Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Christoph Daniel
- Department of Nephropathology, Friedrich-Alexander-University (FAU) Erlangen-Nuremberg, Erlangen, Germany
| | - Stefan Kalkhof
- Institute for Bioanalysis, University of Applied Sciences Coburg, Coburg, Germany.,Department of Molecular Systems Biology, Helmholtz-Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Silke H Christiansen
- Fraunhofer Institute for Ceramic Technologies and Systems IKTS, Dresden, Germany.,Leuchs Emeritus Group, Max Planck Institute for the Science of Light, Erlangen, Germany.,Institute for Nanotechnology and Correlative Microscopy eV INAM, Forchheim, Germany.,Physics Department, Freie Universität Berlin, Berlin, Germany
| | - Mario Schiffer
- Department of Nephrology and Hypertension, Friedrich-Alexander-University (FAU) Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
43
|
Yokota R, Bhunu B, Toba H, Intapad S. Sphingolipids and Kidney Disease: Possible Role of Preeclampsia and Intrauterine Growth Restriction (IUGR). KIDNEY360 2021; 2:534-541. [PMID: 35369015 PMCID: PMC8786006 DOI: 10.34067/kid.0006322020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 01/06/2021] [Indexed: 02/04/2023]
Abstract
Sphingolipids are now considered not only as constitutional components of the cellular membrane but also as essential bioactive factors regulating development and physiologic functions. Ceramide is a vital intermediate of sphingolipid metabolism, synthesized by de novo and salvage pathways, producing multiple types of sphingolipids and their metabolites. Although mutations in gene-encoding enzymes regulating sphingolipid synthesis and metabolism cause distinct diseases, an abnormal sphingolipid metabolism contributes to various pathologic conditions, including kidney diseases. Excessive accumulation of glycosphingolipids and promotion of the ceramide salvage and sphingosine-1-phosphate (S1P) pathways are found in the damaged kidney. Acceleration of the sphingosine kinase/S1P/S1P receptor (SphK/S1P/S1PR) axis plays a central role in deteriorating kidney functions. The SphK/S1P/S1PR signaling impairment is also found during pregnancy complications, such as preeclampsia and intrauterine growth restriction (IUGR). This mini-review discusses the current state of knowledge regarding the role of sphingolipid metabolism on kidney diseases, and the possible involvement of preeclampsia and IUGR conditions.
Collapse
Affiliation(s)
- Rodrigo Yokota
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Benjamin Bhunu
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Hiroe Toba
- Division of Pathological Sciences, Department of Clinical Pharmacology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Suttira Intapad
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana
| |
Collapse
|
44
|
Savas B, Astarita G, Aureli M, Sahali D, Ollero M. Gangliosides in Podocyte Biology and Disease. Int J Mol Sci 2020; 21:E9645. [PMID: 33348903 PMCID: PMC7766259 DOI: 10.3390/ijms21249645] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/07/2020] [Accepted: 12/14/2020] [Indexed: 02/07/2023] Open
Abstract
Gangliosides constitute a subgroup of glycosphingolipids characterized by the presence of sialic acid residues in their structure. As constituents of cellular membranes, in particular of raft microdomains, they exert multiple functions, some of them capital in cell homeostasis. Their presence in cells is tightly regulated by a balanced expression and function of the enzymes responsible for their biosynthesis, ganglioside synthases, and their degradation, glycosidases. The dysregulation of their abundance results in rare and common diseases. In this review, we make a point on the relevance of gangliosides and some of their metabolic precursors, such as ceramides, in the function of podocytes, the main cellular component of the glomerular filtration barrier, as well as their implications in podocytopathies. The results presented in this review suggest the pertinence of clinical lipidomic studies targeting these metabolites.
Collapse
Affiliation(s)
- Berkan Savas
- INSERM, IMRB, Univ Paris Est Créteil, F-94010 Créteil, France; (B.S.); (D.S.)
| | - Giuseppe Astarita
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, 20007 Washington, DC, USA;
| | - Massimo Aureli
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Milano Italy, 20090 Segrate (Milano), Italy;
| | - Dil Sahali
- INSERM, IMRB, Univ Paris Est Créteil, F-94010 Créteil, France; (B.S.); (D.S.)
- Service Néphrologie, AP-HP, Hôpital Henri Mondor, F-94010 Créteil, France
| | - Mario Ollero
- INSERM, IMRB, Univ Paris Est Créteil, F-94010 Créteil, France; (B.S.); (D.S.)
| |
Collapse
|
45
|
Huang J, Huth C, Covic M, Troll M, Adam J, Zukunft S, Prehn C, Wang L, Nano J, Scheerer MF, Neschen S, Kastenmüller G, Suhre K, Laxy M, Schliess F, Gieger C, Adamski J, Hrabe de Angelis M, Peters A, Wang-Sattler R. Machine Learning Approaches Reveal Metabolic Signatures of Incident Chronic Kidney Disease in Individuals With Prediabetes and Type 2 Diabetes. Diabetes 2020; 69:2756-2765. [PMID: 33024004 DOI: 10.2337/db20-0586] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 09/29/2020] [Indexed: 11/13/2022]
Abstract
Early and precise identification of individuals with prediabetes and type 2 diabetes (T2D) at risk for progressing to chronic kidney disease (CKD) is essential to prevent complications of diabetes. Here, we identify and evaluate prospective metabolite biomarkers and the best set of predictors of CKD in the longitudinal, population-based Cooperative Health Research in the Region of Augsburg (KORA) cohort by targeted metabolomics and machine learning approaches. Out of 125 targeted metabolites, sphingomyelin C18:1 and phosphatidylcholine diacyl C38:0 were identified as candidate metabolite biomarkers of incident CKD specifically in hyperglycemic individuals followed during 6.5 years. Sets of predictors for incident CKD developed from 125 metabolites and 14 clinical variables showed highly stable performances in all three machine learning approaches and outperformed the currently established clinical algorithm for CKD. The two metabolites in combination with five clinical variables were identified as the best set of predictors, and their predictive performance yielded a mean area value under the receiver operating characteristic curve of 0.857. The inclusion of metabolite variables in the clinical prediction of future CKD may thus improve the risk prediction in people with prediabetes and T2D. The metabolite link with hyperglycemia-related early kidney dysfunction warrants further investigation.
Collapse
Affiliation(s)
- Jialing Huang
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Cornelia Huth
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Marcela Covic
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Martina Troll
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Jonathan Adam
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Sven Zukunft
- Research Unit of Molecular Endocrinology and Metabolism, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Cornelia Prehn
- Research Unit of Molecular Endocrinology and Metabolism, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Li Wang
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
- Department of Scientific Research and Shandong University Postdoctoral Work Station, Liaocheng People's Hospital, Shandong, P. R. China
| | - Jana Nano
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Markus F Scheerer
- Institute of Experimental Genetics, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Susanne Neschen
- Institute of Experimental Genetics, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Gabi Kastenmüller
- Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Karsten Suhre
- Department of Physiology and Biophysics, Weill Cornell Medicine - Qatar, Doha, Qatar
| | - Michael Laxy
- Institute of Health Economics and Health Care Management, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | | | - Christian Gieger
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Jerzy Adamski
- Research Unit of Molecular Endocrinology and Metabolism, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Chair of Experimental Genetics, Center of Life and Food Sciences Weihenstephan, Technische Universität München, Freising, Germany
| | - Martin Hrabe de Angelis
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Institute of Experimental Genetics, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
- Chair of Experimental Genetics, Center of Life and Food Sciences Weihenstephan, Technische Universität München, Freising, Germany
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Rui Wang-Sattler
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| |
Collapse
|
46
|
Ishahak M, Hill J, Amin Q, Wubker L, Hernandez A, Mitrofanova A, Sloan A, Fornoni A, Agarwal A. Modular Microphysiological System for Modeling of Biologic Barrier Function. Front Bioeng Biotechnol 2020; 8:581163. [PMID: 33304889 PMCID: PMC7693638 DOI: 10.3389/fbioe.2020.581163] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 10/21/2020] [Indexed: 12/13/2022] Open
Abstract
Microphysiological systems, also known as organs-on-chips, are microfluidic devices designed to model human physiology in vitro. Polydimethylsiloxane (PDMS) is the most widely used material for organs-on-chips due to established microfabrication methods, and properties that make it suitable for biological applications such as low cytotoxicity, optical transparency, gas permeability. However, absorption of small molecules and leaching of uncrosslinked oligomers might hinder the adoption of PDMS-based organs-on-chips for drug discovery assays. Here, we have engineered a modular, PDMS-free microphysiological system that is capable of recapitulating biologic barrier functions commonly demonstrated in PDMS-based devices. Our microphysiological system is comprised of a microfluidic chip to house cell cultures and pneumatic microfluidic pumps to drive flow with programmable pressure and shear stress. The modular architecture and programmable pumps enabled us to model multiple in vivo microenvironments. First, we demonstrate the ability to generate cyclic strain on the culture membrane and establish a model of the alveolar air-liquid interface. Next, we utilized three-dimensional finite element analysis modeling to characterize the fluid dynamics within the device and develop a model of the pressure-driven filtration that occurs at the glomerular filtration barrier. Finally, we demonstrate that our model can be used to recapitulate sphingolipid induced kidney injury. Together, our results demonstrate that a multifunctional and modular microphysiological system can be deployed without the use of PDMS. Further, the bio-inert plastic used in our microfluidic device is amenable to various established, high-throughput manufacturing techniques, such as injection molding. As a result, the development plastic organs-on-chips provides an avenue to meet the increasing demand for organ-on-chip technology.
Collapse
Affiliation(s)
- Matthew Ishahak
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, United States
| | - Jordan Hill
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, United States
| | - Quratulain Amin
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, United States
| | - Laura Wubker
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, United States
| | - Adiel Hernandez
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, United States
| | - Alla Mitrofanova
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Alexis Sloan
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Alessia Fornoni
- Department of Biochemistry & Molecular Biology, DJTMF Biomedical Nanotechnology Institute, University of Miami Miller School of Medicine, Miami, FL, United States.,Katz Family Division of Nephrology and Hypertension, Department of Medicine, Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Ashutosh Agarwal
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, United States.,Department of Biochemistry & Molecular Biology, DJTMF Biomedical Nanotechnology Institute, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
47
|
Watanabe S, Hirono K, Aizawa T, Tsugawa K, Joh K, Imaizumi T, Tanaka H. Podocyte sphingomyelin phosphodiesterase acid-like 3b decreases among children with idiopathic nephrotic syndrome. Clin Exp Nephrol 2020; 25:44-51. [PMID: 32946006 DOI: 10.1007/s10157-020-01970-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 09/04/2020] [Indexed: 10/23/2022]
Abstract
AIM Sphingomyelin phosphodiesterase acid-like 3b (SMPDL-3b), a regulator of the cytoskeleton, is expressed on podocytes. Recent reports present evidence that it is directly targeted by rituximab in the treatment of intractable nephrotic syndrome. However, the implications of SMPDL-3b for treatment of paediatric-onset idiopathic nephrotic syndrome (INS) remain unclear. This study aimed to investigate the level of expression of SMPDL-3b in urine, serum, and biopsy specimens and explore its implications in treatment of patients with INS. METHODS Levels of urinary SMPDL-3b among 31 patients (20 in remission and 11 in relapse) with INS were analysed by dot blotting. For reference of precise quantitative analysis, we examined urinary excretion of SMPDL-3b from 10 patients with INS by liquid chromatography-tandem mass spectrometry (LC-MS/MS) in both remitted and relapsed status. The levels of serum SMPDL-3b among 20 patients (13 in remission and 7 in relapse or onset) with INS were also measured using enzyme-linked immunosorbent assay. Further, the immunoreactivity of SMPDL-3b in the biopsy specimens obtained from patients with INS was compared with those from patients with proteinuric IgA nephropathy, lupus nephritis, and non-proteinuric controls. RESULTS Urinary excretion of SMPDL-3b in patients with INS was significantly decreased in relapse cases compared with cases of remission and other types of proteinuric glomerular disease or controls by both dot blotting and LC-MS/MS method. On the other hand, serum SMPDL-3b level in INS was not different between cases of remission and relapse. Glomerular immunoreactivity of SMPDL-3b in patient with INS in remission was almost the same level to that of control. CONCLUSION The expression of SMPDL-3b on podocytes is specifically decreased in paediatric-onset INS and its urinary excretion level reflects such conditions.
Collapse
Affiliation(s)
- Shojiro Watanabe
- Department of Pediatrics, Hirosaki University Hospital, 51 Hon-cho, Hirosaki, 036-8563, Japan.
| | - Koji Hirono
- Department of Pediatrics, Hirosaki University Hospital, 51 Hon-cho, Hirosaki, 036-8563, Japan
| | - Tomomi Aizawa
- Department of Pediatrics, Hirosaki University Hospital, 51 Hon-cho, Hirosaki, 036-8563, Japan
| | - Koji Tsugawa
- Department of Pediatrics, Hirosaki University Hospital, 51 Hon-cho, Hirosaki, 036-8563, Japan
| | - Kensuke Joh
- Department of Pathology, The Jikei University School of Medicine, Tokyo, Japan
| | - Tadaatsu Imaizumi
- Department of Vascular Biology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Hiroshi Tanaka
- Department of Pediatrics, Hirosaki University Hospital, 51 Hon-cho, Hirosaki, 036-8563, Japan.,Department of School Health Science, Faculty of Education, Hirosaki University, Hirosaki, Japan
| |
Collapse
|
48
|
Valsecchi M, Cazzetta V, Oriolo F, Lan X, Piazza R, Saleem MA, Singhal PC, Mavilio D, Mikulak J, Aureli M. APOL1 polymorphism modulates sphingolipid profile of human podocytes. Glycoconj J 2020; 37:729-744. [PMID: 32915357 PMCID: PMC7679335 DOI: 10.1007/s10719-020-09944-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/19/2020] [Accepted: 09/02/2020] [Indexed: 12/01/2022]
Abstract
Apolipoprotein L1 (APOL1) wild type (G0) plays a role in the metabolism of sphingolipids, glycosphingolipids, sphingomyelin and ceramide, which constitute bioactive components of the lipid rafts (DRM). We asked whether APOL1 variants (APOL1-Vs) G1 and G2 carry the potential to alter the metabolism of sphingolipids in human podocytes. The sphingolipid pattern in HPs overexpressing either APOL1G0 or APOL1-Vs was analysed by using a thin mono- and bi-dimensional layer chromatography, mass-spectrometry and metabolic labelling with [1-3H]sphingosine. HP G0 and G1/G2-Vs exhibit a comparable decrease in lactosylceramide and an increase in the globotriaosylceramide content. An analysis of the main glycohydrolases activity involved in glycosphingolipid catabolism showed an overall decrease in the activeness of the tested enzymes, irrespective of the type of APOL1-Vs expression. Similarly, the high throughput cell live-based assay showed a comparable increased action of the plasma membrane glycosphingolipid-glycohydrolases in living cells independent of the genetic APOL1 expression profile. Importantly, the most significative modification of the sphingolipid pattern induced by APOL1-Vs occurred in DRM resulted with a drastic reduction of radioactivity associated with sphingolipids. G1/G2-Vs present a decrease amount of globotriaosylceramide and globopentaosylceramide compared to G0. Additionally, ceramide at the DRM site and lactosylceramide in general, showed a greatest fall in G1/G2 in comparison with G0. Additionally, the levels of glucosylceramide decreased only in the DRM of human podocytes overexpressing G1/G2-Vs. These findings suggest that altered sphingolipidsprofiles may contribute to the deranged functionality of the plasma membrane in APOL1 risk milieu.
Collapse
Affiliation(s)
- Manuela Valsecchi
- Department of Medical Biotechnologies and Translational Medicine (BioMeTra), University of Milan, Milan, Italy
| | - Valentina Cazzetta
- Department of Medical Biotechnologies and Translational Medicine (BioMeTra), University of Milan, Milan, Italy.,Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center - IRCCS, Rozzano, MI, Italy
| | - Ferdinando Oriolo
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center - IRCCS, Rozzano, MI, Italy
| | - Xiqian Lan
- Key Laboratory for Aging and Regenerative Medicine, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Rocco Piazza
- Department of Medicine and Surgery, University of Milan-Bicocca, Monza, Italy
| | - Moin A Saleem
- Pediatric Academic Renal Unit, University of Bristol, Bristol, UK
| | - Pravin C Singhal
- Institute of Molecular Medicine, Feinstein Institute for Medical Research and Zucker School of Medicine at Hofstra-Northwell, Hempstead, NY, USA
| | - Domenico Mavilio
- Department of Medical Biotechnologies and Translational Medicine (BioMeTra), University of Milan, Milan, Italy.,Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center - IRCCS, Rozzano, MI, Italy
| | - Joanna Mikulak
- Department of Medical Biotechnologies and Translational Medicine (BioMeTra), University of Milan, Milan, Italy.,Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center - IRCCS, Rozzano, MI, Italy
| | - Massimo Aureli
- Department of Medical Biotechnologies and Translational Medicine (BioMeTra), University of Milan, Milan, Italy.
| |
Collapse
|
49
|
Mitrofanova A, Drexler Y, Merscher S, Fornoni A. Role of Sphingolipid Signaling in Glomerular Diseases: Focus on DKD and FSGS. JOURNAL OF CELLULAR SIGNALING 2020; 1:56-69. [PMID: 32914148 PMCID: PMC7480905 DOI: 10.33696/signaling.1.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Sphingolipids are well-recognized as major players in the pathogenesis of many human diseases, including chronic kidney disease. The kidney is a very sensitive organ to alterations in sphingolipid metabolism. The critical issues to be addressed in this review relate to the role of sphingolipids and enzymes involved in sphingolipid metabolism in the pathogenesis of glomerular diseases with a special focus on podocytes, a key cellular component of the glomerular filtration barrier. Among several sphingolipids, we will highlight the role of ceramide, sphingosine, sphingosine-1-phosphate and ceramide-1-phosphate. Additionally, we will summarize the current knowledge with regard to the use of sphingolipids as therapeutic agents for the treatment of podocyte injury in kidney disease.
Collapse
Affiliation(s)
- Alla Mitrofanova
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miller School of Medicine, Miami, Florida, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
- Department of Surgery, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Yelena Drexler
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miller School of Medicine, Miami, Florida, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Sandra Merscher
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miller School of Medicine, Miami, Florida, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Alessia Fornoni
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miller School of Medicine, Miami, Florida, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
50
|
Woo CY, Baek JY, Kim AR, Hong CH, Yoon JE, Kim HS, Yoo HJ, Park TS, Kc R, Lee KU, Koh EH. Inhibition of Ceramide Accumulation in Podocytes by Myriocin Prevents Diabetic Nephropathy. Diabetes Metab J 2020; 44:581-591. [PMID: 31701696 PMCID: PMC7453988 DOI: 10.4093/dmj.2019.0063] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 07/02/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Ceramides are associated with metabolic complications including diabetic nephropathy in patients with diabetes. Recent studies have reported that podocytes play a pivotal role in the progression of diabetic nephropathy. Also, mitochondrial dysfunction is known to be an early event in podocyte injury. Thus, we tested the hypothesis that ceramide accumulation in podocytes induces mitochondrial damage through reactive oxygen species (ROS) production in patients with diabetic nephropathy. METHODS We used Otsuka Long Evans Tokushima Fatty (OLETF) rats and high-fat diet (HFD)-fed mice. We fed the animals either a control- or a myriocin-containing diet to evaluate the effects of the ceramide. Also, we assessed the effects of ceramide on intracellular ROS generation and on podocyte autophagy in cultured podocytes. RESULTS OLETF rats and HFD-fed mice showed albuminuria, histologic features of diabetic nephropathy, and podocyte injury, whereas myriocin treatment effectively treated these abnormalities. Cultured podocytes exposed to agents predicted to be risk factors (high glucose, high free fatty acid, and angiotensin II in combination [GFA]) showed an increase in ceramide accumulation and ROS generation in podocyte mitochondria. Pretreatment with myriocin reversed GFA-induced mitochondrial ROS generation and prevented cell death. Myriocin-pretreated cells were protected from GFA-induced disruption of mitochondrial integrity. CONCLUSION We showed that mitochondrial ceramide accumulation may result in podocyte damage through ROS production. Therefore, this signaling pathway could become a pharmacological target to abate the development of diabetic kidney disease.
Collapse
Affiliation(s)
- Chang Yun Woo
- Department of Internal Medicine, University of Ulsan College of Medicine, Seoul, Korea
| | - Ji Yeon Baek
- Department of Internal Medicine, University of Ulsan College of Medicine, Seoul, Korea
| | - Ah Ram Kim
- Asan Institute for Life Science, University of Ulsan College of Medicine, Seoul, Korea
| | - Chung Hwan Hong
- Department of Medical Science and Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Ji Eun Yoon
- Department of Medical Science and Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Hyoun Sik Kim
- Asan Institute for Life Science, University of Ulsan College of Medicine, Seoul, Korea
| | - Hyun Ju Yoo
- Department of Medical Science and Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Tae Sik Park
- Department of Life Science, Gachon University, Seongnam, Korea
| | - Ranjan Kc
- Asan Institute for Life Science, University of Ulsan College of Medicine, Seoul, Korea
| | - Ki Up Lee
- Department of Internal Medicine, University of Ulsan College of Medicine, Seoul, Korea
- Asan Institute for Life Science, University of Ulsan College of Medicine, Seoul, Korea
| | - Eun Hee Koh
- Department of Internal Medicine, University of Ulsan College of Medicine, Seoul, Korea
- Asan Institute for Life Science, University of Ulsan College of Medicine, Seoul, Korea.
| |
Collapse
|