1
|
Priya A, Sri B, Bala G, Kannan S. Exploring Serum Anti-thyroid Peroxidase Antibodies and High-Sensitivity C-reactive Protein as Inflammatory Markers in Subclinical Hypothyroidism: A Comprehensive Study. Cureus 2025; 17:e76906. [PMID: 39902025 PMCID: PMC11789538 DOI: 10.7759/cureus.76906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2025] [Indexed: 02/05/2025] Open
Abstract
Background and aim Subclinical hypothyroidism (SCH) is a biochemical condition defined by elevated thyroid-stimulating hormone (TSH) levels with normal free thyroxine (FT4) levels, often occurring without overt clinical symptoms. Emerging evidence suggests a role for autoimmune and inflammatory processes, with anti-thyroid peroxidase antibodies (anti-TPO) and high-sensitivity C-reactive protein (hsCRP) as potential markers of thyroid autoimmunity and systemic inflammation. This study evaluates the significance of these markers in SCH to elucidate their association with disease progression and clinical symptoms. This study aims to assess the roles of anti-TPO and hsCRP as inflammatory markers in SCH and to examine their correlations with clinical symptoms, lipid profiles, and cardiovascular risk, to stratify patients based on their autoimmune and inflammatory profiles. Methodology A retrospective, cross-sectional study was conducted on 220 patients, including 170 diagnosed with SCH and 50 euthyroid controls. Patients were categorized into SCH with anti-TPO positivity (SCH+), SCH without anti-TPO positivity (SCH-), and euthyroid controls. Serum TSH, FT4, anti-TPO, and hsCRP levels were analyzed using chemiluminescent immunoassay (CLIA), enzyme-linked immunosorbent assay (ELISA), and turbidimetric immunoassay. Statistical analyses, including Kruskal-Wallis and correlation tests, evaluated associations between hsCRP, anti-TPO, and clinical parameters. Results SCH+ participants demonstrated significantly higher levels of TSH (7.6 ± 2.1 mIU/L), hsCRP (4.2 ± 1.6 mg/L), and anti-TPO antibodies (116.5 ± 34.8 IU/mL) compared to SCH- and controls (P < 0.001). hsCRP was elevated in 52.2% of SCH+ individuals, indicating a systemic inflammatory state, compared to 32.1% in SCH- and 16% in controls. Significant correlations were observed between hsCRP and TSH (r = 0.62, P < 0.001) and between hsCRP and anti-TPO (r = 0.58, P < 0.001) in SCH+ participants. SCH+ patients exhibited a higher prevalence of fatigue, cold intolerance, and lipid abnormalities, with total cholesterol and LDL levels markedly elevated compared to other groups. Conclusions Anti-TPO and hsCRP are valuable markers for identifying systemic inflammation and autoimmune activity in SCH, particularly in anti-TPO-positive individuals. Their integration into routine evaluation may help stratify SCH patients based on cardiovascular and metabolic risk, guiding early therapeutic interventions. Further, longitudinal studies are needed to explore their prognostic value and therapeutic implications.
Collapse
Affiliation(s)
- Anantha Priya
- Biochemistry, Vinayaka Mission's Medical College, Vinayaka Mission's Research Foundation (Deemed to be University) - Karaikal, Puducherry, IND
| | - Barani Sri
- Biochemistry, Vinayaka Mission's Medical College, Vinayaka Mission's Research Foundation (Deemed to be University) - Karaikal, Puducherry, IND
| | - Ganesh Bala
- ENT, Vinayaka Mission's Medical College, Vinayaka Mission's Research Foundation (Deemed to be University) - Karaikal, Puducherry, IND
| | - Suganya Kannan
- Central Research Laboratory, Vinayaka Mission's Medical College, Vinayaka Mission's Research Foundation (Deemed to be University) - Karaikal, Puducherry, IND
| |
Collapse
|
2
|
Chen Y, Cheng Q, Li S, Jin L, Li Z, Ren A, Wang L. Organotin exposure and DNA methylation in non-syndromic cleft lip and palate: Integrating findings from case-control studies and animal experiments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176214. [PMID: 39299340 DOI: 10.1016/j.scitotenv.2024.176214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/08/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024]
Abstract
Human exposure to organotin is common but little is known about the adverse pregnancy outcomes. This study aimed to explore the association between organotin exposure and the risk of non-syndromic cleft lip with or without cleft palate (NSCL/P) and to explore the underlying mechanism. Placental samples (109 NSCL/P cases and 128 controls) were analyzed for 8 organotin concentrations, and subsequent animal experiments were conducted by administering tributyltin (TBT) during critical developmental periods. DNA methylation BeadChip analysis (12 NSCL/P and 12 controls), bisulfite Sequencing analysis (3 NSCL/P and 3 controls mice), and RNA sequencing were performed to explore epigenetic mechanisms. Logistic regression, LASSO regression, support vector machine, random forest, and mediation effect analysis were utilized to identify key genes related to TBT and NSCL/P. Only tributyltin met the detection criteria for further analysis among 8 compounds. The median levels of TBT in cases (8.93 ng/g) were statistically significantly higher than those in controls (5.33 ng/g). Excessive TBT exposure in maternal placenta was associated with an increased risk of NSCL/P (OR = 6.44, 95 % CI, 2.91-14.25) in humans, showing a dose-response relationship (p for trend <0.05). 288 differentially methylated CpG sites in 129 genes were identified between cases and controls. Tributyltin was associated with FGFR2 and SCD hypomethylation, which were identified as potential key genes associated with NSCL/P. Mediation analysis suggested that DNA methylation of FGFR2 and SCD may mediate the impact of TBT on NSCL/P occurrence. TBT exposure during the critical period in mice (GD8.5-GD15.5) can induce progeny NSCL/P. Altered FGFR2 and SCD hypomethylation and gene expression observed in response to TBT exposure in fetal mice. Excessive TBT exposure was associated with increased risks of human NSCL/P. TBT exposure can induce NSCL/P in fetal mice. FGFR2 and SCD were implicated in NSCL/P pathogenesis, potentially mediated by DNA methylation alterations.
Collapse
Affiliation(s)
- Yongyan Chen
- Institute of Reproductive and Child Health/National Health Commission Key Laboratory of Reproductive Health, Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Centre, Beijing, China
| | - Qianhui Cheng
- Institute of Reproductive and Child Health/National Health Commission Key Laboratory of Reproductive Health, Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Centre, Beijing, China
| | - Sainan Li
- Institute of Reproductive and Child Health/National Health Commission Key Laboratory of Reproductive Health, Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Centre, Beijing, China
| | - Lei Jin
- Institute of Reproductive and Child Health/National Health Commission Key Laboratory of Reproductive Health, Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Centre, Beijing, China
| | - Zhiwen Li
- Institute of Reproductive and Child Health/National Health Commission Key Laboratory of Reproductive Health, Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Centre, Beijing, China
| | - Aiguo Ren
- Institute of Reproductive and Child Health/National Health Commission Key Laboratory of Reproductive Health, Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Centre, Beijing, China
| | - Linlin Wang
- Institute of Reproductive and Child Health/National Health Commission Key Laboratory of Reproductive Health, Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Centre, Beijing, China.
| |
Collapse
|
3
|
Silva NP, da Costa CS, Barbosa KL, Januario CDF, Gama-de-Souza LN, Breves C, Fortunato RS, Miranda-Alves L, de Oliveira M, Nogueira CR, Graceli JB. Subacute tributyltin exposure alters the development and morphology of mammary glands in association with CYP19A1 expression in female rats. Reprod Toxicol 2024; 128:108635. [PMID: 38936095 DOI: 10.1016/j.reprotox.2024.108635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/29/2024] [Accepted: 06/06/2024] [Indexed: 06/29/2024]
Abstract
Tributyltin (TBT) is an endocrine-disrupting chemical (EDC) related to reproductive dysfunctions. However, few studies have investigated the effects of TBT exposure on mammary gland development. Thus, we assessed whether subacute TBT exposure causes irregularities in mammary gland development. We administered TBT (100 and 1,000 ng/kg/day for 30 days) to female rats from postnatal day (PND) 25 to PND 55, and mammary gland development, morphology, inflammation, collagen deposition, and protein expression were evaluated. Abnormal mammary gland development was observed in both TBT groups. Specifically, TBT exposure reduced the number of terminal end buds (TEBs), type 1 (AB1) alveolar buds, and type 2 (AB2) alveolar buds. An increase in the lobule and differentiation (DF) 2 score was found in the mammary glands of TBT rats. TBT exposure increased mammary gland blood vessels, mast cell numbers, and collagen deposition. Additionally, both TBT rats exhibited intraductal hyperplasia and TEB-like structures. An increase in estrogen receptor alpha (ERα), progesterone receptor (PR), and cytochrome P450 family 19 subfamily A member 1 (CYP19A1) - positive cells was observed in the mammary glands of TBT rats. A strong negative correlation was observed between CYP19A1- positive cells and TEB number. In addition, CYP19A1 - positive cells were positively correlated with mammary gland TEB-like structure, ductal hyperplasia, inflammation, and collagen deposition. Thus, these data suggest that TBT exposure impairs mammary gland development through the modulation of CYP19A1 signaling pathways in female rats.
Collapse
Affiliation(s)
- Natalia P Silva
- Department of Morphology, Federal University of Espírito Santo, Vitória 290440-090, Brazil
| | - Charles S da Costa
- Department of Morphology, Federal University of Espírito Santo, Vitória 290440-090, Brazil
| | - Kayke L Barbosa
- Department of Morphology, Federal University of Espírito Santo, Vitória 290440-090, Brazil
| | - Cidália de F Januario
- Department of Morphology, Federal University of Espírito Santo, Vitória 290440-090, Brazil
| | | | - Cinthia Breves
- Health Science Center, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro 21941590, Brazil
| | - Rodrigo S Fortunato
- Health Science Center, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro 21941590, Brazil
| | - Leandro Miranda-Alves
- Experimental Endocrinology Research, Development and Innovation Group, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, 21941902, Brazil
| | - Miriane de Oliveira
- Department of Internal Clinic, Botucatu Medicine School, São Paulo State University (UNESP), Botucatu, São Paulo 18618687, Brazil
| | - Celia R Nogueira
- Department of Internal Clinic, Botucatu Medicine School, São Paulo State University (UNESP), Botucatu, São Paulo 18618687, Brazil
| | - Jones B Graceli
- Department of Morphology, Federal University of Espírito Santo, Vitória 290440-090, Brazil.
| |
Collapse
|
4
|
Xia S, Ma R. Tributyltin chloride induces chondrocyte damage through the activation of NLRP3‑mediated inflammation and pyroptosis. Mol Med Rep 2024; 30:122. [PMID: 38785157 PMCID: PMC11130746 DOI: 10.3892/mmr.2024.13247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/11/2024] [Indexed: 05/25/2024] Open
Abstract
Tributyltin chloride (TBTC) is known to have effects and mechanisms in various diseases; however, whether TBTC is detrimental to joints and causes osteoarthritis (OA), as well as its underlying mechanism, has not yet been fully elucidated. The present study explored the effects of TBTC on rat chondrocytes, as well as on mouse OA. The toxicity of TBTC toward rat chondrocytes was detected using a lactate dehydrogenase (LDH) leakage assay and cell viability was evaluated using the Cell Counting Kit‑8 assay. The results showed that TBTC decreased the viability of rat chondrocytes and increased the LDH leakage rate in a concentration‑dependent manner. Moreover, compared with in the control group, TBTC increased the expression levels of interleukin (IL)‑1β, IL‑18, matrix metalloproteinase (MMP)‑1, MMP‑13, NLR family pyrin domain containing 3 (NLRP3), caspase‑1, PYD and CARD domain containing, and gasdermin D in chondrocytes. Furthermore, knockdown of NLRP3 reversed the TBTC‑induced increases in LDH leakage and NLRP3 inflammasome‑associated protein levels. In vivo, TBTC exacerbated cartilage tissue damage in mice from the OA group, as evidenced by the attenuation of safranin O staining. In conclusion, TBTC may aggravate OA in mice by promoting chondrocyte damage and inducing pyroptosis through the activation of NLRP3 and caspase‑1 signaling. The present study demonstrated that TBTC can cause significant damage to the articular cartilage; therefore, TBTC contamination should be strictly monitored.
Collapse
Affiliation(s)
- Silong Xia
- Department of Orthopedics, The Affiliated Jianhu Hospital of Yangzhou University, Yancheng, Jiangsu 224700, P.R. China
| | - Rong Ma
- Department of Orthopedics, The Affiliated Jianhu Hospital of Yangzhou University, Yancheng, Jiangsu 224700, P.R. China
| |
Collapse
|
5
|
Ma C, Ruan H, Cheng H, Xu Z, Wu C, Liang D, Xiang H, Cao Y, Ding Z. Triphenyltin chloride exposure inhibits meiotic maturation of mouse oocytes by disrupting cytoskeleton assembly and cell cycle progression. Toxicol In Vitro 2024; 98:105834. [PMID: 38657713 DOI: 10.1016/j.tiv.2024.105834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/01/2024] [Accepted: 04/21/2024] [Indexed: 04/26/2024]
Abstract
Triphenyltin chloride (TPTCL) is widely used in various industrial and agricultural applications. This study aimed to elucidate the mechanisms underlying the toxicological effects of TPTCL on oocytes. The obtained findings revealed that TPTCL exposure reduced polar body extrusion (PBE) and induced meiotic arrest. Mechanistically, TPTCL disrupted meiotic spindle assembly and chromosome alignment. Further analysis indicated a significant decrease in p-MAPK expression, and disturbances in the localization of Pericentrin and p-Aurora A in TPTCL exposed oocytes, which suggesting impaired microtubule organizing center (MTOC)function. Moreover, TPTCL exposure enhance microtubule acetylation and microtubule instability. Therefore, the spindle assembly checkpoint (SAC) remained activated, and the activity of the anaphase-promoting complex (APC) was inhibited, thereby preventing oocytes from progressing into the entering anaphase I (AI) stage. TPTCL exposure also augmented the actin filaments in the cytoplasm. Notably, mitochondrial function appeared unaffected by TPTCL, as evidenced indicated by stable mitochondrial membrane potential and ATP content. Furthermore, TPTCL treatment altered H3K27me2, H3K27me3 and H3K9me3 levels, suggesting changes in epigenetic modifications in oocytes. Taken together, our results suggest that TPTCL disrupts cytoskeleton assembly, continuously activates SAC, inhibits APC activity, and blocks meiotic progression, ultimately impair oocyte maturation.
Collapse
Affiliation(s)
- Cong Ma
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No.81 Meishan Road, Hefei 230032, China; Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei 230022, China
| | - Hongzhen Ruan
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei 230022, China
| | - Huiru Cheng
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No.81 Meishan Road, Hefei 230032, China
| | - Zuying Xu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei 230022, China
| | - Caiyun Wu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei 230022, China
| | - Dan Liang
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No.81 Meishan Road, Hefei 230032, China
| | - Huifen Xiang
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No.81 Meishan Road, Hefei 230032, China; Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei 230022, China.
| | - Yunxia Cao
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No.81 Meishan Road, Hefei 230032, China; Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei 230022, China.
| | - Zhiming Ding
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No.81 Meishan Road, Hefei 230032, China; Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei 230022, China.
| |
Collapse
|
6
|
Wang P, Ji Z, Chen H, Chen S, Pan C, Fei Q, Ge RS, Duan P, Li L. Structure-activity relationship and mechanistic study of organotins as inhibitors of human, pig, and rat gonadal 3β-hydroxysteroid dehydrogenases. Toxicol Appl Pharmacol 2024; 486:116942. [PMID: 38692360 DOI: 10.1016/j.taap.2024.116942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 04/14/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024]
Abstract
Organotins have been widely used in various industrial applications. This study investigated the structure-activity relationship as inhibitors of human, pig, and rat gonadal 3β-hydroxysteroid dehydrogenases (3β-HSD). Human KGN cell, pig, and rat testis microsomes were utilized to assess the inhibitory effects of 18 organotins on the conversion of pregnenolone to progesterone. Among them, diphenyltin, triethyltin, and triphenyltin exhibited significant inhibitory activity against human 3β-HSD2 with IC50 values of 114.79, 106.98, and 5.40 μM, respectively. For pig 3β-HSD, dipropyltin, diphenyltin, triethyltin, tributyltin, and triphenyltin demonstrated inhibitory effects with IC50 values of 172.00, 100.19, 87.00, 5.75, and 1.65 μM, respectively. Similarly, for rat 3β-HSD1, dipropyltin, diphenyltin, triethyltin, tributyltin, and triphenyltin displayed inhibitory activity with IC50 values of 81.35, 43.56, 55.55, 4.09, and 0.035 μM, respectively. They were mixed inhibitors of pig and rat 3β-HSD, while triphenyltin was identified as a competitive inhibitor of human 3β-HSD2. The mechanism underlying the inhibition of organotins on 3β-HSD was explored, revealing that they may disrupt the enzyme activity by binding to cysteine residues in the catalytic sites. This proposition was supported by the observation that the addition of dithiothreitol reversed the inhibition caused by all organotins except for triethyltin, which was partially reversed. In conclusion, this study provides valuable insights into the structure-activity relationship of organotins as inhibitors of human, pig, and rat gonadal 3β-HSD. The mechanistic investigation suggests that these compounds likely exert their inhibitory effects through binding to cysteine residues in the catalytic sites.
Collapse
Affiliation(s)
- Peiyu Wang
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Reproductive Medicine Centre, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China; Key Laboratory of Environment and Male Reproductive Medicine of Wenzhou, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, 325000, Zhejiang Province, China
| | - Zhongyao Ji
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Huiqian Chen
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Sailing Chen
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Chengshuang Pan
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Reproductive Medicine Centre, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qianjin Fei
- Reproductive Medicine Centre, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ren-Shan Ge
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital, Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Environment and Male Reproductive Medicine of Wenzhou, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, 325000, Zhejiang Province, China.
| | - Ping Duan
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China.
| | - Linxi Li
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Environment and Male Reproductive Medicine of Wenzhou, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, 325000, Zhejiang Province, China.
| |
Collapse
|
7
|
Zhang H, Wu J, Fang N, Zhang S, Su X, Jiang H, Hong P, Wu H, Shu Y. Waterborne exposure to microcystin-leucine arginine induces endocrine disruption and gonadal dysplasia of Pelophylax nigromaculatus tadpoles via the hypothalamic-pituitary-gonadal-liver axis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167644. [PMID: 37806583 DOI: 10.1016/j.scitotenv.2023.167644] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/04/2023] [Accepted: 10/05/2023] [Indexed: 10/10/2023]
Abstract
The impact of microcystins on the gonad development and reproduction endocrine in the tadpole stage on amphibians remains unclear. In this study, the tadpoles (Pelophylax nigromaculatus) were exposed to 0, 1, and 10 μg/L of microcystin-leucine arginine (MC-LR) for 60 days to explore the impacts of environmental realistic concentration MC-LR on gonad development and reproduction endocrine, respectively. After MC-LR exposure, the germ cell structure has changed, especially in oocytes. The 10 μg/L MC-LR exposure group showed a significantly diminished gonad somatic index (GSI) in females. However, the sex ratio of tadpoles did not differ significantly. Moreover, gene transcription (figla and nobox) related to ovarian development and genes (sox9 and dmrt1) associated with testicular development were down-regulated after MC-LR exposure. After MC-LR exposure, the gene transcripts encoding gonadotropin-releasing hormone (gnrh1 and gnrh2) were down-regulated in the hypothalamus, while gonadotropins (FSH and LH) levels increased in serum. The transcripts of testosterone synthesis-related genes (star, cyp11a1, 3β-hsd, cyp17a1, and 17β-hsd) were up-regulated in the gonads, and the testosterone (T) concentration increased in serum. However, key gene transcript (cyp19a1) involved in estradiol synthesis was down-regulated and the estradiol (E2) concentration decreased in serum, resulting in the absence of a compensatory mechanism for positive feedback regulation of the hypothalamic-pituitary-gonadal (HPG) axis to maintain E2 levels. The vitellogenin gene (vtg1) transcription level was significantly down-regulated. The E2/T content ratio decreased in MC-LR concentration-dependent manner. Consequently, MC-LR exposure interfered with the hypothalamic-pituitary-gonadal-liver (HPGL) axis in tadpoles, which in turn affects gonadal development, especially the ovaries. Overall, this study provides the initial evidence that MC-LR exerts significant effects on reproductive endocrinology and gonadal development in amphibian tadpoles, highlighting the susceptibility of the tadpole reproductive system to the environmental risks of MC-LR.
Collapse
Affiliation(s)
- Huijuan Zhang
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | - Juntao Wu
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | - Nanxi Fang
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | - Shengbin Zhang
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | - Xiaomei Su
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | - Huiling Jiang
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | - Pei Hong
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | - Hailong Wu
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China.
| | - Yilin Shu
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China; State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
8
|
Gao JM, You J, Wu JC, Guo JS, Fu PT, Zhang LX. Factors affecting the accumulation of organotins by wild fish: A case study in the Three Gorges Reservoir, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:124407-124415. [PMID: 37966645 DOI: 10.1007/s11356-023-31037-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/08/2023] [Indexed: 11/16/2023]
Abstract
Organotin compounds (OTs) accumulate in fish easily, however, research on their influencing factors is still limited. This study collected 25 species of fish with different diets, habitats, and age from the Three Gorges Reservoir (TGR), the largest deep-water river channel-type reservoir in China, and analyzed the accumulation characteristics of OTs in these fish. The results showed that tributyltin (TBT) and triphenyltin (TPhT) were the dominant OTs in fish from the TGR. The correlation between OTs concentration and age, body length, and body weight varied with fish species. The concentrations of TBT and TPhT in carnivorous fish (mean, 25.78 and 11.69 ng Sn/g dw, respectively) were higher than those in other diet fish (P<0.01), but there was no significant difference in fish at different habitat water layers (P>0.05). In addition, the degradation rates of TBT and TPhT in different fish species were all below 50%. In summary, the accumulation of TBT and TPhT in fish is mainly influenced by diet, and both TBT and TPhT were difficult to degrade in fish. These results reveal the pollution characteristics of OTs in fish from the TGR, and can improve our understanding of the factors influencing TBT and TPhT accumulation in freshwater fish.
Collapse
Affiliation(s)
- Jun-Min Gao
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China.
| | - Jia You
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
| | - Jing-Cheng Wu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
| | - Jin-Song Guo
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
| | - Ping-Ting Fu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
| | - Li-Xia Zhang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
| |
Collapse
|
9
|
Li L, Gao M, Yang N, Ai L, Guo L, Xue X, Sheng Z. Trimethyltin chloride induces apoptosis and DNA damage via ROS/NF-κB in grass carp liver cells causing immune dysfunction. FISH & SHELLFISH IMMUNOLOGY 2023; 142:109082. [PMID: 37748585 DOI: 10.1016/j.fsi.2023.109082] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 09/27/2023]
Abstract
Trimethyltin chloride (TMT), a common component in fungicides and plastic stabilizers, presents environmental risks, particularly to fish farming. The precise toxicological mechanisms of TMT in L8824 grass carp liver cells remain undefined. Our study investigates TMT's effects on these cells, focusing on its potential to induce hepatotoxicity via oxidative stress and NF-κB pathway activation. First, we selected 0, 3, 6, and 12 μM as the challenge doses, according to the inhibitory concentration of 50% (IC50) of TMT. Our results demonstrate that TMT decreases cell viability dose-dependently and triggers oxidative stress, as evidenced by increased ROS staining and MDA content. Concurrently, it inhibited the antioxidant activities of T-AOC, T-SOD, CAT, and GSH. The activation of the NF-κB pathway was confirmed by gene expression changes. Furthermore, we observed an increase in cell apoptosis rate by AO/EB staining and cell flow cytometry, and the downregulation of Bcl-2 and the upregulation of Bax, Cytc, Caspase-9, and casp3 verified that TMT passed through the BCL2/BAX/casp3 pathway induces apoptosis. DNA damage was validated by the comet assay and γH2AX gene overexpression. Lastly, our data showed increased expression of TNF-α, IL-1β, IL-6, and INF-γ and decreased antimicrobial peptides, validating immune dysfunction. In conclusion, our findings establish that TMT induces apoptosis and DNA damage via ROS/NF-κB in grass carp liver cells, causing immune dysfunction. This study provides novel insights into the toxicology research of TMT and sheds light on the immunological effects of TMT toxicity, enriching our understanding of the immunotoxicity of TMT on aquatic organisms and contributing to the protection of ecosystems.
Collapse
Affiliation(s)
- Lulu Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China; Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, 150030, China
| | - Meichen Gao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China; Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, 150030, China
| | - Naixi Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China; Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, 150030, China
| | - Liwen Ai
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China; Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, 150030, China
| | - Liyang Guo
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China; Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, 150030, China
| | - Xuexue Xue
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China; Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, 150030, China
| | - Zunlai Sheng
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China; Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, 150030, China.
| |
Collapse
|
10
|
Ito-Harashima S, Tsubouchi Y, Takada E, Kawanishi M, Yagi T. Development of a yeast reporter gene assay to detect ligands of freshwater cladoceran Daphnia magna ultraspiracle, a homolog of vertebrate retinoid X receptors. J Appl Toxicol 2023; 43:1447-1461. [PMID: 37078133 DOI: 10.1002/jat.4476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 04/16/2023] [Accepted: 04/17/2023] [Indexed: 04/21/2023]
Abstract
Endocrine-disrupting chemicals (EDCs) often affect homeostatic regulation in living organisms by directly acting on nuclear receptors (NRs). Retinoid X receptors (RXRs), the most highly conserved members of the NR superfamily during evolution, function as partners to form heterodimers with other NRs, such as retinoic acid, thyroid hormone, and vitamin D3 receptors. RXRs also homodimerize and induce the expression of target genes upon binding with their natural ligand, 9-cis-retinoic acid (9cRA), and typical EDCs organotin compounds, such as tributyltin and triphenyltin. In the present study, we established a new yeast reporter gene assay (RGA) to detect the ligands of freshwater cladoceran Daphnia magna ultraspiracle (Dapma-USP), a homolog of vertebrate RXRs. D. magna has been used as a representative crustacean species for aquatic EDC assessments in the Organization for Economic Corporation and Development test guidelines. Dapma-USP was expressed along with the Drosophila melanogaster steroid receptor coactivator Taiman in yeast cells carrying the lacZ reporter plasmid. The RGA for detecting agonist activity of organotins and o-butylphenol was improved by use of mutant yeast strains lacking genes encoding cell wall mannoproteins and/or plasma membrane drug efflux pumps as hosts. We also showed that a number of other human RXR ligands, phenol and bisphenol A derivatives, and terpenoid compounds such as 9c-RA exhibited antagonist activity on Dapma-USP. Our newly established yeast-based RGA system is valuable as the first screening tool to detect ligand substances for Dapma-USP and for evaluating the evolutionary divergence of the ligand responses of RXR homologs between humans and D. magna.
Collapse
Affiliation(s)
- Sayoko Ito-Harashima
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University, Sakai, Japan
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Osaka Metropolitan University, Sakai, Japan
| | - Yumiko Tsubouchi
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University, Sakai, Japan
| | - Eiji Takada
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University, Sakai, Japan
| | - Masanobu Kawanishi
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University, Sakai, Japan
- Department of Biological Chemistry, Graduate School of Science, Osaka Metropolitan University, Sakai, Japan
| | - Takashi Yagi
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University, Sakai, Japan
- Department of Biological Chemistry, Graduate School of Science, Osaka Metropolitan University, Sakai, Japan
| |
Collapse
|
11
|
Landrigan PJ, Raps H, Cropper M, Bald C, Brunner M, Canonizado EM, Charles D, Chiles TC, Donohue MJ, Enck J, Fenichel P, Fleming LE, Ferrier-Pages C, Fordham R, Gozt A, Griffin C, Hahn ME, Haryanto B, Hixson R, Ianelli H, James BD, Kumar P, Laborde A, Law KL, Martin K, Mu J, Mulders Y, Mustapha A, Niu J, Pahl S, Park Y, Pedrotti ML, Pitt JA, Ruchirawat M, Seewoo BJ, Spring M, Stegeman JJ, Suk W, Symeonides C, Takada H, Thompson RC, Vicini A, Wang Z, Whitman E, Wirth D, Wolff M, Yousuf AK, Dunlop S. The Minderoo-Monaco Commission on Plastics and Human Health. Ann Glob Health 2023; 89:23. [PMID: 36969097 PMCID: PMC10038118 DOI: 10.5334/aogh.4056] [Citation(s) in RCA: 99] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 02/14/2023] [Indexed: 03/29/2023] Open
Abstract
Background Plastics have conveyed great benefits to humanity and made possible some of the most significant advances of modern civilization in fields as diverse as medicine, electronics, aerospace, construction, food packaging, and sports. It is now clear, however, that plastics are also responsible for significant harms to human health, the economy, and the earth's environment. These harms occur at every stage of the plastic life cycle, from extraction of the coal, oil, and gas that are its main feedstocks through to ultimate disposal into the environment. The extent of these harms not been systematically assessed, their magnitude not fully quantified, and their economic costs not comprehensively counted. Goals The goals of this Minderoo-Monaco Commission on Plastics and Human Health are to comprehensively examine plastics' impacts across their life cycle on: (1) human health and well-being; (2) the global environment, especially the ocean; (3) the economy; and (4) vulnerable populations-the poor, minorities, and the world's children. On the basis of this examination, the Commission offers science-based recommendations designed to support development of a Global Plastics Treaty, protect human health, and save lives. Report Structure This Commission report contains seven Sections. Following an Introduction, Section 2 presents a narrative review of the processes involved in plastic production, use, and disposal and notes the hazards to human health and the environment associated with each of these stages. Section 3 describes plastics' impacts on the ocean and notes the potential for plastic in the ocean to enter the marine food web and result in human exposure. Section 4 details plastics' impacts on human health. Section 5 presents a first-order estimate of plastics' health-related economic costs. Section 6 examines the intersection between plastic, social inequity, and environmental injustice. Section 7 presents the Commission's findings and recommendations. Plastics Plastics are complex, highly heterogeneous, synthetic chemical materials. Over 98% of plastics are produced from fossil carbon- coal, oil and gas. Plastics are comprised of a carbon-based polymer backbone and thousands of additional chemicals that are incorporated into polymers to convey specific properties such as color, flexibility, stability, water repellence, flame retardation, and ultraviolet resistance. Many of these added chemicals are highly toxic. They include carcinogens, neurotoxicants and endocrine disruptors such as phthalates, bisphenols, per- and poly-fluoroalkyl substances (PFAS), brominated flame retardants, and organophosphate flame retardants. They are integral components of plastic and are responsible for many of plastics' harms to human health and the environment.Global plastic production has increased almost exponentially since World War II, and in this time more than 8,300 megatons (Mt) of plastic have been manufactured. Annual production volume has grown from under 2 Mt in 1950 to 460 Mt in 2019, a 230-fold increase, and is on track to triple by 2060. More than half of all plastic ever made has been produced since 2002. Single-use plastics account for 35-40% of current plastic production and represent the most rapidly growing segment of plastic manufacture.Explosive recent growth in plastics production reflects a deliberate pivot by the integrated multinational fossil-carbon corporations that produce coal, oil and gas and that also manufacture plastics. These corporations are reducing their production of fossil fuels and increasing plastics manufacture. The two principal factors responsible for this pivot are decreasing global demand for carbon-based fuels due to increases in 'green' energy, and massive expansion of oil and gas production due to fracking.Plastic manufacture is energy-intensive and contributes significantly to climate change. At present, plastic production is responsible for an estimated 3.7% of global greenhouse gas emissions, more than the contribution of Brazil. This fraction is projected to increase to 4.5% by 2060 if current trends continue unchecked. Plastic Life Cycle The plastic life cycle has three phases: production, use, and disposal. In production, carbon feedstocks-coal, gas, and oil-are transformed through energy-intensive, catalytic processes into a vast array of products. Plastic use occurs in every aspect of modern life and results in widespread human exposure to the chemicals contained in plastic. Single-use plastics constitute the largest portion of current use, followed by synthetic fibers and construction.Plastic disposal is highly inefficient, with recovery and recycling rates below 10% globally. The result is that an estimated 22 Mt of plastic waste enters the environment each year, much of it single-use plastic and are added to the more than 6 gigatons of plastic waste that have accumulated since 1950. Strategies for disposal of plastic waste include controlled and uncontrolled landfilling, open burning, thermal conversion, and export. Vast quantities of plastic waste are exported each year from high-income to low-income countries, where it accumulates in landfills, pollutes air and water, degrades vital ecosystems, befouls beaches and estuaries, and harms human health-environmental injustice on a global scale. Plastic-laden e-waste is particularly problematic. Environmental Findings Plastics and plastic-associated chemicals are responsible for widespread pollution. They contaminate aquatic (marine and freshwater), terrestrial, and atmospheric environments globally. The ocean is the ultimate destination for much plastic, and plastics are found throughout the ocean, including coastal regions, the sea surface, the deep sea, and polar sea ice. Many plastics appear to resist breakdown in the ocean and could persist in the global environment for decades. Macro- and micro-plastic particles have been identified in hundreds of marine species in all major taxa, including species consumed by humans. Trophic transfer of microplastic particles and the chemicals within them has been demonstrated. Although microplastic particles themselves (>10 µm) appear not to undergo biomagnification, hydrophobic plastic-associated chemicals bioaccumulate in marine animals and biomagnify in marine food webs. The amounts and fates of smaller microplastic and nanoplastic particles (MNPs <10 µm) in aquatic environments are poorly understood, but the potential for harm is worrying given their mobility in biological systems. Adverse environmental impacts of plastic pollution occur at multiple levels from molecular and biochemical to population and ecosystem. MNP contamination of seafood results in direct, though not well quantified, human exposure to plastics and plastic-associated chemicals. Marine plastic pollution endangers the ocean ecosystems upon which all humanity depends for food, oxygen, livelihood, and well-being. Human Health Findings Coal miners, oil workers and gas field workers who extract fossil carbon feedstocks for plastic production suffer increased mortality from traumatic injury, coal workers' pneumoconiosis, silicosis, cardiovascular disease, chronic obstructive pulmonary disease, and lung cancer. Plastic production workers are at increased risk of leukemia, lymphoma, hepatic angiosarcoma, brain cancer, breast cancer, mesothelioma, neurotoxic injury, and decreased fertility. Workers producing plastic textiles die of bladder cancer, lung cancer, mesothelioma, and interstitial lung disease at increased rates. Plastic recycling workers have increased rates of cardiovascular disease, toxic metal poisoning, neuropathy, and lung cancer. Residents of "fenceline" communities adjacent to plastic production and waste disposal sites experience increased risks of premature birth, low birth weight, asthma, childhood leukemia, cardiovascular disease, chronic obstructive pulmonary disease, and lung cancer.During use and also in disposal, plastics release toxic chemicals including additives and residual monomers into the environment and into people. National biomonitoring surveys in the USA document population-wide exposures to these chemicals. Plastic additives disrupt endocrine function and increase risk for premature births, neurodevelopmental disorders, male reproductive birth defects, infertility, obesity, cardiovascular disease, renal disease, and cancers. Chemical-laden MNPs formed through the environmental degradation of plastic waste can enter living organisms, including humans. Emerging, albeit still incomplete evidence indicates that MNPs may cause toxicity due to their physical and toxicological effects as well as by acting as vectors that transport toxic chemicals and bacterial pathogens into tissues and cells.Infants in the womb and young children are two populations at particularly high risk of plastic-related health effects. Because of the exquisite sensitivity of early development to hazardous chemicals and children's unique patterns of exposure, plastic-associated exposures are linked to increased risks of prematurity, stillbirth, low birth weight, birth defects of the reproductive organs, neurodevelopmental impairment, impaired lung growth, and childhood cancer. Early-life exposures to plastic-associated chemicals also increase the risk of multiple non-communicable diseases later in life. Economic Findings Plastic's harms to human health result in significant economic costs. We estimate that in 2015 the health-related costs of plastic production exceeded $250 billion (2015 Int$) globally, and that in the USA alone the health costs of disease and disability caused by the plastic-associated chemicals PBDE, BPA and DEHP exceeded $920 billion (2015 Int$). Plastic production results in greenhouse gas (GHG) emissions equivalent to 1.96 gigatons of carbon dioxide (CO2e) annually. Using the US Environmental Protection Agency's (EPA) social cost of carbon metric, we estimate the annual costs of these GHG emissions to be $341 billion (2015 Int$).These costs, large as they are, almost certainly underestimate the full economic losses resulting from plastics' negative impacts on human health and the global environment. All of plastics' economic costs-and also its social costs-are externalized by the petrochemical and plastic manufacturing industry and are borne by citizens, taxpayers, and governments in countries around the world without compensation. Social Justice Findings The adverse effects of plastics and plastic pollution on human health, the economy and the environment are not evenly distributed. They disproportionately affect poor, disempowered, and marginalized populations such as workers, racial and ethnic minorities, "fenceline" communities, Indigenous groups, women, and children, all of whom had little to do with creating the current plastics crisis and lack the political influence or the resources to address it. Plastics' harmful impacts across its life cycle are most keenly felt in the Global South, in small island states, and in disenfranchised areas in the Global North. Social and environmental justice (SEJ) principles require reversal of these inequitable burdens to ensure that no group bears a disproportionate share of plastics' negative impacts and that those who benefit economically from plastic bear their fair share of its currently externalized costs. Conclusions It is now clear that current patterns of plastic production, use, and disposal are not sustainable and are responsible for significant harms to human health, the environment, and the economy as well as for deep societal injustices.The main driver of these worsening harms is an almost exponential and still accelerating increase in global plastic production. Plastics' harms are further magnified by low rates of recovery and recycling and by the long persistence of plastic waste in the environment.The thousands of chemicals in plastics-monomers, additives, processing agents, and non-intentionally added substances-include amongst their number known human carcinogens, endocrine disruptors, neurotoxicants, and persistent organic pollutants. These chemicals are responsible for many of plastics' known harms to human and planetary health. The chemicals leach out of plastics, enter the environment, cause pollution, and result in human exposure and disease. All efforts to reduce plastics' hazards must address the hazards of plastic-associated chemicals. Recommendations To protect human and planetary health, especially the health of vulnerable and at-risk populations, and put the world on track to end plastic pollution by 2040, this Commission supports urgent adoption by the world's nations of a strong and comprehensive Global Plastics Treaty in accord with the mandate set forth in the March 2022 resolution of the United Nations Environment Assembly (UNEA).International measures such as a Global Plastics Treaty are needed to curb plastic production and pollution, because the harms to human health and the environment caused by plastics, plastic-associated chemicals and plastic waste transcend national boundaries, are planetary in their scale, and have disproportionate impacts on the health and well-being of people in the world's poorest nations. Effective implementation of the Global Plastics Treaty will require that international action be coordinated and complemented by interventions at the national, regional, and local levels.This Commission urges that a cap on global plastic production with targets, timetables, and national contributions be a central provision of the Global Plastics Treaty. We recommend inclusion of the following additional provisions:The Treaty needs to extend beyond microplastics and marine litter to include all of the many thousands of chemicals incorporated into plastics.The Treaty needs to include a provision banning or severely restricting manufacture and use of unnecessary, avoidable, and problematic plastic items, especially single-use items such as manufactured plastic microbeads.The Treaty needs to include requirements on extended producer responsibility (EPR) that make fossil carbon producers, plastic producers, and the manufacturers of plastic products legally and financially responsible for the safety and end-of-life management of all the materials they produce and sell.The Treaty needs to mandate reductions in the chemical complexity of plastic products; health-protective standards for plastics and plastic additives; a requirement for use of sustainable non-toxic materials; full disclosure of all components; and traceability of components. International cooperation will be essential to implementing and enforcing these standards.The Treaty needs to include SEJ remedies at each stage of the plastic life cycle designed to fill gaps in community knowledge and advance both distributional and procedural equity.This Commission encourages inclusion in the Global Plastic Treaty of a provision calling for exploration of listing at least some plastic polymers as persistent organic pollutants (POPs) under the Stockholm Convention.This Commission encourages a strong interface between the Global Plastics Treaty and the Basel and London Conventions to enhance management of hazardous plastic waste and slow current massive exports of plastic waste into the world's least-developed countries.This Commission recommends the creation of a Permanent Science Policy Advisory Body to guide the Treaty's implementation. The main priorities of this Body would be to guide Member States and other stakeholders in evaluating which solutions are most effective in reducing plastic consumption, enhancing plastic waste recovery and recycling, and curbing the generation of plastic waste. This Body could also assess trade-offs among these solutions and evaluate safer alternatives to current plastics. It could monitor the transnational export of plastic waste. It could coordinate robust oceanic-, land-, and air-based MNP monitoring programs.This Commission recommends urgent investment by national governments in research into solutions to the global plastic crisis. This research will need to determine which solutions are most effective and cost-effective in the context of particular countries and assess the risks and benefits of proposed solutions. Oceanographic and environmental research is needed to better measure concentrations and impacts of plastics <10 µm and understand their distribution and fate in the global environment. Biomedical research is needed to elucidate the human health impacts of plastics, especially MNPs. Summary This Commission finds that plastics are both a boon to humanity and a stealth threat to human and planetary health. Plastics convey enormous benefits, but current linear patterns of plastic production, use, and disposal that pay little attention to sustainable design or safe materials and a near absence of recovery, reuse, and recycling are responsible for grave harms to health, widespread environmental damage, great economic costs, and deep societal injustices. These harms are rapidly worsening.While there remain gaps in knowledge about plastics' harms and uncertainties about their full magnitude, the evidence available today demonstrates unequivocally that these impacts are great and that they will increase in severity in the absence of urgent and effective intervention at global scale. Manufacture and use of essential plastics may continue. However, reckless increases in plastic production, and especially increases in the manufacture of an ever-increasing array of unnecessary single-use plastic products, need to be curbed.Global intervention against the plastic crisis is needed now because the costs of failure to act will be immense.
Collapse
Affiliation(s)
- Philip J. Landrigan
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
- Centre Scientifique de Monaco, Medical Biology Department, MC
| | - Hervé Raps
- Centre Scientifique de Monaco, Medical Biology Department, MC
| | - Maureen Cropper
- Economics Department, University of Maryland, College Park, US
| | - Caroline Bald
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | | | | | | | | | | | | | - Patrick Fenichel
- Université Côte d’Azur
- Centre Hospitalier, Universitaire de Nice, FR
| | - Lora E. Fleming
- European Centre for Environment and Human Health, University of Exeter Medical School, UK
| | | | | | | | - Carly Griffin
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | - Mark E. Hahn
- Biology Department, Woods Hole Oceanographic Institution, US
- Woods Hole Center for Oceans and Human Health, US
| | - Budi Haryanto
- Department of Environmental Health, Universitas Indonesia, ID
- Research Center for Climate Change, Universitas Indonesia, ID
| | - Richard Hixson
- College of Medicine and Health, University of Exeter, UK
| | - Hannah Ianelli
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | - Bryan D. James
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution
- Department of Biology, Woods Hole Oceanographic Institution, US
| | | | - Amalia Laborde
- Department of Toxicology, School of Medicine, University of the Republic, UY
| | | | - Keith Martin
- Consortium of Universities for Global Health, US
| | - Jenna Mu
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | | | - Adetoun Mustapha
- Nigerian Institute of Medical Research, Lagos, Nigeria
- Lead City University, NG
| | - Jia Niu
- Department of Chemistry, Boston College, US
| | - Sabine Pahl
- University of Vienna, Austria
- University of Plymouth, UK
| | | | - Maria-Luiza Pedrotti
- Laboratoire d’Océanographie de Villefranche sur mer (LOV), Sorbonne Université, FR
| | | | | | - Bhedita Jaya Seewoo
- Minderoo Foundation, AU
- School of Biological Sciences, The University of Western Australia, AU
| | | | - John J. Stegeman
- Biology Department and Woods Hole Center for Oceans and Human Health, Woods Hole Oceanographic Institution, US
| | - William Suk
- Superfund Research Program, National Institutes of Health, National Institute of Environmental Health Sciences, US
| | | | - Hideshige Takada
- Laboratory of Organic Geochemistry (LOG), Tokyo University of Agriculture and Technology, JP
| | | | | | - Zhanyun Wang
- Technology and Society Laboratory, WEmpa-Swiss Federal Laboratories for Materials and Technology, CH
| | - Ella Whitman
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | | | | | - Aroub K. Yousuf
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | - Sarah Dunlop
- Minderoo Foundation, AU
- School of Biological Sciences, The University of Western Australia, AU
| |
Collapse
|
12
|
Chiu HC, Yang RS, Weng TI, Chiu CY, Lan KC, Liu SH. A ubiquitous endocrine disruptor tributyltin induces muscle wasting and retards muscle regeneration. J Cachexia Sarcopenia Muscle 2023; 14:167-181. [PMID: 36382567 PMCID: PMC9891973 DOI: 10.1002/jcsm.13119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 09/14/2022] [Accepted: 10/10/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Organotin pollutant tributyltin (TBT) is an environmental endocrine disrupting chemical and is a known obesogen and diabetogen. TBT can be detected in human following consumption of contaminated seafood or water. The decrease in muscle strength and quality has been shown to be associated with type 2 diabetes in older adults. However, the adverse effects of TBT on the muscle mass and function still remain unclear. Here, we investigated the effects and molecule mechanisms of low-dose TBT on skeletal muscle regeneration and atrophy/wasting using the cultured skeletal muscle cell and adult mouse models. METHODS The mouse myoblasts (C2C12) and differentiated myotubes were used to assess the in vitro effects of low-dose tributyltin (0.01-0.5 μM). The in vivo effects of TBT at the doses of 5 and 25 μg/kg/day (n = 6/group), which were five times lower than the established no observed adverse effect level (NOAEL) and equal to NOAEL, respectively, by oral administration for 4 weeks on muscle wasting and muscle regeneration were evaluated in a mouse model with or without glycerol-induced muscle injury/regeneration. RESULTS TBT reduced myogenic differentiation in myoblasts (myotube with 6-10 nuclei: 53.9 and 35.8% control for 0.05 and 0.1 μM, respectively, n = 4, P < 0.05). TBT also decreased myotube diameter, upregulated protein expression levels of muscle-specific ubiquitin ligases (Atrogin-1 and MuRF1), myostatin, phosphorylated AMPKα, and phosphorylated NFκB-p65, and downregulated protein expression levels of phosphorylated AKT and phosphorylated FoxO1 in myotubes (0.2 and 0.5 μM, n = 6, P < 0.05). Exposure of TBT in mice elevated body weight, decreased muscle mass, and induced muscular dysfunction (5 and 25 μg/kg, P > 0.05 and P < 0.05, respectively, n = 6). TBT inhibited soleus muscle regeneration in mice with glycerol-induced muscle injury (5 and 25 μg/kg, P > 0.05 and P < 0.05, respectively, n = 6). TBT upregulated protein expression levels of Atrogin-1, MuRF1, myostatin, and phosphorylated AMPKα and downregulated protein expression level of phosphorylated FoxO1 in the mouse soleus muscles (5 and 25 μg/kg, P > 0.05 and P < 0.05, respectively, n = 6). CONCLUSIONS This study demonstrates for the first time that low-dose TBT significantly inhibits myogenic differentiation and triggers myotube atrophy in a cell model and significantly decreases muscle regeneration and muscle mass and function in a mouse model. These findings suggest that low-dose TBT exposure may be an environmental risk factor for muscle regeneration inhibition, atrophy/wasting, and disease-related myopathy.
Collapse
Affiliation(s)
- Hsien-Chun Chiu
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Rong-Sen Yang
- Departments of Orthopaedics, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Te-I Weng
- Department of Forensic Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chen-Yuan Chiu
- Center of Consultation, Center for Drug Evaluation, Taipei, Taiwan
| | - Kuo-Cheng Lan
- Department of Emergency Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Shing-Hwa Liu
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan.,Department of Pediatrics, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
13
|
Beg MA, Beg MA, Zargar UR, Sheikh IA, Bajouh OS, Abuzenadah AM, Rehan M. Organotin Antifouling Compounds and Sex-Steroid Nuclear Receptor Perturbation: Some Structural Insights. TOXICS 2022; 11:toxics11010025. [PMID: 36668751 PMCID: PMC9864748 DOI: 10.3390/toxics11010025] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 12/21/2022] [Indexed: 06/12/2023]
Abstract
Organotin compounds (OTCs) are a commercially important group of organometallic compounds of tin used globally as polyvinyl chloride stabilizers and marine antifouling biocides. Worldwide use of OTCs has resulted in their ubiquitous presence in ecosystems across all the continents. OTCs have metabolic and endocrine disrupting effects in marine and terrestrial organisms. Thus, harmful OTCs (tributyltin) have been banned by the International Convention on the Control of Harmful Antifouling Systems since 2008. However, continued manufacturing by non-member countries poses a substantial risk for animal and human health. In this study, structural binding of common commercial OTCs, tributyltin (TBT), dibutyltin (DBT), monobutyltin (MBT), triphenyltin (TPT), diphenyltin (DPT), monophenyltin (MPT), and azocyclotin (ACT) against sex-steroid nuclear receptors, androgen receptor (AR), and estrogen receptors (ERα, ERβ) was performed using molecular docking and MD simulation. TBT, DBT, DPT, and MPT bound deep within the binding sites of AR, ERα, and Erβ, showing good dock score, binding energy and dissociation constants that were comparable to bound native ligands, testosterone and estradiol. The stability of docking complex was shown by MD simulation of organotin/receptor complex with RMSD, RMSF, Rg, and SASA plots showing stable interaction, low deviation, and compactness of the complex. A high commonality (50-100%) of interacting residues of ERα and ERβ for the docked ligands and bound native ligand (estradiol) indicated that the organotin compounds bound in the same binding site of the receptor as the native ligand. The results suggested that organotins may interfere with the natural steroid/receptor binding and perturb steroid signaling.
Collapse
Affiliation(s)
- Mohd A. Beg
- Reproductive Biology Laboratory, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Md A. Beg
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia University, New Delhi 110025, India
| | - Ummer R. Zargar
- Department of Zoology, Government Degree College, Anantnag 192101, India
| | - Ishfaq A. Sheikh
- Reproductive Biology Laboratory, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Osama S. Bajouh
- Department of Obstetrics and Gynecology, Faculty of Medicine, King Abdulaziz University, Jeddah 21859, Saudi Arabia
| | - Adel M. Abuzenadah
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohd Rehan
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
14
|
He S, Yu D, Li P, Zhang M, Xing S, Liu B, Sun C, Liu L, Li ZH. A new perspective on endocrine disrupting effects of triphenyltin on marine medaka: From brain transcriptome, gut content metabolome and behavior. CHEMOSPHERE 2022; 307:136190. [PMID: 36030938 DOI: 10.1016/j.chemosphere.2022.136190] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/10/2022] [Accepted: 08/21/2022] [Indexed: 06/15/2023]
Abstract
Triphenyltin (TPT) is an endocrine contaminant that is often detected in the environment. However, the mechanism of the effects of TPT on biological systems is not fully understood. Here we exposed marine medaka (Oryzias melastigma) to TPT for 21 days. Brain transcriptome, intestinal content metabolism group, and behavior analysis were carried out. Through the comprehensive analysis of multiomics for the in-depth understanding of the ways related to health improvement, we determined that the glycine-serine-threonine metabolic axis was most perturbed by TPT. Through behavioral analysis, it was found that there was behavioral hyperactivity in the exposed group; behavioral hyperactivity may be caused by the interference of TPT with the neuroendocrine system. In order to gain a full understanding of the impacts of TPT on human health, transcriptomic screening of differential genes and an impartial attitude based on bioinformatics were used. Gene-disease interaction analysis using the Comparative Toxicogenomics Database (CTD) revealed the possible effects of TPT on human health. Finally, based on these findings, the relevant adverse outcome pathway (AOP), which is the "epigenetic modification of PPARG leading to adipogenesis," was identified from AOP Wiki. Further research is required to validate the potential AOP of TPT.
Collapse
Affiliation(s)
- Shuwen He
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Daode Yu
- Marine Biology Institute of Shandong Province, Qingdao, Shandong, 266104, China
| | - Ping Li
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Min Zhang
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, Shandong, 266109, China
| | - Shaoying Xing
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Bin Liu
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Cuici Sun
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 510301, Guangzhou, China
| | - Ling Liu
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Zhi-Hua Li
- Marine College, Shandong University, Weihai, Shandong, 264209, China.
| |
Collapse
|
15
|
Lu M, Mu Y, Liu Y. Triphenyltin disrupts the testicular microenvironment and reduces sperm quality in adult male rats. CHEMOSPHERE 2022; 301:134726. [PMID: 35489455 DOI: 10.1016/j.chemosphere.2022.134726] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/20/2022] [Accepted: 04/22/2022] [Indexed: 06/14/2023]
Abstract
Triphenyltin (TPT) is organotin that is widely used as an anti-fouling agent and has been determined to have male reproductive toxicity. The objective of this study was to investigate the effects of TPT on the testicular microenvironment and sperm quality in male rats. Adult male Sprague Dawley rats were daily gavaged with TPT (0, 0.5, 1, and 2 mg/kg body weight) for 28 days. The results showed that TPT dose-dependently decreased sperm count and sperm motility, interfered with sperm histone-protamine replacement process, and significantly increased sperm deformity rate, but did not affect sperm DNA integrity. TPT at 2 mg/kg significantly decreased the gene and protein expressions of testis PCNA and Ki67, and dose-dependently decreased the number of PCNA-positive cells and Ki67-positive cells. TPT at 1 mg/kg and/or 2 mg/kg down-regulated the expression of StAR, SF1, P450scc, FSHR, WT1, DDX4 and PLZF, and up-regulated SOX9 expression. Simultaneously, TPT reduced serum testosterone levels at each dose and dose-dependently decreased the expression of Leydig cells regulators (INSL3, IGF1, inhibin B) and Sertoli cells regulators (GDNF, FGF2, CXCL12, ETV5), altered testicular microenvironment. Further, in vitro, we treated TM3 (Leydig cells), TM4 (Sertoli cells) and GC-1 (spermatogonia) cells with 1-100 nM TPT for 24 h. 100 nM TPT significantly down-regulated the expression of the above indicators in TM3 and TM4 cells but did not directly affect the cell proliferation ability of GC-1. However, after co-culturing TPT-treated TM3 or TM4 cells with GC-1 cells, it was found that TPT-treated TM3 or TM4 cells dose-dependently reduced the gene and protein expression levels of PCNA and Ki67 and increased cytotoxicity in GC-1 cells. In conclusion, TPT impairs the proliferative ability of spermatogonia by disrupting the microenvironment of Leydig cells and Sertoli cells, which in turn leads to low sperm quality in adult male rats.
Collapse
Affiliation(s)
- Mengxi Lu
- Department of Pharmacology, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Yan Mu
- School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Yi Liu
- Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
16
|
Daigneault BW, de Agostini Losano JD. Tributyltin chloride exposure to post-ejaculatory sperm reduces motility, mitochondrial function and subsequent embryo development. Reprod Fertil Dev 2022; 34:833-843. [PMID: 35610772 DOI: 10.1071/rd21371] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 04/26/2022] [Indexed: 11/23/2022] Open
Abstract
CONTEXT Male exposure to environmental toxicants can disrupt spermatogenesis and sperm function. However, consequences of environmentally relevant organotin exposure to post-ejaculatory mammalian spermatozoa on fertility are poorly understood. AIMS Determine the consequences of tributyltin chloride (TBT) exposure on post-ejaculatory sperm function and subsequent embryo development. METHODS Frozen-thawed bovine sperm were exposed to TBT (0.1-100nM) for 90min (acute) and 6h (short-term) followed by quantification of multiple sperm kinematics via computer aided sperm analysis. JC-1 dye was used to measure mitochondrial membrane potential. Sperm were then exposed to TBT for 90min in non-capacitating conditions, washed several times by centrifugation and applied to gamete co-incubation for in vitro embryo production to the blastocyst stage. KEY RESULTS 100nM TBT decreased total motility (88 vs 79%), progressive motility (80 vs 70%) curvilinear velocity and beat-cross frequency for 90min with similar phenotypes at 6h (P<0.05). Sperm mitochondrial membrane potential was lower in 10 and 100nM groups after 6h (P≤0.05). Embryos fertilised from TBT-exposed sperm had reduced cleavage rate (80 vs 62%) and 8-16 cell morula development (55 vs 24%) compared to development from unexposed sperm. CONCLUSIONS Exposure of post-ejaculatory mammalian sperm to TBT alters sperm function through lowered motility and mitochondrial membrane potential. Fertilisation of oocytes with TBT-exposed sperm reduces embryo development through mechanisms of paternal origin. IMPLICATIONS Acute and short-term environmental exposure of post-ejaculatory sperm to organotins and endocrine disrupting chemicals such as TBT contribute to idiopathic subfertility and early embryo loss.
Collapse
|
17
|
Lu Y, Tang H, Wang X, Xu J, Sun F. Dibutyltin dichloride exposure affects mouse oocyte quality by inducing spindle defects and mitochondria dysfunction. CHEMOSPHERE 2022; 295:133959. [PMID: 35157879 DOI: 10.1016/j.chemosphere.2022.133959] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/10/2022] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
Dibutyltin dichloride (DBTCl) is a widespread environmental pollutant that is frequently employed as a light and heat sustainer for polyvinyl chloride (PVC) plastics and is a teratogen in vivo. Nevertheless, its destructiveness in mammalian oocytes remains unclear. This study highlighted the consequences of DBTCl vulnerability on mouse oocyte. Our results revealed that exposure to 5.0 mg/kg/day of DBTCl for ten days reduced the number of mature follicles and oocytes in the ovaries and inhibited the meiotic maturation of oocytes. Single-cell transcriptomic analysis indicated that DBTCl exposure interfered with the expression of more than 400 genes in oocytes, including those involved in multiple biological pathways. Specifically, DBTCl exposure impaired spindle assembly and chromosome alignment. In addition, DBTCl exposure caused mitochondrial dysfunction, which led to the accumulation of reactive oxygen species (ROS) and induced apoptosis. In summary, our study illustrates that mitochondrial dysfunction and redox perturbation are the major causes of the reduced quality of oocytes exposed to DBTCl.
Collapse
Affiliation(s)
- Yajuan Lu
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, 226019, Jiangsu, China
| | - Hanyu Tang
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, 226019, Jiangsu, China
| | - Xia Wang
- Center for Reproductive Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Junjie Xu
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, 226019, Jiangsu, China
| | - Fei Sun
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, 226019, Jiangsu, China.
| |
Collapse
|
18
|
Barbosa KL, Dettogni RS, Costa CS, Gastal EL, Raetzman LT, Flaws JA, Graceli JB. Tributyltin and the female hypothalamic-pituitary-gonadal disruption. Toxicol Sci 2021; 186:179-189. [PMID: 34850235 DOI: 10.1093/toxsci/kfab141] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The hypothalamic-pituitary-gonadal (HPG) axis is the principal modulator of reproductive function. Proper control of this system relies on several hormonal pathways, which make the female reproductive components susceptible to disruption by endocrine-disrupting chemicals such as tributyltin (TBT). Here, we review the relevant research on the associations between TBT exposure and dysfunction of the female HPG axis components. Specifically, TBT reduced hypothalamic gonadotropin-releasing hormone (GnRH) expression and gonadotropin release, and impaired ovarian folliculogenesis, steroidogenesis, and ovulation, at least in part, by causing abnormal sensitivity to steroid feedback mechanisms and deleterious ovarian effects. This review covers studies using environmentally relevant doses of TBT in vitro (1 ng-20 ng/mL) and in vivo (10 ng-20 mg/Kg) in mammals. The review also includes discussion of important gaps in the literature and suggests new avenue of research to evaluate the possible mechanisms underlying TBT-induced toxicity in the HPG axis. Overall, the evidence indicates that TBT exposure is associated with toxicity to the components of the female reproductive axis. Further studies are needed to better elucidate the mechanisms through which TBT impairs the ability of the HPG axis to control reproduction.
Collapse
Affiliation(s)
- Kayke L Barbosa
- Dept of Morphology, Federal University of Espirito Santo, Brazil
| | | | - Charles S Costa
- Dept of Morphology, Federal University of Espirito Santo, Brazil
| | - Eduardo L Gastal
- Animal Science, School of Agricultural Sciences, Southern Illinois University, Carbondale, IL, USA
| | - Lori T Raetzman
- Dept of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Jodi A Flaws
- Dept. of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Jones B Graceli
- Dept of Morphology, Federal University of Espirito Santo, Brazil
| |
Collapse
|
19
|
Liu H, Jiang W, Ye Y, Yang B, Shen X, Lu S, Zhu J, Liu M, Yang C, Kuang H. Maternal exposure to tributyltin during early gestation increases adverse pregnancy outcomes by impairing placental development. ENVIRONMENTAL TOXICOLOGY 2021; 36:1303-1315. [PMID: 33720505 DOI: 10.1002/tox.23127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 02/23/2021] [Accepted: 03/04/2021] [Indexed: 06/12/2023]
Abstract
Tributyltin (TBT) is a persistent organotin pollutant widely used as agricultural and wood biocides, exhibiting well-documented toxicity to reproductive functions in aquatic organisms. However, the effect of TBT on early pregnancy and placental development has been rarely studied in mice. Pregnant mice were fed with 0, 0.2, and 2 mg/kg/day TBT from gravid day 1 to day 8 or 13. TBT exposure led to an increase in the number of resorbed embryo and a reduction in the weight of fetus at gestational days 13. Further study showed that TBT significantly decreased placental weight and area, lowered laminin immunoreactivity and the expressions of placental development-related molecules including Fra1, Eomes, Hand1, and Ascl2. Moreover, TBT treatment markedly inhibited the placental proliferation and induced up-regulation of p53 and cleaved caspase-3 proteins, and down-regulation of Bcl-2 protein. In addition, TBT administration increased levels of malondialdehyde and H2 O2 and decreased activities of catalase and superoxide dismutase. Collectively, these results suggested TBT-induced adverse pregnancy outcomes during early pregnancy might be involved in developmental disorders of the placenta via dysregulation of key molecules, proliferation, apoptosis, and oxidative stress.
Collapse
Affiliation(s)
- Hui Liu
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang, China
| | - Wenyu Jiang
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang, China
- Department of Clinic Medicine, School of Queen Mary, Nanchang University, Nanchang, China
| | - Yafen Ye
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang, China
| | - Bei Yang
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang, China
| | - Xin Shen
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang, China
| | - Siying Lu
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang, China
| | - Jun Zhu
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang, China
| | - Mengling Liu
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang, China
| | - Chuanzhen Yang
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang, China
| | - Haibin Kuang
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang, China
- Jiangxi Provincial Key Laboratory of Reproductive Physiology and Pathology, Nanchang University, Nanchang, China
| |
Collapse
|
20
|
Lv H, Wang J, Wang M, Shen L, Xiao L, Chen T, Sun T, Li W, Zhu L, Zhang X. Potent inhibition of tributyltin (TBT) and triphenyltin (TPT) against multiple UDP-glucuronosyltransferases (UGT): A new potential mechanism underlying endocrine disrupting actions. Food Chem Toxicol 2021; 149:112039. [DOI: 10.1016/j.fct.2021.112039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 01/13/2021] [Accepted: 01/29/2021] [Indexed: 02/03/2023]
|
21
|
Sham RCT, Ho KKY, Hui TTY, Zhou GJ, Chan JKY, Leung KMY. Tissue distribution of triphenyltin compounds in marine teleost fishes. JOURNAL OF HAZARDOUS MATERIALS 2021; 401:123426. [PMID: 32763711 DOI: 10.1016/j.jhazmat.2020.123426] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 05/14/2020] [Accepted: 07/05/2020] [Indexed: 06/11/2023]
Abstract
Continuous release of the highly toxic triphenyltin compounds (TPT) from antifouling paints and fungicides has caused serious pollution to urbanized coastal marine environments worldwide since the 1960s. Using gas-chromatography mass-spectrometry (GC-MS), this study investigated the distribution profile of TPT in 15 types of tissues of four marine teleost fish species collected from Hong Kong waters. Concentrations of TPT in various tissues had a significant positive correlation with protein contents in the tissues (r = 0.346, p < 0.001) and, to a lesser extent with lipid contents (r = 0.169, p = 0.020). Highest concentrations of TPT were consistently found in liver, ranging from 1074.9 to 3443.7 ng/g wet weight; whereas fish scales always contained the least concentration of TPT in all species, ranging from 10.4 to 48.5 ng/g wet weight. Through mass balance models and regression analyses, muscle tissues were found to contribute most to the total TPT body burden, and the average TPT concentration of both dorsal and ventral muscles was identified as the best predictor for estimating TPT burden in the entire fish. Hence, further investigations of bioaccumulation and biomagnification of TPT in fishes should adopt this modelling approach in estimating its total body burden in individual fish.
Collapse
Affiliation(s)
- Ronia Chung-Tin Sham
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Kevin K Y Ho
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Tommy T Y Hui
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Guang-Jie Zhou
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Janet K Y Chan
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Kenneth M Y Leung
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China; State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China.
| |
Collapse
|
22
|
Rodprasert W, Toppari J, Virtanen HE. Endocrine Disrupting Chemicals and Reproductive Health in Boys and Men. Front Endocrinol (Lausanne) 2021; 12:706532. [PMID: 34690925 PMCID: PMC8530230 DOI: 10.3389/fendo.2021.706532] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 08/17/2021] [Indexed: 12/15/2022] Open
Abstract
Male reproductive health has declined as indicated by increasing rates of cryptorchidism, i.e., undescended testis, poor semen quality, low serum testosterone level, and testicular cancer. Exposure to endocrine disrupting chemicals (EDCs) has been proposed to have a role in this finding. In utero exposure to antiandrogenic EDCs, particularly at a sensitive period of fetal testicular development, the so-called 'masculinization programming window (MPW)', can disturb testicular development and function. Low androgen effect during the MPW can cause both short- and long-term reproductive disorders. A concurrent exposure to EDCs may also affect testicular function or damage testicular cells. Evidence from animal studies supports the role of endocrine disrupting chemicals in development of male reproductive disorders. However, evidence from epidemiological studies is relatively mixed. In this article, we review the current literature that evaluated relationship between prenatal EDC exposures and anogenital distance, cryptorchidism, and congenital penile abnormality called hypospadias. We review also studies on the association between early life and postnatal EDC exposure and semen quality, hypothalamic-pituitary-gonadal axis hormone levels and testicular cancer.
Collapse
Affiliation(s)
- Wiwat Rodprasert
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
| | - Jorma Toppari
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
- Department of Pediatrics, Turku University Hospital, Turku, Finland
| | - Helena E. Virtanen
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
- *Correspondence: Helena E. Virtanen,
| |
Collapse
|
23
|
Škerlová J, Ismail A, Lindström H, Sjödin B, Mannervik B, Stenmark P. Structural and functional analysis of the inhibition of equine glutathione transferase A3-3 by organotin endocrine disrupting pollutants. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115960. [PMID: 33162212 DOI: 10.1016/j.envpol.2020.115960] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/02/2020] [Accepted: 10/28/2020] [Indexed: 06/11/2023]
Abstract
Organotin compounds are highly toxic environmental pollutants with neurotoxic and endocrine-disrupting effects. They are potent inhibitors of glutathione transferases (GSTs), thus impeding their detoxication and antioxidant functions. Several GSTs, including equine GST A3-3 (EcaGST A3-3), exhibit steroid double-bond isomerase activity and are involved in the biosynthesis of testosterone and progesterone. We have performed enzyme kinetics analyses of the inhibition of EcaGST A3-3 by organotin compounds. We have also solved crystal structures of EcaGST A3-3 in complexes with glutathione, and with glutathione together with covalently bound triethyltin. Our structural data indicate that the tin atom forms strong bonds with a covalent character not only with the glutathione, but also with a tyrosyl residue of the enzyme itself, thereby preventing the release of the glutathione-organotin adduct and completely blocking the enzyme function. This work presents a structural basis for the general mechanism of GST inhibition by organotin compounds and contributes to the understanding of their neurotoxic and endocrine disrupting effects.
Collapse
Affiliation(s)
- Jana Škerlová
- Department of Biochemistry and Biophysics, Stockholm University, SE-10691, Stockholm, Sweden
| | - Aram Ismail
- Department of Biochemistry and Biophysics, Stockholm University, SE-10691, Stockholm, Sweden
| | - Helena Lindström
- Department of Biochemistry and Biophysics, Stockholm University, SE-10691, Stockholm, Sweden
| | - Birgitta Sjödin
- Department of Biochemistry and Biophysics, Stockholm University, SE-10691, Stockholm, Sweden
| | - Bengt Mannervik
- Department of Biochemistry and Biophysics, Stockholm University, SE-10691, Stockholm, Sweden.
| | - Pål Stenmark
- Department of Biochemistry and Biophysics, Stockholm University, SE-10691, Stockholm, Sweden; Department of Experimental Medical Science, Lund University, SE-22100, Lund, Sweden.
| |
Collapse
|
24
|
Yang Y, Huang W, Yuan L. Effects of Environment and Lifestyle Factors on Premature Ovarian Failure. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1300:63-111. [PMID: 33523430 DOI: 10.1007/978-981-33-4187-6_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Premature ovarian insufficiency (POI) or primary ovarian failure is defined as a cessation of the menstrual cycle in women younger than 40 years old. It is strictly defined as more than 4 months of oligomenorrhea or amenorrhea in a woman <40 years old, associated with at least two follicle-stimulating hormone (FSH) levels >25 U/L in the menopausal range, detected more than 4 weeks apart. It is estimated that POI was affected 1 and 2% of women. Although 80% of POI cases are of unknown etiology, it is suggested that genetic disorder, autoimmune origin, toxins, and environmental factors, as well as personal lifestyles, may be risk factors of developing POI. In this section, we will discuss the influences of environmental and lifestyle factors on POI. Moreover updated basic research findings regarding how these environmental factors affect female ovarian function via epigenetic regulations will also be discussed.
Collapse
Affiliation(s)
- Yihua Yang
- Guangxi Reproductive Medical Center, the First Affiliated Hospital of Guangxi Medical University, Nanning, China.
| | - Weiyu Huang
- Guangxi Reproductive Medical Center, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Lifang Yuan
- Guangxi Reproductive Medical Center, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
25
|
Li P, Li ZH, Zhong L. Parental exposure to triphenyltin inhibits growth and disrupts thyroid function in zebrafish larvae. CHEMOSPHERE 2020; 240:124936. [PMID: 31568941 DOI: 10.1016/j.chemosphere.2019.124936] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/19/2019] [Accepted: 09/21/2019] [Indexed: 06/10/2023]
Abstract
Triphenyltin (TPT) is widely used and commonly found in a water environment, so its effects on aquatic systems are of great concern. This study aimed to reveal the effects of chronic parental exposure of TPT on thyroid disruption and growth inhibition in zebrafish. Adult zebrafish (F0 generation) were exposed to environmentally relevant concentrations (1, 10, and 100 ng/L) of TPT for 60 days, and the larvae (F1 generation) were tested without TPT treatment. Results demonstrated that parental exposure to TPT disrupts thyroid function in zebrafish offspring: serum thyroxine (T4) significantly decreased, while serum 3,5,3'-triiodothyronine (T3) increased, and several genes involved in the hypothalamic-pituitary-thyroid (HPT) axis were down-regulated. In addition, we observed developmental abnormalities in the larvae, demonstrated by a significantly altered hatching rate, malformation rate, body length, heart rate, and survival rate, as well as down-regulation of genes involved in the growth hormone/insulin-like growth factor (GH/IGF) axis. Therefore, parental exposure to TPT induces toxicity in fish offspring through perturbation of the HPT and GH/IGF axes.
Collapse
Affiliation(s)
- Ping Li
- Marine College, Shandong University, Weihai, 264209, China
| | - Zhi-Hua Li
- Marine College, Shandong University, Weihai, 264209, China; Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China.
| | - Liqiao Zhong
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China
| |
Collapse
|
26
|
Raez-Villanueva S, Jamshed L, Ratnayake G, Cheng L, Thomas PJ, Holloway AC. Adverse effects of naphthenic acids on reproductive health: A focus on placental trophoblast cells. Reprod Toxicol 2019; 90:126-133. [DOI: 10.1016/j.reprotox.2019.09.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 09/02/2019] [Accepted: 09/10/2019] [Indexed: 01/09/2023]
|
27
|
Stossi F, Dandekar RD, Johnson H, Lavere P, Foulds CE, Mancini MG, Mancini MA. Tributyltin chloride (TBT) induces RXRA down-regulation and lipid accumulation in human liver cells. PLoS One 2019; 14:e0224405. [PMID: 31710612 PMCID: PMC6844554 DOI: 10.1371/journal.pone.0224405] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 10/12/2019] [Indexed: 11/19/2022] Open
Abstract
A subset of environmental chemicals acts as "obesogens" as they increase adipose mass and lipid content in livers of treated rodents. One of the most studied class of obesogens are the tin-containing chemicals that have as a central moiety tributyltin (TBT), which bind and activate two nuclear hormone receptors, Peroxisome Proliferator Activated Receptor Gamma (PPARG) and Retinoid X Receptor Alpha (RXRA), at nanomolar concentrations. Here, we have tested whether TBT chloride at such concentrations may affect the neutral lipid level in two cell line models of human liver. Indeed, using high content image analysis (HCA), TBT significantly increased neutral lipid content in a time- and concentration-dependent manner. Consistent with the observed increased lipid accumulation, RNA fluorescence in situ hybridization (RNA FISH) and RT-qPCR experiments revealed that TBT enhanced the steady-state mRNA levels of two key genes for de novo lipogenesis, the transcription factor SREBF1 and its downstream enzymatic target, FASN. Importantly, pre-treatment of cells with 2-deoxy-D-glucose reduced TBT-mediated lipid accumulation, thereby suggesting a role for active glycolysis during the process of lipid accumulation. As other RXRA binding ligands can promote RXRA protein turnover via the 26S proteasome, TBT was tested for such an effect in the two liver cell lines. We found that TBT, in a time- and dose-dependent manner, significantly reduced steady-state RXRA levels in a proteasome-dependent manner. While TBT promotes both RXRA protein turnover and lipid accumulation, we found no correlation between these two events at the single cell level, thereby suggesting an additional mechanism may be involved in TBT promotion of lipid accumulation, such as glycolysis.
Collapse
Affiliation(s)
- Fabio Stossi
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States of America
- Integrated Microscopy Core, Baylor College of Medicine, Houston, TX, United States of America
- GCC Center for Advanced Microscopy and Image Informatics, Houston, TX, United States of America
| | - Radhika D. Dandekar
- Integrated Microscopy Core, Baylor College of Medicine, Houston, TX, United States of America
| | - Hannah Johnson
- Integrated Microscopy Core, Baylor College of Medicine, Houston, TX, United States of America
- GCC Center for Advanced Microscopy and Image Informatics, Houston, TX, United States of America
| | - Philip Lavere
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States of America
| | - Charles E. Foulds
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States of America
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, United States of America
| | - Maureen G. Mancini
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States of America
- GCC Center for Advanced Microscopy and Image Informatics, Houston, TX, United States of America
| | - Michael A. Mancini
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States of America
- Integrated Microscopy Core, Baylor College of Medicine, Houston, TX, United States of America
- GCC Center for Advanced Microscopy and Image Informatics, Houston, TX, United States of America
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, United States of America
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX, United States of America
- Dan L. Duncan Comprehensive Cancer Center; Baylor College of Medicine, Houston, TX, United States of America
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, United States of America
- * E-mail:
| |
Collapse
|
28
|
Mihaljević I, Bašica B, Maraković N, Kovačević R, Smital T. Interaction of organotin compounds with three major glutathione S-transferases in zebrafish. Toxicol In Vitro 2019; 62:104713. [PMID: 31706034 DOI: 10.1016/j.tiv.2019.104713] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/29/2019] [Accepted: 10/30/2019] [Indexed: 10/25/2022]
Abstract
Glutathione S-transferases (GSTs) play an important role in cellular detoxification as enzymatic mediators of glutathione (GSH) conjugation with a wide range of deleterious compounds, enabling their easier extrusion out of the organism. GSTs are shown to interact with organotin compounds (OTCs), known environmental pollutants, either as substrates, serving as electrophilic targets to the nucleophilic attack of GSH, or as noncompetitive inhibitors by binding to GST active sites and disrupting their enzymatic functions. There is a wide range of deleterious biological effects caused by OTCs in low concentration range. Their environmental concentrations, further potentiated by bioaccumulation in aquatic organisms, correspond with inhibitory constants reported for Gsts in zebrafish, which implies their environmental significance. Therefore, our main goal in this study was to analyze interactions of three major zebrafish Gsts - Gstp1, Gstr1, and Gstt1a - with a series of ten environmentally relevant organotin compounds. Using previously developed Gst inhibition assay with recombinant Gst proteins and fluorescent monochlorobimane as a model substrate, we determined Gst inhibitory constants for all tested OCTs. Furthermore, in order to elucidate nature of Gst interactions with OTCs, we determined type of interactions between tested Gsts and the strongest OTC inhibitors. Our results showed that OTCs can interact with zebrafish Gsts as competitive, noncompetitive, or mixed-type inhibitors. Determined types of interactions were additionally confirmed in silico by molecular docking studies of tested OTCs with newly developed Gst models. In silico models were further used to reveal structures of tested Gsts in more detail and identify crucial amino acid residues which interact with OTCs within Gst active sites. Our results revealed more extensive involvement of Gstr1 and Gstp1 in detoxification of numerous tested OTCs, with low inhibitory constants in nanomolar to low micromolar range and different types of inhibition, whereas Gstt1a noncompetitively interacted with only two tested OTCs with significantly higher inhibitory constants.
Collapse
Affiliation(s)
- Ivan Mihaljević
- Laboratory for Molecular Ecotoxicology, Division for Marine and Environmental Research, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
| | - Branka Bašica
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia
| | - Nikola Maraković
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000 Zagreb, Croatia
| | - Radmila Kovačević
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia
| | - Tvrtko Smital
- Laboratory for Molecular Ecotoxicology, Division for Marine and Environmental Research, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia.
| |
Collapse
|
29
|
Li L, Xie L, Ma L, Chen Y, Chen X, Ge F, Huang T, Chen L, Hong T, Chen X, Zhu Q, Li X, Ge RS. Triphenyltin Chloride Delays Leydig Cell Maturation During Puberty in Rats. Front Pharmacol 2018; 9:833. [PMID: 30147652 PMCID: PMC6095986 DOI: 10.3389/fphar.2018.00833] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 07/11/2018] [Indexed: 02/02/2023] Open
Abstract
Triphenyltin chloride (TPT) is present in a wide range of human foods. TPT could disrupt testis function as a potential endocrine disruptor of Leydig cells. However, the effect of TPT on pubertal Leydig cell development is still unclear. The objective of the current study was to explore whether exposure to TPT affected Leydig cell developmental process and to clarify the underlying mechanisms. Male Sprague-Dawley rats at 35 days of age were randomly divided into four groups and received normal corn oil (control), 0.5, 1, or 2 mg/kg/day TPT for 18 days. Immature Leydig cells isolated from 35-day-old rat testes were treated with TPT (10 and 100 nM) for 24 h in vitro. In vivo exposure to ≥0.5 mg/kg TPT lowered serum testosterone levels and lowered Star mRNA. TPT at 2 mg/kg also lowered Lhcgr, Cyp11a1, Hsd3b1, Hsd17b3 as well as pAKT1/AKT1, pAKT2/AKT2, and pERK1/2/ERK1/2 ratios. In vitro exposure to TPT (100 nM) increased ROS production and induced cell apoptosis rate in rat immature Leydig cells. In conclusion, TPT exposure disrupts Leydig cell development possibly via interfering with the phosphorylation of AKT1, AKT2, and ERK1/2 kinases.
Collapse
Affiliation(s)
- Linchao Li
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, China
| | - Lubin Xie
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, China
| | - Leikai Ma
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, China
| | - Yong Chen
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, China
| | - Xianwu Chen
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, China
| | - Fei Ge
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, China
| | - Tongliang Huang
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, China
| | - Lanlan Chen
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, China
| | - Tingting Hong
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, China
| | - Xiaofang Chen
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, China
| | - Qiqi Zhu
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, China
| | - Xingwang Li
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, China
| | - Ren-Shan Ge
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, China
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
30
|
Barbosa CMDL, Ferrão FM, Graceli JB. Organotin Compounds Toxicity: Focus on Kidney. Front Endocrinol (Lausanne) 2018; 9:256. [PMID: 29872423 PMCID: PMC5972511 DOI: 10.3389/fendo.2018.00256] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Accepted: 05/03/2018] [Indexed: 01/24/2023] Open
Abstract
Organotin compounds (OTs) are synthetic persistent organometallic xenobiotics widely used in several commercial applications. They exert well-described harmful effects in brain, liver, adipose tissue, and reproductive organs, as they are endocrine-disrupting chemicals (EDCs), but the effects in the kidneys are less known. The kidneys are especially vulnerable to environmental contaminants because they are a metabolizing site of xenobiotics, therefore, pollutants can accumulate in renal tissue, leading to impaired renal function and to several renal abnormalities. Individuals chronically exposed to OTs present a threefold increase in the prevalence of kidney stones. These compounds can directly inhibit H+/K+-ATPase in renal intercalated cells, resulting in hypokalemia, renal tubular acidity, and increased urinary pH, which is a known risk factor for kidney stones formation. OTs effects are not only limited to induce nephrolithiasis, its nephrotoxicity is also due to increased reactive oxygen species (ROS). This increase leads to lipid peroxidation, abnormal cellular function, and cell death. Combined, the enzymatic and non-enzymatic antioxidant defense systems become deficient and there is a consequent uncontrolled generation of ROS that culminates in renal tissue damage. Still, few epidemiological and experimental studies have reported renal impact correlated to OTs exposure. This lack of investigation of the complete effect of OTs in renal function and structure led us to perform this review reporting the main researches about this subject.
Collapse
Affiliation(s)
- Carolina Monteiro de Lemos Barbosa
- Laboratory for Clinical and Experimental Research on Vascular Biology (BioVasc), Department of Physiology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernanda Magalhães Ferrão
- Nucleus of Multidisciplinary Research in Biology, Federal University of Rio de Janeiro, Duque de Caxias, Brazil
| | - Jones B Graceli
- Laboratory of Endocrinology and Cellular Toxicology, Department of Morphology, Federal University of Espirito Santo, Vitoria, Brazil
| |
Collapse
|