1
|
Yu S, Liang J, Liu L, Chen M, Chen C, Zhou D. AC129507.1 is a ferroptosis-related target identified by a novel mitochondria-related lncRNA signature that is involved in the tumor immune microenvironment in gastric cancer. J Transl Med 2025; 23:290. [PMID: 40050892 PMCID: PMC11887229 DOI: 10.1186/s12967-025-06287-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 02/23/2025] [Indexed: 03/09/2025] Open
Abstract
BACKGROUND Gastric cancer (GC) is one of the most common malignancies. Previous studies have shown that mitochondrial metabolism is associated with malignancies. However, relevant research on mitochondria-related lncRNAs in GC is lacking. METHODS We integrated the corresponding information of patients with GC from The Cancer Genome Atlas (TCGA) database. Mitochondria-related lncRNAs were selected based on differential expression and a correlation analysis to construct a prognostic model. The mutation data were analyzed to distinguish differences in the tumor mutation burden (TMB). Single-sample gene set enrichment analysis (ssGSEA) was performed to evaluate immunological differences. A series of cell-based experiments were adopted to evaluate the biological behavior of GC. RESULTS A total of 1571 mitochondria-related lncRNAs were identified. A prognostic signature incorporating nine lncRNAs was built based on 293 suitable GC cases and could predict patient prognosis. The TMB and ssGSEA indicated that the low-risk group displayed increased immune function. The enrichment analysis indicated that the differentially expressed genes were enriched in metabolic functions. AC129507.1 was significantly upregulated in GC cells and associated with a poor prognosis, and its knockdown inhibited the proliferation and migration of GC cells. Mechanistically, silencing AC129507.1 led to abnormal glycolipid metabolism and oxidative stress, thus inducing ferroptosis. CONCLUSIONS Our nine-lncRNA risk signature could powerfully predict patient prognosis. AC129507.1 promoted the malignant phenotypes of GC cells. AC129507.1 could play a nonnegligible role in GC by promoting the formation of a immunosuppressive tumor microenvironment by inhibiting the initiation of ferroptosis, which needs to be further explored.
Collapse
Affiliation(s)
- Shanshan Yu
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China
| | - Jinxiao Liang
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China
| | - Lixiao Liu
- Department of Obstetrics and Gynecology, Ningbo City First Hospital, Ningbo University, Ningbo, China
| | - Ming Chen
- Department of Surgical Oncology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Cheng Chen
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China
| | - Donghui Zhou
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China.
| |
Collapse
|
2
|
Wang Z, Liu Z, Lv M, Luan Z, Li T, Hu J. Novel histone modifications and liver cancer: emerging frontiers in epigenetic regulation. Clin Epigenetics 2025; 17:30. [PMID: 39980025 PMCID: PMC11841274 DOI: 10.1186/s13148-025-01838-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 02/08/2025] [Indexed: 02/22/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related death worldwide, and its onset and progression are closely associated with epigenetic modifications, particularly post-translational modifications of histones (HPTMs). In recent years, advances in mass spectrometry (MS) have revealed a series of novel HPTMs, including succinylation (Ksuc), citrullination (Kcit), butyrylation (Kbhb), lactylation (Kla), crotonylation (Kcr), and 2-hydroxyisobutyrylation (Khib). These modifications not only expand the histone code but also play significant roles in key carcinogenic processes such as tumor proliferation, metastasis, and metabolic reprogramming in HCC. This review provides the first comprehensive analysis of the impact of novel HPTMs on gene expression, cellular metabolism, immune evasion, and the tumor microenvironment. It specifically focuses on their roles in promoting tumor stem cell characteristics, epithelial-mesenchymal transition (EMT), and therapeutic resistance. Additionally, the review highlights the dynamic regulation of these modifications by specific enzymes, including "writers," "readers," and "erasers."
Collapse
Affiliation(s)
- Zhonghua Wang
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324, Jingwu Road, Jinan, 250021, Shandong, People's Republic of China
| | - Ziwen Liu
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324, Jingwu Road, Jinan, 250021, Shandong, People's Republic of China
| | - Mengxin Lv
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324, Jingwu Road, Jinan, 250021, Shandong, People's Republic of China
| | - Zhou Luan
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324, Jingwu Road, Jinan, 250021, Shandong, People's Republic of China
| | - Tao Li
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324, Jingwu Road, Jinan, 250021, Shandong, People's Republic of China
| | - Jinhua Hu
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324, Jingwu Road, Jinan, 250021, Shandong, People's Republic of China.
| |
Collapse
|
3
|
Sun M, Wang K, Lu F, Yu D, Liu S. Regulatory role and therapeutic prospect of lactate modification in cancer. Front Pharmacol 2025; 16:1508552. [PMID: 40034817 PMCID: PMC11872897 DOI: 10.3389/fphar.2025.1508552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 01/20/2025] [Indexed: 03/05/2025] Open
Abstract
Post-translational modifications (PTMs) of proteins refer to the process of adding chemical groups, sugars, or other molecules to specific residues of target proteins following their biosynthesis by ribosomes. PTMs play a crucial role in processes such as signal transduction, epigenetics, and disease development. Lactylation is a newly discovered PTM that, due to its close association with lactate-the end product of glycolytic metabolism-provides a new perspective on the connection between cellular metabolic reprogramming and epigenetic regulation. Studies have demonstrated that lactylation plays a significant role in tumor progression and is associated with poor clinical prognosis. Abnormal histone lactylation can influence gene expression in both tumor cells and immune cells, thereby regulating tumor progression and immunosuppression. Lactylation of non-histone proteins can also modulate processes such as tumor proliferation and drug resistance. This review summarizes the latest research progress in the field of lactylation, highlighting its roles and mechanisms in tumorigenesis, tumor development, the tumor microenvironment, and immunosuppression. It also explores the potential application value of lactylation in tumor-targeted therapy and combined immunotherapy.
Collapse
Affiliation(s)
- Mengdi Sun
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Kejing Wang
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Fang Lu
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Donghua Yu
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Shumin Liu
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
4
|
Wang K, Li X, Guo S, Chen J, Lv Y, Guo Z, Liu H. Metabolic reprogramming of glucose: the metabolic basis for the occurrence and development of hepatocellular carcinoma. Front Oncol 2025; 15:1545086. [PMID: 39980550 PMCID: PMC11839411 DOI: 10.3389/fonc.2025.1545086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Accepted: 01/20/2025] [Indexed: 02/22/2025] Open
Abstract
Primary liver cancer is a common malignant tumor of the digestive system, with hepatocellular carcinoma (HCC) being the most prevalent type. It is characterized by high malignancy, insidious onset, and a lack of specific early diagnostic and therapeutic markers, posing a serious threat to human health. The occurrence and development of HCC are closely related to its metabolic processes. Similar to other malignant tumors, metabolic reprogramming occurs extensively in tumor cells, with glucose metabolism reprogramming being particularly prominent. This is characterized by abnormal activation of glycolysis and inhibition of oxidative phosphorylation and gluconeogenesis, among other changes. Glucose metabolism reprogramming provides intermediates and energy for HCC to meet its demands for rapid growth, proliferation, and metastasis. Additionally, various enzymes and signaling molecules involved in glucose metabolism reprogramming play irreplaceable roles. Therefore, regulating key metabolic enzymes and pathways in these processes is considered an important target for the diagnosis and treatment of HCC. This paper reviews the current status and progress of glucose metabolism reprogramming in HCC, aiming to provide new insights for the diagnosis, detection, and comprehensive treatment strategies of HCC involving combined glucose metabolism intervention in clinical settings.
Collapse
Affiliation(s)
- Kai Wang
- Department of Colorectal Surgery, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, China
| | - Xiaodan Li
- Department of Pediatric Health Care, Zhangzi County Maternal and Child Health Family Planning Service Center, Changzhi, Shanxi, China
| | - Shuwei Guo
- Department of Colorectal Surgery, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, China
| | - Junsheng Chen
- Department of Colorectal Surgery, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, China
| | - Yandong Lv
- Department of Colorectal Surgery, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, China
| | - Zhiqiang Guo
- Department of Colorectal Surgery, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, China
| | - Hongzhou Liu
- Department of Colorectal Surgery, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, China
| |
Collapse
|
5
|
Al-Malsi K, Xie S, Cai Y, Mohammed N, Xie K, Lan T, Wu H. The role of lactylation in tumor growth and cancer progression. Front Oncol 2025; 15:1516785. [PMID: 39968078 PMCID: PMC11832377 DOI: 10.3389/fonc.2025.1516785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 01/16/2025] [Indexed: 02/20/2025] Open
Abstract
Background Lactate's perception of lactate has changed over the last 30 years from a straightforward metabolic byproduct to a complex chemical with important biological activities, such as signal transduction, gluconeogenesis, and mitochondrial respiration. In addition to its metabolic contributions, lactate has far-reaching repercussions. This review highlights the role of lactate in the course of cancer by highlighting lactylation as a unique epigenetic alteration. The purpose of this review is to clarify the functions of lactate in the biology of tumors, with a particular focus on the translational potential of lactylation pathways in cancer diagnosis and treatment approaches. Methods This review summarizes research on the relationship between lactate and cancer, with an emphasis on histone lactylation, its effect on gene expression, and its influence on the tumor microenvironment. By establishing a connection between metabolic byproducts and epigenetic gene regulation, we investigated how lactylation affects immune regulation, inflammation, and cellular repair. Findings Histone lactylation, or the addition of lactate to lysine residues on histone proteins, increases transcriptional activity and facilitates the expression of genes involved in homeostasis and repair. These findings have important implications for cancer treatment. Lactylation, for example, activates genes such as Arg1, which is a hallmark of the M2 macrophage phenotype implicated in immunosuppression and tumor growth. The ability of lactate to dynamically alter gene expression is further supported by its function as a histone deacetylase(HDAC)inhibitor and its impact on histone acetylation. Its wide-ranging involvement in cellular metabolism and epigenetic control has been demonstrated by the discovery of particular lactylation sites on histones in various cell types, including cancer cells.
Collapse
Affiliation(s)
- Khulood Al-Malsi
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
- Liver Transplant Center, Transplant Center, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Hepatic AI Translation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Sinan Xie
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
- Liver Transplant Center, Transplant Center, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Hepatic AI Translation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Yunshi Cai
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
- Liver Transplant Center, Transplant Center, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Hepatic AI Translation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Nader Mohammed
- Emergency Department Research, Hamad Medical Corporation, Doha, Qatar
| | - Kunlin Xie
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
- Liver Transplant Center, Transplant Center, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Hepatic AI Translation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Tian Lan
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
- Liver Transplant Center, Transplant Center, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Hepatic AI Translation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Hong Wu
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
- Liver Transplant Center, Transplant Center, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Hepatic AI Translation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
6
|
Zeng Y, Huang Y, Tan Q, Peng L, Wang J, Tong F, Dong X. Influence of lactate in resistance to anti‑PD‑1/PD‑L1 therapy: Mechanisms and clinical applications (Review). Mol Med Rep 2025; 31:48. [PMID: 39670310 DOI: 10.3892/mmr.2024.13413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/01/2024] [Indexed: 12/14/2024] Open
Abstract
Metabolic reprogramming is a prominent characteristic of tumor cells, evidenced by heightened secretion of lactate, which is linked to tumor progression. Furthermore, the accumulation of lactate in the tumor microenvironment (TME) influences immune cell activity, including the activity of macrophages, dendritic cells and T cells, fostering an immunosuppressive milieu. Anti‑programmed cell death protein 1 (PD‑1)/programmed death‑ligand 1 (PD‑L1) therapy is associated with a prolonged survival time of patients with non‑small cell lung cancer. However, some patients still develop resistance to anti‑PD‑1/PD‑L1 therapy. Lactate is associated with resistance to anti‑PD‑1/PD‑L1 therapy. The present review summarizes what is known about lactate metabolism in tumor cells and how it affects immune cell function. In addition, the present review emphasizes the relationship between lactate secretion and immunotherapy resistance. The present review also explores the potential for targeting lactate within the TME to enhance the efficacy of immunotherapy.
Collapse
Affiliation(s)
- Yi Zeng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Yu Huang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Qiaoyun Tan
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Ling Peng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Jian Wang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Fan Tong
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Xiaorong Dong
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| |
Collapse
|
7
|
Yu D, Zhong Q, Wang Y, Yin C, Bai M, Zhu J, Chen J, Li H, Hong W. Lactylation: The metabolic accomplice shaping cancer's response to radiotherapy and immunotherapy. Ageing Res Rev 2025; 104:102670. [PMID: 39864560 DOI: 10.1016/j.arr.2025.102670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/09/2025] [Accepted: 01/22/2025] [Indexed: 01/28/2025]
Abstract
Protein lactylation, an emerging post-translational modification, is providing new insights into tumor biology and challenging our current understanding of cancer mechanisms. Our review illuminates the intricate roles of lactylation in carcinogenesis, tumor progression, and therapeutic responses, positioning it as a critical linchpin connecting metabolic reprogramming, epigenetic modulation, and treatment outcomes. We provide an in-depth analysis of lactylation's molecular mechanisms and its far-reaching impact on cell cycle regulation, immune evasion strategies, and therapeutic resistance within the complex tumor microenvironment. Notably, this review dissects the paradoxical nature of lactylation in cancer immunotherapy and radiotherapy. While heightened lactylation can foster immune suppression and radioresistance, strategically targeting lactylation cascades opens innovative avenues for amplifying the efficacy of current treatment paradigms. We critically evaluate lactylation's potential as a robust diagnostic and prognostic biomarker and explore frontier therapeutic approaches targeting lactylation. The synergistic integration of multi-omics data and artificial intelligence in lactylation research is catalyzing significant strides towards personalized cancer management. This review not only consolidates current knowledge but also charts a course for future investigations. Key research imperatives include deciphering tumor-specific lactylation signatures, optimizing synergistic strategies combining lactylation modulation with immune checkpoint inhibitors and radiotherapy, and comprehensively assessing the long-term physiological implications of lactylation intervention. As our understanding of lactylation's pivotal role in tumor biology continues to evolve, this burgeoning field promises to usher in transformative advancements in cancer diagnosis, treatment modalitie.
Collapse
Affiliation(s)
- Danqing Yu
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Qingping Zhong
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Yanlin Wang
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310000, China
| | - Chang Yin
- Nursing Department, Shanghai Sixth People's Hospital, Shanghai 200233, China
| | - Minghua Bai
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Ji Zhu
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Jinggang Chen
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China.
| | - Huaming Li
- Department of Gastroenterology, Hangzhou Third Peoples Hospital, Hangzhou 310000, China.
| | - Weifeng Hong
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China.
| |
Collapse
|
8
|
Zhao W, Xin J, Yu X, Li Z, Li N. Recent advances of lysine lactylation in prokaryotes and eukaryotes. Front Mol Biosci 2025; 11:1510975. [PMID: 39850757 PMCID: PMC11754067 DOI: 10.3389/fmolb.2024.1510975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 12/23/2024] [Indexed: 01/25/2025] Open
Abstract
Lysine lactylation is a newly discovered protein post-translational modification that plays regulatory roles in cell metabolism, growth, reprogramming, and tumor progression. It utilizes lactate as the modification precursor, which is an end product of glycolysis while functioning as a signaling molecule in cells. Unlike previous reviews focused primarily on eukaryotes, this review aims to provide a comprehensive summary of recent knowledge about lysine lactylation in prokaryotes and eukaryotes. The current identification and enrichment strategies for lysine lactylation are introduced, and the known readers, writers, and erasers of this modification are summarized. In addition, the physiological and pathological implications of lysine lactylation are reviewed for different organisms, especially in prokaryotic cells. Finally, we end with a discussion of the limitations of the studies so far and propose future directions for lysine lactylation investigations.
Collapse
Affiliation(s)
- Wenjuan Zhao
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau, China
- Shenzhen Key Laboratory of Genome Manipulation and Biosynthesis, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jiayi Xin
- Shenzhen Key Laboratory of Genome Manipulation and Biosynthesis, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- School of life sciences, Henan University, Kaifeng, China
| | - Xin Yu
- Shenzhen Key Laboratory of Genome Manipulation and Biosynthesis, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Zhifang Li
- School of life sciences, Henan University, Kaifeng, China
| | - Nan Li
- Shenzhen Key Laboratory of Genome Manipulation and Biosynthesis, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
9
|
Yan F, Teng Y, Li X, Zhong Y, Li C, Yan F, He X. Hypoxia promotes non-small cell lung cancer cell stemness, migration, and invasion via promoting glycolysis by lactylation of SOX9. Cancer Biol Ther 2024; 25:2304161. [PMID: 38226837 PMCID: PMC10793688 DOI: 10.1080/15384047.2024.2304161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 01/08/2024] [Indexed: 01/17/2024] Open
Abstract
BACKGROUND Lung cancer is the deadliest form of malignancy and the most common subtype is non-small cell lung cancer (NSCLC). Hypoxia is a typical feature of solid tumor microenvironment. In the current study, we clarified the effects of hypoxia on stemness and metastasis and the molecular mechanism. METHODS The biological functions were assessed using the sphere formation assay, Transwell assay, and XF96 extracellular flux analyzer. The protein levels were detected by western blot. The lactylation modification was assessed by western blot and immunoprecipitation. The role of SOX9 in vivo was explored using a xenografted tumor model. RESULTS We observed that hypoxia promoted sphere formation, migration, invasion, glucose consumption, lactate production, glycolysis, and global lactylation. Inhibition of glycolysis suppressed cell stemness, migration, invasion, and lactylation. Moreover, hypoxia increased the levels of SOX9 and lactylation of SOX9, whereas inhibition of glycolysis reversed the increase. Additionally, knockdown of SOX9 abrogated the promotion of cell stemness, migration, and invasion. In tumor-bearing mice, overexpression of SOX9 promoted tumor growth, and inhibition of glycolysis suppressed tumor growth. CONCLUSION Hypoxia induced the lactylation of SOX9 to promote stemness, migration, and invasion via promoting glycolysis. The findings suggested that targeting hypoxia may be an effective way for NSCLC treatment and reveal a new mechanism of hypoxia in NSCLC.
Collapse
Affiliation(s)
- Fei Yan
- Department of Medical Oncology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Yue Teng
- Department of Medical Oncology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Xiaoyou Li
- Department of Medical Oncology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Yuejiao Zhong
- Department of Medical Oncology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Chunyi Li
- Department of Medical Oncology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Feng Yan
- Department of Clinical Laboratory, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Xia He
- Department of Radiotherapy, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| |
Collapse
|
10
|
Bao T, Wang Z, He W, Wang F, Xu J, Cao H. Analysis of immune status and prognostic model incorporating lactic acid metabolism-associated genes. Cancer Cell Int 2024; 24:378. [PMID: 39543617 PMCID: PMC11566181 DOI: 10.1186/s12935-024-03555-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 11/03/2024] [Indexed: 11/17/2024] Open
Abstract
BACKGROUND Cancer development is intricately linked with metabolic dysregulation, including lactic acid metabolism, which plays a pivotal role in tumor progression and immune evasion. However, its specific implications in gastric adenocarcinoma (STAD) remain unclear. This study introduces a novel methodology to evaluate lactic acid metabolism comprehensively in STAD, aiming to elucidate its prognostic significance and impact on immunotherapy efficacy. Targeted therapies directed at key lactic acid metabolism genes (LMGs) identified within the tumor microenvironment (TME) hold promise for personalized treatment strategies. METHODS Lactic acid metabolism patterns were assessed in 415 STAD patients using a panel of 21 LMGs. Cox regression and Lasso regression analyses were employed to develop a predictive risk model based on differentially expressed genes (DEGs). Validation of the model was conducted using independent cohorts from the GEO and TCGA databases, as well as additional datasets focused on immunotherapy responses. Further investigations into TME dynamics of lactic acid metabolism included functional assays targeting SLC16A3, a pivotal gene identified through our analyses. RESULTS Patients were stratified into distinct risk groups based on their lactic acid metabolism profiles. Low-risk patients exhibited attenuated lactic acid metabolism, correlating with favorable clinical outcomes characterized by prolonged survival and enhanced responsiveness to immunotherapy. Notably, tumor cells within the TME demonstrated heightened levels of active lactic acid metabolism, particularly impacting tumor-infiltrating lymphocytes such as CD8 + T cells and regulatory T cells. Mechanistically, SLC16A3 emerged as a critical regulator promoting STAD cell proliferation, invasion, and migration while modulating the metabolic landscape. CONCLUSION This study underscores the prognostic value of a lactic acid metabolism-based model in STAD, providing insights into its potential as a predictive biomarker for patient stratification and therapeutic targeting. The findings highlight SLC16A3 as a promising candidate for therapeutic intervention aimed at modulating lactic acid metabolism in the TME, thereby advancing personalized treatment strategies in gastric cancer management.
Collapse
Affiliation(s)
- Tianshang Bao
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zeyu Wang
- State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Weipai He
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Fei Wang
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jia Xu
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Hui Cao
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
11
|
Zhao P, Qiao C, Wang J, Zhou Y, Zhang C. Histone lactylation facilitates hepatocellular carcinoma progression by upregulating endothelial cell-specific molecule 1 expression. Mol Carcinog 2024; 63:2078-2089. [PMID: 39016629 DOI: 10.1002/mc.23794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/18/2024]
Abstract
Hepatocellular carcinoma (HCC) is a common malignant tumor. Histone lactylation, a novel epigenetic modification, plays a crucial role in various cancers. However, the functional role and underlying mechanism of histone lactylation in HCC progression have not yet been investigated. Histone lactylation levels in HCC tissues and cells were assessed using a densitometric kit and western blot analysis. The role of histone lactylation in cell malignant phenotypes was determined through functional assays in vitro, and a xenograft tumor model was established to verify the function of histone lactylation in vivo. ChIP assay was performed to explore the interaction between histone lactylation and endothelial cell-specific molecule 1 (ESM1). Additionally, gain-and-loss-of-function assays were conducted to investigate the regulatory role of ESM1 in HCC pathogenesis. Histone lactylation levels were increased in HCC tissues and cells, and H3K9 lactylation (H3K9la) and H3K56 lactylation (H3K56la) were identified as the histone modification sites. We observed that H3K9la and H3K56la caused abnormal histone lactylation and were associated with poor prognosis. Functionally, histone lactylation was found to promote HCC cell proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT) process in vitro. However, histone lactylation inhibition with 2-deoxy-d-glucose (2-DG) reduced the malignant phenotypes of HCC cells. In vivo, 2-DG treatment reduced tumor growth and metastasis in the HCC mouse model. Mechanistically, it was revealed that histone lactylation activated ESM1 transcription in HCC cells. ESM1 was expressed at a high level in HCC and exerted a carcinogenic role. Histone lactylation facilitates cell malignant phenotypes, tumor growth, and metastasis by upregulating ESM1 expression in HCC, which reveals the downstream molecular mechanism of histone lactylation and might provide a novel therapeutic target for HCC therapy.
Collapse
Affiliation(s)
- Peng Zhao
- Department of General Surgery, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu, China
| | - Chunzhong Qiao
- Department of General Surgery, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu, China
| | - Jiawei Wang
- Department of General Surgery, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu, China
| | - Ye Zhou
- Department of Postanesthesia Care Unit, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu, China
| | - Changhe Zhang
- Department of General Surgery, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu, China
| |
Collapse
|
12
|
Qiao Z, Li Y, Li S, Liu S, Cheng Y. Hypoxia-induced SHMT2 protein lactylation facilitates glycolysis and stemness of esophageal cancer cells. Mol Cell Biochem 2024; 479:3063-3076. [PMID: 38175377 DOI: 10.1007/s11010-023-04913-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 11/30/2023] [Indexed: 01/05/2024]
Abstract
Esophageal cancer (EC) is a familiar digestive tract tumor with highly lethal. The hypoxic environment has been demonstrated to be a significant factor in modulating malignant tumor progression and is strongly associated with the abnormal energy metabolism of tumor cells. Serine hydroxymethyl transferase 2 (SHMT2) is one of the most frequently expressed metabolic enzymes in human malignancies. The study was designed to investigate the biological functions and regulation mechanisms of SHMT2 in EC under hypoxia. We conducted RT-qPCR to assess SHMT2 levels in EC tissues and cells (TE-1 and EC109). EC cells were incubated under normoxia and hypoxia, respectively, and altered SHMT2 expression was evaluated through RT-qPCR, western blot, and immunofluorescence. The biological functions of SHMT2 on EC cells were monitored by performing CCK-8, EdU, transwell, sphere formation, glucose uptake, and lactate production assays. The SHMT2 protein lactylation was measured by immunoprecipitation and western blot. In addition, SHMT2-interacting proteins were analyzed by bioinformatics and validated by rescue experiments. SHMT2 was notably upregulated in EC tissues and cells. Hypoxia elevated SHMT2 protein expression, augmenting EC cell proliferation, migration, invasion, stemness, and glycolysis. In addition, hypoxia triggered lactylation of the SHMT2 protein and enhanced its stability. SHMT2 knockdown impeded the malignant phenotype of EC cells. Further mechanistic studies disclosed that SHMT2 is involved in EC progression by interacting with MTHFD1L. Hypoxia-induced SHMT2 protein lactylation and upregulated its protein level, which in turn enhanced MTHFD1L expression and accelerated the malignant progression of EC cells.
Collapse
Affiliation(s)
- Zhe Qiao
- Department of Thoracic Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157, West 5th Road, Xi'an, 710004, Shaanxi, China
| | - Yu Li
- Department of Thoracic Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157, West 5th Road, Xi'an, 710004, Shaanxi, China
| | - Shaomin Li
- Department of Thoracic Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157, West 5th Road, Xi'an, 710004, Shaanxi, China
| | - Shiyuan Liu
- Department of Thoracic Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157, West 5th Road, Xi'an, 710004, Shaanxi, China
| | - Yao Cheng
- Department of Thoracic Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157, West 5th Road, Xi'an, 710004, Shaanxi, China.
| |
Collapse
|
13
|
Farrokhi Yekta R, Farahani M, Koushki M, Amiri-Dashatan N. Deciphering the potential role of post-translational modifications of histones in gastrointestinal cancers: a proteomics-based review with therapeutic challenges and opportunities. Front Oncol 2024; 14:1481426. [PMID: 39497715 PMCID: PMC11532047 DOI: 10.3389/fonc.2024.1481426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 09/30/2024] [Indexed: 11/07/2024] Open
Abstract
Oncogenesis is a complex and multi-step process, controlled by several factors including epigenetic modifications. It is considered that histone modifications are critical components in the regulation of gene expression, protein functions, and molecular interactions. Dysregulated post-translationally modified histones and the related enzymatic systems are key players in the control of cell proliferation and differentiation, which are associated with the onset and progression of cancers. The most of traditional investigations on cancer have focused on mutations of oncogenes and tumor suppressor genes. However, increasing evidence indicates that epigenetics, especially histone post-translational modifications (PTMs) play important roles in various cancer types. Mass spectrometry-based proteomic approaches have demonstrated tremendous potential in PTMs profiling and quantitation in different biological systems. In this paper, we have made a proteomics-based review on the role of histone modifications involved in gastrointestinal cancers (GCs) tumorigenesis processes. These alterations function not only as diagnostic or prognostic biomarkers for GCs, but a deeper comprehension of the epigenetic regulation of GCs could facilitate the treatment of this prevalent malignancy through the creation of more effective targeted therapies.
Collapse
Affiliation(s)
- Reyhaneh Farrokhi Yekta
- Proteomics Research Center, System Biology Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoumeh Farahani
- Proteomics Research Center, System Biology Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Koushki
- Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
- Department of Clinical Biochemistry, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Nasrin Amiri-Dashatan
- Zanjan Metabolic Diseases Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
14
|
Liu J, Zhou G, Tong Z, Wang X, Liu D. The Values of PDK1 and LDH Levels in Patients with Sepsis and Septic Shock: A Prospective Observational Study. J Inflamm Res 2024; 17:6815-6826. [PMID: 39372591 PMCID: PMC11451472 DOI: 10.2147/jir.s477495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 09/10/2024] [Indexed: 10/08/2024] Open
Abstract
Background Metabolic changing is the significant host stress response during sepsis, but there is increasing evidence that uncontrolled metabolic reprogramming is a contributing factor to sepsis. Nevertheless, its association with outcome in patients with sepsis has been poorly investigated. As the key enzyme of metabolic reprogramming, the clinical value of PDK1 and LDH in patients with sepsis will be investigated in this study. Methods We collected serum from 167 ICU patients within 24 hours of admission for a single-center prospective observational study. The levels of PDK1 and LDH were detected by enzyme-linked adsorption method. Pearson or Spearman coefficient for correlation analysis between PDK1, LDH and clinical indicators. Areas under the ROC curves for evaluation of mortality prediction. Kaplan-Meier survival curve analysis was performed, and Cox proportional hazards model was performed to determine the risk factors for 28-day mortality. Results The PDK1/LDH in the septic shock group was statistically different between both the sepsis group and ICU control group, and had good correlation with ScvO2 and lactate. In predicting 28-day mortality in patients with sepsis, the best AUC was observed for PDK1/LDH, and was higher than the AUC for PDK1, lactate, and SOFA. Additionally, patients with lower PDK1/LDH had markerablely higher 28-day mortality. The multivariate Cox proportional hazards model revealed that PDK1/LDH < 0.1808 were the independent risk factors for 28-day mortality in sepsis. Conclusion The level of PDK1/LDH at admission was markedly decreased in patients with septic shock, which can serve as a novel independent prognostic biomarker for predicting mortality.
Collapse
Affiliation(s)
- Jingjing Liu
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Gaosheng Zhou
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Zewen Tong
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Xiaoting Wang
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Dawei Liu
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| |
Collapse
|
15
|
Jiang R, Ren WJ, Wang LY, Zhang W, Jiang ZH, Zhu GY. Targeting Lactate: An Emerging Strategy for Macrophage Regulation in Chronic Inflammation and Cancer. Biomolecules 2024; 14:1202. [PMID: 39456135 PMCID: PMC11505598 DOI: 10.3390/biom14101202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/16/2024] [Accepted: 09/20/2024] [Indexed: 10/28/2024] Open
Abstract
Lactate accumulation and macrophage infiltration are pivotal features of both chronic inflammation and cancer. Lactate, once regarded merely as an aftereffect of glucose metabolism, is now gaining recognition for its burgeoning spectrum of biological roles and immunomodulatory significance. Recent studies have evidenced that macrophages display divergent immunophenotypes in different diseases, which play a pivotal role in disease management by modulating macrophage polarization within the disease microenvironment. The specific polarization patterns of macrophages in a high-lactate environment and their contribution to the progression of chronic inflammation and cancer remain contentious. This review presents current evidence on the crosstalk of lactate and macrophage in chronic inflammation and cancer. Additionally, we provide an in-depth exploration of the pivotal yet enigmatic mechanisms through which lactate orchestrates disease pathogenesis, thereby offering novel perspectives to the development of targeted therapeutic interventions for chronic inflammation and cancer.
Collapse
Affiliation(s)
| | | | | | | | - Zhi-Hong Jiang
- State Key Laboratory of Quality Research in Chinese Medicine, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau Institute for Applied Research in Medicine and Health, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau 999078, China; (R.J.); (W.-J.R.); (L.-Y.W.); (W.Z.)
| | - Guo-Yuan Zhu
- State Key Laboratory of Quality Research in Chinese Medicine, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau Institute for Applied Research in Medicine and Health, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau 999078, China; (R.J.); (W.-J.R.); (L.-Y.W.); (W.Z.)
| |
Collapse
|
16
|
Jiang Z, Fang Z, Hong D, Wang X. Cancer Immunotherapy with "Vascular-Immune" Crosstalk as Entry Point: Associated Mechanisms, Therapeutic Drugs and Nano-Delivery Systems. Int J Nanomedicine 2024; 19:7383-7398. [PMID: 39050878 PMCID: PMC11268745 DOI: 10.2147/ijn.s467222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 07/04/2024] [Indexed: 07/27/2024] Open
Abstract
Tumor vessels characterized by abnormal functions and structures hinder the infiltration and immune antigen presentation of immune cells by inducing the formation of an immunosuppressive microenvironment ("cold" environment). Vascular-targeted therapy has been proven to enhance immune stimulation and the effectiveness of immunotherapy by modulating the "cold" microenvironment, such as hypoxia and an acidic microenvironment. Notably, a therapeutic strategy based on "vascular-immune" crosstalk can achieve dual regulation of tumor vessels and the immune system by reprogramming the tumor microenvironment (TME), thus forming a positive feedback loop between tumor vessels and the immune microenvironment. From this perspective, we discuss the factors of tumor angiogenesis and "cold" TME formation. Building on this foundation, some vascular-targeted therapeutic drugs will be elaborated upon in detail to achieve dual regulation of tumor vessels and immunity. More importantly, we focus on cutting-edge nanotechnology in view of "vascular-immune" crosstalk and discuss the rational fabrication of tailor-made nanosystems for efficiently enhancing immunotherapy.
Collapse
Affiliation(s)
- Zhijie Jiang
- Department of Clinical Pharmacy, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, People’s Republic of China
| | - Zhujun Fang
- Department of Clinical Pharmacy, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, People’s Republic of China
| | - Dongsheng Hong
- Department of Clinical Pharmacy, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, People’s Republic of China
| | - Xiaojuan Wang
- Department of Clinical Pharmacy, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, People’s Republic of China
| |
Collapse
|
17
|
Yue B, Gao Y, Hu Y, Zhan M, Wu Y, Lu L. Harnessing CD8 + T cell dynamics in hepatitis B virus-associated liver diseases: Insights, therapies and future directions. Clin Transl Med 2024; 14:e1731. [PMID: 38935536 PMCID: PMC11210506 DOI: 10.1002/ctm2.1731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/16/2024] [Accepted: 05/21/2024] [Indexed: 06/29/2024] Open
Abstract
Hepatitis B virus (HBV) infection playsa significant role in the etiology and progression of liver-relatedpathologies, encompassing chronic hepatitis, fibrosis, cirrhosis, and eventual hepatocellularcarcinoma (HCC). Notably, HBV infection stands as the primary etiologicalfactor driving the development of HCC. Given the significant contribution ofHBV infection to liver diseases, a comprehensive understanding of immunedynamics in the liver microenvironment, spanning chronic HBV infection,fibrosis, cirrhosis, and HCC, is essential. In this review, we focused on thefunctional alterations of CD8+ T cells within the pathogenic livermicroenvironment from HBV infection to HCC. We thoroughly reviewed the roles ofhypoxia, acidic pH, metabolic reprogramming, amino acid deficiency, inhibitory checkpointmolecules, immunosuppressive cytokines, and the gut-liver communication in shapingthe dysfunction of CD8+ T cells in the liver microenvironment. Thesefactors significantly impact the clinical prognosis. Furthermore, we comprehensivelyreviewed CD8+ T cell-based therapy strategies for liver diseases,encompassing HBV infection, fibrosis, cirrhosis, and HCC. Strategies includeimmune checkpoint blockades, metabolic T-cell targeting therapy, therapeuticT-cell vaccination, and adoptive transfer of genetically engineered CD8+ T cells, along with the combined usage of programmed cell death protein-1/programmeddeath ligand-1 (PD-1/PD-L1) inhibitors with mitochondria-targeted antioxidants.Given that targeting CD8+ T cells at various stages of hepatitis Bvirus-induced hepatocellular carcinoma (HBV + HCC) shows promise, we reviewedthe ongoing need for research to elucidate the complex interplay between CD8+ T cells and the liver microenvironment in the progression of HBV infection toHCC. We also discussed personalized treatment regimens, combining therapeuticstrategies and harnessing gut microbiota modulation, which holds potential forenhanced clinical benefits. In conclusion, this review delves into the immunedynamics of CD8+ T cells, microenvironment changes, and therapeuticstrategies within the liver during chronic HBV infection, HCC progression, andrelated liver diseases.
Collapse
Affiliation(s)
- Bing Yue
- Guangdong Provincial Key Laboratory of Tumour Interventional Diagnosis and TreatmentZhuhai Institute of Translational MedicineZhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Jinan UniversityZhuhaiGuangdongChina
| | - Yuxia Gao
- Guangdong Provincial Key Laboratory of Tumour Interventional Diagnosis and TreatmentZhuhai Institute of Translational MedicineZhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Jinan UniversityZhuhaiGuangdongChina
| | - Yi Hu
- Microbiology and Immunology DepartmentSchool of MedicineFaculty of Medical ScienceJinan UniversityGuangzhouGuangdongChina
| | - Meixiao Zhan
- Guangdong Provincial Key Laboratory of Tumour Interventional Diagnosis and TreatmentZhuhai Institute of Translational MedicineZhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Jinan UniversityZhuhaiGuangdongChina
| | - Yangzhe Wu
- Guangdong Provincial Key Laboratory of Tumour Interventional Diagnosis and TreatmentZhuhai Institute of Translational MedicineZhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Jinan UniversityZhuhaiGuangdongChina
| | - Ligong Lu
- Guangdong Provincial Key Laboratory of Tumour Interventional Diagnosis and TreatmentZhuhai Institute of Translational MedicineZhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Jinan UniversityZhuhaiGuangdongChina
| |
Collapse
|
18
|
Neganova ME, Aleksandrova YR, Sharova EV, Smirnova EV, Artyushin OI, Nikolaeva NS, Semakov AV, Schagina IA, Akylbekov N, Kurmanbayev R, Orynbekov D, Brel VK. Conjugates of 3,5-Bis(arylidene)-4-piperidone and Sesquiterpene Lactones Have an Antitumor Effect via Resetting the Metabolic Phenotype of Cancer Cells. Molecules 2024; 29:2765. [PMID: 38930831 PMCID: PMC11207066 DOI: 10.3390/molecules29122765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 05/30/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
In recent years, researchers have often encountered the significance of the aberrant metabolism of tumor cells in the pathogenesis of malignant neoplasms. This phenomenon, known as the Warburg effect, provides a number of advantages in the survival of neoplastic cells, and its application is considered a potential strategy in the search for antitumor agents. With the aim of developing a promising platform for designing antitumor therapeutics, we synthesized a library of conjugates of 3,5-bis(arylidene)-4-piperidone and sesquiterpene lactones. To gain insight into the determinants of the biological activity of the prepared compounds, we showed that the conjugates of 3,5-bis(arylidene)-4-piperidone and sesquiterpene lactones, which are cytotoxic agents, demonstrate selective activity toward a number of tumor cell lines with glycolysis-inhibiting ability. Moreover, the results of molecular and in silico screening allowed us to identify these compounds as potential inhibitors of the pyruvate kinase M2 oncoprotein, which is the rate-determining enzyme of glycolysis. Thus, the results of our work indicate that the synthesized conjugates of 3,5-bis(arylidene)-4-piperidone and sesquiterpene lactones can be considered a promising platform for designing selective cytotoxic agents against the glycolysis process, which opens new possibilities for researchers involved in the search for antitumor therapeutics among compounds containing piperidone platforms.
Collapse
Affiliation(s)
- M. E. Neganova
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, 142432 Chernogolovka, Russia; (M.E.N.); (Y.R.A.); (N.S.N.); (A.V.S.); (I.A.S.)
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 119991 Moscow, Russia; (E.V.S.); (E.V.S.); (O.I.A.)
| | - Yu. R. Aleksandrova
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, 142432 Chernogolovka, Russia; (M.E.N.); (Y.R.A.); (N.S.N.); (A.V.S.); (I.A.S.)
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 119991 Moscow, Russia; (E.V.S.); (E.V.S.); (O.I.A.)
| | - E. V. Sharova
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 119991 Moscow, Russia; (E.V.S.); (E.V.S.); (O.I.A.)
| | - E. V. Smirnova
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 119991 Moscow, Russia; (E.V.S.); (E.V.S.); (O.I.A.)
| | - O. I. Artyushin
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 119991 Moscow, Russia; (E.V.S.); (E.V.S.); (O.I.A.)
| | - N. S. Nikolaeva
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, 142432 Chernogolovka, Russia; (M.E.N.); (Y.R.A.); (N.S.N.); (A.V.S.); (I.A.S.)
| | - A. V. Semakov
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, 142432 Chernogolovka, Russia; (M.E.N.); (Y.R.A.); (N.S.N.); (A.V.S.); (I.A.S.)
| | - I. A. Schagina
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, 142432 Chernogolovka, Russia; (M.E.N.); (Y.R.A.); (N.S.N.); (A.V.S.); (I.A.S.)
| | - N. Akylbekov
- Laboratory of Engineering Profile “Physical and Chemical Methods of Analysis”, Korkyt Ata Kyzylorda University, Aiteke bi Str. 29A, 120014 Kyzylorda, Kazakhstan; (N.A.); (R.K.)
| | - R. Kurmanbayev
- Laboratory of Engineering Profile “Physical and Chemical Methods of Analysis”, Korkyt Ata Kyzylorda University, Aiteke bi Str. 29A, 120014 Kyzylorda, Kazakhstan; (N.A.); (R.K.)
| | - D. Orynbekov
- Laboratory of Engineering Profile “Physical and Chemical Methods of Analysis”, Korkyt Ata Kyzylorda University, Aiteke bi Str. 29A, 120014 Kyzylorda, Kazakhstan; (N.A.); (R.K.)
| | - V. K. Brel
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 119991 Moscow, Russia; (E.V.S.); (E.V.S.); (O.I.A.)
| |
Collapse
|
19
|
Rahmat JN, Liu J, Chen T, Li Z, Zhang Y. Engineered biological nanoparticles as nanotherapeutics for tumor immunomodulation. Chem Soc Rev 2024; 53:5862-5903. [PMID: 38716589 DOI: 10.1039/d3cs00602f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Biological nanoparticles, or bionanoparticles, are small molecules manufactured in living systems with complex production and assembly machinery. The products of the assembly systems can be further engineered to generate functionalities for specific purposes. These bionanoparticles have demonstrated advantages such as immune system evasion, minimal toxicity, biocompatibility, and biological clearance. Hence, bionanoparticles are considered the new paradigm in nanoscience research for fabricating safe and effective nanoformulations for therapeutic purposes. Harnessing the power of the immune system to recognize and eradicate malignancies is a viable strategy to achieve better therapeutic outcomes with long-term protection from disease recurrence. However, cancerous tissues have evolved to become invisible to immune recognition and to transform the tumor microenvironment into an immunosuppressive dwelling, thwarting the immune defense systems and creating a hospitable atmosphere for cancer growth and progression. Thus, it is pertinent that efforts in fabricating nanoformulations for immunomodulation are mindful of the tumor-induced immune aberrations that could render cancer nanotherapy inoperable. This review systematically categorizes the immunosuppression mechanisms, the regulatory immunosuppressive cellular players, and critical suppressive molecules currently targeted as breakthrough therapies in the clinic. Finally, this review will summarize the engineering strategies for affording immune moderating functions to bionanoparticles that tip the tumor microenvironment (TME) balance toward cancer elimination, a field still in the nascent stage.
Collapse
Affiliation(s)
- Juwita N Rahmat
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore 117585, Singapore
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119074, Singapore
| | - Jiayi Liu
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Taili Chen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - ZhiHong Li
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Yong Zhang
- Department of Biomedical Engineering, College of Engineering, The City University of Hong Kong, Hong Kong SAR.
| |
Collapse
|
20
|
Qian Z, Wu F, Feng G, Lin W, Cai X, Wu J, Ke K, Ye Z, Xu G. A prognostic risk model based on lactate metabolism and transport-related lncRNAs for gastric adenocarcinoma. Biomarkers 2024; 29:211-221. [PMID: 38629165 DOI: 10.1080/1354750x.2024.2341411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 04/04/2024] [Indexed: 05/15/2024]
Abstract
BACKGROUND Increased lactate levels and metastasis in tumours are strongly associated with dismal outcomes. But prognostic value of lactate metabolism and transport-related lncRNAs in gastric adenocarcinoma (GA) patients remains unaddressed. METHODS Gene expression data of GA were provided by The Cancer Genome Atlas. Lactate metabolism and transport-related gene data were accessed from GSEA. LncRNAs related to lactate metabolism and transport were identified by correlation analysis. A prognostic model was built by regression analysis. Validity of prognostic model was confirmed through survival analysis and receiver operating characteristic (ROC) curve. Immunity of each risk group was evaluated by immune correlation analysis .LncRNA-mRNA network was built by correlation analysis using Cytoscape software. RESULTS A 12-gene prognostic model based on lactate metabolism and transport-related lncRNAs was built in GA. Median riskscore was utilized to classify GA samples into high- and low-risk groups. Survival analysis and ROC curves demonstrated validity of prognostic model. Most immune checkpoint molecules and TIDE scores were lower in the low-risk group. LINC01303 and LINC01545 may be the key prognostic factors in patients with GA. CONCLUSION This study successfully built a prognostic model of lactate metabolism and transport-related lncRNAs in GA. The findings guide prognostic management of GA patients.
Collapse
Affiliation(s)
- Zhenyuan Qian
- General Surgery, Cancer Center, Department of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Fang Wu
- General Surgery, Cancer Center, Department of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Guoqing Feng
- Department of General Surgery, Haining Traditional Chinese Medicine Hospital, Haining, Jiaxing, Zhejiang, China
| | - Wenfa Lin
- Zhejiang Chinese Medicine University, Hangzhou, Zhejiang, China
| | - Xufan Cai
- Zhejiang Chinese Medicine University, Hangzhou, Zhejiang, China
| | - Jianzhang Wu
- General Surgery, Cancer Center, Department of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Kun Ke
- General Surgery, Cancer Center, Department of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Zaiyuan Ye
- General Surgery, Cancer Center, Department of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Guoxi Xu
- Department of Gastrointestinal Surgery, Jinjiang Municipal Hospital, Jinjiang, Quanzhou, Fujian, China
| |
Collapse
|
21
|
Li L, Yue T, Feng J, Zhang Y, Hou J, Wang Y. Recent progress in lactate oxidase-based drug delivery systems for enhanced cancer therapy. NANOSCALE 2024; 16:8739-8758. [PMID: 38602362 DOI: 10.1039/d3nr05952a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Lactate oxidase (LOX) is a natural enzyme that efficiently consumes lactate. In the presence of oxygen, LOX can catalyse the formation of pyruvate and hydrogen peroxide (H2O2) from lactate. This process led to acidity alleviation, hypoxia, and a further increase in oxidative stress, alleviating the immunosuppressive state of the tumour microenvironment (TME). However, the high cost of LOX preparation and purification, poor stability, and systemic toxicity limited its application in tumour therapy. Therefore, the rational application of drug delivery systems can protect LOX from the organism's environment and maintain its catalytic activity. This paper reviews various LOX-based drug-carrying systems, including inorganic nanocarriers, organic nanocarriers, and inorganic-organic hybrid nanocarriers, as well as other non-nanocarriers, which have been used for tumour therapy in recent years. In addition, this area's challenges and potential for the future are highlighted.
Collapse
Affiliation(s)
- Lu Li
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China.
| | - Tian Yue
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China.
| | - Jie Feng
- College of Medicine, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
| | - Yujun Zhang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China.
| | - Jun Hou
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China.
| | - Yi Wang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China.
| |
Collapse
|
22
|
Teng Y, Xu J, Wang Y, Wen N, Ye H, Li B. Combining a glycolysis‑related prognostic model based on scRNA‑Seq with experimental verification identifies ZFP41 as a potential prognostic biomarker for HCC. Mol Med Rep 2024; 29:78. [PMID: 38516783 PMCID: PMC10975023 DOI: 10.3892/mmr.2024.13203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 02/27/2024] [Indexed: 03/23/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a common malignancy with a poor prognosis, and its heterogeneity affects the response to clinical treatments. Glycolysis is highly associated with HCC therapy and prognosis. The present study aimed to identify a novel biomarker for HCC by exploring the heterogeneity of glycolysis in HCC. The intersection of both marker genes of glycolysis‑related cell clusters from single‑cell RNA sequencing analysis and mRNA data of liver HCC from The Cancer Genome Atlas were used to construct a prognostic model through Cox proportional hazard regression and the least absolute shrinkage and selection operator Cox regression. Data from the International Cancer Genome Consortium were used to validate the results of the analysis. Immune status analysis was then conducted. A significant gene in the prognostic model was identified as a potential biomarker and was verified through in vitro experiments. The results revealed that the glycolysis‑related prognostic model divided patients with HCC into high‑ and low‑risk groups. A nomogram combining the model and clinical features exhibited accurate predictive ability, with an area under the curve of 0.763 at 3 years. The high‑risk group exhibited a higher expression of checkpoint genes and lower tumor immune dysfunction and exclusion scores, suggesting that this group may be more likely to benefit from immunotherapy. The tumor tissues had a higher zinc finger protein (ZFP)41 mRNA and protein expression compared with the adjacent tissues. In vitro analyses revealed that ZFP41 played a crucial role in cell viability, proliferation, migration, invasion and glycolysis. On the whole, the present study demonstrates that the glycolysis‑related prognostic gene, ZFP41, is a potential prognostic biomarker and therapeutic target, and may play a crucial role in glycolysis and malignancy in HCC.
Collapse
Affiliation(s)
- Yu Teng
- West China School of Medicine, Sichuan University, Chengdu, Sichuan 610041, P.R. China
- Research Center for Biliary Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Jianrong Xu
- Research Center for Biliary Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yaoqun Wang
- Research Center for Biliary Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
- Division of Biliary Tract Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Ningyuan Wen
- Research Center for Biliary Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
- Division of Biliary Tract Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Hui Ye
- Research Center for Biliary Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
- Division of Biliary Tract Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Bei Li
- Research Center for Biliary Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
- Division of Biliary Tract Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
23
|
Berrell N, Sadeghirad H, Blick T, Bidgood C, Leggatt GR, O'Byrne K, Kulasinghe A. Metabolomics at the tumor microenvironment interface: Decoding cellular conversations. Med Res Rev 2024; 44:1121-1146. [PMID: 38146814 DOI: 10.1002/med.22010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/08/2023] [Accepted: 12/07/2023] [Indexed: 12/27/2023]
Abstract
Cancer heterogeneity remains a significant challenge for effective cancer treatments. Altered energetics is one of the hallmarks of cancer and influences tumor growth and drug resistance. Studies have shown that heterogeneity exists within the metabolic profile of tumors, and personalized-combination therapy with relevant metabolic interventions could improve patient response. Metabolomic studies are identifying novel biomarkers and therapeutic targets that have improved treatment response. The spatial location of elements in the tumor microenvironment are becoming increasingly important for understanding disease progression. The evolution of spatial metabolomics analysis now allows scientists to deeply understand how metabolite distribution contributes to cancer biology. Recently, these techniques have spatially resolved metabolite distribution to a subcellular level. It has been proposed that metabolite mapping could improve patient outcomes by improving precision medicine, enabling earlier diagnosis and intraoperatively identifying tumor margins. This review will discuss how altered metabolic pathways contribute to cancer progression and drug resistance and will explore the current capabilities of spatial metabolomics technologies and how these could be integrated into clinical practice to improve patient outcomes.
Collapse
Affiliation(s)
- Naomi Berrell
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Habib Sadeghirad
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Tony Blick
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Charles Bidgood
- APCRC-Q, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Graham R Leggatt
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Ken O'Byrne
- Princess Alexandra Hospital, Woolloongabba, Queensland, Australia
| | - Arutha Kulasinghe
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
24
|
Ajam-Hosseini M, Heydari R, Rasouli M, Akhoondi F, Asadi Hanjani N, Bekeschus S, Doroudian M. Lactic acid in macrophage polarization: A factor in carcinogenesis and a promising target for cancer therapy. Biochem Pharmacol 2024; 222:116098. [PMID: 38431231 DOI: 10.1016/j.bcp.2024.116098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/19/2024] [Accepted: 02/26/2024] [Indexed: 03/05/2024]
Abstract
Cancer remains a formidable challenge, continually revealing its intricate nature and demanding novel treatment approaches. Within this intricate landscape, the tumor microenvironment and its dynamic components have gained prominence, particularly macrophages that can adopt diverse polarization states, exerting a profound influence on cancer progression. Recent revelations have spotlighted lactic acid as a pivotal player in this complex interplay. This review systematically explores lactic acid's multifaceted role in macrophage polarization, focusing on its implications in carcinogenesis. We commence by cultivating a comprehensive understanding of the tumor microenvironment and the pivotal roles played by macrophages. The dynamic landscape of macrophage polarization, typified by M1 and M2 phenotypes, is dissected to reveal its substantial impact on tumor progression. Lactic acid, a metabolic byproduct, emerges as a key protagonist, and we meticulously unravel the mechanisms underpinning its generation within cancer cells, shedding light on its intimate association with glycolysis and its transformative effects on the tumor microenvironment. Furthermore, we decipher the intricate molecular framework that underlies lactic acid's pivotal role in facilitating macrophage polarization. Our review underscores lactic acid's dual role in carcinogenesis, orchestrating tumor growth and immune modulation within the tumor microenvironment, thereby profoundly influencing the balance between pro-tumor and anti-tumor immune responses. This duality highlights the therapeutic potential of selectively manipulating lactic acid metabolism for cancer treatment. Exploring strategies to inhibit lactic acid production by tumor cells, novel approaches to impede lactic acid transport in the tumor microenvironment, and the burgeoning field of immunotherapeutic cancer therapies utilizing lactic acid-induced macrophage polarization form the core of our investigation.
Collapse
Affiliation(s)
- Mobarakeh Ajam-Hosseini
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Romina Heydari
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Milad Rasouli
- Department of Physics, Kharazmi University, Tehran, Iran; Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Fatemeh Akhoondi
- Department of Molecular Biology of the Cell, Faculty of Bioscience, University of Milan, Milan, Italy
| | - Niloofar Asadi Hanjani
- Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran; Student Research Committee, Pasteur Institute of Iran, Tehran, Iran
| | - Sander Bekeschus
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str 2, 17489 Greifswald, Germany; Clinic and Policlinic for Dermatology and Venerology, Rostock University Medical Center, Strempelstr. 13, 18057 Rostock, Germany
| | - Mohammad Doroudian
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran.
| |
Collapse
|
25
|
Wang DD, Dong MM, Xie YM, Xu FQ, Fu TW, Wu YC, Zhang Z, Lu Y, Liang L, Yao WF, Shen GL, Liu JW, Zhang CW, Xu QR, Xiao ZQ. Effect of early peri-operative arterial lactate concentration level ratios on post-hepatectomy liver failure. Discov Oncol 2024; 15:81. [PMID: 38512494 PMCID: PMC10957797 DOI: 10.1007/s12672-024-00911-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/27/2024] [Indexed: 03/23/2024] Open
Abstract
BACKGROUND Post-hepatectomy liver failure (PHLF) is a serious complication after hepatectomy and a major cause of death. The current criteria for PHLF diagnosis (ISGLS consensus) require laboratory data of elevated INR level and hyperbilirubinemia on or after postoperative day 5. This study aims to propose a new indicator for the early clinical prediction of PHLF. METHODS The peri-operative arterial lactate concentration level ratios were derived from time points within the 3 days before surgery and within POD1, the patients were divided into two groups: high lactate ratio group (≥ 1) and low lactate ratio group (< 1). We compared the differences in morbidity rates between the two groups. Utilized logistic regression analysis to identify the risk factors associated with PHLF development and ROC curves to compare the predictive value of lactate ratio and other liver function indicators for PHLF. RESULTS A total of 203 patients were enrolled in the study. Overall morbidity and severe morbidity occurred in 64.5 and 12.8 per cent of patients respectively. 39 patients (19.2%) met the criteria for PHLF, including 15 patients (7.4%) with clinically relevant Post-hepatectomy liver failure (CR-PHLF). With a significantly higher incidence of PHLF observed in the lactate ratio ≥ 1 group compared to the lactate ratio < 1 group (n = 34, 26.8% vs. n = 5, 6.6%, P < 0.001). Multivariable logistic regression analysis revealed that a lactate ratio ≥ 1 was an independent predictor for PHLF (OR: 3.239, 95% CI 1.097-9.565, P = 0.033). Additionally, lactate ratio demonstrated good predictive efficacy for PHLF (AUC = 0.792). CONCLUSIONS Early assessment of peri-operative arterial lactate concentration level ratios may provide experience in early intervention of complications in patients with hepatocellular carcinoma, which can reduce the likelihood of PHLF occurrence and improve patient prognosis.
Collapse
Affiliation(s)
- Dong-Dong Wang
- General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
- Jinzhou Medical University Graduate Training Base (Zhejiang Provincial People's Hospital), Hangzhou, China
| | - Meng-Meng Dong
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Ya-Ming Xie
- General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
- Jinzhou Medical University Graduate Training Base (Zhejiang Provincial People's Hospital), Hangzhou, China
| | - Fei-Qi Xu
- General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Tian-Wei Fu
- General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yu-Chen Wu
- General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Zhe Zhang
- General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yi Lu
- General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Lei Liang
- General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Wei-Feng Yao
- General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Guo-Liang Shen
- General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jun-Wei Liu
- General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Cheng-Wu Zhang
- General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Qiu-Ran Xu
- Zhejiang Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China.
| | - Zun-Qiang Xiao
- General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
26
|
Wang Y, Chen X, Yang Y. CircRNA-regulated glucose metabolism in ovarian cancer: an emerging landscape for therapeutic intervention. Clin Transl Oncol 2024; 26:584-596. [PMID: 37578652 DOI: 10.1007/s12094-023-03285-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/11/2023] [Indexed: 08/15/2023]
Abstract
Ovarian cancer (OC) has the highest mortality rate among female reproductive system tumours, with limited efficacy of traditional treatments and 5-year survival rates that rarely exceed 40%. Circular RNA (circRNA) is a stable endogenous circular RNA that typically regulates protein expression by binding to downstream miRNA. It has been demonstrated that circRNAs play an important role in the proliferation, migration, and glucose metabolism (such as the Warburg effect) of OC and can regulate the expression of glucose metabolism-related proteins such as GLUT1 and HK2, promoting anaerobic glycolysis of cancer cells, increasing glucose uptake and ATP production, and affecting energy supply and biosynthetic substances to support tumour growth and invasion. This review summarises the formation and characteristics of circRNAs and focuses on their role in regulating glucose metabolism in OC cells and their potential therapeutic value, providing insights for identifying new therapeutic targets.
Collapse
Affiliation(s)
- Yaolong Wang
- Department of Obstetrics and Gynecology, The First Hospital of Lanzhou University, Lanzhou, 730000, China
- Key Laboratory of Gynecological Oncology of Gansu Province, Lanzhou, Gansu, China
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China
| | - Xi Chen
- Department of Obstetrics and Gynecology, The First Hospital of Lanzhou University, Lanzhou, 730000, China
- Key Laboratory of Gynecological Oncology of Gansu Province, Lanzhou, Gansu, China
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China
| | - Yongxiu Yang
- Department of Obstetrics and Gynecology, The First Hospital of Lanzhou University, Lanzhou, 730000, China.
- Key Laboratory of Gynecological Oncology of Gansu Province, Lanzhou, Gansu, China.
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China.
| |
Collapse
|
27
|
McPhedran SJ, Carleton GA, Lum JJ. Metabolic engineering for optimized CAR-T cell therapy. Nat Metab 2024; 6:396-408. [PMID: 38388705 DOI: 10.1038/s42255-024-00976-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 01/04/2024] [Indexed: 02/24/2024]
Abstract
The broad effectiveness of T cell-based therapy for treating solid tumour cancers remains limited. This is partly due to the growing appreciation that immune cells must inhabit and traverse a metabolically demanding tumour environment. Accordingly, recent efforts have centred on using genome-editing technologies to augment T cell-mediated cytotoxicity by manipulating specific metabolic genes. However, solid tumours exhibit numerous characteristics restricting immune cell-mediated cytotoxicity, implying a need for metabolic engineering at the pathway level rather than single gene targets. This emerging concept has yet to be put into clinical practice as many questions concerning the complex interplay between metabolic networks and T cell function remain unsolved. This Perspective will highlight key foundational studies that examine the relevant metabolic pathways required for effective T cell cytotoxicity and persistence in the human tumour microenvironment, feasible strategies for metabolic engineering to increase the efficiency of chimeric antigen receptor T cell-based approaches, and the challenges lying ahead for clinical implementation.
Collapse
Affiliation(s)
- Sarah J McPhedran
- Trev and Joyce Deeley Research Centre, BC Cancer, Victoria, British Columbia, Canada
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Gillian A Carleton
- Trev and Joyce Deeley Research Centre, BC Cancer, Victoria, British Columbia, Canada
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Julian J Lum
- Trev and Joyce Deeley Research Centre, BC Cancer, Victoria, British Columbia, Canada.
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada.
| |
Collapse
|
28
|
Sun Z, Gao Z, Xiang M, Feng Y, Wang J, Xu J, Wang Y, Liang J. Comprehensive analysis of lactate-related gene profiles and immune characteristics in lupus nephritis. Front Immunol 2024; 15:1329009. [PMID: 38455045 PMCID: PMC10917958 DOI: 10.3389/fimmu.2024.1329009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 02/12/2024] [Indexed: 03/09/2024] Open
Abstract
Objectives The most frequent cause of kidney damage in systemic lupus erythematosus (SLE) is lupus nephritis (LN), which is also a significant risk factor for morbidity and mortality. Lactate metabolism and protein lactylation might be related to the development of LN. However, there is still a lack of relative research to prove the hypothesis. Hence, this study was conducted to screen the lactate-related biomarkers for LN and analyze the underlying mechanism. Methods To identify differentially expressed genes (DEGs) in the training set (GSE32591, GSE127797), we conducted a differential expression analysis (LN samples versus normal samples). Then, module genes were mined using WGCNA concerning LN. The overlapping of DEGs, critical module genes, and lactate-related genes (LRGs) was used to create the lactate-related differentially expressed genes (LR-DEGs). By using a machine-learning algorithm, ROC, and expression levels, biomarkers were discovered. We also carried out an immune infiltration study based on biomarkers and GSEA. Results A sum of 1259 DEGs was obtained between LN and normal groups. Then, 3800 module genes in reference to LN were procured. 19 LR-DEGs were screened out by the intersection of DEGs, key module genes, and LRGs. Moreover, 8 pivotal genes were acquired via two machine-learning algorithms. Subsequently, 3 biomarkers related to lactate metabolism were obtained, including COQ2, COQ4, and NDUFV1. And these three biomarkers were enriched in pathways 'antigen processing and presentation' and 'NOD-like receptor signaling pathway'. We found that Macrophages M0 and T cells regulatory (Tregs) were associated with these three biomarkers as well. Conclusion Overall, the results indicated that lactate-related biomarkers COQ2, COQ4, and NDUFV1 were associated with LN, which laid a theoretical foundation for the diagnosis and treatment of LN.
Collapse
Affiliation(s)
- Zhan Sun
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhanyan Gao
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Mengmeng Xiang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yang Feng
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jie Wang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jinhua Xu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai Institute of Dermatology, Shanghai, China
| | - Yilun Wang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jun Liang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
29
|
Yang J, Shay C, Saba NF, Teng Y. Cancer metabolism and carcinogenesis. Exp Hematol Oncol 2024; 13:10. [PMID: 38287402 PMCID: PMC10826200 DOI: 10.1186/s40164-024-00482-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/22/2024] [Indexed: 01/31/2024] Open
Abstract
Metabolic reprogramming is an emerging hallmark of cancer cells, enabling them to meet increased nutrient and energy demands while withstanding the challenging microenvironment. Cancer cells can switch their metabolic pathways, allowing them to adapt to different microenvironments and therapeutic interventions. This refers to metabolic heterogeneity, in which different cell populations use different metabolic pathways to sustain their survival and proliferation and impact their response to conventional cancer therapies. Thus, targeting cancer metabolic heterogeneity represents an innovative therapeutic avenue with the potential to overcome treatment resistance and improve therapeutic outcomes. This review discusses the metabolic patterns of different cancer cell populations and developmental stages, summarizes the molecular mechanisms involved in the intricate interactions within cancer metabolism, and highlights the clinical potential of targeting metabolic vulnerabilities as a promising therapeutic regimen. We aim to unravel the complex of metabolic characteristics and develop personalized treatment approaches to address distinct metabolic traits, ultimately enhancing patient outcomes.
Collapse
Affiliation(s)
- Jianqiang Yang
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, 201 Dowman Dr, Atlanta, GA, 30322, USA
| | - Chloe Shay
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30322, USA
| | - Nabil F Saba
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, 201 Dowman Dr, Atlanta, GA, 30322, USA
| | - Yong Teng
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, 201 Dowman Dr, Atlanta, GA, 30322, USA.
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30322, USA.
| |
Collapse
|
30
|
Yan P, Liu J, Li Z, Wang J, Zhu Z, Wang L, Yu G. Glycolysis Reprogramming in Idiopathic Pulmonary Fibrosis: Unveiling the Mystery of Lactate in the Lung. Int J Mol Sci 2023; 25:315. [PMID: 38203486 PMCID: PMC10779333 DOI: 10.3390/ijms25010315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/17/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive lung disease characterized by excessive deposition of fibrotic connective tissue in the lungs. Emerging evidence suggests that metabolic alterations, particularly glycolysis reprogramming, play a crucial role in the pathogenesis of IPF. Lactate, once considered a metabolic waste product, is now recognized as a signaling molecule involved in various cellular processes. In the context of IPF, lactate has been shown to promote fibroblast activation, myofibroblast differentiation, and extracellular matrix remodeling. Furthermore, lactate can modulate immune responses and contribute to the pro-inflammatory microenvironment observed in IPF. In addition, lactate has been implicated in the crosstalk between different cell types involved in IPF; it can influence cell-cell communication, cytokine production, and the activation of profibrotic signaling pathways. This review aims to summarize the current research progress on the role of glycolytic reprogramming and lactate in IPF and its potential implications to clarify the role of lactate in IPF and to provide a reference and direction for future research. In conclusion, elucidating the intricate interplay between lactate metabolism and fibrotic processes may lead to the development of innovative therapeutic strategies for IPF.
Collapse
Affiliation(s)
| | | | | | | | | | - Lan Wang
- State Key Laboratory of Cell Differentiation and Regulation, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, Pingyuan Laboratory, College of Life Science, Henan Normal University, Xinxiang 453007, China; (P.Y.); (J.L.); (Z.L.); (J.W.); (Z.Z.)
| | - Guoying Yu
- State Key Laboratory of Cell Differentiation and Regulation, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, Pingyuan Laboratory, College of Life Science, Henan Normal University, Xinxiang 453007, China; (P.Y.); (J.L.); (Z.L.); (J.W.); (Z.Z.)
| |
Collapse
|
31
|
Sung E, Sim H, Cho YC, Lee W, Bae JS, Tan M, Lee S. Global Profiling of Lysine Acetylation and Lactylation in Kupffer Cells. J Proteome Res 2023; 22:3683-3691. [PMID: 37897433 DOI: 10.1021/acs.jproteome.3c00156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2023]
Abstract
Among the various cell types that constitute the liver, Kupffer cells (KCs) are responsible for the elimination of gut-derived foreign products. Protein lysine acetylation (Kac) and lactylation (Kla) are dynamic and reversible post-translational modifications, and various global acylome studies have been conducted for liver and liver-derived cells. However, no such studies have been conducted on KCs. In this study, we identified 2198 Kac sites in 925 acetylated proteins and 289 Kla sites in 181 lactylated proteins in immortalized mouse KCs using global acylome technology. The subcellular distributions of proteins with Kac and Kla site modifications differed. Similarly, the specific sequence motifs surrounding acetylated or lactylated lysine residues also showed differences. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed to better understand the differentially expressed proteins in the studies by Kac and Kla. In the newly identified Kla, we found K82 lactylation in the high-mobility group box-1 protein in the neutrophil extracellular trap formation category using KEGG enrichment analyses. Here, we report the first proteomic survey of Kac and Kla in KCs.
Collapse
Affiliation(s)
- Eunji Sung
- College of Pharmacy, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Hyunchae Sim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Young-Chang Cho
- College of Pharmacy, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Wonhwa Lee
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jong-Sup Bae
- College of Pharmacy, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Minjia Tan
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Sangkyu Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
32
|
Duan J, Li C, Zheng Y, Huang A, Xie Z. Characterization of exogenous lactate addition on the growth, photosynthetic performance, and biochemical composition of four bait microalgae strains. J Appl Microbiol 2023; 134:lxad259. [PMID: 37960882 DOI: 10.1093/jambio/lxad259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/02/2023] [Accepted: 11/12/2023] [Indexed: 11/15/2023]
Abstract
AIMS To quickly obtain the biomass of bait microalgae with high value-added products, researchers have examined the influence of biochemical and environmental factors on the growth rates and biochemical composition of microalgae. Previous studies have shown that lactate plays an important role in metabolic regulation in Phaeodactylum tricornutum. In this study, we investigated the effect of exogenous lactate on the growth rates, photosynthetic efficiency, and biochemical composition of four commonly used bait microalgae in aquaculture. METHODS AND RESULTS The optical density of the algal cultures at specific time points, YII, Fv/Fm, and the total lipid, protein, soluble sugar, insoluble sugar, chlorophyll a, and carotenoid content of P. tricornutum, Isochrysis galbana (I. galbana), Chaetoceros muelleri, and Cylindrotheca fusiformis were determined. In I. galbana, the growth rate was enhanced with the addition of lactate, even though higher concentrations of lactate were associated with a decrease in YII and Fv/Fm. In general, the total lipid content of these microalgal strains increased gradually in a concentration-dependent manner over the range of lactate concentrations. In addition, higher concentrations of lactate also induced significant changes in the total soluble and insoluble sugar levels in all microalgal strains. However, chlorophyll a and carotenoid contents increased at lower but decreased at higher concentrations of lactate in all microalgal strains. The total protein content was significantly elevated at all concentrations of lactate in P. tricornutum, whereas there were no significant differences in that of C. fusiformis. CONCLUSIONS Lactate effective influences in the growth, metabolism, and synthesis of important biochemical components in the four microalgal strains under investigation.
Collapse
Affiliation(s)
- Jiawen Duan
- State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou 570228, HainanChina
- Laboratory of Development and Utilization of Marine Microbial Resource, Hainan University, Haikou 570228, Hainan, China
- School of Life Sciences, Hainan University, Haikou 570228, Hainan, China
| | - Chenhui Li
- State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou 570228, HainanChina
- Laboratory of Development and Utilization of Marine Microbial Resource, Hainan University, Haikou 570228, Hainan, China
- College of Marine Sciences, Hainan University, Haikou 570228, Hainan, China
| | - Yimeng Zheng
- State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou 570228, HainanChina
- Laboratory of Development and Utilization of Marine Microbial Resource, Hainan University, Haikou 570228, Hainan, China
- College of Marine Sciences, Hainan University, Haikou 570228, Hainan, China
| | - Aiyou Huang
- State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou 570228, HainanChina
- Laboratory of Development and Utilization of Marine Microbial Resource, Hainan University, Haikou 570228, Hainan, China
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Haikou 570228, Hainan, China
- College of Marine Sciences, Hainan University, Haikou 570228, Hainan, China
| | - Zhenyu Xie
- State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou 570228, HainanChina
- Laboratory of Development and Utilization of Marine Microbial Resource, Hainan University, Haikou 570228, Hainan, China
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Haikou 570228, Hainan, China
- College of Marine Sciences, Hainan University, Haikou 570228, Hainan, China
| |
Collapse
|
33
|
Song D, Yang X, Chen Y, Hu P, Zhang Y, Zhang Y, Liang N, Xie J, Qiao L, Deng G, Chen F, Zhang J. Advances in anti-tumor based on various anaerobic bacteria and their derivatives as drug vehicles. Front Bioeng Biotechnol 2023; 11:1286502. [PMID: 37854883 PMCID: PMC10579911 DOI: 10.3389/fbioe.2023.1286502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 09/21/2023] [Indexed: 10/20/2023] Open
Abstract
Cancer therapies, such as chemotherapy and radiotherapy, are often unsatisfactory due to several limitations, including drug resistance, inability to cross biological barriers, and toxic side effects on the body. These drawbacks underscore the need for alternative treatments that can overcome these challenges and provide more effective and safer options for cancer patients. In recent years, the use of live bacteria, engineered bacteria, or bacterial derivatives to deliver antitumor drugs to specific tumor sites for controlled release has emerged as a promising therapeutic tool. This approach offers several advantages over traditional cancer therapies, including targeted drug delivery and reduced toxicity to healthy tissues. Ongoing research in this field holds great potential for further developing more efficient and personalized cancer therapies, such as E. coli, Salmonella, Listeria, and bacterial derivatives like outer membrane vesicles (OMVs), which can serve as vehicles for drugs, therapeutic proteins, or antigens. In this review, we describe the advances, challenges, and future directions of research on using live bacteria or OMVs as carriers or components derived from bacteria of delivery systems for cancer therapy.
Collapse
Affiliation(s)
- Daichen Song
- Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Department of Oncology, Shandong Lung Cancer Institute, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Xiaofan Yang
- School of Clinical Medicine, Jining Medical University, Jining, China
| | - Yanfei Chen
- Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Department of Oncology, Shandong Lung Cancer Institute, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Pingping Hu
- Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Department of Oncology, Shandong Lung Cancer Institute, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Yingying Zhang
- Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Department of Oncology, Shandong Lung Cancer Institute, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Yan Zhang
- Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Department of Oncology, Shandong Lung Cancer Institute, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Ning Liang
- Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Department of Oncology, Shandong Lung Cancer Institute, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Jian Xie
- Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Department of Oncology, Shandong Lung Cancer Institute, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Lili Qiao
- Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Department of Oncology, Shandong Lung Cancer Institute, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Guodong Deng
- Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Department of Oncology, Shandong Lung Cancer Institute, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Fangjie Chen
- Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Department of Oncology, Shandong Lung Cancer Institute, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Jiandong Zhang
- Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Department of Oncology, Shandong Lung Cancer Institute, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
| |
Collapse
|
34
|
Wang T, Ye Z, Li Z, Jing D, Fan G, Liu M, Zhuo Q, Ji S, Yu X, Xu X, Qin Y. Lactate-induced protein lactylation: A bridge between epigenetics and metabolic reprogramming in cancer. Cell Prolif 2023; 56:e13478. [PMID: 37060186 PMCID: PMC10542650 DOI: 10.1111/cpr.13478] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 03/25/2023] [Accepted: 03/31/2023] [Indexed: 04/16/2023] Open
Abstract
Lactate is not only an endpoint of glycolysis but is gradually being discovered to play the role of a universal metabolic fuel for energy via the 'lactate shuttle' moving between cells and transmitting signals. The glycolytic-dependent metabolism found in tumours and fast-growing cells has made lactate a pivotal player in energy metabolism reprogramming, which enables cells to obtain abundant energy in a short time. Moreover, lactate can provide favourable conditions for tumorigenesis by shaping the acidic tumour microenvironment, recruiting immune cells, etc. and the recently discovered lactate-induced lactylation moves even further on pro-tumorigenesis mechanisms of lactate production, circulation and utilization. As with other epigenetic modifications, lactylation can modify histone proteins to alter the spatial configuration of chromatin, affect DNA accessibility and regulate the expression of corresponding genes. What's more, the degree of lactylation is inseparable from the spatialized lactate concentration, which builds a bridge between epigenetics and metabolic reprogramming. Here, we review the important role of lactate in energy reprogramming, summarize the latest finding of lactylation in tumorigenesis and try to explore therapeutic strategies in oncotherapy that can kill two birds with one stone.
Collapse
Affiliation(s)
- Ting Wang
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiChina
- Shanghai Pancreatic Cancer InstituteShanghaiChina
- Pancreatic Cancer InstituteFudan UniversityShanghaiChina
| | - Zeng Ye
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiChina
- Shanghai Pancreatic Cancer InstituteShanghaiChina
- Pancreatic Cancer InstituteFudan UniversityShanghaiChina
| | - Zheng Li
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiChina
- Shanghai Pancreatic Cancer InstituteShanghaiChina
- Pancreatic Cancer InstituteFudan UniversityShanghaiChina
| | - De‐sheng Jing
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiChina
- Shanghai Pancreatic Cancer InstituteShanghaiChina
- Pancreatic Cancer InstituteFudan UniversityShanghaiChina
| | - Gui‐xiong Fan
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiChina
- Shanghai Pancreatic Cancer InstituteShanghaiChina
- Pancreatic Cancer InstituteFudan UniversityShanghaiChina
| | - Meng‐qi Liu
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiChina
- Shanghai Pancreatic Cancer InstituteShanghaiChina
- Pancreatic Cancer InstituteFudan UniversityShanghaiChina
| | - Qi‐feng Zhuo
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiChina
- Shanghai Pancreatic Cancer InstituteShanghaiChina
- Pancreatic Cancer InstituteFudan UniversityShanghaiChina
| | - Shun‐rong Ji
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiChina
- Shanghai Pancreatic Cancer InstituteShanghaiChina
- Pancreatic Cancer InstituteFudan UniversityShanghaiChina
| | - Xian‐jun Yu
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiChina
- Shanghai Pancreatic Cancer InstituteShanghaiChina
- Pancreatic Cancer InstituteFudan UniversityShanghaiChina
| | - Xiao‐wu Xu
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiChina
- Shanghai Pancreatic Cancer InstituteShanghaiChina
- Pancreatic Cancer InstituteFudan UniversityShanghaiChina
| | - Yi Qin
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiChina
- Shanghai Pancreatic Cancer InstituteShanghaiChina
- Pancreatic Cancer InstituteFudan UniversityShanghaiChina
| |
Collapse
|
35
|
Cai D, Yuan X, Cai DQ, Li A, Yang S, Yang W, Duan J, Zhuo W, Min J, Peng L, Wei J. Integrative analysis of lactylation-related genes and establishment of a novel prognostic signature for hepatocellular carcinoma. J Cancer Res Clin Oncol 2023; 149:11517-11530. [PMID: 37400571 DOI: 10.1007/s00432-023-04947-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 05/26/2023] [Indexed: 07/05/2023]
Abstract
BACKGROUND Lactylation has been found to involve in regulating many types of biological process in cancers. However, research on lactylation-related genes in predicting the prognosis of hepatocellular carcinoma (HCC) remains limited. METHODS The differential expression of lactylation-related genes (EP300 and HDAC1-3) in pan-cancer were examined in public databases. HCC patient tissues were obtained for mRNA expression and lactylation level detection by RT-qPCR and western blotting. Transwell migration assay, CCK-8 assay, EDU staining assay and RNA-seq were performed to verify the potential function and mechanisms in HCC cell lines after lactylation inhibitor apicidin treatment. lmmuCellAI, quantiSeq, xCell, TIMER and CIBERSOR were used to analyze the correlation between transcription levels of lactylation-related genes and immune cell infiltration in HCC. Risk model of lactylation-related genes was constructed by LASSO regression analysis, and prediction effect of the model was evaluated. RESULT The mRNA levels of lactylation-related genes and lactylation levels were higher in HCC tissues than normal samples. The lactylation levels, cell migration, and proliferation ability of HCC cell lines were suppressed after apicidin treatment. The dysregulation of EP300 and HDAC1-3 was associated with proportion of immune cell infiltration, especially B cell. Upregulation of HDAC1 and HDAC2 was closely associated with poorer prognosis. Finally, a novel risk model, based on HDAC1 and HDAC2, was developed for prognosis prediction in HCC. CONCLUSION HDAC1 and HDAC2 are expected to become new biomarkers for HCC. Risk scoring model based on HDAC1 and HDAC2 can be used to predict the prognosis of HCC patients.
Collapse
Affiliation(s)
- Diankui Cai
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Xiaoqing Yuan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - D Q Cai
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Guangdong Cardiovascular Institute, Guangzhou, 510080, China
- General Surgery Department, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510100, China
| | - Ang Li
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Sijia Yang
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Weibang Yang
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Jinxin Duan
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Wenfeng Zhuo
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Department of Hepatobiliary Surgery, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, China
| | - Jun Min
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
| | - Li Peng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
| | - Jinxing Wei
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
| |
Collapse
|
36
|
Lin Y, Yan G, Wang M, Zhang K, Shu F, Liu M, Long F, Mao D. Crosstalk between lactic acid and immune regulation and its value in the diagnosis and treatment of liver failure. Open Life Sci 2023; 18:20220636. [PMID: 37724112 PMCID: PMC10505340 DOI: 10.1515/biol-2022-0636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/07/2023] [Accepted: 05/17/2023] [Indexed: 09/20/2023] Open
Abstract
Liver failure is a common clinical syndrome of severe liver diseases, which belongs to one of the critical medical conditions. Immune response plays a leading role in the pathogenesis of liver failure. Lactic acid as a target for the treatment and prediction of liver failure has not attracted enough attention. Since the emergence of the concept of "histone lactation," lactic acid has shown great promise in immune response and escape. Therefore, targeted lactic acid may be a reliable agent to solve immune and energy metabolism disorders in liver failure. Based on the relationship between lactic acid and immune response, the cross-talk between lactic acid metabolism, its compounds, and immune regulation and its significance in the diagnosis and treatment of liver failure were expounded in this article to provide new ideas for understanding and treating liver failure.
Collapse
Affiliation(s)
- Yong Lin
- Graduate School of Guangxi University of Traditional Chinese Medicine, Nanning, Guangxi, China
| | - Gengjie Yan
- Graduate School of Guangxi University of Traditional Chinese Medicine, Nanning, Guangxi, China
| | - Minggang Wang
- Department of Hepatology at the First Affiliated Hospital of Guangxi University of Traditional Chinese Medicine, Nanning, Guangxi, China
| | - Kan Zhang
- Department of Hepatology at the First Affiliated Hospital of Guangxi University of Traditional Chinese Medicine, Nanning, Guangxi, China
| | - Faming Shu
- Department of Hepatology at the First Affiliated Hospital of Guangxi University of Traditional Chinese Medicine, Nanning, Guangxi, China
| | - Meiyan Liu
- Graduate School of Guangxi University of Traditional Chinese Medicine, Nanning, Guangxi, China
| | - Fuli Long
- Department of Hepatology at the First Affiliated Hospital of Guangxi University of Traditional Chinese Medicine, Nanning, Guangxi, China
| | - Dewen Mao
- Department of Hepatology at the First Affiliated Hospital of Guangxi University of Traditional Chinese Medicine, Nanning, Guangxi, China
| |
Collapse
|
37
|
Gambardella J, Fiordelisi A, Cerasuolo FA, Buonaiuto A, Avvisato R, Viti A, Sommella E, Merciai F, Salviati E, Campiglia P, D’Argenio V, Parisi S, Bianco A, Spinelli L, Di Vaia E, Cuocolo A, Pisani A, Riccio E, Di Risi T, Ciccarelli M, Santulli G, Sorriento D, Iaccarino G. Experimental evidence and clinical implications of Warburg effect in the skeletal muscle of Fabry disease. iScience 2023; 26:106074. [PMID: 36879801 PMCID: PMC9984560 DOI: 10.1016/j.isci.2023.106074] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/19/2022] [Accepted: 01/24/2023] [Indexed: 01/30/2023] Open
Abstract
Skeletal muscle (SM) pain and fatigue are common in Fabry disease (FD). Here, we undertook the investigation of the energetic mechanisms related to FD-SM phenotype. A reduced tolerance to aerobic activity and lactate accumulation occurred in FD-mice and patients. Accordingly, in murine FD-SM we detected an increase in fast/glycolytic fibers, mirrored by glycolysis upregulation. In FD-patients, we confirmed a high glycolytic rate and the underutilization of lipids as fuel. In the quest for a tentative mechanism, we found HIF-1 upregulated in FD-mice and patients. This finding goes with miR-17 upregulation that is responsible for metabolic remodeling and HIF-1 accumulation. Accordingly, miR-17 antagomir inhibited HIF-1 accumulation, reverting the metabolic-remodeling in FD-cells. Our findings unveil a Warburg effect in FD, an anaerobic-glycolytic switch under normoxia induced by miR-17-mediated HIF-1 upregulation. Exercise-intolerance, blood-lactate increase, and the underlying miR-17/HIF-1 pathway may become useful therapeutic targets and diagnostic/monitoring tools in FD.
Collapse
Affiliation(s)
- Jessica Gambardella
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
- Interdepartmental Center of Research on Hypertension and Related Conditions (CIRIAPA), Federico II University, Naples, Italy
| | - Antonella Fiordelisi
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
| | | | - Antonietta Buonaiuto
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
| | - Roberta Avvisato
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
| | - Alessandro Viti
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
| | | | | | | | | | - Valeria D’Argenio
- Department of Human Sciences and Quality of Life Promotion, San Raffaele Open University, Rome, Italy
- CEINGE- Advanced Biotechnologies, Naples, Italy
| | - Silvia Parisi
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University, Naples, Italy
| | - Antonio Bianco
- Interdepartmental Center of Research on Hypertension and Related Conditions (CIRIAPA), Federico II University, Naples, Italy
| | - Letizia Spinelli
- Interdepartmental Center of Research on Hypertension and Related Conditions (CIRIAPA), Federico II University, Naples, Italy
| | - Eugenio Di Vaia
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
| | - Alberto Cuocolo
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
| | - Antonio Pisani
- Department of Public Health, Federico II University, Naples, Italy
| | - Eleonora Riccio
- Department of Public Health, Federico II University, Naples, Italy
| | | | - Michele Ciccarelli
- Department of Medicine and Surgery, University of Salerno, Salerno, Italy
| | - Gaetano Santulli
- Department of Medicine, Division of Cardiology, Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY, USA
- Department of Molecular Pharmacology, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Einstein Institute for Neuroimmunology and Inflammation, Albert Einstein College of Medicine, New York, NY, USA
| | - Daniela Sorriento
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
- Interdepartmental Center of Research on Hypertension and Related Conditions (CIRIAPA), Federico II University, Naples, Italy
| | - Guido Iaccarino
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
- Interdepartmental Center of Research on Hypertension and Related Conditions (CIRIAPA), Federico II University, Naples, Italy
| |
Collapse
|
38
|
Zhang J, Su Q, Li SC. Qigong Exercise Balances Oxygen Supply and Acid-Base to Modulate Hypoxia: A Perspective Platform toward Preemptive Health & Medicine. Med Sci (Basel) 2023; 11:medsci11010021. [PMID: 36976529 PMCID: PMC10057714 DOI: 10.3390/medsci11010021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 01/14/2023] [Accepted: 02/22/2023] [Indexed: 03/04/2023] Open
Abstract
Qigong is a meditative movement with therapeutic effects and is commonly practiced in Eastern medicine. A growing body of evidence validates its health benefits, leading to mechanistic questions about how it works. We propose a novel mechanism by which the “acid” caused by hypoxia affects metabolism, and the way it is neutralized through Qigong practice involves the body’s blood flow and vasculature modifications. Specifically, Qigong exercise generates an oxygen supply and acid-base balance against the hypoxic effects of underlying pathological conditions. We also propose that Qigong exercise mediated and focused on the local hypoxia environment of tissues might normalize the circulation of metabolic and inflammation accumulation in the tumor tissue and restore the normal metabolism of tissues and cells through calm, relaxation, and extreme Zen-style breathing that gravitates toward preemptive health and medicine. Thus, we propose the mechanisms of action related to Qigong, intending to unify Eastern and Western exercise theory.
Collapse
Affiliation(s)
- Junjie Zhang
- School of Physical Training and Physical Therapy, Shenzhen University, Shenzhen 518060, Guangdong, China
| | - Qingning Su
- Center of Bioengineering, School of Medicine, Shenzhen University, Shenzhen 518060, Guangdong, China
| | - Shengwen Calvin Li
- Neuro-Oncology and Stem Cell Research Laboratory (NSCL), CHOC Children’s Research Institute (CCRI), Children’s Hospital of Orange County (CHOC), 1201 W. La Veta Ave., Orange, CA 92868-3874, USA
- Department of Neurology, School of Medicine, University of California-Irvine (UCI), 200 S Manchester Ave Ste 206, Orange, CA 92868, USA
- Correspondence: ; Tel.: +1-714-509-4964; Fax: +1-714-509-4318
| |
Collapse
|
39
|
Xia Z, Quan Y. Effect of tumor microenvironment on ferroptosis: inhibition or promotion. Front Oncol 2023; 13:1155511. [PMID: 37213276 PMCID: PMC10196176 DOI: 10.3389/fonc.2023.1155511] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/24/2023] [Indexed: 05/23/2023] Open
Abstract
Ferroptosis is a type of lipid peroxidation-induced, iron-dependent programmed cell death. Emerging evidence suggests that ferroptosis is intimately connected to tumorigenesis, development, treatment and plays a major role in tumor immune regulation. This study focused on the connection between ferroptosis and immune regulation, which may offer a theoretical basis for targeting ferroptosis and tumor immunotherapy.
Collapse
Affiliation(s)
- Zhengzhen Xia
- The First Clinical Medical School, Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Yi Quan
- The First Clinical Medical School, Guangdong Medical University, Zhanjiang, Guangdong, China
- Department of Oncology Medical Center, The First People’s Hospital of Zhaoqing, Zhaoqing, Guangdong, China
- *Correspondence: Yi Quan,
| |
Collapse
|