1
|
Zou P, Li X, Wang L, She Y, Xiao C, Peng Y, Qian X, Luo P, Wei S. Grifola frondosa Polysaccharide Ameliorates Inflammation by Regulating Macrophage Polarization of Liver in Type 2 Diabetes Mellitus Rats. Mol Nutr Food Res 2024:e2400392. [PMID: 39587947 DOI: 10.1002/mnfr.202400392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 10/17/2024] [Indexed: 11/27/2024]
Abstract
SCOPE Grifola frondosa polysaccharide (GFP) has a positive effect in regulating type 2 diabetes mellitus (T2DM), but the understanding of its regulatory mechanism is still limited. Accumulating evidence suggests that hepatic inflammation is crucial in the onset and progression of insulin resistance (IR) and T2DM. However, the question of whether GFP can modulate T2DM via regulating hepatic inflammation and the underlying mechanism has not yet been reported. METHODS AND RESULTS High-fat diet (HFD) fed combined with streptozocin (STZ) injections rat model and Lipopolysaccharides (LPS)-treated bone marrow-derived macrophages (BMDM) model are used. The results showed that GFP intervention reduces weight loss and hyperglycemia symptoms, besides lowers FINS, HOMA-IR, IPGTT-AUC, and IPITT-AUC in T2DM rats. Meanwhile, GFP intervention reduces the secretion level of inflammatory factors and increases the secretion level of anti-inflammatory factors in the liver tissue of T2DM rats. Furthermore, GFP reduces macrophage infiltration in liver tissue, inhibits macrophage M1-type polarization, and promotes M2-type polarization. CONCLUSIONS These results suggest that GFP intervention could attenuate the hepatic inflammatory and insulin resistance in T2DM rats by inhibiting hepatic macrophage infiltration and modulating M1/M2 polarization. The findings provide new evidence for GFP in the early prevention and treatment of T2DM.
Collapse
Affiliation(s)
- Pei Zou
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of, Education, Guizhou Provincial Engineering Research Center of Ecological Food Innovation, Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, School of Public Health, Guizhou Medical University, Guiyang, 561113, China
| | - Xueyan Li
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of, Education, Guizhou Provincial Engineering Research Center of Ecological Food Innovation, Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, School of Public Health, Guizhou Medical University, Guiyang, 561113, China
| | - Liping Wang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of, Education, Guizhou Provincial Engineering Research Center of Ecological Food Innovation, Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, School of Public Health, Guizhou Medical University, Guiyang, 561113, China
| | - Ying She
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of, Education, Guizhou Provincial Engineering Research Center of Ecological Food Innovation, Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, School of Public Health, Guizhou Medical University, Guiyang, 561113, China
| | - Chenyang Xiao
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of, Education, Guizhou Provincial Engineering Research Center of Ecological Food Innovation, Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, School of Public Health, Guizhou Medical University, Guiyang, 561113, China
| | - Yang Peng
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of, Education, Guizhou Provincial Engineering Research Center of Ecological Food Innovation, Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, School of Public Health, Guizhou Medical University, Guiyang, 561113, China
| | - Xu Qian
- Department of Nutrition and Food Hygiene, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 210029, China
| | - Peng Luo
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of, Education, Guizhou Provincial Engineering Research Center of Ecological Food Innovation, Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, School of Public Health, Guizhou Medical University, Guiyang, 561113, China
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical, University, Guiyang, 561113, China
| | - Shaofeng Wei
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of, Education, Guizhou Provincial Engineering Research Center of Ecological Food Innovation, Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, School of Public Health, Guizhou Medical University, Guiyang, 561113, China
| |
Collapse
|
2
|
Martínez-Carrillo BE, De Sales-Millán A, Aguirre-Garrido JF, Valdés-Ramos R, de María Cruz-Estrada F, Castillo-Cardiel JA. Changes in the Composition and Diversity of the Intestinal Microbiota Associated with Carbohydrate Consumption in Type 2 Diabetes Mellitus Patients. Int J Mol Sci 2024; 25:12359. [PMID: 39596424 PMCID: PMC11594722 DOI: 10.3390/ijms252212359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/02/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a multifactorial disease, influenced by dietary and environmental factors that can modify the intestinal microbiota. The aim of this study was to evaluate changes in the composition and diversity of the intestinal microbiota associated with carbohydrate (CHO) consumption in T2DM patients. Forty patients participated, with and without T2DM. Fecal samples were collected for the characterization of microbial diversity from the massive sequencing of the 16S rRNA gene. Carbohydrate consumption was quantified using the Frequency Consumption Foods questionnaire (FCF), the groups were categorized according to Body Mass Index (BMI) and BMI + CHO consumption. The group without T2DM showed normal biochemical and anthropometric parameters, although they had a high carbohydrate consumption compared to the group with T2DM. At the phylum level, there were differences in relative abundance; the control overweight group (CL-OW > CHO) and T2DM-Normal Weight > CHO patients had increased Bacteroides and decreased Firmicutes. In contrast, the CL-OW > CHO and T2DM-OW < CHO patients, showed reduced Bacteroidetes and an elevated amount of Firmicutes. At the genus level, the differences were in the relative abundance of Roseburia, Clostridium_IV, Prevotella, and Sporobacter, associated with the consumption of carbohydrates. The groups that consumed high amounts of carbohydrates, regardless of whether they had diabetes mellitus or were overweight, had a significantly reduced proportion of Faecalibacterium, an altered proportion of Bacteroides. The high consumption of carbohydrates showed considerable modifications in the composition and diversity of the bacterial communities.
Collapse
Affiliation(s)
- Beatriz Elina Martínez-Carrillo
- Laboratorio de Investigación en Nutrición, Facultad de Medicina, Universidad Autónoma del Estado de México, Toluca 50180, Mexico; (A.D.S.-M.); (R.V.-R.); (F.d.M.C.-E.)
| | - Amapola De Sales-Millán
- Laboratorio de Investigación en Nutrición, Facultad de Medicina, Universidad Autónoma del Estado de México, Toluca 50180, Mexico; (A.D.S.-M.); (R.V.-R.); (F.d.M.C.-E.)
| | | | - Roxana Valdés-Ramos
- Laboratorio de Investigación en Nutrición, Facultad de Medicina, Universidad Autónoma del Estado de México, Toluca 50180, Mexico; (A.D.S.-M.); (R.V.-R.); (F.d.M.C.-E.)
| | - Flor de María Cruz-Estrada
- Laboratorio de Investigación en Nutrición, Facultad de Medicina, Universidad Autónoma del Estado de México, Toluca 50180, Mexico; (A.D.S.-M.); (R.V.-R.); (F.d.M.C.-E.)
| | - José Arturo Castillo-Cardiel
- Department of Research, Continuing Education and Distance Learning, Universidad Autónoma de Durango, Durango 34209, Mexico;
| |
Collapse
|
3
|
Ng CYJ, Zhong L, Ng HS, Goh KS, Zhao Y. Managing Type 2 Diabetes Mellitus via the Regulation of Gut Microbiota: A Chinese Medicine Perspective. Nutrients 2024; 16:3935. [PMID: 39599721 PMCID: PMC11597546 DOI: 10.3390/nu16223935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/11/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Type 2 Diabetes Mellitus (T2DM) is a metabolic disorder characterized by insulin resistance and inadequate insulin production. Given the increased frequency of T2DM and the health issues it can cause, there is an increasing need to develop alternative T2DM management strategies. One such approach is Chinese Medicine (CM), a complementary therapy widely used in T2DM treatment. Given the emphasis on gut microbiota in current research, studying CM in the treatment of T2DM via gut microbiota modulation could be beneficial. Scope and approach: The use of various CM methods for managing T2DM via gut microbiota modulation is highlighted in this review. Following an introduction of the gut microbiota and its role in T2DM pathogenesis, we will review the potential interactions between gut microbiota and T2DM. Thereafter, we will review various CM treatment modalities that modulate gut microbiota and provide perspectives for future research. Key findings and discussion: In T2DM, Akkermansia, Bifidobacterium, and Firmicutes are examples of gut microbiota commonly imbalanced. Studies have shown that CM therapies can modulate gut microbiota, leading to beneficial effects such as reduced inflammation, improved metabolism, and improved immunity. Among these treatment modalities, Chinese Herbal Medicine and acupuncture are the most well-studied, and several in vivo studies have demonstrated their potential in managing T2DM by modulating gut microbiota. However, the underlying biomolecular mechanisms of actions are not well elucidated, which is a key area for future research. Future studies could also investigate alternate CM therapies such as moxibustion and CM exercises and conduct large-scale clinical trials to validate their effectiveness in treatment.
Collapse
Affiliation(s)
- Chester Yan Jie Ng
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Linda Zhong
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Han Seong Ng
- Singapore General Hospital, Outram Rd., Singapore 169608, Singapore
- Academy of Chinese Medicine Singapore, 705 Serangoon Road, Singapore 328127, Singapore
| | - Kia Seng Goh
- Academy of Chinese Medicine Singapore, 705 Serangoon Road, Singapore 328127, Singapore
- Singapore College of Traditional Chinese Medicine, 640 Lor 4 Toa Payoh, Singapore 319522, Singapore
| | - Yan Zhao
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
- Academy of Chinese Medicine Singapore, 705 Serangoon Road, Singapore 328127, Singapore
| |
Collapse
|
4
|
He KJ, Wang H, Xu J, Gong G, Liu X, Guan H. Global burden of type 2 diabetes mellitus from 1990 to 2021, with projections of prevalence to 2044: a systematic analysis across SDI levels for the global burden of disease study 2021. Front Endocrinol (Lausanne) 2024; 15:1501690. [PMID: 39583961 PMCID: PMC11581865 DOI: 10.3389/fendo.2024.1501690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 10/24/2024] [Indexed: 11/26/2024] Open
Abstract
Background We aimed to assess temporal trends in type 2 diabetes mellitus (T2DM)-related deaths and disability-adjusted life years (DALYs) at global and cross-social demographic index (SDI) levels, using data from the Global Burden of Disease (GBD) in 2021. Methods We used geospatial mapping to visualize the global distribution of T2DM-related mortality and DALYs in 2021. Joinpoint regression assessed annual and average percent changes in DALYs and deaths from 1990 to 2021 across SDI regions. Age-period-cohort modeling examined the effects of age, period, and cohort on trends. Decomposition analysis evaluated the impact of population growth, aging, and epidemiological changes on DALY trends. A stratified projection forecasted future T2DM burden by age and sex from 2020 to 2044. Results T2DM-related mortality and DALYs were highest in low-SDI regions. Globally, T2DM-related deaths and DALYs have increased, with the most rapid rise in low and low-middle SDI regions, driven by population growth and epidemiological shifts. High-SDI countries showed a slower increase in DALYs, influenced more by aging. Age-period-cohort analysis indicated higher DALY rates in later birth cohorts and recent periods, especially in high-SDI regions. Future projections show a significant increase in the 70-74 age group and a gradual rise in other age groups. Conclusion The burden of T2DM is projected to continue increasing, especially in low-SDI and low-middle SDI regions, where population growth and epidemiological shifts are the main contributors. This underscores the need for targeted, region-specific healthcare policies, preventive strategies, and age-specific interventions to address the increasing T2DM burden globally.
Collapse
Affiliation(s)
- Ke-Jie He
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People’s Hospital, Quzhou, Zhejiang, China
| | - Haitao Wang
- The School of Clinical Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Jianguang Xu
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People’s Hospital, Quzhou, Zhejiang, China
| | - Guoyu Gong
- School of Medicine, Xiamen University, Xiamen, China
| | - Xu Liu
- Department of Neurology, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Huiting Guan
- Shenzhen Bao'an Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| |
Collapse
|
5
|
Ilari S, Nucera S, Morabito L, Caminiti R, Mazza V, Ritorto G, Ussia S, Passacatini LC, Macrì R, Scarano F, Serra M, Scali E, Maiuolo J, Oppedisano F, Palma E, Muscoli S, Proietti S, Tomino C, Mollace V, Muscoli C. A Systematic Review of the Effect of Polyphenols on Alterations of the Intestinal Microbiota and Shared Bacterial Profiles Between Metabolic Syndrome and Acne. Nutrients 2024; 16:3591. [PMID: 39519424 PMCID: PMC11547370 DOI: 10.3390/nu16213591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024] Open
Abstract
Introduction: Microbiota, composed of micro-organisms like bacteria, viruses, and non-pathogenic fungi, plays a crucial role in digestion, vitamin production, and protection against dangerous microbes. Several factors, including age, diet, alcohol consumption, stress, environmental microorganisms, and therapies (particularly antibiotics), as well as birth and nursing, could modify the microbiota. Recent research has highlighted its alteration and involvement in a various disease, including metabolic syndrome and acne. This systematic review aimed to identify common biomarkers and microbiota alterations shared between metabolic syndrome and acne, and to explore how the potential prebiotic activities of polyphenols may promote intestinal eubiosis. Materials and methods: A comprehensive search in PubMed and EMBASE resulted in 4142 articles, from which nine studies were selected based on specific criteria after removing duplicates and reviewing abstracts and full texts. All studies correlated the microbiota alteration in both pathologies and the activity of polyphenols in metabolic syndrome. Results: This review suggests that acne may be influenced by some of the same microorganisms involved in metabolic syndrome. While the literature highlights the effectiveness of polyphenols in treating metabolic syndrome, no studies have yet demonstrated their specific impact on acne. Conclusions: The research points to the potential benefits of polyphenols in modulating the microbiota, which could be relevant for individuals with metabolic syndrome. However, due to the limited data available, it was not possible to establish a direct correlation between metabolic syndrome and acne.
Collapse
Affiliation(s)
- Sara Ilari
- IRCCS San Raffaele Roma, 00166 Rome, Italy
| | - Saverio Nucera
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| | - Lucrezia Morabito
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| | - Rosamaria Caminiti
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| | - Valeria Mazza
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| | - Giovanna Ritorto
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| | - Sara Ussia
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| | | | - Roberta Macrì
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| | - Federica Scarano
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| | - Maria Serra
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| | - Elisabetta Scali
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| | - Jessica Maiuolo
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| | - Francesca Oppedisano
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| | - Ernesto Palma
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| | - Saverio Muscoli
- Department of Cardiology, Tor Vergata University, 00133 Rome, Italy
| | | | | | - Vincenzo Mollace
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| | - Carolina Muscoli
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| |
Collapse
|
6
|
Zhou X, Zhou J, Ban Q, Zhang M, Ban B. Effects of metformin on the glucose regulation, lipid levels and gut microbiota in high-fat diet with streptozotocin induced type 2 diabetes mellitus rats. Endocrine 2024; 86:163-172. [PMID: 38782861 PMCID: PMC11445279 DOI: 10.1007/s12020-024-03843-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/16/2024] [Indexed: 05/25/2024]
Abstract
OBJECTIVE Metformin, an anti-diabetic drug, regulates blood glucose by affecting gut microbiotas. However, the potential mechanism underlying this effect remains unclear. This study aimed to evaluate the effect of metformin on glucose regulation, lipid levels, and the gut microbiota in rats with type 2 diabetes mellitus induced by a high-fat diet with streptozotocin. RESEARCH DESIGN METHODS Thirty Wistar rats was using in this experiment. T2DM rats were administered 300 mg/kg metformin for 8 weeks. The glucose regulation, lipid levels, organ coefficients, and gut microbiotawere measured by 16S rDNA. RESULT The metformin-gavaged rats exhibited significant improvements in blood glucose and serum lipid levels, accompanied by alterations in short-chain fatty acid levels and the intestinal microbiota (p < 0.05). In the diabetic rats, metformin potentially increased specific probiotics, thus improving the hypoglycaemic effects of the oral anti-diabetic drug. Further, damage to the liver and kidney was effectively alleviated in the metformin-gavaged rats. CONCLUSION This study's findings demonstrate that metformin exerts a positive anti-diabetic effect in HFD- and STZ-induced T2DM rats. These findings potentially provide a basis for the recommended use of metformin as a reliable oral drug for T2DM owing to its positive effect on the intestinal microbiota.
Collapse
Affiliation(s)
- Xuan Zhou
- Department of Intensive Care Unit, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
| | - Jian Zhou
- Department of Intensive Care Unit, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
| | - Qingfeng Ban
- Department of Endocrinology, Genetics and Metabolism, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
| | - Mei Zhang
- Department of Endocrinology, Genetics and Metabolism, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China.
| | - Bo Ban
- Department of Endocrinology, Genetics and Metabolism, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China.
| |
Collapse
|
7
|
Shang M, Li Z, Du D, Xu G, Lian D, Liao Z, Wang D, Amin B, Wang Z, Chen W, Zhang N, Wang L. Comparative Study for Safety and Efficacy of OAGB and SADJB-SG: A Retrospective Study. Diabetes Metab Syndr Obes 2024; 17:3499-3508. [PMID: 39319304 PMCID: PMC11420895 DOI: 10.2147/dmso.s484616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 09/12/2024] [Indexed: 09/26/2024] Open
Abstract
Purpose Obesity and related complications are managed by One Anastomosis Gastric Bypass (OAGB) and Single Anastomosis Duodeno-Jejunal Bypass with Sleeve Gastrectomy (SADJB-SG), both of which are adapted from traditional gastric bypass procedures. However, there are no current comparative studies on the safety and efficacy of these two surgical procedures. Patients and Methods Preoperative baseline data of patients who had undergone OAGB and SADJB-SG surgeries from June 2019 to June 2021 were retrospectively analyzed at our bariatric facility. Postoperative data, including weight changes, improvement in type 2 diabetes (T2DM), and complication rates were collected over 2 years. This was followed by a comprehensive evaluation of the safety and efficacy of the two surgical procedures. Results A total of 63 patients completed the follow-up in this study. At the 24-month follow-up, excess weight loss percentage (EWL%) for the OAGB and SADJB-SG was 73.970±5.005 and 75.652±7.953, respectively (P-value = 0.310); total weight loss percentage (TWL%) was 24.006±8.231 and 23.171±6.600, respectively (P-value = 0.665). The diabetes remission rates for the two groups were 71.429% and 69.048%, respectively (P-value = 0.846). The cost for OAGB was 55088.208±1508.220 yuan, which was significantly lower than the 57538.195±1374.994 yuan for SADJB-SG (P-value< 0.001). Conclusion The two surgical procedures are reliable in terms of safety and efficacy, and each has distinct advantages. While OAGB has reduced operational expenses, SADJB-SG offers a broader range of applicability.
Collapse
Affiliation(s)
- Mingyue Shang
- Surgery Centre of Diabetes Mellitus, Capital Medical University Affiliated Beijing Shijitan Hospital, Beijing, 100038, People's Republic of China
| | - Zhehong Li
- Surgery Centre of Diabetes Mellitus, Capital Medical University Affiliated Beijing Shijitan Hospital, Beijing, 100038, People's Republic of China
| | - Dexiao Du
- Surgery Centre of Diabetes Mellitus, Capital Medical University Affiliated Beijing Shijitan Hospital, Beijing, 100038, People's Republic of China
| | - Guangzhong Xu
- Surgery Centre of Diabetes Mellitus, Capital Medical University Affiliated Beijing Shijitan Hospital, Beijing, 100038, People's Republic of China
| | - Dongbo Lian
- Surgery Centre of Diabetes Mellitus, Capital Medical University Affiliated Beijing Shijitan Hospital, Beijing, 100038, People's Republic of China
| | - Zhaohui Liao
- Surgery Centre of Diabetes Mellitus, Capital Medical University Affiliated Beijing Shijitan Hospital, Beijing, 100038, People's Republic of China
| | - Dezhong Wang
- Surgery Centre of Diabetes Mellitus, Capital Medical University Affiliated Beijing Shijitan Hospital, Beijing, 100038, People's Republic of China
| | - Buhe Amin
- Surgery Centre of Diabetes Mellitus, Capital Medical University Affiliated Beijing Shijitan Hospital, Beijing, 100038, People's Republic of China
| | - Zheng Wang
- Surgery Centre of Diabetes Mellitus, Capital Medical University Affiliated Beijing Shijitan Hospital, Beijing, 100038, People's Republic of China
| | - Weijian Chen
- Surgery Centre of Diabetes Mellitus, Capital Medical University Affiliated Beijing Shijitan Hospital, Beijing, 100038, People's Republic of China
| | - Nengwei Zhang
- Surgery Centre of Diabetes Mellitus, Capital Medical University Affiliated Beijing Shijitan Hospital, Beijing, 100038, People's Republic of China
| | - Liang Wang
- Surgery Centre of Diabetes Mellitus, Capital Medical University Affiliated Beijing Shijitan Hospital, Beijing, 100038, People's Republic of China
| |
Collapse
|
8
|
Murugan G, Kothandan G, Padmanaban R. Anticipatory in silico vaccine designing based on specific antigenic epitopes from Streptococcus mutans against diabetic pathogenesis. In Silico Pharmacol 2024; 12:86. [PMID: 39310673 PMCID: PMC11411028 DOI: 10.1007/s40203-024-00260-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 09/08/2024] [Indexed: 09/25/2024] Open
Abstract
The metabolic disorder Type 2 Diabetes Mellitus (T2DM) is characterized by hyperglycaemia, causing increased mortality and healthcare burden globally. Recent studies emphasize the impact of metabolites in the gut microbiome on T2DM pathogenesis. One such microbial metabolite, imidazole propionate (Imp) derived from histidine metabolism, is shown to interfere with insulin signalling and other key metabolic processes. The key enzyme urocanate reductase (UrdA) is involved in ImP production. Hence, we propose to develop a novel therapeutic vaccine against the gut microbe producing Imp based on UrdA as a target for treating T2DM using immunoinformatics approach. Antigenic, non-allergic, non-toxic, and immunogenic B cell and T cell potential epitopes were predicted using immunoinformatics servers and tools. These epitopes were adjoined using linker sequences, and to increase immunogenicity, adjuvants were added at the N-terminal end of the final vaccine construct. Further, to confirm the vaccine's safety, antigenic and non-allergic characteristics of the developed vaccine construct were assessed. The tertiary structure of the UrdA vaccine sequence was predicted using molecular modelling tools. A molecular docking study was utilized to understand the vaccine construct interaction with immune receptors, followed by molecular dynamics simulation and binding free energy calculations to assess stability of the complex. In silico cloning techniques were employed to evaluate the expression and translation effectiveness of the developed vaccine in pET vector. In conclusion, this study developed an in silico epitope-based vaccine construct as a novel adjunct therapeutic for T2DM. Graphical Abstract
Collapse
Affiliation(s)
- Gopinath Murugan
- Immunodynamics and Interface Laboratory, Centre for Advanced Study in Crystallography and Biophysics, University of Madras, Chennai, Tamil Nadu 600025 India
| | - Gugan Kothandan
- Biopolymer Modeling Laboratory, Centre for Advanced Study in Crystallography and Biophysics, University of Madras, Chennai, India
| | - Rajashree Padmanaban
- Immunodynamics and Interface Laboratory, Centre for Advanced Study in Crystallography and Biophysics, University of Madras, Chennai, Tamil Nadu 600025 India
| |
Collapse
|
9
|
Niu Q, Li D, Guo W, Feng Z, Han Z, Yang Y. Dietary nitrate maintains homeostasis of oxidative stress and gut microbiota to promote flap survival in type 2 diabetes mellitus rats. BMC Endocr Disord 2024; 24:184. [PMID: 39256735 PMCID: PMC11386097 DOI: 10.1186/s12902-024-01691-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/13/2024] [Indexed: 09/12/2024] Open
Abstract
BACKGROUND Random-pattern skin flaps are commonly used to repair skin tissue defects in surgical tissue reconstruction. However, flap necrosis in the distal area due to ischemia injury is still challenging for its applications in plastic surgery. The complications of diabetes will further increase the risk of infection and necrosis. METHODS This study induced type 2 diabetes mellitus (T2DM) rats with a high-fat diet and STZ. The survival rate of the skin flap was observed by adding inorganic sodium nitrate to drinking water. Histology and immunohistochemistry were used to detect the damage to the skin flap. The nitrate content was measured by total nitric oxide and nitrate/nitrite parameter assay. Dihydroethidium and malondialdehyde (MDA) assays were used to value oxidative stress. Rat colon feces were collected for 16s rRNA gene sequence. RESULTS Our studies showed that nitrate administration leads to anti-obesity and anti-diabetic effects. Nitrate directly increased the survival area of skin flaps in diabetic rats and mean blood vessel density by enhancing angiogenesis, inhibiting apoptosis, and reducing oxidative stress. The 16s rRNA sequence revealed that nitrate may regulate the homeostasis of the gut microbiota and re-store energy metabolism. CONCLUSION Dietary nitrate has been shown to maintain the homeostasis of oxidative stress and gut microbiota to promote flap survival in rats with T2DM.
Collapse
Affiliation(s)
- Qifang Niu
- Department of Stomatology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Delong Li
- Department of Oral and Maxillofacial-Head and Neck Oncology, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Wenwen Guo
- Department of Stomatology, First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Zhien Feng
- Department of Oral and Maxillofacial-Head and Neck Oncology, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Zhengxue Han
- Department of Oral and Maxillofacial-Head and Neck Oncology, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Yang Yang
- Department of Oral and Maxillofacial-Head and Neck Oncology, Beijing Stomatological Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
10
|
Jiang X, Li Y, Cao Z, Xu Q, Zhang J, Cao D, Chi X, Zhang D. Study on the Mechanism of GABA-Rich Adzuki Bean Regulating Blood Glucose Based on the IRS/PI3K/AKT Pathway. Foods 2024; 13:2791. [PMID: 39272556 PMCID: PMC11395265 DOI: 10.3390/foods13172791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/24/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
The adzuki bean is a mature seed of the red bean leguminous plant, and people like to eat it because of its nutritious properties and moderate proportion of amino acids. Adzuki bean germination and the enrichment of GABA greatly improve the health effects of the adzuki bean. The effects of the GABA-rich adzuki bean on the expression of insulin-pathway-related genes and proteins in the liver of T2DM mice were studied via Western blotting and qPCR. The results showed that a GABA-rich adzuki bean diet could promote glycogen synthesis in the liver of T2DM mice, inhibit the activities of PEPCK and G-6-Pase, and significantly down-regulate the gene expression levels of PEPCK, G6PC and FOXO1 (p < 0.05) and the phosphorylation levels of FOXO1 and GSK3β. In addition, it can also up-regulate the expression of the AMPKα gene and down-regulate the expression of the SREBP1c gene to inhibit the synthesis of triglycerides and cholesterol in T2DM mice. Lipid accumulation in mice can alleviate glucose and lipid metabolism disorders and play an effective role in regulating blood glucose at liver tissue targets. This study suggested that the GABA-rich adzuki bean can improve hyperglycemia in type 2 diabetic mice by activating the IRS/PI3K/AKT signaling pathway in the liver.
Collapse
Affiliation(s)
- Xiujie Jiang
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing 163319, China
- Supervision, Inspection and Testing Center for Agricultural Products and Processed Products, Ministry of Agriculture and Rural Affairs, Daqing 163319, China
| | - Ying Li
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Zhenzhen Cao
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Qingpeng Xu
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Jiayu Zhang
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Dongmei Cao
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Xiaoxing Chi
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Dongjie Zhang
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing 163319, China
- National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| |
Collapse
|
11
|
Xu M, Chen B, Qiao K, Liu S, Su Y, Cai S, Liu Z, Li L, Li Q. Mechanism of Takifugu bimaculatus Skin Peptides in Alleviating Hyperglycemia in Rats with Type 2 Diabetic Mellitus Based on Microbiome and Metabolome Analyses. Mar Drugs 2024; 22:377. [PMID: 39195493 DOI: 10.3390/md22080377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/09/2024] [Accepted: 08/21/2024] [Indexed: 08/29/2024] Open
Abstract
In this study, we aimed to explore the hypoglycemic effects of a hydrolysate on Takifugu bimaculatus skin (TBSH). The effect of the dipeptidyl peptidase-IV (DPP-IV) inhibitory activities from different TBSH fractions was investigated on basic indexes, gut hormones, blood lipid indexes, viscera, and the gut microbiota and its metabolites in rats with type 2 diabetes mellitus (T2DM). The results showed that the <1 kDa peptide fraction from TBSH (TBP) exhibited a more potent DPP-IV inhibitory effect (IC50 = 0.45 ± 0.01 mg/mL). T2DM rats were induced with streptozocin, followed by the administration of TBP. The 200 mg/kg TBP mitigated weight loss, lowered fasting blood glucose levels, and increased insulin secretion by 20.47%, 25.23%, and 34.55%, respectively, rectified irregular hormonal fluctuations, lipid metabolism, and tissue injuries, and effectively remedied gut microbiota imbalance. In conclusion, TBP exerts a hypoglycemic effect in rats with T2DM. This study offers the potential to develop nutritional supplements to treat T2DM and further promote the high-value utilization of processing byproducts from T. bimaculatus. It will provide information for developing nutritional supplements to treat T2DM and further promote the high-value utilization of processing byproducts from T. bimaculatus.
Collapse
Affiliation(s)
- Min Xu
- College of Ocean Food and Bioengineering, Jimei University, Xiamen 361021, China
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, Fisheries Research Institute of Fujian, Xiamen 361013, China
| | - Bei Chen
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, Fisheries Research Institute of Fujian, Xiamen 361013, China
| | - Kun Qiao
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, Fisheries Research Institute of Fujian, Xiamen 361013, China
| | - Shuji Liu
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, Fisheries Research Institute of Fujian, Xiamen 361013, China
| | - Yongchang Su
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, Fisheries Research Institute of Fujian, Xiamen 361013, China
| | - Shuilin Cai
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, Fisheries Research Institute of Fujian, Xiamen 361013, China
| | - Zhiyu Liu
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, Fisheries Research Institute of Fujian, Xiamen 361013, China
| | - Lijun Li
- College of Ocean Food and Bioengineering, Jimei University, Xiamen 361021, China
| | - Qingbiao Li
- College of Ocean Food and Bioengineering, Jimei University, Xiamen 361021, China
| |
Collapse
|
12
|
Xu J, Zou Z, Li X, Sun X, Wang X, Qin F, Abulizi A, Chen Q, Pan Z, Shen H, Lv Y, Yan R. Effect of Gegen Qinlian Decoction on the regulation of gut microbiota and metabolites in type II diabetic rats. Front Microbiol 2024; 15:1429360. [PMID: 39234553 PMCID: PMC11371796 DOI: 10.3389/fmicb.2024.1429360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/12/2024] [Indexed: 09/06/2024] Open
Abstract
Gegen Qinlian Decoction (GGQLT) is a traditional Chinese herbal medicine that has been reported to have a significant therapeutic effect in the management of type II diabetes mellitus (T2DM). In this study, we constructed a T2DM rat model by feeding a high-fat diet and injecting streptozotocin (STZ) and tested the effects of feeding GGQLT and fecal transplantation on the physiological indices, microbiota, and metabolism of rats. The results showed that the administration of GGQLT can significantly improve the growth performance of rats and has a remarkable antihyperlipidemic effect. In addition, GGQLT altered the composition of gut microbiota by increasing beneficial bacteria such as Coprococcus, Bifidobacterium, Blautia, and Akkermansia. In addition, GGQLT elevated levels of specific bile acids by metabolomic analysis, potentially contributing to improvements in lipid metabolism. These findings suggest that GGQLT may have beneficial effects on T2DM by influencing lipid metabolism and gut microbiota. However, further studies are needed to elucidate its mechanisms and assess clinical applications.
Collapse
Affiliation(s)
- Jinyao Xu
- The First Clinical Medical School, Hubei University of Chinese Medicine, Wuhan, China
| | - Zhenkai Zou
- The First Clinical Medical School, Hubei University of Chinese Medicine, Wuhan, China
| | - Xuanyi Li
- The First Clinical Medical School, Hubei University of Chinese Medicine, Wuhan, China
| | - Xiangjun Sun
- Department of Gastrointestinal Surgery, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
| | - Xufeng Wang
- Department of Gastrointestinal Surgery, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
| | - Feng Qin
- Department of Gastrointestinal Surgery, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
| | - Abulikemu Abulizi
- Department of Gastrointestinal Surgery, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
| | - Qian Chen
- Department of Gastrointestinal Surgery, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
| | - Zhigang Pan
- Department of Hepatobiliary Surgery, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
| | | | | | - Ruicheng Yan
- The First Clinical Medical School, Hubei University of Chinese Medicine, Wuhan, China
- Department of Gastrointestinal Surgery, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
| |
Collapse
|
13
|
Alfawaz S, Burzangi A, Esmat A. Mechanisms of Non-alcoholic Fatty Liver Disease and Beneficial Effects of Semaglutide: A Review. Cureus 2024; 16:e67080. [PMID: 39286709 PMCID: PMC11404706 DOI: 10.7759/cureus.67080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2024] [Indexed: 09/19/2024] Open
Abstract
Non-alcoholic fatty liver disease stands as the predominant cause of chronic liver disease, with its prevalence and morbidity expected to escalate significantly, leading to substantial healthcare costs and diminished health-related quality of life. It comprises a range of disease manifestations that commence with basic steatosis, involving the accumulation of lipids in hepatocytes, a distinctive histological feature. If left untreated, it often advances to non-alcoholic steatohepatitis, marked by inflammatory and/or fibrotic hepatic changes, leading to the eventual development of non-alcoholic fatty liver disease-related cirrhosis and hepatocellular carcinoma. Because of the liver's vital role in body metabolism, non-alcoholic fatty liver disease is considered both a consequence and a contributor to the metabolic abnormalities observed in the metabolic syndrome. As of date, there are no authorized pharmacological agents for non-alcoholic fatty liver disease or non-alcoholic steatohepatitis. Semaglutide, with its glycemic and weight loss advantages, could potentially offer benefits for individuals with non-alcoholic fatty liver disease. This review aims to investigate the impact of semaglutide on non-alcoholic fatty liver disease.
Collapse
Affiliation(s)
- Sultan Alfawaz
- Department of Clinical Pharmacology, King Abdulaziz University, Faculty of Medicine, Jeddah, SAU
| | - Abdulhadi Burzangi
- Department of Clinical Pharmacology, King Abdulaziz University, Faculty of Medicine, Jeddah, SAU
| | - Ahmed Esmat
- Department of Clinical Pharmacology, King Abdulaziz University, Faculty of Medicine, Jeddah, SAU
| |
Collapse
|
14
|
Wang S, Li D, Li G, Duan N, He C, Meng J, Cheng Y, Geng X, Hou L, Chang M, Xu L. Functional Properties, Rheological Characteristics, Simulated Digestion, and Fermentation by Human Fecal Microbiota of Polysaccharide from Morchella importuna. Foods 2024; 13:2148. [PMID: 38998652 PMCID: PMC11241200 DOI: 10.3390/foods13132148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/01/2024] [Accepted: 07/04/2024] [Indexed: 07/14/2024] Open
Abstract
Morchella importuna polysaccharide (MIP) has been proven to have obvious hypoglycemic effects on mice with type 2 diabetes (T2DM). This study looked at the functional and rheological characteristics of MIP, and investigated the effects of MIP on the human fecal microbiota through in vitro fermentation experiments. The outcomes demonstrate the excellent oil-holding capacity, emulsifying, foaming, and rheological characteristics of MIP. After salivary gastrointestinal digestion, the Mw of MIP decreased from 398.2 kDa and 21.5 kDa to 21.9 kDa and 11.7 kDa. By 16S rRNA sequencing of bacteria fermented in vitro, it was found that MIP did not improve the richness and diversity of intestinal microorganisms, but it may exert an anti-T2DM function by significantly increasing the relative abundance of Firmicutes and promoting Ruminococcaceae_UCG_014, Bacteroides, and Blautia proliferation. Escherichia-Shigella could also be inhibited to improve the intestinal microenvironment. In addition, the fermentation of MIP increased the total short-chain fatty acid (SCFA) concentration from 3.23 mmol/L to 39.12 mmol/L, and the propionic acid content increased significantly. In summary, MIP has excellent processing performance and is expected to exert potential anti-T2DM activity through the human intestinal microbiota, which has broad market prospects.
Collapse
Affiliation(s)
- Shurong Wang
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China; (S.W.); (D.L.)
| | - Dongjie Li
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China; (S.W.); (D.L.)
| | - Guangle Li
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China; (S.W.); (D.L.)
| | - Naixin Duan
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China; (S.W.); (D.L.)
| | - Chang He
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China; (S.W.); (D.L.)
| | - Junlong Meng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China; (S.W.); (D.L.)
- Shanxi Engineering Research Center of Edible Fungi, Taigu 030801, China
| | - Yanfen Cheng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China; (S.W.); (D.L.)
| | - Xueran Geng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China; (S.W.); (D.L.)
| | - Ludan Hou
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China; (S.W.); (D.L.)
| | - Mingchang Chang
- Shanxi Engineering Research Center of Edible Fungi, Taigu 030801, China
| | - Lijing Xu
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China; (S.W.); (D.L.)
| |
Collapse
|
15
|
Shen CL, Wankhade UD, Shankar K, Najjar RS, Feresin RG, Elmassry MM, Dufour JM, Kaur G, Chintapalli SV, Piccolo BD, Dunn DM, Cao JJ. Effects of Statin and Annatto-extracted Tocotrienol Supplementation on Glucose Homeostasis, Bone Microstructure, and Gut Microbiota Composition in Obese Mice. In Vivo 2024; 38:1557-1570. [PMID: 38936927 PMCID: PMC11215603 DOI: 10.21873/invivo.13606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 04/25/2024] [Accepted: 04/29/2024] [Indexed: 06/29/2024]
Abstract
BACKGROUND/AIM This study examined the effects of tocotrienols (TT) in conjunction with statin on glucose homeostasis, bone microstructure, gut microbiome, and systemic and liver inflammatory markers in obese C57BL/6J mice. MATERIALS AND METHODS Forty male C57BL/6J mice were fed a high-fat diet (HFD) and assigned into four groups in a 2 (no statin vs. 120 mg statin/kg diet)×2 (no TT vs. 400 mg TT/kg diet) factorial design for 14 weeks. RESULTS Statin and TT improved glucose tolerance only when each was given alone, and only statin supplementation decreased insulin resistance. Consistently, only statin supplementation decreased serum insulin levels and HOMA-IR. Pancreatic insulin was also increased with statin treatment. Statin and TT, alone or in combination, reduced the levels of serum IL-6, but only TT attenuated the increased serum leptin levels induced by a HFD. Statin supplementation increased bone area/total area and connectivity density at LV-4, while TT supplementation increased bone area/total area and trabecular number, but decreased trabecular separation at the distal femur. Statin supplementation, but not TT, reduced hepatic inflammatory cytokine gene expression. Neither TT supplementation nor statin supplementation statistically altered microbiome species evenness or richness. However, they altered the relative abundance of certain microbiome species. Most notably, both TT and statin supplementation increased the relative abundance of Lachnospiraceae UCG-006. CONCLUSION TT and statin collectively benefit bone microstructure, glucose homeostasis, and microbial ecology in obese mice. Such changes may be, in part, associated with suppression of inflammation in the host.
Collapse
Affiliation(s)
- Chwan-Li Shen
- Department of Pathology, Texas Tech University Health Sciences Center, Lubbock, TX, U.S.A.;
- Center of Excellence for Integrative Health, Texas Tech University Health Sciences Center, Lubbock, TX, U.S.A
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, U.S.A
- Obesity Research Institute, Texas Tech University Health Sciences Center, Lubbock, TX, U.S.A
| | - Umesh D Wankhade
- Arkansas Children's Nutrition Center, University of Arkansas for Medical Sciences, Little Rock, AR, U.S.A
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, U.S.A
| | - Kartik Shankar
- Department of Pediatrics, University of Colorado School of Medicine, Section of Nutrition, Aurora, CO, U.S.A
| | - Rami S Najjar
- Department of Nutrition, Georgia State University, Atlanta, GA, U.S.A
| | - Rafaela G Feresin
- Department of Nutrition, Georgia State University, Atlanta, GA, U.S.A
| | - Moamen M Elmassry
- Department of Molecular Biology, Princeton University, Princeton, NJ, U.S.A
| | - Jannette M Dufour
- Center of Excellence for Integrative Health, Texas Tech University Health Sciences Center, Lubbock, TX, U.S.A
- Obesity Research Institute, Texas Tech University Health Sciences Center, Lubbock, TX, U.S.A
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, U.S.A
- Department of Medical Education, Texas Tech University Health Sciences Center, Lubbock, TX, U.S.A
| | - Gurvinder Kaur
- Center of Excellence for Integrative Health, Texas Tech University Health Sciences Center, Lubbock, TX, U.S.A
- Department of Medical Education, Texas Tech University Health Sciences Center, Lubbock, TX, U.S.A
| | - Sree V Chintapalli
- Arkansas Children's Nutrition Center, University of Arkansas for Medical Sciences, Little Rock, AR, U.S.A
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, U.S.A
| | - Brian D Piccolo
- Arkansas Children's Nutrition Center, University of Arkansas for Medical Sciences, Little Rock, AR, U.S.A
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, U.S.A
| | - Dale M Dunn
- Department of Pathology, Texas Tech University Health Sciences Center, Lubbock, TX, U.S.A
| | - Jay J Cao
- USDA-ARS Grand Forks Human Nutrition Research Center, Grand Forks, ND, U.S.A
| |
Collapse
|
16
|
She Y, Ma Y, Zou P, Peng Y, An Y, Chen H, Luo P, Wei S. The Role of Grifola frondosa Polysaccharide in Preventing Skeletal Muscle Atrophy in Type 2 Diabetes Mellitus. Life (Basel) 2024; 14:784. [PMID: 39063539 PMCID: PMC11278391 DOI: 10.3390/life14070784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/14/2024] [Accepted: 06/18/2024] [Indexed: 07/28/2024] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a burgeoning public health challenge worldwide. Individuals with T2DM are at increased risk for skeletal muscle atrophy, a serious complication that significantly compromises quality of life and for which effective prevention measures are currently inadequate. Emerging evidence indicates that systemic and local inflammation stemming from the compromised intestinal barrier is one of the crucial mechanisms contributing to skeletal muscle atrophy in T2DM patients. Notably, natural plant polysaccharides were found to be capable of enhancing intestinal barrier function and mitigating secondary inflammation in some diseases. Herein, we hypothesized that Grifola frondosa polysaccharide (GFP), one of the major plant polysaccharides, could prevent skeletal muscle atrophy in T2DM via regulating intestinal barrier function and inhibiting systemic and local inflammation. Using a well-established T2DM rat model, we demonstrated that GFP was able to not only prevent hyperglycemia and insulin resistance but also repair intestinal mucosal barrier damage and subsequent inflammation, thereby alleviating the skeletal muscle atrophy in the T2DM rat model. Additionally, the binding free energy analysis and molecular docking of monosaccharides constituting GFP were further expanded for related targets to uncover more potential mechanisms. These results provide a novel preventative and therapeutic strategy for T2DM patients.
Collapse
Affiliation(s)
- Ying She
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Provincial Engineering Research Center of Ecological Food Innovation, Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-Constructed by the Province and Ministry, School of Public Health, Guizhou Medical University, Guiyang 561113, China
| | - Yun Ma
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Provincial Engineering Research Center of Ecological Food Innovation, Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-Constructed by the Province and Ministry, School of Public Health, Guizhou Medical University, Guiyang 561113, China
| | - Pei Zou
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Provincial Engineering Research Center of Ecological Food Innovation, Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-Constructed by the Province and Ministry, School of Public Health, Guizhou Medical University, Guiyang 561113, China
| | - Yang Peng
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Provincial Engineering Research Center of Ecological Food Innovation, Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-Constructed by the Province and Ministry, School of Public Health, Guizhou Medical University, Guiyang 561113, China
| | - Yong An
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Provincial Engineering Research Center of Ecological Food Innovation, Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-Constructed by the Province and Ministry, School of Public Health, Guizhou Medical University, Guiyang 561113, China
| | - Hang Chen
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Provincial Engineering Research Center of Ecological Food Innovation, Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-Constructed by the Province and Ministry, School of Public Health, Guizhou Medical University, Guiyang 561113, China
| | - Peng Luo
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Provincial Engineering Research Center of Ecological Food Innovation, Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-Constructed by the Province and Ministry, School of Public Health, Guizhou Medical University, Guiyang 561113, China
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550025, China
| | - Shaofeng Wei
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Provincial Engineering Research Center of Ecological Food Innovation, Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-Constructed by the Province and Ministry, School of Public Health, Guizhou Medical University, Guiyang 561113, China
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550025, China
| |
Collapse
|
17
|
Niu H, Zhou M, Ji A, Zogona D, Wu T, Xu X. Molecular Mechanism of Pasteurized Akkermansia muciniphila in Alleviating Type 2 Diabetes Symptoms. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:13083-13098. [PMID: 38829529 DOI: 10.1021/acs.jafc.4c01188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Type 2 diabetes (T2DM) significantly diminishes people's quality of life and imposes a substantial economic burden. This pathological progression is intimately linked with specific gut microbiota, such as Akkermansia muciniphila. Pasteurized A. muciniphila (P-AKK) has been defined as a novel food by the European Food Safety Authority and exhibited significant hypoglycemic activity. However, current research on the hypoglycemic activity of P-AKK is limited to the metabolic level, neglecting systematic exploration at the pathological level. Consequently, its material basis and mechanism of action for hypoglycemia remain unclear. Drawing upon this foundation, we utilized high-temperature killed A. muciniphila (H-K-AKK) with insignificant hypoglycemic activity as the control research object. Assessments were conducted at pathological levels to evaluate the hypoglycemic functions of both P-AKK and H-K-AKK separately. Our study unveiled for the first time that P-AKK ameliorated symptoms of T2DM by enhancing the generation of glucagon-Like Peptide 1 (GLP-1), with pasteurized A. muciniphila total proteins (PP) being a pivotal component responsible for this activity. Utilizing SDS-PAGE, proteomics, and molecular docking techniques, we deeply analyzed the material foundation of PP. We scientifically screened and identified a protein weighing 77.85 kDa, designated as P5. P5 enhanced GLP-1 synthesis and secretion by activating the G protein-coupled receptor (GPCR) signaling pathway, with free fatty acid receptor 2 (FFAR-2) being identified as the pivotal target protein for P5's physiological activity. These findings further promote the widespread application of P-AKK in the food industry, laying a solid theoretical foundation for its utilization as a beneficial food ingredient or functional component.
Collapse
Affiliation(s)
- Huifang Niu
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), Hubei Key Laboratory of Fruit Vegetable Processing Quality Control (Huazhong Agricultural University), School of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Minfeng Zhou
- Union Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, PR China
| | - Anying Ji
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), Hubei Key Laboratory of Fruit Vegetable Processing Quality Control (Huazhong Agricultural University), School of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Daniel Zogona
- Department of Food & Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Ting Wu
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), Hubei Key Laboratory of Fruit Vegetable Processing Quality Control (Huazhong Agricultural University), School of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Xiaoyun Xu
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), Hubei Key Laboratory of Fruit Vegetable Processing Quality Control (Huazhong Agricultural University), School of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| |
Collapse
|
18
|
Jiang R, Cong Z, Zheng L, Zhang L, Guan Q, Wang S, Fang J, Chen J, Liu M. Global research trends in regulating gut microbiome to improve type 2 diabetes mellitus: bibliometrics and visual analysis. Front Endocrinol (Lausanne) 2024; 15:1401070. [PMID: 38887274 PMCID: PMC11181692 DOI: 10.3389/fendo.2024.1401070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 05/17/2024] [Indexed: 06/20/2024] Open
Abstract
Background Gut microbiome (GM) and type 2 diabetes mellitus (T2DM) have two-way effects. Improving T2DM by modulating GM in various ways, such as diet, exercise, and medication, is gradually becoming popular, and related studies have yielded positive results. However, there is still a lack of high-quality bibliometric analyses of research in this area. This study aims to systematize and comprehensively summarize the knowledge structure, research tropics, and research trends of GM and T2DM through bibliometric analysis. Methods Publications related to GM and T2DM before January 9, 2024, in the Web of Science Core Collection (WOSCC) were searched in this study. Microsoft Excel 2019 was used to analyze publishing trends and CiteSpace (v.6.1.R6 Advanced) was used to analyze institutions, cited journals, references, and keywords.SCImago Graphica (v.1.0.39) was used to analyze countries/regions, institutions' collaborations, cited authors, and published journals. Results We finally included 1004 articles published from 2008 to 2023. The number of published articles showed an upward trend and reached its peak in 2022. China is the country with the largest number of articles, Univ Copenhagen is the institution with the largest number of articles, Fukui, Michiaki, Hamaguchi, Masahide are the scholars with the largest number of articles, and Cani and Patrice D. are the scholars with the largest number of citations. NUTRIENTS(Q1/5.9) published the most publications, while Nature (Q1/64.8; Cited 804 times) is the most frequently cited journal. Gut microbiota, Obesity, and insulin resistance are the most frequently used keywords. This study found that current researches focus on the effects of diet, exercise, and pharmacological modification of GM to improve T2DM and explores specific mechanisms. Future researches will focus on three areas: complications of T2DM and specific physiological processes, methods and measures to regulate GM, and new experimental techniques and assays. Conclusion The current researches confirmed the effects and specific mechanisms of modulating GM to improve T2DM. Further exploration of the effects of modulating GM on T2DM complications and specific physiologic processes is a future trend of research. Exploring specific methods for regulating GM and developing new experimental techniques and assays are important for future research.
Collapse
Affiliation(s)
- Rongsheng Jiang
- College of Acupuncture and Tuina, Changchun University of Chinese Medicine, Changchun, China
| | - Zhengri Cong
- College of Acupuncture and Tuina, Changchun University of Chinese Medicine, Changchun, China
| | - Likun Zheng
- College of Acupuncture and Tuina, Changchun University of Chinese Medicine, Changchun, China
| | - Long Zhang
- College of Acupuncture and Tuina, Changchun University of Chinese Medicine, Changchun, China
| | - Qifan Guan
- College of Acupuncture and Tuina, Changchun University of Chinese Medicine, Changchun, China
| | - Sixian Wang
- College of Acupuncture and Tuina, Changchun University of Chinese Medicine, Changchun, China
| | - Jinxu Fang
- College of Acupuncture and Tuina, Changchun University of Chinese Medicine, Changchun, China
| | - Jiahao Chen
- College of Medical Information, Changchun University of Chinese Medicine, Changchun, China
| | - Mingjun Liu
- College of Acupuncture and Tuina, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
19
|
Chen C, Liang Z, He Y, Li A, Gao Y, Pan Q, Cao J. Pravastatin promotes type 2 diabetes vascular calcification through activating intestinal Bacteroides fragilis to induce macrophage M1 polarization. J Diabetes 2024; 16:e13514. [PMID: 38112268 PMCID: PMC11128749 DOI: 10.1111/1753-0407.13514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/20/2023] [Accepted: 11/18/2023] [Indexed: 12/21/2023] Open
Abstract
BACKGROUND Pravastatin is an oral lipid-lowering drug, commonly used by patients with diabetes that is positively correlated with the occurrence of vascular calcification (VC), but the mechanism is unclear. METHODS In this study, 16S rRNA sequencing and qRT-PCR wereused to detect the differential gut bacteria. Metabolomics and ELISA were used to analyze the differential metabolites. qRT-PCR and western blotting (WB) were used to detect genes expression. Flow cytometry was used to analyze macrophage phenotype. Immunohistochemistry was used to analyze aortic calcification. RESULTS We found that gut Bacteroides fragilis (BF) increased significantly in patients who took pravastatin or type 2 diabetes (T2D) mice treated with pravastatin. In vitro experiments showed that pravastatin had little effect on BF but significantly promoted BF proliferation in vivo. Further analysis showed that ArsR was an important gene for pravastatin to regulate the activation of BF, and overexpression of ArsR significantly promoted the secretion of 3,4,5-trimethoxycinnamic acid (TMCA). Importantly, pravastatin significantly promoted BF secretion of TMCA and significantly increased TMCA secretion in T2D patients or T2D mice. TMCA had little effect on vascular smooth muscle cell calcification but significantly promoted macrophage M1 polarization, which we had demonstrated that M1 macrophages promoted T2D VC. In vivo studies found that pravastatin significantly upregulated TMCA levels in the feces and serum of T2D mice transplanted with BF and promoted the macrophage M1 polarization in bone marrow and the osteoblastic differentiation of aortic cells. Similar results were obtained in T2D mice after intravenous infusion of TMCA. CONCLUSIONS Promoting intestinal BF to secrete TMCA, which leads to macrophage M1 polarization, is an important mechanism by which pravastatin promotes calcification, and the result will be used for the optimization of clinical medication strategies of pravastatin supplying a theoretical basis and experimental basis.
Collapse
Affiliation(s)
- Cong Chen
- The First Affiliated Hospital, Department of Laboratory Medicine, Hengyang Medical SchoolUniversity of South ChinaHengyangChina
| | - Zheng‐Feng Liang
- The First Affiliated Hospital, Institute of Endocrinology and metabolism, Center for Clinical Research in Diabetes, Hengyang Medical SchoolUniversity of South ChinaHengyangChina
| | - Yu‐Qi He
- The First Affiliated Hospital, Department of Laboratory Medicine, Hengyang Medical SchoolUniversity of South ChinaHengyangChina
| | - An‐Qi Li
- The First Affiliated Hospital, Institute of Endocrinology and metabolism, Center for Clinical Research in Diabetes, Hengyang Medical SchoolUniversity of South ChinaHengyangChina
| | - Yan Gao
- The First Affiliated Hospital, Institute of Endocrinology and metabolism, Center for Clinical Research in Diabetes, Hengyang Medical SchoolUniversity of South ChinaHengyangChina
| | - Qun‐Wen Pan
- Guangdong Key Laboratory of Age‐Related Cardiac and Cerebral Diseases, Institute of Neurology, Affiliated Hospital of Guangdong Medical UniversityZhanjiangChina
| | - Jing‐Song Cao
- The First Affiliated Hospital, Institute of Endocrinology and metabolism, Center for Clinical Research in Diabetes, Hengyang Medical SchoolUniversity of South ChinaHengyangChina
| |
Collapse
|
20
|
Sati P, Dhyani P, Sharma E, Attri DC, Jantwal A, Devi R, Calina D, Sharifi-Rad J. Gut Microbiota Targeted Approach by Natural Products in Diabetes Management: An Overview. Curr Nutr Rep 2024; 13:166-185. [PMID: 38498287 DOI: 10.1007/s13668-024-00523-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2024] [Indexed: 03/20/2024]
Abstract
PURPOSE OF REVIEW This review delves into the complex interplay between obesity-induced gut microbiota dysbiosis and the progression of type 2 diabetes mellitus (T2DM), highlighting the potential of natural products in mitigating these effects. By integrating recent epidemiological data, we aim to provide a nuanced understanding of how obesity exacerbates T2DM through gut flora alterations. RECENT FINDINGS Advances in research have underscored the significance of bioactive ingredients in natural foods, capable of restoring gut microbiota balance, thus offering a promising approach to manage diabetes in the context of obesity. These findings build upon the traditional use of medicinal plants in diabetes treatment, suggesting a deeper exploration of their mechanisms of action. This comprehensive manuscript underscores the critical role of targeting gut microbiota dysbiosis in obesity-related T2DM management and by bridging traditional knowledge with current scientific evidence; we highlighted the need for continued research into natural products as a complementary strategy for comprehensive diabetes care.
Collapse
Affiliation(s)
- Priyanka Sati
- Department of Biotechnology, Kumaun University, Bhimtal, Uttarakhand, India
| | - Praveen Dhyani
- Institute for Integrated Natural Sciences, University of Koblenz, Koblenz, Germany
| | - Eshita Sharma
- Department of Biochemistry and Molecular Biology, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Dharam Chand Attri
- Department of Botany, Central University of Jammu, Rahya-Suchani (Bagla), Jammu and Kashmir, India
| | - Arvind Jantwal
- Department of Pharmaceutical Sciences, Kumaun University, Bhimtal, Uttarakhand, India
| | - Rajni Devi
- Department of Microbiology, Punjab Agricultural University, Ludhiana-141004, Punjab, India
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349, Craiova, Romania.
| | | |
Collapse
|
21
|
Zhang C, Fang B, Zhang N, Zhang Q, Niu T, Zhao L, Sun E, Wang J, Xiao R, He J, Li S, Chen J, Guo J, Xiong W, Wang R. The Effect of Bifidobacterium animalis subsp. lactis MN-Gup on Glucose Metabolism, Gut Microbiota, and Their Metabolites in Type 2 Diabetic Mice. Nutrients 2024; 16:1691. [PMID: 38892624 PMCID: PMC11174421 DOI: 10.3390/nu16111691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 05/26/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Probiotics have garnered increasing attention as a potential therapeutic approach for type 2 diabetes mellitus (T2DM). Previous studies have confirmed that Bifidobacterium animalis subsp. lactis MN-Gup (MN-Gup) could stimulate the secretion of glucagon-like peptide-1 (GLP-1) in NCI-H716 cells, but whether MN-Gup has a hypoglycemic effect on T2DM in vivo remains unclear. In this study, a T2DM mouse model was constructed, with a high-fat diet and streptozotocin in mice, to investigate the effect of MN-Gup on diabetes. Then, different doses of MN-Gup (2 × 109 CFU/kg, 1 × 1010 CFU/kg) were gavaged for 6 weeks to investigate the effect of MN-Gup on glucose metabolism and its potential mechanisms. The results showed that a high-dose of MN-Gup significantly reduced the fasting blood glucose (FBG) levels and homeostasis model assessment-insulin resistance (HOMA-IR) of T2DM mice compared to the other groups. In addition, there were significant increases in the short-chain fatty acids (SCFAs), especially acetate, and GLP-1 levels in the MN-Gup group. MN-Gup increased the relative abundance of Bifidobacterium and decreased the number of Escherichia-Shigella and Staphylococcus. Moreover, the correlation analysis revealed that Bifidobacterium demonstrated a significant positive correlation with GLP-1 and a negative correlation with the incremental AUC. In summary, this study demonstrates that Bifidobacterium animalis subsp. lactis MN-Gup has significant hypoglycemic effects in T2DM mice and can modulate the gut microbiota, promoting the secretion of SCFAs and GLP-1.
Collapse
Affiliation(s)
- Chao Zhang
- Department of Nutrition and Health, Key Laboratory of Functional Dairy, Co-Constructed by Ministry of Education and Beijing Government, China Agricultural University, Beijing 100193, China
| | - Bing Fang
- Department of Nutrition and Health, Key Laboratory of Functional Dairy, Co-Constructed by Ministry of Education and Beijing Government, China Agricultural University, Beijing 100193, China
| | - Nana Zhang
- Food Laboratory of Zhongyuan, Luohe 462300, China
| | - Qi Zhang
- Research Center for Probiotics, China Agricultural University, Beijing 100193, China
| | - Tianjiao Niu
- Mengniu Hi-Tech Dairy Product Beijing Co., Ltd., Beijing 101100, China
| | - Liang Zhao
- Beijing Laboratory of Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Erna Sun
- Mengniu Hi-Tech Dairy Product Beijing Co., Ltd., Beijing 101100, China
| | - Jian Wang
- Research Center for Probiotics, China Agricultural University, Beijing 100193, China
| | - Ran Xiao
- Mengniu Hi-Tech Dairy Product Beijing Co., Ltd., Beijing 101100, China
| | - Jingjing He
- Research Center for Probiotics, China Agricultural University, Beijing 100193, China
| | - Shusen Li
- Mengniu Hi-Tech Dairy Product Beijing Co., Ltd., Beijing 101100, China
| | - Juan Chen
- Department of Nutrition and Health, Key Laboratory of Functional Dairy, Co-Constructed by Ministry of Education and Beijing Government, China Agricultural University, Beijing 100193, China
| | - Jie Guo
- Research Center for Probiotics, China Agricultural University, Beijing 100193, China
| | - Wei Xiong
- Food Laboratory of Zhongyuan, Luohe 462300, China
| | - Ran Wang
- Department of Nutrition and Health, Key Laboratory of Functional Dairy, Co-Constructed by Ministry of Education and Beijing Government, China Agricultural University, Beijing 100193, China
| |
Collapse
|
22
|
Zhang J, Wang H, Liu Y, Shi M, Zhang M, Zhang H, Chen J. Advances in fecal microbiota transplantation for the treatment of diabetes mellitus. Front Cell Infect Microbiol 2024; 14:1370999. [PMID: 38660489 PMCID: PMC11039806 DOI: 10.3389/fcimb.2024.1370999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/27/2024] [Indexed: 04/26/2024] Open
Abstract
Diabetes mellitus (DM) refers to a group of chronic diseases with global prevalence, characterized by persistent hyperglycemia resulting from various etiologies. DM can harm various organ systems and lead to acute or chronic complications, which severely endanger human well-being. Traditional treatment mainly involves controlling blood sugar levels through replacement therapy with drugs and insulin; however, some patients still find a satisfactory curative effect difficult to achieve. Extensive research has demonstrated a close correlation between enteric dysbacteriosis and the pathogenesis of various types of DM, paving the way for novel therapeutic approaches targeting the gut microbiota to manage DM. Fecal microbiota transplantation (FMT), a method for re-establishing the intestinal microbiome balance, offers new possibilities for treating diabetes. This article provides a comprehensive review of the correlation between DM and the gut microbiota, as well as the current advancements in FMT treatment for DM, using FMT as an illustrative example. This study aims to offer novel perspectives and establish a theoretical foundation for the clinical diagnosis and management of DM.
Collapse
Affiliation(s)
- Juan Zhang
- Department of Endocrinology, the Affiliated Huai’an No.1 People’s Hospital of Nanjing Medical University, Huai’an, Jiangsu, China
| | - Honggang Wang
- Department of Gastroenterology, the Affiliated Huai’an No.1 People’s Hospital of Nanjing Medical University, Huai’an, Jiangsu, China
| | - Ying Liu
- Department of Endocrinology, the Affiliated Huai’an No.1 People’s Hospital of Nanjing Medical University, Huai’an, Jiangsu, China
| | - Min Shi
- Department of Endocrinology, the Affiliated Huai’an No.1 People’s Hospital of Nanjing Medical University, Huai’an, Jiangsu, China
| | - Minna Zhang
- Department of Gastroenterology, the Affiliated Huai’an No.1 People’s Hospital of Nanjing Medical University, Huai’an, Jiangsu, China
| | - Hong Zhang
- Department of Endocrinology, the Affiliated Huai’an No.1 People’s Hospital of Nanjing Medical University, Huai’an, Jiangsu, China
| | - Juan Chen
- Department of Endocrinology, the Affiliated Huai’an No.1 People’s Hospital of Nanjing Medical University, Huai’an, Jiangsu, China
| |
Collapse
|
23
|
Sechovcová H, Mahayri TM, Mrázek J, Jarošíková R, Husáková J, Wosková V, Fejfarová V. Gut microbiota in relationship to diabetes mellitus and its late complications with a focus on diabetic foot syndrome: A review. Folia Microbiol (Praha) 2024; 69:259-282. [PMID: 38095802 DOI: 10.1007/s12223-023-01119-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 12/05/2023] [Indexed: 04/11/2024]
Abstract
Diabetes mellitus is a chronic disease affecting glucose metabolism. The pathophysiological reactions underpinning the disease can lead to the development of late diabetes complications. The gut microbiota plays important roles in weight regulation and the maintenance of a healthy digestive system. Obesity, diabetes mellitus, diabetic retinopathy, diabetic nephropathy and diabetic neuropathy are all associated with a microbial imbalance in the gut. Modern technical equipment and advanced diagnostic procedures, including xmolecular methods, are commonly used to detect both quantitative and qualitative changes in the gut microbiota. This review summarises collective knowledge on the role of the gut microbiota in both types of diabetes mellitus and their late complications, with a particular focus on diabetic foot syndrome.
Collapse
Affiliation(s)
- Hana Sechovcová
- Laboratory of Anaerobic Microbiology, Institute of Animal Physiology and Genetics, CAS, Vídeňská, 1083, 142 20, Prague, Czech Republic
- Faculty of Agrobiology, Food and Natural Resources, Department of Microbiology, Nutrition and Dietetics, Czech University of Life Sciences, Prague, Czech Republic
| | - Tiziana Maria Mahayri
- Laboratory of Anaerobic Microbiology, Institute of Animal Physiology and Genetics, CAS, Vídeňská, 1083, 142 20, Prague, Czech Republic.
- Department of Veterinary Medicine, University of Sassari, 07100, Sassari, Italy.
| | - Jakub Mrázek
- Laboratory of Anaerobic Microbiology, Institute of Animal Physiology and Genetics, CAS, Vídeňská, 1083, 142 20, Prague, Czech Republic
| | - Radka Jarošíková
- Diabetes Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
- Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jitka Husáková
- Diabetes Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Veronika Wosková
- Diabetes Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Vladimíra Fejfarová
- Diabetes Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
- Second Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
24
|
Chen S, Jiao Y, Han Y, Zhang J, Deng Y, Yu Z, Wang J, He S, Cai W, Xu J. Edible traditional Chinese medicines improve type 2 diabetes by modulating gut microbiotal metabolites. Acta Diabetol 2024; 61:393-411. [PMID: 38227209 DOI: 10.1007/s00592-023-02217-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 11/17/2023] [Indexed: 01/17/2024]
Abstract
Type 2 diabetes mellitus (T2DM) is a metabolic disorder with intricate pathogenic mechanisms. Despite the availability of various oral medications for controlling the condition, reports of poor glycemic control in type 2 diabetes persist, possibly involving unknown pathogenic mechanisms. In recent years, the gut microbiota have emerged as a highly promising target for T2DM treatment, with the metabolites produced by gut microbiota serving as crucial intermediaries connecting gut microbiota and strongly related to T2DM. Increasingly, traditional Chinese medicine is being considered to target the gut microbiota for T2DM treatment, and many of them are edible. In studies conducted on animal models, edible traditional Chinese medicine have been shown to primarily alter three significant gut microbiotal metabolites: short-chain fatty acids, bile acids, and branched-chain amino acids. These metabolites play crucial roles in alleviating T2DM by improving glucose metabolism and reducing inflammation. This review primarily summarizes twelve edible traditional Chinese medicines that improve T2DM by modulating the aforementioned three gut microbiotal metabolites, along with potential underlying molecular mechanisms, and also incorporation of edible traditional Chinese medicines into the diets of T2DM patients and combined use with probiotics for treating T2DM are discussed.
Collapse
Affiliation(s)
- Shen Chen
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
- Queen Mary School, Medical College, Nanchang University, Nanchang, 330006, China
| | - Yiqiao Jiao
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
- Queen Mary School, Medical College, Nanchang University, Nanchang, 330006, China
| | - Yiyang Han
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
- Queen Mary School, Medical College, Nanchang University, Nanchang, 330006, China
| | - Jie Zhang
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Yuanyuan Deng
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Zilu Yu
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
- Queen Mary School, Medical College, Nanchang University, Nanchang, 330006, China
| | - Jiao Wang
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Shasha He
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Wei Cai
- Department of Medical Genetics and Cell Biology, Medical College of Nanchang University, Nanchang, 330006, People's Republic of China.
| | - Jixiong Xu
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China.
- Jiangxi Clinical Research Center for Endocrine and Metabolic Disease, Nanchang, Jiangxi, 330006, People's Republic of China.
- Jiangxi Branch of National Clinical Research Center for Metabolic Disease, Nanchang, Jiangxi, 330006, People's Republic of China.
| |
Collapse
|
25
|
Ping Y, Liu J, Wang L, Qiu H, Zhang Y. Research progress on the mechanism of TCM regulating intestinal microbiota in the treatment of DM mellitus. Front Endocrinol (Lausanne) 2024; 15:1308016. [PMID: 38601207 PMCID: PMC11004430 DOI: 10.3389/fendo.2024.1308016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 03/12/2024] [Indexed: 04/12/2024] Open
Abstract
In recent years, with the improvement of people's living standards, the incidence of DM has increased year by year in China. DM is a common metabolic syndrome characterized by hyperglycemia caused by genetic, environmental and other factors. At the same time, long-term suffering from DM will also have an impact on the heart, blood vessels, eyes, kidneys and nerves, and associated serious diseases. The human body has a large and complex gut microbiota, which has a significant impact on the body's metabolism. Research shows that the occurrence and development of DM and its complications are closely related to intestinal microbiota. At present, western medicine generally treats DM with drugs. The hypoglycemic effect is fast and strong, but it can have a series of side effects on the human body. Compared with western medicine, Chinese medicine has its unique views and methods in treating DM. TCM can improve symptoms and treat complications by improving the imbalance of microbiota in patients with DM. Its characteristics of health, safety, and reliability are widely accepted by the general public. This article reviews the relationship between intestinal microbiota and DM, as well as the mechanism of TCM intervention in DM by regulating intestinal microbiota.
Collapse
Affiliation(s)
- Yang Ping
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang, China
- Heilongjiang Pharmaceutical Research Institute, Jiamusi, Heilongjiang, China
| | - Jianing Liu
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang, China
| | - Lihong Wang
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang, China
| | - Hongbin Qiu
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang, China
| | - Yu Zhang
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang, China
- Heilongjiang Pharmaceutical Research Institute, Jiamusi, Heilongjiang, China
| |
Collapse
|
26
|
Zhou F, Li D, Hou Y, Cong Z, Li K, Gu X, Xiao G. Exploration of hypoglycemic peptides from porcine collagen based on network pharmacology and molecular docking. PLoS One 2024; 19:e0298674. [PMID: 38470866 DOI: 10.1371/journal.pone.0298674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 01/26/2024] [Indexed: 03/14/2024] Open
Abstract
In recent years, the extraction of hypoglycemic peptides from food proteins has gained increasing attention. Neuropeptides, hormone peptides, antimicrobial peptides, immune peptides, antioxidant peptides, hypoglycemic peptides and antihypertensive peptides have become research hotspots. In this study, bioinformatic methods were used to screen and predict the properties of pig collagen-derived hypoglycemic peptides, and their inhibitory effects on α-glucosidase were determined in vitro. Two peptides (RL and NWYR) were found to exhibit good water solubility, adequate ADMET (absorption, distribution, metabolism, elimination, and toxicity) properties, potentially high biological activity, and non-toxic. After synthesizing these peptides, NWYR showed the best inhibitory effect on α-glucosidase with IC50 = 0.200±0.040 mg/mL, and it can regulate a variety of biological processes, play a variety of molecular functions in different cellular components, and play a hypoglycemic role by participating in diabetic cardiomyopathy and IL-17 signaling pathway. Molecular docking results showed that NWYR had the best binding effect with the core target DPP4 (4n8d), with binding energy of -8.8 kcal/mol. NWYR mainly bonded with the target protein through hydrogen bonding, and bound with various amino acid residues such as Asp-729, Gln-731, Leu-765, etc., thus affecting the role of the target in each pathway. It is the best core target for adjuvant treatment of T2DM. In short, NWYR has the potential to reduce type 2 diabetes, providing a basis for further research or food applications as well as improved utilization of pig by-products. However, in subsequent studies, it is necessary to further verify the hypoglycemic ability of porcine collagen active peptide (NWYR), and explore the hypoglycemic mechanism of NWYR from multiple perspectives such as key target genes, protein expression levels and differences in metabolites in animal models of hyperglycemia, which will provide further theoretical support for its improvement in the treatment of T2DM.
Collapse
Affiliation(s)
- Fating Zhou
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing, China
| | - Di Li
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing, China
| | - Yakun Hou
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | - Zhihui Cong
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing, China
| | - Kaifeng Li
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing, China
| | - Xin Gu
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing, China
| | - Guosheng Xiao
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing, China
| |
Collapse
|
27
|
Lv C, Liu X, Chen S, Yi Y, Wen X, Li T, Qin S. Extract of Gardenia jasminoides Ellis Attenuates High-Fat Diet-Induced Glycolipid Metabolism Disorder in Rats by Targeting Gut Microbiota and TLR4/Myd88/NF-κB Pathway. Antioxidants (Basel) 2024; 13:293. [PMID: 38539827 PMCID: PMC10967366 DOI: 10.3390/antiox13030293] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/19/2024] [Accepted: 02/24/2024] [Indexed: 11/11/2024] Open
Abstract
Gardenia jasminoides Ellis is abundant in crocin and has a longstanding historical usage both as a dietary and natural ethnic medicine. Enhanced studies have increasingly revealed the intricate interplay between glycolipid metabolism and gut microbiota, wherein their imbalance is regarded as a pivotal indicator of metabolic disorders. Currently, the precise molecular mechanism of the crude extract of crocin from Gardenia jasminoides Ellis (GC) targeting gut microbiota to regulate glycolipid metabolism disorder is still unclear. Firstly, we explored the effect of GC on digestive enzymes (α-amylase and α-glucosidase) in vitro. Secondly, we investigated the effect of GC on the physical and chemical parameters of high-fat diet (HFD) rats, such as body weight change, fasting blood glucose and lipid levels, and liver oxidative stress and injury. Then, 16S rDNA sequencing was used to analyze the effects of GC on the composition and structure of gut microbiota. Finally, the impact of GC on the TLR4/Myd88/NF-κB signaling pathway in the intestine was assessed by Western Blotting. In the present study, GC was found to exhibit a hypoglycemic effect in vitro, by inhibition of digestive enzymes. In animal experiments, we observed that GC significantly reduced fasting blood glucose, TC, and TG levels while increasing HDL-C levels. Additionally, GC demonstrated hepatoprotective properties by enhancing liver antioxidative capacity through the upregulation of SOD, CAT, and GSH-Px, while reducing ROS. 16S rDNA sequencing results showed that GC had a significant effect on the gut microbiota of HFD rats, mainly by reducing the ratio of Firmicutes/Bateroidota, and significantly affected the genera related to glycolipid metabolism, such as Akkermansia, Ligilactobacillus, Lactobacillus, Bacteroides, Prevotellaceae, etc. The Western Blotting results demonstrated that GC effectively downregulated the protein expressions of TLR4, Myd88, and NF-κB in the intestine of HFD rats, indicating that GC could target the TLR4/Myd88/NF-κB pathway to interfere with glycolipid metabolism disorder. Correlation analysis revealed that GC could target the Akkermansia-TLR4/Myd88/NF-κB pathway axis which attenuates glycolipid metabolism disorder. Therefore, this study establishes the foundation for GC as a novel therapeutic agent for glycolipid metabolism disorder chemoprevention, and it introduces a novel methodology for harnessing the potential of natural botanical extracts in the prevention and treatment of metabolic syndrome.
Collapse
Affiliation(s)
- Chenghao Lv
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (C.L.); (X.L.)
| | - Xin Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (C.L.); (X.L.)
| | - Shiyun Chen
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (S.C.); (Y.Y.); (X.W.)
| | - Yuhang Yi
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (S.C.); (Y.Y.); (X.W.)
| | - Xinnian Wen
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (S.C.); (Y.Y.); (X.W.)
| | - Tao Li
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Si Qin
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (C.L.); (X.L.)
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (S.C.); (Y.Y.); (X.W.)
| |
Collapse
|
28
|
Zhou X, Chen R, Cai Y, Chen Q. Fecal Microbiota Transplantation: A Prospective Treatment for Type 2 Diabetes Mellitus. Diabetes Metab Syndr Obes 2024; 17:647-659. [PMID: 38347911 PMCID: PMC10860394 DOI: 10.2147/dmso.s447784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/23/2024] [Indexed: 02/15/2024] Open
Abstract
Purpose of Review The aim of this review is to summarize the role of gastrointestinal microbiome (GM) in the development of type 2 diabetes mellitus (T2DM). Besides, we discuss the feasibility of applying FMT in the treatment of T2DM and propose a series of processes to refine the use of FMT in the treatment of T2DM. Recent Findings T2DM is a metabolic disease which is connected with the GM. According to many researches, GM can produce a variety of metabolites such as bile acid, short chain fatty acids, lipopolysaccharides and trimethylamine oxide which play an important role in metabolism. FMT is a method to regulate GM and has been observed to be effective in the treatment of metabolic diseases such as T2DM in some mouse models and people. However, there is still a lack of direct evidence for the use of FMT in the treatment of T2DM, and the process of FMT is not standardized. Summary Dysregulation of GM is closely related to the development of T2DM. Promoting the conversion of GM in T2DM patients to normal population through FMT can reduce insulin resistance and lower their blood glucose level, which is an optional treatment for T2DM patients in the future. At present, the feasibility and limitations of applying FMT to the treatment of T2DM need to be further studied.
Collapse
Affiliation(s)
- Xiaolan Zhou
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Rumeng Chen
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Yichen Cai
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Qiu Chen
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| |
Collapse
|
29
|
Hamamah S, Iatcu OC, Covasa M. Nutrition at the Intersection between Gut Microbiota Eubiosis and Effective Management of Type 2 Diabetes. Nutrients 2024; 16:269. [PMID: 38257161 PMCID: PMC10820857 DOI: 10.3390/nu16020269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/15/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
Nutrition is one of the most influential environmental factors in both taxonomical shifts in gut microbiota as well as in the development of type 2 diabetes mellitus (T2DM). Emerging evidence has shown that the effects of nutrition on both these parameters is not mutually exclusive and that changes in gut microbiota and related metabolites such as short-chain fatty acids (SCFAs) and branched-chain amino acids (BCAAs) may influence systemic inflammation and signaling pathways that contribute to pathophysiological processes associated with T2DM. With this background, our review highlights the effects of macronutrients, carbohydrates, proteins, and lipids, as well as micronutrients, vitamins, and minerals, on T2DM, specifically through their alterations in gut microbiota and the metabolites they produce. Additionally, we describe the influences of common food groups, which incorporate varying combinations of these macronutrients and micronutrients, on both microbiota and metabolic parameters in the context of diabetes mellitus. Overall, nutrition is one of the first line modifiable therapies in the management of T2DM and a better understanding of the mechanisms by which gut microbiota influence its pathophysiology provides opportunities for optimizing dietary interventions.
Collapse
Affiliation(s)
- Sevag Hamamah
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA 91766, USA;
| | - Oana C. Iatcu
- Department of Biomedical Sciences, College of Medicine and Biological Science, University of Suceava, 720229 Suceava, Romania
| | - Mihai Covasa
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA 91766, USA;
- Department of Biomedical Sciences, College of Medicine and Biological Science, University of Suceava, 720229 Suceava, Romania
| |
Collapse
|
30
|
Patil RS, Tupe RS. Communal interaction of glycation and gut microbes in diabetes mellitus, Alzheimer's disease, and Parkinson's disease pathogenesis. Med Res Rev 2024; 44:365-405. [PMID: 37589449 DOI: 10.1002/med.21987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 07/12/2023] [Accepted: 08/06/2023] [Indexed: 08/18/2023]
Abstract
Diabetes and its complications, Alzheimer's disease (AD), and Parkinson's disease (PD) are increasing gradually, reflecting a global threat vis-à-vis expressing the essentiality of a substantial paradigm shift in research and remedial actions. Protein glycation is influenced by several factors, like time, temperature, pH, metal ions, and the half-life of the protein. Surprisingly, most proteins associated with metabolic and neurodegenerative disorders are generally long-lived and hence susceptible to glycation. Remarkably, proteins linked with diabetes, AD, and PD share this characteristic. This modulates protein's structure, aggregation tendency, and toxicity, highlighting renovated attention. Gut microbes and microbial metabolites marked their importance in human health and diseases. Though many scientific shreds of evidence are proposed for possible change and dysbiosis in gut flora in these diseases, very little is known about the mechanisms. Screening and unfolding their functionality in metabolic and neurodegenerative disorders is essential in hunting the gut treasure. Therefore, it is imperative to evaluate the role of glycation as a common link in diabetes and neurodegenerative diseases, which helps to clarify if modulation of nonenzymatic glycation may act as a beneficial therapeutic strategy and gut microbes/metabolites may answer some of the crucial questions. This review briefly emphasizes the common functional attributes of glycation and gut microbes, the possible linkages, and discusses current treatment options and therapeutic challenges.
Collapse
Affiliation(s)
- Rahul Shivaji Patil
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Rashmi Santosh Tupe
- Symbiosis School of Biological Sciences (SSBS), Symbiosis International (Deemed University) (SIU), Pune, Maharashtra, India
| |
Collapse
|
31
|
Han CY, Lu JP, Ye XM, Jin HY, Xu WW, Wang P, Zhang M. Effect of beinaglutide combined with metformin versus aspart 30 with metformin on metabolic profiles and antidrug antibodies in patients with type 2 diabetes: a randomized clinical trial. Front Endocrinol (Lausanne) 2023; 14:1267503. [PMID: 38125788 PMCID: PMC10731293 DOI: 10.3389/fendo.2023.1267503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 11/17/2023] [Indexed: 12/23/2023] Open
Abstract
Objective This prospective study aimed to evaluate the effect of beinaglutide combined with metformin versus aspart 30 with metformin on metabolic profiles and antidrug antibodies (ADAs) in patients with type 2 diabetes (T2D). Methods A total of 134 eligible participants were randomly assigned to the test group and the control group. Patients in the test group were treated with beinaglutide and metformin, whereas patients in the control group were randomly treated with aspart 30 and metformin, with a follow-up period of 6 months. The metabolic profiles and ADAs over 6 months were evaluated. Results After 6 months, 101 (75.37%) patients completed the study. Compared with the control group, the beinaglutide group had significant reductions in 2-h postprandial blood glucose (2hBG) and low blood glucose index (LBGI). Glycated hemoglobin (HbA1c) decreased in both groups relative to baseline. In the test group, one had treatment-emergent beinaglutide ADAs. Significant reductions in triglycerides (TG), non-fasting TG, weight, waist circumference (WC), and body mass index (BMI) were observed. The values of insulin sensitivity index (HOMA-IR) were decreased to a statistically higher degree with beinaglutide treatment. Conclusion Beinaglutide reduces metabolic dysfunction, LBGI, and weight in patients of T2D with a low risk of ADAs. Beinaglutide may offer the potential for a disease-modifying intervention in cardiovascular disease (CVD). Clinical trial registration www.chictr.org.cn, identifier ChiCTR2200061003.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Min Zhang
- Department of Endocrinology, Qingpu Hospital Affiliated to Fudan University, Shanghai, China
| |
Collapse
|
32
|
Sun Y, Nie Q, Zhang S, He H, Zuo S, Chen C, Yang J, Chen H, Hu J, Li S, Cheng J, Zhang B, Zheng Z, Pan S, Huang P, Lian L, Nie S. Parabacteroides distasonis ameliorates insulin resistance via activation of intestinal GPR109a. Nat Commun 2023; 14:7740. [PMID: 38007572 PMCID: PMC10676405 DOI: 10.1038/s41467-023-43622-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 11/13/2023] [Indexed: 11/27/2023] Open
Abstract
Gut microbiota plays a key role in insulin resistance (IR). Here we perform a case-control study of Chinese adults (ChiCTR2200065715) and identify that Parabacteroides distasonis is inversely correlated with IR. Treatment with P. distasonis improves IR, strengthens intestinal integrity, and reduces systemic inflammation in mice. We further demonstrate that P. distasonis-derived nicotinic acid (NA) is a vital bioactive molecule that fortifies intestinal barrier function via activating intestinal G-protein-coupled receptor 109a (GPR109a), leading to ameliorating IR. We also conduct a bioactive dietary fiber screening to induce P. distasonis growth. Dendrobium officinale polysaccharide (DOP) shows favorable growth-promoting effects on P. distasonis and protects against IR in mice simultaneously. Finally, the reduced P. distasonis and NA levels were also validated in another human type 2 diabetes mellitus cohort. These findings reveal the unique mechanisms of P. distasonis on IR and provide viable strategies for the treatment and prevention of IR by bioactive dietary fiber.
Collapse
Affiliation(s)
- Yonggan Sun
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
- China-Canada Joint Lab of Food Science and Technology, Nanchang University, Nanchang, China
- Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, China
| | - Qixing Nie
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
- China-Canada Joint Lab of Food Science and Technology, Nanchang University, Nanchang, China
- Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, China
| | - Shanshan Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
- China-Canada Joint Lab of Food Science and Technology, Nanchang University, Nanchang, China
- Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, China
| | - Huijun He
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
- China-Canada Joint Lab of Food Science and Technology, Nanchang University, Nanchang, China
- Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, China
| | - Sheng Zuo
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
- China-Canada Joint Lab of Food Science and Technology, Nanchang University, Nanchang, China
- Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, China
| | - Chunhua Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
- China-Canada Joint Lab of Food Science and Technology, Nanchang University, Nanchang, China
- Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, China
| | - Jingrui Yang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
- China-Canada Joint Lab of Food Science and Technology, Nanchang University, Nanchang, China
- Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, China
| | - Haihong Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
- China-Canada Joint Lab of Food Science and Technology, Nanchang University, Nanchang, China
- Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, China
| | - Jielun Hu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
- China-Canada Joint Lab of Food Science and Technology, Nanchang University, Nanchang, China
- Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, China
| | - Song Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
- China-Canada Joint Lab of Food Science and Technology, Nanchang University, Nanchang, China
- Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, China
| | - Jiaobo Cheng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
| | - Baojie Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
| | - Zhitian Zheng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
| | - Shijie Pan
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
| | - Ping Huang
- Department of Nutrition, the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Lu Lian
- Department of Nutrition, the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Shaoping Nie
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China.
- China-Canada Joint Lab of Food Science and Technology, Nanchang University, Nanchang, China.
- Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, China.
| |
Collapse
|
33
|
Zheng S, Wang H, Han J, Dai X, Lv Y, Sun T, Liu H. Microbiota-derived imidazole propionate inhibits type 2 diabetic skin wound healing by targeting SPNS2-mediated S1P transport. iScience 2023; 26:108092. [PMID: 37876799 PMCID: PMC10590984 DOI: 10.1016/j.isci.2023.108092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 07/20/2023] [Accepted: 09/26/2023] [Indexed: 10/26/2023] Open
Abstract
Imidazole propionate (ImP) is a recently discovered metabolite of T2DM-related gut microbiota. The effect of ImP on T2DM wound healing has not been studied yet. In this research, the changes of ImP-producing bacteria on the skin are firstly evaluated. 16sRNA sequencing results showed that the abundance of ImP-producing bacteria-Streptococcus in the intestine and skin of T2DM mice is significantly increased. Animal experiments show that ImP can inhibit the process of wound healing and inhibit the formation of blood vessels in the process of wound healing. Molecular mechanism research results show that ImP can inhibit S1P secretion mediated by SPNS2, and inhibit the activation of Rho signaling pathway, thereby affecting the angiogenesis process of HUVEC cells. This work also provides a potential drug HMPA that promotes T2DM wound healing.
Collapse
Affiliation(s)
- Shaoting Zheng
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
- Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Hongqi Wang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
- Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Jingxia Han
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| | - Xintong Dai
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| | - Ying Lv
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| | - Tao Sun
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
- Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Huijuan Liu
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
- Tianjin International Joint Academy of Biomedicine, Tianjin, China
| |
Collapse
|
34
|
Wang C, Liu XL, Sun Q, Zhao FY, Dai PQ, Li LX, Hu DG. Apple consumption affects cecal health by regulating 12 S-hydroxy-5 Z,8 Z,10 E,14 Z-eicosatetraenoic acid (12( S)-HETE) levels through modifying the microbiota in rats. Food Funct 2023; 14:9419-9433. [PMID: 37795613 DOI: 10.1039/d3fo03207h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
Apples are rich in many nutrients and functional components. However, the mechanism of the effect of fresh apple consumption on rats remains unclear. In the present study, fresh apples (10 g kg-1) were added to the diet of Wistar rats, and changes in the microbiota and metabolite content of the cecum were analyzed after 28 days of feeding, and changes in the 12S-hydroxy-5Z,8Z,10E,14Z-eicosatetraenoic acid (12(S)-HETE) content and indicators related to inflammation, oxidative stress, and apoptosis were detected. Subsequently, a fecal microbiota transplantation (FMT) protocol was designed and carried out to verify the relationship between the microbiota and 12(S)-HETE, the cecal structure, and inflammatory factors. The results show that apple consumption significantly reduced the serum levels of alanine aminotransferase (ALT) and immunoglobulin G (IgG), altered the cecal histomorphology, and significantly upregulated the gene expression of claudin-1 and zonula occludens-1 (ZO-1), which encode tight junction proteins. Apple consumption also changed the structure of the cecal microbiota, increasing the abundance of some species (such as Shuttleworthia) and decreasing the abundance of others (such as Alphaproteobacteria). Metabolomic screening identified 64 significantly different metabolites. The FMT results showed that apple consumption reduced 12(S)-HETE metabolite levels in the cecal contents, improved the intestinal structure, and reduced the levels of proinflammatory factor expression by altering the cecal microbiota. In conclusion, this study provides further insight into the effects of apples on animals using rats as experimental animals. It provides basic data for future exploration of the mechanisms of the effect of apple consumption on humans.
Collapse
Affiliation(s)
- Chen Wang
- Shihezi University, Shihezi, 832003, P.R. China.
- Shandong Agricultural University, Tai-an, Shandong 271018, P.R. China
| | - Xiao-Long Liu
- Shandong Agricultural University, Tai-an, Shandong 271018, P.R. China
| | - Quan Sun
- Shandong Agricultural University, Tai-an, Shandong 271018, P.R. China
| | | | - Pei-Qiang Dai
- Shandong Delta Bioengineering Co., Ltd, Taian, Shandong, 271000, P.R., China
| | - Ling-Xing Li
- The Affiliated Taian City Central Hospital of Qingdao University, Taian, Shandong, 271000, P.R. China.
| | - Da-Gang Hu
- Shihezi University, Shihezi, 832003, P.R. China.
- Shandong Agricultural University, Tai-an, Shandong 271018, P.R. China
| |
Collapse
|
35
|
Liu S, Kuang X, Song X, Li H, Shao X, Gao T, Guo X, Li S, Liu R, Li K, Li D. Effects of lipid extract from blue mussel (Mytilus edulis) on gut microbiota, and its relationship with glycemic traits in type 2 diabetes mellitus patients: a double-blind randomized controlled trial. Food Funct 2023; 14:8922-8932. [PMID: 37721038 DOI: 10.1039/d3fo01491f] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Studies have shown that blue mussel lipid extract (BMLE) can improve the glycemic traits, inflammatory cytokines, and lipid profile of patients with type 2 diabetes mellitus (T2DM) in China. Gut microbiota is closely related to T2DM. This study aims to explore whether BMLE can improve the glycemic status of T2DM patients by regulating gut microbiota in a 60-day double-blind randomized controlled trial. A total of 133 T2DM subjects were randomized into BMLE (n = 44), fish oil (FO) (n = 44), and corn oil (CO) (n = 45) groups. The participants were asked to take two corresponding oil capsules (0.8 g per capsule each) every day. The faecal microbiota, glycemic traits, and other cardiometabolic factors were analyzed at baseline and endpoint. The α diversity estimators of Ace and Chao1 decreased significantly in all three groups, but there was no significant difference between the groups. Eight bacteria decreased significantly in the BMLE group but not in the FO and CO groups: unclassified_Clostridia_UCG_014, unclassified_Bacteroidia, Erysipelotrichaceae, and uncultured_Ruminococcaceae_bacterium at the family level and unclassified_Bacteroidia, uncultured_Ruminococcaceae_bacterium, unclassified_Clostridia_UCG_014, and Turicibacter at genus level. In the BMLE group, the change in the relative abundance of Erysipelotrichaceae was positively correlated with the changes in the homeostatic model assessment of insulin resistance (HOMA-IR) (r = 0.454, p < 0.01) and fasting insulin (r = 0.414, p < 0.01). The change in the relative abundance of Turicibacter was positively correlated with the changes in HOMA-IR (r = 0.431, p < 0.01), fasting insulin (r = 0.414, p < 0.01), total cholesterol (TC) (r = 0.358, p < 0.05), and triacylglycerol (TG) (r = 0.393 p = 0.013). In conclusion, BMLE might improve glycemic traits by modulating gut microbiota in T2DM patients.
Collapse
Affiliation(s)
- Shiyi Liu
- Institute of Nutrition and Health, Qingdao University, China.
- School of Public Health, Qingdao University, China
| | - Xiaotong Kuang
- Institute of Nutrition and Health, Qingdao University, China.
- School of Public Health, Qingdao University, China
| | - Xiaolei Song
- Institute of Nutrition and Health, Qingdao University, China.
- School of Public Health, Qingdao University, China
| | - Huiying Li
- Institute of Nutrition and Health, Qingdao University, China.
- School of Public Health, Qingdao University, China
| | - Xianfeng Shao
- Institute of Nutrition and Health, Qingdao University, China.
- School of Public Health, Qingdao University, China
| | - Tianlin Gao
- School of Public Health, Qingdao University, China
| | - Xiaofei Guo
- Institute of Nutrition and Health, Qingdao University, China.
- School of Public Health, Qingdao University, China
| | - Shan Li
- Institute of Nutrition and Health, Qingdao University, China.
- School of Public Health, Qingdao University, China
| | - Run Liu
- Institute of Nutrition and Health, Qingdao University, China.
- School of Public Health, Qingdao University, China
| | - Kelei Li
- Institute of Nutrition and Health, Qingdao University, China.
- School of Public Health, Qingdao University, China
| | - Duo Li
- Institute of Nutrition and Health, Qingdao University, China.
- School of Public Health, Qingdao University, China
| |
Collapse
|
36
|
Li H, Li C. Causal relationship between gut microbiota and type 2 diabetes: a two-sample Mendelian randomization study. Front Microbiol 2023; 14:1184734. [PMID: 37692402 PMCID: PMC10483233 DOI: 10.3389/fmicb.2023.1184734] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 08/01/2023] [Indexed: 09/12/2023] Open
Abstract
Background Studies showed that development of gut microbial dysbiosis has a close association with type 2 diabetes (T2D). It is not yet clear if there is a causal relationship between gut microbiota and T2D. Methods The data collected from the published genome-wide association studies (GWASs) on gut microbiota and T2D were analyzed. Two-sample Mendelian randomization (MR) analyses were performed to identify causal relationship between bacterial taxa and T2D. Significant bacterial taxa were further analyzed. To confirm the findings' robustness, we performed sensitivity, heterogeneity, and pleiotropy analyses. A reverse MR analysis was also performed to check for potential reverse causation. Results By combining the findings of all the MR steps, we identified six causal bacterial taxa, namely, Lachnoclostridium, Oscillospira, Roseburia, Ruminococcaceae UCG003, Ruminococcaceae UCG010 and Streptococcus. The risk of T2D might be positively associated with a high relative abundance of Lachnoclostridium, Roseburia and Streptococcus but negatively associated with Oscillospira, Ruminococcaceae UCG003 and Ruminococcaceae UCG010. The results of MR analyses revealed that there were causal relationships between the six different genera and T2D. And the reverse MR analysis did not reveal any evidence of a reverse causality. Conclusion This study implied that Lachnoclostridium, Roseburia and Streptococcus might have anti-protective effect on T2D, whereas Oscillospira, Ruminococcaceae UCG003 and Ruminococcaceae UCG010 genera might have protective effect on T2D. Our study revealed that there was a causal relationship between specific gut microbiota genera and T2D.
Collapse
Affiliation(s)
- Hanjing Li
- College of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Research Base of Traditional Chinese Medicine Syndrome, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Candong Li
- College of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Research Base of Traditional Chinese Medicine Syndrome, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Key Laboratory of Traditional Chinese Medicine Health Status Identification, Fuzhou, Fujian, China
| |
Collapse
|
37
|
Rojas A, Schneider I, Lindner C, Gonzalez I, Morales MA. Association between diabetes and cancer. Current mechanistic insights into the association and future challenges. Mol Cell Biochem 2023; 478:1743-1758. [PMID: 36565361 DOI: 10.1007/s11010-022-04630-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 11/30/2022] [Indexed: 12/25/2022]
Abstract
Compelling pieces of epidemiological, clinical, and experimental research have demonstrated that Diabetes mellitus (DM) is a major risk factor associated with increased cancer incidence and mortality in many human neoplasms. In the pathophysiology context of DM, many of the main classical actors are relevant elements that can fuel the different steps of the carcinogenesis process. Hyperglycemia, hyperinsulinemia, metabolic inflammation, and dyslipidemia are among the classic contributors to this association. Furthermore, new emerging actors have received particular attention in the last few years, and compelling data support that the microbiome, the epigenetic changes, the reticulum endoplasmic stress, and the increased glycolytic influx also play important roles in promoting the development of many cancer types. The arsenal of glucose-lowering therapeutic agents used for treating diabetes is wide and diverse, and a growing body of data raised during the last two decades has tried to clarify the contribution of therapeutic agents to this association. However, this research area remains controversial, because some anti-diabetic drugs are now considered as either promotors or protecting elements. In the present review, we intend to highlight the compelling epidemiological shreds of evidence that support this association, as well as the mechanistic contributions of many of these potential pathological mechanisms, some controversial points as well as future challenges.
Collapse
Affiliation(s)
- Armando Rojas
- Biomedical Research Labs, Medicine Faculty, Catholic University of Maule, Talca, Chile.
| | - Ivan Schneider
- Medicine Faculty, Catholic University of Maule, Talca, Chile
| | | | - Ileana Gonzalez
- Biomedical Research Labs, Medicine Faculty, Catholic University of Maule, Talca, Chile
| | - Miguel A Morales
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| |
Collapse
|
38
|
Zeng Z, Yang Y, Zhong X, Dai F, Chen S, Tong X. Ameliorative Effects of Lactobacillus paracasei L14 on Oxidative Stress and Gut Microbiota in Type 2 Diabetes Mellitus Rats. Antioxidants (Basel) 2023; 12:1515. [PMID: 37627510 PMCID: PMC10451986 DOI: 10.3390/antiox12081515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
Bioprospecting of more novel probiotic strains has attained continuous interest. This study aimed to investigate the beneficial effects of Lactobacillus paracasei strain L14, an isolate from a traditional Chinese dairy product, on type 2 diabetes mellitus (T2DM) rats. Preventive supplementation of strain L14 showed excellent anti-diabetic effects on high-fat diet/low-dose streptozotocin (HFD/STZ)-induced T2DM rats. It significantly reduced hyperglycemia, protected pancreatic β-cell and liver function, and ameliorated oxidative stress while considerably improving dyslipidemia and inflammation. Furthermore, the strain modulated the gut microbiota to alleviate gut dysbiosis. Interestingly, most of these biochemical parameters could even restore to normal levels by the intervention of strain L14. The whole-genome sequencing of L14 was performed to provide a critical molecular basis for its probiotic activities. Genes related to antioxidant systems and other beneficial microbial metabolites like exopolysaccharides (EPS) biosynthesis were found. This study demonstrates that probiotic L. paracasei L14 has good potential for applications in functional food and pharmaceutical industries.
Collapse
Affiliation(s)
- Zhu Zeng
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China; (Z.Z.); (Y.Y.); (F.D.)
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China;
| | - Yi Yang
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China; (Z.Z.); (Y.Y.); (F.D.)
| | - Xinxin Zhong
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China; (Z.Z.); (Y.Y.); (F.D.)
| | - Fangyin Dai
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China; (Z.Z.); (Y.Y.); (F.D.)
| | - Shangwu Chen
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China;
| | - Xiaoling Tong
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China; (Z.Z.); (Y.Y.); (F.D.)
| |
Collapse
|
39
|
Park S, Zhang T, Kang S. Fecal Microbiota Composition, Their Interactions, and Metagenome Function in US Adults with Type 2 Diabetes According to Enterotypes. Int J Mol Sci 2023; 24:ijms24119533. [PMID: 37298483 DOI: 10.3390/ijms24119533] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/24/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
T2DM etiology differs among Asians and Caucasians and may be associated with gut microbiota influenced by different diet patterns. However, the association between fecal bacterial composition, enterotypes, and T2DM susceptibility remained controversial. We investigated the fecal bacterial composition, co-abundance network, and metagenome function in US adults with T2DM compared to healthy adults based on enterotypes. We analyzed 1911 fecal bacterial files of 1039 T2DM and 872 healthy US adults from the Human Microbiome Projects. Operational taxonomic units were obtained after filtering and cleaning the files using Qiime2 tools. Machine learning and network analysis identified primary bacteria and their interactions influencing T2DM incidence, clustered into enterotypes, Bacteroidaceae (ET-B), Lachnospiraceae (ET-L), and Prevotellaceae (ET-P). ET-B showed higher T2DM incidence. Alpha-diversity was significantly lower in T2DM in ET-L and ET-P (p < 0.0001), but not in ET-B. Beta-diversity revealed a distinct separation between T2DM and healthy groups across all enterotypes (p < 0.0001). The XGBoost model exhibited high accuracy and sensitivity. Enterocloster bolteae, Facalicatena fissicatena, Clostridium symbiosum, and Facalibacterium prausnitizii were more abundant in the T2DM group than in the healthy group. Bacteroides koreensis, Oscillibacter ruminantium, Bacteroides uniformis, and Blautia wexlerae were lower in the T2DM than in the healthy group regardless of the enterotypes in the XGBoost model (p < 0.0001). However, the patterns of microbial interactions varied among different enterotypes affecting T2DM risk. The interaction between fecal bacteria was more tightly regulated in the ET-L than in the ET-B and ET-P groups (p < 0.001). Metagenomic analysis revealed an inverse association between bacteria abundance in T2DM, energy utility, butanoate and propanoate metabolism, and the insulin signaling pathway (p < 0.0001). In conclusion, fecal bacteria play a role in T2DM pathogenesis, particularly within different enterotypes, providing valuable insights into the link between gut microbiota and T2DM in the US population.
Collapse
Affiliation(s)
- Sunmin Park
- Department of Food and Nutrition, Obesity/Diabetes Research Center, Hoseo University, 165 Sechul-Ri, Asan 31499, Republic of Korea
- Department of Bioconvergence, Hoseo University, Asan 31499, Republic of Korea
| | - Ting Zhang
- Department of Bioconvergence, Hoseo University, Asan 31499, Republic of Korea
| | - Suna Kang
- Department of Food and Nutrition, Obesity/Diabetes Research Center, Hoseo University, 165 Sechul-Ri, Asan 31499, Republic of Korea
| |
Collapse
|
40
|
Wang L, Lei J, Wang R, Li K. Non-Traditional Risk Factors as Contributors to Cardiovascular Disease. Rev Cardiovasc Med 2023; 24:134. [PMID: 39076735 PMCID: PMC11273054 DOI: 10.31083/j.rcm2405134] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/18/2022] [Accepted: 01/11/2023] [Indexed: 07/31/2024] Open
Abstract
Cardiovascular disease (CVD) remains one of the primary causes of morbidity and mortality worldwide. Classic cardiovascular risk factors, such as hypertension, diabetes mellitus (DM), hyperlipidemia, and smoking, have been well identified and given increased attention in clinical practice. However, the incidence and prevalence of CVD remains high, especially in developing countries. Therefore, there has been more attention to non-traditional CVD risk factors such as gut microbiota, sleep disorders, dietary structure, and psychosocial factors in their important roles in the development of CVD. In this review we summarize the association of non-traditional risk factors with CVD with the aim of further reducing the risk of CVD.
Collapse
Affiliation(s)
- Lina Wang
- Department of Cardiology, Hebei Yanda Hospital, 065201 Langfang, Hebei, China
| | - Jingshu Lei
- Department of Cardiology, Hebei Yanda Hospital, 065201 Langfang, Hebei, China
| | - Ruiying Wang
- Department of Hematology, Hebei Yanda Lu Daopei Hospital, 065201 Langfang, Hebei, China
| | - Kuibao Li
- Department of Cardiology, Hebei Yanda Hospital, 065201 Langfang, Hebei, China
- Heart Center & Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, 100016 Beijing, China
| |
Collapse
|
41
|
Majait S, Nieuwdorp M, Kemper M, Soeters M. The Black Box Orchestra of Gut Bacteria and Bile Acids: Who Is the Conductor? Int J Mol Sci 2023; 24:ijms24031816. [PMID: 36768140 PMCID: PMC9916144 DOI: 10.3390/ijms24031816] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/11/2023] [Accepted: 01/14/2023] [Indexed: 01/18/2023] Open
Abstract
Over the past decades the potential role of the gut microbiome and bile acids in type 2 diabetes mellitus (T2DM) has been revealed, with a special reference to low bacterial alpha diversity. Certain bile acid effects on gut bacteria concern cytotoxicity, or in the case of the microbiome, bacteriotoxicity. Reciprocally, the gut microbiome plays a key role in regulating the bile acid pool by influencing the conversion and (de)conjugation of primary bile acids into secondary bile acids. Three main groups of bacterial enzymes responsible for the conversion of bile acids are bile salt hydrolases (BSHs), hydroxysteroid dehydrogenases (HSDHs) and enzymes encoded in the bile acid inducible (Bai) operon genes. Interventions such as probiotics, antibiotics and fecal microbiome transplantation can impact bile acids levels. Further evidence of the reciprocal interaction between gut microbiota and bile acids comes from a multitude of nutritional interventions including macronutrients, fibers, prebiotics, specific individual products or diets. Finally, anatomical changes after bariatric surgery are important because of their metabolic effects. The heterogeneity of studies, diseases, bacterial species and (epi)genetic influences such as nutrition may challenge establishing specific and detailed interventions that aim to tackle the gut microbiome and bile acids.
Collapse
Affiliation(s)
- Soumia Majait
- Department of Pharmacy and Clinical Pharmacy, Amsterdam University Medical Center, 1105 AZ Amsterdam, The Netherlands
| | - Max Nieuwdorp
- Department of Internal and Vascular Medicine, Amsterdam University Medical Center, 1105 AZ Amsterdam, The Netherlands
| | - Marleen Kemper
- Department of Pharmacy and Clinical Pharmacy, Amsterdam University Medical Center, 1105 AZ Amsterdam, The Netherlands
| | - Maarten Soeters
- Department of Endocrinology and Metabolism, Amsterdam University Medical Center, 1105 AZ Amsterdam, The Netherlands
- Correspondence:
| |
Collapse
|
42
|
Bódi N, Egyed-Kolumbán A, Onhausz B, Barta BP, Doghmi AAL, Balázs J, Szalai Z, Bagyánszki M. Intestinal Region-Dependent Alterations of Toll-Like Receptor 4 Expression in Myenteric Neurons of Type 1 Diabetic Rats. Biomedicines 2023; 11:129. [PMID: 36672637 PMCID: PMC9856165 DOI: 10.3390/biomedicines11010129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/16/2022] [Accepted: 12/23/2022] [Indexed: 01/07/2023] Open
Abstract
Toll-like receptor 4 (TLR4) can activate pro-inflammatory cascades in the gastrointestinal tract. Our aim was to determine TLR4 expression in myenteric neurons of different gut regions using a type 1 diabetic model. Ten weeks after the onset of hyperglycemia, myenteric whole-mount preparations from the duodenum, ileum and colon of streptozotocin-induced diabetic, insulin-treated diabetic and control rats were prepared for TLR4/peripherin double-labelling fluorescent immunohistochemistry. Immunogold electron microscopy was applied to evaluate TLR4 expression in the myenteric perikaryon and neuropil. Tissue TLR4 levels were measured by enzyme-linked immunosorbent assay. In controls, the number and proportion of the TLR4-immunoreactive myenteric neurons showed an increasing tendency to aboral direction. These values were significantly higher in diabetics compared to controls in the duodenum and ileum, but were significantly lower in the colon. In diabetics, the distribution of TLR4-labelling gold particles between the perikaryon and neuropil of myenteric neurons varied in a different way by intestinal segment. TLR4 tissue concentration changed only in the diabetic duodenum, and it decreased in muscle/myenteric plexus-containing homogenates, while it increased in mucosa/submucosa/submucous plexus-containing samples relative to controls. Insulin had beneficial effects on TLR4 expression. These findings support that chronic hyperglycemia has segment-specific effects on TLR4 expression, contributing to gastrointestinal disorders in diabetic patients.
Collapse
Affiliation(s)
- Nikolett Bódi
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, 6726 Szeged, Hungary
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Hamada K, Isobe J, Hattori K, Hosonuma M, Baba Y, Murayama M, Narikawa Y, Toyoda H, Funayama E, Tajima K, Shida M, Hirasawa Y, Tsurui T, Ariizumi H, Ishiguro T, Suzuki R, Ohkuma R, Kubota Y, Sambe T, Tsuji M, Wada S, Kiuchi Y, Kobayashi S, Kuramasu A, Horiike A, Kim YG, Tsunoda T, Yoshimura K. Turicibacter and Acidaminococcus predict immune-related adverse events and efficacy of immune checkpoint inhibitor. Front Immunol 2023; 14:1164724. [PMID: 37207204 PMCID: PMC10189048 DOI: 10.3389/fimmu.2023.1164724] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 04/03/2023] [Indexed: 05/21/2023] Open
Abstract
Introduction Immune checkpoint inhibitors have had a major impact on cancer treatment. Gut microbiota plays a major role in the cancer microenvironment, affecting treatment response. The gut microbiota is highly individual, and varies with factors, such as age and race. Gut microbiota composition in Japanese cancer patients and the efficacy of immunotherapy remain unknown. Methods We investigated the gut microbiota of 26 patients with solid tumors prior to immune checkpoint inhibitor monotherapy to identify bacteria involved in the efficacy of these drugs and immune-related adverse events (irAEs). Results The genera Prevotella and Parabacteroides were relatively common in the group showing efficacy towards the anti-PD-1 antibody treatment (effective group). The proportions of Catenibacterium (P = 0.022) and Turicibacter (P = 0.049) were significantly higher in the effective group than in the ineffective group. In addition, the proportion of Desulfovibrion (P = 0.033) was significantly higher in the ineffective group. Next, they were divided into irAE and non-irAE groups. The proportions of Turicibacter (P = 0.001) and Acidaminococcus (P = 0.001) were significantly higher in the group with irAEs than in those without, while the proportions of Blautia (P = 0.013) and the unclassified Clostridiales (P = 0.027) were significantly higher in the group without irAEs than those with. Furthermore, within the Effective group, Acidaminococcus and Turicibacter (both P = 0.001) were more abundant in the subgroup with irAEs than in those without them. In contrast, Blautia (P = 0.021) and Bilophila (P= 0.033) were statistically significantly more common in those without irAEs. Discussion Our Study suggests that the analysis of the gut microbiota may provide future predictive markers for the efficacy of cancer immunotherapy or the selection of candidates for fecal transplantation for cancer immunotherapy.
Collapse
Affiliation(s)
- Kazuyuki Hamada
- Division of Medical Oncology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
- Department of Chest Surgery, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Junya Isobe
- Department of Hospital Pharmaceutics, School of Pharmacy, Showa University, Tokyo, Japan
| | - Kouya Hattori
- Research Center for Drug Discovery and Faculty of Pharmacy and Graduate School of Pharmaceutical Sciences, Keio University, Tokyo, Japan
- Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Sciences, Keio University, Tokyo, Japan
| | - Masahiro Hosonuma
- Division of Medical Oncology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
- Department of Clinical Immuno Oncology, Clinical Research Institute for Clinical Pharmacology and Therapeutics, Showa University, Tokyo, Japan
- Department of Pharmacology, Showa University School of Medicine, Tokyo, Japan
- Pharmacological Research Center, Showa University, Tokyo, Japan
| | - Yuta Baba
- Department of Clinical Immuno Oncology, Clinical Research Institute for Clinical Pharmacology and Therapeutics, Showa University, Tokyo, Japan
| | - Masakazu Murayama
- Department of Clinical Immuno Oncology, Clinical Research Institute for Clinical Pharmacology and Therapeutics, Showa University, Tokyo, Japan
- Department of Pharmacology, Showa University School of Medicine, Tokyo, Japan
- Pharmacological Research Center, Showa University, Tokyo, Japan
- Department of Otorhinolaryngology-Head and Neck Surgery, Showa University School of Medicine, Tokyo, Japan
| | - Yoichiro Narikawa
- Department of Clinical Immuno Oncology, Clinical Research Institute for Clinical Pharmacology and Therapeutics, Showa University, Tokyo, Japan
- Department of Pharmacology, Showa University School of Medicine, Tokyo, Japan
- Pharmacological Research Center, Showa University, Tokyo, Japan
- Department of Otorhinolaryngology-Head and Neck Surgery, Showa University School of Medicine, Tokyo, Japan
| | - Hitoshi Toyoda
- Department of Clinical Immuno Oncology, Clinical Research Institute for Clinical Pharmacology and Therapeutics, Showa University, Tokyo, Japan
- Department of Pharmacology, Showa University School of Medicine, Tokyo, Japan
- Pharmacological Research Center, Showa University, Tokyo, Japan
- Department of Orthopedic Surgery, School of Medicine, Showa University, Tokyo, Japan
| | - Eiji Funayama
- Division of Pharmacology, Department of Pharmacology, School of Pharmacy, Showa University, Tokyo, Japan
| | - Kohei Tajima
- Department of Clinical Immuno Oncology, Clinical Research Institute for Clinical Pharmacology and Therapeutics, Showa University, Tokyo, Japan
- Department of Gastroenterological Surgery, Tokai University School of Medicine, Kanagawa, Japan
| | - Midori Shida
- Department of Clinical Immuno Oncology, Clinical Research Institute for Clinical Pharmacology and Therapeutics, Showa University, Tokyo, Japan
| | - Yuya Hirasawa
- Division of Medical Oncology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Toshiaki Tsurui
- Division of Medical Oncology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Hirotsugu Ariizumi
- Division of Medical Oncology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Tomoyuki Ishiguro
- Division of Medical Oncology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Risako Suzuki
- Division of Medical Oncology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Ryotaro Ohkuma
- Division of Medical Oncology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Yutaro Kubota
- Division of Medical Oncology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Takehiko Sambe
- Division of Clinical Pharmacology, Department of Pharmacology, Showa University School of Medicine, Tokyo, Japan
| | - Mayumi Tsuji
- Department of Pharmacology, Showa University School of Medicine, Tokyo, Japan
- Pharmacological Research Center, Showa University, Tokyo, Japan
| | - Satoshi Wada
- Department of Clinical Diagnostic Oncology, Clinical Research Institute for Clinical Pharmacology and Therapeutics, Showa University, Tokyo, Japan
| | - Yuji Kiuchi
- Department of Pharmacology, Showa University School of Medicine, Tokyo, Japan
- Pharmacological Research Center, Showa University, Tokyo, Japan
| | - Shinichi Kobayashi
- Clinical Research Institute for Clinical Pharmacology and Therapeutics, Showa University, Tokyo, Japan
| | - Atsuo Kuramasu
- Department of Clinical Immuno Oncology, Clinical Research Institute for Clinical Pharmacology and Therapeutics, Showa University, Tokyo, Japan
| | - Atsushi Horiike
- Division of Medical Oncology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Yun-Gi Kim
- Research Center for Drug Discovery and Faculty of Pharmacy and Graduate School of Pharmaceutical Sciences, Keio University, Tokyo, Japan
| | - Takuya Tsunoda
- Division of Medical Oncology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Kiyoshi Yoshimura
- Division of Medical Oncology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
- Department of Clinical Immuno Oncology, Clinical Research Institute for Clinical Pharmacology and Therapeutics, Showa University, Tokyo, Japan
- *Correspondence: Kiyoshi Yoshimura,
| |
Collapse
|
44
|
Bondy SC. Relationships between Diabetes and the Intestinal Microbial Population. Int J Mol Sci 2022; 24:ijms24010566. [PMID: 36614008 PMCID: PMC9820277 DOI: 10.3390/ijms24010566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 12/30/2022] Open
Abstract
Diabetes is a metabolic disorder characterized by lower responsiveness of tissues to insulin and consequent large variations in circulating levels of glucose. This fluctuation has harmful effects as both hyperglycemia and hypoglycemia can be very injurious. The causes of diabetes are varied but the consequences are rather uniform. Dietary factors are important especially in adult onset type 2 diabetes (T2D) while type 1 diabetes (T1D) is characterized by having a stronger heritable component and involving autoimmune attach on pancreatic beta cells. This review is focused on the relation of the bacterial components found within the intestine, to the establishment and maintenance of diabetes. The precise composition of the gut microbiome is increasingly recognized as a factor in organismic health and its interaction with a variety of disease states has been described. This is especially marked in the case of diabetes since the nature of the diet is an important factor in establishing both the microbiome and the incidence of diabetes. The bidirectional nature of this relationship is discussed. The effects of disease that lead to altered microbiomal composition together with aberrant metabolic changes are also included. Emphasis is given to the important role of short chain fatty acids (SCFAs) as mediators of the microbiome-diabetes relation.
Collapse
Affiliation(s)
- Stephen C. Bondy
- Department of Medicine, Center for Occupational and Environmental Health, University of California, Irvine, CA 92697, USA;
- Department of Environmental & Occupational Health, University of California, Irvine, CA 92697, USA
| |
Collapse
|
45
|
Bao Y, Han X, Liu D, Tan Z, Deng Y. Gut microbiota: The key to the treatment of metabolic syndrome in traditional Chinese medicine - a case study of diabetes and nonalcoholic fatty liver disease. Front Immunol 2022; 13:1072376. [PMID: 36618372 PMCID: PMC9816483 DOI: 10.3389/fimmu.2022.1072376] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/09/2022] [Indexed: 12/25/2022] Open
Abstract
Metabolic syndrome mainly includes obesity, type 2 diabetes (T2DM), alcoholic fatty liver (NAFLD) and cardiovascular diseases. According to the ancient experience philosophy of Yin-Yang, monarch-minister compatibility of traditional Chinese medicine, prescription is given to treat diseases, which has the advantages of small toxic and side effects and quick effect. However, due to the diversity of traditional Chinese medicine ingredients and doubts about the treatment theory of traditional Chinese medicine, the mechanism of traditional Chinese medicine is still in doubt. Gastrointestinal tract is an important part of human environment, and participates in the occurrence and development of diseases. In recent years, more and more TCM researches have made intestinal microbiome a new frontier for understanding and treating diseases. Clinically, nonalcoholic fatty liver disease (NAFLD) and diabetes mellitus (DM) often co-occur. Our aim is to explain the mechanism of interaction between gastrointestinal microbiome and traditional Chinese medicine (TCM) or traditional Chinese medicine formula to treat DM and NAFLD. Traditional Chinese medicine may treat these two diseases by influencing the composition of intestinal microorganisms, regulating the metabolism of intestinal microorganisms and transforming Chinese medicinal compounds.
Collapse
Affiliation(s)
- Yang Bao
- Department of Endosecretory Metabolic Diseases, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Xiao Han
- Department of Endosecretory Metabolic Diseases, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Da Liu
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, Jilin, China,*Correspondence: Yongzhi Deng, ; Zhaolin Tan, ; Da Liu,
| | - Zhaolin Tan
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, Jilin, China,*Correspondence: Yongzhi Deng, ; Zhaolin Tan, ; Da Liu,
| | - Yongzhi Deng
- Department of Acupuncture and Massage, The Third Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, Jilin, China,*Correspondence: Yongzhi Deng, ; Zhaolin Tan, ; Da Liu,
| |
Collapse
|
46
|
Liu X, Luo D, Guan J, Chen J, Xu X. Mushroom polysaccharides with potential in anti-diabetes: Biological mechanisms, extraction, and future perspectives: A review. Front Nutr 2022; 9:1087826. [PMID: 36590224 PMCID: PMC9794872 DOI: 10.3389/fnut.2022.1087826] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 11/29/2022] [Indexed: 12/15/2022] Open
Abstract
Diabetes mellitus (DM) is a global health threat. Searching for anti-diabetic components from natural resources is of intense interest to scientists. Mushroom polysaccharides have received growing attention in anti-diabetes fields due to their advantages in broad resources, structure diversity, and multiple bioactivities, which are considered an unlimited source of healthy active components potentially applied in functional foods and nutraceuticals. In this review, the current knowledge about the roles of oxidative stress in the pathogenesis of DM, the extraction method of mushroom polysaccharides, and their potential biological mechanisms associated with anti-diabetes, including antioxidant, hypolipidemic, anti-inflammatory, and gut microbiota modulatory actions, were summarized based on a variety of in vitro and in vivo studies, with aiming at better understanding the roles of mushroom polysaccharides in the prevention and management of DM and its complications. Finally, future perspectives including bridging the gap between the intervention of mushroom polysaccharides and the modulation of insulin signaling pathway, revealing structure-bioactivity of mushroom polysaccharides, developing synergistic foods, conducting well-controlled clinical trials that may be very helpful in discovering valuable mushroom polysaccharides and better applications of mushroom polysaccharides in diabetic control were proposed.
Collapse
Affiliation(s)
| | | | | | | | - Xiaofei Xu
- College of Food Science and Engineering, Guangdong Ocean University, Yangjiang, China
| |
Collapse
|
47
|
Wang XF, Chen X, Tang Y, Wu JM, Qin DL, Yu L, Yu CL, Zhou XG, Wu AG. The Therapeutic Potential of Plant Polysaccharides in Metabolic Diseases. Pharmaceuticals (Basel) 2022; 15:1329. [PMID: 36355500 PMCID: PMC9695998 DOI: 10.3390/ph15111329] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/15/2022] [Accepted: 10/25/2022] [Indexed: 07/29/2023] Open
Abstract
Plant polysaccharides (PPS) composed of more than 10 monosaccharides show high safety and various pharmacological activities, including immunoregulatory, antitumor, antioxidative, antiaging, and other effects. In recent years, emerging evidence has indicated that many PPS are beneficial for metabolic diseases, such as cardiovascular disease (CVD), diabetes, obesity, and neurological diseases, which are usually caused by the metabolic disorder of fat, sugar, and protein. In this review, we introduce the common characteristics and functional activity of many representative PPS, emphasize the common risks and molecular mechanism of metabolic diseases, and discuss the pharmacological activity and mechanism of action of representative PPS obtained from plants including Aloe vera, Angelica sinensis, pumpkin, Lycium barbarum, Ginseng, Schisandra chinensis, Dioscorea pposite, Poria cocos, and tea in metabolic diseases. Finally, this review will provide directions and a reference for future research and for the development of PPS into potential drugs for the treatment of metabolic diseases.
Collapse
Affiliation(s)
- Xiao-Fang Wang
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Education Ministry Key Laboratory of Medical Electrophysiology, Southwest Medical University, Luzhou 646000, China
| | - Xue Chen
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Education Ministry Key Laboratory of Medical Electrophysiology, Southwest Medical University, Luzhou 646000, China
| | - Yong Tang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
| | - Jian-Ming Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Education Ministry Key Laboratory of Medical Electrophysiology, Southwest Medical University, Luzhou 646000, China
| | - Da-Lian Qin
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Education Ministry Key Laboratory of Medical Electrophysiology, Southwest Medical University, Luzhou 646000, China
| | - Lu Yu
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Education Ministry Key Laboratory of Medical Electrophysiology, Southwest Medical University, Luzhou 646000, China
| | - Chong-Lin Yu
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Education Ministry Key Laboratory of Medical Electrophysiology, Southwest Medical University, Luzhou 646000, China
| | - Xiao-Gang Zhou
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Education Ministry Key Laboratory of Medical Electrophysiology, Southwest Medical University, Luzhou 646000, China
| | - An-Guo Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Education Ministry Key Laboratory of Medical Electrophysiology, Southwest Medical University, Luzhou 646000, China
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, College of Pharmacy, Changsha Medical University, Changsha 410219, China
| |
Collapse
|