1
|
Quintero S, Ait-Aissa K, Munkhsaikhan U, Sahyoun AM, Hoque Apu E, Abidi AH, Kassan M. Exploring the relationship between periodontal diseases and osteoporosis: Potential role of butyrate. Biomed Pharmacother 2025; 182:117791. [PMID: 39729652 DOI: 10.1016/j.biopha.2024.117791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/20/2024] [Accepted: 12/21/2024] [Indexed: 12/29/2024] Open
Abstract
Osteoporosis, a condition marked by the loss of bone density and mass, affects individuals of all ages. However, it becomes more prevalent and severe with aging, increasing the risk of fractures and other health complications. Recent research has highlighted a link between osteoporosis and periodontitis, a chronic gum disease, as both conditions involve excessive bone loss that can lead to significant oral health problems if untreated. The growing interest in strategies to prevent bone loss has brought attention to butyrate, a short-chain fatty acid produced by gut bacteria during fiber fermentation. Butyrate has demonstrated protective effects against systemic bone loss, particularly in the context of osteoporosis. Notably, oral bacteria also produce butyrate, suggesting its potential as a therapeutic tool for preventing periodontal bone loss. Given the connection between systemic and oral health, understanding the role of butyrate in bone metabolism could offer new avenues for treating osteoporosis and periodontitis. This review will explore the biological mechanisms through which butyrate influences bone health, aiming to highlight its potential therapeutic applications in preventing bone loss across these conditions.
Collapse
Affiliation(s)
- Steven Quintero
- College of Dental Medicine, Lincoln Memorial University, LMU Tower, 1705 St. Mary Street, Knoxville, TN 37917, USA
| | - Karima Ait-Aissa
- College of Dental Medicine, Lincoln Memorial University, LMU Tower, 1705 St. Mary Street, Knoxville, TN 37917, USA
| | - Undral Munkhsaikhan
- College of Dental Medicine, Lincoln Memorial University, LMU Tower, 1705 St. Mary Street, Knoxville, TN 37917, USA
| | - Amal M Sahyoun
- College of Dental Medicine, Lincoln Memorial University, LMU Tower, 1705 St. Mary Street, Knoxville, TN 37917, USA
| | - Ehsanul Hoque Apu
- College of Dental Medicine, Lincoln Memorial University, LMU Tower, 1705 St. Mary Street, Knoxville, TN 37917, USA
| | - Ammaar H Abidi
- College of Dental Medicine, Lincoln Memorial University, LMU Tower, 1705 St. Mary Street, Knoxville, TN 37917, USA.
| | - Modar Kassan
- College of Dental Medicine, Lincoln Memorial University, LMU Tower, 1705 St. Mary Street, Knoxville, TN 37917, USA.
| |
Collapse
|
2
|
Qi P, Xie R, Liu H, Zhang Z, Cheng Y, Ma J, Wan K, Xie X. Mechanisms of gut homeostasis regulating Th17/Treg cell balance in PMOP. Front Immunol 2024; 15:1497311. [PMID: 39735544 PMCID: PMC11671525 DOI: 10.3389/fimmu.2024.1497311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 11/25/2024] [Indexed: 12/31/2024] Open
Abstract
Postmenopausal osteoporosis (PMOP) is a metabolic bone disease driven by estrogen deficiency, primarily manifesting as reduced bone mass and heightened fracture risk. Its development is intricately linked to the balance between Th17 and Treg cells. Recent studies have highlighted the significant role of gut homeostasis in PMOP. The gut microbiota profoundly impacts bone health by modulating the host's immune system, metabolic pathways, and endocrine functions. In particular, the regulation of Th17 and Treg cell balance by gut homeostasis plays a pivotal role in the onset and progression of PMOP. Th17 cells secrete pro-inflammatory cytokines that stimulate osteoclast activity, accelerating bone resorption, while Treg cells counteract this process through anti-inflammatory mechanisms, preserving bone mass. The gut microbiota and its metabolites can influence Th17/Treg equilibrium, thereby modulating bone metabolism. Furthermore, the integrity of the gut barrier is critical for systemic immune stability, and its disruption can lead to immune dysregulation and metabolic imbalances. Thus, targeting gut homeostasis to restore Th17/Treg balance offers a novel therapeutic avenue for the prevention and treatment of PMOP.
Collapse
Affiliation(s)
- Peng Qi
- Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | | | - Hao Liu
- Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Zixuan Zhang
- Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Yuan Cheng
- Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Jilong Ma
- Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Kangwei Wan
- Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - XingWen Xie
- Gansu University of Traditional Chinese Medicine, Lanzhou, China
- Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Lanzhou, China
| |
Collapse
|
3
|
Hamza FN, Mohammad KS. Immunotherapy in the Battle Against Bone Metastases: Mechanisms and Emerging Treatments. Pharmaceuticals (Basel) 2024; 17:1591. [PMID: 39770433 PMCID: PMC11679356 DOI: 10.3390/ph17121591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/20/2024] [Accepted: 11/23/2024] [Indexed: 01/11/2025] Open
Abstract
Bone metastases are a prevalent complication in advanced cancers, particularly in breast, prostate, and lung cancers, and are associated with severe skeletal-related events (SREs), including fractures, spinal cord compression, and debilitating pain. Conventional bone-targeted treatments like bisphosphonates and RANKL inhibitors (denosumab) reduce osteoclast-mediated bone resorption but do not directly impact tumor progression within the bone. This review focuses on examining the growing potential of immunotherapy in targeting the unique challenges posed by bone metastases. Even though immune checkpoint inhibitors (ICIs) have significantly changed cancer treatment, their impact on bone metastases appears limited because of the bone microenvironment's immunosuppressive traits, which include high levels of transforming growth factor-beta (TGFβ) and the immune-suppressing cells, such as regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSCs). This review underscores the investigation of combined therapeutic approaches that might ease these difficulties, such as the synergy of immune checkpoint inhibitors with agents aimed at bones (denosumab, bisphosphonates), chemotherapy, and radiotherapy, as well as the combination of immune checkpoint inhibitors with different immunotherapeutic methods, including CAR T-cell therapy. This review provides a comprehensive analysis of preclinical studies and clinical trials that show the synergistic potential of these combination approaches, which aim to both enhance immune responses and mitigate bone destruction. By offering an in-depth exploration of how these strategies can be tailored to the bone microenvironment, this review underscores the need for personalized treatment approaches. The findings emphasize the urgent need for further research into overcoming immune evasion in bone metastases, with the goal of improving patient survival and quality of life.
Collapse
Affiliation(s)
- Fatheia N. Hamza
- Department of Biochemistry, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia;
| | - Khalid Said Mohammad
- Department of Anatomy and Genetics, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| |
Collapse
|
4
|
Netanely Y, Barel O, Naamneh R, Jaber Y, Yacoub S, Saba Y, Zubeidat K, Saar O, Eli-Berchoer L, Yona S, Brand A, Capucha T, Wilensky A, Loser K, Clausen B, Hovav AH. Epithelial RANKL Limits Experimental Periodontitis via Langerhans Cells. J Dent Res 2024; 103:1281-1290. [PMID: 39370697 PMCID: PMC11653287 DOI: 10.1177/00220345241274370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024] Open
Abstract
Due to its capacity to drive osteoclast differentiation, the receptor activator of nuclear factor kappa-β ligand (RANKL) is believed to exert a pathological influence in periodontitis. However, RANKL was initially identified as an activator of dendritic cells (DCs), expressed by T cells, and exhibits diverse effects on the immune system. Hence, it is probable that RANKL, acting as a bridge between the bone and immune systems, plays a more intricate role in periodontitis. Using ligature-induced periodontitis (LIP), rapid alveolar bone loss was detected that was later halted even though the ligature was still present. This late phase of LIP was also linked with immunosuppressive conditions in the gingiva. Further investigation revealed that the ligature prompted an immediate migration of RANK-expressing Langerhans cells (LCs) and EpCAM+ DCs, the antigen-presenting cells (APCs) of the gingival epithelium, to the lymph nodes, followed by an expansion of T regulatory (Treg) cells in the gingiva. Subsequently, the ligatured gingiva was repopulated by monocyte-derived RANK-expressing EpCAM+ DCs, while gingival epithelial cells upregulated RANKL expression. Blocking RANKL signaling with monoclonal antibodies significantly reduced the frequencies of Treg cells in the gingiva and prevented gingival immunosuppression. In addition, RANKL signaling facilitated the differentiation of LCs from bone marrow precursors. To further investigate the role of RANKL, we used K14-RANKL mice, in which RANKL is overexpressed by gingival epithelial cells. The elevated RANKL expression shifted the steady-state frequencies of LCs and EpCAM+ DCs within the epithelium, favoring LCs over EpCAM+ DCs. Following ligature placement, heightened levels of Treg cells were observed in the gingiva of K14-RANKL mice, and alveolar bone loss was significantly reduced. These findings suggest that RANKL-RANK interactions between gingival epithelial cells and APCs are crucial for suppressing gingival inflammation, highlighting a protective immunological role for RANKL in periodontitis that was overlooked due to its osteoclastogenic activity.
Collapse
Affiliation(s)
- Y. Netanely
- Institute of Biomedical and Oral Research, Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel
| | - O. Barel
- Institute of Biomedical and Oral Research, Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel
| | - R. Naamneh
- Institute of Biomedical and Oral Research, Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel
| | - Y. Jaber
- Institute of Biomedical and Oral Research, Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel
| | - S. Yacoub
- Institute of Biomedical and Oral Research, Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel
| | - Y. Saba
- Institute of Biomedical and Oral Research, Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel
| | - K. Zubeidat
- Institute of Biomedical and Oral Research, Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel
| | - O. Saar
- Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel; Department of Periodontology, Hadassah Medical Center, Jerusalem, Israel
| | - L. Eli-Berchoer
- Institute of Biomedical and Oral Research, Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel
| | - S. Yona
- Institute of Biomedical and Oral Research, Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel
| | - A. Brand
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - T. Capucha
- Department of Oral and Maxillofacial Surgery, Rambam Medical Care Center, Haifa, Israel
| | - A. Wilensky
- Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel; Department of Periodontology, Hadassah Medical Center, Jerusalem, Israel
| | - K. Loser
- Institute of Immunology, University of Oldenburg, Oldenburg, Germany
| | - B.E. Clausen
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - A.-H. Hovav
- Institute of Biomedical and Oral Research, Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel
| |
Collapse
|
5
|
He Y, Song T, Ning J, Wang Z, Yin Z, Jiang P, Yuan Q, Yu W, Cheng F. Lactylation in cancer: Mechanisms in tumour biology and therapeutic potentials. Clin Transl Med 2024; 14:e70070. [PMID: 39456119 PMCID: PMC11511673 DOI: 10.1002/ctm2.70070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/03/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
Lactylation, a recently identified form of protein post-translational modification (PTM), has emerged as a key player in cancer biology. The Warburg effect, a hallmark of tumour metabolism, underscores the significance of lactylation in cancer progression. By regulating gene transcription and protein function, lactylation facilitates metabolic reprogramming, enabling tumours to adapt to nutrient limitations and sustain rapid growth. Over the past decade, extensive research has revealed the intricate regulatory network underlying lactylation in tumours. Large-scale sequencing and machine learning have confirmed the widespread occurrence of lactylation sites across the tumour proteome. Targeting lactylation enzymes or metabolic pathways has demonstrated promising anti-tumour effects, highlighting the therapeutic potential of this modification. This review comprehensively explores the mechanisms of lactylation in cancer cells and the tumour microenvironment. We expound on the application of advanced omics technologies for target identification and data modelling within the lactylation field. Additionally, we summarise existing anti-lactylation drugs and discuss their clinical implications. By providing a comprehensive overview of recent advancements, this review aims to stimulate innovative research and accelerate the translation of lactylation-based therapies into clinical practice. KEY POINTS: Lactylation significantly influences tumour metabolism and gene regulation, contributing to cancer progression. Advanced sequencing and machine learning reveal widespread lactylation sites in tumours. Targeting lactylation enzymes shows promise in enhancing anti-tumour drug efficacy and overcoming chemotherapy resistance. This review outlines the clinical implications and future research directions of lactylation in oncology.
Collapse
Affiliation(s)
- Yipeng He
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubeiP.R. China
| | - Tianbao Song
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubeiP.R. China
| | - Jinzhuo Ning
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubeiP.R. China
| | - Zefeng Wang
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubeiP.R. China
| | - Zhen Yin
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubeiP.R. China
| | - Pengcheng Jiang
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubeiP.R. China
| | - Qin Yuan
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubeiP.R. China
| | - Weimin Yu
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubeiP.R. China
| | - Fan Cheng
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubeiP.R. China
| |
Collapse
|
6
|
Winter S, Götze KS, Hecker JS, Metzeler KH, Guezguez B, Woods K, Medyouf H, Schäffer A, Schmitz M, Wehner R, Glauche I, Roeder I, Rauner M, Hofbauer LC, Platzbecker U. Clonal hematopoiesis and its impact on the aging osteo-hematopoietic niche. Leukemia 2024; 38:936-946. [PMID: 38514772 PMCID: PMC11073997 DOI: 10.1038/s41375-024-02226-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 03/23/2024]
Abstract
Clonal hematopoiesis (CH) defines a premalignant state predominantly found in older persons that increases the risk of developing hematologic malignancies and age-related inflammatory diseases. However, the risk for malignant transformation or non-malignant disorders is variable and difficult to predict, and defining the clinical relevance of specific candidate driver mutations in individual carriers has proved to be challenging. In addition to the cell-intrinsic mechanisms, mutant cells rely on and alter cell-extrinsic factors from the bone marrow (BM) niche, which complicates the prediction of a mutant cell's fate in a shifting pre-malignant microenvironment. Therefore, identifying the insidious and potentially broad impact of driver mutations on supportive niches and immune function in CH aims to understand the subtle differences that enable driver mutations to yield different clinical outcomes. Here, we review the changes in the aging BM niche and the emerging evidence supporting the concept that CH can progressively alter components of the local BM microenvironment. These alterations may have profound implications for the functionality of the osteo-hematopoietic niche and overall bone health, consequently fostering a conducive environment for the continued development and progression of CH. We also provide an overview of the latest technology developments to study the spatiotemporal dependencies in the CH BM niche, ideally in the context of longitudinal studies following CH over time. Finally, we discuss aspects of CH carrier management in clinical practice, based on work from our group and others.
Collapse
Affiliation(s)
- Susann Winter
- Department of Internal Medicine I, University Hospital Carl Gustav Carus, Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Katharina S Götze
- German Cancer Consortium (DKTK), CHOICE Consortium, Partner Sites Dresden/Munich/Frankfurt/Mainz, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Medicine III, Technical University of Munich (TUM), School of Medicine and Health, Munich, Germany
- German MDS Study Group (D-MDS), Leipzig, Germany
| | - Judith S Hecker
- German Cancer Consortium (DKTK), CHOICE Consortium, Partner Sites Dresden/Munich/Frankfurt/Mainz, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Medicine III, Technical University of Munich (TUM), School of Medicine and Health, Munich, Germany
- TranslaTUM, Center for Translational Cancer Research, Technical University of Munich (TUM), Munich, Germany
| | - Klaus H Metzeler
- German Cancer Consortium (DKTK), CHOICE Consortium, Partner Sites Dresden/Munich/Frankfurt/Mainz, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Hematology, Cellular Therapy, Hemostaseology and Infectious Disease, University of Leipzig Medical Center, Leipzig, Germany
| | - Borhane Guezguez
- German Cancer Consortium (DKTK), CHOICE Consortium, Partner Sites Dresden/Munich/Frankfurt/Mainz, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Hematology and Oncology, University Medical Center Mainz, Mainz, Germany
| | - Kevin Woods
- German Cancer Consortium (DKTK), CHOICE Consortium, Partner Sites Dresden/Munich/Frankfurt/Mainz, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Hematology and Oncology, University Medical Center Mainz, Mainz, Germany
| | - Hind Medyouf
- German Cancer Consortium (DKTK), CHOICE Consortium, Partner Sites Dresden/Munich/Frankfurt/Mainz, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt am Main, Germany
- Frankfurt Cancer Institute, Frankfurt am Main, Germany
| | - Alexander Schäffer
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt am Main, Germany
| | - Marc Schmitz
- German Cancer Consortium (DKTK), CHOICE Consortium, Partner Sites Dresden/Munich/Frankfurt/Mainz, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Institute of Immunology, Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
- National Center for Tumor Diseases (NCT), Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany; Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - Rebekka Wehner
- German Cancer Consortium (DKTK), CHOICE Consortium, Partner Sites Dresden/Munich/Frankfurt/Mainz, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Institute of Immunology, Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
- National Center for Tumor Diseases (NCT), Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany; Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - Ingmar Glauche
- Institute for Medical Informatics and Biometry, Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Ingo Roeder
- German Cancer Consortium (DKTK), CHOICE Consortium, Partner Sites Dresden/Munich/Frankfurt/Mainz, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany; Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
- Institute for Medical Informatics and Biometry, Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Martina Rauner
- Division of Endocrinology, Diabetes and Bone Diseases, Department of Medicine III, and Center for Healthy Aging, University Medical Center, TU Dresden, Dresden, Germany
| | - Lorenz C Hofbauer
- German Cancer Consortium (DKTK), CHOICE Consortium, Partner Sites Dresden/Munich/Frankfurt/Mainz, and German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Division of Endocrinology, Diabetes and Bone Diseases, Department of Medicine III, and Center for Healthy Aging, University Medical Center, TU Dresden, Dresden, Germany.
| | - Uwe Platzbecker
- German Cancer Consortium (DKTK), CHOICE Consortium, Partner Sites Dresden/Munich/Frankfurt/Mainz, and German Cancer Research Center (DKFZ), Heidelberg, Germany.
- German MDS Study Group (D-MDS), Leipzig, Germany.
- Department of Hematology, Cellular Therapy, Hemostaseology and Infectious Disease, University of Leipzig Medical Center, Leipzig, Germany.
| |
Collapse
|
7
|
Zhao Z, Du Y, Yan K, Zhang L, Guo Q. Exercise and osteoimmunology in bone remodeling. FASEB J 2024; 38:e23554. [PMID: 38588175 DOI: 10.1096/fj.202301508rrr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 02/20/2024] [Accepted: 02/28/2024] [Indexed: 04/10/2024]
Abstract
Bones can form the scaffolding of the body, support the organism, coordinate somatic movements, and control mineral homeostasis and hematopoiesis. The immune system plays immune supervisory, defensive, and regulatory roles in the organism, which mainly consists of immune organs (spleen, bone marrow, tonsils, lymph nodes, etc.), immune cells (granulocytes, platelets, lymphocytes, etc.), and immune molecules (immune factors, interferons, interleukins, tumor necrosis factors, etc.). Bone and the immune system have long been considered two distinct fields of study, and the bone marrow, as a shared microenvironment between the bone and the immune system, closely links the two. Osteoimmunology organically combines bone and the immune system, elucidates the role of the immune system in bone, and creatively emphasizes its interdisciplinary characteristics and the function of immune cells and factors in maintaining bone homeostasis, providing new perspectives for skeletal-related field research. In recent years, bone immunology has gradually become a hot spot in the study of bone-related diseases. As a new branch of immunology, bone immunology emphasizes that the immune system can directly or indirectly affect bones through the RANKL/RANK/OPG signaling pathway, IL family, TNF-α, TGF-β, and IFN-γ. These effects are of great significance for understanding inflammatory bone loss caused by various autoimmune or infectious diseases. In addition, as an external environment that plays an important role in immunity and bone, this study pays attention to the role of exercise-mediated bone immunity in bone reconstruction.
Collapse
Affiliation(s)
- Zhonghan Zhao
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Yuxiang Du
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Kai Yan
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Lingli Zhang
- College of Athletic Performance, Shanghai University of Sport, Shanghai, China
| | - Qiang Guo
- Department of Orthopaedics, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
8
|
Yang M, Zhu L. Osteoimmunology: The Crosstalk between T Cells, B Cells, and Osteoclasts in Rheumatoid Arthritis. Int J Mol Sci 2024; 25:2688. [PMID: 38473934 DOI: 10.3390/ijms25052688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 02/22/2024] [Accepted: 02/24/2024] [Indexed: 03/14/2024] Open
Abstract
Rheumatoid arthritis (RA) is an ongoing inflammatory condition that affects the joints and can lead to severe damage to cartilage and bones, resulting in significant disability. This condition occurs when the immune system becomes overactive, causing osteoclasts, cells responsible for breaking down bone, to become more active than necessary, leading to bone breakdown. RA disrupts the equilibrium between osteoclasts and osteoblasts, resulting in serious complications such as localized bone erosion, weakened bones surrounding the joints, and even widespread osteoporosis. Antibodies against the receptor activator of nuclear factor-κB ligand (RANKL), a crucial stimulator of osteoclast differentiation, have shown great effectiveness both in laboratory settings and actual patient cases. Researchers are increasingly focusing on osteoclasts as significant contributors to bone erosion in RA. Given that RA involves an overactive immune system, T cells and B cells play a pivotal role by intensifying the immune response. The imbalance between Th17 cells and Treg cells, premature aging of T cells, and excessive production of antibodies by B cells not only exacerbate inflammation but also accelerate bone destruction. Understanding the connection between the immune system and osteoclasts is crucial for comprehending the impact of RA on bone health. By delving into the immune mechanisms that lead to joint damage, exploring the interactions between the immune system and osteoclasts, and investigating new biomarkers for RA, we can significantly improve early diagnosis, treatment, and prognosis of this condition.
Collapse
Affiliation(s)
- Mei Yang
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
- Medical Epigenetics Research Center, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Lei Zhu
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
- Medical Epigenetics Research Center, Chinese Academy of Medical Sciences, Beijing 100005, China
| |
Collapse
|
9
|
Rekabi A, Ram A, Nazari A, Arefnezhad R, Rezaei-Tazangi F. Does crocin create new hope for the treatment of oral problems? A focus on periodontitis. Mol Biol Rep 2024; 51:224. [PMID: 38281199 DOI: 10.1007/s11033-024-09209-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 01/03/2024] [Indexed: 01/30/2024]
Abstract
According to the World Health Organization (WHO) reports, oral health has an indispensable role in the maintenance of human public health. However, oral problems, especially periodontitis, are known as bad players in this issue. Periodontitis, as the most prevalent oral disease, is a type of chronic illness mediated by bacterial pathogens and immune system reactions, which is linked with the destruction of tooth-protecting tissues, such as alveolar bone and periodontal ligament. Periodontitis has a high prevalence (over 40% in the United States) and can be associated with other systemic ailments, for instance, arthritis, osteoporosis, metabolic syndrome, cancer, respiratory diseases, chronic kidney disease, and Alzheimer's disease. The common treatments for periodontitis are classified into invasive (surgical) and noninvasive (antibiotic therapy, scaling, and root planning) methods; however, these therapies have not reflected enough effectiveness for related patients. New documents inform the beneficial effects of plant-based compounds in healing various disorders, like periodontitis. In conjunction with this subject, it has been revealed that crocin, as an active component of saffron, regulates the balance between osteoclasts and osteoblasts and has a stroking role in the accumulation of the most common collagen in teeth and bone (type 1 collagen). Besides, this carotenoid compound possesses anti-inflammatory and anti-oxidative effects, which can be associated with the therapeutic processes of crocin in this oral disease. Hence, this narrative review study was performed to reflect the reparative/regenerative aspects of crocin agonist periodontitis.
Collapse
Affiliation(s)
- Atefe Rekabi
- Department of Orthodontics, School of Dentistry, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Arman Ram
- School of Dentistry, Mashhad University of Medical Science, Mashhad, Iran
| | - Ahmad Nazari
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Arefnezhad
- Coenzyme R Research Institute, Tehran, Iran.
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Fatemeh Rezaei-Tazangi
- Department of Anatomy, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran.
| |
Collapse
|
10
|
Zhao J, Dou Y, Liang G, Huang H, Hong K, Yang W, Zhou G, Sha B, Liu J, Zeng L. Global Publication Trends and Research Hotspots of the Immune System and Osteoporosis: A Bibliometric and Visualization Analysis from 2012 to 2022. Endocr Metab Immune Disord Drug Targets 2024; 24:455-467. [PMID: 37881072 DOI: 10.2174/0118715303257269231011073100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/10/2023] [Accepted: 09/15/2023] [Indexed: 10/27/2023]
Abstract
BACKGROUND Osteoporosis (OP) is a systemic bone metabolism disorder in which the immune system and bone metabolism interact. OBJECTIVE The purpose of this study was to explore the research status, hot spots and trends regarding the influence of the immune system on OP and to provide a basis for research directions and applications in this field. METHODS We searched and collected literature about the immune system and OP published from 2012 to 2022 in the Web of Science Core Collection database. All the included studies were subjected to bibliometrics analysis using Hiplot Pro, VOSviewer and CiteSpace software to produce statistics and visual analyses of the literature output, countries, institutions, authors, keywords and journals. RESULTS A total of 1201 papers were included, and the number of citations of these articles reached 31,776. The number of publications and citations on the immune system and OP has increased year by year. The top three countries with the greatest number of papers published were China, the United States of America (USA) and Italy. The two institutions with the largest number of papers published were Sichuan University and Soochow University, both located in China. De Martinis Massimo (Italy) and Ginaldi Lia (Italy) are prolific authors in this field. The representative academic journals are Osteoporosis International, Frontiers in Immunology, Journal of Bone and Mineral Research, PloS One and Bone. The results of the keyword cooccurrence analysis showed that the research topics in this field mainly focused on T cells, cytokines, signaling pathways, vitamin D, postmenopausal OP and immune diseases. The keyword burst results showed that zoledronic acid, chain fatty acids and gut microbiota are the frontiers and trends of future research on this topic. CONCLUSION The influence of the immune system on OP has been widely studied, and the current research in this field focuses on the effect or mechanism of immune-related cytokines, signaling pathways and vitamin D on OP. Future research trends in this field should focus on the immune regulation mechanism and clinical transformation of zoledronic acid, chain fatty acids and the gut microbiota in OP.
Collapse
Affiliation(s)
- Jinlong Zhao
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, 510120, China
- The Research Team on Bone and Joint Degeneration and Injury of Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, 510120, China
| | - Yaoxing Dou
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, 510120, China
- The Research Team on Bone and Joint Degeneration and Injury of Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, 510120, China
| | - Guihong Liang
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, 510120, China
- The Research Team on Bone and Joint Degeneration and Injury of Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, 510120, China
| | - Hetao Huang
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, 510120, China
| | - Kunhao Hong
- The Fifth Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Guangdong Second Chinese Medicine Hospital (Guangdong Province Engineering Technology Research Institute of Traditional Chinese Medicine), Guangzhou, 510095, China
| | - Weiyi Yang
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, 510120, China
| | - Guanghui Zhou
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Bangxin Sha
- The Fifth Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Jun Liu
- The Research Team on Bone and Joint Degeneration and Injury of Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, 510120, China
- The Fifth Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Guangdong Second Chinese Medicine Hospital (Guangdong Province Engineering Technology Research Institute of Traditional Chinese Medicine), Guangzhou, 510095, China
| | - Lingfeng Zeng
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, 510120, China
- The Research Team on Bone and Joint Degeneration and Injury of Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, 510120, China
| |
Collapse
|
11
|
Zheng K, Wei Z, Li W. Ecological insights into hematopoiesis regulation: unraveling the influence of gut microbiota. Gut Microbes 2024; 16:2350784. [PMID: 38727219 PMCID: PMC11093038 DOI: 10.1080/19490976.2024.2350784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/29/2024] [Indexed: 05/16/2024] Open
Abstract
The gut microbiota constitutes a vast ecological system within the human body, forming a mutually interdependent entity with the host. In recent years, advancements in molecular biology technologies have provided a clearer understanding of the role of the gut microbiota. They not only influence the local immune status and metabolic functions of the host's intestinal tract but also impact the functional transformation of hematopoietic stem cells (HSCs) through the gut-blood axis. In this review, we will discuss the role of the gut microbiota in influencing hematopoiesis. We analyze the interactions between HSCs and other cellular components, with a particular emphasis on the direct functional regulation of HSCs by the gut microbiota and their indirect influence through cellular components in the bone marrow microenvironment. Additionally, we propose potential control targets for signaling pathways triggered by the gut microbiota to regulate hematopoietic function, filling crucial knowledge gaps in the development of this research field.
Collapse
Affiliation(s)
- Kaiwen Zheng
- Cancer Center, the First Hospital of Jilin University, Changchun, China
| | - Zhifeng Wei
- Department of Hematology, The First Hospital of Jilin University, Changchun, China
| | - Wei Li
- Cancer Center, the First Hospital of Jilin University, Changchun, China
| |
Collapse
|
12
|
Orsini F, Crotti C, Cincinelli G, Di Taranto R, Amati A, Ferrito M, Varenna M, Caporali R. Bone Involvement in Rheumatoid Arthritis and Spondyloartritis: An Updated Review. BIOLOGY 2023; 12:1320. [PMID: 37887030 PMCID: PMC10604370 DOI: 10.3390/biology12101320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/02/2023] [Accepted: 10/06/2023] [Indexed: 10/28/2023]
Abstract
Several rheumatologic diseases are primarily distinguished by their involvement of bone tissue, which not only serves as a mere target of the condition but often plays a pivotal role in its pathogenesis. This scenario is particularly prominent in chronic inflammatory arthritis such as rheumatoid arthritis (RA) and spondyloarthritis (SpA). Given the immunological and systemic nature of these diseases, in this review, we report an overview of the pathogenic mechanisms underlying specific bone involvement, focusing on the complex interactions that occur between bone tissue's own cells and the molecular and cellular actors of the immune system, a recent and fascinating field of interest defined as osteoimmunology. Specifically, we comprehensively elaborate on the distinct pathogenic mechanisms of bone erosion seen in both rheumatoid arthritis and spondyloarthritis, as well as the characteristic process of aberrant bone formation observed in spondyloarthritis. Lastly, chronic inflammatory arthritis leads to systemic bone involvement, resulting in systemic bone loss and consequent osteoporosis, along with increased skeletal fragility.
Collapse
Affiliation(s)
- Francesco Orsini
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy (A.A.)
- Department of Rheumatology and Medical Sciences, ASST G.Pini-CTO, 20122 Milan, Italy
| | - Chiara Crotti
- Bone Diseases Unit, Department of Rheumatology and Medical Sciences, ASST G.Pini-CTO, 20122 Milan, Italy
| | - Gilberto Cincinelli
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy (A.A.)
- Department of Rheumatology and Medical Sciences, ASST G.Pini-CTO, 20122 Milan, Italy
| | - Raffaele Di Taranto
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy (A.A.)
- Department of Rheumatology and Medical Sciences, ASST G.Pini-CTO, 20122 Milan, Italy
| | - Andrea Amati
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy (A.A.)
- Department of Rheumatology and Medical Sciences, ASST G.Pini-CTO, 20122 Milan, Italy
| | - Matteo Ferrito
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy (A.A.)
- Department of Rheumatology and Medical Sciences, ASST G.Pini-CTO, 20122 Milan, Italy
| | - Massimo Varenna
- Bone Diseases Unit, Department of Rheumatology and Medical Sciences, ASST G.Pini-CTO, 20122 Milan, Italy
| | - Roberto Caporali
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy (A.A.)
- Department of Rheumatology and Medical Sciences, ASST G.Pini-CTO, 20122 Milan, Italy
| |
Collapse
|
13
|
Xu H, Wang W, Liu X, Huang W, Zhu C, Xu Y, Yang H, Bai J, Geng D. Targeting strategies for bone diseases: signaling pathways and clinical studies. Signal Transduct Target Ther 2023; 8:202. [PMID: 37198232 DOI: 10.1038/s41392-023-01467-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 04/02/2023] [Accepted: 04/19/2023] [Indexed: 05/19/2023] Open
Abstract
Since the proposal of Paul Ehrlich's magic bullet concept over 100 years ago, tremendous advances have occurred in targeted therapy. From the initial selective antibody, antitoxin to targeted drug delivery that emerged in the past decades, more precise therapeutic efficacy is realized in specific pathological sites of clinical diseases. As a highly pyknotic mineralized tissue with lessened blood flow, bone is characterized by a complex remodeling and homeostatic regulation mechanism, which makes drug therapy for skeletal diseases more challenging than other tissues. Bone-targeted therapy has been considered a promising therapeutic approach for handling such drawbacks. With the deepening understanding of bone biology, improvements in some established bone-targeted drugs and novel therapeutic targets for drugs and deliveries have emerged on the horizon. In this review, we provide a panoramic summary of recent advances in therapeutic strategies based on bone targeting. We highlight targeting strategies based on bone structure and remodeling biology. For bone-targeted therapeutic agents, in addition to improvements of the classic denosumab, romosozumab, and PTH1R ligands, potential regulation of the remodeling process targeting other key membrane expressions, cellular crosstalk, and gene expression, of all bone cells has been exploited. For bone-targeted drug delivery, different delivery strategies targeting bone matrix, bone marrow, and specific bone cells are summarized with a comparison between different targeting ligands. Ultimately, this review will summarize recent advances in the clinical translation of bone-targeted therapies and provide a perspective on the challenges for the application of bone-targeted therapy in the clinic and future trends in this area.
Collapse
Affiliation(s)
- Hao Xu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, P. R. China
| | - Wentao Wang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, P. R. China
| | - Xin Liu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, P. R. China
| | - Wei Huang
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230031, Anhui, China
| | - Chen Zhu
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230031, Anhui, China
| | - Yaozeng Xu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, P. R. China
| | - Huilin Yang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, P. R. China.
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, 215006, Jiangsu, China.
| | - Jiaxiang Bai
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, P. R. China.
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, 215006, Jiangsu, China.
| | - Dechun Geng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, P. R. China.
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, 215006, Jiangsu, China.
| |
Collapse
|
14
|
Hu N, Wang J, Ju B, Li Y, Fan P, Jin X, Kang X, Wu S. Recent advances of osteoimmunology research in rheumatoid arthritis: From single-cell omics approach. Chin Med J (Engl) 2023:00029330-990000000-00608. [PMID: 37166215 DOI: 10.1097/cm9.0000000000002678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Indexed: 05/12/2023] Open
Abstract
ABSTRACT Cellular immune responses as well as generalized and periarticular bone loss are the key pathogenic features of rheumatoid arthritis (RA). Under the pathological conditions of RA, dysregulated inflammation and immune processes tightly interact with skeletal system, resulting in pathological bone damage via inhibition of bone formation or induction of bone resorption. Single-cell omics technologies are revolutionary tools in the field of modern biological research.They enable the display of the state and function of cells in various environments from a single-cell resolution, thus making it conducive to identify the dysregulated molecular mechanisms of bone destruction in RA as well as the discovery of potential therapeutic targets and biomarkers. Here, we summarize the latest findings of single-cell omics technologies in osteoimmunology research in RA. These results suggest that single-cell omics have made significant contributions to transcriptomics and dynamics of specific cells involved in bone remodeling, providing a new direction for our understanding of cellular heterogeneity in the study of osteoimmunology in RA.
Collapse
Affiliation(s)
- Nan Hu
- Department of Rheumatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Jing Wang
- Department of Rheumatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Bomiao Ju
- Department of Rheumatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Yuanyuan Li
- Department of Rheumatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Ping Fan
- Department of Rheumatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Xinxin Jin
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China
| | - Xiaomin Kang
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Shufang Wu
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| |
Collapse
|
15
|
Fraser D, Ganesan SM. Microbiome, alveolar bone, and metabolites: Connecting the dots. FRONTIERS IN DENTAL MEDICINE 2023. [DOI: 10.3389/fdmed.2022.1074339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The oral microbiome (OM) is a diverse and dynamic collection of species, separated from alveolar bone by the oral mucosa. Pathogenic shifts in the OM (dysbiosis) during periodontitis are associated with an inflammatory response in the oral mucosa that drives alveolar bone resorption. Alveolar bone is also affected by metabolic disorders such as osteoporosis. Accumulating evidence has linked another microbial community, the gut microbiome (GM), to systemic bone metabolism and osteoporosis. Underlying this connection is the biologic activity of metabolites, byproducts of host and bacterial activity. Limited evidence also suggests that metabolites in the oral cavity signal between the OM and immune system, influencing both alveolar bone homeostasis and pathologic bone destruction in periodontitis. While the oral cavity and gut are connected through the gastrointestinal tract, dissimilar roles for known metabolites between these two niches exemplify the difficulty in translating knowledge on gut-derived metabolites and bone metabolism to alveolar bone. Integrated metabolomic, transcriptomic, and metagenomic approaches hold promise for resolving these challenges and identifying novel metabolites which impact alveolar bone health. Further interrogation through mechanistic testing in pre-clinical models and carefully controlled clinical studies have potential to lead toward translation of these discoveries into meaningful therapies.
Collapse
|
16
|
Azam Z, Sapra L, Baghel K, Sinha N, Gupta RK, Soni V, Saini C, Mishra PK, Srivastava RK. Cissus quadrangularis (Hadjod) Inhibits RANKL-Induced Osteoclastogenesis and Augments Bone Health in an Estrogen-Deficient Preclinical Model of Osteoporosis Via Modulating the Host Osteoimmune System. Cells 2023; 12:cells12020216. [PMID: 36672152 PMCID: PMC9857034 DOI: 10.3390/cells12020216] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/17/2022] [Accepted: 12/21/2022] [Indexed: 01/06/2023] Open
Abstract
Osteoporosis is a systemic skeletal disease characterised by low bone mineral density (BMD), degeneration of bone micro-architecture, and impaired bone strength. Cissus quadrangularis (CQ), popularly known as Hadjod (bone setter) in Hindi, is a traditional medicinal herb exhibiting osteoprotective potential in various bone diseases, especially osteoporosis and fractures. However, the cellular mechanisms underpinning its direct effect on bone health through altering the host immune system have never been elucidated. In the present study, we interrogated the osteoprotective and immunoporotic (the osteoprotective potential of CQ via modulating the host immune system) potential of CQ in preventing inflammatory bone loss under oestrogen-deficient conditions. The current study outlines the CQ's osteoprotective potential under both ex vivo and in vivo (ovariectomized) conditions. Our ex vivo data demonstrated that, in a dose-dependent manner CQ, suppresses the RANKL-induced osteoclastogenesis (p < 0.001) as well as inhibiting the osteoclast functional activity (p < 0.001) in mouse bone marrow cells (BMCs). Our in vivo µ-CT and flow cytometry data further showed that CQ administration improves bone health and preserves bone micro-architecture by markedly raising the proportion of anti-osteoclastogenic immune cells, such as Th1 (p < 0.05), Th2 (p < 0.05), Tregs (p < 0.05), and Bregs (p < 0.01), while concurrently lowering the osteoclastogenic Th17 cells in bone marrow, mesenteric lymph nodes, Peyer's patches, and spleen in comparison to the control group. Serum cytokine analysis further supported the osteoprotective and immunoporotic potential of CQ, showing a significant increase in the levels of anti-osteoclastogenic cytokines (p < 0.05) (IFN-γ, IL-4, and IL-10) and a concurrent decrease in the levels of osteoclastogenic cytokines (p < 0.05) (TNF-α, IL-6, and IL-17). In conclusion, our data for the first time delineates the novel cellular and immunological mechanism of the osteoprotective potential of CQ under postmenopausal osteoporotic conditions.
Collapse
Affiliation(s)
- Zaffar Azam
- Translational Immunology, Osteoimmunology & Immunoporosis Lab (TIOIL), Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
- Department of Zoology, Dr. Harisingh Gour Vishwavidyalaya (Central University), Sagar 470003, India
| | - Leena Sapra
- Translational Immunology, Osteoimmunology & Immunoporosis Lab (TIOIL), Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Kalpana Baghel
- Department of Zoology, Dr. Harisingh Gour Vishwavidyalaya (Central University), Sagar 470003, India
| | - Niharika Sinha
- Drug Development Laboratory, School of Vocational Studies and Applied Sciences, Gautam Buddha University, Greater Noida 201312, India
| | - Rajesh K. Gupta
- Drug Development Laboratory, School of Vocational Studies and Applied Sciences, Gautam Buddha University, Greater Noida 201312, India
| | - Vandana Soni
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya, Sagar 470003, India
| | - Chaman Saini
- Translational Immunology, Osteoimmunology & Immunoporosis Lab (TIOIL), Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | | | - Rupesh K. Srivastava
- Translational Immunology, Osteoimmunology & Immunoporosis Lab (TIOIL), Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
- Correspondence: or ; Tel.: +91-1126593548
| |
Collapse
|
17
|
Kang IH, Baliga UK, Chatterjee S, Chakraborty P, Choi S, Buchweitz N, Li H, Wu Y, Yao H, Mehrotra S, Mehrotra M. Quantitative increase in T regulatory cells enhances bone remodeling in osteogenesis imperfecta. iScience 2022; 25:104818. [PMID: 36034228 PMCID: PMC9400089 DOI: 10.1016/j.isci.2022.104818] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 06/07/2022] [Accepted: 07/19/2022] [Indexed: 02/03/2023] Open
Abstract
Osteogenesis imperfecta (OI) is characterized by repeated bone fractures. Recent studies have shown that T lymphocytes and regulatory T cells (Tregs) regulate the functions of osteoclasts and osteoblasts, thus playing a role in bone turnover. We demonstrate an activated effector phenotype and higher secretion of pro-inflammatory cytokines, IFN-γ, and TNF-α in OI peripheral T cells as compared with wild-type (WT). Suppressive Tregs (spleen and thymus) were qualitatively similar, whereas there was a quantitative decrease in OI versus WT. Restoring Treg numbers by systemic transplantation in OI mice resulted in reduced T cell activation and effector cytokine secretion that correlated with significant improvements in tibial trabecular and cortical bone parameters and stiffness of femur, along with increased osteoblast mineralization and decreased osteoclast numbers. Therefore, Tregs can dampen the pro-inflammatory environment and enhance bone remodeling in OI mice. Thus, this study will be helpful in developing future autologous immunotherapy-based treatment modalities for OI.
Collapse
Affiliation(s)
- In-Hong Kang
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Uday K. Baliga
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Shilpak Chatterjee
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Paramita Chakraborty
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Seungho Choi
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Nathan Buchweitz
- Department of Orthopedics, Medical University of South Carolina, Charleston, SC 29425, USA
- Department of Bioengineering, Clemson University, Clemson, SC 29634, USA
- Clemson-MUSC Joint Bioengineering Program, South Carolina, USA
| | - Hong Li
- Depatment of Public Health Sciences, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Yongren Wu
- Department of Orthopedics, Medical University of South Carolina, Charleston, SC 29425, USA
- Department of Bioengineering, Clemson University, Clemson, SC 29634, USA
- Clemson-MUSC Joint Bioengineering Program, South Carolina, USA
| | - Hai Yao
- Department of Orthopedics, Medical University of South Carolina, Charleston, SC 29425, USA
- Department of Bioengineering, Clemson University, Clemson, SC 29634, USA
- Clemson-MUSC Joint Bioengineering Program, South Carolina, USA
- Department of Oral Health Sciences, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Shikhar Mehrotra
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29425, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Meenal Mehrotra
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29425, USA
- Department of Oral Health Sciences, Medical University of South Carolina, Charleston, SC 29425, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
- Center for Oral Health Research, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
18
|
Azam Z, Sapra L, Bhardwaj A, Yadav S, Mishra PK, Shukla P, Sharma V, Srivastava RK. Crocin attenuates osteoclastogenesis and enhances bone health by skewing the immunoporotic “Treg-Th17” cell axis in post-menopausal osteoporotic mice model. PHYTOMEDICINE PLUS 2022; 2:100302. [DOI: 10.1016/j.phyplu.2022.100302] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/03/2023]
|
19
|
Yuan W, Song C. Crosstalk between bone and other organs. MEDICAL REVIEW (BERLIN, GERMANY) 2022; 2:331-348. [PMID: 37724328 PMCID: PMC10471111 DOI: 10.1515/mr-2022-0018] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/06/2022] [Indexed: 09/20/2023]
Abstract
Bone has long been considered as a silent organ that provides a reservoir of calcium and phosphorus, traditionally. Recently, further study of bone has revealed additional functions as an endocrine organ connecting systemic organs of the whole body. Communication between bone and other organs participates in most physiological and pathological events and is responsible for the maintenance of homeostasis. Here, we present an overview of the crosstalk between bone and other organs. Furthermore, we describe the factors mediating the crosstalk and review the mechanisms in the development of potential associated diseases. These connections shed new light on the pathogenesis of systemic diseases and provide novel potential targets for the treatment of systemic diseases.
Collapse
Affiliation(s)
- Wanqiong Yuan
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Disease, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Beijing, China
| | - Chunli Song
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Disease, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Beijing, China
| |
Collapse
|
20
|
Liu S, Chen H, Ouyang J, Huang M, Zhang H, Zheng S, Xi S, Tang H, Gao Y, Xiong Y, Cheng D, Chen K, Liu B, Li W, Ren J, Yan X, Mao H. A high-quality assembly reveals genomic characteristics, phylogenetic status, and causal genes for leucism plumage of Indian peafowl. Gigascience 2022; 11:giac018. [PMID: 35383847 PMCID: PMC8985102 DOI: 10.1093/gigascience/giac018] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 11/15/2021] [Accepted: 02/09/2022] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND The dazzling phenotypic characteristics of male Indian peafowl (Pavo cristatus) are attractive both to the female of the species and to humans. However, little is known about the evolution of the phenotype and phylogeny of these birds at the whole-genome level. So far, there are no reports regarding the genetic mechanism of the formation of leucism plumage in this variant of Indian peafowl. RESULTS A draft genome of Indian peafowl was assembled, with a genome size of 1.05 Gb (the sequencing depth is 362×), and contig and scaffold N50 were up to 6.2 and 11.4 Mb, respectively. Compared with other birds, Indian peafowl showed changes in terms of metabolism, immunity, and skeletal and feather development, which provided a novel insight into the phenotypic evolution of peafowl, such as the large body size and feather morphologies. Moreover, we determined that the phylogeny of Indian peafowl was more closely linked to turkey than chicken. Specifically, we first identified that PMEL was a potential causal gene leading to the formation of the leucism plumage variant in Indian peafowl. CONCLUSIONS This study provides an Indian peafowl genome of high quality, as well as a novel understanding of phenotypic evolution and phylogeny of Indian peafowl. These results provide a valuable reference for the study of avian genome evolution. Furthermore, the discovery of the genetic mechanism for the development of leucism plumage is both a breakthrough in the exploration of peafowl plumage and also offers clues and directions for further investigations of the avian plumage coloration and artificial breeding in peafowl.
Collapse
Affiliation(s)
- Shaojuan Liu
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Hao Chen
- College of Life Science, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Jing Ouyang
- College of Life Science, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Min Huang
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Hui Zhang
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Sumei Zheng
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Suwang Xi
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Hongbo Tang
- College of Life Science, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Yuren Gao
- College of Life Science, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Yanpeng Xiong
- College of Life Science, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Di Cheng
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Kaifeng Chen
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Bingbing Liu
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Wanbo Li
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Jimei University, Xiamen 361021, China
| | - Jun Ren
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Xueming Yan
- College of Life Science, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Huirong Mao
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|
21
|
Dohnke S, Moehser S, Surnov A, Kurth T, Jessberger R, Kretschmer K, Garbe AI. Role of Dynamic Actin Cytoskeleton Remodeling in Foxp3+ Regulatory T Cell Development and Function: Implications for Osteoclastogenesis. Front Immunol 2022; 13:836646. [PMID: 35359955 PMCID: PMC8963504 DOI: 10.3389/fimmu.2022.836646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/17/2022] [Indexed: 01/20/2023] Open
Abstract
In T cells, processes such as migration and immunological synapse formation are accompanied by the dynamic reorganization of the actin cytoskeleton, which has been suggested to be mediated by regulators of RhoGTPases and by F-actin bundlers. SWAP-70 controls F-actin dynamics in various immune cells, but its role in T cell development and function has remained incompletely understood. CD4+ regulatory T (Treg) cells expressing the transcription factor Foxp3 employ diverse mechanisms to suppress innate and adaptive immunity, which is critical for maintaining immune homeostasis and self-tolerance. Here, we propose Swap-70 as a novel member of the Foxp3-dependent canonical Treg cell signature. We show that Swap-70-/- mice have increased numbers of Foxp3+ Treg cells with an effector/memory-like phenotype that exhibit impaired suppressor function in vitro, but maintain overall immune homeostasis in vivo. Upon formation of an immunological synapse with antigen presenting cells in vitro, cytosolic SWAP-70 protein is selectively recruited to the interface in Treg cells. In this context, Swap-70-/- Treg cells fail to downregulate CD80/CD86 on osteoclast precursor cells by trans-endocytosis and to efficiently suppress osteoclastogenesis and osteoclast function. These data provide first evidence for a crucial role of SWAP-70 in Treg cell biology and further highlight the important non-immune function of Foxp3+ Treg cells in bone homeostasis mediated through direct SWAP-70-dependent mechanisms.
Collapse
Affiliation(s)
- Sebastian Dohnke
- Osteoimmunology, Center for Regenerative Therapies Dresden (CRTD), Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Dresden, Germany
- Molecular and Cellular Immunology/Immune Regulation, Center for Regenerative Therapies Dresden (CRTD), Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Dresden, Germany
| | - Stephanie Moehser
- Osteoimmunology, Center for Regenerative Therapies Dresden (CRTD), Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Dresden, Germany
- Molecular and Cellular Immunology/Immune Regulation, Center for Regenerative Therapies Dresden (CRTD), Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Dresden, Germany
| | - Alexey Surnov
- Institute of Physiological Chemistry, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Thomas Kurth
- Center for Molecular and Cellular Bioengineering, Technology Platform, Electron Microscopy and Histology Facility, Technische Universität Dresden, Dresden, Germany
| | - Rolf Jessberger
- Institute of Physiological Chemistry, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Karsten Kretschmer
- Molecular and Cellular Immunology/Immune Regulation, Center for Regenerative Therapies Dresden (CRTD), Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Dresden, Germany
| | - Annette I. Garbe
- Osteoimmunology, Center for Regenerative Therapies Dresden (CRTD), Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Dresden, Germany
- *Correspondence: Annette I. Garbe,
| |
Collapse
|
22
|
Pan S, Wu YJ, Zhang SS, Cheng XP, Olatunji OJ, Yin Q, Zuo J. The Effect of α7nAChR Signaling on T Cells and Macrophages and Their Clinical Implication in the Treatment of Rheumatic Diseases. Neurochem Res 2022; 47:531-544. [PMID: 34783974 DOI: 10.1007/s11064-021-03480-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 11/02/2021] [Accepted: 11/05/2021] [Indexed: 10/19/2022]
Abstract
Rheumatoid arthritis (RA) is one of the most common autoimmune disease and until now, the etiology and pathogenesis of RA is not fully understood, although dysregulation of immune cells is one of the leading cause of RA-related pathological changes. Based on current understanding, the priority of anti-rheumatic treatments is to restore immune homeostasis. There are several anti-rheumatic drugs with immunomodulatory effects available nowadays, but most of them have obvious safety or efficacy shortcomings. Therefore, the development of novel anti-rheumatic drugs is still in urgently needed. Cholinergic anti-inflammatory pathway (CAP) has been identified as an important aspect of the so-called neuro-immune regulation feedback, and the interaction between acetylcholine and alpha 7 nicotinic acetylcholine receptor (α7nAChR) serves as the foundation for this signaling. Consistent to its immunomodulatory functions, α7nAChR is extensively expressed by immune cells. Accordingly, CAP activation greatly affects the differentiation and function of α7nAChR-expressing immune cells. As a result, targeting α7nAChR will bring profound therapeutic impacts on the treatment of inflammatory diseases like RA. RA is widely recognized as a CD4+ T cells-driven disease. As a major component of innate immunity, macrophages also significantly contribute to RA-related immune abnormalities. Theoretically, manipulation of CAP in immune cells is a feasible way to treat RA. In this review, we summarized the roles of different T cells and macrophages subsets in the occurrence and progression of RA, and highlighted the immune consequences of CAP activation in these cells under RA circumstances. The in-depth discussion is supposed to inspire the development of novel cell-specific CAP-targeting anti-rheumatic regimens.
Collapse
Affiliation(s)
- Shu Pan
- Department of Pharmacy, The Second Affiliated Hospital of Wannan Medical College, Wuhu, 241000, China
- School of Pharmacy, Wannan Medical College, Wuhu, 241000, China
- Research Center of Integration of Traditional Chinese and Western Medicine, Wannan Medical College, Wuhu, 241000, China
| | - Yi-Jin Wu
- Department of Pharmacy, The Second Affiliated Hospital of Wannan Medical College, Wuhu, 241000, China
- School of Pharmacy, Wannan Medical College, Wuhu, 241000, China
- Research Center of Integration of Traditional Chinese and Western Medicine, Wannan Medical College, Wuhu, 241000, China
| | - Sa-Sa Zhang
- Department of Pharmacy, The Second Affiliated Hospital of Wannan Medical College, Wuhu, 241000, China
- School of Pharmacy, Wannan Medical College, Wuhu, 241000, China
- Research Center of Integration of Traditional Chinese and Western Medicine, Wannan Medical College, Wuhu, 241000, China
| | - Xiu-Ping Cheng
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, 241000, China
| | - Opeyemi Joshua Olatunji
- Faculty of Traditional Thai Medicine, Prince of Songkla University, Hat Yai, 90110, Thailand
| | - Qin Yin
- Department of Pharmacy, The Second Affiliated Hospital of Wannan Medical College, Wuhu, 241000, China.
- School of Pharmacy, Wannan Medical College, Wuhu, 241000, China.
| | - Jian Zuo
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, 241000, China.
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu, 241000, China.
| |
Collapse
|
23
|
Srivastava RK, Sapra L. The Rising Era of “Immunoporosis”: Role of Immune System in the Pathophysiology of Osteoporosis. J Inflamm Res 2022; 15:1667-1698. [PMID: 35282271 PMCID: PMC8906861 DOI: 10.2147/jir.s351918] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/10/2022] [Indexed: 12/21/2022] Open
Abstract
Discoveries in the last few years have emphasized the existence of an enormous breadth of communication between bone and the immune system in maintaining skeletal homeostasis. Originally, the discovery of various factors was assigned to the immune system viz. interleukin (IL)-6, IL-10, IL-17, tumor necrosis factor (TNF)-α, receptor activator of nuclear factor kappa B ligand (RANKL), nuclear factor of activated T cells (NFATc1), etc., but now these factors have also been shown to have a significant impact on osteoblasts (OBs) and osteoclasts (OCs) biology. These discoveries led to an alteration in the approach for the treatment of several bone pathologies including osteoporosis. Osteoporosis is an inflammatory bone anomaly affecting more than 500 million people globally. In 2018, to highlight the importance of the immune system in the pathophysiology of osteoporosis, our group coined the term “immunoporosis”. In the present review, we exhaustively revisit the characteristics, mechanism of action, and function of both innate and adaptive immune cells with the goal of understanding the potential of immune cells in osteoporosis. We also highlight the Immunoporotic role of gut microbiota (GM) for the treatment and management of osteoporosis. Importantly, we further discuss whether an immune cell-based strategy to treat and manage osteoporosis is feasible and relevant in clinical settings.
Collapse
Affiliation(s)
- Rupesh K Srivastava
- Immunoporosis Lab, Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi, 110029, India
- Correspondence: Rupesh K Srivastava, Tel +91 11-26593548, Email ;
| | - Leena Sapra
- Immunoporosis Lab, Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi, 110029, India
| |
Collapse
|
24
|
Zhang W, Zhao W, Li W, Geng Q, Zhao R, Yang Y, Lv L, Chen W. The Imbalance of Cytokines and Lower Levels of Tregs in Elderly Male Primary Osteoporosis. Front Endocrinol (Lausanne) 2022; 13:779264. [PMID: 35721756 PMCID: PMC9205399 DOI: 10.3389/fendo.2022.779264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 04/26/2022] [Indexed: 11/13/2022] Open
Abstract
INTRODUCTION Osteoporosis (OP) is a debilitating disease that brings a heavy burden to individuals and society with reduced quality of life and lifespan. However, it's frequently overlooked and poorly studied in elderly male patients. Worse still, few anti-osteoporosis drugs are effective at the prevention and treatment of osteoporosis in men. It has been reported that the cells of bone and the immune system share common progenitors, cytokines and growth factors, and that reciprocal interactions occur during health and disease. Nevertheless, the role of immune system in OP is not fully understood, especially in male patients. Therefore, this study aimed to investigate molecular alterations in immune cells in men with OP and to identify immunomodulatory strategies with potential therapeutic value. MATERIALS AND METHODS A population of 121 men aged between 51 and 80 years old was recruited. Bone mineral density (BMD) was measured at the lumbar spine L1-4 and femoral neck using dual-energy X-ray absorptiometry (DXA). Twenty people were healthy, 66 people had osteopenia and 35 people had OP. Bone metabolic markers, Th1, Th2, Tregs and immune molecules were evaluated at the time of enrollment. RESULTS Smoking was a risk factor for OP. C-terminal crosslinking of type I collagen (β-CTX) and the ratio of receptor activator of nuclear factor-κB ligand (RANKL) to osteoprotegerin (OPG) were higher in OP group, which had lower 25-hydroxyvitamin D [25(OH)D] levels. OP had the higher levels of IL-6 and TNF-α and lower levels of IFN-γ and IL-10. CD4+CD25+CD127-/low Tregs were significantly lower in the OP group. The imbalance of Th1/Th2 cells may play an important role in the development of OP. 25(OH)D may play essential roles in maintaining bone health. The low level of Tregs is also one of the underlying immune mechanism that leads to male primary OP. CONCLUSION The active function of osteoclasts and the decline in osteoblasts were characteristics of OP, and the imbalance in cytokines and lower levels of Tregs were observed in elderly male patients with primary OP.
Collapse
Affiliation(s)
- Wei Zhang
- Departments of Endocrinology, Qujing Affiliated Hospital of Kunming Medical University, Yunnan, China
| | - Wei Zhao
- Department of Spinal Surgery, Dali Bai Autonomous Prefecture People’s Hospital, Yunnan, China
| | - Wei Li
- Departments of Medical Administration, Qujing Affiliated Hospital of Kunming Medical University, Yunnan, China
| | - Qi Geng
- Department of Medical Laboratories, Qujing Affiliated Hospital of Kunming Medical University, Yunnan, China
| | - Rui Zhao
- Departments of Endocrinology, Qujing Affiliated Hospital of Kunming Medical University, Yunnan, China
| | - Yungui Yang
- Departments of Geriatrics, The Third People’s Hospital of Qujing City, Yunnan, China
- *Correspondence: Yungui Yang, ; Luyan Lv, ; Weiwen Chen,
| | - Luyan Lv
- Departments of Geriatrics, Qujing Affiliated Hospital of Kunming Medical University, Yunnan, China
- *Correspondence: Yungui Yang, ; Luyan Lv, ; Weiwen Chen,
| | - Weiwen Chen
- Departments of Endocrinology, Qujing Affiliated Hospital of Kunming Medical University, Yunnan, China
- *Correspondence: Yungui Yang, ; Luyan Lv, ; Weiwen Chen,
| |
Collapse
|
25
|
Xia Y, Fan D, Li X, Lu X, Ye Q, Xi X, Wang Q, Zhao H, Xiao C. Yi Shen Juan Bi Pill Regulates the Bone Immune Microenvironment via the JAK2/STAT3 Signaling Pathway in Vitro. Front Pharmacol 2022; 12:746786. [PMID: 34970139 PMCID: PMC8712765 DOI: 10.3389/fphar.2021.746786] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 11/15/2021] [Indexed: 02/03/2023] Open
Abstract
Rheumatoid arthritis (RA) is characterized by an impaired articular bone immune microenvironment, which is associated with regulatory T cells (Tregs) hypofunction and osteoclasts (OCs) hyperfunction and leads to articular bone erosion and systemic bone loss. Studies have shown that Tregs slow bone loss in RA by regulating the bone resorption function of OCs and the JAK/STAT signaling pathway can regulate the immunosuppressive function of Tregs and reduce the bone erosion function of OCs. Yi Shen Juan Bi Pill (YSJB) is a classic Chinese herbal compound for the treatment of RA. However, whether YSJB regulates bone immune microenvironment homeostasis through JAK/STAT signaling pathway remains unclear. Based on in vitro OC single culture, Treg single culture and OC-Treg coculture systems, treatments were performed using drug-containing serum, AG490 and JAK2 siRNA to explore whether YSJB-containing serum regulates the homeostasis of the bone immune microenvironment through the JAK/STAT signaling pathway. In vitro, YSJB treatment decreased the number of TRAP+ cells and the areas of bone resorption and inhibited the expression of RANK, NFATc1, c-fos, JAK2, and STAT3 in both the OC single culture system and the OC-Treg coculture system. Tregs further reduced the number of TRAP+ cells and the areas of bone resorption in the coculture system. YSJB promoted the secretion of IL-10 while inhibiting the expression of JAK2 and STAT3 in Tregs. Moreover, inhibiting the expression of JAK2 with the JAK2 inhibitor AG490 and JAK2 siRNA improved the immunosuppressive functions of Treg, inhibited OC differentiation and bone resorption. Our study demonstrates that YSJB can regulate OC-mediated bone resorption and Treg-mediated bone immunity through the JAK2/STAT3 signaling pathway. This study provides a new strategy for regulating the bone immune microenvironment in RA with traditional Chinese medicine.
Collapse
Affiliation(s)
- Ya Xia
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Danping Fan
- Department of Emergency, China-Japan Friendship Hospital, Beijing, China.,Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China.,Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Xiaoya Li
- The Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Xiangchen Lu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.,Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China.,Pinggu Hospital, Beijing Traditional Chinese Medicine Hospital, Beijing, China
| | - Qinbin Ye
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Xiaoyu Xi
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Qiong Wang
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Hongyan Zhao
- Beijing Key Laboratory of Research of Chinese Medicine on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Cheng Xiao
- Department of Emergency, China-Japan Friendship Hospital, Beijing, China.,Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China.,Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
26
|
Zhao H, Wang X, Zhang W, Wang L, Zhu C, Huang Y, Chen R, Chen X, Wang M, Pan G, Shi Q, Zhou X. Bioclickable Mussel-Derived Peptides With Immunoregulation for Osseointegration of PEEK. Front Bioeng Biotechnol 2021; 9:780609. [PMID: 34900969 PMCID: PMC8652040 DOI: 10.3389/fbioe.2021.780609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 10/25/2021] [Indexed: 02/01/2023] Open
Abstract
Polyether ether ketone (PEEK)–based biomaterials have been widely used in the field of spine and joint surgery. However, lack of biological activity limits their further clinical application. In this study, we synthesized a bioclickable mussel-derived peptide Azide-DOPA4 as a PEEK surface coating modifier and further combined bone morphogenetic protein 2 functional peptides (BMP2p) with a dibenzylcyclooctyne (DBCO) motif through bio-orthogonal reactions to obtain DOPA4@BMP2p-PEEK. As expected, more BMP2p can be conjugated on PEEK after Azide-DOPA4 coating. The surface roughness and hydrophilicity of DOPA4@BMP2p-PEEK were obviously increased. Then, we optimized the osteogenic capacity of PEEK substrates. In vitro, compared with the BMP2p-coating PEEK material, DOPA4@BMP2p-PEEK showed significantly higher osteogenic induction capability of rat bone marrow mesenchymal stem cells. In vivo, we constructed a rat calvarial bone defect model and implanted PEEK materials with a differently modified surface. Micro-computed tomography scanning displayed that the DOPA4@BMP2p-PEEK implant group had significantly higher new bone volume and bone mineral density than the BMP2p-PEEK group. Histological staining of hard tissue further confirmed that the DOPA4@BMP2p-PEEK group revealed a better osseointegrative effect than the BMP2p-PEEK group. More importantly, we also found that DOPA4@BMP2p coating has a synergistic effect with induced Foxp3+ regulatory T (iTreg) cells to promote osteogenesis. In summary, with an easy-to-perform, two-step surface bioengineering approach, the DOPA4@BMP2p-PEEK material reported here displayed excellent biocompatibility and osteogenic functions. It will, moreover, offer insights to engineering surfaces of orthopedic implants.
Collapse
Affiliation(s)
- Huan Zhao
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Orthopaedic Institute of Soochow University, Suzhou, China
| | - Xiaokang Wang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Orthopaedic Institute of Soochow University, Suzhou, China.,Department of Orthopaedics, The Affiliated Maternity and Child Health Care Hospital of Nantong University, Nantong University, Nantong, China
| | - Wen Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Orthopaedic Institute of Soochow University, Suzhou, China
| | - Lin Wang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Orthopaedic Institute of Soochow University, Suzhou, China
| | - Can Zhu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Orthopaedic Institute of Soochow University, Suzhou, China
| | - Yingkang Huang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Orthopaedic Institute of Soochow University, Suzhou, China
| | - Rongrong Chen
- Department of Pediatrics, The Affiliated Maternity and Child Health Care Hospital of Nantong University, Nantong University, Nantong, China
| | - Xu Chen
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, China
| | - Miao Wang
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, China
| | - Guoqing Pan
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, China
| | - Qin Shi
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Orthopaedic Institute of Soochow University, Suzhou, China
| | - Xichao Zhou
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Orthopaedic Institute of Soochow University, Suzhou, China
| |
Collapse
|
27
|
Nicholls J, Cao B, Le Texier L, Xiong LY, Hunter CR, Llanes G, Aguliar EG, Schroder WA, Phipps S, Lynch JP, Cao H, Heazlewood SY, Williams B, Clouston AD, Nefzger CM, Polo JM, Nilsson SK, Blazar BR, MacDonald KPA. Bone Marrow Regulatory T Cells Are a Unique Population, Supported by Niche-Specific Cytokines and Plasmacytoid Dendritic Cells, and Required for Chronic Graft-Versus-Host Disease Control. Front Cell Dev Biol 2021; 9:737880. [PMID: 34631716 PMCID: PMC8493124 DOI: 10.3389/fcell.2021.737880] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 08/16/2021] [Indexed: 11/23/2022] Open
Abstract
Regulatory T cell (Treg) reconstitution is essential for reestablishing tolerance and maintaining homeostasis following stem-cell transplantation. We previously reported that bone marrow (BM) is highly enriched in autophagy-dependent Treg and autophagy disruption leads to a significant Treg loss, particularly BM-Treg. To correct the known Treg deficiency observed in chronic graft-versus-host disease (cGVHD) patients, low dose IL-2 infusion has been administered, substantially increasing peripheral Treg (pTreg) numbers. However, as clinical responses were only seen in ∼50% of patients, we postulated that pTreg augmentation was more robust than for BM-Treg. We show that BM-Treg and pTreg have distinct characteristics, indicated by differential transcriptome expression for chemokine receptors, transcription factors, cell cycle control of replication and genes linked to Treg function. Further, BM-Treg were more quiescent, expressed lower FoxP3, were highly enriched for co-inhibitory markers and more profoundly depleted than splenic Treg in cGVHD mice. In vivo our data are consistent with the BM and not splenic microenvironment is, at least in part, driving this BM-Treg signature, as adoptively transferred splenic Treg that entered the BM niche acquired a BM-Treg phenotype. Analyses identified upregulated expression of IL-9R, IL-33R, and IL-7R in BM-Treg. Administration of the T cell produced cytokine IL-2 was required by splenic Treg expansion but had no impact on BM-Treg, whereas the converse was true for IL-9 administration. Plasmacytoid dendritic cells (pDCs) within the BM also may contribute to BM-Treg maintenance. Using pDC-specific BDCA2-DTR mice in which diptheria toxin administration results in global pDC depletion, we demonstrate that pDC depletion hampers BM, but not splenic, Treg homeostasis. Together, these data provide evidence that BM-Treg and splenic Treg are phenotypically and functionally distinct and influenced by niche-specific mediators that selectively support their respective Treg populations. The unique properties of BM-Treg should be considered for new therapies to reconstitute Treg and reestablish tolerance following SCT.
Collapse
Affiliation(s)
- Jemma Nicholls
- Division of Blood and Marrow Transplant and Cellular Therapies, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States
| | - Benjamin Cao
- Biomedical Manufacturing Commonwealth Scientific and Industrial Research Organization, Melbourne, VIC, Australia
- Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia
| | - Laetitia Le Texier
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Laura Yan Xiong
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Christopher R. Hunter
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Genesis Llanes
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Ethan G. Aguliar
- Division of Blood and Marrow Transplant and Cellular Therapies, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States
| | - Wayne A. Schroder
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Simon Phipps
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Jason P. Lynch
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Huimin Cao
- Biomedical Manufacturing Commonwealth Scientific and Industrial Research Organization, Melbourne, VIC, Australia
- Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia
| | - Shen Y. Heazlewood
- Biomedical Manufacturing Commonwealth Scientific and Industrial Research Organization, Melbourne, VIC, Australia
- Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia
| | - Brenda Williams
- Biomedical Manufacturing Commonwealth Scientific and Industrial Research Organization, Melbourne, VIC, Australia
- Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia
| | | | - Christian M. Nefzger
- Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
- Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Jose M. Polo
- Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia
- Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
- Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC, Australia
| | - Susan K. Nilsson
- Biomedical Manufacturing Commonwealth Scientific and Industrial Research Organization, Melbourne, VIC, Australia
- Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia
| | - Bruce R. Blazar
- Division of Blood and Marrow Transplant and Cellular Therapies, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States
| | - Kelli P. A. MacDonald
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| |
Collapse
|
28
|
Monteiro AC, Bonomo A. CD8 + T cells from experimental in situ breast carcinoma interfere with bone homeostasis. Bone 2021; 150:116014. [PMID: 34022456 DOI: 10.1016/j.bone.2021.116014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 05/10/2021] [Accepted: 05/13/2021] [Indexed: 10/21/2022]
Abstract
Before bone colonization, immune cells primed by breast primary tumor cells actively modify the bone microenvironment, disturbing the complex and tightly homeostatic signaling network regulated by osteoblasts and osteoclasts. Indeed, we have shown that RANKL+ CD4+ T cells specific for the 4T1 mammary carcinoma cell line, arrive at the bone marrow (BM) before metastatic cells and set the pre-metastatic niche. In the absence of RANKL expressed by T cells, there is no pre-metastatic osteolytic disease and bone metastases are blocked. Adding to the role of T cells, we have recently demonstrated that dendritic cells (DCs) provide a positive feedback loop to the osteolytic profile induced by the metastatic tumor. In this setting, DCs are able to differentiate into potent bone resorbing osteoclast-like cells keeping their antigen-presenting cell (APC) properties to maintain RANKL+ CD4+ Th17 T cells activities, via IL-23 expression. Here we show that 67NR non-metastatic tumor cells, a sibling of 4T1 tumor cell line, induce an increase in trabecular bone mass on day 11 post-tumor implant. This observation was associated with an expansion of the osteoblastic lineage cells accompanied by a reduction of osteoclasts numbers. Moreover, BM derived CD8+ T cells from 67NR tumor-bearing mice, express an anti-osteoclastogenic cytokine milieu enriched by IFN-γ, IL-10 and producing low levels of RANKL. The frequency of BM derived CD8+ FoxP3+ regulatory T cells, known as potent suppressors of osteoclastogenesis both in vitro and in vivo, was also increased in such animals. This milieu was capable to suppress 4T1 tumor-specific CD4+ T cells phenotype in vivo and in vitro and strongly inhibited bone metastases establishment, restoring trabecular bone mass volume. We concluded that the 67NR+ tumor derived CD8+ T cells phenotypes, either contributing to bone homeostasis and/or control of 4T1 breast tumor pre-metastatic disease, interfere with osteoclasts and osteoblasts activities inside BM. Our study highlights the opposing roles of subverted tumor CD4+ and CD8+ T cell subtypes in directing breast cancer progression and bone metastases establishment. For non-metastatic tumors, the role of T cells regarding bone remodeling has never been addressed before. As far as we know, this is the first description that an in situ carcinoma can modify distant sites. In the case showed here, modification of the distant bone site disfavors pre-metastatic bone niche formation.
Collapse
Affiliation(s)
- Ana Carolina Monteiro
- Laboratory of Osteo and Tumor Immunology, Department of Immunobiology, Fluminense Federal University, Rio de Janeiro, Brazil; Laboratory on Thymus Research, Brazil.
| | - Adriana Bonomo
- Laboratory on Thymus Research, Brazil; National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Rio de Janeiro, Brazil; Research Network on Neuroinflammation (RENEURIN), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| |
Collapse
|
29
|
Nikolaou C, Muehle K, Schlickeiser S, Japp AS, Matzmohr N, Kunkel D, Frentsch M, Thiel A. High-dimensional single cell mass cytometry analysis of the murine hematopoietic system reveals signatures induced by ageing and physiological pathogen challenges. IMMUNITY & AGEING 2021; 18:20. [PMID: 33879187 PMCID: PMC8056611 DOI: 10.1186/s12979-021-00230-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 03/26/2021] [Indexed: 11/10/2022]
Abstract
BACKGROUND Immune ageing is a result of repetitive microbial challenges along with cell intrinsic or systemic changes occurring during ageing. Mice under 'specific-pathogen-free' (SPF) conditions are frequently used to assess immune ageing in long-term experiments. However, physiological pathogenic challenges are reduced in SPF mice. The question arises to what extent murine experiments performed under SPF conditions are suited to analyze immune ageing in mice and serve as models for human immune ageing. Our previous comparisons of same aged mice with different microbial exposures, unambiguously identified distinct clusters of immune cells characteristic for numerous previous pathogen encounters in particular in pet shop mice. RESULTS We here performed single cell mass cytometry assessing splenic as secondary and bone marrow as primary lymphoid organ-derived leukocytes isolated from young versus aged SPF mice in order to delineate alterations of the murine hematopoietic system induced during ageing. We then compared immune clusters from young and aged SPF mice to pet shop mice in order to delineate alterations of the murine hematopoietic system induced by physiological pathogenic challenges and those caused by cell intrinsic or systemic changes during ageing. Notably, distinct immune signatures were similarly altered in both pet shop and aged SPF mice in comparison to young SPF mice, including increased frequencies of memory T lymphocytes, effector-cytokine producing T cells, plasma cells and mature NK cells. However, elevated frequencies of CD4+ T cells, total NK cells, granulocytes, pDCs, cDCs and decreased frequencies of naïve B cells were specifically identified only in pet shop mice. In aged SPF mice specifically the frequencies of splenic IgM+ plasma cells, CD8+ T cells and CD4+ CD25+ Treg were increased as compared to pet shop mice and young mice. CONCLUSIONS Our study dissects firstly how ageing impacts both innate and adaptive immune cells in primary and secondary lymphoid organs. Secondly, it partly distinguishes murine intrinsic immune ageing alterations from those induced by physiological pathogen challenges highlighting the importance of designing mouse models for their use in preclinical research including vaccines and immunotherapies.
Collapse
Affiliation(s)
- Christos Nikolaou
- Regenerative Immunology and Aging, BIH Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, Berlin, Germany. .,Institute for Medical Immunology, Charité Universitätsmedizin Berlin, Berlin, Germany. .,Berlin-Brandenburg School for Regenerative Therapies (BSRT), Charité Universitätsmedizin Berlin, Berlin, Germany.
| | - Kerstin Muehle
- Regenerative Immunology and Aging, BIH Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Stephan Schlickeiser
- Institute for Medical Immunology, Charité Universitätsmedizin Berlin, Berlin, Germany.,Flow & Mass Cytometry Core Facility, Charité - Universitätsmedizin Berlin and Berlin Institute of Health (BIH), Berlin, Germany
| | - Alberto Sada Japp
- Regenerative Immunology and Aging, BIH Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Nadine Matzmohr
- Regenerative Immunology and Aging, BIH Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Desiree Kunkel
- Flow & Mass Cytometry Core Facility, Charité - Universitätsmedizin Berlin and Berlin Institute of Health (BIH), Berlin, Germany
| | - Marco Frentsch
- Regenerative Immunology and Aging, BIH Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Andreas Thiel
- Regenerative Immunology and Aging, BIH Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
30
|
Hasiakos S, Gwack Y, Kang M, Nishimura I. Calcium Signaling in T Cells and Chronic Inflammatory Disorders of the Oral Cavity. J Dent Res 2021; 100:693-699. [PMID: 33541200 DOI: 10.1177/0022034521990652] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Acute immune responses to microbial insults in the oral cavity often progress to chronic inflammatory diseases such as periodontitis and apical periodontitis. Chronic oral inflammation causes destruction of the periodontium, potentially leading to loss of the dentition. Previous investigations have demonstrated that the composition of oral immune cells, rather than the overall extent of cellular infiltration, determines the pathological development of chronic inflammation. The role of T lymphocyte populations, including Th1, Th2, Th17, and Treg cells, has been extensively described. Studies now propose pathogenic Th17 cells as a distinct subset, uniquely classifiable from traditional Th17 populations. In situ differentiation of pathogenic Th17 cells has been verified as a source of destructive inflammation, which critically drives pathogenesis in chronic inflammatory diseases such as diabetes, rheumatoid arthritis, and inflammatory bowel disease. Pathogenic Th17 cells resemble a Th1 penotype and produce not only interleukin 17 (IL-17) but also γ-interferon (IFN-γ) and granulocyte-macrophage colony-stimulating factor (GM-CSF). The proinflammatory cytokine-specific mechanisms known to induce IL-17 expression in Th17 cells are well characterized; however, differentiation mechanisms that lead to pathogenic Th17 cells are less understood. Recently, Ca2+ signaling through Ca2+ release-activated Ca2+ channels (CRAC) in T cells has been uncovered as a major signaling axis involved in the regulation of T-cell-mediated chronic inflammation. In particular, pathogenic Th17 cell-mediated immunological diseases appear to be effectively targeted via such Ca2+ signaling pathways. Pathogenic plasticity of Th17 cells has been extensively illustrated in autoimmune and chronic inflammatory diseases. Although their specific causal relationship to oral infection-induced chronic inflammatory diseases is not fully established, pathogenic Th17 cells may be involved in the underlining mechanism. This review highlights the current understanding of T-cell phenotype regulation, calcium signaling pathways in this event, and the potential role of pathogenic Th17 cells in chronic inflammatory disorders of the oral cavity.
Collapse
Affiliation(s)
- S Hasiakos
- Division of Oral Biology and Medicine, UCLA School of Dentistry, Los Angeles, CA, USA.,Department of Physiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Y Gwack
- Department of Physiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - M Kang
- Section of Endodontics, UCLA School of Dentistry, Los Angeles, CA, USA
| | - I Nishimura
- Division of Oral Biology and Medicine, UCLA School of Dentistry, Los Angeles, CA, USA.,Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, CA, USA
| |
Collapse
|
31
|
Sapra L, Dar HY, Bhardwaj A, Pandey A, Kumari S, Azam Z, Upmanyu V, Anwar A, Shukla P, Mishra PK, Saini C, Verma B, Srivastava RK. Lactobacillus rhamnosus attenuates bone loss and maintains bone health by skewing Treg-Th17 cell balance in Ovx mice. Sci Rep 2021; 11:1807. [PMID: 33469043 PMCID: PMC7815799 DOI: 10.1038/s41598-020-80536-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 12/18/2020] [Indexed: 12/20/2022] Open
Abstract
Osteoporosis is a systemic-skeletal disorder characterized by enhanced fragility of bones leading to increased rates of fractures and morbidity in large number of populations. Probiotics are known to be involved in management of various-inflammatory diseases including osteoporosis. But no study till date had delineated the immunomodulatory potential of Lactobacillus rhamnosus (LR) in bone-health. In the present study, we examined the effect of probiotic-LR on bone-health in ovariectomy (Ovx) induced postmenopausal mice model. In the present study, we for the first time report that LR inhibits osteoclastogenesis and modulates differentiation of Treg-Th17 cells under in vitro conditions. We further observed that LR attenuates bone loss under in vivo conditions in Ovx mice. Both the cortical and trabecular bone-content of Ovx+LR treated group was significantly higher than Ovx-group. Remarkably, the percentage of osteoclastogenic CD4+Rorγt+Th17 cells at distinct immunological sites such as BM, spleen, LN and PP were significantly reduced, whereas the percentage of anti-osteoclastogenic CD4+Foxp3+Tregs and CD8+Foxp3+Tregs were significantly enhanced in LR-treated group thereby resulting in inhibition of bone loss. The osteoprotective role of LR was further supported by serum cytokine data with a significant reduction in osteoclastogenic cytokines (IL-6, IL-17 and TNF-α) along with enhancement in anti-osteoclastogenic cytokines (IL-4, IL-10, IFN-γ) in LR treated-group. Altogether, the present study for the first time establishes the osteoprotective role of LR on bone health, thus highlighting the immunomodulatory potential of LR in the treatment and management of various bone related diseases including osteoporosis.
Collapse
Affiliation(s)
- Leena Sapra
- Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi, 110029, India
| | - Hamid Y Dar
- Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi, 110029, India
- Division of Endocrinology, School of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Asha Bhardwaj
- Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi, 110029, India
| | - Amit Pandey
- Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi, 110029, India
| | - Surbhi Kumari
- Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi, 110029, India
| | - Zaffar Azam
- Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi, 110029, India
- Department of Zoology, Dr. Harisingh Gour Central University, Sagar, MP, 470003, India
| | - Vishu Upmanyu
- Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi, 110029, India
| | - Aleena Anwar
- Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi, 110029, India
| | - Prashant Shukla
- Department of Physics, Dr. Harisingh Gour Central University, Sagar, MP, 470003, India
| | - Pradyumna K Mishra
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, MP, 462001, India
| | - Chaman Saini
- Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi, 110029, India
| | - Bhupendra Verma
- Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi, 110029, India
| | - Rupesh K Srivastava
- Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi, 110029, India.
| |
Collapse
|
32
|
Wang D, Wang J, Zheng X. Genes and pathways of regulatory T cells regulated by adenosine A2A receptor: A bioinformatics study. ALL LIFE 2021. [DOI: 10.1080/26895293.2021.1999861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Dong Wang
- Department of Orthopedics, Beijing Chaoyang Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Jingyi Wang
- Department of SICU, Beijing Chaoyang Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Xi Zheng
- Department of SICU, Beijing Chaoyang Hospital, Capital Medical University, Beijing, People’s Republic of China
| |
Collapse
|
33
|
Wang Y, Zhang W, Lim SM, Xu L, Jin JO. Interleukin-10-Producing B Cells Help Suppress Ovariectomy-Mediated Osteoporosis. Immune Netw 2020; 20:e50. [PMID: 33425435 PMCID: PMC7779870 DOI: 10.4110/in.2020.20.e50] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 12/12/2022] Open
Abstract
Osteoporosis is prevalent in elderly women and it may cause dental implant failure. In particular, estrogen deficiency in postmenopausal women leads to higher rates of osteoporosis prevalence. Immune cell-mediated effects involving the development of osteoporosis have been studied previously; however, the role of IL-10-producing regulatory B (B10) cells in osteoporosis is largely unclear. Here, we examined the role of B10 cells in osteoporosis. C57BL/6 mice were subjected to ovariectomy (OVX). Fifteen weeks after OVX surgery, the first molar of the right maxillary was extracted, and twenty-four weeks after OVX surgery, serous progression of osteoporosis was observed in the alveolar bone. Moreover, the proportion of CD19+CD5+CD1dhigh regulatory B cells, B10, and CD4+CD25+FoxP3+ regulatory T cells from the spleen of OVX mice decreased during the progression of osteoporosis, compared to controls. In contrast to regulatory cells, IL-17-producing Th (Th17) cell levels were increased in OVX mice. Adoptive transfer of B10 cells to OVX mice led to a decrease in Th17 cell abundance and inhibited the development of osteoporosis in the alveolar bone from OVX mice. Thus, our results suggest that B10 cells may help suppress osteoporosis development.
Collapse
Affiliation(s)
- Yuhua Wang
- Department of Prosthodontics, Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Wei Zhang
- Shanghai Public Health Clinical Center, Shanghai Medical College, Fudan University, Shanghai 201508, China
| | - Seong-Min Lim
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea.,Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Korea
| | - Li Xu
- Shanghai Public Health Clinical Center, Shanghai Medical College, Fudan University, Shanghai 201508, China
| | - Jun-O Jin
- Shanghai Public Health Clinical Center, Shanghai Medical College, Fudan University, Shanghai 201508, China.,Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea.,Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Korea
| |
Collapse
|
34
|
Miao R, Lim VY, Kothapalli N, Ma Y, Fossati J, Zehentmeier S, Sun R, Pereira JP. Hematopoietic Stem Cell Niches and Signals Controlling Immune Cell Development and Maintenance of Immunological Memory. Front Immunol 2020; 11:600127. [PMID: 33324418 PMCID: PMC7726109 DOI: 10.3389/fimmu.2020.600127] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 10/29/2020] [Indexed: 12/11/2022] Open
Abstract
Studies over the last couple of decades have shown that hematopoietic stem cells (HSCs) are critically dependent on cytokines such as Stem Cell Factor and other signals provided by bone marrow niches comprising of mesenchymal stem and progenitor cells (MSPCs) and endothelial cells (ECs). Because of their critical roles in HSC maintenance the niches formed by MSPCs and ECs are commonly referred to as HSC niches. For the most part, the signals required for HSC maintenance act in a short-range manner, which imposes the necessity for directional and positional cues in order for HSCs to localize and be retained properly in stem cell niches. The chemokine CXCL12 and its Gαi protein coupled receptor CXCR4, besides promoting HSC quiescence directly, also play instrumental roles in enabling HSCs to access bone marrow stem cell niches. Recent studies have revealed, however, that HSC niches also provide a constellation of hematopoietic cytokines that are critical for the production of most, if not all, blood cell types. Some hematopoietic cytokines, namely IL-7 and IL-15 produced by HSC niches, are not only required for lymphopoiesis but are also essential for memory T cell maintenance. Consequently, hematopoietic progenitors and differentiated immune cells, such as memory T cell subsets, also depend on the CXCL12/CXCR4 axis for migration into bone marrow and interactions with MSPCs and ECs. Similarly, subsets of antibody-secreting plasma cells also reside in close association with CXCL12-producing MSPCs in the bone marrow and require the CXCR4/CXCL12 axis for survival and long-term maintenance. Collectively, these studies demonstrate a broad range of key physiological roles, spanning blood cell production and maintenance of immunological memory, that are orchestrated by stem cell niches through a common and simple mechanism: CXCL12/CXCR4-mediated cell recruitment followed by receipt of a maintenance and/or instructive signal. A fundamental flaw of this type of cellular organization is revealed by myeloid and lymphoid leukemias, which target stem cell niches and induce profound transcriptomic changes that result in reduced hematopoietic activity and altered mesenchymal cell differentiation.
Collapse
Affiliation(s)
- Runfeng Miao
- Department of Immunobiology and Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, United States
| | - Vivian Y Lim
- Department of Immunobiology and Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, United States
| | - Neeharika Kothapalli
- Department of Immunobiology and Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, United States
| | - Yifan Ma
- Department of Immunobiology and Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, United States
| | - Julia Fossati
- Department of Immunobiology and Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, United States
| | - Sandra Zehentmeier
- Department of Immunobiology and Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, United States
| | - Ruifeng Sun
- Department of Immunobiology and Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, United States
| | - João P Pereira
- Department of Immunobiology and Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
35
|
Regulatory T cell phenotype and anti-osteoclastogenic function in experimental periodontitis. Sci Rep 2020; 10:19018. [PMID: 33149125 PMCID: PMC7642388 DOI: 10.1038/s41598-020-76038-w] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 10/01/2020] [Indexed: 02/07/2023] Open
Abstract
The alveolar bone resorption is a distinctive feature of periodontitis progression and determinant for tooth loss. Regulatory T lymphocytes (Tregs) display immuno-suppressive mechanisms and tissue repairing functions, which are critical to support periodontal health. Tregs may become unstable and dysfunctional under inflammatory conditions, which can even accelerate tissue destruction. In this study, experimental periodontitis was associated with the progressive and increased presence of Th17 and Treg-related mediators in the gingiva (IL-6, IL-17A, IL-17F, RANKL, IL-10, TGF-β and GITR; P < 0.05), and the proliferation of both Treg and Th17 cells in cervical lymph nodes. Tregs from cervical lymph nodes had reduced Foxp3 expression (> 25% MFI loss) and increased IL-17A expression (> 15%), compared with Tregs from spleen and healthy controls. Tregs gene expression analysis showed a differential signature between health and disease, with increased expression of Th17-associated factors in periodontitis-derived Tregs. The ex vivo suppression capacity of Tregs on osteoclastic differentiation was significantly lower in Tregs obtained from periodontally diseased animals compared to controls (P < 0.05), as identified by the increased number of TRAP+ osteoclasts (P < 0.01) in the Tregs/pre-osteoclast co-cultures. Taken together, these results demonstrate that Tregs become phenotypically unstable and lose anti-osteoclastogenic properties during experimental periodontitis; thus, further promoting the Th17-driven bone loss.
Collapse
|
36
|
Zhu L, Hua F, Ding W, Ding K, Zhang Y, Xu C. The correlation between the Th17/Treg cell balance and bone health. IMMUNITY & AGEING 2020; 17:30. [PMID: 33072163 PMCID: PMC7557094 DOI: 10.1186/s12979-020-00202-z] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 10/06/2020] [Indexed: 02/08/2023]
Abstract
With the ageing of the world population, osteoporosis has become a problem affecting quality of life. According to the traditional view, the causes of osteoporosis mainly include endocrine disorders, metabolic disorders and mechanical factors. However, in recent years, the immune system and immune factors have been shown to play important roles in the occurrence and development of osteoporosis. Among these components, regulatory T (Treg) cells and T helper 17 (Th17) cells are crucial for maintaining bone homeostasis, especially osteoclast differentiation. Treg cells and Th17 cells originate from the same precursor cells, and their differentiation requires involvement of the TGF-β regulated signalling pathway. Treg cells and Th17 cells have opposite functions. Treg cells inhibit the differentiation of osteoclasts in vivo and in vitro, while Th17 cells promote the differentiation of osteoclasts. Therefore, understanding the balance between Treg cells and Th17 cells is anticipated to provide a new idea for the development of novel treatments for osteoporosis.
Collapse
Affiliation(s)
- Lei Zhu
- The Third Affiliated Hospital of Soochow University, The First People's Hospital of Changzhou, Jiangsu, 213003 China
| | - Fei Hua
- The Third Affiliated Hospital of Soochow University, The First People's Hospital of Changzhou, Jiangsu, 213003 China
| | - Wenge Ding
- The Third Affiliated Hospital of Soochow University, The First People's Hospital of Changzhou, Jiangsu, 213003 China
| | - Kai Ding
- The Third Affiliated Hospital of Soochow University, The First People's Hospital of Changzhou, Jiangsu, 213003 China
| | - Yige Zhang
- The Third Affiliated Hospital of Soochow University, The First People's Hospital of Changzhou, Jiangsu, 213003 China
| | - Chenyang Xu
- The Third Affiliated Hospital of Soochow University, The First People's Hospital of Changzhou, Jiangsu, 213003 China
| |
Collapse
|
37
|
Multitasking by the OC Lineage during Bone Infection: Bone Resorption, Immune Modulation, and Microbial Niche. Cells 2020; 9:cells9102157. [PMID: 32987689 PMCID: PMC7598711 DOI: 10.3390/cells9102157] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/22/2020] [Accepted: 09/22/2020] [Indexed: 01/18/2023] Open
Abstract
Bone infections, also known as infectious osteomyelitis, are accompanied by significant inflammation, osteolysis, and necrosis. Osteoclasts (OCs) are the bone-resorbing cells that work in concert with osteoblasts and osteocytes to properly maintain skeletal health and are well known to respond to inflammation by increasing their resorptive activity. OCs have typically been viewed merely as effectors of pathologic bone resorption, but recent evidence suggests they may play an active role in the progression of infections through direct effects on pathogens and via the immune system. This review discusses the host- and pathogen-derived factors involved in the in generation of OCs during infection, the crosstalk between OCs and immune cells, and the role of OC lineage cells in the growth and survival of pathogens, and highlights unanswered questions in the field.
Collapse
|
38
|
Zhang W, Dang K, Huai Y, Qian A. Osteoimmunology: The Regulatory Roles of T Lymphocytes in Osteoporosis. Front Endocrinol (Lausanne) 2020; 11:465. [PMID: 32849268 PMCID: PMC7431602 DOI: 10.3389/fendo.2020.00465] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 06/15/2020] [Indexed: 12/23/2022] Open
Abstract
Immune imbalance caused bone loss. Osteoimmunology is emerging as a new interdisciplinary field to explore the shared molecules and interactions between the skeletal and immune systems. In particular, T lymphocytes (T cells) play pivotal roles in the regulation of bone health. However, the roles and mechanisms of T cells in the treatment of osteoporosis are not fully understood. The present review aims to summarize the essential regulatory roles of T cells in the pathophysiology of various cases of osteoporosis and the development of T cell therapy for osteoporosis from osteoimmunology perspective. As T cell-mediated immunomodulation inhibition reduced bone loss, there is an increasing interest in T cell therapy in an attempt to treat osteoporosis. In summary, the T cell therapy may be further pursued as an immunomodulatory strategy for the treatment of osteoporosis, which can provide a novel perspective for drug development in the future.
Collapse
Affiliation(s)
- Wenjuan Zhang
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Kai Dang
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Ying Huai
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Airong Qian
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| |
Collapse
|
39
|
De Martinis M, Sirufo MM, Suppa M, Ginaldi L. IL-33/IL-31 Axis in Osteoporosis. Int J Mol Sci 2020; 21:E1239. [PMID: 32069819 PMCID: PMC7072890 DOI: 10.3390/ijms21041239] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/08/2020] [Accepted: 02/11/2020] [Indexed: 12/11/2022] Open
Abstract
The study of the immunoskeletal interface has led to the discovery of numerous cytokines involved in the regulation of bone remodeling, providing valuable information on the pathogenesis of osteoporosis. The role of inflammatory cytokines of the Th1 and Th17 profile in osteoporosis is well known. Here we focus on two newly discovered Th2 cytokines, IL-31 and IL-33, whose implications in osteoporosis are recently emerging. Clinical and experimental observations suggest an important role of the IL-33/IL-31 axis in osteoporosis. IL-33 induces IL-31 secretion by Th2 cells and inhibits RANKL-dependent osteoclastogenesis, thus counteracting bone loss. IL-31 influences Th1/Th17 osteoclastogenetic inflammation and limits Th2 osteoprotective processes, thus favoring osteoporosis. Better knowledge of the role of IL-31 and IL-33 and their receptor complexes in osteoporosis could provide an interesting perspective for the development of new and more effective therapies, possibly with less side effects.
Collapse
Affiliation(s)
- Massimo De Martinis
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.M.S.); (L.G.)
- Allergy and Clinical Immunology Unit, Center for the Diagnosis and Treatment of Osteoporosis, AUSL 04 64100 Teramo, Italy
| | - Maria Maddalena Sirufo
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.M.S.); (L.G.)
- Allergy and Clinical Immunology Unit, Center for the Diagnosis and Treatment of Osteoporosis, AUSL 04 64100 Teramo, Italy
| | - Mariano Suppa
- Department of Dermatology, Hôpital Erasme, Université Libre de Bruxelles, 1070 Brussels, Belgium;
| | - Lia Ginaldi
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.M.S.); (L.G.)
- Allergy and Clinical Immunology Unit, Center for the Diagnosis and Treatment of Osteoporosis, AUSL 04 64100 Teramo, Italy
| |
Collapse
|