1
|
Singh G, Darwin R, Panda KC, Afzal SA, Katiyar S, Dhakar RC, Mani S. Gene expression and hormonal signaling in osteoporosis: from molecular mechanisms to clinical breakthroughs. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024:1-36. [PMID: 39729311 DOI: 10.1080/09205063.2024.2445376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 12/17/2024] [Indexed: 12/28/2024]
Abstract
Osteoporosis is well noted to be a universal ailment that realization impaired bone mass and micro architectural deterioration thus enhancing the probability of fracture. Despite its high incidence, its management remains highly demanding because of the multifactorial pathophysiology of the disease. This review highlights recent findings in the management of osteoporosis particularly, gene expression and hormonal control. Some of the newest approaches regarding the subject are described, including single-cell RNA sequencing and long non-coding RNAs. Also, the review reflects new findings on hormonal signaling and estrogen and parathyroid hormone; patient-specific approaches due to genetic and hormonal variation. Potential new biomarkers and AI comprised as factors for improving the ability to anticipate and manage fractures. These hold great potential of new drugs, combination therapies and gene based therapies for osteoporosis in the future. Further studies and cooperation of scientists and clinicians will help to apply such novelties into practical uses in the sphere of medicine in order to enhance the treatment of patients with osteoporosis.
Collapse
Affiliation(s)
- Gurinderdeep Singh
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University Patiala, Patiala, India
| | - Ronald Darwin
- School of Pharmaceutical Sciences, Vels Institute of Science Technology & Advanced Studies, Chennai, India
| | - Krishna Chandra Panda
- Department of Pharmaceutical Chemistry, Roland Institute of Pharmaceutical Sciences, Berhampur, India
| | - Shaikh Amir Afzal
- Department of Pharmaceutics, SCES's Indira College of Pharmacy, Pune, India
| | - Shashwat Katiyar
- Department of Biochemistry, School of Life Sciences and Biotechnology, Chhatrapati Shahu Ji Maharaj University, Kanpur, India
| | - Ram C Dhakar
- SRG Hospital and Medical College, Jhalawar, India
| | - Sangeetha Mani
- Sri Ramachandra Faculty of Pharmacy, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| |
Collapse
|
2
|
Li Y, Luo Y, Huang D, Peng L. Sclerostin as a new target of diabetes-induced osteoporosis. Front Endocrinol (Lausanne) 2024; 15:1491066. [PMID: 39720253 PMCID: PMC11666367 DOI: 10.3389/fendo.2024.1491066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 11/25/2024] [Indexed: 12/26/2024] Open
Abstract
Sclerostin, a protein synthesized by bone cells, is a product of the SOST gene. Sclerostin is a potent soluble inhibitor of the WNT signaling pathway, and is known to inhibit bone formation by inhibiting osteocyte differentiation and function. Currently, sclerostin has been the subject of numerous animal experiments and clinical investigations. By conducting a literature review, we have gained insights into the most recent advancements in research. Patients with both type 1 diabetes and type 2 diabetes have high levels of serum sclerostin. Patients with type 1 diabetes and type 2 diabetes are both more likely to suffer from osteoporosis, and serum sclerostin levels are elevated in osteoporosis. Many studies have confirmed that sclerostin has been implicated in the pathogenesis of osteoporosis, so we speculate that sclerostin plays an important role in osteoporosis through the glucose metabolism pathway, which may promote the osteoporosis of morbidity in type 1 diabetes and type 2 diabetes. Based on this, we propose whether serum sclerostin can predict type 1 diabetes and type 2 diabetes-induced osteoporosis, and whether it can be a new target for the prevention and treatment of type 1 diabetes and type 2 diabetes-induced osteoporosis, providing new ideas for clinicians and researchers.
Collapse
Affiliation(s)
- Yanhua Li
- Department of Endocrinology and Metabolism, The Third Hospital of Changsha, Changsha, Hunan, China
| | - Yaheng Luo
- Department of Endocrinology and Metabolism, The Third Hospital of Changsha, Changsha, Hunan, China
| | - Debin Huang
- Department of Endocrinology and Metabolism, The Third Hospital of Changsha, Changsha, Hunan, China
| | - Lele Peng
- Department of Endocrinology and Metabolism, Want Want Hospital, Changsha, Hunan, China
| |
Collapse
|
3
|
Mohammadi SM, Saniee N, Mousaviasl S, Radmanesh E, Doustimotlagh AH. The Role of Osteocalcin in Patients with Osteoporosis: A Systematic Review. IRANIAN JOURNAL OF PUBLIC HEALTH 2024; 53:2432-2439. [PMID: 39619893 PMCID: PMC11607154 DOI: 10.18502/ijph.v53i11.16945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 04/18/2024] [Indexed: 01/06/2025]
Abstract
BACKGROUND Osteoporosis is the most common systemic skeletal disease worldwide. We aimed to review the latest studies related to osteocalcin and osteoporosis to clarify this relationship more precisely. METHODS A systematic literature search was performed to review studies on the effects of osteocalcin on osteoporosis, on studied published between January 2013 and January 2023. We systematically reviewed Web of Science, PubMed, ProQuest, Scopus, and Google Scholar. RESULTS The search yielded 4903 records, including 1063 from PubMed, 2307 from Scopus, 1084 from Web of Science, 408 from ProQuest, and 41 from Google Scholar, and twelve articles were included for data extraction and quality assessment. A significant increase in the serum level of osteocalcin was observed in postmenopausal women with osteoporosis (P<0.05), and there was a negative correlation between bone mineral density and the serum level of osteocalcin. CONCLUSION Osteocalcin could be a promising marker for the diagnosis and screening of patients with osteoporosis.
Collapse
Affiliation(s)
- Seyed Mohammad Mohammadi
- Department of Orthopedics, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Nadia Saniee
- Department of Basic Science, Asadabad School of Medical Sciences, Asadabad, Iran
| | - Sajedeh Mousaviasl
- Department of Nursing, School of Nursing, Abadan University of Medical Sciences, Abadan, Iran
| | - Esmat Radmanesh
- Department of Physiology, School of Medicine, Abadan University of Medical Sciences, Abadan, Iran
| | - Amir Hossein Doustimotlagh
- Department of Clinical Biochemistry, Faculty of Medicine, Yasuj University of Medical Sciences, Yasuj, Iran
| |
Collapse
|
4
|
Chavassieux P, Roux JP, Libanati C, Shi Y, Chapurlat R. Evaluation of romosozumab's effects on bone marrow adiposity in postmenopausal osteoporotic women: results from the FRAME bone biopsy sub-study. J Bone Miner Res 2024; 39:1278-1283. [PMID: 39023227 DOI: 10.1093/jbmr/zjae118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 07/03/2024] [Accepted: 07/09/2024] [Indexed: 07/20/2024]
Abstract
Romosozumab, a humanized monoclonal antibody that binds and inhibits sclerostin, produces a marked increase in bone formation with a concomitant decreased bone resorption. This transient rise in bone formation in the first 2 months of treatment is mainly due to an increased modeling-based bone formation. This requires the recruitment and differentiation of osteoblasts, one possibility being a preferential switch in commitment of precursors to osteoblasts over adipocytes. The purpose of this study was to analyze the marrow adiposity in transiliac bone biopsies at months 2 or 12 from the FRAME biopsy sub-study in patients receiving romosozumab or placebo. The total adipocyte area, number, and density were measured on the total cancellous bone area. The size and shape at the individual adipocyte level were assessed including the mean adipocyte area, perimeter, min and max diameters, and aspect ratio. No significant difference in total adipocyte area, number, or density between placebo and romosozumab groups was observed at months 2 and 12, and no difference was observed between 2 and 12 months. After 2 or 12 months, romosozumab did not modify the size or shape of the adipocytes. No relationship between the adipocyte parameters and the dynamic parameters of bone formation could be evidenced. In conclusion, based on the analysis of a small number of biopsies, no effect of romosozumab on bone marrow adiposity of iliac crest was identified after 2 and 12 months suggesting that the modeling-based formation observed at month 2 was not due to a preferential commitment of the precursor to osteoblast over adipocyte cell lines but may result from a reactivation of bone lining cells and from a progenitor pool independent of the marrow adipocyte population.
Collapse
Affiliation(s)
| | | | | | - Yifei Shi
- Amgen Inc, Thousand Oaks, CA, United States
| | | |
Collapse
|
5
|
McGarry S, Kover K, De Luca F. Thioredoxin Interacting Protein Expressed in Osteoblasts Mediates the Anti-Proliferative Effects of High Glucose and Modulates the Expression of Osteocalcin. J Bone Metab 2024; 31:209-218. [PMID: 39307521 PMCID: PMC11416880 DOI: 10.11005/jbm.2024.31.3.209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/01/2024] [Accepted: 06/03/2024] [Indexed: 09/26/2024] Open
Abstract
BACKGROUND Hyperglycemia is associated with impaired bone health in patients with diabetes mellitus. Although a direct detrimental effect of hyperglycemia on the bone has been previously reported, the specific molecular mediator(s) responsible for the inhibitory effect of high glucose levels on the bone remains unclear. We hypothesized that thioredoxin-interacting protein (Txnip), an essential mediator of oxidative stress, is such a mediator. METHODS We cultured MG-63 cells (immortalized human osteoblasts) with normal or high glucose concentrations and transfected them with scrambled or Txnip-specific small interfering RNA (siRNA). RESULTS High glucose levels increased Txnip expression and reduced MG-63 cell proliferation. The high-glucose level mediated reduction in cell proliferation was prevented in Txnip siRNA-transfected cells. In addition, we demonstrated that silencing Txnip mRNA expression in osteoblasts reduced the expression of the osteocalcin gene. Our results suggest that high glucose levels or silencing of Txnip mRNA expression may induce apoptosis in osteoblasts. CONCLUSIONS Our findings indicate that Txnip is an intracellular mediator of the anti-proliferative effects of extracellular high glucose levels on osteoblasts.
Collapse
Affiliation(s)
- Sarah McGarry
- Division of Endocrinology, Children’s Mercy Hospitals, Kansas City, MO,
USA
- Department of Pediatrics, University of Missouri-Kansas City-School of Medicine, Kansas City, MO,
USA
| | - Karen Kover
- Division of Endocrinology, Children’s Mercy Hospitals, Kansas City, MO,
USA
- Department of Pediatrics, University of Missouri-Kansas City-School of Medicine, Kansas City, MO,
USA
| | - Francesco De Luca
- Division of Endocrinology, Children’s Mercy Hospitals, Kansas City, MO,
USA
- Department of Pediatrics, University of Missouri-Kansas City-School of Medicine, Kansas City, MO,
USA
| |
Collapse
|
6
|
Motalebzadeh E, Hemati S, Mayvani MA, Ghollasi M. Employing novel biocompatible composite scaffolds with bioglass 58S and poly L-lactic acid for effective bone defect treatment. Mol Biol Rep 2024; 51:838. [PMID: 39042226 DOI: 10.1007/s11033-024-09763-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 06/26/2024] [Indexed: 07/24/2024]
Abstract
BACKGROUND Bioglass materials have gained significant attention in the field of tissue engineering due to their osteoinductive and biocompatible properties that promote bone cell differentiation. In this study, a novel composite scaffold was developed using a sol-gel technique to combine bioglass (BG) 58 S with a poly L-lactic acid (PLLA). METHODS AND RESULTS The physiochemical properties, morphology, and osteoinductive potential of the scaffolds were investigated by X-ray diffraction analysis, scanning electron microscopy, and Fourier-transform infrared spectroscopy. The results showed that the SiO2-CaO-P2O5 system was successfully synthesized by the sol-gel method. The PLLA scaffolds containing BG was found to be osteoinductive and promoted mineralization, as demonstrated by calcium deposition assay, upregulation of alkaline phosphatase enzyme activity, and Alizarin red staining data. CONCLUSIONS These in vitro studies suggest that composite scaffolds incorporating hBMSCs are a promising substitute material to be implemented in bone tissue engineering. The PLLA/BG scaffolds promote osteogenesis and support the differentiation of bone cells, such as osteoblasts, due to their osteoinductive properties.
Collapse
Affiliation(s)
- Erfan Motalebzadeh
- Department of Biology, Basic Science Faculty, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Saideh Hemati
- Department of Cellular and Molecular Biology, Faculty of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mohanna Akbarin Mayvani
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Marzieh Ghollasi
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran.
| |
Collapse
|
7
|
Cooper ID, Kyriakidou Y, Petagine L, Edwards K, Soto-Mota A, Brookler K, Elliott BT. Ketosis Suppression and Ageing (KetoSAge) Part 2: The Effect of Suppressing Ketosis on Biomarkers Associated with Ageing, HOMA-IR, Leptin, Osteocalcin, and GLP-1, in Healthy Females. Biomedicines 2024; 12:1553. [PMID: 39062126 PMCID: PMC11274887 DOI: 10.3390/biomedicines12071553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Metabolic dysfunctions are among the best documented hallmarks of ageing. Cardiovascular disease, Alzheimer's disease, cancer, type 2 diabetes mellitus, metabolic-dysfunction-associated steatosis liver disease, and fragility fractures are diseases of hyperinsulinaemia that reduce life and healthspan. We studied the effect of suppressing ketosis in 10 lean (BMI 20.5 kg/m2 ± 1.4), metabolically healthy, pre-menopausal women (age 32.3 ± 8.9 years) maintaining nutritional ketosis (NK) for an average of 3.9 years (± 2.3) who underwent three 21-day phases: nutritional ketosis (NK; P1), suppressed ketosis (SuK; P2), and returned to NK (P3). Ketosis suppression significantly increased insulin, 1.83-fold (p = 0.0006); glucose, 1.17-fold (p = 0.0088); homeostasis model assessment for insulin resistance (HOMA-IR), 2.13-fold (p = 0.0008); leptin, 3.35-fold (p = 0.0010); total osteocalcin, 1.63-fold (p = 0.0138); and uncarboxylated osteocalcin, 1.98-fold (p = 0.0417) and significantly decreased beta-hydroxybutyrate, 13.50-fold (p = 0.0012) and glucagon-like peptide-1 (GLP-1), 2.40-fold (p = 0.0209). Sustained NK showed no adverse health effects and may mitigate hyperinsulinemia. All biomarkers returned to basal P1 levels after removing the intervention for SuK, indicating that metabolic flexibility was maintained with long-term euketonaemia.
Collapse
Affiliation(s)
- Isabella D. Cooper
- Ageing Biology and Age-Related Diseases, School of Life Sciences, University of Westminster, 115 New Cavendish Street, London W1W 6UW, UK; (Y.K.); (L.P.); (B.T.E.)
| | - Yvoni Kyriakidou
- Ageing Biology and Age-Related Diseases, School of Life Sciences, University of Westminster, 115 New Cavendish Street, London W1W 6UW, UK; (Y.K.); (L.P.); (B.T.E.)
| | - Lucy Petagine
- Ageing Biology and Age-Related Diseases, School of Life Sciences, University of Westminster, 115 New Cavendish Street, London W1W 6UW, UK; (Y.K.); (L.P.); (B.T.E.)
| | - Kurtis Edwards
- Cancer Biomarkers and Mechanisms Group, School of Life Sciences, University of Westminster, 115 New Cavendish Street, London W1W 6UW, UK;
| | - Adrian Soto-Mota
- Metabolic Diseases Research Unit, National Institute of Medical Sciences and Nutrition Salvador Zubiran, Mexico City 14080, Mexico;
- School of Medicine, Tecnologico de Monterrey, Mexico City 14380, Mexico
| | - Kenneth Brookler
- Retired former Research Collaborator, Aerospace Medicine and Vestibular Research Laboratory, Mayo Clinic, Scottsdale, AZ 85259, USA;
| | - Bradley T. Elliott
- Ageing Biology and Age-Related Diseases, School of Life Sciences, University of Westminster, 115 New Cavendish Street, London W1W 6UW, UK; (Y.K.); (L.P.); (B.T.E.)
| |
Collapse
|
8
|
Szeliga A, Grymowicz M, Kostrzak A, Smolarczyk R, Bala G, Smolarczyk K, Meczekalski B, Suchta K. Bone: A Neglected Endocrine Organ? J Clin Med 2024; 13:3889. [PMID: 38999458 PMCID: PMC11242793 DOI: 10.3390/jcm13133889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 06/26/2024] [Accepted: 06/30/2024] [Indexed: 07/14/2024] Open
Abstract
Bone has traditionally been viewed in the context of its structural contribution to the human body. Foremost providing necessary support for mobility, its roles in supporting calcium homeostasis and blood cell production are often afterthoughts. Recent research has further shed light on the ever-multifaceted role of bone and its importance not only for structure, but also as a complex endocrine organ producing hormones responsible for the autoregulation of bone metabolism. Osteocalcin is one of the most important substances produced in bone tissue. Osteocalcin in circulation increases insulin secretion and sensitivity, lowers blood glucose, and decreases visceral adipose tissue. In males, it has also been shown to enhance testosterone production by the testes. Neuropeptide Y is produced by various cell types including osteocytes and osteoblasts, and there is evidence suggesting that peripheral NPY is important for regulation of bone formation. Hormonal disorders are often associated with abnormal levels of bone turnover markers. These include commonly used bone formation markers (bone alkaline phosphatase, osteocalcin, and procollagen I N-propeptide) and commonly used resorption markers (serum C-telopeptides of type I collagen, urinary N-telopeptides of type I collagen, and tartrate-resistant acid phosphatase type 5b). Bone, however, is not exclusively comprised of osseous tissue. Bone marrow adipose tissue, an endocrine organ often compared to visceral adipose tissue, is found between trabecula in the bone cortex. It secretes a diverse range of hormones, lipid species, cytokines, and other factors to exert diverse local and systemic effects.
Collapse
Affiliation(s)
- Anna Szeliga
- Department of Gynecological Endocrinology, Poznan University of Medical Sciences, 60-535 Poznan, Poland
| | - Monika Grymowicz
- Department of Gynecological Endocrinology, Warsaw Medical University, 00-315 Warsaw, Poland
| | - Anna Kostrzak
- Department of Gynecological Endocrinology, Poznan University of Medical Sciences, 60-535 Poznan, Poland
| | - Roman Smolarczyk
- Department of Gynecological Endocrinology, Warsaw Medical University, 00-315 Warsaw, Poland
| | - Gregory Bala
- UCD School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland
| | | | - Blazej Meczekalski
- Department of Gynecological Endocrinology, Poznan University of Medical Sciences, 60-535 Poznan, Poland
| | - Katarzyna Suchta
- Department of Gynecological Endocrinology, Warsaw Medical University, 00-315 Warsaw, Poland
| |
Collapse
|
9
|
Nowicki JK, Jakubowska-Pietkiewicz E. Osteocalcin: Beyond Bones. Endocrinol Metab (Seoul) 2024; 39:399-406. [PMID: 38803289 PMCID: PMC11220208 DOI: 10.3803/enm.2023.1895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/23/2024] [Accepted: 01/31/2024] [Indexed: 05/29/2024] Open
Abstract
Apart from basic roles such as supporting the body, protecting internal organs, and storing calcium, the skeletal system also performs hormonal functions. In recent years, several reports have been published on proteins secreted by bones and their impact on the homeostasis of the entire body. These proteins include fibroblast growth factor 23, sclerostin, lipocalin 2, and osteocalcin. Osteocalcin, the most abundant non-collagenous protein in bone tissue, is routinely measured as a clinical marker for diagnosing bone metabolism disorders. Its molecule undergoes numerous transformations, with decarboxylation being the critical process. Decarboxylation occurs in the acidic environment typical of bone resorption, facilitating the release of the molecule into the bloodstream and enabling its hormonal action. Decarboxylated osteocalcin promotes insulin secretion and stimulates the proliferation of pancreatic islet β-cells. It also plays a role in reducing the accumulation of visceral fat and decreasing fat storage in the liver. Furthermore, decarboxylated osteocalcin levels are inversely correlated with fasting serum glucose levels, total body fat, visceral fat area, and body mass index. Apart from its role in energy metabolism, osteocalcin affects testosterone production and the synthesis of glucagon-like peptide-1. It is also actively involved in muscle-bone crosstalk and influences cognitive function.
Collapse
Affiliation(s)
- Jakub Krzysztof Nowicki
- Department of Pediatrics, Neonatal Pathology and Metabolic Bone Diseases, Medical University of Lodz, Lodz, Poland
| | | |
Collapse
|
10
|
Adilakshmi P, Suganthi V, Balu Mahendran K, Satyanarayana Rao K, Savithri B. Exercise-Induced Alterations in Irisin and Osteocalcin Levels: A Comparative Analysis Across Different Training Modalities. Cureus 2024; 16:e59704. [PMID: 38841020 PMCID: PMC11151138 DOI: 10.7759/cureus.59704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 05/05/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND Physical activity significantly influences physiological biomarkers, including irisin and osteocalcin, which are pivotal for metabolic and bone health. Understanding the differential impacts of various exercise modalities on these biomarkers is essential for optimizing health benefits. OBJECTIVES The study aimed to compare the effects of endurance training and high-intensity resistance training (HIRT) on the levels of irisin and osteocalcin and determine which exercise modality more effectively influences these health-related biomarkers. METHODS The study was conducted at the Nimra Institute of Medical Sciences in Andhra Pradesh, India, where 100 healthy male participants aged between 21 and 35 were recruited. These participants, who were not regularly active and had no metabolic or bone diseases, were divided into two groups to undergo an eight-week training from March to April 2022. One group participated in endurance training involving running and cycling, while the other engaged in HIRT, both targeting a heart rate set at 75% of the maximum. Baseline and follow-up measurements of irisin and osteocalcin were taken before and after the training using blood samples collected after fasting. The study used paired t-tests to analyze changes in biomarker levels, and Pearson correlation coefficients to explore the relationship between the biomarkers, with results processed using statistical software and presented as mean ± standard deviation (SD). RESULTS Post-intervention, both exercise groups showed significant increases in irisin and a modest increase in osteocalcin levels. The HIRT group exhibited a higher increase in irisin levels (+119.33 pg/mL, p<0.015) compared to the endurance group (+108.32 pg/mL, p<0.023). Similarly, osteocalcin levels increased modestly in both groups, with the HIRT group showing a higher mean difference (+0.75 pg/mL, p<0.001) than the endurance group (+0.70 pg/mL). The study also found a link between changes in irisin and osteocalcin levels. This link was stronger in the HIRT group (r = +0.22; p < 0.039) than in the endurance group (r = +0.20; p < 0.038). CONCLUSION Both endurance and high-intensity resistance training are effective in enhancing metabolic and bone health, evidenced by increases in irisin and osteocalcin levels. Although the differences in mean values suggest that HIRT may have a marginal advantage in boosting these biomarkers, confirming the statistical significance of this difference is essential. Further research is required to understand the mechanisms behind these effects and to assess their long-term impacts on health and disease prevention.
Collapse
Affiliation(s)
- P Adilakshmi
- Department of Physiology, Dr. Pinnamaneni Siddhartha Institute of Medical Sciences and Research Foundation, Vijayawada, IND
| | - V Suganthi
- Department of Physiology, Vinyaka Mission's Kirupanada Variyar Medical College and Hospitals, Salem, IND
| | - K Balu Mahendran
- Department of Biochemistry, Siddhartha Medical College, Vijayawada, IND
| | - K Satyanarayana Rao
- Department of General Medicine, Nimra Institute of Medical Sciences, Vijayawada, IND
| | - B Savithri
- Department of Statistics, Dr. Pinnamaneni Siddhartha Institute of Medical Sciences and Research Foundation, Vijayawada, IND
| |
Collapse
|
11
|
Martiniakova M, Biro R, Kovacova V, Babikova M, Zemanova N, Mondockova V, Omelka R. Current knowledge of bone-derived factor osteocalcin: its role in the management and treatment of diabetes mellitus, osteoporosis, osteopetrosis and inflammatory joint diseases. J Mol Med (Berl) 2024; 102:435-452. [PMID: 38363329 PMCID: PMC10963459 DOI: 10.1007/s00109-024-02418-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/21/2023] [Accepted: 01/10/2024] [Indexed: 02/17/2024]
Abstract
Osteocalcin (OC) is the most abundant non-collagenous and osteoblast-secreted protein in bone. It consists of two forms such as carboxylated OC (cOC) and undercarboxylated OC (ucOC). While cOC promotes bone mineralization and increases bone strength, ucOC is regarded an endocrinologically active form that may have several functions in multiple end organs and tissues. Total OC (tOC) includes both of these forms (cOC and ucOC) and is considered a marker of bone turnover in clinical settings. Most of the data on OC is limited to preclinical studies and therefore may not accurately reflect the situation in clinical conditions. For the stated reason, the aim of this review was not only to summarize current knowledge of all forms of OC and characterize its role in diabetes mellitus, osteoporosis, osteopetrosis, inflammatory joint diseases, but also to provide new interpretations of its involvement in the management and treatment of aforementioned diseases. In this context, special emphasis was placed on available clinical trials. Significantly lower levels of tOC and ucOC could be associated with the risk of type 2 diabetes mellitus. On the contrary, tOC level does not seem to be a good indicator of high bone turnover status in postmenopausal osteoporosis, osteoarthritis and rheumatoid arthritis. The associations between several pharmacological drugs used to treat all disorders mentioned above and OC levels have also been provided. From this perspective, OC may serve as a medium through which certain medications can influence glucose metabolism, body weight, adiponectin secretion, and synovial inflammation.
Collapse
Affiliation(s)
- Monika Martiniakova
- Department of Zoology and Anthropology, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Tr. A. Hlinku 1, 949 01, Nitra, Slovakia
| | - Roman Biro
- Department of Zoology and Anthropology, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Tr. A. Hlinku 1, 949 01, Nitra, Slovakia
| | - Veronika Kovacova
- Department of Zoology and Anthropology, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Tr. A. Hlinku 1, 949 01, Nitra, Slovakia
| | - Martina Babikova
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Tr. A. Hlinku 1, 949 01, Nitra, Slovakia
| | - Nina Zemanova
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Tr. A. Hlinku 1, 949 01, Nitra, Slovakia
| | - Vladimira Mondockova
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Tr. A. Hlinku 1, 949 01, Nitra, Slovakia
| | - Radoslav Omelka
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Tr. A. Hlinku 1, 949 01, Nitra, Slovakia.
| |
Collapse
|
12
|
González-Casaus ML. El diálogo oculto entre el hueso y los tejidos a través del remodelado óseo. ADVANCES IN LABORATORY MEDICINE 2024; 5:35-45. [PMID: 38634083 PMCID: PMC11019877 DOI: 10.1515/almed-2023-0101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 08/11/2023] [Indexed: 04/19/2024]
Abstract
El hueso es mucho más que un reservorio de calcio y fósforo. Su disposición lacuno-canalicular ofrece una importante vía de intercambio con la circulación y actualmente, el esqueleto se considera un gran órgano endocrino, con acciones que van más allá del control del balance fosfocálcico mediado por el factor fibroblástico 23 (FGF23). Paralelamente al efecto modulador de las adipoquinas sobre el remodelado óseo, diversas proteínas óseas, como la osteocalcina y la esclerostina, ejercen cierta acción contra-reguladora sobre el metabolismo energético, posiblemente en un intento de asegurar los enormes requerimientos energéticos del remodelado. En esta interacción del hueso con otros tejidos, especialmente el adiposo, participa la señalización canónica Wnt/β-catenina y por ello la esclerostina, una proteína osteocítica que inhibe esta señalización, emerge como un potencial biomarcador. Es más, su participación en diversas patologías le posiciona como diana terapéutica, existiendo un anticuerpo anti-esclerostina, recientemente aprobado en nuestro país para el tratamiento de la osteoporosis. Esta revisión aborda el carácter endocrino del hueso, el papel de la osteocalcina y, especialmente, el papel regulador y modulador de la esclerostina sobre remodelado óseo y la homeóstasis energética a través de su interacción con la señalización canónica Wnt/β-catenina, así como su potencial utilidad como biomarcador.
Collapse
|
13
|
González-Casaus ML. The hidden cross talk between bone and tissues through bone turnover. ADVANCES IN LABORATORY MEDICINE 2024; 5:24-34. [PMID: 38634076 PMCID: PMC11019897 DOI: 10.1515/almed-2023-0160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 08/11/2023] [Indexed: 04/19/2024]
Abstract
Bone is more than a reservoir of calcium and phosphorus. Its lacuno-canalicular arrangement provides an important pathway for exchange with circulation and currently, the skeleton is considered a large endocrine organ with actions that go beyond the control of calcium-phosphorus balance mediated by fibroblastic growth factor 23 (FGF23). Parallel to the modulating effect of adipokines on bone turnover, certain bone proteins, such as osteocalcin and sclerostin, play a counter-regulatory role on energy metabolism, probably in an attempt to ensure its high energy requirement for bone turnover. In this crosstalk between bone and other tissues, especially with adipose tissue, canonical Wnt/β-catenin signaling is involved and therefore, sclerostin, an osteocyte derived protein that inhibits this signalling, emerges as a potential biomarker. Furthermore, its involvement in diverse pathologic conditions supports sclerostin as a therapeutic target, with an anti-sclerostin antibody recently approved in our country for the treatment of osteoporosis. This review addresses the endocrine nature of bone, the role of osteocalcin, and specially, the regulatory and modulatory role of sclerostin on bone turnover and energy homeostasis through its inhibitory effect on canonical Wnt/β-catenin signaling, as well as its potential utility as a biomarker.
Collapse
|
14
|
Sidgwick GP, Weston R, Mahmoud AM, Schiro A, Serracino-Inglott F, Tandel SM, Skeoch S, Bruce IN, Jones AM, Alexander MY, Wilkinson FL. Novel Glycomimetics Protect against Glycated Low-Density Lipoprotein-Induced Vascular Calcification In Vitro via Attenuation of the RAGE/ERK/CREB Pathway. Cells 2024; 13:312. [PMID: 38391925 PMCID: PMC10887290 DOI: 10.3390/cells13040312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/01/2024] [Accepted: 02/06/2024] [Indexed: 02/24/2024] Open
Abstract
Heparan sulphate (HS) can act as a co-receptor on the cell surface and alterations in this process underpin many pathological conditions. We have previously described the usefulness of mimics of HS (glycomimetics) in protection against β-glycerophosphate-induced vascular calcification and in the restoration of the functional capacity of diabetic endothelial colony-forming cells in vitro. This study aims to investigate whether our novel glycomimetic compounds can attenuate glycated low-density lipoprotein (g-LDL)-induced calcification by inhibiting RAGE signalling within the context of critical limb ischemia (CLI). We used an established osteogenic in vitro vascular smooth muscle cell (VSMC) model. Osteoprotegerin (OPG), sclerostin and glycation levels were all significantly increased in CLI serum compared to healthy controls, while the vascular calcification marker osteocalcin (OCN) was down-regulated in CLI patients vs. controls. Incubation with both CLI serum and g-LDL (10 µg/mL) significantly increased VSMC calcification vs. controls after 21 days, with CLI serum-induced calcification apparent after only 10 days. Glycomimetics (C2 and C3) significantly inhibited g-LDL and CLI serum-induced mineralisation, as shown by a reduction in alizarin red (AR) staining and alkaline phosphatase (ALP) activity. Furthermore, secretion of the osteogenic marker OCN was significantly reduced in VSMCs incubated with CLI serum in the presence of glycomimetics. Phosphorylation of cyclic AMP response element-binding protein (CREB) was significantly increased in g-LDL-treated cells vs. untreated controls, which was attenuated with glycomimetics. Blocking CREB activation with a pharmacological inhibitor 666-15 replicated the protective effects of glycomimetics, evidenced by elevated AR staining. In silico molecular docking simulations revealed the binding affinity of the glycomimetics C2 and C3 with the V domain of RAGE. In conclusion, these findings demonstrate that novel glycomimetics, C2 and C3 have potent anti-calcification properties in vitro, inhibiting both g-LDL and CLI serum-induced VSMC mineralisation via the inhibition of LDLR, RAGE, CREB and subsequent expression of the downstream osteogenic markers, ALP and OCN.
Collapse
Affiliation(s)
- Gary P. Sidgwick
- Department of Life Sciences, Manchester Metropolitan University, Manchester M1 5GD, UK (R.W.); (A.M.M.); (F.S.-I.); (S.M.T.); (A.M.J.); (M.Y.A.)
| | - Ria Weston
- Department of Life Sciences, Manchester Metropolitan University, Manchester M1 5GD, UK (R.W.); (A.M.M.); (F.S.-I.); (S.M.T.); (A.M.J.); (M.Y.A.)
| | - Ayman M. Mahmoud
- Department of Life Sciences, Manchester Metropolitan University, Manchester M1 5GD, UK (R.W.); (A.M.M.); (F.S.-I.); (S.M.T.); (A.M.J.); (M.Y.A.)
| | - Andrew Schiro
- Cardiovascular Research Institute, University of Manchester, Manchester M13 9PL, UK;
- Vascular Unit, Manchester University Hospitals NHS Foundation Trust, Manchester M13 9WL, UK
| | - Ferdinand Serracino-Inglott
- Department of Life Sciences, Manchester Metropolitan University, Manchester M1 5GD, UK (R.W.); (A.M.M.); (F.S.-I.); (S.M.T.); (A.M.J.); (M.Y.A.)
- Cardiovascular Research Institute, University of Manchester, Manchester M13 9PL, UK;
- Vascular Unit, Manchester University Hospitals NHS Foundation Trust, Manchester M13 9WL, UK
| | - Shikha M. Tandel
- Department of Life Sciences, Manchester Metropolitan University, Manchester M1 5GD, UK (R.W.); (A.M.M.); (F.S.-I.); (S.M.T.); (A.M.J.); (M.Y.A.)
| | - Sarah Skeoch
- Centre for Epidemiology Versus Arthritis, University of Manchester, Manchester M13 9PL, UK; (S.S.); (I.N.B.)
- National Institute for Health Research Manchester Biomedical Research Centre, Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M13 9PL, UK
- Royal National Hospital for Rheumatic Diseases, Bath BA1 1RL, UK
| | - Ian N. Bruce
- Centre for Epidemiology Versus Arthritis, University of Manchester, Manchester M13 9PL, UK; (S.S.); (I.N.B.)
- National Institute for Health Research Manchester Biomedical Research Centre, Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M13 9PL, UK
| | - Alan M. Jones
- Department of Life Sciences, Manchester Metropolitan University, Manchester M1 5GD, UK (R.W.); (A.M.M.); (F.S.-I.); (S.M.T.); (A.M.J.); (M.Y.A.)
- School of Pharmacy, University of Birmingham, Birmingham B15 2TT, UK
| | - M. Yvonne Alexander
- Department of Life Sciences, Manchester Metropolitan University, Manchester M1 5GD, UK (R.W.); (A.M.M.); (F.S.-I.); (S.M.T.); (A.M.J.); (M.Y.A.)
| | - Fiona L. Wilkinson
- Department of Life Sciences, Manchester Metropolitan University, Manchester M1 5GD, UK (R.W.); (A.M.M.); (F.S.-I.); (S.M.T.); (A.M.J.); (M.Y.A.)
| |
Collapse
|
15
|
Paranthaman M, Ganesh KAB, Silambanan S, Venkatapathy KV. Serum sclerostin levels as a diagnostic marker for osteoporosis. Bioinformation 2024; 20:54. [PMID: 38352898 PMCID: PMC10859939 DOI: 10.6026/973206300200054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 01/31/2024] [Accepted: 01/31/2024] [Indexed: 02/16/2024] Open
Abstract
Osteoporosis is asymptomatic, in which low bone-mass and micro-architectural deterioration of bone tissue leads to increasing bone fragility and fracture. Vertebral and hip fractures lead to increased mortality, resulting in enormous health care costs. BMD testing by DEXA is used in diagnosis of osteoporosis. However, low-and middle-income populations are unable to conduct periodic examinations of bone mineral status. Thus, current study is mainly aimed at finding a cost-effective diagnostic-marker for osteoporosis. 170 participants, of whom 51 had osteoporosis, 62 had osteopenia and 57 had normal bone-mass. Selection of individuals was based on DEXA scan BMD. Sclerostin was determined by ELISA. The variables were compared using ANOVA test and ROC analysis was performed. Sclerostin levels were significantly decreased in osteoporosis (4.62 ± 1.6 ng/mL) and osteopenia (4.92 ± 1.4 ng/mL) compared with controls (5.74 ± 1.3 ng/mL), (p < 0.0001). Sclerostin level 5.6 ng/mL is the cut-off value for diagnostic purpose, according to good sensitivity and specificity. In patients with osteopenia and osteoporosis, decreased sclerostin levels were associated with an increased disease risk. These relationships were independent of BMD and bone turnover, suggesting that Sclerostin levels may reflect disease-severity in osteoporosis. Sclerostin measurements could become a useful clinical index for diagnosis of osteoporosis.
Collapse
Affiliation(s)
- Modagan Paranthaman
- Department of Biochemistry, Dhanalakshmi Srinivasan Medical College and Hospital, Affiliated to The Tamilnadu Dr MGR Medical University, Perambalur 621 113, Tamil Nadu, India
| | - K.S.V. Angu Bala Ganesh
- Department of Anatomy, Gujarat Adani Insitute of Medical Science, Bhuj, Gujarat 370001, India
| | - Santhi Silambanan
- Department of Biochemistry, Sri Ramachandra Medical College, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai 600 116, Tamil Nadu, India
| | | |
Collapse
|
16
|
Wang J, Fang CL, Noller K, Wei Z, Liu G, Shen K, Song K, Cao X, Wan M. Bone-derived PDGF-BB drives brain vascular calcification in male mice. J Clin Invest 2023; 133:e168447. [PMID: 37815871 PMCID: PMC10688993 DOI: 10.1172/jci168447] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 10/05/2023] [Indexed: 10/12/2023] Open
Abstract
Brain vascular calcification is a prevalent age-related condition often accompanying neurodegenerative and neuroinflammatory diseases. The pathogenesis of large-vessel calcifications in peripheral tissue is well studied, but microvascular calcification in the brain remains poorly understood. Here, we report that elevated platelet-derived growth factor BB (PDGF-BB) from bone preosteoclasts contributed to cerebrovascular calcification in male mice. Aged male mice had higher serum PDGF-BB levels and a higher incidence of brain calcification compared with young mice, mainly in the thalamus. Transgenic mice with preosteoclast-specific Pdgfb overexpression exhibited elevated serum PDGF-BB levels and recapitulated age-associated thalamic calcification. Conversely, mice with preosteoclast-specific Pdgfb deletion displayed diminished age-associated thalamic calcification. In an ex vivo cerebral microvascular culture system, PDGF-BB dose-dependently promoted vascular calcification. Analysis of osteogenic gene array and single-cell RNA-Seq (scRNA-Seq) revealed that PDGF-BB upregulated multiple osteogenic differentiation genes and the phosphate transporter Slc20a1 in cerebral microvessels. Mechanistically, PDGF-BB stimulated the phosphorylation of its receptor PDGFRβ (p-PDGFRβ) and ERK (p-ERK), leading to the activation of RUNX2. This activation, in turn, induced the transcription of osteoblast differentiation genes in PCs and upregulated Slc20a1 in astrocytes. Thus, bone-derived PDGF-BB induced brain vascular calcification by activating the p-PDGFRβ/p-ERK/RUNX2 signaling cascade in cerebrovascular cells.
Collapse
Affiliation(s)
- Jiekang Wang
- Department of Orthopaedic Surgery
- Department of Biomedical Engineering, and
| | | | | | - Zhiliang Wei
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | - Ke Shen
- Department of Orthopaedic Surgery
| | - Kangping Song
- Department of Orthopaedic Surgery
- Department of Biomedical Engineering, and
| | - Xu Cao
- Department of Orthopaedic Surgery
- Department of Biomedical Engineering, and
| | - Mei Wan
- Department of Orthopaedic Surgery
- Department of Biomedical Engineering, and
| |
Collapse
|
17
|
Dong B, Zhu J, Chen X, Jiang H, Deng Y, Xu L, Wang Y, Li S. The Emerging Role of Interleukin-(IL)-11/IL-11R in Bone Metabolism and Homeostasis: From Cytokine to Osteokine. Aging Dis 2023; 14:2113-2126. [PMID: 37199584 PMCID: PMC10676798 DOI: 10.14336/ad.2023.0306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 03/06/2023] [Indexed: 05/19/2023] Open
Abstract
Interleukin-(IL)-11 is a cytokine involved in hematopoiesis, cancer metastasis, and inflammation. IL-11 belongs to the IL-6 cytokine family, binding to the complex of receptors glycoprotein gp130 and the ligand-specific-receptor subunits (IL-11Rα or their soluble counterpart sIL-11R). IL-11/IL-11R signaling enhances osteoblast differentiation and bone formation and mitigates osteoclast-induced bone resorption and cancer bone metastasis. Recent studies have shown that systemic and osteoblast/osteocyte-specific IL-11 deficiency leads to reduced bone mass and formation, but also adiposity, glucose intolerance, and insulin resistance. In humans, mutations of IL-11 and the receptor IL-11RA genes are associated with height reduction, osteoarthritis, and craniosynostosis. In this review, we describe the emerging role of IL-11/IL-11R signaling in bone metabolism by targeting osteoblasts, osteoclasts, osteocytes, and bone mineralization. Furthermore, IL-11 promotes osteogenesis and suppresses adipogenesis, thereby influencing the fate of osteoblast/adipocyte differentiation derived from pluripotent mesenchymal stem cells. We have newly identified IL-11 as a bone-derived cytokine that regulates bone metabolism and the link between bone and other organs. Thus, IL-11 is vital in bone homeostasis and could be considered a potential therapeutic strategy.
Collapse
Affiliation(s)
- Bingzi Dong
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jingjing Zhu
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xian Chen
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hongyuan Jiang
- Department of Sports Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yujie Deng
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lili Xu
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yangang Wang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shufa Li
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
18
|
Andrian T, Stefan A, Nistor I, Covic A. Vitamin K supplementation impact in dialysis patients: a systematic review and meta-analysis of randomized trials. Clin Kidney J 2023; 16:2738-2749. [PMID: 38046003 PMCID: PMC10689161 DOI: 10.1093/ckj/sfad255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Indexed: 12/05/2023] Open
Abstract
Vitamin K supplementation has been considered recently as a potential treatment for addressing vascular calcification in chronic kidney disease patients. We conducted a systematic review and meta-analysis to summarize the impact of vitamin K supplementation in dialysis patients. Electronic databases were searched for clinical randomized trials among patients treated with vitamin K. Random effects models were performed and risk of bias was evaluated with Cochrane tools and the search was conducted until 15 of September 2023. Eleven trials comprising 830 patients (both adult and pediatric, mainly hemodialysis) compared vitamin K with different controls: lower doses of vitamin K, standard care or placebo. Vitamin K supplementation had no effect on mortality. Vitamin K administration improved vitamin K levels and led to lower levels of dp-uc-MGP and moderately increased calcium levels [0.18 (0.04-0.32)]. Vitamin K1 proved more potency in reducing dp-uc-MGP [SMD -1.64 (-2.05, -1.23) vs. -0.56 (-0.82, -0.31)] and also raised serum vitamin K levels in comparison with vitamin K2 [5.69 (3.43, 7.94) vs. 2.25 (-2.36, 6.87)]. While it did not have a proved benefit in changing calcification scores [-0.14 (-0.37 ± 0.09)], vitamin K proved to be a safe product. There was some concern with bias. Vitamin K supplementation has no impact on mortality and did not show significant benefit in reversing calcification scores. Vitamin K1 improved vitamin K deposits and lowered dp-uc-MGP, which is a calcification biomarker more than vitamin K2. As it proved to be a safe product, additional randomized well-powered studies with improved treatment regimens are needed to establish the true impact of vitamin K in dialysis patients.
Collapse
Affiliation(s)
- Titus Andrian
- Internal Medicine, Nephrology, Universitatea de Medicina si Farmacie Grigore T Popa lasi, Iasi, Romania
- Nephrology, Dialysis, Transplantation, Spitalul Clinic Dr C I Parhon, Iasi, Romania
| | - Anca Stefan
- Nephrology, Dialysis, Transplantation, Spitalul Clinic Dr C I Parhon, Iasi, Romania
| | - Ionut Nistor
- Internal Medicine, Nephrology, Universitatea de Medicina si Farmacie Grigore T Popa lasi, Iasi, Romania
- Nephrology, Dialysis, Transplantation, Spitalul Clinic Dr C I Parhon, Iasi, Romania
| | - Adrian Covic
- Internal Medicine, Nephrology, Universitatea de Medicina si Farmacie Grigore T Popa lasi, Iasi, Romania
- Nephrology, Dialysis, Transplantation, Spitalul Clinic Dr C I Parhon, Iasi, Romania
| |
Collapse
|
19
|
Xiang Y, Lu W, Mao X, Zou J, Wang J, Xu R, Tang Q. Osteocalcin has a muscle-protective effect during weight loss in men without metabolic syndrome: a multicenter, prospective, observational study. Front Endocrinol (Lausanne) 2023; 14:1308452. [PMID: 38093960 PMCID: PMC10716436 DOI: 10.3389/fendo.2023.1308452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 11/17/2023] [Indexed: 12/18/2023] Open
Abstract
Objective Weight reduction often accompanies muscle loss. Existing studies highlight the involvement of osteocalcin (OC) in energy metabolism and its potential to prevent age-related muscle loss. Nevertheless, these studies predominantly involve individuals with hyperglycemia, yielding conflicting research outcomes. This study investigated the protective role of OC against muscle loss during weight reduction in individuals without metabolic syndrome (MetS). Measures We enrolled 130 overweight or obese individuals without MetS in a 4-month high-protein, energy-restricted dietary weight management program conducted at two clinic centers. Body composition and laboratory tests were assessed both before and after weight loss. Correlation and regression analysis were made between the changes in metabolic indicators and muscle mass during weight loss. Results Following weight loss, there was a decrease in body mass index (BMI), percentage of body fat (PBF), visceral fat area (VFA), fasting insulin (FINS), homeostasis model assessment insulin resistance (HOMA-IR), glycated haemoglobin (HbA1c), and lipid profile, and increase in the percentage of skeletal muscle (PSM) and vitamin D. There was no change in osteocalcin (OC) during the intervention. Correlation analysis of the relative changes in all metabolic indicators revealed a positive correlation between OC and PSM (r=0.383, p=0.002). Multiple linear regression analysis found that OC has a significant protective effect on muscles during weight loss in males after adjusting for confounding factors (β=0.089, p=0.017). Conclusion High-protein, energy-restricted diets demonstrate efficacy in enhancing metabolic indicators within the weight-loss population. Furthermore, OC exhibits a protective effect on muscle mass during weight reduction in individuals without MetS, with this effect being particularly evident in males.
Collapse
Affiliation(s)
- Yi Xiang
- Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wenyi Lu
- Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaomeng Mao
- Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jing Zou
- Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jialu Wang
- Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Renying Xu
- Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qingya Tang
- Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
20
|
Sharma A, Krishnan M, Ganganahalli G, Saraswathy S, Johnson R, Iyer SR. Microarray illustrates enhanced mechanistic action towards osteogenesis for magnesium aluminate spinel ceramic-based polyphasic composite scaffold with mesenchymal stem cells and bone morphogenetic protein 2. J Biomed Mater Res B Appl Biomater 2023; 111:1858-1868. [PMID: 35289496 DOI: 10.1002/jbm.b.35051] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 02/24/2022] [Accepted: 03/03/2022] [Indexed: 11/10/2022]
Abstract
Spinel (magnesium aluminate MgAl2 O4 ) ceramic-based polyphasic composite scaffold has been recently reported for craniofacial bone tissue engineering. Improving the osteogenic effects of such composite scaffolds with bone morphogenetic proteins (BMP2) is an intensely researched area. This study investigated the gene interactions of this scaffold with BMP2 and mesenchymal stem cells (MSCs). Human bone marrow MSCs were cultured in 3 groups: Group 1-Control (BMSCs), Group 2-BMSC with BMP2, and Group 3-BMSC with scaffold and BMP2. After RNA isolation, gene expression analysis was done by microarray. Differentially expressed genes (DEGs) (-1.0 > fold changes>1 and p value <.05) were studied for their function and gene ontologies using Database for Annotation, Visualization and Integrated Discovery (DAVID). They were further studied by protein-protein interaction network analysis using STRING and MCODE Cytoscape plugin database. Group 3 showed up regulation of 3222 genes against 2158 of Group 2. Group 3 had five annotation clusters with enrichment scores from 2.08 to 3.93. Group 2 had only one cluster. Group 3 showed activation of all major osteogenic pathways: TGF, BMP2, WNT, SMAD, and Notch gene signaling with effects of calcium and magnesium released from the scaffold. Downstream effect of all these caused significant activation of RUNX2, the key transcriptional regulator of osteogenesis in Group 3. STRING and MCODE Cytoscape plugin demonstrated the interactions. The enhanced MSC differentiation for osteogenesis with the addition of BMP2 to the polyphasic composite scaffold proposed promising clinical applications for bone tissue engineering.
Collapse
Affiliation(s)
- Anu Sharma
- Department of Dental Research and Implantology, Institute of Nuclear Medicine and Allied Sciences (INMAS), Defence Research and Development Organization (DRDO), Delhi, India
| | - Manu Krishnan
- Department of Dental Research and Implantology, Institute of Nuclear Medicine and Allied Sciences (INMAS), Defence Research and Development Organization (DRDO), Delhi, India
| | - Gurudatta Ganganahalli
- Division of Stem Cell and Gene Therapy Research, Institute of Nuclear Medicine and Allied Sciences (INMAS), Defence Research and Development Organization (DRDO), Delhi, India
| | - Seema Saraswathy
- Department of Biochemistry, Army College of Medical Sciences (ACMS), Delhi, India
| | - Roy Johnson
- Centre for Ceramic Processing, International Advanced Research Centre for Powder Metallurgy and New Materials (ARCI), Hyderabad, India
| | - Satish R Iyer
- Directorate General of Dental Services (DGDS), Delhi, India
| |
Collapse
|
21
|
Chen ZY, Yang J, Tian CY, Jia W. The Relationship Between Bone Metabolism and Peripheral Artery Disease in Patients on Hemodialysis: The Potential Role of Osteocalcin. Diabetes Metab Syndr Obes 2023; 16:3331-3337. [PMID: 37908632 PMCID: PMC10614643 DOI: 10.2147/dmso.s432345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 10/10/2023] [Indexed: 11/02/2023] Open
Abstract
Introduction To examine the factors associated with PAD, with a specific focus on bone metabolism factors such as osteocalcin. Methods This cross-sectional study examined factors about demographic, clinical, and laboratory parameters including bone metabolism biomarkers in hemodialysis patients. The ankle-brachial index (ABI) was measured in all patients, with PAD diagnosed as an ABI <0.9. Results Out of the 71 patients, PAD was found in 23 individuals. These patients had an average age of 63.5±13.0 years, with 59.2% being male. Compared to non-PAD patients, those with PAD were older, had a lower proportion of males, and had a higher prevalence of diabetes and coronary artery disease. Among the factors related to bone metabolism, only osteocalcin exhibited a significant increase in the PAD group compared to the non-PAD group. Conclusion PAD in patients on hemodialysis was independently linked to high levels of osteocalcin in the bloodstream, indicating the presence of bone metabolism disorders.
Collapse
Affiliation(s)
- Zi-Ye Chen
- Department of Nephrology, Beijing Jishuitan Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Jie Yang
- Department of Nephrology, Beijing Jishuitan Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Chen-Yang Tian
- Department of Vascular Surgery, Beijing Jishuitan Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Wei Jia
- Department of Vascular Surgery, Beijing Jishuitan Hospital, Capital Medical University, Beijing, People’s Republic of China
| |
Collapse
|
22
|
Jaśkiewicz Ł, Chmielewski G, Kuna J, Stompór T, Krajewska-Włodarczyk M. The Role of Sclerostin in Rheumatic Diseases: A Review. J Clin Med 2023; 12:6248. [PMID: 37834893 PMCID: PMC10573925 DOI: 10.3390/jcm12196248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/21/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
Systemic connective tissue disorders constitute a heterogenous group of autoimmune diseases with the potential to affect a range of organs. Rheumatoid arthritis (RA) is a chronic, progressive, autoimmune inflammatory disease affecting the joints. Systemic lupus erythematosus (SLE) may manifest with multiple system involvement as a result of inflammatory response to autoantibodies. Spondyloarthropathies (SpAs) such as ankylosing spondylitis (AS) or psoriatic arthritis (PsA) are diseases characterised by the inflammation of spinal joints, paraspinal tissues, peripheral joints and enthesitis as well as inflammatory changes in many other systems and organs. Physiologically, sclerostin helps to maintain balance in bone tissue metabolism through the Wnt/β-catenin pathway, which represents a major intracellular signalling pathway. This review article aims to present the current knowledge on the role of sclerostin in the Wnt/β-catenin pathway and its correlation with clinical data from RA, SLE, AS and PsA patients.
Collapse
Affiliation(s)
- Łukasz Jaśkiewicz
- Department of Human Physiology and Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland
| | - Grzegorz Chmielewski
- Department of Rheumatology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-900 Olsztyn, Poland
| | - Jakub Kuna
- Department of Rheumatology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-900 Olsztyn, Poland
| | - Tomasz Stompór
- Department of Nephrology, Hypertension and Internal Medicine, University of Warmia and Mazury in Olsztyn, 10-516 Olsztyn, Poland
| | - Magdalena Krajewska-Włodarczyk
- Department of Rheumatology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-900 Olsztyn, Poland
| |
Collapse
|
23
|
Monnerat S, Refardt J, Potasso L, Meier C, Christ-Crain M. An Increase in Plasma Sodium Levels Is Associated With an Increase in Osteoblast Function in Chronic SIAD. J Clin Endocrinol Metab 2023; 108:e1027-e1033. [PMID: 37098131 PMCID: PMC10505522 DOI: 10.1210/clinem/dgad238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 04/27/2023]
Abstract
CONTEXT Hyponatremia is associated with increased risk for osteoporosis. Preclinical studies in untreated hyponatremia suggest osteoclast upregulation, whereas a clinical study showed improved osteoblast function after hyponatremia normalization in hospitalized patients with syndrome of inappropriate antidiuresis (SIAD). OBJECTIVE This work aimed to investigate the effect of an increase in sodium on bone turnover, that is, the ratio of the osteoblast marker procollagen type 1 N-terminal propeptide (P1NP) to the osteoclast marker cross-linked C-terminal telopeptide of type 1 collagen (CTX), in outpatients with chronic SIAD. METHODS A predefined secondary analysis was conducted of the 2-month double-blind, crossover, placebo-controlled SANDx Trial (NCT03202667) performed from December 2017 to August 2021. Participants included 11 outpatients with chronic SIAD: 6 women, median age 73 years, who received a 4-week treatment with 25-mg empagliflozin or placebo. Main outcome measures included the relationship between the change in bone formation index (BFI), defined as P1NP/CTX, and the change in plasma sodium levels. RESULTS Changes in sodium were positively correlated with changes in BFI and P1NP (BFI: ρ=.55; P < .001; P1NP: ρ=.45; P = .004) but not with CTX (P = .184) and osteocalcin (P = .149). A sodium increase of 1 mmol/l was associated with an increase of 5.21 in BFI (95% CI, 1.41-9.00; P = .013) and with an increase of 1.48 µg/l in P1NP (95% CI, .26-2.62; P = .03). The effect of sodium change on bone markers was independent of the study medication empagliflozin. CONCLUSION An increase in plasma sodium levels in outpatients with chronic hyponatremia due to SIAD, even when mild, was associated with an increase in bone formation index (P1NP/CTX) triggered by an increase in P1NP, a surrogate marker of osteoblast function.
Collapse
Affiliation(s)
- Sophie Monnerat
- Department of Endocrinology, Diabetology and Metabolism, University Hospital Basel, 4031 Basel, Switzerland
- Department of Clinical Research, University of Basel, 4056 Basel, Switzerland
| | - Julie Refardt
- Department of Endocrinology, Diabetology and Metabolism, University Hospital Basel, 4031 Basel, Switzerland
| | - Laura Potasso
- Department of Endocrinology, Diabetology and Metabolism, University Hospital Basel, 4031 Basel, Switzerland
| | - Christian Meier
- Department of Endocrinology, Diabetology and Metabolism, University Hospital Basel, 4031 Basel, Switzerland
- Department of Clinical Research, University of Basel, 4056 Basel, Switzerland
| | - Mirjam Christ-Crain
- Department of Endocrinology, Diabetology and Metabolism, University Hospital Basel, 4031 Basel, Switzerland
- Department of Clinical Research, University of Basel, 4056 Basel, Switzerland
| |
Collapse
|
24
|
Zhou G, Yan X, Chen Z, Zeng X, Wu F. ASPN Synergizes with HAPLN1 to Inhibit the Osteogenic Differentiation of Bone Marrow Mesenchymal Stromal Cells and Extracellular Matrix Mineralization of Osteoblasts. Orthop Surg 2023; 15:2423-2434. [PMID: 37427673 PMCID: PMC10475675 DOI: 10.1111/os.13803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 07/11/2023] Open
Abstract
OBJECTIVE Bone marrow mesenchymal stromal cells (BMSCs) are major sources of osteogenic precursor cells in bone remodeling, which directly participate in osteoporosis (OP) progression. However, the involved specific mechanisms of BMSCs in OP warrant mass investigations. Initially, our bioinformatics analysis uncovered the prominent up-regulation of Asporin (ASPN) and proteoglycan link protein 1 (HAPLN1) in osteoblasts (OBs) of OP patients and their possible protein interaction. Hence, this study aimed to explore the effects of ASPN and HAPLN1 on osteogenic differentiation of BMSCs, extracellular matrix (ECM) mineralization of OBs, and osteoclastogenesis, hoping to offer research basis for OP treatment. METHODS GSE156508 dataset was used for analysis and screening to acquire the differentially expressed genes in OBs of OP patients, followed by the predicative analysis via STRING. OP mouse models were induced by ovariectomy (OVX), and ASPN and HAPLN1 expression was determined. BMSCs and bone marrow macrophages (BMMs) were isolated from OVX mice and induced for osteogenic differentiation and osteoclastogenesis, respectively. After knockdown experiments, we assessed adipogenic differentiation and osteogenic differentiation in BMSCs. Osteogenic (OPN, OCN, and COL1A1) and osteoclast (Nfatc1 and c-Fos) marker protein expression was determined. The binding of ASPN to HAPLN1 was analyzed. RESULTS High expression of ASPN and HAPLN1 and their protein interaction were observed in OBs of OP patients via bioinformatics and in bone tissues of OVX mice. ASPN interacted with HAPLN1 in BMSCs of OVX mice. ASPN/HAPLN1 knockdown increased ALP, OPN, OCN, and COL1A1 protein expression and ECM mineralization in BMSCs while decreasing Nfatc1 and c-Fos expression in BMMs. These effects were aggravated by the simultaneous knockdown of ASPN and HAPLN1. CONCLUSION Our results indicate that ASPN synergises with HAPLN1 to suppress the osteogenic differentiation of BMSCs and ECM mineralization of OBs and promote the osteoclastogenesis in OP.
Collapse
Affiliation(s)
- Guohui Zhou
- Department of OrthopaedicsFirst People's Hospital of FuzhouFuzhouChina
| | - Xinmin Yan
- Department of OrthopaedicsFirst People's Hospital of FuzhouFuzhouChina
| | - Zhenfei Chen
- Hospital‐Acquired Infection Control DepartmentFirst People's Hospital of FuzhouFuzhouChina
| | - Xing Zeng
- Department of OrthopaedicsFirst People's Hospital of FuzhouFuzhouChina
| | - Fangqian Wu
- Department of Spine SurgeryFirst People's Hospital of FuzhouFuzhouChina
| |
Collapse
|
25
|
Rifai A, Weerasinghe DK, Tilaye GA, Nisbet D, Hodge JM, Pasco JA, Williams LJ, Samarasinghe RM, Williams RJ. Biofabrication of functional bone tissue: defining tissue-engineered scaffolds from nature. Front Bioeng Biotechnol 2023; 11:1185841. [PMID: 37614632 PMCID: PMC10444209 DOI: 10.3389/fbioe.2023.1185841] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 07/24/2023] [Indexed: 08/25/2023] Open
Abstract
Damage to bone leads to pain and loss of movement in the musculoskeletal system. Although bone can regenerate, sometimes it is damaged beyond its innate capacity. Research interest is increasingly turning to tissue engineering (TE) processes to provide a clinical solution for bone defects. Despite the increasing biomimicry of tissue-engineered scaffolds, significant gaps remain in creating the complex bone substitutes, which include the biochemical and physical conditions required to recapitulate bone cells' natural growth, differentiation and maturation. Combining advanced biomaterials with new additive manufacturing technologies allows the development of 3D tissue, capable of forming cell aggregates and organoids based on natural and stimulated cues. Here, we provide an overview of the structure and mechanical properties of natural bone, the role of bone cells, the remodelling process, cytokines and signalling pathways, causes of bone defects and typical treatments and new TE strategies. We highlight processes of selecting biomaterials, cells and growth factors. Finally, we discuss innovative tissue-engineered models that have physiological and anatomical relevance for cancer treatments, injectable stimuli gels, and other therapeutic drug delivery systems. We also review current challenges and prospects of bone TE. Overall, this review serves as guide to understand and develop better tissue-engineered bone designs.
Collapse
Affiliation(s)
- Aaqil Rifai
- Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, VIC, Australia
| | - D. Kavindi Weerasinghe
- Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Gebreselassie Addisu Tilaye
- Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, VIC, Australia
| | - David Nisbet
- The Graeme Clark Institute, The University of Melbourne, Melbourne, VIC, Australia
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Melbourne, VIC, Australia
- Melbourne Medical School, Faculty of Medicine, Dentistry and Health Science, The University of Melbourne, Melbourne, VIC, Australia
- Laboratory of Advanced Biomaterials, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
- Aikenhead Centre for Medical Discovery, St. Vincent’s Hospital, Melbourne, VIC, Australia
| | - Jason M. Hodge
- Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, VIC, Australia
- Barwon Health, Geelong, VIC, Australia
| | - Julie A. Pasco
- Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, VIC, Australia
- Barwon Health, Geelong, VIC, Australia
- Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, VIC, Australia
- Department of Medicine-Western Health, The University of Melbourne, St Albans, VIC, Australia
| | - Lana J. Williams
- Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, VIC, Australia
- Barwon Health, Geelong, VIC, Australia
| | - Rasika M. Samarasinghe
- Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Richard J. Williams
- Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, VIC, Australia
- The Graeme Clark Institute, The University of Melbourne, Melbourne, VIC, Australia
- Aikenhead Centre for Medical Discovery, St. Vincent’s Hospital, Melbourne, VIC, Australia
| |
Collapse
|
26
|
Su L, Liao Y, Liu X, Xie X, Li Y. Increased risk of dementia among people with a history of fractures: a systematic review and meta-analysis of population-based studies. Front Neurol 2023; 14:1185721. [PMID: 37545728 PMCID: PMC10400716 DOI: 10.3389/fneur.2023.1185721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 06/23/2023] [Indexed: 08/08/2023] Open
Abstract
Background Emerging evidence suggests that there may be an association between a history of fractures and dementia risk, but the epidemiological findings are inconsistent. We, therefore, conducted a meta-analysis to systematically assess the risk of dementia among people with a history of fractures. Methods We comprehensively searched four electronic databases (PubMed, Web of Science, Embase, and Cochrane Library) for relevant literature published from inception to 10 January 2023. Longitudinal observational studies that investigated the association between any type of fracture occurrence and the subsequent risk of dementia were included for qualitative and quantitative analysis. Risk estimates were pooled using fixed-effects or random-effects models according to the level of heterogeneity. The Newcastle-Ottawa scale was used to evaluate the risk of bias in the included studies. Results A total of seven population-based studies involving 3,658,108 participants (136,179 with a history of fractures) were eventually included. Pooled results showed a significant association between fracture and subsequent risk of dementia [hazard ratio (HR) = 1.28, 95% confidence interval (CI): 1.11-1.48] in cohort studies. Patients with fractures at different sites showed a similar trend toward increased risk of subsequent dementia. No gender, age, region, duration of follow-up, study quality, or study design specificity were observed. Sensitivity analysis indicates that the current results are robust. No publication bias existed. The results were similar in the cohort study with the standardized incidence ratio (SIR) as the statistical measure (SIR = 1.58, 95% CI: 1.25-2.00) and in the case-control study (OR = 1.38, 95% CI: 1.18-1.61). Of note, the causal relationship between fracture and dementia was not demonstrated in this meta-analysis. Conclusion People with a history of fractures are at increased risk of developing dementia. Enhanced screening and preventive management of dementia in people with a history of fractures may be beneficial.
Collapse
Affiliation(s)
| | | | | | | | - Yujie Li
- Department of Neurology, The General Hospital of Western Theater Command PLA, Chengdu, China
| |
Collapse
|
27
|
Shimonty A, Bonewald LF, Huot JR. Metabolic Health and Disease: A Role of Osteokines? Calcif Tissue Int 2023; 113:21-38. [PMID: 37193929 DOI: 10.1007/s00223-023-01093-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/01/2023] [Indexed: 05/18/2023]
Abstract
Maintenance of skeletal health is tightly regulated by osteocytes, osteoblasts, and osteoclasts via coordinated secretion of bone-derived factors, termed osteokines. Disruption of this coordinated process due to aging and metabolic disease promotes loss of bone mass and increased risk of fracture. Indeed, growing evidence demonstrates that metabolic diseases, including type 2 diabetes, liver disease and cancer are accompanied by bone loss and altered osteokine levels. With the persistent prevalence of cancer and the growing epidemic of metabolic disorders, investigations into the role of inter-tissue communication during disease progression are on the rise. While osteokines are imperative for bone homeostasis, work from us and others have identified that osteokines possess endocrine functions, exerting effects on distant tissues including skeletal muscle and liver. In this review we first discuss the prevalence of bone loss and osteokine alterations in patients with type 2 diabetes, non-alcoholic fatty liver disease, non-alcoholic steatohepatitis, cirrhosis, and cancer. We then discuss the effects of osteokines in mediating skeletal muscle and liver homeostasis, including RANKL, sclerostin, osteocalcin, FGF23, PGE2, TGF-β, BMPs, IGF-1 and PTHrP. To better understand how inter-tissue communication contributes to disease progression, it is essential that we include the bone secretome and the systemic roles of osteokines.
Collapse
Affiliation(s)
- Anika Shimonty
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Lynda F Bonewald
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA
- Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Joshua R Huot
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA.
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA.
- Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, USA.
- Department of Kinesiology, School of Health and Human Sciences, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA.
| |
Collapse
|
28
|
Alkaissi H, McFarlane SI. Hyperhomocysteinemia and Accelerated Aging: The Pathogenic Role of Increased Homocysteine in Atherosclerosis, Osteoporosis, and Neurodegeneration. Cureus 2023; 15:e42259. [PMID: 37605676 PMCID: PMC10440097 DOI: 10.7759/cureus.42259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/21/2023] [Indexed: 08/23/2023] Open
Abstract
Cardiovascular diseases and osteoporosis, seemingly unrelated disorders that occur with advanced age, share major pathogenetic mechanisms contributing to accelerated atherosclerosis and bone loss. Hyperhomocysteinemia (hHcy) is among these mechanisms that can cause both vascular and bone disease. In its more severe form, hHcy can present early in life as homocystinuria, an inborn error of metabolic pathways of the sulfur-containing amino acid methionine. In its milder forms, hHcy may go undiagnosed and untreated into adulthood. As such, hHcy may serve as a potential therapeutic target for cardiovascular disease, osteoporosis, thrombophilia, and neurodegeneration, collectively representing accelerated aging. Multiple trials to lower cardiovascular risk and improve bone density with homocysteine-lowering agents, yet none has proven to be clinically meaningful. To understand this unmet clinical need, this review will provide mechanistic insight into the pathogenesis of vascular and bone disease in hHcy, using homocystinuria as a model for accelerated atherosclerosis and bone density loss, a model for accelerated aging.
Collapse
Affiliation(s)
- Hussam Alkaissi
- Internal Medicine, Kings County Hospital Center, Brooklyn, USA
- Internal Medicine, Veterans Affairs Medical Center, Brooklyn, USA
- Internal Medicine, State University of New York Downstate Medical Center, Brooklyn, USA
| | - Samy I McFarlane
- Endocrinology, State University of New York Downstate Medical Center, Brooklyn, USA
| |
Collapse
|
29
|
Nugraha AP, Ramadhani NF, Riawan W, Ihsan IS, Ernawati DS, Ridwan RD, Narmada IB, Saskianti T, Rezkita F, Sarasati A, Noor TNEBTA, Inayatillah B, Nugraha AP, Joestandari F. Gingival Mesenchymal Stem Cells Metabolite Decreasing TRAP, NFATc1, and Sclerostin Expression in LPS-Associated Inflammatory Osteolysis In Vivo. Eur J Dent 2023; 17:881-888. [PMID: 35728613 PMCID: PMC10569879 DOI: 10.1055/s-0042-1748529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
OBJECTIVE Bone is a dynamic tissue that undergoes remodeling. During bone remodeling, there are transcription factors such as nuclear factor-activated T cells-1 (NFATc1), sclerostin, and tartrate-resistant acid phosphatase (TRAP) that are released for bone resorption. Metabolite from gingival mesenchymal stem cells (GMSCs) has the ability to activate proliferation, migration, immunomodulation, and tissue regeneration of bone cells and tissues. Furthermore, the aim of this study is to investigate the metabolite of GMSCs' effect on expression of NFATc1, TRAP, and sclerostin in calvaria bone resorption of Wistar rats. MATERIALS AND METHODS Twenty male healthy Wistar rats (Rattus norvegicus), 1 to 2 months old, 250 to 300 g body were divided into four groups, namely group 1 (G1): 100 µg phosphate-buffered saline day 1 to 7; group 2 (G2): 100 μg lipopolysaccharide (LPS) day 1 to 7; group 3 (G3): 100 μg LPS + 100 μg GMSCs metabolite day 1 to 7; and group 4 (G4): 100 μg GMSCs metabolite day 1 to 7. Escherichia coli LPS was used to induce inflammatory osteolysis on the calvaria with subcutaneous injection. GMSCs metabolite was collected after passage 4 to 5, then injected subcutaneously on the calvaria. All samples were sacrificed on the day 8 through cervical dislocation. The expression of TRAP, NFATc1, and sclerostin of osteoclast in the calvaria was observed with 1,000× magnification. STATISTICAL ANALYSIS One-way analysis of variance and Tukey honest significant different were conducted to analyze differences between groups (p < 0.05). RESULTS The administration of GMSCs metabolite can significantly decrease TRAP, NFATc1, and sclerostin expression (p < 0.05) in LPS-associated inflammatory osteolysis calvaria in Wistar rats (R. norvegicus). There were significantly different TRAP, NFATc1, and sclerostin expressions between groups (p < 0.05). CONCLUSION GMSCs metabolite decrease TRAP, NFATc1, and sclerostin expression in LPS-associated osteolysis calvaria in Wistar rats (R. norvegicus) as documented immunohistochemically.
Collapse
Affiliation(s)
- Alexander Patera Nugraha
- Dental Regenerative Research Group, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
- Department of Orthodontics, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Nastiti Faradilla Ramadhani
- Dental Regenerative Research Group, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
- Department of Dentomaxillofacial Radiology, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Wibi Riawan
- Department of Biomolecular Biochemistry, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
| | - Igo Syaiful Ihsan
- Stem Cell Research and Development Center, Universitas Airlangga Surabaya, Surabaya, Indonesia
| | - Diah Savitri Ernawati
- Department of Oral Medicine, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Rini Devijanti Ridwan
- Department of Oral Biology, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Ida Bagus Narmada
- Dental Regenerative Research Group, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
- Department of Orthodontics, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Tania Saskianti
- Department of Pediatric Dentistry, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Fianza Rezkita
- Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Andari Sarasati
- Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | | | - Bilqis Inayatillah
- Department of Basic Medical of Science, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | | | | |
Collapse
|
30
|
Shimonty A, Bonewald LF, Pin F. Role of the Osteocyte in Musculoskeletal Disease. Curr Osteoporos Rep 2023; 21:303-310. [PMID: 37084017 DOI: 10.1007/s11914-023-00788-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/12/2023] [Indexed: 04/22/2023]
Abstract
PURPOSE OF THE REVIEW The purpose of this review is to summarize the role of the osteocyte in muscle atrophy in cancer patients, sarcopenia, spinal cord injury, Duchenne's muscular dystrophy, and other conditions associated with muscle deterioration. RECENT FINDINGS One type of bone cell, the osteocyte, appears to play a major role in muscle and bone crosstalk, whether physiological or pathological. Osteocytes are cells living within the bone-mineralized matrix. These cells are connected to each other by means of dendrites to create an intricately connected network. The osteocyte network has been shown to respond to different types of stimuli such as mechanical unloading, immobilization, aging, and cancer by producing osteocytes-derived factors. It is now becoming clear that some of these factors including sclerostin, RANKL, TGF-β, and TNF-α have detrimental effects on skeletal muscle. Bone and muscle not only communicate mechanically but also biochemically. Osteocyte-derived factors appear to contribute to the pathogenesis of muscle disease and could be used as a cellular target for new therapeutic approaches.
Collapse
Affiliation(s)
- Anika Shimonty
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Lynda F Bonewald
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA
- Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Fabrizio Pin
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA.
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA.
- Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
31
|
Li M, Wang Y, Xue J, Xu Q, Zhang Y, Liu J, Xu H, Guan Z, Bian C, Zhang G, Yu Y. Baicalin can enhance odonto/osteogenic differentiation of inflammatory dental pulp stem cells by inhibiting the NF-κB and β-catenin/Wnt signaling pathways. Mol Biol Rep 2023; 50:4435-4446. [PMID: 37009956 PMCID: PMC10068215 DOI: 10.1007/s11033-023-08398-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 03/21/2023] [Indexed: 04/04/2023]
Abstract
BACKGROUND Scutellaria baicalensis Georgi is a famous traditional Chinese medicine, which is widely used in treating fever, upper respiratory tract infection and other diseases. Pharmacology study showed it can exhibit anti-bacterial, anti-inflammation and analgesic effects. In this study, we investigated the effect of baicalin on the odonto/osteogenic differentiation of inflammatory dental pulp stem cells (iDPSCs). METHODS AND RESULTS iDPSCs were isolated from the inflamed pulps collected from pulpitis. The proliferation of iDPSCs was detected by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2,5-tetrazolium bromide (MTT) assay and flow cytometry. Alkaline phosphatase (ALP) activity assay, alizarin red staining, Real-time reverse transcription-polymerase chain reaction (RT-PCR) and Western blot assay were conducted to examine the differentiation potency along with the involvement of nuclear factor kappa B(NF-κB) and β-catenin/Wnt signaling pathway. MTT assay and cell-cycle analysis demonstrated that baicalin had no influence on the proliferation of iDPSCs. ALP activity assay and alizarin red staining demonstrated that baicalin could obviously enhance ALP activity and calcified nodules formed in iDPSCs. RT-PCR and Western blot showed that the odonto/osteogenic markers were upregulated in baicalin-treated iDPSCs. Moreover, expression of cytoplastic phosphor-P65, nuclear P65, and β-catenin in iDPSCs was significantly increased compared with DPSCs, but the expression in baicalin-treated iDPSCs was inhibited. In addition, 20 µM Baicalin could accelerate odonto/osteogenic differentiation of iDPSCs via inhibition of NF-κB and β-catenin/Wnt signaling pathways. CONCLUSION Baicalin can promote odonto/osteogenic differentiation of iDPSCs through inhibition of NF-κB and β-catenin/Wnt pathways, thus providing direct evidence that baicalin may be effective in repairing pulp with early irreversible pulpitis.
Collapse
Affiliation(s)
- Mengyuan Li
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Shang-Hai Road 1Th, Nanjing, 210029, Jiangsu, China
- Department of General Dentistry, Affiliated Hospital of Stomatology, Nanjing Medical University, Shang-Hai Road 1Th, Nanjing, Jiangsu, China
| | - Yumeng Wang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Shang-Hai Road 1Th, Nanjing, 210029, Jiangsu, China
- Department of General Dentistry, Affiliated Hospital of Stomatology, Nanjing Medical University, Shang-Hai Road 1Th, Nanjing, Jiangsu, China
| | - Jing Xue
- Department of Critical Care, Changsha of Traditional Chinese Medicine Hospital, Changsha, Hunan, China
| | - Qingqing Xu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Shang-Hai Road 1Th, Nanjing, 210029, Jiangsu, China
- Department of General Dentistry, Affiliated Hospital of Stomatology, Nanjing Medical University, Shang-Hai Road 1Th, Nanjing, Jiangsu, China
| | - Yuerong Zhang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Shang-Hai Road 1Th, Nanjing, 210029, Jiangsu, China
- Department of General Dentistry, Affiliated Hospital of Stomatology, Nanjing Medical University, Shang-Hai Road 1Th, Nanjing, Jiangsu, China
| | - Jie Liu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Shang-Hai Road 1Th, Nanjing, 210029, Jiangsu, China
- Department of General Dentistry, Affiliated Hospital of Stomatology, Nanjing Medical University, Shang-Hai Road 1Th, Nanjing, Jiangsu, China
| | - Hai Xu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Shang-Hai Road 1Th, Nanjing, 210029, Jiangsu, China
- Department of Conservative Dentistry and Endodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Shang-Hai Road 1Th, Nanjing, Jiangsu, China
| | - Zhuo Guan
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Shang-Hai Road 1Th, Nanjing, 210029, Jiangsu, China
- Department of General Dentistry, Affiliated Hospital of Stomatology, Nanjing Medical University, Shang-Hai Road 1Th, Nanjing, Jiangsu, China
| | - Chengyue Bian
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Shang-Hai Road 1Th, Nanjing, 210029, Jiangsu, China
- Department of General Dentistry, Affiliated Hospital of Stomatology, Nanjing Medical University, Shang-Hai Road 1Th, Nanjing, Jiangsu, China
| | - Guangdong Zhang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Shang-Hai Road 1Th, Nanjing, 210029, Jiangsu, China.
- Department of General Dentistry, Affiliated Hospital of Stomatology, Nanjing Medical University, Shang-Hai Road 1Th, Nanjing, Jiangsu, China.
| | - Yan Yu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Shang-Hai Road 1Th, Nanjing, 210029, Jiangsu, China.
- Department of Conservative Dentistry and Endodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Shang-Hai Road 1Th, Nanjing, Jiangsu, China.
| |
Collapse
|
32
|
Walowski CO, Herpich C, Enderle J, Braun W, Both M, Hasler M, Müller MJ, Norman K, Bosy-Westphal A. Determinants of bone mass in older adults with normal- and overweight derived from the crosstalk with muscle and adipose tissue. Sci Rep 2023; 13:5030. [PMID: 36977715 PMCID: PMC10050471 DOI: 10.1038/s41598-023-31642-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Lower bone mass in older adults may be mediated by the endocrine crosstalk between muscle, adipose tissue and bone. In 150 community-dwelling adults (59-86 years, BMI 17-37 kg/m2; 58.7% female), skeletal muscle mass index, adipose tissue and fat mass index (FMI) were determined. Levels of myokines, adipokines, osteokines, inflammation markers and insulin were measured as potential determinants of bone mineral content (BMC) and density (BMD). FMI was negatively associated with BMC and BMD after adjustment for mechanical loading effects of body weight (r-values between -0.37 and -0.71, all p < 0.05). Higher FMI was associated with higher leptin levels in both sexes, with higher hsCRP in women and with lower adiponectin levels in men. In addition to weight and FMI, sclerostin, osteocalcin, leptin × sex and adiponectin were independent predictors of BMC in a stepwise multiple regression analysis. Muscle mass, but not myokines, showed positive correlations with bone parameters that were weakened after adjusting for body weight (r-values between 0.27 and 0.58, all p < 0.01). Whereas the anabolic effect of muscle mass on bone in older adults may be partly explained by mechanical loading, the adverse effect of obesity on bone is possibly mediated by low-grade inflammation, higher leptin and lower adiponectin levels.
Collapse
Affiliation(s)
- Carina O Walowski
- Institute for Human Nutrition and Food Science, Christian-Albrechts-University, Düsternbrooker Weg 17, 24105, Kiel, Germany
| | - Catrin Herpich
- Institute of Nutritional Science, University of Potsdam, Potsdam, Germany
- Department of Geriatrics and Medical Gerontology, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Nutrition and Gerontology, German Institute of Human Nutrition, Potsdam-Rehbrücke, Nuthetal, Germany
| | - Janna Enderle
- Institute for Human Nutrition and Food Science, Christian-Albrechts-University, Düsternbrooker Weg 17, 24105, Kiel, Germany
| | - Wiebke Braun
- Institute for Human Nutrition and Food Science, Christian-Albrechts-University, Düsternbrooker Weg 17, 24105, Kiel, Germany
| | - Marcus Both
- Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein, Campus Kiel, Germany
| | - Mario Hasler
- Applied Statistics, Faculty of Agricultural and Nutritional Sciences, Christian-Albrechts-University, Kiel, Germany
| | - Manfred J Müller
- Institute for Human Nutrition and Food Science, Christian-Albrechts-University, Düsternbrooker Weg 17, 24105, Kiel, Germany
| | - Kristina Norman
- Institute of Nutritional Science, University of Potsdam, Potsdam, Germany
- Department of Geriatrics and Medical Gerontology, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Nutrition and Gerontology, German Institute of Human Nutrition, Potsdam-Rehbrücke, Nuthetal, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | - Anja Bosy-Westphal
- Institute for Human Nutrition and Food Science, Christian-Albrechts-University, Düsternbrooker Weg 17, 24105, Kiel, Germany.
| |
Collapse
|
33
|
Huang J, Zhou H, He L, Zhong L, Zhou D, Yin Z. The promotive role of USP1 inhibition in coordinating osteogenic differentiation and fracture healing during nonunion. J Orthop Surg Res 2023; 18:152. [PMID: 36859264 PMCID: PMC9979441 DOI: 10.1186/s13018-023-03594-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 02/08/2023] [Indexed: 03/03/2023] Open
Abstract
BACKGROUND Nonunion is a failure of fracture healing and a major complication after fractures. Ubiquitin-specific protease 1 (USP1) is a deubiquitinase that involved in cell differentiation and cell response to DNA damage. Herein we investigated the expression, function and mechanism of USP1 in nonunion. METHODS AND RESULTS Clinical samples were used to detect the USP1 expression in nonunion. ML323 was selected to inhibit USP1 expression throughout the study. Rat models and mouse embryonic osteoblasts cells (MC3T3-E1) were used to investigate the effects of USP1 inhibition on fracture healing and osteogenesis in vivo and in vitro, respectively. Histological changes were examined by micro-computerized tomography (Micro-CT), hematoxylin & eosin (H&E) staining and Masson staining. Alkaline phosphatase (ALP) activity detection and alizarin red staining were used for osteogenic differentiation observation. The expression of related factors was detected by quantitative real-time PCR, western blot or immunohistochemistry (IHC). It was shown that USP1 was highly expressed in nonunion patients and nonunion rats. USP1 inhibition by ML323 promoted fracture healing in nonunion rats and facilitated the expression of osteogenesis-related factors and the signaling of PI3K/Akt pathway. In addition, USP1 inhibition accelerated osteogenic differentiation and promoting PI3K/Akt signaling in MC3T3-E1 cells. CONCLUSIONS USP1 inhibition plays a promotive role in coordinating osteogenic differentiation and fracture healing during nonunion. PI3K/Akt may be the downstream pathway of USP1.
Collapse
Affiliation(s)
- Jun Huang
- The Microscopic Repair and Reconstruction Department of Hand and Foot, Department of Orthopedics, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui Province, China
| | - Hongxiang Zhou
- The Microscopic Repair and Reconstruction Department of Hand and Foot, Department of Orthopedics, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui Province, China
| | - Liang He
- The Microscopic Repair and Reconstruction Department of Hand and Foot, Department of Orthopedics, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui Province, China
| | - Lin Zhong
- The Microscopic Repair and Reconstruction Department of Hand and Foot, Department of Orthopedics, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui Province, China
| | - Ding Zhou
- The Microscopic Repair and Reconstruction Department of Hand and Foot, Department of Orthopedics, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui Province, China
| | - Zongsheng Yin
- Department of Orthopedics, the First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Hefei, 230022, Anhui Province, China.
| |
Collapse
|
34
|
Wu YL, Lin ZJ, Li CC, Lin X, Shan SK, Guo B, Zheng MH, Li F, Yuan LQ, Li ZH. Epigenetic regulation in metabolic diseases: mechanisms and advances in clinical study. Signal Transduct Target Ther 2023; 8:98. [PMID: 36864020 PMCID: PMC9981733 DOI: 10.1038/s41392-023-01333-7] [Citation(s) in RCA: 93] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 01/02/2023] [Accepted: 01/18/2023] [Indexed: 03/04/2023] Open
Abstract
Epigenetics regulates gene expression and has been confirmed to play a critical role in a variety of metabolic diseases, such as diabetes, obesity, non-alcoholic fatty liver disease (NAFLD), osteoporosis, gout, hyperthyroidism, hypothyroidism and others. The term 'epigenetics' was firstly proposed in 1942 and with the development of technologies, the exploration of epigenetics has made great progresses. There are four main epigenetic mechanisms, including DNA methylation, histone modification, chromatin remodelling, and noncoding RNA (ncRNA), which exert different effects on metabolic diseases. Genetic and non-genetic factors, including ageing, diet, and exercise, interact with epigenetics and jointly affect the formation of a phenotype. Understanding epigenetics could be applied to diagnosing and treating metabolic diseases in the clinic, including epigenetic biomarkers, epigenetic drugs, and epigenetic editing. In this review, we introduce the brief history of epigenetics as well as the milestone events since the proposal of the term 'epigenetics'. Moreover, we summarise the research methods of epigenetics and introduce four main general mechanisms of epigenetic modulation. Furthermore, we summarise epigenetic mechanisms in metabolic diseases and introduce the interaction between epigenetics and genetic or non-genetic factors. Finally, we introduce the clinical trials and applications of epigenetics in metabolic diseases.
Collapse
Affiliation(s)
- Yan-Lin Wu
- National Clinical Research Center for Metabolic Disease, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Zheng-Jun Lin
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Chang-Chun Li
- National Clinical Research Center for Metabolic Disease, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Xiao Lin
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Su-Kang Shan
- National Clinical Research Center for Metabolic Disease, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Bei Guo
- National Clinical Research Center for Metabolic Disease, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Ming-Hui Zheng
- National Clinical Research Center for Metabolic Disease, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Fuxingzi Li
- National Clinical Research Center for Metabolic Disease, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Ling-Qing Yuan
- National Clinical Research Center for Metabolic Disease, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.
| | - Zhi-Hong Li
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China. .,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.
| |
Collapse
|
35
|
Kim DY, Ko SH. Common Regulators of Lipid Metabolism and Bone Marrow Adiposity in Postmenopausal Women. Pharmaceuticals (Basel) 2023; 16:322. [PMID: 37259464 PMCID: PMC9967016 DOI: 10.3390/ph16020322] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 09/13/2024] Open
Abstract
A variety of metabolic disorders are associated with a decrease in estradiol (E2) during natural or surgical menopause. Postmenopausal women are prone to excessive fat accumulation in skeletal muscle and adipose tissue due to the loss of E2 via abnormalities in lipid metabolism and serum lipid levels. In skeletal muscle and adipose tissue, genes related to energy metabolism and fatty acid oxidation, such as those encoding peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α) and estrogen-related receptor alpha (ERRα), are downregulated, leading to increased fat synthesis and lipid metabolite accumulation. The same genes regulate lipid metabolism abnormalities in the bone marrow. In this review, abnormalities in lipid metabolism caused by E2 deficiency were investigated, with a focus on genes able to simultaneously regulate not only skeletal muscle and adipose tissue but also bone metabolism (e.g., genes encoding PGC-1α and ERRα). In addition, the mechanisms through which mesenchymal stem cells lead to adipocyte differentiation in the bone marrow as well as metabolic processes related to bone marrow adiposity, bone loss, and osteoporosis were evaluated, focusing on the loss of E2 and lipid metabolic alterations. The work reviewed here suggests that genes underlying lipid metabolism and bone marrow adiposity are candidate therapeutic targets for bone loss and osteoporosis in postmenopausal women.
Collapse
Affiliation(s)
- Dae-Yong Kim
- CEO, N- BIOTEK, Inc., 402-803, Technopark, 655, Pyeongcheon-ro, Bucheon-si 14502, Gyeonggi-do, Republic of Korea
| | - Seong-Hee Ko
- Regenerative Medicine Research Team, N- BIOTEK, Inc., 104-706, Technopark Ssangyong 3Cha, 397, Seokcheon-ro, Bucheon-si 14449, Gyeonggi-do, Republic of Korea
| |
Collapse
|
36
|
Alzheimer's Disease and Impaired Bone Microarchitecture, Regeneration and Potential Genetic Links. Life (Basel) 2023; 13:life13020373. [PMID: 36836731 PMCID: PMC9963274 DOI: 10.3390/life13020373] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/08/2023] [Accepted: 01/16/2023] [Indexed: 02/03/2023] Open
Abstract
Alzheimer's Disease (AD) and osteoporosis are both age-related degenerative diseases. Many studies indicate that these two diseases share common pathogenesis mechanisms. In this review, the osteoporotic phenotype of AD mouse models was discussed, and shared mechanisms such as hormonal imbalance, genetic factors, similar signaling pathways and impaired neurotransmitters were identified. Moreover, the review provides recent data associated with these two diseases. Furthermore, potential therapeutic approaches targeting both diseases were discussed. Thus, we proposed that preventing bone loss should be one of the most important treatment goals in patients with AD; treatment targeting brain disorders is also beneficial for osteoporosis.
Collapse
|
37
|
Zi C, Wang D, Gao Y, He L. The role of Th17 cells in endocrine organs: Involvement of the gut, adipose tissue, liver and bone. Front Immunol 2023; 13:1104943. [PMID: 36726994 PMCID: PMC9884980 DOI: 10.3389/fimmu.2022.1104943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 12/28/2022] [Indexed: 01/18/2023] Open
Abstract
T Helper 17 (Th17) cells are adaptive immune cells that play myriad roles in the body. Immune-endocrine interactions are vital in endocrine organs during pathological states. Th17 cells are known to take part in multiple autoimmune diseases over the years. Current evidence has moved from minimal to substantial that Th17 cells are closely related to endocrine organs. Diverse tissue Th17 cells have been discovered within endocrine organs, including gut, adipose tissue, liver and bone, and these cells are modulated by various secretions from endocrine organs. Th17 cells in these endocrine organs are key players in the process of an array of metabolic disorders and inflammatory conditions, including obesity, insulin resistance, nonalcoholic fatty liver disease (NAFLD), primary sclerosing cholangitis (PSC), osteoporosis and inflammatory bowel disease (IBD). We reviewed the pathogenetic or protective functions played by Th17 cells in various endocrine tissues and identified potential regulators for plasticity of it. Furthermore, we discussed the roles of Th17 cells in crosstalk of gut-organs axis.
Collapse
Affiliation(s)
- Changyan Zi
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Die Wang
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yongxiang Gao
- School of International Education, Chengdu University of Traditional Chinese Medicine, Chengdu, China,*Correspondence: Yongxiang Gao, ; Lisha He,
| | - Lisha He
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China,*Correspondence: Yongxiang Gao, ; Lisha He,
| |
Collapse
|
38
|
Lundy B, McKay AKA, Fensham NC, Tee N, Anderson B, Morabito A, Ross MLR, Sim M, Ackerman KE, Burke LM. The Impact of Acute Calcium Intake on Bone Turnover Markers during a Training Day in Elite Male Rowers. Med Sci Sports Exerc 2023; 55:55-65. [PMID: 35977107 PMCID: PMC9770130 DOI: 10.1249/mss.0000000000003022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
INTRODUCTION Although an acute exercise session typically increases bone turnover markers (BTM), the impact of subsequent sessions and the interaction with preexercise calcium intake remain unclear despite the application to the "real-life" training of many competitive athletes. METHODS Using a randomized crossover design, elite male rowers ( n = 16) completed two trials, a week apart, consisting of two 90-min rowing ergometer sessions (EX1, EX2) separated by 150 min. Before each trial, participants consumed a high (CAL; ~1000 mg) or isocaloric low (CON; <10 mg) calcium meal. Biochemical markers including parathyroid hormone (PTH), serum ionized calcium (iCa) and BTMs (C-terminal telopeptide of type I collagen, osteocalcin) were monitored from baseline to 3 h after EX2. RESULTS Although each session caused perturbances of serum iCa, CAL maintained calcium concentrations above those of CON for most time points, 4.5% and 2.4% higher after EX1 and EX2, respectively. The decrease in iCa in CON was associated with an elevation of blood PTH ( P < 0.05) and C-terminal telopeptide of type I collagen ( P < 0.0001) over this period of repeated training sessions and their recovery, particularly during and after EX2. Preexercise intake of calcium-rich foods lowered BTM over the course of a day with several training sessions. CONCLUSIONS Preexercise intake of a calcium-rich meal before training sessions undertaken within the same day had a cumulative and prolonged effect on the stabilization of blood iCa during exercise. In turn, this reduced the postexercise PTH response, potentially attenuating the increase in markers of bone resorption. Such practical strategies may be integrated into the athlete's overall sports nutrition plan, with the potential to safeguard long-term bone health and reduce the risk of bone stress injuries.
Collapse
Affiliation(s)
| | - Alannah K A McKay
- Mary McKillop Institute for Health Research, Australian Catholic University, Melbourne, AUSTRALIA
| | - Nikita C Fensham
- Mary McKillop Institute for Health Research, Australian Catholic University, Melbourne, AUSTRALIA
| | - Nicolin Tee
- Mary McKillop Institute for Health Research, Australian Catholic University, Melbourne, AUSTRALIA
| | | | - Aimee Morabito
- Mary McKillop Institute for Health Research, Australian Catholic University, Melbourne, AUSTRALIA
| | - Megan L R Ross
- Mary McKillop Institute for Health Research, Australian Catholic University, Melbourne, AUSTRALIA
| | | | - Kathryn E Ackerman
- Female Athlete Program, Boston Children's Hospital and Harvard Medical School, Boston, MA
| | - Louise M Burke
- Mary McKillop Institute for Health Research, Australian Catholic University, Melbourne, AUSTRALIA
| |
Collapse
|
39
|
Phung K, McAdam L, Ma J, McMillan HJ, Jackowski S, Scharke M, Matzinger MA, Shenouda N, Koujok K, Jaremko JL, Smit K, Walker S, Hartigan C, Khan N, Konji VN, MacLeay L, Page M, Sykes E, Robinson ME, Alos N, Cummings EA, Ho J, Sbrocchi AM, Stein R, Saleh D, Craven BC, Dang UJ, Siminoski K, Rauch F, Ward LM. Risk factors associated with prevalent vertebral fractures in Duchenne muscular dystrophy. Osteoporos Int 2023; 34:147-160. [PMID: 36342539 DOI: 10.1007/s00198-022-06578-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 10/13/2022] [Indexed: 11/09/2022]
Abstract
Patients with Duchenne muscular dystrophy (DMD) have a high fracture burden due to progressive myopathy and steroid-induced osteoporosis. This study in males with DMD showed that markers of systemic glucocorticoid exposure including shorter stature, greater bone age delay, and lower lumbar spine bone mineral density were associated with spine fragility. INTRODUCTION Fragility fractures are frequent in DMD. The purpose of this study was to identify clinical factors associated with prevalent vertebral fractures (VF) in boys, teens/young adults with Duchenne muscular dystrophy (DMD). METHODS This was a cross-sectional study of males aged 4-25 years with DMD. VF were evaluated using the modified Genant semi-quantitative method on T4-L4 lateral spine radiographs. Areal bone mineral density (aBMD) was measured at the lumbar spine (LS) and used to estimate volumetric BMD (vBMD). Clinical factors were analyzed for their association with the Spinal Deformity Index (SDI, the sum of the Genant grades). RESULTS Sixty participants were enrolled (mean age 11.5 years, range 5.4-19.5). Nineteen participants (32%) had a total of 67 VF; 23/67 VF (34%) were moderate or severe. Participants with VF were shorter (mean height Z-score ± standard deviation: - 3.1 ± 1.4 vs. - 1.8 ± 1.4, p = 0.001), had longer glucocorticoid exposure (mean duration 6.0 ± 3.3 vs. 3.9 ± 3.3 years, p = 0.027), greater bone age (BA) delay (mean BA to chronological age difference - 3.2 ± 3.4 vs. - 1.3 ± 1.2 years, p = 0.035), and lower LSaBMD Z-scores (mean - 3.0 ± 1.0 vs. - 2.2 ± 1.2, p = 0.023). There was no difference in LSvBMD Z-scores. Multivariable Poisson regression showed that every 0.1 mg/kg/day increment in average glucocorticoid daily dose was associated with a 1.4-fold SDI increase (95% confidence interval: 1.1-1.7, p = 0.013). Greater BA delay (p < 0.001), higher weight Z-score (p = 0.004), decreased height Z-score (p = 0.025), and lower LSvBMD Z-score (p = 0.025) were also associated with SDI increase. CONCLUSION Readily measurable clinical variables were associated with prevalent VF in males with glucocorticoid-treated DMD. These variables may be useful to identify candidates for primary osteoporosis prevention after glucocorticoid initiation.
Collapse
Affiliation(s)
- Kim Phung
- Children's Hospital of Eastern Ontario, University of Ottawa, Ottawa, ON, Canada
- The Ottawa Pediatric Bone Health Research Group, Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Road, Ottawa, ON, K1H 8L1, Canada
| | - Laura McAdam
- Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON, Canada
| | - Jinhui Ma
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON, Canada
| | - Hugh J McMillan
- Montreal Children's Hospital, McGill University, Montreal, QC, Canada
| | - Stefan Jackowski
- The Ottawa Pediatric Bone Health Research Group, Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Road, Ottawa, ON, K1H 8L1, Canada
| | - Maya Scharke
- The Ottawa Pediatric Bone Health Research Group, Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Road, Ottawa, ON, K1H 8L1, Canada
| | | | - Nazih Shenouda
- Department of Medical Imaging, University of Ottawa, Ottawa, ON, Canada
| | - Khaldoun Koujok
- Department of Medical Imaging, University of Ottawa, Ottawa, ON, Canada
| | - Jacob L Jaremko
- Department of Radiology and Diagnostic Imaging, University of Alberta, Edmonton, AB, Canada
| | - Kevin Smit
- Children's Hospital of Eastern Ontario, University of Ottawa, Ottawa, ON, Canada
| | - Scott Walker
- Children's Hospital of Eastern Ontario, University of Ottawa, Ottawa, ON, Canada
- The Ottawa Pediatric Bone Health Research Group, Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Road, Ottawa, ON, K1H 8L1, Canada
| | - Colleen Hartigan
- Children's Hospital of Eastern Ontario, University of Ottawa, Ottawa, ON, Canada
- The Ottawa Pediatric Bone Health Research Group, Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Road, Ottawa, ON, K1H 8L1, Canada
| | - Nasrin Khan
- The Ottawa Pediatric Bone Health Research Group, Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Road, Ottawa, ON, K1H 8L1, Canada
| | - Victor N Konji
- The Ottawa Pediatric Bone Health Research Group, Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Road, Ottawa, ON, K1H 8L1, Canada
| | - Lynn MacLeay
- The Ottawa Pediatric Bone Health Research Group, Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Road, Ottawa, ON, K1H 8L1, Canada
| | - Marika Page
- Children's Hospital of Eastern Ontario, University of Ottawa, Ottawa, ON, Canada
- The Ottawa Pediatric Bone Health Research Group, Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Road, Ottawa, ON, K1H 8L1, Canada
| | - Elizabeth Sykes
- The Ottawa Pediatric Bone Health Research Group, Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Road, Ottawa, ON, K1H 8L1, Canada
| | - Marie-Eve Robinson
- Children's Hospital of Eastern Ontario, University of Ottawa, Ottawa, ON, Canada
| | - Nathalie Alos
- CHU Sainte-Justine, University of Montreal, Montreal, QC, Canada
| | | | - Josephine Ho
- Alberta Children's Hospital, University of Calgary, Calgary, AB, Canada
| | | | - Robert Stein
- London Health Sciences Centre, Western University, London, ON, Canada
| | - David Saleh
- Kingston Health Sciences Centre, Queen's University, Kingston, ON, Canada
| | - B Catharine Craven
- Department of Medicine, Temerty Faculty of Medicine, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Utkarsh J Dang
- Department of Health Sciences, Carleton University, Ottawa, ON, Canada
| | - Kerry Siminoski
- Department of Radiology and Diagnostic Imaging, University of Alberta, Edmonton, AB, Canada
| | - Frank Rauch
- Shriners Hospital for Children, McGill University, Montreal, QC, Canada
| | - Leanne M Ward
- Children's Hospital of Eastern Ontario, University of Ottawa, Ottawa, ON, Canada.
- The Ottawa Pediatric Bone Health Research Group, Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Road, Ottawa, ON, K1H 8L1, Canada.
| |
Collapse
|
40
|
Sui SX, Balanta-Melo J, Pasco JA, Plotkin LI. Musculoskeletal Deficits and Cognitive Impairment: Epidemiological Evidence and Biological Mechanisms. Curr Osteoporos Rep 2022; 20:260-272. [PMID: 35764750 PMCID: PMC9522710 DOI: 10.1007/s11914-022-00736-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/09/2022] [Indexed: 12/01/2022]
Abstract
PURPOSE OF REVIEW Cognitive impairment is associated with obesity, sarcopenia, and osteoporosis. However, no critical appraisal of the literature on the relationship between musculoskeletal deficits and cognitive impairment, focusing on the epidemiological evidence and biological mechanisms, has been published to date. Herein, we critically evaluate the literature published over the past 3 years, emphasizing interesting and important new findings, and provide an outline of future directions that will improve our understanding of the connections between the brain and the musculoskeletal system. RECENT FINDINGS Recent literature suggests that musculoskeletal deficits and cognitive impairment share pathophysiological pathways and risk factors. Cytokines and hormones affect both the brain and the musculoskeletal system; yet, lack of unified definitions and standards makes it difficult to compare studies. Interventions designed to improve musculoskeletal health are plausible means of preventing or slowing cognitive impairment. We highlight several musculoskeletal health interventions that show potential in this regard.
Collapse
Affiliation(s)
- Sophia X Sui
- Epi-Centre for Healthy Ageing, Deakin University, IMPACT - Institute for Mental and Physical Health and Clinical Translation, PO Box 281 (Barwon Health), Geelong, VIC, 3220, Australia.
| | - Julián Balanta-Melo
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, 635 Barnhill Drive, MS5022A, Indianapolis, IN, 46202, USA
- Indiana Center for Musculoskeletal Research, Indiana University School of Medicine, Indianapolis, IN, USA
- Richard L. Roudebush Veterans Administration Medical Center, Indianapolis, IN, USA
- Universidad del Valle School of Dentistry, Cali, Colombia
| | - Julie A Pasco
- Epi-Centre for Healthy Ageing, Deakin University, IMPACT - Institute for Mental and Physical Health and Clinical Translation, PO Box 281 (Barwon Health), Geelong, VIC, 3220, Australia
- Department of Medicine-Western Campus, The University of Melbourne, St Albans, VIC, Australia
- Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, VIC, Australia
- University Hospital Geelong, Barwon Health, Geelong, VIC, Australia
| | - Lilian I Plotkin
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, 635 Barnhill Drive, MS5022A, Indianapolis, IN, 46202, USA.
- Indiana Center for Musculoskeletal Research, Indiana University School of Medicine, Indianapolis, IN, USA.
- Richard L. Roudebush Veterans Administration Medical Center, Indianapolis, IN, USA.
| |
Collapse
|
41
|
Fernandez P, Pasqualini M, Locrelle H, Normand M, Bonneau C, Lafage Proust MH, Marotte H, Thomas T, Vico L. The effects of combined amplitude and high-frequency vibration on physically inactive osteopenic postmenopausal women. Front Physiol 2022; 13:952140. [PMID: 36160873 PMCID: PMC9491321 DOI: 10.3389/fphys.2022.952140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Purpose: To evaluate whole-body vibration (WBV) osteogenic potential in physically inactive postmenopausal women using high-frequency and combined amplitude stimuli. Methods: Two-hundred fifty-five physically inactive postmenopausal women (55–75 years) with 10-year major osteoporotic fracture risk (3%–35%) participated in this 18-month study. For the first 12 months, the vibration group experienced progressive 20-min WBV sessions (up to 3 sessions/week) with rest periods (30–60 s) between exercises. Frequencies (30–50 Hz), with low (0.2–0.4 mm) and high (0.6–0.8 mm) amplitude stimuli were delivered via PowerPlate Pro5 platforms producing accelerations of (0.75–7.04 g). The last 6 months for the treatment group were a follow-up period similar to control. Serum bone remodelling markers [C-terminal crosslinked telopeptide of type-1 collagen (CTX), procollagen type-1 N-terminal propeptide (P1NP), bone alkaline phosphatase (BAP) and sclerostin] were measured at fasting. CTX and P1NP were determined by automated chemiluminescence immunoassay, bone alkaline phosphatase (BAP) by automated spectrophotometric immunoassay, and sclerostin by an enzyme-immunoassay. Bone mineral density (BMD) of the whole-body, proximal femur and lumbar vertebrae was measured by dual-energy X-ray absorptiometry (DXA). Bone microarchitecture of the distal non-dominant radius and tibia was measured by high-resolution peripheral quantitative computed tomography (HR-pQCT). Results: Femoral neck (p = 0.520) and spine BMD (p = 0.444) failed to improve after 12 months of WBV. Bone macro and microstructural parameters were not impacted by WBV, as well as estimated failure load at the distal radius (p = 0.354) and tibia (p = 0.813). As expected, most DXA and HR-pQCT parameters displayed age-related degradation in this postmenopausal population. BAP and CTX increased over time in both groups, with CTX more marginally elevated in the vibration group when comparing baseline changes to month-12 (480.80 pmol/L; p = 0.039) and month-18 (492.78 pmol/L; p = 0.075). However, no differences were found when comparing group concentrations only at month-12 (506.35 pmol/L; p = 0.415) and month-18 (518.33 pmol/L; p = 0.480), indicating differences below the threshold of clinical significance. Overall, HR-pQCT, DXA bone parameters and bone turnover markers remained unaffected. Conclusion: Combined amplitude and high-frequency training for one year had no ameliorating effect on DXA and HR-pQCT bone parameters in physically inactive postmenopausal women. Serum analysis did not display any significant improvement in formation and resorption markers and also failed to alter sclerostin concentrations between groups.
Collapse
Affiliation(s)
- Peter Fernandez
- SAINBIOSE, U1059, Laboratory of Osteoarticular Tissue Biology, INSERM, University of Lyon, Saint-Etienne, France
- *Correspondence: Peter Fernandez,
| | - Marion Pasqualini
- SAINBIOSE, U1059, Laboratory of Osteoarticular Tissue Biology, INSERM, University of Lyon, Saint-Etienne, France
| | - Hervé Locrelle
- Rheumatology Department, University Hospital of Saint-Etienne, Saint-Etienne, France
| | - Myriam Normand
- SAINBIOSE, U1059, Laboratory of Osteoarticular Tissue Biology, INSERM, University of Lyon, Saint-Etienne, France
| | - Christine Bonneau
- Biology and Pathology Department, University Hospital of Saint-Etienne, Saint-Etienne, France
| | - Marie-Hélène Lafage Proust
- SAINBIOSE, U1059, Laboratory of Osteoarticular Tissue Biology, INSERM, University of Lyon, Saint-Etienne, France
- Rheumatology Department, University Hospital of Saint-Etienne, Saint-Etienne, France
| | - Hubert Marotte
- SAINBIOSE, U1059, Laboratory of Osteoarticular Tissue Biology, INSERM, University of Lyon, Saint-Etienne, France
- Rheumatology Department, University Hospital of Saint-Etienne, Saint-Etienne, France
| | - Thierry Thomas
- SAINBIOSE, U1059, Laboratory of Osteoarticular Tissue Biology, INSERM, University of Lyon, Saint-Etienne, France
- Rheumatology Department, University Hospital of Saint-Etienne, Saint-Etienne, France
| | - Laurence Vico
- SAINBIOSE, U1059, Laboratory of Osteoarticular Tissue Biology, INSERM, University of Lyon, Saint-Etienne, France
| |
Collapse
|
42
|
The Correlation between Serum Sclerostin Level and Arterial Stiffness in Peritoneal Dialysis Patients. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:4247782. [PMID: 35990820 PMCID: PMC9385280 DOI: 10.1155/2022/4247782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 12/02/2022]
Abstract
Objective To study the correlation between serum sclerostin (SO) and arterial stiffness in peritoneal dialysis (PD) patients. Methods The study included 50 Parkinson's disease (PD) patients on continuous ambulatory peritoneal dialysis (CAPD) for more than 6 months at the nephrology department of our hospital. Without regard for age, the eligible patients were assigned to a low PWV group and a high PWV group with brachial-ankle pulse wave velocity (Ba PWV) of 1400 cm/s as the cutoff value. Patient characteristics such as age, gender, height, weight, BMI, smoking history, dialysis age, systolic blood pressure (SBP), diastolic blood pressure (DBP), urea clearance index (Kt/V), residual renal function (RRF), and diabetes mellitus (DM) were analyzed. Biochemical indices for analysis include hemoglobin (Hb), albumin (ALB), total cholesterol (TC), urea nitrogen (BUN), creatinine (CREA), triglyceride (TG), uric acid (UA), parathyroid hormone (PTH), blood phosphorus(P), fasting blood glucose (GLU), corrective calcium (Ca), calcium-phosphorus product, low-density lipoprotein (LDL-C), high-density lipoprotein (HDL-C), SO, and arterial stiffness. Results There were 9 males and 16 females in the low PWV group and 12 males and 13 females in the high PWV group. Statistical significance was absent in patient characteristics despite more males in the high PWV group (P=0.055). The low PWV group had significantly lower mean age, SBP, SO, and PWV level, fewer diabetic patients, and higher CREA than the control group. Analysis of PWV-related factors showed that PWV was positively correlated with age, P, Ca, GLU, SBP, PTH, and SO while negatively correlated with CREA. Multiple stepwise regression analysis showed that age, SO, and SBP demonstrated great potential to predict PWV (P < 0.05). Conclusion The degree of vascular sclerosis is highly correlated with SO level in Parkinson's disease patients, which might provide a theoretical basis for the evaluation of cardiovascular illness in Parkinson's disease patients. High serum sclerostin level is a risk factor for deteriorated arterial stiffness. Given the limited sample size, the relevant results require further validation by expanding the sample size.
Collapse
|
43
|
Iaquinta MR, Martini F, D’Agostino A, Trevisiol L, Bersani M, Torreggiani E, Tognon M, Rotondo JC, Mazzoni E. Stem Cell Fate and Immunomodulation Promote Bone Regeneration via Composite Bio-Oss®/AviteneTM Biomaterial. Front Bioeng Biotechnol 2022; 10:873814. [PMID: 35832412 PMCID: PMC9271820 DOI: 10.3389/fbioe.2022.873814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 05/12/2022] [Indexed: 11/13/2022] Open
Abstract
Bone defects in maxillofacial regions lead to noticeable deformity and dysfunctions. Therefore, the use of biomaterials/scaffolds for maxillofacial bone regrowth has been attracting great interest from many surgical specialties and experts. Many approaches have been devised in order to create an optimal bone scaffold capable of achieving desirable degrees of bone integration and osteogenesis. Osteogenesis represents a complex physiological process involving multiple cooperating systems. A tight relationship between the immune and skeletal systems has lately been established using the concept of “osteoimmunology,” since various molecules, particularly those regulating immunological and inflammatory processes, are shared. Inflammatory mediators are now being implicated in bone remodeling, according to new scientific data. In this study, a profiler PCR array was employed to evaluate the expression of cytokines and chemokines in human adipose derived-mesenchymal stem cells (hASCs) cultured on porous hydroxylapatite (HA)/Collagen derived Bio-Oss®/Avitene scaffolds, up to day 21. In hASCs grown on the Bio-Oss®/Avitene biomaterial, 12 differentially expressed genes (DEGs) were found to be up-regulated, together with 12 DEG down-regulated. Chemokine CCL2, which affects bone metabolism, tested down-regulated. Interestingly, the Bio-Oss®/Avitene induced the down-regulation of pro-inflammatory inter-leukin IL-6. In conclusion, our investigation carried out on the Bio-Oss®/Avitene scaffold indicates that it could be successfully employed in maxillofacial surgery. Indeed, this composite material has the advantage of being customized on the basis of the individual patients favoring a novel personalized medicine approach.
Collapse
Affiliation(s)
- Maria Rosa Iaquinta
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
- Department of Surgery, University of Verona, Verona, Italy
| | - Fernanda Martini
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
- Technological Laboratory for Advanced Therapy (LTTA), University of Ferrara, Ferrara, Italy
| | | | | | | | - Elena Torreggiani
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Mauro Tognon
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - John Charles Rotondo
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
- Center for Studies on Gender Medicine, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
- *Correspondence: John Charles Rotondo,
| | - Elisa Mazzoni
- Department of Chemistry, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| |
Collapse
|
44
|
Martín González C, Fernández Rodríguez CM, Abreu González P, García Rodríguez A, Alvisa Negrín JC, Cabañas Perales E, González Navarrete L, Vera Delgado VE, Ortega Toledo P, González Reimers E. Sclerostin in Excessive Drinkers: Relationships with Liver Function and Body Composition. Nutrients 2022; 14:nu14132574. [PMID: 35807755 PMCID: PMC9268012 DOI: 10.3390/nu14132574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/16/2022] [Accepted: 06/18/2022] [Indexed: 02/01/2023] Open
Abstract
Background: Sclerostin was initially described as an inhibitor of the Wnt-β catenin bone-forming pathway, but it also exerts important effects on intermediate metabolism and body composition. Osteosarcopenia and altered body fat distribution are common findings in excessive drinkers. The role of sclerostin in these patients is uncertain. We aim to analyze the behavior of sclerostin in excessive drinkers and its relationships with body composition (fat mass, lean mass, bone mass), handgrip strength, body mass index (BMI), liver function and ethanol intake. Methods: 107 male active heavy drinkers and 26 age-matched controls were included. Serum sclerostin was determined by ELISA. Body composition analysis was performed by double X-ray absorptiometry. Handgrip strength was recorded using a dynamometer. Liver function was assessed according to Child’s classification. Results: Sclerostin was higher among Child’s C patients, keeping a relationship with deranged liver function. Obesity, defined according to BMI, and body fat were strongly related to sclerostin, being independent of serum creatinine and of liver function. The relationship of sclerostin with total hip bone mineral density was displaced by BMI. Conclusion: Deranged liver function is associated with higher sclerostin levels in alcoholics. Raised sclerostin levels are related to fat deposition and increased BMI.
Collapse
Affiliation(s)
- Candelaria Martín González
- Departamento de Medicina Interna, Universidad de La Laguna, Servicio de Medicina Interna, Hospital Universitario de Canarias, Tenerife, Canary Islands, 38320 La Laguna, Spain; (C.M.F.R.); (A.G.R.); (J.C.A.N.); (E.C.P.); (L.G.N.); (V.E.V.D.); (P.O.T.); (E.G.R.)
- Correspondence: or ; Tel.: +34-922678600
| | - Camino María Fernández Rodríguez
- Departamento de Medicina Interna, Universidad de La Laguna, Servicio de Medicina Interna, Hospital Universitario de Canarias, Tenerife, Canary Islands, 38320 La Laguna, Spain; (C.M.F.R.); (A.G.R.); (J.C.A.N.); (E.C.P.); (L.G.N.); (V.E.V.D.); (P.O.T.); (E.G.R.)
| | - Pedro Abreu González
- Departamento de Ciencias Médicas Básicas, Unidad de Fisiología, Universidad de la Laguna, Tenerife, Canary Islands, 38320 La Laguna, Spain;
| | - Alen García Rodríguez
- Departamento de Medicina Interna, Universidad de La Laguna, Servicio de Medicina Interna, Hospital Universitario de Canarias, Tenerife, Canary Islands, 38320 La Laguna, Spain; (C.M.F.R.); (A.G.R.); (J.C.A.N.); (E.C.P.); (L.G.N.); (V.E.V.D.); (P.O.T.); (E.G.R.)
| | - Julio César Alvisa Negrín
- Departamento de Medicina Interna, Universidad de La Laguna, Servicio de Medicina Interna, Hospital Universitario de Canarias, Tenerife, Canary Islands, 38320 La Laguna, Spain; (C.M.F.R.); (A.G.R.); (J.C.A.N.); (E.C.P.); (L.G.N.); (V.E.V.D.); (P.O.T.); (E.G.R.)
| | - Elisa Cabañas Perales
- Departamento de Medicina Interna, Universidad de La Laguna, Servicio de Medicina Interna, Hospital Universitario de Canarias, Tenerife, Canary Islands, 38320 La Laguna, Spain; (C.M.F.R.); (A.G.R.); (J.C.A.N.); (E.C.P.); (L.G.N.); (V.E.V.D.); (P.O.T.); (E.G.R.)
| | - Lourdes González Navarrete
- Departamento de Medicina Interna, Universidad de La Laguna, Servicio de Medicina Interna, Hospital Universitario de Canarias, Tenerife, Canary Islands, 38320 La Laguna, Spain; (C.M.F.R.); (A.G.R.); (J.C.A.N.); (E.C.P.); (L.G.N.); (V.E.V.D.); (P.O.T.); (E.G.R.)
| | - Víctor Eugenio Vera Delgado
- Departamento de Medicina Interna, Universidad de La Laguna, Servicio de Medicina Interna, Hospital Universitario de Canarias, Tenerife, Canary Islands, 38320 La Laguna, Spain; (C.M.F.R.); (A.G.R.); (J.C.A.N.); (E.C.P.); (L.G.N.); (V.E.V.D.); (P.O.T.); (E.G.R.)
| | - Paula Ortega Toledo
- Departamento de Medicina Interna, Universidad de La Laguna, Servicio de Medicina Interna, Hospital Universitario de Canarias, Tenerife, Canary Islands, 38320 La Laguna, Spain; (C.M.F.R.); (A.G.R.); (J.C.A.N.); (E.C.P.); (L.G.N.); (V.E.V.D.); (P.O.T.); (E.G.R.)
| | - Emilio González Reimers
- Departamento de Medicina Interna, Universidad de La Laguna, Servicio de Medicina Interna, Hospital Universitario de Canarias, Tenerife, Canary Islands, 38320 La Laguna, Spain; (C.M.F.R.); (A.G.R.); (J.C.A.N.); (E.C.P.); (L.G.N.); (V.E.V.D.); (P.O.T.); (E.G.R.)
| |
Collapse
|
45
|
Ahn SH, Jung HW, Lee E, Baek JY, Jang IY, Park SJ, Lee JY, Choi E, Lee YS, Hong S, Kim BJ. Decreased Serum Level of Sclerostin in Older Adults with Sarcopenia. Endocrinol Metab (Seoul) 2022; 37:487-496. [PMID: 35619214 PMCID: PMC9262689 DOI: 10.3803/enm.2022.1428] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 04/11/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGRUOUND Although muscles and bones interact with each other through various secretory factors, the role of sclerostin, an osteocyte-secreted factor, on muscle metabolism has not been well studied. We investigated the levels of serum sclerostin in Korean older adults with sarcopenia. METHODS Blood samples were collected from 129 participants who underwent evaluation of muscle mass and function in an outpatient geriatric clinic of a teaching hospital. Sarcopenia and related parameters were determined using cutoff values for the Asian population. Serum sclerostin levels were measured using an enzyme-linked immunosorbent assay. RESULTS The mean age of the participants was 69.6 years, and 20 participants (15.5%) were classified as having sarcopenia. After adjusting for age, sex, and body mass index, serum sclerostin levels were significantly lower in participants with sarcopenia, low muscle mass, or weak muscle strength (P=0.003 to 0.045). Serum sclerostin levels were positively associated with skeletal muscle index and grip strength after adjusting for confounders (P=0.001 and P=0.003), whereas sarcopenic phenotype score showed a negative association (P=0.006). These increases in muscle mass and strength were also dose dependent as serum sclerostin levels increased (P for trends=0.003 and P for trends=0.015). Higher serum sclerostin levels were associated with lower odds ratio (ORs) for sarcopenia, low muscle mass, and weak muscle strength after adjusting for confounders (OR, 0.27 to 0.50; P<0.001 to 0.025). CONCLUSION Higher serum sclerostin levels were associated with a lower risk of sarcopenia, low muscle mass, and weak muscle strength in Korean older adults.
Collapse
Affiliation(s)
- Seong Hee Ahn
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Inha University Hospital, Inha University College of Medicine, Incheon, Korea
| | - Hee-Won Jung
- Division of Geriatrics, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Eunju Lee
- Division of Geriatrics, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Ji Yeon Baek
- Division of Geriatrics, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Il-Young Jang
- Division of Geriatrics, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - So Jeong Park
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jin Young Lee
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Eunah Choi
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Yun Sun Lee
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Seongbin Hong
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Inha University Hospital, Inha University College of Medicine, Incheon, Korea
- Corresponding authors: Seongbin Hong Division of Endocrinology and Metabolism, Department of Internal Medicine, Inha University Hospital, Inha University College of Medicine, 27 Inhang-ro, Jung-gu, Incheon 22332, Korea Tel: +82-32-890-3360, Fax: +82-32-883-6578, E-mail:
| | - Beom-Jun Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
- Beom-Jun Kim Division of Endocrinology and Metabolism, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Korea Tel: +82-2-3010-5876, Fax: +82-2-3010-6962, E-mail:
| |
Collapse
|
46
|
Franco CN, Noe MM, Albrecht LV. Metabolism and Endocrine Disorders: What Wnt Wrong? Front Endocrinol (Lausanne) 2022; 13:887037. [PMID: 35600583 PMCID: PMC9120667 DOI: 10.3389/fendo.2022.887037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/07/2022] [Indexed: 12/12/2022] Open
Abstract
A fundamental question in cell biology underlies how nutrients are regenerated to maintain and renew tissues. Physiologically, the canonical Wnt signaling is a vital pathway for cell growth, tissue remodeling, and organ formation; pathologically, Wnt signaling contributes to the development of myriad human diseases such as cancer. Despite being the focus of intense research, how Wnt intersects with the metabolic networks to promote tissue growth and remodeling has remained mysterious. Our understanding of metabolism has been revolutionized by technological advances in the fields of chemical biology, metabolomics, and live microscopy that have now made it possible to visualize and manipulate metabolism in living cells and tissues. The application of these toolsets to innovative model systems have propelled the Wnt field into new realms at the forefront answering the most pressing paradigms of cell metabolism in health and disease states. Elucidating the basis of Wnt signaling and metabolism in a cell-type and tissue-specific manner will provide a powerful base of knowledge for both basic biomedical fields and clinician scientists, and has the promise to generate new, transformative therapies in disease and even processes of aging.
Collapse
Affiliation(s)
- Carolina N. Franco
- Department of Pharmaceutical Sciences, School of Pharmacy, University of California Irvine, Irvine, CA, United States
| | - May M. Noe
- Department of Pharmaceutical Sciences, School of Pharmacy, University of California Irvine, Irvine, CA, United States
| | - Lauren V. Albrecht
- Department of Pharmaceutical Sciences, School of Pharmacy, University of California Irvine, Irvine, CA, United States
- Department of Developmental and Cell Biology, School of Biological Sciences, University of California Irvine, Irvine, CA, United States
| |
Collapse
|
47
|
Prowting JL, Skelly LE, Kurgan N, Fraschetti EC, Klentrou P, Josse AR. Acute Effects of Milk vs. Carbohydrate on Bone Turnover Biomarkers Following Loading Exercise in Young Adult Females. Front Nutr 2022; 9:840973. [PMID: 35571916 PMCID: PMC9101466 DOI: 10.3389/fnut.2022.840973] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 04/07/2022] [Indexed: 11/17/2022] Open
Abstract
Dairy products and impact exercise have previously been identified to be independently beneficial for bone mineral properties, however, it is unknown how the combination of these two osteogenic interventions may alter acute bone turnover. Using a randomized crossover design, we compared the acute effects of consuming milk vs. an isoenergetic carbohydrate control beverage on bone biomarkers following loading exercise. Thirteen healthy female participants (Age = 20.3 ± 2.3y; BMI = 21.0 ± 1.1 kg/m2) consumed either 550 mL of 0% skim white milk (MILK) or 52.7 g of maltodextrin in 550 mL of water (CHO), both 5 min and 1 h following completion of a combined plyometric (198 impacts) and resistance exercise (3-4 sets/exercise, 8-12 reps/set, ∼75% 1-RM) bout. Venous blood samples were obtained pre-exercise, and 15 min, 75 min, 24 h and 48 h post-exercise to assess serum concentrations of bone resorption biomarkers, specifically carboxyl-terminal crosslinking telopeptide of type I collagen (CTX), receptor activator nuclear factor kappa-β ligand (RANKL), and sclerostin (SOST), as well as bone formation biomarkers, specifically osteoprotegerin (OPG) and osteocalcin (OC). When absolute biomarker concentrations were examined, there were no interaction or group effects for any biomarker, however, there were main time effects (p < 0.05) for RANKL, SOST, and OC, which were lower, and the OPG: OPG/RANKL ratio, which was higher at 75 min post-exercise compared with baseline in both conditions. In addition to assessing absolute biomarker concentrations at specific timepoints, we also evaluated the relative (% change) cumulative post-exercise response (75 min to 48 h) using an area under the curve (AUC) analysis. This analysis showed that the relative post-exercise CTX response was significantly lower in the MILK compared to the CHO condition (p = 0.03), with no differences observed in the other biomarkers. These results show that while milk does not appear to alter absolute concentrations of bone biomarkers compared to CHO, it may attenuate relative post-exercise bone resorption (i.e., blunt the usual catabolic response to exercise).
Collapse
Affiliation(s)
- Joel L. Prowting
- School of Kinesiology and Health Science, Faculty of Health, York University, Toronto, ON, Canada
| | - Lauren E. Skelly
- School of Kinesiology and Health Science, Faculty of Health, York University, Toronto, ON, Canada
| | - Nigel Kurgan
- Department of Kinesiology, Faculty of Applied Health Sciences, Brock University, St. Catharines, ON, Canada
- Faculty of Applied Health Sciences, Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, Canada
| | - Emily C. Fraschetti
- School of Kinesiology and Health Science, Faculty of Health, York University, Toronto, ON, Canada
| | - Panagiota Klentrou
- Department of Kinesiology, Faculty of Applied Health Sciences, Brock University, St. Catharines, ON, Canada
- Faculty of Applied Health Sciences, Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, Canada
| | - Andrea R. Josse
- School of Kinesiology and Health Science, Faculty of Health, York University, Toronto, ON, Canada
- Department of Kinesiology, Faculty of Applied Health Sciences, Brock University, St. Catharines, ON, Canada
- Faculty of Applied Health Sciences, Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, Canada
| |
Collapse
|
48
|
Yang M, Luo S, Yang J, Chen W, He L, Liu D, Zhao L, Wang X. Bone-kidney axis: A potential therapeutic target for diabetic nephropathy. Front Endocrinol (Lausanne) 2022; 13:996776. [PMID: 36353239 PMCID: PMC9637707 DOI: 10.3389/fendo.2022.996776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/26/2022] [Indexed: 11/13/2022] Open
Abstract
Diabetic nephropathy (DN) is the leading cause of end-stage renal disease (ESRD). However, its pathogenesis remains unclear, and effective prevention and treatment strategies are lacking. Recently, organ-to-organ communication has become a new focus of studies on pathogenesis. Various organs or tissues (the liver, muscle and adipose tissue) secrete a series of proteins or peptides to regulate the homeostasis of distal organs in an endocrine manner. Bone, an important part of the body, can also secrete bone-derived proteins or peptides that act on distal organs. As an organ with high metabolism, the kidney is responsible for signal and material exchange with other organs at any time through circulation. In this review, we briefly discussed bone composition and changes in bone structure and function in DN and summarized the current status of bone-derived proteins and their role in the progression of DN. We speculated that the "bone-kidney axis" is a potential target for early diagnosis and treatment of DN.
Collapse
Affiliation(s)
- Ming Yang
- Department of Nutrition, Xiangya Hospital, Central South University, Changsha, China
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Shilu Luo
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jinfei Yang
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Wei Chen
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Liyu He
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Di Liu
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Li Zhao
- Department of Reproduction and Genetics, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xi Wang
- Department of Nutrition, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Xi Wang,
| |
Collapse
|
49
|
Li Y, Gu Z, Wang J, Wang Y, Chen X, Dong B. The Emerging Role of Bone-Derived Hormones in Diabetes Mellitus and Diabetic Kidney Disease. Front Endocrinol (Lausanne) 2022; 13:938830. [PMID: 35966090 PMCID: PMC9367194 DOI: 10.3389/fendo.2022.938830] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 06/10/2022] [Indexed: 11/13/2022] Open
Abstract
Diabetic kidney disease (DKD) causes the greatest proportion of end-stage renal disease (ESRD)-related mortality and has become a high concern in patients with diabetes mellitus (DM). Bone is considered an endocrine organ, playing an emerging role in regulating glucose and energy metabolism. Accumulating research has proven that bone-derived hormones are involved in glucose metabolism and the pathogenesis of DM complications, especially DKD. Furthermore, these hormones are considered to be promising predictors and prospective treatment targets for DM and DKD. In this review, we focused on bone-derived hormones, including fibroblast growth factor 23, osteocalcin, sclerostin, and lipocalin 2, and summarized their role in regulating glucose metabolism and DKD.
Collapse
Affiliation(s)
- Yixuan Li
- Department of Endocrinology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Zuhua Gu
- Department of Endocrinology and Nephropathy, Weihai Hospital, Weihai, China
| | - Jun Wang
- Department of Endocrinology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yangang Wang
- Department of Endocrinology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xian Chen
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, China
- *Correspondence: Bingzi Dong, ; Xian Chen,
| | - Bingzi Dong
- Department of Endocrinology, The Affiliated Hospital of Qingdao University, Qingdao, China
- *Correspondence: Bingzi Dong, ; Xian Chen,
| |
Collapse
|
50
|
Travinsky-Shmul T, Beresh O, Zaretsky J, Griess-Fishheimer S, Rozner R, Kalev-Altman R, Penn S, Shahar R, Monsonego-Ornan E. Ultra-Processed Food Impairs Bone Quality, Increases Marrow Adiposity and Alters Gut Microbiome in Mice. Foods 2021; 10:foods10123107. [PMID: 34945658 PMCID: PMC8701231 DOI: 10.3390/foods10123107] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/03/2021] [Accepted: 12/10/2021] [Indexed: 01/02/2023] Open
Abstract
Ultra processed foods (UPF) consumption is becoming dominant in the global food system, to the point of being the most recent cause of malnutrition. Health outcomes of this diet include obesity and metabolic syndrome; however, its effect on skeletal development has yet to be examined. This project studied the influence of UPF diet on the development and quality of the post-natal skeleton. Young female mice were fed with regular chow diet, UPF diet, UPF diet supplemented with calcium or with multivitamin and mineral complex. Mice fed UPF diet presented unfavorable morphological parameters, evaluated by micro-CT, alongside inferior mechanical performance of the femora, evaluated by three-point bending tests. Growth-plate histology evaluation suggested a modification of the growth pattern. Accumulation of adipose tissue within the bone marrow was significantly higher in the group fed UPF diet. Finally, microbiome 16SrRNA sequencing was used to explore the connection between diets, gut microbial community and skeletal development. Together, we show that consumption of UPF diet during the postnatal developmental period alters the microbiome and has negative outcomes on bone parameters and bone marrow adiposity. Micronutrients improved these phenotypes only partially. Thus, consuming a wholesome diet that contributes to a healthy microbiota is of a great significance in order to achieve healthy skeletal development.
Collapse
Affiliation(s)
- Tamara Travinsky-Shmul
- School of Nutrition Science, Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University, Rehovot 7610001, Israel; (T.T.-S.); (O.B.); (J.Z.); (S.G.-F.); (R.R.); (S.P.)
| | - Olga Beresh
- School of Nutrition Science, Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University, Rehovot 7610001, Israel; (T.T.-S.); (O.B.); (J.Z.); (S.G.-F.); (R.R.); (S.P.)
| | - Janna Zaretsky
- School of Nutrition Science, Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University, Rehovot 7610001, Israel; (T.T.-S.); (O.B.); (J.Z.); (S.G.-F.); (R.R.); (S.P.)
| | - Shelley Griess-Fishheimer
- School of Nutrition Science, Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University, Rehovot 7610001, Israel; (T.T.-S.); (O.B.); (J.Z.); (S.G.-F.); (R.R.); (S.P.)
| | - Reut Rozner
- School of Nutrition Science, Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University, Rehovot 7610001, Israel; (T.T.-S.); (O.B.); (J.Z.); (S.G.-F.); (R.R.); (S.P.)
| | - Rotem Kalev-Altman
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University, Rehovot 7610001, Israel; (R.K.-A.); (R.S.)
| | - Sveta Penn
- School of Nutrition Science, Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University, Rehovot 7610001, Israel; (T.T.-S.); (O.B.); (J.Z.); (S.G.-F.); (R.R.); (S.P.)
| | - Ron Shahar
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University, Rehovot 7610001, Israel; (R.K.-A.); (R.S.)
| | - Efrat Monsonego-Ornan
- School of Nutrition Science, Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University, Rehovot 7610001, Israel; (T.T.-S.); (O.B.); (J.Z.); (S.G.-F.); (R.R.); (S.P.)
- Correspondence: ; Tel.: +972-8-9489712
| |
Collapse
|