1
|
Shen Y, Gu L, Zhou Q, Zhang X, Yu M, Li Q, Liang Y, Chen C, Zhang Y, Zhu H. Bipolaristeroid A, a 5,6-seco-9,10-seco-steroid with cytotoxic activity from the fungus Bipolaris maydis. PHYTOCHEMISTRY 2024; 229:114303. [PMID: 39419316 DOI: 10.1016/j.phytochem.2024.114303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/26/2024] [Accepted: 10/14/2024] [Indexed: 10/19/2024]
Abstract
Eleven undescribed steroids, bipolaristeroids A-K, and one known compound, demethylincisterol A3, were isolated from the fungus Bipolaris maydis. Bipolaristeroid A is a 5,6-seco-9,10-seco-steroid with a rearranged B ring, in which the A and C rings are connected by an ester bond. Bipolaristeroid B is a rearranged 1(10 → 6)-abeosteroid with an aromatic B ring. Their planar structures and absolute configuration were determined using NMR, HRESIMS, DP4+ analysis, ECD calculation, and single-crystal X-ray diffraction. Bipolaristeroid A shows excellent inhibitory effects against the cancer cell lines HepG2, A549, SW620, and C4-2B with IC50 values of 7.94, 5.11, 5.13, and 3.83 μM, respectively.
Collapse
Affiliation(s)
- Yong Shen
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Lianghu Gu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Qun Zhou
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Xiaotian Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Mengru Yu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Qin Li
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Yu Liang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Chunmei Chen
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
| | - Hucheng Zhu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
| |
Collapse
|
2
|
Suhaiman L, Belmonte SA. Lipid remodeling in acrosome exocytosis: unraveling key players in the human sperm. Front Cell Dev Biol 2024; 12:1457638. [PMID: 39376630 PMCID: PMC11456524 DOI: 10.3389/fcell.2024.1457638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/03/2024] [Indexed: 10/09/2024] Open
Abstract
It has long been thought that exocytosis was driven exclusively by well-studied fusion proteins. Some decades ago, the role of lipids became evident and escalated interest in the field. Our laboratory chose a particular cell to face this issue: the human sperm. What makes this cell special? Sperm, as terminal cells, are characterized by their scarcity of organelles and the complete absence of transcriptional and translational activities. They are specialized for a singular membrane fusion occurrence: the exocytosis of the acrosome. This unique trait makes them invaluable for the study of exocytosis in isolation. We will discuss the lipids' role in human sperm acrosome exocytosis from various perspectives, with a primary emphasis on our contributions to the field. Sperm cells have a unique lipid composition, very rare and not observed in many cell types, comprising a high content of plasmalogens, long-chain, and very-long-chain polyunsaturated fatty acids that are particular constituents of some sphingolipids. This review endeavors to unravel the impact of membrane lipid composition on the proper functioning of the exocytic pathway in human sperm and how this lipid dynamic influences its fertilizing capability. Evidence from our and other laboratories allowed unveiling the role and importance of multiple lipids that drive exocytosis. This review highlights the role of cholesterol, diacylglycerol, and particular phospholipids like phosphatidic acid, phosphatidylinositol 4,5-bisphosphate, and sphingolipids in driving sperm acrosome exocytosis. Furthermore, we provide a comprehensive overview of the factors and enzymes that regulate lipid turnover during the exocytic course. A more thorough grasp of the role played by lipids transferred from sperm can provide insights into certain causes of male infertility. It may lead to enhancements in diagnosing infertility and techniques like assisted reproductive technology (ART).
Collapse
Affiliation(s)
- Laila Suhaiman
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU)-CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas), Argentina
- Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Silvia A. Belmonte
- Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
- Instituto de Histología y Embriología de Mendoza (IHEM) “Dr. Mario H. Burgos”, CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas), Universidad Nacional de Cuyo, Mendoza, Argentina
| |
Collapse
|
3
|
Tan WLA, Hudson NJ, Porto Neto LR, Reverter A, Afonso J, Fortes MRS. An association weight matrix identified biological pathways associated with bull fertility traits in a multi-breed population. Anim Genet 2024; 55:495-510. [PMID: 38692842 DOI: 10.1111/age.13431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/26/2024] [Accepted: 04/01/2024] [Indexed: 05/03/2024]
Abstract
Using seven indicator traits, we investigated the genetic basis of bull fertility and predicted gene interactions from SNP associations. We used percent normal sperm as the key phenotype for the association weight matrix-partial correlation information theory (AWM-PCIT) approach. Beyond a simple list of candidate genes, AWM-PCIT predicts significant gene interactions and associations for the selected traits. These interactions formed a network of 537 genes: 38 genes were transcription cofactors, and 41 genes were transcription factors. The network displayed two distinct clusters, one with 294 genes and another with 243 genes. The network is enriched in fertility-associated pathways: steroid biosynthesis, p53 signalling, and the pentose phosphate pathway. Enrichment analysis also highlighted gene ontology terms associated with 'regulation of neurotransmitter secretion' and 'chromatin formation'. Our network recapitulates some genes previously implicated in another network built with lower-density genotypes. Sequence-level data also highlights additional candidate genes relevant to bull fertility, such as FOXO4, FOXP3, GATA1, CYP27B1, and EBP. A trio of regulatory genes-KDM5C, LRRK2, and PME-was deemed core to the network because of their overarching connections. This trio probably influences bull fertility through their interaction with genes, both known and unknown as to their role in male fertility. Future studies may target the trio and their target genes to enrich our understanding of male fertility further.
Collapse
Affiliation(s)
- Wei Liang Andre Tan
- School of Chemistry and Molecular Bioscience, The University of Queensland, St Lucia, Queensland, Australia
| | - Nicholas James Hudson
- School of Agriculture and Food Sustainability, The University of Queensland, Gatton, Queensland, Australia
| | | | | | - Juliana Afonso
- School of Chemistry and Molecular Bioscience, The University of Queensland, St Lucia, Queensland, Australia
- Empresa Brasileira de Pesquisa Agropecuária, Pecuária Sudeste, São Carlos, São Paulo, Brazil
| | | |
Collapse
|
4
|
Fu Y, Lai D, Xu Y, Liu J, Wang Y, Jiang D, Pan J, Ouyang H, Tian Y, Huang Y, Shen X. The DNA methylation status of the vitamin A signaling associated with testicular degeneration induced by long-day photoperiods in Magang geese. Poult Sci 2024; 103:103769. [PMID: 38917605 PMCID: PMC11250879 DOI: 10.1016/j.psj.2024.103769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/10/2024] [Accepted: 04/10/2024] [Indexed: 06/27/2024] Open
Abstract
Magang geese are typical short-day breeders whose reproductive behaviors are significantly influenced by photoperiod. Exposure to a long-day photoperiod results in testicular regression and spermatogenesis arrest in Magang geese. To investigate the epigenetic influence of DNA methylation on the seasonal testicular regression in Magang geese, we conducted whole-genome bisulfite sequencing and transcriptome sequencing of testes across 3 reproductive phases during a long-day photoperiod. A total of 250,326 differentially methylated regions (DMR) were identified among the 3 comparison groups, with a significant number showing hypermethylation, especially in intronic regions of the genome. Integrating bisulfite sequencing with transcriptome sequencing data revealed that DMR-associated genes tend to be differentially expressed in the testes, highlighting a potential regulatory role for DNA methylation in gene expression. Furthermore, there was a significant negative correlation between changes in the methylation of CG DMRs and changes in the expression of their associated genes in the testes. A total of 3,359 DMR-associated differentially expressed genes (DEG) were identified; functional enrichment analyses revealed that motor proteins, MAPK signaling pathway, ECM-receptor interaction, phagosome, TGF-beta signaling pathway, and calcium signaling might contribute to the testicular regression process. GSEA revealed that the significantly enriched activated hallmark gene set was associated with apoptosis and estrogen response during testicular regression, while the repressed hallmark gene set was involved in spermatogenesis. Our study also revealed that methylation changes significantly impacted the expression level of vitamin A metabolism-related genes during testicular degeneration, with hypermethylation of STRA6 and increased calmodulin levels indicating vitamin A efflux during the testicular regression. These findings were corroborated by pyrosequencing and real-time qPCR, which revealed that the vitamin A metabolic pathway plays a pivotal role in testicular degeneration under long-day conditions. Additionally, metabolomics analysis revealed an insufficiency of vitamin A and an abnormally high level of oxysterols accumulated in the testes during testicular regression. In conclusion, our study demonstrated that testicular degeneration in Magang geese induced by a long-day photoperiod is linked to vitamin A homeostasis disruption, which manifests as the hypermethylation status of STRA6, vitamin A efflux, and a high level of oxysterol accumulation. These findings offer new insights into the effects of DNA methylation on the seasonal testicular regression that occurs during long-day photoperiods in Magang geese.
Collapse
Affiliation(s)
- Yuting Fu
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Diyu Lai
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Yanglong Xu
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Jiaxin Liu
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Yushuai Wang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong, China
| | - Danli Jiang
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Jianqiu Pan
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Hongjia Ouyang
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Yunbo Tian
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Yunmao Huang
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Xu Shen
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China.
| |
Collapse
|
5
|
Li W, Li H, Zha C, Che B, Yu Y, Yang J, Li T. Lipids, lipid-modified drug target genes, and the risk of male infertility: a Mendelian randomization study. Front Endocrinol (Lausanne) 2024; 15:1392533. [PMID: 39114294 PMCID: PMC11303150 DOI: 10.3389/fendo.2024.1392533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 06/28/2024] [Indexed: 08/10/2024] Open
Abstract
Background Previous observational studies have reported a possible association between circulating lipids and lipid-lowering drugs and male infertility (MIF), as well as the mediating role of circulating vitamin D. Then, due to issues such as bias, reverse causality, and residual confounding, inferring causal relationships from these studies may be challenging. Therefore, this study aims to explore the effects of circulating lipids and lipid-lowering drugs on MIF through Mendelian randomization (MR) analysis and evaluate the mediating role of vitamin D. Method Genetic variations related to lipid traits and the lipid-lowering effect of lipid modification targets are extracted from the Global Alliance for Lipid Genetics Genome-Wide Association Study. The summary statistics for MIF are from the FinnGen 9th edition. Using quantitative expression feature loci data from relevant organizations to obtain genetic variations related to gene expression level, further to explore the relationship between these target gene expression levels and MIF risk. Two-step MR analysis is used to explore the mediating role of vitamin D. Multiple sensitivity analysis methods (co-localization analysis, Egger intercept test, Cochrane's Q test, pleiotropy residuals and outliers (MR-PRESSO), and the leave-one-out method) are used to demonstrate the reliability of our results. Result In our study, we observed that lipid modification of four lipid-lowering drug targets was associated with MIF risk, the LDLR activator (equivalent to a 1-SD decrease in LDL-C) (OR=1.94, 95% CI 1.14-3.28, FDR=0.040), LPL activator (equivalent to a 1-SD decrease in TG) (OR=1.86, 95% CI 1.25-2.76, FDR=0.022), and CETP inhibitor (equivalent to a 1-SD increase in HDL-C) (OR=1.28, 95% CI 1.07-1.53, FDR=0.035) were associated with a higher risk of MIF. The HMGCR inhibitor (equivalent to a 1-SD decrease in LDL-C) was associated with a lower risk of MIF (OR=0.38, 95% CI 0.17-0.83, FDR=0.39). Lipid-modifying effects of three targets were partially mediated by serum vitamin D levels. Mediation was 0.035 (LDLR activator), 0.012 (LPL activator), and 0.030 (CETP inhibitor), with mediation ratios of 5.34% (LDLR activator), 1.94% (LPL activator), and 12.2% (CETP inhibitor), respectively. In addition, there was no evidence that lipid properties and lipid modification effects of six other lipid-lowering drug targets were associated with MIF risk. Multiple sensitivity analysis methods revealed insignificant evidence of bias arising from pleiotropy or genetic confounding. Conclusion This study did not support lipid traits (LDL-C, HDL-C, TG, Apo-A1, and Apo-B) as pathogenic risk factors for MIF. It emphasized that LPL, LDLR, CETP, and HMGCR were promising drug targets for improving male fertility.
Collapse
Affiliation(s)
- Wei Li
- Department of Urology, the Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Hu Li
- Emergency Department, Affiliated Hospital of Binzhou Medical College, Binzhou, China
| | - Cheng Zha
- Department of Urology, the Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Bangwei Che
- Department of Urology, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Ying Yu
- Department of Urology, the Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Jianjun Yang
- Department of Urology, the Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Tao Li
- Department of Urology, the Affiliated Hospital of Guizhou Medical University, Guiyang, China
| |
Collapse
|
6
|
Chatziparasidou A, Kyrgiafini MA, Sarafidou T, Moutou KA, Mamuris Z. Genetic Insights into Azoospermia and Severe Oligozoospermia: Discovering Seven SNPs through GWAS and In Silico Analysis. Curr Issues Mol Biol 2024; 46:6522-6532. [PMID: 39057031 PMCID: PMC11276099 DOI: 10.3390/cimb46070389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/18/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
Azoospermia and severe oligozoospermia represent the most extreme forms of male infertility. Despite their prevalence, the genetic foundations of these conditions are not well understood, with only a limited number of genetic factors identified so far. This study aimed to identify single-nucleotide polymorphisms (SNPs) linked to both azoospermia and severe oligozoospermia. We conducted a genome-wide association study (GWAS) involving 280 Greek males with normal semen parameters and 85 Greek males diagnosed with either azoospermia or severe oligozoospermia. Following rigorous quality control measures, our analysis identified seven SNPs associated with azoospermia/severe oligozoospermia. An in silico functional annotation was subsequently used to further investigate their role. These SNPs, found in regions not previously associated with male reproductive disorders, suggest novel genetic pathways that may contribute to these forms of infertility and pave the way for future studies. Additionally, this study sheds light on the significant role of noncoding RNAs in the pathogenesis of male infertility, with three of the identified SNPs situated in long intergenic non-coding RNAs (lincRNAs). Our findings highlight the intricate genetic landscape of azoospermia and severe oligozoospermia, underlining the necessity for more detailed studies to fully grasp the underlying mechanisms and their potential for informing diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Alexia Chatziparasidou
- Laboratory of Genetics, Comparative and Evolutionary Biology, Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, Mezourlo, 41500 Larissa, Greece
- Embryolab IVF Unit, St. 173-175 Ethnikis Antistaseos, Kalamaria, 55134 Thessaloniki, Greece
| | - Maria-Anna Kyrgiafini
- Laboratory of Genetics, Comparative and Evolutionary Biology, Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, Mezourlo, 41500 Larissa, Greece
| | - Theologia Sarafidou
- Laboratory of Genetics, Comparative and Evolutionary Biology, Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, Mezourlo, 41500 Larissa, Greece
| | - Katerina A. Moutou
- Laboratory of Genetics, Comparative and Evolutionary Biology, Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, Mezourlo, 41500 Larissa, Greece
| | - Zissis Mamuris
- Laboratory of Genetics, Comparative and Evolutionary Biology, Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, Mezourlo, 41500 Larissa, Greece
| |
Collapse
|
7
|
Mogielnicka-Brzozowska M, Cichowska AW. Molecular Biomarkers of Canine Reproductive Functions. Curr Issues Mol Biol 2024; 46:6139-6168. [PMID: 38921038 PMCID: PMC11202846 DOI: 10.3390/cimb46060367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/05/2024] [Accepted: 06/12/2024] [Indexed: 06/27/2024] Open
Abstract
The aim of the current study is to review potential molecular biomarker substances selected so far as useful for assessing the quality of dog semen. Proteins, lipids, carbohydrates, and ions can serve as molecular biomarkers of reproductive functions (BRFs) for evaluating male reproductive health and identifying potential risk factors for infertility or reproductive disorders. Evaluation of BRF levels in semen samples or reproductive tissues may provide insights into the underlying causes of infertility, such as impaired sperm function, abnormal sperm-egg interaction, or dysfunction of the male reproductive tract. Molecular biomarker proteins may be divided into two groups: proteins that are well-studied, such as A-kinase anchoring proteins (AKAPs), albumins (ALBs), alkaline phosphatase (ALPL), clusterin (CLU), canine prostate-specific esterase (CPSE), cysteine-rich secretory protein 2 (CRISP2), lactotransferrin (LTF), metalloproteinases (MMPs), and osteopontin (OPN) and proteins that are not well-studied. Non-protein markers include lipid-based substances (fatty acids, phosphatidylcholine), carbohydrates (glycosaminoglycans), and ions (zinc, calcium). Assessing the levels of BRFs in semen samples may provide valuable information for breeding management and reproductive assessments in dogs. This review systematizes current knowledge that could serve as a starting point for developing practical tests with the use of biomarkers of canine reproductive functions and their predictive value for assisted reproductive technique outcomes and semen preservation.
Collapse
Affiliation(s)
- Marzena Mogielnicka-Brzozowska
- Department of Animal Biochemistry and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 5, 10-719 Olsztyn, Poland
| | | |
Collapse
|
8
|
Chilaka KN, Namoju R. Maternal supplementation of alpha-lipoic acid ameliorates prenatal cytarabine-induced mutilation in reproductive development and function in F1 male adult rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:4035-4053. [PMID: 38010397 DOI: 10.1007/s00210-023-02852-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/10/2023] [Indexed: 11/29/2023]
Abstract
AIMS Cytarabine (CYT), a prevalent anticancer drug for blood cancers, detrimentally affects male reproductive development and function. Alpha-lipoic acid (ALA), a universal antioxidant, offers defense against chemical-induced reproductive dysfunction. Our study sought to explore ALA's protective role against prenatal CYT-induced reproductive impairment in F1 male adult rats. MAIN METHODS Pregnant rats were divided into 5 groups and administered normal saline, ALA 200 mg/kg, CYT 12.5 mg/kg, CYT 25 mg/kg, and CYT 25 mg/kg + ALA 200 mg/ kg from gestational day 8 to 21. On postnatal day 73, F1 male rats were sacrificed, and general, oxidative, steroidogenic, spermatogenic, histological, and morphometrical parameters were evaluated. KEY FINDINGS Prenatal CYT caused dose-dependent reductions in body weight, testis, and accessory gland weights; elevated oxidative stress; delayed puberty onset; sperm anomalies (decreased count, motility, viability, seminal fructose; increased morphological anomalies); impeded steroidogenesis (lower testosterone, follicle-stimulating hormone, luteinizing hormone, 3β-Hydroxysteroid dehydrogenase(HSD), 17β-HSD, and elevated cholesterol); and testicular histopathological and morphometric disturbances. Maternal supplementation of ALA was found to alleviate all the CYT-induced reproductive disruptions. SIGNIFICANCE The present work accentuates the beneficial actions of ALA against CYT-induced impairment in reproductive development and functions by combating disruptions in oxidative balance, steroidogenesis, spermatogenesis, and testicular histological aberrations. However, future experimental and clinical studies are warranted to explore the molecular mechanisms involved in the ALA's protection against prenatal CYT-induced testicular injury.
Collapse
Affiliation(s)
- Kavitha N Chilaka
- GITAM Institute of Pharmacy, GITAM Deemed to Be University, Rushikonda, Visakhapatnam, Andhra Pradesh, 530045, India
| | - Ramanachary Namoju
- GITAM Institute of Pharmacy, GITAM Deemed to Be University, Rushikonda, Visakhapatnam, Andhra Pradesh, 530045, India.
- Department of Pharmacology, Bhaskar Pharmacy College, Jawaharlal Nehru Technical University, Hyderabad, Telangana, 500075, India.
| |
Collapse
|
9
|
Ding X, Tian Y, Qiu Y, Duan P, Wang X, Li Z, Li L, Liu Y, Wang L. Effects of Long-Term Cryopreservation on the Transcriptomes of Giant Grouper Sperm. Genes (Basel) 2024; 15:523. [PMID: 38674457 PMCID: PMC11050297 DOI: 10.3390/genes15040523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/10/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
The giant grouper fish (Epinephelus lanceolatus), one of the largest and rarest groupers, is a fast-growing economic fish. Grouper sperm is often used for cross-breeding with other fish and therefore sperm cryopreservation is important. However, freezing damage cannot be avoided. Herein, we performed a transcriptome analysis to compare fresh and frozen sperm of the giant grouper with frozen storage times of 0, 23, 49, and 61 months. In total, 1911 differentially expressed genes (DEGs), including 91 in El-0-vs-El-23 (40 upregulated and 51 downregulated), 251 in El-0-vs-El-49 (152 upregulated and 69 downregulated), and 1569 in El-0-vs-El-61 (984 upregulated and 585 downregulated), were obtained in the giant grouper sperm. DEGs were significantly increased at 61 months of cryopreservation (p < 0.05). GO and KEGG enrichment analyses of the DEGs revealed significant enrichment in the pilus assembly, metabolic process, MAPK signaling pathway, apoptosis, and P53 signaling pathway. Time-series expression profiling of the DEGs showed that consistently upregulated modules were also significantly enriched in signaling pathways associated with apoptosis. Four genes, scarb1, odf3, exoc8, and atp5f1d, were associated with mitochondria and flagella in a weighted correlation network analysis. These genes may play an important role in the response to sperm freezing. The experimental results show that long-term cryopreservation results in freezing damage to the giant grouper sperm. This study provides rich data for studies of the mechanism underlying frozen fish sperm damage as well as a technical reference and evaluation index for the long-term cryopreservation of fish sperm.
Collapse
Affiliation(s)
- Xiaoyu Ding
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (X.D.)
| | - Yongsheng Tian
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (X.D.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China
- Hainan Innovation Research Institute, Chinese Academy of Fishery Sciences, Sanya 572000, China
| | - Yishu Qiu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (X.D.)
| | - Pengfei Duan
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (X.D.)
| | - Xinyi Wang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (X.D.)
| | - Zhentong Li
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (X.D.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China
- Hainan Innovation Research Institute, Chinese Academy of Fishery Sciences, Sanya 572000, China
| | - Linlin Li
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (X.D.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China
- Hainan Innovation Research Institute, Chinese Academy of Fishery Sciences, Sanya 572000, China
| | - Yang Liu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (X.D.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China
- Hainan Innovation Research Institute, Chinese Academy of Fishery Sciences, Sanya 572000, China
| | - Linna Wang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (X.D.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China
- Hainan Innovation Research Institute, Chinese Academy of Fishery Sciences, Sanya 572000, China
| |
Collapse
|
10
|
Tamman AJF, Koller D, Nagamatsu S, Cabrera-Mendoza B, Abdallah C, Krystal JH, Gelernter J, Montalvo-Ortiz JL, Polimanti R, Pietrzak RH. Psychosocial moderators of polygenic risk scores of inflammatory biomarkers in relation to GrimAge. Neuropsychopharmacology 2024; 49:699-708. [PMID: 37848731 PMCID: PMC10876568 DOI: 10.1038/s41386-023-01747-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/25/2023] [Accepted: 09/25/2023] [Indexed: 10/19/2023]
Abstract
GrimAge acceleration has previously predicted age-related morbidities and mortality. In the current study, we sought to examine how GrimAge is associated with genetic predisposition for systemic inflammation and whether psychosocial factors moderate this association. Military veterans from the National Health and Resilience in Veterans study, which surveyed a nationally representative sample of European American male veterans, provided saliva samples for genotyping (N = 1135). We derived polygenic risk scores (PRS) from the UK Biobank as markers of genetic predisposition to inflammation. Results revealed that PRS for three inflammatory PRS markers-HDL (lower), apolipoprotein B (lower), and gamma-glutamyl transferase (higher)-were associated with accelerated GrimAge. Additionally, these PRS interacted with a range of potentially modifiable psychosocial variables, such as exercise and gratitude, previously identified as associated with accelerated GrimAge. Using gene enrichment, we identified anti-inflammatory and antihistamine drugs that perturbate pathways of genes highly represented in the inflammatory PRS, laying the groundwork for future work to evaluate the potential of these drugs in mitigating epigenetic aging.
Collapse
Affiliation(s)
- Amanda J F Tamman
- Department of Psychiatry, Baylor College of Medicine, Houston, TX, USA.
| | - Dora Koller
- Division of Human Genetics, Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Sheila Nagamatsu
- Division of Human Genetics, Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Brenda Cabrera-Mendoza
- Division of Human Genetics, Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Chadi Abdallah
- Department of Psychiatry, Baylor College of Medicine, Houston, TX, USA
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - John H Krystal
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- U.S. Department of Veterans Affairs National Center for Posttraumatic Stress Disorder, Clinical Neurosciences Division, VA Connecticut Healthcare System, West Haven, CT, USA
| | - Joel Gelernter
- Division of Human Genetics, Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- U.S. Department of Veterans Affairs National Center for Posttraumatic Stress Disorder, Clinical Neurosciences Division, VA Connecticut Healthcare System, West Haven, CT, USA
| | - Janitza L Montalvo-Ortiz
- Division of Human Genetics, Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- U.S. Department of Veterans Affairs National Center for Posttraumatic Stress Disorder, Clinical Neurosciences Division, VA Connecticut Healthcare System, West Haven, CT, USA
| | - Renato Polimanti
- Division of Human Genetics, Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Robert H Pietrzak
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- U.S. Department of Veterans Affairs National Center for Posttraumatic Stress Disorder, Clinical Neurosciences Division, VA Connecticut Healthcare System, West Haven, CT, USA
- Department of Social and Behavioral Sciences, Yale School of Public Health, New Haven, CT, USA
| |
Collapse
|
11
|
Di Nisio A, De Toni L, Sabovic I, Vignoli A, Tenori L, Dall’Acqua S, Sut S, La Vignera S, Condorelli RA, Giacone F, Ferlin A, Foresta C, Garolla A. Lipidomic Profile of Human Sperm Membrane Identifies a Clustering of Lipids Associated with Semen Quality and Function. Int J Mol Sci 2023; 25:297. [PMID: 38203468 PMCID: PMC10778809 DOI: 10.3390/ijms25010297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
Reduced sperm motility and/or count are among the major causes of reduced fertility in men, and sperm membranes play an important role in the spermatogenesis and fertilization processes. However, the impact of sperm lipid composition on male fertility remains under-investigated. The aim of the present study was to perform a lipidomic analysis of human sperm membranes: we performed an untargeted analysis of membrane lipid composition in fertile (N = 33) and infertile subjects (N = 29). In parallel, we evaluated their serum lipid levels. Twenty-one lipids were identified by their mass/charge ratio and post-source decay spectra. Sulfogalactosylglycerolipid (SGG, seminolipid) was the most abundant lipid component in the membranes. In addition, we observed a significant proportion of PUFAs. Important differences have emerged between the fertile and infertile groups, leading to the identification of a lipid cluster that was associated with semen parameters. Among these, cholesterol sulfate, SGG, and PUFAs represented the most important predictors of semen quality. No association was found between the serum and sperm lipids. Dietary PUFAs and SGG have acknowledged antioxidant functions and could, therefore, represent sensitive markers of sperm quality and testicular function. Altogether, these results underline the important role of sperm membrane lipids, which act independently of serum lipids levels and may rather represent an independent marker of reproductive function.
Collapse
Affiliation(s)
- Andrea Di Nisio
- Department of Medicine, University of Padova, 35128 Padova, Italy; (A.D.N.); (L.D.T.); (I.S.); (A.F.); (A.G.)
| | - Luca De Toni
- Department of Medicine, University of Padova, 35128 Padova, Italy; (A.D.N.); (L.D.T.); (I.S.); (A.F.); (A.G.)
| | - Iva Sabovic
- Department of Medicine, University of Padova, 35128 Padova, Italy; (A.D.N.); (L.D.T.); (I.S.); (A.F.); (A.G.)
| | - Alessia Vignoli
- Magnetic Resonance Center (CERM) at the Department of Chemistry “Ugo Schiff”, University of Florence, 50019 Sesto Fiorentino, Italy; (A.V.); (L.T.)
| | - Leonardo Tenori
- Magnetic Resonance Center (CERM) at the Department of Chemistry “Ugo Schiff”, University of Florence, 50019 Sesto Fiorentino, Italy; (A.V.); (L.T.)
- Consorzio Interuniversitario Risonanze Magnetiche MetalloProteine (CIRMMP), 50019 Sesto Fiorentino, Italy
| | - Stefano Dall’Acqua
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35129 Padova, Italy; (S.D.); (S.S.)
| | - Stefania Sut
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35129 Padova, Italy; (S.D.); (S.S.)
| | - Sandro La Vignera
- Department of Clinical and Experimental Medicine, University of Catania, 95125 Catania, Italy; (S.L.V.); (R.A.C.)
| | - Rosita Angela Condorelli
- Department of Clinical and Experimental Medicine, University of Catania, 95125 Catania, Italy; (S.L.V.); (R.A.C.)
| | - Filippo Giacone
- Centro HERA-Unità di Medicina della Riproduzione, Via Barriera del Bosco, 51/53, Sant’Agata li Battiati, 95030 Catania, Italy;
| | - Alberto Ferlin
- Department of Medicine, University of Padova, 35128 Padova, Italy; (A.D.N.); (L.D.T.); (I.S.); (A.F.); (A.G.)
| | - Carlo Foresta
- Department of Medicine, University of Padova, 35128 Padova, Italy; (A.D.N.); (L.D.T.); (I.S.); (A.F.); (A.G.)
- Department of Medicine, Unit of Andrology and Reproductive Medicine, University of Padova, Via Giustiniani, 2, 35128 Padova, Italy
| | - Andrea Garolla
- Department of Medicine, University of Padova, 35128 Padova, Italy; (A.D.N.); (L.D.T.); (I.S.); (A.F.); (A.G.)
| |
Collapse
|
12
|
Macoska JA. The use of beta-sitosterol for the treatment of prostate cancer and benign prostatic hyperplasia. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL UROLOGY 2023; 11:467-480. [PMID: 38148931 PMCID: PMC10749388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/25/2023] [Indexed: 12/28/2023]
Abstract
Herbal supplements are widely used to enhance prostate health. These supplements may contain several types of plant sterols, vitamins, and minerals. By weight, however, plant sterols make up an abundant ingredient component, with saw palmetto extract or its primary component, beta-sitosterol, often comprising the most abundant sterol. Saw palmetto extract/beta-sitosterol has been shown to promote anti-tumorigenic processes in prostate cancer cells and rodent models of prostate cancer. It has also been shown to inhibit the 5α-reductase enzyme, thereby behaving similarly to finasteride and dutasteride, which are widely used to treat prostatic enlargement, or benign prostatic hyperplasia (BPH). The aim of this study is to critically examine in vitro, in vivo, and human clinical studies to assess the safety and clinical utility of herbal supplements containing saw palmetto extract/beta-sitosterol for prostate health. The results of this study suggest multiple mechanisms through which beta-sitosterol represses prostate cancer in vitro and in vivo, particularly through its pro-apoptotic effect on prostate epithelial cells. Multiple studies also show that beta-sitosterol significantly improves lower urinary tract symptoms (LUTS) associated with BPH, but to an extent that is generally less effective than that achieved by pharmaceutical grade alpha-adrenergic receptor antagonists or 5α-reductase inhibitors. This latter finding suggests that supplements containing beta-sitosterol might be most appropriate for younger men with minimal LUTS who don't wish to embark on a clinical drug regimen for BPH treatment.
Collapse
Affiliation(s)
- Jill A Macoska
- Center for Personalized Cancer Therapy, The University of Massachusetts BostonBoston, MA, USA
- Department of Biology, The University of Massachusetts BostonBoston, MA, USA
| |
Collapse
|
13
|
Salehi N, Totonchi M. The construction of a testis transcriptional cell atlas from embryo to adult reveals various somatic cells and their molecular roles. J Transl Med 2023; 21:859. [PMID: 38012716 PMCID: PMC10680190 DOI: 10.1186/s12967-023-04722-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 11/13/2023] [Indexed: 11/29/2023] Open
Abstract
BACKGROUND The testis is a complex organ that undergoes extensive developmental changes from the embryonic stage to adulthood. The development of germ cells, which give rise to spermatozoa, is tightly regulated by the surrounding somatic cells. METHODS To better understand the dynamics of these changes, we constructed a transcriptional cell atlas of the testis, integrating single-cell RNA sequencing data from over 26,000 cells across five developmental stages: fetal germ cells, infants, childhood, peri-puberty, and adults. We employed various analytical techniques, including clustering, cell type assignments, identification of differentially expressed genes, pseudotime analysis, weighted gene co-expression network analysis, and evaluation of paracrine cell-cell communication, to comprehensively analyze this transcriptional cell atlas of the testis. RESULTS Our analysis revealed remarkable heterogeneity in both somatic and germ cell populations, with the highest diversity observed in Sertoli and Myoid somatic cells, as well as in spermatogonia, spermatocyte, and spermatid germ cells. We also identified key somatic cell genes, including RPL39, RPL10, RPL13A, FTH1, RPS2, and RPL18A, which were highly influential in the weighted gene co-expression network of the testis transcriptional cell atlas and have been previously implicated in male infertility. Additionally, our analysis of paracrine cell-cell communication supported specific ligand-receptor interactions involved in neuroactive, cAMP, and estrogen signaling pathways, which support the crucial role of somatic cells in regulating germ cell development. CONCLUSIONS Overall, our transcriptional atlas provides a comprehensive view of the cell-to-cell heterogeneity in the testis and identifies key somatic cell genes and pathways that play a central role in male fertility across developmental stages.
Collapse
Affiliation(s)
- Najmeh Salehi
- School of Biological Science, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran.
| | - Mehdi Totonchi
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.
| |
Collapse
|
14
|
Wang J, Zhang S, Hu L, Wang Y, Liu K, Le J, Tan Y, Li T, Xue H, Wei Y, Zhong O, He J, Zi D, Lei X, Deng R, Luo Y, Tang M, Su M, Cao Y, Liu Q, Tang Z, Lei X. Pyrroloquinoline quinone inhibits PCSK9-NLRP3 mediated pyroptosis of Leydig cells in obese mice. Cell Death Dis 2023; 14:723. [PMID: 37935689 PMCID: PMC10630350 DOI: 10.1038/s41419-023-06162-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 08/25/2023] [Accepted: 09/19/2023] [Indexed: 11/09/2023]
Abstract
Abnormal lipid metabolism and chronic low-grade inflammation are the main traits of obesity. Especially, the molecular mechanism of concomitant deficiency in steroidogenesis-associated enzymes related to testosterone (T) synthesis of obesity dominated a decline in male fertility is still poorly understood. Here, we found that in vivo, supplementation of pyrroloquinoline quinone (PQQ) efficaciously ameliorated the abnormal lipid metabolism and testicular spermatogenic function from high-fat-diet (HFD)-induced obese mice. Moreover, the transcriptome analysis of the liver and testicular showed that PQQ supplementation not only inhibited the high expression of proprotein convertase subtilisin/Kexin type 9 (PCSK9) but also weakened the NOD-like receptor family pyrin domain containing 3 (NLRP3)-mediated pyroptosis, which both played a negative role in T synthesis of Leydig Cells (LCs). Eventually, the function and the pyroptosis of LCs cultured with palmitic acid in vitro were simultaneously benefited by suppressing the expression of NLRP3 or PCSK9 respectively, as well the parallel effects of PQQ were affirmed. Collectively, our data revealed that PQQ supplementation is a feasible approach to protect T synthesis from PCSK9-NLRP3 crosstalk-induced LCs' pyroptosis in obese men.
Collapse
Affiliation(s)
- Jinyuan Wang
- Clinical Anatomy and Reproductive Medicine Application Institute, Department of Histology and Embryology, Postdoctoral Station for Basic Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Shun Zhang
- Department of Reproductive Medical Center, The Affiliated Hospital of Guilin Medical University, Guilin, 541001, China
| | - Linlin Hu
- Reproductive Medicine Center, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, China
| | - Yan Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530004, China
| | - Ke Liu
- Clinical Anatomy and Reproductive Medicine Application Institute, Department of Histology and Embryology, Postdoctoral Station for Basic Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Jianghua Le
- Department of Reproductive Medical Center, The Affiliated Hospital of Guilin Medical University, Guilin, 541001, China
| | - Yongpeng Tan
- Clinical Anatomy and Reproductive Medicine Application Institute, Department of Histology and Embryology, Postdoctoral Station for Basic Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Tianlong Li
- Clinical Anatomy and Reproductive Medicine Application Institute, Department of Histology and Embryology, Postdoctoral Station for Basic Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Haoxuan Xue
- Clinical Anatomy and Reproductive Medicine Application Institute, Department of Histology and Embryology, Postdoctoral Station for Basic Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Yanhong Wei
- Reproductive Medicine Center, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, China
| | - Ou Zhong
- Clinical Anatomy and Reproductive Medicine Application Institute, Department of Histology and Embryology, Postdoctoral Station for Basic Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Junhui He
- Clinical Anatomy and Reproductive Medicine Application Institute, Department of Histology and Embryology, Postdoctoral Station for Basic Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Dan Zi
- Clinical Anatomy and Reproductive Medicine Application Institute, Department of Histology and Embryology, Postdoctoral Station for Basic Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Xin Lei
- Clinical Anatomy and Reproductive Medicine Application Institute, Department of Histology and Embryology, Postdoctoral Station for Basic Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Renhe Deng
- Clinical Anatomy and Reproductive Medicine Application Institute, Department of Histology and Embryology, Postdoctoral Station for Basic Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Yafei Luo
- Clinical Anatomy and Reproductive Medicine Application Institute, Department of Histology and Embryology, Postdoctoral Station for Basic Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Masong Tang
- Clinical Anatomy and Reproductive Medicine Application Institute, Department of Histology and Embryology, Postdoctoral Station for Basic Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Mingxuan Su
- Clinical Anatomy and Reproductive Medicine Application Institute, Department of Histology and Embryology, Postdoctoral Station for Basic Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Yichang Cao
- Clinical Anatomy and Reproductive Medicine Application Institute, Department of Histology and Embryology, Postdoctoral Station for Basic Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Qingyou Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530004, China
| | - Zhihan Tang
- Clinical Anatomy and Reproductive Medicine Application Institute, Department of Histology and Embryology, Postdoctoral Station for Basic Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, China.
| | - Xiaocan Lei
- Clinical Anatomy and Reproductive Medicine Application Institute, Department of Histology and Embryology, Postdoctoral Station for Basic Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, China.
| |
Collapse
|
15
|
Funes AK, Avena MV, Ibañez J, Simón L, Ituarte L, Colombo R, Roldán A, Conte MI, Monclus MÁ, Boarelli P, Fornés MW, Saez Lancellotti TE. Extra-virgin olive oil ameliorates high-fat diet-induced seminal and testicular disorders by modulating the cholesterol pathway. Andrology 2023; 11:1203-1217. [PMID: 36695747 DOI: 10.1111/andr.13398] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 11/02/2022] [Accepted: 01/02/2023] [Indexed: 01/26/2023]
Abstract
BACKGROUND Rabbits are sensitive to dietary cholesterol and rapidly develop hypercholesterolemia, leading to prominent subfertility. Sterol regulatory element-binding protein isoform 2 drives the intracellular cholesterol pathway in many tissues, including the testicles. Its abnormal regulation could be the mainly responsible for the failure of suppressing cholesterol synthesis in a cholesterol-enriched environment, ultimately leading to testicular and seminal alterations. However, extra-virgin olive oil consumption has beneficial properties that promote lowering of cholesterol levels, including the recovery of seminal parameters altered under a high-fat diet. OBJECTIVES Our goal was to investigate the effects of high-fat diet supplementation with extra-virgin olive oil at the molecular level on rabbit testes, by analyzing sterol regulatory element-binding protein isoform 2 protein and its corresponding downstream effectors. MATERIALS AND METHODS During 12 months, male rabbits were fed a control diet, high-fat diet, or 6-month high-fat diet followed by 6-month high-fat diet plus extra-virgin olive oil. Serum lipids, testosterone levels, bodyweight, and seminal parameters were tested. The mRNA and protein levels of sterol regulatory element-binding protein isoform 2, 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase, and low-density lipoprotein receptor were determined by semi-quantitative polymerase chain reaction and Western blotting techniques. The expression pattern of sterol regulatory element-binding protein isoform 2 protein in the rabbit testicles was studied by indirect immunofluorescence. In addition, testicular cholesterol was detected and quantified by filipin staining and gas chromatography. RESULTS The data showed that the addition of extra-virgin olive oil to high-fat diet reduced testicular cholesterol levels and recovered the expression of sterol regulatory element-binding protein isoform 2, 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase, and low-density lipoprotein receptor initially altered by the high-fat diet. DISCUSSION AND CONCLUSIONS The combination of high-fat diet with extra-virgin olive oil encourages testicular recovery by modifying the expression of the enzymes related to intracellular cholesterol management.
Collapse
Affiliation(s)
- Abi Karenina Funes
- Laboratorio de Biología Molecular del Metabolismo & Nutrición (MeNu). IHEM, Universidad Nacional de Cuyo, CONICET, Mendoza, Argentina
- Instituto de Histología y Embriología (IHEM), CONICET, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
- Laboratorio de Investigaciones Andrológicas de Mendoza (LIAM). IHEM, Universidad Nacional de Cuyo, CONICET, Mendoza, Argentina
| | - María Virginia Avena
- Laboratorio de Biología Molecular del Metabolismo & Nutrición (MeNu). IHEM, Universidad Nacional de Cuyo, CONICET, Mendoza, Argentina
- Instituto de Histología y Embriología (IHEM), CONICET, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
- Laboratorio de Investigaciones Andrológicas de Mendoza (LIAM). IHEM, Universidad Nacional de Cuyo, CONICET, Mendoza, Argentina
| | - Jorge Ibañez
- Instituto de Histología y Embriología (IHEM), CONICET, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
- Laboratorio de Investigaciones Andrológicas de Mendoza (LIAM). IHEM, Universidad Nacional de Cuyo, CONICET, Mendoza, Argentina
| | - Layla Simón
- Laboratorio de Biología Molecular del Metabolismo & Nutrición (MeNu). IHEM, Universidad Nacional de Cuyo, CONICET, Mendoza, Argentina
- Laboratorio de Investigaciones Andrológicas de Mendoza (LIAM). IHEM, Universidad Nacional de Cuyo, CONICET, Mendoza, Argentina
| | - Leonor Ituarte
- Área de Física Biológica, Departamento de Morfofisiología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Regina Colombo
- Laboratorio de Biología Molecular del Metabolismo & Nutrición (MeNu). IHEM, Universidad Nacional de Cuyo, CONICET, Mendoza, Argentina
- Instituto de Histología y Embriología (IHEM), CONICET, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
- Laboratorio de Investigaciones Andrológicas de Mendoza (LIAM). IHEM, Universidad Nacional de Cuyo, CONICET, Mendoza, Argentina
| | - Adrián Roldán
- Laboratorio de Biología Molecular del Metabolismo & Nutrición (MeNu). IHEM, Universidad Nacional de Cuyo, CONICET, Mendoza, Argentina
- Instituto de Investigaciones, Facultad de Ciencias Médicas, Universidad del Aconcagua, Mendoza, Argentina
| | - María Inés Conte
- Instituto de Histología y Embriología (IHEM), CONICET, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
- Laboratorio de Investigaciones Andrológicas de Mendoza (LIAM). IHEM, Universidad Nacional de Cuyo, CONICET, Mendoza, Argentina
| | - María Ángeles Monclus
- Instituto de Histología y Embriología (IHEM), CONICET, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
- Laboratorio de Investigaciones Andrológicas de Mendoza (LIAM). IHEM, Universidad Nacional de Cuyo, CONICET, Mendoza, Argentina
- Instituto de Investigaciones, Facultad de Ciencias Médicas, Universidad del Aconcagua, Mendoza, Argentina
| | - Paola Boarelli
- Laboratorio de Biología Molecular del Metabolismo & Nutrición (MeNu). IHEM, Universidad Nacional de Cuyo, CONICET, Mendoza, Argentina
- Laboratorio de Enfermedades Metabólicas (LEM), Universidad Juan Agustín Maza, Mendoza, Argentina
| | - Miguel Walter Fornés
- Instituto de Histología y Embriología (IHEM), CONICET, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
- Laboratorio de Investigaciones Andrológicas de Mendoza (LIAM). IHEM, Universidad Nacional de Cuyo, CONICET, Mendoza, Argentina
| | - Tania Estefanía Saez Lancellotti
- Laboratorio de Biología Molecular del Metabolismo & Nutrición (MeNu). IHEM, Universidad Nacional de Cuyo, CONICET, Mendoza, Argentina
- Instituto de Histología y Embriología (IHEM), CONICET, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
- Laboratorio de Investigaciones Andrológicas de Mendoza (LIAM). IHEM, Universidad Nacional de Cuyo, CONICET, Mendoza, Argentina
- Instituto de Investigaciones, Facultad de Ciencias Médicas, Universidad del Aconcagua, Mendoza, Argentina
| |
Collapse
|
16
|
Arora P, Thukral R, Singla N, Bansal N. Antireproductive changes instigated by efficient drug delivery via papaya seed chloroform extract-based nanoparticles in male rat Bandicota bengalensis. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 192:105408. [PMID: 37105635 DOI: 10.1016/j.pestbp.2023.105408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/07/2023] [Accepted: 03/22/2023] [Indexed: 06/19/2023]
Abstract
Anti-reproductive potential of papaya seed chloroform extract-based solid lipid nanoparticles (PSCEN) was investigated for the first time in lesser bandicoot rat, Bandicota bengalensis. Mature male rats (n = 30 per group) were fed bait (loose mixture of cracked wheat, powdered sugar, and groundnut oil in the ratio 88:10:2) containing two different concentrations of PSCEN (5% and 10%) in a bi-choice condition for 15 days with one group as vehicle control. The ingestion of active ingredient in 15 days treatment was significantly (P ≤ 0.05) higher by rats treated with 10% PSCEN (39.17-58.70 g/kg body weight) as compared to rats treated with 5% PSCEN (21.30-33.23 g/kg body weight). A dose dependent significant (P ≤ 0.05) decrease was observed in the level of testosterone, FSH, LH and GnRH in plasma of treated rats. A significant (P ≤ 0.05) decrease was also observed in level of total soluble proteins, total lipids, phospholipids and cholesterol in both plasma and testicular tissue, and level of 17β-HSD and 3β-HSD in testicular tissue indicating anti-reproductive effects of PSCEN treatment. There was observed significant (P ≤ 0.05) effect of treatment on histomorphology of testis and cauda epididymis in the form of reduced tubular diameter, germinal epithelial thickness, number of germ cells and dissociation of epithelial cycle in seminiferous tubules, and reduced tubular diameter, increased epithelial thickness, vacuolization, loose contact of principle cells and reduced number of spermatozoa in the cauda epididymal tubules. Maximum antifertility effect was observed with 10% PSCEN treatment, which was not reversed upto 105 days of treatment withdrawal indicating long-term efficacy. The current investigation suggests the use of PSCEN in the management of reproduction of B. bengalensis by exerting influence on testicular and cauda epididymal functions and biochemical parameters.
Collapse
Affiliation(s)
- Payal Arora
- Department of Zoology, Punjab Agricultural University, Ludhiana 141004, India
| | - Ruchika Thukral
- Department of Zoology, Punjab Agricultural University, Ludhiana 141004, India
| | - Neena Singla
- Department of Zoology, Punjab Agricultural University, Ludhiana 141004, India.
| | - Neelam Bansal
- Department of Veterinary Anatomy, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana 141004, India
| |
Collapse
|
17
|
Errico A, Vinco S, Ambrosini G, Dalla Pozza E, Marroncelli N, Zampieri N, Dando I. Mitochondrial Dynamics as Potential Modulators of Hormonal Therapy Effectiveness in Males. BIOLOGY 2023; 12:547. [PMID: 37106748 PMCID: PMC10135745 DOI: 10.3390/biology12040547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/21/2023] [Accepted: 04/01/2023] [Indexed: 04/29/2023]
Abstract
Worldwide the incidence of andrological diseases is rising every year and, together with it, also the interest in them is increasing due to their strict association with disorders of the reproductive system, including impairment of male fertility, alterations of male hormones production, and/or sexual function. Prevention and early diagnosis of andrological dysfunctions have long been neglected, with the consequent increase in the incidence and prevalence of diseases otherwise easy to prevent and treat if diagnosed early. In this review, we report the latest evidence of the effect of andrological alterations on fertility potential in both young and adult patients, with a focus on the link between gonadotropins' mechanism of action and mitochondria. Indeed, mitochondria are highly dynamic cellular organelles that undergo rapid morphological adaptations, conditioning a multitude of aspects, including their size, shape, number, transport, cellular distribution, and, consequently, their function. Since the first step of steroidogenesis takes place in these organelles, we consider that mitochondria dynamics might have a possible role in a plethora of signaling cascades, including testosterone production. In addition, we also hypothesize a central role of mitochondria fission boost on the decreased response to the commonly administrated hormonal therapy used to treat urological disease in pediatric and adolescent patients as well as infertile adults.
Collapse
Affiliation(s)
- Andrea Errico
- Department of Neurosciences, Biomedicine and Movement Sciences, Biochemistry Section, University of Verona, 37100 Verona, Italy; (A.E.); (S.V.); (G.A.); (E.D.P.); (N.M.)
| | - Sara Vinco
- Department of Neurosciences, Biomedicine and Movement Sciences, Biochemistry Section, University of Verona, 37100 Verona, Italy; (A.E.); (S.V.); (G.A.); (E.D.P.); (N.M.)
| | - Giulia Ambrosini
- Department of Neurosciences, Biomedicine and Movement Sciences, Biochemistry Section, University of Verona, 37100 Verona, Italy; (A.E.); (S.V.); (G.A.); (E.D.P.); (N.M.)
| | - Elisa Dalla Pozza
- Department of Neurosciences, Biomedicine and Movement Sciences, Biochemistry Section, University of Verona, 37100 Verona, Italy; (A.E.); (S.V.); (G.A.); (E.D.P.); (N.M.)
| | - Nunzio Marroncelli
- Department of Neurosciences, Biomedicine and Movement Sciences, Biochemistry Section, University of Verona, 37100 Verona, Italy; (A.E.); (S.V.); (G.A.); (E.D.P.); (N.M.)
| | - Nicola Zampieri
- Department of Engineering and Innovation Medicine, Paediatric Fertility Lab, Woman and Child Hospital, Division of Pediatric Surgery, University of Verona, 37100 Verona, Italy;
| | - Ilaria Dando
- Department of Neurosciences, Biomedicine and Movement Sciences, Biochemistry Section, University of Verona, 37100 Verona, Italy; (A.E.); (S.V.); (G.A.); (E.D.P.); (N.M.)
| |
Collapse
|
18
|
Zhou X, Jin S, Pan J, Lin Q, Yang S, Lu Y, Qiu M, Ambe PC, Basharat Z, Zimmer V, Wang W, Hong W. Relationship between Cholesterol-Related Lipids and Severe Acute Pancreatitis: From Bench to Bedside. J Clin Med 2023; 12:jcm12051729. [PMID: 36902516 PMCID: PMC10003000 DOI: 10.3390/jcm12051729] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/29/2023] [Accepted: 02/07/2023] [Indexed: 02/24/2023] Open
Abstract
It is well known that hypercholesterolemia in the body has pro-inflammatory effects through the formation of inflammasomes and augmentation of TLR (Toll-like receptor) signaling, which gives rise to cardiovascular disease and neurodegenerative diseases. However, the interaction between cholesterol-related lipids and acute pancreatitis (AP) has not yet been summarized before. This hinders the consensus on the existence and clinical importance of cholesterol-associated AP. This review focuses on the possible interaction between AP and cholesterol-related lipids, which include total cholesterol, high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C) and apolipoprotein (Apo) A1, from the bench to the bedside. With a higher serum level of total cholesterol, LDL-C is associated with the severity of AP, while the persistent inflammation of AP is allied with a decrease in serum levels of cholesterol-related lipids. Therefore, an interaction between cholesterol-related lipids and AP is postulated. Cholesterol-related lipids should be recommended as risk factors and early predictors for measuring the severity of AP. Cholesterol-lowering drugs may play a role in the treatment and prevention of AP with hypercholesterolemia.
Collapse
Affiliation(s)
- Xiaoying Zhou
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
- School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Shengchun Jin
- School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Jingyi Pan
- School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Qingyi Lin
- School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Shaopeng Yang
- School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Yajing Lu
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Minhao Qiu
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Peter C. Ambe
- Department of General Surgery, Visceral Surgery and Coloproctology, Vinzenz-Pallotti-Hospital Bensberg, Vinzenz-Pallotti-Str. 20–24, 51429 Bensberg, Germany
| | - Zarrin Basharat
- Jamil-ur-Rahman Center for Genome Research, Dr. Panjwani Centre for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Vincent Zimmer
- Department of Medicine, Marienhausklinik St. Josef Kohlhof, 66539 Neunkirchen, Germany
- Department of Medicine II, Saarland University Medical Center, Saarland University, 66421 Homburg, Germany
| | - Wei Wang
- School of Mental Health, Wenzhou Medical University, Wenzhou 325035, China
| | - Wandong Hong
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Correspondence: ; Tel./Fax: +86-0577-55579122
| |
Collapse
|
19
|
Futamata R, Kinoshita M, Ogiwara K, Kioka N, Ueda K. Cholesterol accumulation in ovarian follicles causes ovulation defects in Abca1a -/- Japanese medaka ( Oryzias latipes). Heliyon 2023; 9:e13291. [PMID: 36816300 PMCID: PMC9932449 DOI: 10.1016/j.heliyon.2023.e13291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 01/22/2023] [Accepted: 01/26/2023] [Indexed: 02/01/2023] Open
Abstract
ATP-binding cassette A1 (ABCA1) is a membrane protein, which exports excess cellular cholesterol to generate HDL to reduce the risk of the onset of cardiovascular diseases (CVD). In addition, ABCA1 exerts pleiotropic effects on such as inflammation, tissue repair, and cell proliferation and migration. In this study, we explored the novel physiological roles of ABCA1 using Japanese medaka (Oryzias latipes), a small teleost fish. Three Abca1 genes were found in the medaka genome. ABCA1A and ABCA1C exported cholesterol to generate nascent HDL as human ABCA1 when expressed in HEK293 cells. To investigate their physiological roles, each Abca1-deficient fish was generated using the CRISPR-Cas9 system. Abca1a -/- female medaka was found to be infertile, while Abca1b -/- and Abca1c -/- female medaka were fertile. In vitro ovarian follicle culture suggested that Abca1a deficiency causes ovulation defects. In the ovary, ABCA1A was expressed in theca cells, an outermost layer of the ovarian follicle. Total cholesterol content of Abca1a -/- ovary was significantly higher than that of the wild-type, while estrogen and progestin contents were compatible with those of the wild-type. Furthermore, cholesterol loading to the wild-type follicles caused ovulation defects. These results suggest that ABCA1A in theca cells regulates cholesterol content in the ovarian follicles and its deficiency inhibits successful ovulation through cholesterol accumulation in the ovarian follicle.
Collapse
Affiliation(s)
- Ryota Futamata
- Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Masato Kinoshita
- Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Katsueki Ogiwara
- Laboratory of Reproductive and Developmental Biology, Faculty of Science, Hokkaido University, Sapporo, Japan
| | - Noriyuki Kioka
- Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Kazumitsu Ueda
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), KUIAS, Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
20
|
Identification of the Role of TGR5 in the Regulation of Leydig Cell Homeostasis. Int J Mol Sci 2022; 23:ijms232315398. [PMID: 36499726 PMCID: PMC9738292 DOI: 10.3390/ijms232315398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/25/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Understanding the regulation of the testicular endocrine function leading to testosterone production is a major objective as the alteration of endocrine function is associated with the development of many diseases such as infertility. In the last decades, it has been demonstrated that several endogenous molecules regulate the steroidogenic pathway. Among them, bile acids have recently emerged as local regulators of testicular physiology and particularly endocrine function. Bile acids act through the nuclear receptor FXRα (Farnesoid-X-receptor alpha; NR1H4) and the G-protein-coupled bile acid receptor (GPBAR-1; TGR5). While FXRα has been demonstrated to regulate testosterone synthesis within Leydig cells, no data are available regarding TGR5. Here, we investigated the potential role of TGR5 within Leydig cells using cell culture approaches combined with pharmacological exposure to the TGR5 agonist INT-777. The data show that activation of TGR5 results in a decrease in testosterone levels. TGR5 acts through the PKA pathway to regulate steroidogenesis. In addition, our data show that TGR5 activation leads to an increase in cholesterol ester levels. This suggests that altered lipid homeostasis may be a mechanism explaining the TGR5-induced decrease in testosterone levels. In conclusion, the present work highlights the impact of the TGR5 signaling pathway on testosterone production and reinforces the links between bile acid signaling pathways and the testicular endocrine function. The testicular bile acid pathways need to be further explored to increase our knowledge of pathologies associated with impaired testicular endocrine function, such as fertility disorders.
Collapse
|
21
|
El-Newary SA, Aly MS, Hameed ARAE, Kotp MS, Youssef AA, Ali NA. Sperm quality and testicular histopathology of Wistar albino male rats treated with hydroethanolic extract of Cordia dichotoma fruits. PHARMACEUTICAL BIOLOGY 2022; 60:282-293. [PMID: 35138992 PMCID: PMC8843133 DOI: 10.1080/13880209.2021.2008455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 10/13/2021] [Accepted: 11/15/2021] [Indexed: 06/14/2023]
Abstract
CONTEXT Cordia dichotoma Forst. (Boraginaceae) has potent pharmacological impact. Meanwhile, its effect on fertility is unclear. OBJECTIVE This study investigates the effect of Cordia fresh fruits hydroethanolic extract on fertility. MATERIALS AND METHODS 120 Wistar albino male rats were divided into four groups (n = 30). The first group was negative control, and the second, third, and fourth groups received 125, 250, and 500 mg extract/kg bodyweight for 56 days. After 56 days, Cordia force-feeding stopped, and all groups were kept under laboratory conditions for another month to study the recovering effect. RESULTS After day 56, extract at 500 mg/kg significantly reduced sperm total count, motility%, and alive%, to 47.60 ± 2.27 × 106 sperm/mL, 43.33% ± 1.49, and 63.67% ± 1.19, respectively, abnormalities% increased considerably (26.67% ± 0.54), compared to the negative control. Also, significant depletion on follicle-stimulating hormone (2.66 ± 0.21 mIU/L), luteinizing hormone (1.07 ± 0.06 mIU/L), and testosterone (2.69 ± 0.13 nmol/L) level was recorded, compared to the negative control. Cordia negative effect showed on histopathological studies of testes, prostate, and seminal vesicles. Fortunately, these adverse effects of Cordia recovered remarkably after stopping administration for one month. CONCLUSIONS Cordia antifertility effect may be due to its hypocholesterolemic effect, where cholesterol, the steroid cycle precursor, was significantly reduced. This study can be incorporated in clinical research after being repeated on another small experimental animal, their offspring, and one large experimental animal, then going to a clinical study that we plan to do in the future.
Collapse
Affiliation(s)
- Samah A. El-Newary
- Medicinal and Aromatic Plants Research Department, National Research Centre, Dokki, Egypt
| | - Mohamed S. Aly
- Department of Animal Reproduction and Artificial Insemination, National Research Centre, Dokki, Egypt
| | - Amal R. Abd El Hameed
- Department of Animal Reproduction and Artificial Insemination, National Research Centre, Dokki, Egypt
| | - Mohamed S. Kotp
- Department of Animal Reproduction and Artificial Insemination, National Research Centre, Dokki, Egypt
| | - Abdelghany A. Youssef
- Medicinal and Aromatic Plants Research Department, National Research Centre, Dokki, Egypt
| | - Naglaa A. Ali
- Hormones Department, National Research Centre, Dokki, Egypt
| |
Collapse
|
22
|
Omolaoye TS, Halabi MO, Mubarak M, Cyril AC, Duvuru R, Radhakrishnan R, Du Plessis SS. Statins and Male Fertility: Is There a Cause for Concern? TOXICS 2022; 10:627. [PMID: 36287907 PMCID: PMC9607778 DOI: 10.3390/toxics10100627] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/17/2022] [Accepted: 10/17/2022] [Indexed: 05/06/2023]
Abstract
The well-known 3-hydroxyl 3-methyl glutaryl-Coenzyme A reductase inhibitors, called statins, have been the main medication used in the treatment of hypercholesterolemia and some cases of cardiovascular diseases. The effectiveness of this drug in controlling cholesterol production is impeccable, however, patients often complain of a variety of side effects, such as myalgia, muscle atrophy, and in some cases, rhabdomyolysis. Not only has the use of statins caused the aforementioned side effects, but they are also shown to cause testicular discomfort, erectile dysfunction, altered semen parameters, and modified steroid hormone production. These reported adverse effects on male fertility are not generally agreed upon, as some have shown the use to be beneficial. Hence, this makes the aftermath effect of statin use on male fertility debatable and controversial. The negative effects have been associated with imbalanced or reduced steroid hormones, which are necessary for proper spermatogenesis and other sexual functions. Meanwhile, the beneficial effects are related to statin's anti-inflammatory and cardioprotective properties. These contradictory findings are in part due to the different age of users, concentrations of statins, the type and duration of treatment, and the underlying disease and/or comorbidities. Therefore, the current study aims to analyze the literature and gather evidence as to the effects of statin on male sexual health and reproductive parameters, and subsequently give recommendations for the direction of future studies.
Collapse
Affiliation(s)
- Temidayo S. Omolaoye
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai P.O. Box 505055, United Arab Emirates
| | - Mouhammad Omar Halabi
- School of Medicine, Royal College of Surgeons Ireland-Bahrain, Busaiteen 15503, Bahrain
| | - Maitha Mubarak
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai P.O. Box 505055, United Arab Emirates
| | - Asha Caroline Cyril
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai P.O. Box 505055, United Arab Emirates
| | - Ruthwik Duvuru
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai P.O. Box 505055, United Arab Emirates
| | - Rajan Radhakrishnan
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai P.O. Box 505055, United Arab Emirates
| | - Stefan S. Du Plessis
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai P.O. Box 505055, United Arab Emirates
- Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, Cape Town P.O. Box 7505, South Africa
| |
Collapse
|
23
|
Parker NB, Bionaz M, Ford HR, Irawan A, Trevisi E, Ates S. Assessment of spent hemp biomass as a potential ingredient in ruminant diet: nutritional quality and effect on performance, meat and carcass quality, and hematological parameters in finishing lambs. J Anim Sci 2022; 100:skac263. [PMID: 35953240 PMCID: PMC9584163 DOI: 10.1093/jas/skac263] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/10/2022] [Indexed: 11/13/2022] Open
Abstract
Spent hemp biomass (SHB), a byproduct of cannabinoid extraction from the production of industrial hemp has not been approved by FDA-CVM since its effects on animal health, performance, and product quality are unknown. Our objective was to investigate the effects of feeding two levels of SHB and a 4-wk withdrawal period on performance, carcass characteristic, meat quality, and hematological parameters in finishing lambs. A total of 35 weaned, Polypay male lambs kept in single pens were randomly assigned to five feeding treatments (n = 7) and fed diets containing either no SHB (CON) or SHB at 10% (LH1) or 20% (HH1) for 4 wk with 4 wk of clearing period from SHB, or SHB at 10% (LH2) or 20% (HH2) for 8 wk. Chemical analysis revealed SHB to have a nutritive quality similar to alfalfa with no mycotoxin, terpenes, or organic residuals as a result of the extraction process. Feed intake of lambs was negatively affected by 20% SHB in period 1 but not in period 2 where feed intake was the greatest in HH1 and LH2. In contrast, none of the performance data, including liveweight gains, were different across the groups and periods. In period 1, blood glucose, cholesterol, calcium, paraoxonase, and tocopherol were decreased by the level of SHB fed, while bilirubin and alkaline phosphatase (ALP) were increased. In period 2, the concentration in blood of urea, magnesium, bilirubin, ALP, and ferric reducing ability of the plasma (FRAP) were higher in LH2 and HH2 as compared with CON, while β-hydroxybutyrate was lower in HH2. Blood parameters related to liver health, kidney function, immune status, and inflammation were unaffected by feeding SHB. Most carcass and meat quality parameters did not differ across feeding groups either. Except carcass purge loss and meat cook loss were larger in lambs that were fed 20% SHB. Although lower feed intake of lambs that were fed 20% SHB initially in period 1 suggested SHB was not palatable to the lambs, increased feed intake at a lower level of inclusion at 10% in period 2 may point to a positive long-term effect of feeding SHB.
Collapse
Affiliation(s)
- Nathan B Parker
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - Massimo Bionaz
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - Hunter R Ford
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - Agung Irawan
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - Erminio Trevisi
- Department of Animal Sciences, Food and Nutrition (DIANA), Università Cattolica del Sacro Cuore, 29122 Piacenza PC, Italy
| | - Serkan Ates
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
24
|
Wang W, Mu M, Zou Y, Li B, Cao H, Hu D, Tao X. Inflammation and fibrosis in the coal dust-exposed lung described by confocal Raman spectroscopy. PeerJ 2022; 10:e13632. [PMID: 35765591 PMCID: PMC9233900 DOI: 10.7717/peerj.13632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/03/2022] [Indexed: 01/17/2023] Open
Abstract
Background Coal workers' pneumoconiosis (CWP) is an occupational disease that severely damages the life and health of miners. However, little is known about the molecular and cellular mechanisms changes associated with lung inflammation and fibrosis induced by coal dust. As a non-destructive technique for measuring biological tissue, confocal Raman spectroscopy provides accurate molecular fingerprints of label-free tissues and cells. Here, the progression of lung inflammation and fibrosis in a murine model of CWP was evaluated using confocal Raman spectroscopy. Methods A mouse model of CWP was constructed and biochemical analysis in lungs exposed to coal dust after 1 month (CWP-1M) and 3 months (CWP-3M) vs control tissues (NS) were used by confocal Raman spectroscopy. H&E, immunohistochemical and collagen staining were used to evaluate the histopathology alterations in the lung tissues. Results The CWP murine model was successfully constructed, and the mouse lung tissues showed progression of inflammation and fibrosis, accompanied by changes in NF-κB, p53, Bax, and Ki67. Meanwhile, significant differences in Raman bands were observed among the different groups, particularly changes at 1,248, 1,448, 1,572, and 746 cm-1. These changes were consistent with collagen, Ki67, and Bax levels in the CWP and NS groups. Conclusion Confocal Raman spectroscopy represented a novel approach to the identification of the biochemical changes in CWP lungs and provides potential biomarkers of inflammation and fibrosis.
Collapse
Affiliation(s)
- Wenyang Wang
- Key Laboratory of Industrial Dust Control and Occupational Health of the Ministry of Education, Anhui University of Science and Technology, Huainan, Anhui, China,Anhui Province Engineering Laboratory of Occupational Health and Safety, Huainan, Anhui, China,Anhui University of Science and Technology, Key Laboratory of Industrial Dust Deep Reduction and Occupational Health and Safety of Anhui Higher Education Institutes, Huainan, Anhui, China,Anhui University of Science and Technology, School of Medicine, Department of Medical Frontier Experimental Center, Huainan, Anhui, China
| | - Min Mu
- Key Laboratory of Industrial Dust Control and Occupational Health of the Ministry of Education, Anhui University of Science and Technology, Huainan, Anhui, China,Anhui Province Engineering Laboratory of Occupational Health and Safety, Huainan, Anhui, China,Anhui University of Science and Technology, Key Laboratory of Industrial Dust Deep Reduction and Occupational Health and Safety of Anhui Higher Education Institutes, Huainan, Anhui, China,Anhui University of Science and Technology, School of Medicine, Department of Medical Frontier Experimental Center, Huainan, Anhui, China
| | - Yuanjie Zou
- Key Laboratory of Industrial Dust Control and Occupational Health of the Ministry of Education, Anhui University of Science and Technology, Huainan, Anhui, China,Anhui Province Engineering Laboratory of Occupational Health and Safety, Huainan, Anhui, China,Anhui University of Science and Technology, School of Medicine, Department of Medical Frontier Experimental Center, Huainan, Anhui, China
| | - Bing Li
- Key Laboratory of Industrial Dust Control and Occupational Health of the Ministry of Education, Anhui University of Science and Technology, Huainan, Anhui, China,Anhui Province Engineering Laboratory of Occupational Health and Safety, Huainan, Anhui, China,Anhui University of Science and Technology, School of Medicine, Department of Medical Frontier Experimental Center, Huainan, Anhui, China
| | - Hangbing Cao
- Key Laboratory of Industrial Dust Control and Occupational Health of the Ministry of Education, Anhui University of Science and Technology, Huainan, Anhui, China,Anhui Province Engineering Laboratory of Occupational Health and Safety, Huainan, Anhui, China,Anhui University of Science and Technology, School of Medicine, Department of Medical Frontier Experimental Center, Huainan, Anhui, China
| | - Dong Hu
- Key Laboratory of Industrial Dust Control and Occupational Health of the Ministry of Education, Anhui University of Science and Technology, Huainan, Anhui, China,Anhui Province Engineering Laboratory of Occupational Health and Safety, Huainan, Anhui, China,Anhui University of Science and Technology, Key Laboratory of Industrial Dust Deep Reduction and Occupational Health and Safety of Anhui Higher Education Institutes, Huainan, Anhui, China,Anhui University of Science and Technology, School of Medicine, Department of Medical Frontier Experimental Center, Huainan, Anhui, China
| | - Xinrong Tao
- Key Laboratory of Industrial Dust Control and Occupational Health of the Ministry of Education, Anhui University of Science and Technology, Huainan, Anhui, China,Anhui Province Engineering Laboratory of Occupational Health and Safety, Huainan, Anhui, China,Anhui University of Science and Technology, Key Laboratory of Industrial Dust Deep Reduction and Occupational Health and Safety of Anhui Higher Education Institutes, Huainan, Anhui, China,Anhui University of Science and Technology, School of Medicine, Department of Medical Frontier Experimental Center, Huainan, Anhui, China
| |
Collapse
|
25
|
Zhang W, Xia S, Zhong X, Gao G, Yang J, Wang S, Cao M, Liang Z, Yang C, Wang J. Characterization of 2,2'4,4'-Tetrabromodiphenyl ether (BDE47)-induced testicular toxicity via single-cell RNA-sequencing. PRECISION CLINICAL MEDICINE 2022; 5:pbac016. [PMID: 35875604 PMCID: PMC9306015 DOI: 10.1093/pcmedi/pbac016] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/12/2022] [Indexed: 11/30/2022] Open
Abstract
Background The growing male reproductive diseases have been linked to higher exposure to certain environmental compounds such as 2,2′,4,4′-tetrabromodiphenyl ether (BDE47) that are widely distributed in the food chain. However, the specific underlying molecular mechanisms for BDE47-induced male reproductive toxicity are not completely understood. Methods Here, for the first time, advanced single-cell RNA sequencing (ScRNA-seq) was employed to dissect BDE47-induced prepubertal testicular toxicity in mice from a pool of 76 859 cells. Results Our ScRNA-seq results revealed shared and heterogeneous information of differentially expressed genes, signaling pathways, transcription factors, and ligands-receptors in major testicular cell types in mice upon BDE47 treatment. Apart from disruption of hormone homeostasis, BDE47 was discovered to downregulate multiple previously unappreciated pathways such as double-strand break repair and cytokinesis pathways, indicative of their potential roles involved in BDE47-induced testicular injury. Interestingly, transcription factors analysis of ScRNA-seq results revealed that Kdm5b (lysine-specific demethylase 5B), a key transcription factor required for spermatogenesis, was downregulated in all germ cells as well as in Sertoli and telocyte cells in BDE47-treated testes of mice, suggesting its contribution to BDE47-induced impairment of spermatogenesis. Conclusions Overall, for the first time, we established the molecular cell atlas of mice testes to define BDE47-induced prepubertal testicular toxicity using the ScRNA-seq approach, providing novel insight into our understanding of the underlying mechanisms and pathways involved in BDE47-associated testicular injury at a single-cell resolution. Our results can serve as an important resource to further dissect the potential roles of BDE47, and other relevant endocrine-disrupting chemicals, in inducing male reproductive toxicity.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology) , Shenzhen 518020 , China
- Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University , Guangzhou 510632 , China
| | - Siyu Xia
- Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology) , Shenzhen 518020 , China
- Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University , Guangzhou 510632 , China
| | - Xiaoru Zhong
- Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology) , Shenzhen 518020 , China
| | - Guoyong Gao
- Department of Spine Surgery, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology) , Shenzhen 518020 , China
| | - Jing Yang
- Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology) , Shenzhen 518020 , China
| | - Shuang Wang
- Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology) , Shenzhen 518020 , China
| | - Min Cao
- Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology) , Shenzhen 518020 , China
| | - Zhen Liang
- Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology) , Shenzhen 518020 , China
| | - Chuanbin Yang
- Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology) , Shenzhen 518020 , China
| | - Jigang Wang
- Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology) , Shenzhen 518020 , China
- Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences , Beijing 100700 , China
- Center for Reproductive Medicine, Dongguan Maternal and Child Health Care Hospital, Southern Medical University , Dongguan, 523125, Guangdong , China
| |
Collapse
|
26
|
Eisa CS, Mohammed SS, El-Aziz HIA, Farghaly LM, Hosny S. The Effect of Selenium Nanoparticles versus Royal Jelly against Cisplatin-Induced Testicular Toxicity in Adult Male Albino Rats: A Light and Transmission Electron Microscopic Study. J Microsc Ultrastruct 2022; 10:180-196. [PMID: 36687330 PMCID: PMC9846925 DOI: 10.4103/jmau.jmau_44_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/25/2021] [Accepted: 08/19/2021] [Indexed: 01/25/2023] Open
Abstract
Background and Aim Cisplatin (Cis) is a highly effective chemotherapeutic agent. However, it produces severe testicular toxicity. It was reported that some antioxidants could overcome this toxicity. Selenium nanoparticles and royal jelly (RJ) were among these reported antioxidants. Therefore, this study was designed to compare these two antioxidants in protecting the testes against Cis-induced toxicity. Materials and Methods This study was conducted on sixty healthy adult male albino rats (weight: 200-220 g) randomized into six groups, ten animals each. Group I (control), Group II (animals received intragastric Nano Selenium), Group III (animals received intragastric RJ), Group IV (animals received an IP injection of Cis 7 mg/kg), Group V (animals received intragastric Nano Selenium, and Cis injection), and Group VI (animals received intragastric RJ and Cis injection). After 10 days, the animals were sacrificed by cervical decapitation. The testes were weighted, and specimens from the left testis were processed for histological and immunohistochemical techniques, whereas specimens from the right testes were prepared for transmission electron microscopic examination. Results Cis-treated animals had significantly reduced weight of their testes. Light microscopic examination revealed severe histopathological changes in the germinal epithelium and Leydig cells, confirmed with electron microscopic examination. There was a significant increase in the color area percentage of Caspase-3 immunostaining of the germinal epithelium and Leydig cells, compared to that of the control group. Group II and III were similar to control group. Both Groups V and VI revealed significant preservation compared to the Cis group. Conclusion Selenium nanoparticles and RJ partially improved testis from Cis-induced toxicity, However, there was no significant difference between both groups.
Collapse
Affiliation(s)
- Christina S. Eisa
- Department of Histology and Cell Biology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Sally S. Mohammed
- Department of Histology and Cell Biology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt,Address for correspondence: Dr. Sally S. Mohammed, Faculty of Medicine, Suez Canal University, Circular Road, Ismailia, Egypt. E-mail:
| | - Hoida I. Abd El-Aziz
- Department of Histology and Cell Biology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Lamia M. Farghaly
- Department of Histology and Cell Biology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Somaya Hosny
- Department of Histology and Cell Biology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
27
|
Komninos D, Ramos L, van der Heijden GW, Morrison MC, Kleemann R, van Herwaarden AE, Kiliaan AJ, Arnoldussen IAC. High fat diet-induced obesity prolongs critical stages of the spermatogenic cycle in a Ldlr -/-.Leiden mouse model. Sci Rep 2022; 12:430. [PMID: 35017550 PMCID: PMC8752771 DOI: 10.1038/s41598-021-04069-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 12/10/2021] [Indexed: 02/07/2023] Open
Abstract
Obesity can disturb spermatogenesis and subsequently affect male fertility and reproduction. In our study, we aim to elucidate at which cellular level of adult spermatogenesis the detrimental effects of obesity manifest. We induced high fat diet (HFD) obesity in low-density lipoprotein receptor knock-out Leiden (Ldlr−/−.Leiden) mice, and studied the morphological structure of the testes and histologically examined the proportion of Sertoli cells, spermatocytes and spermatids in the seminiferous tubules. We examined sperm DNA damage and chromatin condensation and measured plasma levels of leptin, testosterone, cholesterol and triglycerides. HFD-induced obesity caused high plasma leptin and abnormal testosterone levels and induced an aberrant intra-tubular organisation (ITO) which is associated with an altered spermatids/spermatocytes ratio (2:1 instead of 3:1). Mice fed a HFD had a higher level of tubules in stages VII + VIII in the spermatogenic cycle. The stages VII + VII indicate crucial processes in spermatogenic development like initiation of meiosis, initiation of spermatid elongation, and release of fully matured spermatids. In conclusion, HFD-induced obese Ldlr−/−.Leiden mice develop an aberrant ITO and alterations in the spermatogenic cycle in crucial stages (stages VII and VII). Thereby, our findings stress the importance of lifestyle guidelines in infertility treatments.
Collapse
Affiliation(s)
- D Komninos
- Department of Obstetrics and Gynaecology, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, The Netherlands
| | - L Ramos
- Department of Obstetrics and Gynaecology, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, The Netherlands
| | - G W van der Heijden
- Department of Obstetrics and Gynaecology, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, The Netherlands
| | - M C Morrison
- Department of Metabolic Health Research, Netherlands Organisation for Applied Scientific Research (TNO), Zernikedreef 9, 2333 CK, Leiden, The Netherlands.,Department of Human and Animal Physiology, Wageningen University, De Elst 1, 6708 WD, Wageningen, The Netherlands
| | - R Kleemann
- Department of Metabolic Health Research, Netherlands Organisation for Applied Scientific Research (TNO), Zernikedreef 9, 2333 CK, Leiden, The Netherlands
| | - A E van Herwaarden
- Department of Laboratory Medicine, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, The Netherlands
| | - A J Kiliaan
- Department of Medical Imaging, Anatomy, Donders Institute for Brain, Cognition and Behaviour, Preclinical Imaging Center PRIME, Radboud University Medical Center, Geert Grooteplein Noord 21, 6525 EZ, Nijmegen, The Netherlands.
| | - I A C Arnoldussen
- Department of Medical Imaging, Anatomy, Donders Institute for Brain, Cognition and Behaviour, Preclinical Imaging Center PRIME, Radboud University Medical Center, Geert Grooteplein Noord 21, 6525 EZ, Nijmegen, The Netherlands
| |
Collapse
|
28
|
Wang S, Wei Y, Hu C, Liu F. Proteomic analysis reveals proteins and pathways associated with declined testosterone production in male obese mice after chronic high-altitude exposure. Front Endocrinol (Lausanne) 2022; 13:1046901. [PMID: 36531490 PMCID: PMC9748565 DOI: 10.3389/fendo.2022.1046901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 11/10/2022] [Indexed: 12/05/2022] Open
Abstract
OBJECTIVE Obesity is common in highland areas owing to lifestyle alterations. There are pieces of evidence to suggest that both obesity and hypoxia may promote oxidative stress, leading to hypogonadism in males. These findings indicate an increased risk of hypogonadism in obese males following hypoxia exposure. However, the mechanisms underlying the disease process remain unclear. The current study aims to explore the mechanism of testosterone production dysfunction in obese male mice exposed to a chronic high-altitude hypoxia environment. METHODS An obese male mouse model was generated by inducing obesity in mice via a high-fat diet for 14 weeks, and the obese mice were then exposed to a high-altitude hypoxia environment for 24 days. Sera and testicular tissues were collected to detect serum lipids, sex hormone level, and testicular oxidative stress indicators. Morphological examination was performed to assess pathological alterations in testicular tissues and suborganelles in leydig cells. Proteomic alterations in testicular tissues were investigated using quantitative proteomics in Obese/Control and Obese-Hypoxia/Obese groups. RESULTS The results showed that chronic high-altitude hypoxia exposure aggravated low testosterone production in obese male mice accompanied by increased testicular oxidative stress and histological damages. In total, 363 and 242 differentially expressed proteins (DEPs) were identified in the two comparison groups, Obese/Control and Obese-Hypoxia/Obese, respectively. Functional enrichment analysis demonstrated that several significant functional terms and pathways related to testosterone production were altered in the two comparison groups. These included cholesterol metabolism, steroid hormone biosynthesis, peroxisome proliferator-activated receptor (PPAR) signaling pathway, oxidative stress responses, as well as retinol metabolism. Finally, 10 representative DEPs were selected for parallel reaction monitoring verification. Among them, StAR, DHCR7, NSDHL, CYP51A1, FDPS, FDX1, CYP11A1, ALDH1A1, and GPX3 were confirmed to be downregulated in the two groups. CONCLUSIONS Chronic hypoxia exposure could exacerbate low testosterone production in obese male mice by influencing the expression of key proteins involved in steroid hormone biosynthesis, cholesterol biosynthesis, oxidative stress responses and retinol metabolism.
Collapse
Affiliation(s)
- Shuqiong Wang
- Research Center for High Altitude Medicine, Qinghai University, Xining, China
- Key Laboratory of High Altitude Medicine, Ministry of Education, Xining, China
- Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province, Qinghai-Utah Joint Research Key Lab for High Altitude Medicine, Xining, China
- Department of Endocrinology, Qinghai Provincial People’s Hospital, Xining, China
| | - Youwen Wei
- Department of Plague Prevention and Control, Qinghai Institute for Endemic Disease Prevention and Control, Xining, China
| | - Caiyan Hu
- Department of Laboratory Medicine, Baoding First Central Hospital, Baoding, China
| | - Fang Liu
- Department of Biochemistry, Medical College, Qinghai University, Xining, China
- *Correspondence: Fang Liu,
| |
Collapse
|
29
|
Implications of testicular ACE2 and the renin-angiotensin system for SARS-CoV-2 on testis function. Nat Rev Urol 2022; 19:116-127. [PMID: 34837081 PMCID: PMC8622117 DOI: 10.1038/s41585-021-00542-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2021] [Indexed: 12/16/2022]
Abstract
Although many studies have focused on SARS-CoV-2 infection in the lungs, comparatively little is known about the potential effects of the virus on male fertility. SARS-CoV-2 infection of target cells requires the presence of furin, angiotensin-converting enzyme 2 (ACE2) receptors, and transmembrane protease serine 2 (TMPRSS2). Thus, cells in the body that express these proteins might be highly susceptible to viral entry and downstream effects. Currently, reports regarding the expression of the viral entry proteins in the testes are conflicting; however, other members of the SARS-CoV family of viruses - such as SARS-CoV - have been suspected to cause testicular dysfunction and/or orchitis. SARS-CoV-2, which displays many similarities to SARS-CoV, could potentially cause similar adverse effects. Commonalities between SARS family members, taken in combination with sparse reports of testicular discomfort and altered hormone levels in patients with SARS-CoV-2, might indicate possible testicular dysfunction. Thus, SARS-CoV-2 infection has the potential for effects on testis somatic and germline cells and experimental approaches might be required to help identify potential short-term and long-term effects of SARS-CoV-2 on male fertility.
Collapse
|
30
|
Murugesan A, Ganesh Mohanraj K, Wungpam Shimray K, Iqbal Khan MZ, Seppan P. Therapeutic potential of Mucuna pruriens (Linn.) on high-fat diet-induced testicular and sperm damage in rats. AVICENNA JOURNAL OF PHYTOMEDICINE 2022; 12:489-502. [PMID: 36249451 PMCID: PMC9516403 DOI: 10.22038/ajp.2022.20261] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/14/2022] [Accepted: 02/18/2022] [Indexed: 11/22/2022]
Abstract
Objective Mucuna pruriens Linn., a leguminous plant, is identified as a herbal medicine for improving fertility-related disorders in the alternative and complementary systems of medicine. The study was focused on evaluating the therapeutic potential of M. pruriens on testis and sperm parameters in a high-fat-induced hypercholesterolemia model. Materials and Methods Male rats were divided as normal-control rats (NCR); normal-control rats + M.pruriens (200 mg/kg b.w. of ethanolic extract of M. pruriens seed) treated (NCRD); hypercholesterolemic rats (HCR) and hypercholesterolemic rats + M. pruriens (HCRD). Groups were further divided into three post-exposure periods (subgroups) of 9, 18, and 36 days, and the progressive changes in testis histology and sperm were analyzed. Results The study showed a significant impairment in testicular histoarchitecture, depletion of antioxidant enzyme levels, increased oxidative stress and lipid peroxidation in the HCR group. The study indicated severe structural and functional damage in sperm parameters and diminished chromatin integrity in the HCR group. In the HCR rats, the follicular stimulating hormone (FSH) and luteinizing hormone (LH) and testosterone were significantly reduced. There was a significant improvement in sperm parameters and testis histology in the HCRD group. Conclusion The study reveals the potential efficacy of M. pruriens to improve spermatogenesis, sperm parameters and hormone levels in hypercholesterolemic rats.
Collapse
Affiliation(s)
- Anuradha Murugesan
- Department of Anatomy, Dr. Arcot Lakshmanaswamy Mudaliar Postgraduate Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, India
| | - Karthik Ganesh Mohanraj
- Department of Anatomy, Dr. Arcot Lakshmanaswamy Mudaliar Postgraduate Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, India
| | - Khayinmi Wungpam Shimray
- Department of Anatomy, Dr. Arcot Lakshmanaswamy Mudaliar Postgraduate Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, India
| | - Mohammad Zafar Iqbal Khan
- Department of Anatomy, Dr. Arcot Lakshmanaswamy Mudaliar Postgraduate Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, India
| | - Prakash Seppan
- Department of Anatomy, Dr. Arcot Lakshmanaswamy Mudaliar Postgraduate Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, India,Corresponding Author: Tel: 91-044-24547021, Fax: 91-044-24540709,
| |
Collapse
|
31
|
Choi Y, Lee EG, Lee G, Jeong MG, Kim HK, Oh JH, Kwon SW, Hwang ES. Amodiaquine promotes testosterone production and de novo synthesis of cholesterol and triglycerides in Leydig cells. J Lipid Res 2021; 62:100152. [PMID: 34808194 PMCID: PMC8666709 DOI: 10.1016/j.jlr.2021.100152] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/01/2021] [Accepted: 11/02/2021] [Indexed: 11/29/2022] Open
Abstract
Testosterone is a hormone essential for male reproductive function. It is produced primarily by Leydig cells in the testicle through activation of steroidogenic acute regulatory protein and a series of steroidogenic enzymes, including a cytochrome P450 side-chain cleavage enzyme (cytochome P450 family 11 subfamily A member 1), 17α-hydroxylase (cytochrome P450 family 17 subfamily A member 1), and 3β-hydroxysteroid dehydrogenase. These steroidogenic enzymes are mainly regulated at the transcriptional level, and their expression is increased by the nuclear receptor 4A1. However, the effect on Leydig cell function of a small molecule-activating ligand, amodiaquine (AQ), is unknown. We found that AQ effectively and significantly increased testosterone production in TM3 and primary Leydig cells through enhanced expression of steroidogenic acute regulatory protein, cytochome P450 family 11 subfamily A member 1, cytochrome P450 family 17 subfamily A member 1, and 3β-hydroxysteroid dehydrogenase. Concurrently, AQ dose-dependently increased the expression of 3-hydroxy-3-methylglutaryl-CoA reductase, a key enzyme in the cholesterol synthesis pathway, through induction of the transcriptional and DNA-binding activities of nuclear receptor 4A1, contributing to increased cholesterol synthesis in Leydig cells. Furthermore, AQ increased the expression of fatty acid synthase and diacylglycerol acyltransferase and potentiated de novo synthesis of fatty acids and triglycerides (TGs). Lipidomics profiling further confirmed a significant elevation of intracellular lipid and TG levels by AQ in Leydig cells. These results demonstrated that AQ effectively promotes testosterone production and de novo synthesis of cholesterol and TG in Leydig cells, indicating that AQ may be beneficial for treating patients with Leydig cell dysfunction and subsequent testosterone deficiency.
Collapse
Affiliation(s)
- Yujeong Choi
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Korea
| | - Eun Goo Lee
- Department of Pharmacy and College of Pharmacy, Seoul National University, Seoul, Korea
| | - Gibbeum Lee
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Korea
| | - Mi Gyeong Jeong
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Korea
| | - Hyo Kyeong Kim
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Korea
| | - Ji-Hyun Oh
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Korea
| | - Sung Won Kwon
- Department of Pharmacy and College of Pharmacy, Seoul National University, Seoul, Korea.
| | - Eun Sook Hwang
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Korea.
| |
Collapse
|
32
|
Circadian regulation of apolipoprotein gene expression affects testosterone production in mouse testis. Theriogenology 2021; 174:9-19. [PMID: 34416563 DOI: 10.1016/j.theriogenology.2021.06.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 06/07/2021] [Accepted: 06/17/2021] [Indexed: 01/02/2023]
Abstract
The circadian clock system plays an important role in regulating testosterone synthesis in mammals. Male Bmal1-/- mice are infertile with low serum testosterone levels and decreased expression of testicular steroidogenic genes, suggesting that circadian clock genes regulate testosterone biosynthesis by activating steroidogenic gene transcription. However, whether the circadian clock regulates testosterone production via other genes remains unknown. Using Bmal1-/- mice and their wild-type (WT) siblings, we aimed to identify additional genes by which the circadian clock regulates testosterone synthesis. WT and Bmal1-/- mouse testes sections had similar normal morphologies, although there was a decrease in testicular spermatozoa in the Bmal1-/- mice. Low serum testosterone levels were detected in the Bmal1-/- mice. RNA sequencing identified 37 and 48 genes that were differentially expressed between WT and Bmal1-/- mouse testes at circadian time (CT2 and CT14), respectively. The cholesterol metabolism pathway was significantly enriched in the KEGG pathway analysis, and there was lower expression of three apolipoprotein genes (Apoa1, Apoa2, and Apoc3) at CT2 in the testes of Bmal1-/- mice than in those of WT mice. These decreases in Apoa1, Apoa2, and Apoc3 expression were verified by quantitative polymerase chain reaction analysis, which also revealed downregulation of the expression of the circadian clock (Per2, Dbp, and Nr1d1) and steroidogenic (StAR, Cyp11a1, and Hsd17b3) genes. The expression of circadian clock genes was relatively stable in WT mice over a 20-h period, whereas there was clear circadian rhythmic expression of Apoa1, Apoa2, Apoc3, StAR, Cyp11a1, Hsd3b2, and Hsd17b3. Bmal1-/- mice showed severely reduced expression of testicular circadian clock genes at three time points (CT4, CT12, and CT20), and a reduction in mRNA expression levels of Apo (Apoa1, Apoa2, and Apoc3) and steroidogenic (StAR, Cyp11a1, Hsd3b2, and Hsd17b3) genes. Oil Red O staining showed decreased lipid aggregation in the Leydig cells of Bmal1-/- mouse testes. Considering the vital role of Apo genes in high-density lipoprotein formation and cholesterol transport, the present data suggest that the circadian clock system regulates testosterone production by orchestrating the rhythmic expression of Apo genes. These data extend our understanding of the role of the circadian clock in regulating testosterone production in mammals.
Collapse
|
33
|
Nwonuma CO, Osemwegie OO, Irokanulo EO, Alejolowo OO, Kayode OT, Olaolu TD, Ada AS, Rotimi DE, Maimako RF, Adedayo AS, Ojo OA. Comparative effects of combined use of alcohol with cannabis and tobacco on testicular function in rats. Toxicol Res (Camb) 2021; 10:761-770. [PMID: 34484667 PMCID: PMC8403816 DOI: 10.1093/toxres/tfab060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 05/24/2021] [Accepted: 06/02/2021] [Indexed: 11/14/2022] Open
Abstract
Alcoholism has been linked to problems with male reproductive function. The combined effects of alcohol, cannabis, and tobacco were compared in this study. A total of 35 rats were assigned randomly into seven groups A-G: animals in A were administered distilled water. Animals in B-G were either administered alcohol orally (30 ml 40% alcohol) or exposed to smoke from ignited tobacco (exposure to smoke from 0.7 g tobacco for 5 min) or cannabis (exposure to smoke from 0.7 g tobacco and cannabis for 5 min): B (orally administered alcohol), C (exposed to the smoke from tobacco), D (exposed to smoke from cannabis), E (treated with alcohol and exposed to smoke from tobacco), F (treated with alcohol and exposed to smoke from cannabis), G (treated with alcohol and exposed to smokes from tobacco and cannabis). Assays were carried on the testicular homogenate after a 14-day treatment. There was a significant increase in activity of alkaline phosphatase (P ≤ 0.05), concentrations of cholesterol, glutathione reductase, and malondialdehyde in treated rats by the co-administration of alcohol with cannabis and tobacco compared with the control group. The combined treatment also caused degeneration and morphological distortions of testicular cells. The biochemical and histoarchitectural change was due to oxidative damage attributable to the synergistic effects. The high binding energy of tetrahydrocannabinol ligand to prostate acid phosphatase may be a prediction that the ligand can have an inhibitory effect on the function of enzymes in the prostate.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Adakole Sylvanus Ada
- Department of Veterinary Physiology and Biochemistry, University Ilorin, Ilorin 240003, Nigeria
| | | | | | | | | |
Collapse
|
34
|
Staurengo-Ferrari L, Sanfelice RADS, de Souza JB, Assolini JP, Dos Santos DP, Cataneo AHD, Bordignon J, Conchon-Costa I, da Costa IN, Fernandes GSA. Impact of Toxoplasma gondii infection on TM3 Leydig cells: Alterations in testosterone and cytokines levels. Acta Trop 2021; 220:105938. [PMID: 33932363 DOI: 10.1016/j.actatropica.2021.105938] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/19/2021] [Accepted: 04/21/2021] [Indexed: 02/06/2023]
Abstract
Leydig cells play pivotal roles in eliciting male characteristics by producing testosterone and any damage to these cells can compromise male fertility Toxoplasma gondii (T. gondii) is an intracellular parasite capable to invade any nucleated cell, including cells from male reproductive system. Herein, we evaluated the capacity of RH strain of T. gondii to infect TM3 Leydig cells and the impact of this infection on testosterone and inflammatory mediators production. We first, by performing adherence, infection, and intracellular proliferation assays, we found a significant increase in the number of infected Leydig cells, peaking 48 h after the infection with T. gondii. Supernatants of TM3 infected cells exhibited, in a time-dependent manner, increased levels of testosterone as well as monocyte chemoattractant protein-1 (MCP-1) and interferon-γ (IFN-γ), which is correlated with the robust T. gondii infection. In conclusion, our study provides new insights regarding the harmful effects of T. gondii infection on male reproductive system.
Collapse
Affiliation(s)
- Larissa Staurengo-Ferrari
- Department of Pathological Sciences, State University of Londrina, Rodovia Celso Garcia Cid Pr 445 Km 380, Londrina 86057-970, Brazil
| | - Raquel Arruda da Silva Sanfelice
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer-LIDNC, Department, Department of Pathological Sciences, Center of Biological Sciences, State University of Londrina, Londrina, Paraná, Brazil
| | - Julia Bagatim de Souza
- Department of General Biology, State University of Londrina, Rodovia Celso Garcia Cid Pr 445 Km 380, Londrina 86057-970, Brazil
| | - Joao Paulo Assolini
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer-LIDNC, Department, Department of Pathological Sciences, Center of Biological Sciences, State University of Londrina, Londrina, Paraná, Brazil
| | - Dayane Priscila Dos Santos
- Department of Pathological Sciences, State University of Londrina, Rodovia Celso Garcia Cid Pr 445 Km 380, Londrina 86057-970, Brazil; Department of General Biology, State University of Londrina, Rodovia Celso Garcia Cid Pr 445 Km 380, Londrina 86057-970, Brazil
| | | | - Juliano Bordignon
- Laboratory of Molecular Virology, Instituto Carlos Chagas/Fiocruz-PR, Curitiba, Paraná Brazil
| | - Ivete Conchon-Costa
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer-LIDNC, Department, Department of Pathological Sciences, Center of Biological Sciences, State University of Londrina, Londrina, Paraná, Brazil
| | - Idessania Nazareth da Costa
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer-LIDNC, Department, Department of Pathological Sciences, Center of Biological Sciences, State University of Londrina, Londrina, Paraná, Brazil
| | | |
Collapse
|
35
|
Attia H, Finocchi F, Orciani M, Mehdi M, Zidi Jrah I, Lazzarini R, Balercia G, Mattioli Belmonte M. Pro-inflammatory cytokines and microRNAs in male infertility. Mol Biol Rep 2021; 48:5935-5942. [PMID: 34319544 PMCID: PMC8376712 DOI: 10.1007/s11033-021-06593-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 07/23/2021] [Indexed: 12/26/2022]
Abstract
Background Male infertility is a problem that affects 10–15% of men of reproductive age. In particular, gametogenesis is a complex process in which inflammation may play a central role through the secretion of cytokines and the expression of microRNAs. We assessed the potential role of proinflammatory cytokines (TNF-α, IL-6 and IL-1α) and microRNAs (miR-146a-5p, miR-34a-5p and miR-23a-3p) in the seminal plasma of infertile men compared to controls, evaluating their correlation with seminal and biochemical parameters. Methods and results Expression of cytokines and microRNAs was analyzed by ELISA and q-PCR. Our data shows that IL-1α was significantly increased in the azoospermic group compared to controls, TNF-α mRNA was more expressed in the oligozoospermic group than controls. There were no significant differences in miRNAs expression among the three groups. The correlations between sperm parameters and inflammatory markers were evaluated, however no significance was highlighted. Conclusions The determination of each inflammatory marker separately in the seminal plasma of subfertile men, despite some significant differences, does not have a diagnostic value in male infertility even if an assay of selective pro-inflammatory cytokines and microRNAs in the semen may improve the diagnosis of male infertility.
Collapse
Affiliation(s)
- Hana Attia
- Department of Histology Embryology and Cytogenetic, Faculty of Medicine, University of Monastir, Monastir, Tunisia
- Laboratory of Cytogenetics and Reproductive Biology, Center of Maternity and Neonatology, Fattouma Bourguiba University Teaching Hospital, Monastir, Tunisia
- Laboratory of Histology, Department of Clinical and Molecular Science, Polytechnic University of Marche, Ancona, Italy
| | - Federica Finocchi
- Division of Endocrinology, Department of Clinical and Molecular Science (DISCLIMO), Polytechnic University of Marche, Ancona, Italy
| | - Monia Orciani
- Laboratory of Histology, Department of Clinical and Molecular Science, Polytechnic University of Marche, Ancona, Italy.
| | - Meriem Mehdi
- Department of Histology Embryology and Cytogenetic, Faculty of Medicine, University of Monastir, Monastir, Tunisia
- Laboratory of Cytogenetics and Reproductive Biology, Center of Maternity and Neonatology, Fattouma Bourguiba University Teaching Hospital, Monastir, Tunisia
| | - Ines Zidi Jrah
- Laboratory of Cytogenetics and Reproductive Biology, Center of Maternity and Neonatology, Fattouma Bourguiba University Teaching Hospital, Monastir, Tunisia
| | - Raffaella Lazzarini
- Division of Endocrinology, Department of Clinical and Molecular Science (DISCLIMO), Polytechnic University of Marche, Ancona, Italy
| | - Giancarlo Balercia
- Division of Endocrinology, Department of Clinical and Molecular Science (DISCLIMO), Polytechnic University of Marche, Ancona, Italy
| | - Monica Mattioli Belmonte
- Laboratory of Histology, Department of Clinical and Molecular Science, Polytechnic University of Marche, Ancona, Italy
| |
Collapse
|
36
|
Anagnostis P, Papanikolaou D, Ioannidou PG, Bosdou JK, Mikhailidis DP, Hatzimouratidis K, Goulis DG. The effect of statins on semen parameters in patients with hypercholesterolemia: A systematic review. Andrology 2021; 9:1504-1511. [PMID: 33998174 DOI: 10.1111/andr.13039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/20/2021] [Accepted: 05/04/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Statins constitute the mainstay of treatment in patients with hypercholesterolemia. However, their effect on semen parameters is unknown. OBJECTIVE This study aimed to systematically review the best available evidence regarding the effect of statins on ejaculate volume and sperm concentration, motility, morphology, or vitality. MATERIALS/METHODS A comprehensive search was conducted in PubMed, CENTRAL and Scopus databases up to January 10, 2021. Either randomized-controlled trials or prospective cohorts, conducted in males with hypercholesterolemia, were included. RESULTS Four studies, published between 1992 and 2014, were eligible. The number of participants ranged from 8 to 120 (n = 161). Study duration ranged from 14 to 48 weeks. The type and dose of statin used were pravastatin 20-80 mg/day and simvastatin 20-40 mg/day. With regard to ejaculate volume (n = 3) and sperm concentration (n = 4), no effect was shown with either pravastatin or simvastatin. Regarding sperm motility, either an increase (n = 2; pravastatin, simvastatin), decrease (n = 1; pravastatin), or no effect (n = 1; pravastatin, simvastatin) was found. With respect to sperm morphology, either a decrease (n = 2; pravastatin, simvastatin) or no effect (n = 2; pravastatin, simvastatin) was shown. Concerning sperm vitality, a single study showed a decrease with simvastatin. Because of the high heterogeneity of the populations studied and the limited number of studies, a meta-analysis was not performed. CONCLUSION This is the first systematic review on the effect of statins on semen parameters. As there is no evidence for such a detrimental effect, no specific approach has to be suggested regarding the preservation of reproductive function in men with hypercholesterolemia.
Collapse
Affiliation(s)
- Panagiotis Anagnostis
- Unit of Reproductive Endocrinology, 1st Department of Obstetrics and Gynecology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Dimitrios Papanikolaou
- 2nd Department of Urology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Pinelopi G Ioannidou
- 1st Department of Obstetrics and Gynecology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Julia K Bosdou
- 1st Department of Obstetrics and Gynecology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Dimitri P Mikhailidis
- Department of Clinical Biochemistry, University College London Medical School, University College London (UCL, London, UK
| | | | - Dimitrios G Goulis
- Unit of Reproductive Endocrinology, 1st Department of Obstetrics and Gynecology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
37
|
Evans HC, Dinh TTN, Hardcastle ML, Gilmore AA, Ugur MR, Hitit M, Jousan FD, Nicodemus MC, Memili E. Advancing Semen Evaluation Using Lipidomics. Front Vet Sci 2021; 8:601794. [PMID: 33937366 PMCID: PMC8085260 DOI: 10.3389/fvets.2021.601794] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 03/11/2021] [Indexed: 12/25/2022] Open
Abstract
Developing a deeper understanding of biological components of sperm is essential to improving cryopreservation techniques and reproductive technologies. To fully ascertain the functional determinants of fertility, lipidomic methods have come to the forefront. Lipidomics is the study of the lipid profile (lipidome) within a cell, tissue, or organism and provides a quantitative analysis of the lipid content in that sample. Sperm cells are composed of various lipids, each with their unique contribution to the overall function of the cell. Lipidomics has already been used to find new and exciting information regarding the fatty acid content of sperm cells from different species. While the applications of lipidomics are rapidly evolving, gaps in the knowledge base remain unresolved. Current limitations of lipidomics studies include the number of available samples to analyze and the total amount of cells within those samples needed to detect changes in the lipid profiles across different subjects. The information obtained through lipidomics research is essential to systems and cellular biology. This review provides a concise analysis of the most recent developments in lipidomic research. This scientific resource is important because these developments can be used to not only combat the reproductive challenges faced when using cryopreserved semen and artificial reproductive technologies in livestock such as cattle, but also other mammals, such as humans or endangered species.
Collapse
Affiliation(s)
- Holly C. Evans
- Department of Animal and Dairy Sciences, Mississippi State University, Starkville, MS, United States
| | - Thu T. N. Dinh
- Department of Animal and Dairy Sciences, Mississippi State University, Starkville, MS, United States
| | - Madison L. Hardcastle
- Department of Animal and Dairy Sciences, Mississippi State University, Starkville, MS, United States
| | - Alicia A. Gilmore
- Department of Animal and Dairy Sciences, Mississippi State University, Starkville, MS, United States
| | - Muhammet R. Ugur
- Department of Animal and Dairy Sciences, Mississippi State University, Starkville, MS, United States
| | - Mustafa Hitit
- Department of Animal and Dairy Sciences, Mississippi State University, Starkville, MS, United States
- Department of Animal Genetics, Kastamonu University, Kastamonu, Turkey
| | - Frank Dean Jousan
- Department of Animal and Dairy Sciences, Mississippi State University, Starkville, MS, United States
| | - Molly C. Nicodemus
- Department of Animal and Dairy Sciences, Mississippi State University, Starkville, MS, United States
| | - Erdogan Memili
- Department of Animal and Dairy Sciences, Mississippi State University, Starkville, MS, United States
| |
Collapse
|
38
|
Willforss J, Morrell JM, Resjö S, Hallap T, Padrik P, Siino V, de Koning DJ, Andreasson E, Levander F, Humblot P. Stable bull fertility protein markers in seminal plasma. J Proteomics 2021; 236:104135. [PMID: 33540068 DOI: 10.1016/j.jprot.2021.104135] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 01/15/2021] [Accepted: 01/25/2021] [Indexed: 12/19/2022]
Abstract
Bull fertility is an important trait in breeding as the semen of one bull can, potentially, be used to perform thousands of inseminations. The high number of inseminations needed to obtain reliable measures from Non-Return Rates to oestrus creates difficulties in assessing fertility accurately. Improving molecular knowledge of seminal properties may provide ways to facilitate selection of bulls with good semen quality. In this study, liquid chromatography mass spectrometry (LC-MS/MS) was used to analyze the protein content from the seminal plasma of 20 bulls with Non-Return Rates between 35 and 60%, sampled across three seasons. Overall, 1343 proteins were identified and proteins with consistent correlation to fertility across multiple seasons found. From these, nine protein groups had a significant Pearson correlation (p < 0.1) with fertility in all three seasons and 34 protein groups had a similar correlation in at least two seasons. Among notable proteins showing a high and consistent correlation across seasons were Osteopontin, a lipase (LIPA) and N-acetylglucosamine-1phosphotransferase subunit gamma. Three proteins were combined in a multiple linear regression to predict fertility (r = 0.81). These sets of proteins represent potential markers, which could be used by the breeding industry to phenotype bull fertility. SIGNIFICANCE: The ability of bull spermatozoa to fertilize oocytes is crucial for breeding efficiency. However, the reliability of this trait from field measures is relatively low and the prediction of fertility given by conventional methods to evaluate sperm quality is currently not very accurate. In this work, we identify sets of proteins in bull seminal plasma from repeated samples collected at different times of the year that correlate to fertility in a consistent way. We combined these individual proteins to build a molecular signature predictive of fertility. This study provides an overview of proteins linked to fertility in seminal plasma, thereby increasing knowledge of the bull seminal plasma proteome. Protein signatures from the latter, potentially related to fertility, may be of use to predict fertility for individual bulls.
Collapse
Affiliation(s)
- J Willforss
- Department of Immunotechnology, Lund University, Lund, Sweden.
| | - J M Morrell
- Department of Clinical Sciences, Division of Reproduction, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - S Resjö
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - T Hallap
- Estonian University of Life Sciences, Tartu, Estonia
| | - P Padrik
- Animal Breeders' Association of Estonia, Raplamaa, Estonia
| | - V Siino
- Department of Immunotechnology, Lund University, Lund, Sweden
| | - D J de Koning
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - E Andreasson
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - F Levander
- Department of Immunotechnology, Lund University, Lund, Sweden.
| | - P Humblot
- Department of Clinical Sciences, Division of Reproduction, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| |
Collapse
|
39
|
Paternal Methyl Donor Supplementation in Rats Improves Fertility, Physiological Outcomes, Gut Microbial Signatures and Epigenetic Markers Altered by High Fat/High Sucrose Diet. Int J Mol Sci 2021; 22:ijms22020689. [PMID: 33445606 PMCID: PMC7826956 DOI: 10.3390/ijms22020689] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/08/2021] [Accepted: 01/09/2021] [Indexed: 02/07/2023] Open
Abstract
Increased consumption of high fat/sucrose (HF/S) diets has contributed to rising rates of obesity and its co-morbidities globally, while also negatively impacting male reproductive health. Our objective was to examine whether adding a methyl donor cocktail to paternal HF/S diet (HF/S+M) improves health status in fathers and offspring. From 3–12 weeks of age, male Sprague Dawley rats consumed a HF/S or HF/S+M diet. Offspring were followed until 16 weeks of age. Body composition, metabolic markers, gut microbiota, DNA methyltransferase (DNMT) and microRNA expression were measured in fathers and offspring. Compared to HF/S, paternal HF/S+M diet reduced fat mass in offspring (p < 0.005). HF/S+M fathers consumed 16% fewer kcal/day, which persisted in HF/S+M female offspring and was explained in part by changes in serum glucagon-like peptide-1 (GLP-1) and peptide tyrosine tyrosine (PYY) levels. Compared to HF/S, HF/S+M fathers had a 33% improvement in days until conception and 300% fewer stillbirths. In fathers, adipose tissue DNMT3a and hepatic miR-34a expression were reduced with HF/S+M. Adult male offspring showed upregulated miR-24, -33, -122a and -143 expression while females exhibited downregulated miR-33 expression. Fathers and offspring presented differences in gut microbial signatures. Supplementing a paternal HF/S diet with methyl-donors improved fertility, physiological outcomes, epigenetic and gut microbial signatures intergenerationally.
Collapse
|
40
|
Larsen MC, Lee J, Jorgensen JS, Jefcoate CR. STARD1 Functions in Mitochondrial Cholesterol Metabolism and Nascent HDL Formation. Gene Expression and Molecular mRNA Imaging Show Novel Splicing and a 1:1 Mitochondrial Association. Front Endocrinol (Lausanne) 2020; 11:559674. [PMID: 33193082 PMCID: PMC7607000 DOI: 10.3389/fendo.2020.559674] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 09/22/2020] [Indexed: 12/13/2022] Open
Abstract
STARD1 moves cholesterol (CHOL) from the outer mitochondrial membrane (OMM) to the inner membrane (IMM) in steroidogenic cells. This activity is integrated into CHOL trafficking and synthesis homeostasis, involving uptake through SR-B1 and LDL receptors and distribution through endosomes, ER, and lipid droplets. In adrenal cells, STARD1 is imported into the mitochondrial matrix accompanied by delivery of several hundred CHOL molecules. This transfer limits CYP11A1-mediated generation of pregnenolone. CHOL transfer is coupled to translation of STARD1 mRNA at the OMM. In testis cells, slower CHOL trafficking seems to be limiting. STARD1 also functions in a slower process through ER OMM contacts. The START domain of STARD1 is utilized by a family of genes, which includes additional STARD (forms 3-6) and GRAMD1B proteins that transfer CHOL. STARD forms 2 and 7 deliver phosphatidylcholine. STARD1 and STARD7 target their respective activities to mitochondria, via N-terminal domains (NTD) of over 50 amino acids. The NTD is not essential for steroidogenesis but exerts tissue-selective enhancement (testis>>adrenal). Three conserved sites for cleavage by the mitochondrial processing protease (MPP) generate three forms, each potentially with specific functions, as demonstrated in STARD7. STARD1 is expressed in macrophage and cardiac repair fibroblasts. Additional functions include CHOL metabolism by CYP27A1 that directs activation of LXR and CHOL export processes. STARD1 generates 3.5- and 1.6-kb mRNA from alternative polyadenylation. The 3.5-kb form exclusively binds the PKA-induced regulator, TIS11b, which binds at conserved sites in the extended 3'UTR to control mRNA translation and turnover. STARD1 expression also exhibits a novel, slow splicing that delayed splicing delivery of mRNA to mitochondria. Stimulation of transcription by PKA is directed by suppression of SIK forms that activate a CRTC/CREB/CBP promoter complex. This process is critical to pulsatile hormonal activation in vivo. sm-FISH RNA imaging shows a flow of single STARD1 mRNA particles from asymmetric accumulations of primary transcripts at gene loci to 1:1 complex of 3.5-kb mRNA with peri-nuclear mitochondria. Adrenal cells are similar but distinguished from testis cells by appreciable basal expression prior to hormonal activation. This difference is conserved in culture and in vivo.
Collapse
Affiliation(s)
- Michele Campaigne Larsen
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Jinwoo Lee
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
- Endocrinology and Reproductive Physiology Program, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Joan S. Jorgensen
- Endocrinology and Reproductive Physiology Program, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
- Department of Comparative Biosciences, University of Wisconsin School of Veterinary Medicine, Madison, WI, United States
| | - Colin R. Jefcoate
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
- Endocrinology and Reproductive Physiology Program, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| |
Collapse
|
41
|
Fan Z, Kong M, Li M, Hong W, Fan X, Xu Y. Brahma Related Gene 1 (Brg1) Regulates Cellular Cholesterol Synthesis by Acting as a Co-factor for SREBP2. Front Cell Dev Biol 2020; 8:259. [PMID: 32500071 PMCID: PMC7243037 DOI: 10.3389/fcell.2020.00259] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 03/27/2020] [Indexed: 12/30/2022] Open
Abstract
Hepatocyte is a hub for cholesterol metabolism. Augmented synthesis of cholesterol in the liver is associated with hypercholesterolemia and contributes to the pathogenesis of a host of cardiovascular and metabolic diseases. Sterol response element binding protein 2 (SREBP2) regulates hepatic cholesterol metabolism by activating the transcription of rate-limiting enzymes in the cholesterol biosynthesis pathway. The underlying epigenetic mechanism is not well understood. We report here that mice with hepatocyte-specific knockout (CKO) of Brg1, a chromatin remodeling protein, exhibit reduced levels of hepatic cholesterol compared to the wild type (WT) littermates when placed on a high-fact diet (HFD) or a methionine-and-choline-deficient diet (MCD). Down-regulation of cholesterol levels as a result of BRG1 deficiency was accompanied by attenuation of cholesterogenic gene transcription. Likewise, BRG1 knockdown in hepatocytes markedly suppressed the induction of cholesterogenic genes by lipid depletion formulas. Brg1 interacted with SREBP2 and was recruited by SREBP2 to the cholesterogenic gene promoters. Reciprocally, Brg1 deficiency dampened the occupancies of SREBP2 on target promoters likely through modulating H3K9 methylation on the cholesterogenic gene promoters. Mechanistically, Brg1 recruited the H3K9 methyltransferase KDM3A to co-regulate pro-cholesterogenic transcription. KDM3A silencing dampened the cholesterogenic response in hepatocytes equivalent to Brg1 deficiency. In conclusion, our data demonstrate a novel epigenetic pathway that contributes to SREBP2-dependent cholesterol synthesis in hepatocytes.
Collapse
Affiliation(s)
- Zhiwen Fan
- Department of Pathology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Ming Kong
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Min Li
- Department of Clinical Medicine and Laboratory Center for Experimental Medicine, Jiangsu Health Vocational College, Nanjing, China
| | - Wenxuan Hong
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Xiangshan Fan
- Department of Pathology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Yong Xu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China.,Institute of Biomedical Research, Liaocheng University, Liaocheng, China
| |
Collapse
|
42
|
Høyer S, Riis AH, Toft G, Wise LA, Hatch EE, Wesselink AK, Rothman KJ, Sørensen HT, Mikkelsen EM. Male alcohol consumption and fecundability. Hum Reprod 2020; 35:816-825. [PMID: 32155263 PMCID: PMC7192537 DOI: 10.1093/humrep/dez294] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 11/03/2019] [Indexed: 01/01/2023] Open
Abstract
STUDY QUESTION Does male alcohol consumption affect fecundability? SUMMARY ANSWER In data pooled across Danish and North American preconception cohort studies, we found little evidence of an association between male alcohol consumption and reduced fecundability. WHAT IS KNOWN ALREADY Experimental and clinical studies have shown that alcohol affects male reproductive physiology, mainly by altering male reproductive hormones and spermatogenesis. However, few epidemiologic studies have examined the association between alcohol consumption and male fertility. STUDY DESIGN, SIZE, DURATION Data were collected from two ongoing prospective preconception cohort studies: the Danish 'SnartForaeldre' (SF) study (662 couples) and the North American 'Pregnancy Study Online' (PRESTO) (2017 couples). Participants included in the current analysis were enrolled from August 2011 through June 2019 (SF) and from June 2013 through June 2019 (PRESTO). PARTICIPANTS/MATERIALS, SETTING, METHODS Eligible men were aged ≥18 years in SF and ≥21 years in PRESTO, in a stable relationship with a female partner and not using contraception or receiving fertility treatment. In both cohorts, alcohol consumption/serving size was self-reported as number of beers (330 mL/12 oz.), glasses of white or red wine (120 mL/4 oz. each), dessert wine (50 mL/2 oz.) and spirits (20 mL/1.5 oz.). Overall alcohol consumption was categorized as none, 1-5, 6-13 and ≥14 standard servings per week. Total menstrual cycles at risk were calculated using data from female partners' follow-up questionnaires, which were completed every 8 weeks until self-reported pregnancy or 12 menstrual cycles, whichever came first. Analyses were restricted to couples that had been trying to conceive for ≤6 cycles at study entry. Proportional probability regression models were used to compute fecundability ratios (FRs) and 95% confidence interval (CIs). We adjusted for male and female age, female partner's alcohol consumption, intercourse frequency, previous history of fathering a child, race/ethnicity, education, BMI, smoking and consumption of sugar-sweetened beverages and caffeine. MAIN RESULTS AND THE ROLE OF CHANCE The cumulative proportion of couples who conceived during 12 cycles of follow-up were 1727 (64.5%). The median (interquartile range) of total male alcohol consumption was 4.5 (2.0-7.8) and 4.1 (1.0-8.6) standard servings per week in the SF and PRESTO cohorts, respectively. In pooled analyses, adjusted FRs for male alcohol consumption of 1-5, 6-13 and ≥14 standard servings per week compared with no alcohol consumption were 1.02 (95% CI: 0.90-1.17), 1.10 (95% CI: 0.96-1.27) and 0.98 (95% CI: 0.81-1.18), respectively. For SF, adjusted FRs of 1-5, 6-13 and ≥14 standard servings per week compared with no alcohol consumption were 0.97 (95% CI: 0.73-1.28), 0.81 (95% CI: 0.60-1.10) and 0.82 (95% CI: 0.51-1.30), respectively. For PRESTO, adjusted FRs of 1-5, 6-13 and ≥14 standard servings per week compared with no alcohol consumption were 1.02 (95% CI: 0.88-1.18), 1.20 (95% CI: 1.03-1.40) and 1.03 (95% CI: 0.84-1.26), respectively. LIMITATIONS, REASONS FOR CAUTION Male alcohol consumption was ascertained at baseline only, and we did not distinguish between regular and binge drinking. In addition, we had insufficient numbers to study the effects of specific types of alcoholic beverages. As always, residual confounding by unmeasured factors, such as dietary factors and mental health, cannot be ruled out. Comorbidities thought to play a role in the reproductive setting (i.e. cancer, metabolic syndrome) were not considered in this study; however, the prevalence of cancer and diabetes was low in this age group. Findings for the highest categories of alcohol consumption (6-13 and ≥14 servings/week) were not consistent across the two cohorts. WIDER IMPLICATIONS OF THE FINDINGS Despite little evidence of an association between male alcohol consumption and reduced fecundability in the pooled analysis, data from the Danish cohort might indicate a weak association between reduced fecundability and consumption of six or more servings per week. STUDY FUNDING/COMPETING INTEREST(S) This study was supported by the National Institutes of Health (R01-HD060680, R01-HD086742, R21-HD050264, R21-HD072326, R03-HD090315), the Novo Nordisk Foundation, Oticon Fonden, Politimester J.P.N. Colind og hustru Asmine Colinds mindelegat and Erna og Peter Houtveds studielegat. PRESTO receives in-kind donations from FertilityFriend.com, Kindara.com, Swiss Precision Diagnostics and Sandstone Diagnostics for the collection of data pertaining to fertility. Dr Wise serves as a consultant on uterine leiomyomata for AbbVie.com. All other authors declare no conflict of interest.
Collapse
Affiliation(s)
- S Høyer
- Department of Clinical Epidemiology, Aarhus University Hospital, 8200 Aarhus N, Denmark
| | - A H Riis
- Department of Clinical Epidemiology, Aarhus University Hospital, 8200 Aarhus N, Denmark
| | - G Toft
- Department of Clinical Epidemiology, Aarhus University Hospital, 8200 Aarhus N, Denmark
| | - L A Wise
- Department of Epidemiology, Boston University School of Public Health, Boston, MA 617857, USA
| | - E E Hatch
- Department of Epidemiology, Boston University School of Public Health, Boston, MA 617857, USA
| | - A K Wesselink
- Department of Epidemiology, Boston University School of Public Health, Boston, MA 617857, USA
| | - K J Rothman
- Department of Clinical Epidemiology, Aarhus University Hospital, 8200 Aarhus N, Denmark
- Department of Epidemiology, Boston University School of Public Health, Boston, MA 617857, USA
- RTI Health Solutions, Research Triangle Park, NC, 27709, USA
| | - H T Sørensen
- Department of Clinical Epidemiology, Aarhus University Hospital, 8200 Aarhus N, Denmark
- Department of Epidemiology, Boston University School of Public Health, Boston, MA 617857, USA
| | - E M Mikkelsen
- Department of Clinical Epidemiology, Aarhus University Hospital, 8200 Aarhus N, Denmark
| |
Collapse
|
43
|
Lv ZM, Ling MY, Chen C. Comparative proteomics reveals protective effect of resveratrol on a high-fat diet-induced damage to mice testis. Syst Biol Reprod Med 2020; 66:37-49. [PMID: 31955635 DOI: 10.1080/19396368.2019.1701138] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In recent years, resveratrol has been shown to protect against metabolic damage, including obesity-associated subfertility/infertility. In the present study, proteomic alterations in testicular tissues were investigated by tandem mass tag (TMT) in mice fed with a high-fat diet (HFD) without or with resveratrol supplementation (HFD+RSV). Serum testosterone levels, spermatozoa parameters and testicular histological morphology were assessed. Resveratrol treatment was shown to significantly reduce serum cholesterol, prevent the HFD-induced reductions in serum testosterone and spermatozoa parameters, and decrease the ultrastructural degeneration of testicular tissues. The comparative proteomics analysis revealed 58 differentially expressed proteins between the HFD and control groups and 38 differentially expressed proteins between the HFD and HFD+RSV groups. Gene ontology (GO) term enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed that the most highly enriched differential proteins were correlated to spermatozoa function and cholesterol metabolism. The real-time RT-PCR and western blotting results confirmed the differential expression of the corresponding proteins related to spermatozoa function that were identified by proteomics. The present study provides new insight into the mechanisms of the beneficial effects of resveratrol, and may present it as a potential therapeutic strategy for obesity-associated male subfertility/infertility.Abbreviations:TMT: Tandem mass tag; HFD: High-fat diet; RSV: Resveratrol; GO: Gene ontology; Protein-proteinKEGG: Kyoto Encyclopedia of Genes and Genomes; RT-PCR: Reverse transcription-polymerase chain reaction; SDS-PAGE: Sodium dodecyl sulfate-polyacrylamide gel electrophoresis; PVDF: Polyvinylidene fluoride; ECL: Enhanced chemiluminescence; RIPA: Radio-immunoprecipitation assay; CTRL: Control; PPI: interaction; RIA: Radioimmunoassay; T: Testosterone; TG: Triglycerides; TC: Total cholesterol; LDL-c: Low-density lipoprotein cholesterol; HDL-c: High-density lipoprotein cholesterol; Crisp1: Cysteine-rich secretory protein 1; SIRT1: Sirtuin 1; GPx5: Glutathione peroxidase 5; Svs4: Seminal vesicle secretory protein 4; Tssk3: Testis-specific serine kinase 3; Pate4: Prostate and testis expressed 4; Sva: Seminal vesicle antigen; Lcn5: Lipocalin 5; Spinkl: Serine protease inhibitor, Kazal type-like.
Collapse
Affiliation(s)
- Zheng-Mei Lv
- Department of Histology and Embryology, Anhui Medical University, Hefei, China
| | - Meng-Yu Ling
- Department of Histology and Embryology, Anhui Medical University, Hefei, China
| | - Chao Chen
- Department of Histology and Embryology, Anhui Medical University, Hefei, China
| |
Collapse
|
44
|
Abuzhalihan J, Wang YT, Ma YT, Fu ZY, Yang YN, Ma X, Li XM, Liu F, Chen BD. SOAT1 methylation is associated with coronary heart disease. Lipids Health Dis 2019; 18:192. [PMID: 31684966 PMCID: PMC6829990 DOI: 10.1186/s12944-019-1138-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 10/21/2019] [Indexed: 12/13/2022] Open
Abstract
Background This study was designed to investigate whether differential DNA methylationin of cholesterol absorption candidate genes can function as a biomarker for patients with coronary heart disease (CHD). Methods DNA methylation levels of the candidate genes FLOT1, FLOT2 and SOAT1 were measured in peripheral blood leukocytes (PBLs) from 99 patients diagnosed with CHD and 89 control subjects without CHD. A total of 110 CPG sites around promoter regions of them were examined. Results Compared with groups without CHD, patients with CHD had lower methylation levels of SOAT1 (P<0.001). When each candidate genes were divided into different target segments, patients with CHD also had lower methylation levels of SOAT1 than patients without (P = 0.005). After adjustment of other confounders, methylation levels of SOAT1 were still associated with CHD (P = 0.001, OR = 0.290, 95% CI: 0.150–0.561). Conclusions SOAT1 methylation may be associated with development of CHD. Patients with lower methylation levels in SOAT1 may have increased risks for CHD. Further studies on the specific mechanisms of this relationship are necessary.
Collapse
Affiliation(s)
- Jialin Abuzhalihan
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, People's Republic of China.,Xinjiang Key Laboratory of Cardiovascular Disease Research, Urumqi, 830054, People's Republic of China
| | - Yong-Tao Wang
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, People's Republic of China.,Xinjiang Key Laboratory of Cardiovascular Disease Research, Urumqi, 830054, People's Republic of China
| | - Yi-Tong Ma
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, People's Republic of China. .,Xinjiang Key Laboratory of Cardiovascular Disease Research, Urumqi, 830054, People's Republic of China.
| | - Zhen-Yan Fu
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, People's Republic of China. .,Xinjiang Key Laboratory of Cardiovascular Disease Research, Urumqi, 830054, People's Republic of China.
| | - Yi-Ning Yang
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, People's Republic of China.,Xinjiang Key Laboratory of Cardiovascular Disease Research, Urumqi, 830054, People's Republic of China
| | - Xiang Ma
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, People's Republic of China.,Xinjiang Key Laboratory of Cardiovascular Disease Research, Urumqi, 830054, People's Republic of China
| | - Xiao-Mei Li
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, People's Republic of China.,Xinjiang Key Laboratory of Cardiovascular Disease Research, Urumqi, 830054, People's Republic of China
| | - Fen Liu
- Xinjiang Key Laboratory of Cardiovascular Disease Research, Urumqi, 830054, People's Republic of China
| | - Bang-Dang Chen
- Xinjiang Key Laboratory of Cardiovascular Disease Research, Urumqi, 830054, People's Republic of China
| |
Collapse
|
45
|
Holota H, Thirouard L, Garcia M, Monrose M, de Haze A, Saru JP, Caira F, Beaudoin C, Volle DH. Fxralpha gene is a target gene of hCG signaling pathway and represses hCG induced steroidogenesis. J Steroid Biochem Mol Biol 2019; 194:105460. [PMID: 31470110 DOI: 10.1016/j.jsbmb.2019.105460] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 07/19/2019] [Accepted: 08/27/2019] [Indexed: 12/14/2022]
Abstract
The bile acid receptor Farnesoid-X-Receptor alpha (FXRα), a member of the nuclear receptor superfamily, is well known for its roles in the enterohepatic tract. In addition, FXRα regulates testicular physiology through the control of both endocrine and exocrine functions. The endocrine function of the Leydig cells is mainly controlled by the hypothalamo-pituitary axis viaLH/chorionic gonadotropin (CG). If FXRα was demonstrated to control the expression of the Lhcgr gene, encoding the LH receptor; the impact of the LH/CG signaling on the Fxrα expression has not been defined so far. Here, we demonstrate that hCG increases the Fxrα gene expression through the protein kinase-A signaling pathway. Fxrα is then involved in a negative feedback of steroid synthesis. These data improve our knowledge of the local control of the testicular steroidogenesis with the identification of the link between the hypothalamo-pituitary axis and the FXRα signaling pathway.
Collapse
Affiliation(s)
- Hélène Holota
- Inserm U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD, F-63001 Clermont-Ferrand, France
| | - Laura Thirouard
- Inserm U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD, F-63001 Clermont-Ferrand, France
| | - Manon Garcia
- Inserm U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD, F-63001 Clermont-Ferrand, France
| | - Mélusine Monrose
- Inserm U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD, F-63001 Clermont-Ferrand, France
| | - Angélique de Haze
- Inserm U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD, F-63001 Clermont-Ferrand, France
| | - Jean-Paul Saru
- Inserm U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD, F-63001 Clermont-Ferrand, France
| | - Françoise Caira
- Inserm U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD, F-63001 Clermont-Ferrand, France
| | - Claude Beaudoin
- Inserm U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD, F-63001 Clermont-Ferrand, France.
| | - David H Volle
- Inserm U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD, F-63001 Clermont-Ferrand, France.
| |
Collapse
|
46
|
Liver X Receptors and Male (In)fertility. Int J Mol Sci 2019; 20:ijms20215379. [PMID: 31671745 PMCID: PMC6862486 DOI: 10.3390/ijms20215379] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 10/22/2019] [Accepted: 10/23/2019] [Indexed: 12/19/2022] Open
Abstract
Liver X receptors (LXRs) are ligand-dependent transcription factors acting as ‘cholesterol sensors’ to regulate lipid homeostasis in cells. The two isoforms, LXRα (NR1H3) and LXRβ (NR1H2), are differentially expressed, with the former expressed predominantly in metabolically active tissues and the latter more ubiquitously. Both are activated by oxidised cholesterol metabolites, endogenously produced oxysterols. LXRs have important roles in lipid metabolism and inflammation, plus a number of newly emerging roles. They are implicated in regulating lipid balance in normal male reproductive function and may provide a link between male infertility and lipid disorders and/or obesity. Studies from Lxr knockout mouse models provide compelling evidence to support this. More recently published data suggest distinct and overlapping roles of the LXR isoforms in the testis and recent evidence of a role for LXRs in human male fertility. This review summarises the current literature and explores the likely link between LXR, lipid metabolism and male fertility as part of a special issue on Liver X receptors in International Journal of Molecular Sciences.
Collapse
|
47
|
Zhao W, Su J, Wang Y, Qian T, Liu Y. Functional importance of palmitoyl protein thioesterase 1 (PPT1) expression by Sertoli cells in mediating cholesterol metabolism and maintenance of sperm quality. Mol Reprod Dev 2019; 86:984-998. [PMID: 31134714 DOI: 10.1002/mrd.23173] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 04/23/2019] [Accepted: 05/01/2019] [Indexed: 12/13/2022]
Abstract
Sertoli cells are a type of nurse cell in the seminiferous epithelium that are crucial for sustaining spermatogenesis by extending nutritional and energy support to the developing germ cells. Dysfunction of Sertoli cells could cause disordered spermatogenesis and reduced fertility in males. In this study, we focused on the expression and function of palmitoyl protein thioesterase 1 (PPT1), a lysosomal depalmitoylating enzyme, in Sertoli cells. Here, we show that PPT1 expression in Sertoli cells is responsive to cholesterol treatment and that specific knockout of Ppt1 in Sertoli cells causes male subfertility associated with poor sperm quality and a high ratio of sperm deformity. Specifically, Ppt1 deficiency leads to poor cell variably accompanied with abnormal lysosome accumulation and increased cholesterol levels in Sertoli cells. Further, Ppt1 deficiency results in poor adhesion of developing germ cells to Sertoli cells in the seminiferous epithelium, which is likely to be responsible for the reduced male fertility as a consequence of declines in sperm count and motility as well as a high incidence of sperm head deformity. In summary, PPT1 affects sperm quality and male fertility through regulating lysosomal function and cholesterol metabolism in Sertoli cells.
Collapse
Affiliation(s)
- Wenzhen Zhao
- Department of Histology and Embryology, School of Basic Medical Science, Dali University, Yunnan, China.,Institute of Reproductive Medicine, Dali University, Yunnan, China
| | - Juan Su
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Dali University, Yunnan, China
| | - Yuntao Wang
- Department of Histology and Embryology, School of Basic Medical Science, Dali University, Yunnan, China
| | - Tijun Qian
- Vector Laboratory, Institute of Pathogens and Vectors, Dali University, Yunnan, China
| | - Yue Liu
- Department of Histology, Embryology, Genetics and Developmental Biology, Shanghai Key Laboratory for Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|