1
|
López-Sepulcre A, Amaral JR, Gautam N, Mohamed A, Naik S. The eco-evolutionary dynamics of stoichiometric homeostasis. Trends Ecol Evol 2024; 39:1111-1118. [PMID: 39217062 DOI: 10.1016/j.tree.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 07/23/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024]
Abstract
Stoichiometric homeostasis is the ability of life to maintain inner chemical constancy despite changes in the environment and resources. Organisms can be stoichiometrically homeostatic to different degrees. This variation can be substantial even within species, but is ignored in most studies of ecological stoichiometry. Recent studies suggest that resource limitations are an important selective pressure behind homeostasis, but are contradictory in direction, likely owing to differences in nutrient storage strategies. Understanding the selective pressures underlying stoichiometric homeostasis, and its potential for rapid evolution, are key to predicting eco-evolutionary dynamics. This calls for the development of an evolutionary theory of stoichiometric homeostasis that incorporates rapid evolution, as well as for empirical studies to test the underlying mechanisms.
Collapse
Affiliation(s)
| | - Jeferson R Amaral
- Department of Ecology and Evolution, Cornell University, Ithaca, NY 14853, USA
| | - Nimisha Gautam
- Department of Ecology and Evolution, Cornell University, Ithaca, NY 14853, USA
| | - Amina Mohamed
- Department of Ecology and Evolution, Cornell University, Ithaca, NY 14853, USA
| | - Saismit Naik
- Department of Ecology and Evolution, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
2
|
Shahmohamadloo RS, Rudman SM, Clare CI, Westrick JA, Wang X, De Meester L, Fryxell JM. Intraspecific diversity is critical to population-level risk assessments. Sci Rep 2024; 14:25883. [PMID: 39468236 PMCID: PMC11519591 DOI: 10.1038/s41598-024-76734-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/16/2024] [Indexed: 10/30/2024] Open
Abstract
Environmental risk assessment (ERA) is critical for protecting life by predicting population responses to contaminants. However, routine toxicity testing often examines only one genotype from surrogate species, potentially leading to inaccurate risk assessments, as natural populations typically consist of genetically diverse individuals. To evaluate the importance of intraspecific variation in translating toxicity testing to natural populations, we quantified the magnitude of phenotypic variation between 20 Daphnia magna clones exposed to two levels of microcystins, a cosmopolitan cyanobacterial toxin. We observed significant genetic variation in survival, growth, and reproduction, which increased under microcystins exposure. Simulations of survival showed that using a single genotype for toxicity tolerance estimates on average failed to produce accurate predictions within the 95% confidence interval over half of the time. Whole genome sequencing of the 20 clones tested for correlations between toxicological responses and genomic divergence, including candidate loci from prior gene expression studies. We found no overall correlations, indicating that clonal variation, rather than variation at candidate genes, predicts population-level responses to toxins. These results highlight the importance of incorporating broad intraspecific genetic variation, without focusing specifically on variation in candidate genes, into ERAs to more reliably predict how local populations will respond to contaminants.
Collapse
Affiliation(s)
- René S Shahmohamadloo
- School of Biological Sciences, Washington State University, Vancouver, Washington, WA, 98686, USA.
- Department of Integrative Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| | - Seth M Rudman
- School of Biological Sciences, Washington State University, Vancouver, Washington, WA, 98686, USA.
- Department of Integrative Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| | - Catherine I Clare
- School of Biological Sciences, Washington State University, Vancouver, Washington, WA, 98686, USA
| | - Judy A Westrick
- Department of Chemistry, Wayne State University, Detroit, MI, 48202, USA
| | - Xueqi Wang
- Department of Integrative Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Luc De Meester
- Laboratory of Aquatic Ecology, Evolution, and Conservation, University of Leuven, Leuven, 3000, Belgium
| | - John M Fryxell
- Department of Integrative Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
- Department of Biology, University of Victoria, British Columbia, Victoria, V8P 5C2, Canada
| |
Collapse
|
3
|
Berry E, Anfodillo T, Castorena M, Echeverría A, Olson ME. Scaling of leaf area with biomass in trees reconsidered: constant metabolically active sapwood volume per unit leaf area with height growth. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:3993-4004. [PMID: 38634646 DOI: 10.1093/jxb/erae160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 04/15/2024] [Indexed: 04/19/2024]
Abstract
Hypoallometric (slope<1) scaling between metabolic rate and body mass is often regarded as near-universal across organisms. However, there are compelling reasons to question hypoallometric scaling in woody plants, where metabolic rate is directly proportional to leaf area. This leaf area must provide carbon to the volume of the metabolically active sapwood (VMASW). Within populations of a species, variants in which VMASW increases per unit leaf area with height growth (e.g. ⅔ or ¾ scaling) would have proportionally less carbon for growth and reproduction as they grow taller. Therefore, selection should favor individuals in which, as they grow taller, leaf area scales isometrically with shoot VMASW (slope=1). Using tetrazolium staining, we measured total VMASW and total leaf area (LAtot) across 22 individuals of Ricinus communis and confirmed that leaf area scales isometrically with VMASW, and that VMASW is much smaller than total sapwood volume. With the potential of the LAtot-VMASW relationship to shape factors as diverse as the crown area-stem diameter relationship, conduit diameter scaling, reproductive output, and drought-induced mortality, our work indicates that the notion that sapwood increases per unit leaf area with height growth requires revision.
Collapse
Affiliation(s)
- Eapsa Berry
- Instituto de Biología, Universidad Nacional Autónoma de México, Tercer Circuito sn de Ciudad Universitaria, Ciudad de México 04510, Mexico
| | - Tommaso Anfodillo
- Department Territorio e Sistemi Agro-Forestali, University of Padova, Legnaro (PD) 35020, Italy
| | - Matiss Castorena
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85719, USA
| | - Alberto Echeverría
- Instituto de Biología, Universidad Nacional Autónoma de México, Tercer Circuito sn de Ciudad Universitaria, Ciudad de México 04510, Mexico
| | - Mark E Olson
- Instituto de Biología, Universidad Nacional Autónoma de México, Tercer Circuito sn de Ciudad Universitaria, Ciudad de México 04510, Mexico
| |
Collapse
|
4
|
Tian D, Yan Z, Schmid B, Kattge J, Fang J, Stocker BD. Environmental versus phylogenetic controls on leaf nitrogen and phosphorous concentrations in vascular plants. Nat Commun 2024; 15:5346. [PMID: 38914561 PMCID: PMC11196693 DOI: 10.1038/s41467-024-49665-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 06/15/2024] [Indexed: 06/26/2024] Open
Abstract
Global patterns of leaf nitrogen (N) and phosphorus (P) stoichiometry have been interpreted as reflecting phenotypic plasticity in response to the environment, or as an overriding effect of the distribution of species growing in their biogeochemical niches. Here, we balance these contrasting views. We compile a global dataset of 36,413 paired observations of leaf N and P concentrations, taxonomy and 45 environmental covariates, covering 7,549 sites and 3,700 species, to investigate how species identity and environmental variables control variations in mass-based leaf N and P concentrations, and the N:P ratio. We find within-species variation contributes around half of the total variation, with 29%, 31%, and 22% of leaf N, P, and N:P variation, respectively, explained by environmental variables. Within-species plasticity along environmental gradients varies across species and is highest for leaf N:P and lowest for leaf N. We identified effects of environmental variables on within-species variation using random forest models, whereas effects were largely missed by widely used linear mixed-effect models. Our analysis demonstrates a substantial influence of the environment in driving plastic responses of leaf N, P, and N:P within species, which challenges reports of a fixed biogeochemical niche and the overriding importance of species distributions in shaping global patterns of leaf N and P.
Collapse
Affiliation(s)
- Di Tian
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing, 100083, China.
- Institute of Agricultural Sciences, Department of Environmental Systems Science, ETH, Universitätsstrasse 2, 8092, Zürich, Switzerland.
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, 8903, Birmensdorf, Switzerland.
| | - Zhengbing Yan
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Bernhard Schmid
- Department of Geography, Remote Sensing Laboratories, University of Zürich, 8006, Zürich, Switzerland
- Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Jens Kattge
- Max-Planck-Institute for Biogeochemistry, Hans-Knöll Street 10, 07745, Jena, Germany
- iDiv - German Centre for Integrative Biodiversity Research Halle-Jena-Leipzig, Puschstraße 4, 04103, Leipzig, Germany
| | - Jingyun Fang
- Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Benjamin D Stocker
- Institute of Agricultural Sciences, Department of Environmental Systems Science, ETH, Universitätsstrasse 2, 8092, Zürich, Switzerland.
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, 8903, Birmensdorf, Switzerland.
- Institute of Geography, University of Bern, Hallerstrasse 12, 3012, Bern, Switzerland.
- Oeschger Centre for Climate Change Research, University of Bern, Falkenplatz 16, 3012, Bern, Switzerland.
| |
Collapse
|
5
|
Grunberg RL, Braat M, Bolnick DI. Elemental content of a host-parasite relationship in the threespine stickleback. Oecologia 2024; 204:427-437. [PMID: 37358647 PMCID: PMC11633046 DOI: 10.1007/s00442-023-05405-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 06/12/2023] [Indexed: 06/27/2023]
Abstract
Parasite infections are ubiquitous and their effects on hosts could play a role in ecosystem processes. Ecological stoichiometry provides a framework to study linkages between consumers and their resource, such as parasites and their host, and ecosystem process; however, the stoichiometric traits of host-parasite associations are rarely quantified. Specifically, it is unclear whether parasites' elemental ratios closely resemble those of their host or if infection is related to host stoichiometry, especially in vertebrate hosts. To answer such questions, we measured the elemental content (%C, %N, and %P) and molar ratios (C:N, C:P, and N:P) of parasitized and unparasitized Gasterosteus aculeatus (three-spined stickleback) and their cestode parasite, Schistocephalus solidus. Host and parasite elemental content were distinct from each other, and parasites were generally higher in %C and lower in %N and %P. Parasite infections were related to host C:N, with infected hosts being lower in C:N. Parasite elemental content was independent of their host, but parasite body mass and parasite density were important drivers of parasite stoichiometry. Overall, these potential effects of parasite infections on host stoichiometry along with parasites' distinct elemental compositions suggest parasites may further contribute to differences in how individual hosts store and recycle nutrients.
Collapse
Affiliation(s)
- Rita L Grunberg
- Department of Biology, University of North Carolina, Chapel Hill, NC, USA.
| | - Megan Braat
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, 06269, USA
| | - Daniel I Bolnick
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, 06269, USA
| |
Collapse
|
6
|
Shahmohamadloo RS, Rudman SM, Clare CI, Westrick JA, Wang X, De Meester L, Fryxell JM. Intraspecific genetic variation is critical to robust toxicological predictions of aquatic contaminants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.06.543817. [PMID: 37333160 PMCID: PMC10274664 DOI: 10.1101/2023.06.06.543817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Environmental risk assessment is a critical tool for protecting aquatic life and its effectiveness is predicated on predicting how natural populations respond to contaminants. Yet, routine toxicity testing typically examines only one genotype, which may render risk assessments inaccurate as populations are most often composed of genetically distinct individuals. To determine the importance of intraspecific variation in the translation of toxicity testing to populations, we quantified the magnitude of genetic variation within 20 Daphnia magna clones derived from one lake using whole genome sequencing and phenotypic assays. We repeated these assays across two exposure levels of microcystins, a cosmopolitan and lethal aquatic contaminant produced by harmful algal blooms. We found considerable intraspecific genetic variation in survival, growth, and reproduction, which was amplified by microcystins exposure. Finally, using simulations we demonstrate that the common practice of employing a single genotype to calculate toxicity tolerance failed to produce an estimate within the 95% confidence interval over half of the time. These results illuminate the importance of incorporating intraspecific genetic variation into toxicity testing to reliably predict how natural populations will respond to aquatic contaminants.
Collapse
Affiliation(s)
- René S. Shahmohamadloo
- School of Biological Sciences, Washington State University, Vancouver, Washington, 98686, United States
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Seth M. Rudman
- School of Biological Sciences, Washington State University, Vancouver, Washington, 98686, United States
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Catherine I. Clare
- School of Biological Sciences, Washington State University, Vancouver, Washington, 98686, United States
| | - Judy A. Westrick
- Department of Chemistry, Wayne State University, Detroit, Michigan, 48202, United States
| | - Xueqi Wang
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Luc De Meester
- Laboratory of Aquatic Ecology, Evolution, and Conservation, University of Leuven, Charles Deberiotstraat 32, 3000 Leuven, Belgium
| | - John M. Fryxell
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| |
Collapse
|
7
|
El-Sabaawi RW, Lemmen KD, Jeyasingh PD, Declerck SAJ. SEED: A framework for integrating ecological stoichiometry and eco-evolutionary dynamics. Ecol Lett 2023; 26 Suppl 1:S109-S126. [PMID: 37840025 DOI: 10.1111/ele.14285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 06/01/2023] [Accepted: 06/04/2023] [Indexed: 10/17/2023]
Abstract
Characterising the extent and sources of intraspecific variation and their ecological consequences is a central challenge in the study of eco-evolutionary dynamics. Ecological stoichiometry, which uses elemental variation of organisms and their environment to understand ecosystem patterns and processes, can be a powerful framework for characterising eco-evolutionary dynamics. However, the current emphasis on the relative content of elements in the body (i.e. organismal stoichiometry) has constrained its application. Intraspecific variation in the rates at which elements are acquired, assimilated, allocated or lost is often greater than the variation in organismal stoichiometry. There is much to gain from studying these traits together as components of an 'elemental phenotype'. Furthermore, each of these traits can have distinct ecological effects that are underappreciated in the current literature. We propose a conceptual framework that explores how microevolutionary change in the elemental phenotype occurs, how its components interact with each other and with other traits, and how its changes can affect a wide range of ecological processes. We demonstrate how the framework can be used to generate novel hypotheses and outline pathways for future research that enhance our ability to explain, analyse and predict eco-evolutionary dynamics.
Collapse
Affiliation(s)
- Rana W El-Sabaawi
- Department of Biology, University of Victoria, Victoria, British Columbia, Canada
| | - Kimberley D Lemmen
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | - Punidan D Jeyasingh
- Department of Integrative Biology, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Steven A J Declerck
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
- Department of Biology, Laboratory of Aquatic Ecology, Evolution and Conservation, KULeuven, Leuven, Belgium
| |
Collapse
|
8
|
Feng M, Cheng H, Zhang P, Wang K, Wang T, Zhang H, Wang H, Zhou L, Xu J, Zhang M. Stoichiometric stability of aquatic organisms increases with trophic level under warming and eutrophication. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:160106. [PMID: 36370785 DOI: 10.1016/j.scitotenv.2022.160106] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/05/2022] [Accepted: 11/06/2022] [Indexed: 06/16/2023]
Abstract
The balance of stoichiometric traits of organisms is crucial for nutrient cycling and energy flow in ecosystems. However, the impacts of different drivers on stoichiometric (carbon, C; nitrogen, N; and phosphorus, P) variations of organisms have not been well addressed. In order to understand how stoichiometric traits vary across trophic levels under different environmental stressors, we performed a mesocosm experiment to explore the impacts of warming (including +3 °C consistent warming above ambient and heat waves ranging from 0 to 6 °C), eutrophication, herbicide and their interactions on stoichiometric traits of organisms at different trophic levels, which was quantified by stable nitrogen isotopes. Results showed that herbicide treatment had no significant impacts on all stochiometric traits, while warming and eutrophication significantly affected the stoichiometric traits of organisms at lower trophic levels. Eutrophication increased nutrient contents and decreased C: nutrient ratios in primary producers, while the response of N:P ratios depended on the taxonomic group. The contribution of temperature treatments to stoichiometric variation was less than that of eutrophication. Heat waves counteracted the impacts of eutrophication, which was different from the effects of continuous warming, indicating that eutrophication impacts on organism stoichiometric traits depended on climate scenarios. Compared to environmental drivers, taxonomic group was the dominant driver that determined the variations of stoichiometric traits. Furthermore, the stoichiometric stability of organisms was strongly positively correlated with their trophic levels. Our results demonstrate that warming and eutrophication might substantially alter the stoichiometric traits of lower trophic levels, thus impairing the nutrient transfer to higher trophic level, which might further change the structure of food webs and functions of the ecosystems.
Collapse
Affiliation(s)
- Mingjun Feng
- College of Fisheries, Huazhong Agricultural University, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, China
| | - Haowu Cheng
- College of Fisheries, Huazhong Agricultural University, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, China
| | - Peiyu Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.
| | - Kang Wang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Tao Wang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Huan Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Huan Wang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Libin Zhou
- Institute of Ecology, College of Urban and Environmental Science, Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, China
| | - Jun Xu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Min Zhang
- College of Fisheries, Huazhong Agricultural University, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, China.
| |
Collapse
|
9
|
Moffett ER, Fryxell DC, Lee F, Palkovacs EP, Simon KS. Consumer trait responses track change in resource supply along replicated thermal gradients. Proc Biol Sci 2021; 288:20212144. [PMID: 34847762 PMCID: PMC8634111 DOI: 10.1098/rspb.2021.2144] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/04/2021] [Indexed: 12/03/2022] Open
Abstract
Rising temperatures may alter consumer diets through increased metabolic demand and altered resource availability. However, current theories assessing dietary shifts with warming do not account for a change in resource availability. It is unknown whether consumers will increase consumption rates or consume different resources to meet increased energy requirements and whether the dietary change will lead to associated variation in morphology and nutrient utilization. Here, we used populations of Gambusia affinis across parallel thermal gradients in New Zealand (NZ) and California (CA) to understand the influence of temperature on diets, morphology and stoichiometric phenotypes. Our results show that with increasing temperature in NZ, mosquitofish consumed more plant material, whereas in CA mosquitofish shifted towards increased consumption of invertebrate prey. In both regions, populations with plant-based diets had fuller guts, longer relative gut lengths, better-orientated mouths and reduced body elemental %C and N/P. Together, our results show multiple pathways by which consumers may alter their feeding patterns with rising temperatures, and they suggest that warming-induced changes to resource availability may be the principal determinant of which pathway is taken.
Collapse
Affiliation(s)
- E. R. Moffett
- School of Environment, The University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - D. C. Fryxell
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA 95060, USA
| | - F. Lee
- School of Environment, The University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - E. P. Palkovacs
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA 95060, USA
| | - K. S. Simon
- School of Environment, The University of Auckland, Private Bag 92019, Auckland, New Zealand
| |
Collapse
|
10
|
Twining CW, Bernhardt JR, Derry AM, Hudson CM, Ishikawa A, Kabeya N, Kainz MJ, Kitano J, Kowarik C, Ladd SN, Leal MC, Scharnweber K, Shipley JR, Matthews B. The evolutionary ecology of fatty-acid variation: Implications for consumer adaptation and diversification. Ecol Lett 2021; 24:1709-1731. [PMID: 34114320 DOI: 10.1111/ele.13771] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 12/20/2021] [Accepted: 04/09/2021] [Indexed: 12/20/2022]
Abstract
The nutritional diversity of resources can affect the adaptive evolution of consumer metabolism and consumer diversification. The omega-3 long-chain polyunsaturated fatty acids eicosapentaenoic acid (EPA; 20:5n-3) and docosahexaenoic acid (DHA; 22:6n-3) have a high potential to affect consumer fitness, through their widespread effects on reproduction, growth and survival. However, few studies consider the evolution of fatty acid metabolism within an ecological context. In this review, we first document the extensive diversity in both primary producer and consumer fatty acid distributions amongst major ecosystems, between habitats and amongst species within habitats. We highlight some of the key nutritional contrasts that can shape behavioural and/or metabolic adaptation in consumers, discussing how consumers can evolve in response to the spatial, seasonal and community-level variation of resource quality. We propose a hierarchical trait-based approach for studying the evolution of consumers' metabolic networks and review the evolutionary genetic mechanisms underpinning consumer adaptation to EPA and DHA distributions. In doing so, we consider how the metabolic traits of consumers are hierarchically structured, from cell membrane function to maternal investment, and have strongly environment-dependent expression. Finally, we conclude with an outlook on how studying the metabolic adaptation of consumers within the context of nutritional landscapes can open up new opportunities for understanding evolutionary diversification.
Collapse
Affiliation(s)
- Cornelia W Twining
- Max Planck Institute of Animal Behavior, Radolfzell, Germany.,Limnological Institute, University of Konstanz, Konstanz-Egg, Germany
| | - Joey R Bernhardt
- Department of Biology, McGill University, Montréal, QC, Canada.,Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
| | - Alison M Derry
- Département des Sciences Biologiques, Université du Québec à Montréal, Montréal, QC, Canada
| | - Cameron M Hudson
- Department of Fish Ecology and Evolution, Eawag, Center of Ecology, Evolution and Biochemistry, Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland
| | - Asano Ishikawa
- Ecological Genetics Laboratory, National Institute of Genetics, Shizuoka, Japan
| | - Naoki Kabeya
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology (TUMSAT, Tokyo, Japan
| | - Martin J Kainz
- WasserCluster Lunz-Inter-university Center for Aquatic Ecosystems Research, Lunz am See, Austria
| | - Jun Kitano
- Ecological Genetics Laboratory, National Institute of Genetics, Shizuoka, Japan
| | - Carmen Kowarik
- Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - Sarah Nemiah Ladd
- Ecosystem Physiology, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Miguel C Leal
- ECOMARE and CESAM - Centre for Environmental and Marine Studies and Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Kristin Scharnweber
- Department of Ecology and Genetics; Limnology, Uppsala University, Uppsala, Sweden.,University of Potsdam, Plant Ecology and Nature Conservation, Potsdam-Golm, Germany
| | - Jeremy R Shipley
- Max Planck Institute of Animal Behavior, Radolfzell, Germany.,Department of Fish Ecology and Evolution, Eawag, Center of Ecology, Evolution and Biochemistry, Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland
| | - Blake Matthews
- Department of Fish Ecology and Evolution, Eawag, Center of Ecology, Evolution and Biochemistry, Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland
| |
Collapse
|
11
|
Filipiak M, Woyciechowski M, Czarnoleski M. Stoichiometric niche, nutrient partitioning and resource allocation in a solitary bee are sex-specific and phosphorous is allocated mainly to the cocoon. Sci Rep 2021; 11:652. [PMID: 33436811 PMCID: PMC7804283 DOI: 10.1038/s41598-020-79647-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 12/10/2020] [Indexed: 01/29/2023] Open
Abstract
Life histories of species may be shaped by nutritional limitations posed on populations. Yet, populations contain individuals that differ according to sex and life stage, each of which having different nutritional demands and experiencing specific limitations. We studied patterns of resource assimilation, allocation and excretion during the growth of the solitary bee Osmia bicornis (two sexes) under natural conditions. Adopting an ecological perspective, we assert that organisms ingest mutable organic molecules that are transformed during physiological processes and that the immutable atoms of the chemical elements composing these molecules may be allocated to specific functions, thereby influencing organismal fitness and life history. Therefore, using the framework of ecological stoichiometry, we investigated the multielemental (C, N, S, P, K, Na, Ca, Mg, Fe, Zn, Mn, Cu) compositions of six components of the bee elemental budget: food (pollen), eggs, pupae, adults, cocoons and excreta. The sexes differed fundamentally in the assimilation and allocation of acquired atoms, elemental phenotypes, and stoichiometric niches for all six components. Phosphorus, which supports larval growth, was allocated mainly (55-75%) to the cocoon after larval development was complete. Additionally, the majority (60-99%) of the Mn, Ca, Mg and Zn acquired during larval development was allocated to the cocoon, probably influencing bee fitness by conferring protection. We conclude that for holometabolous insects, considering only the chemical composition of the adult body within the context of nutritional ecology does not provide a complete picture. Low ratios of C to other nutrients, low N:P and high Na concentrations in excreta and cocoons may be important for local-scale nutrient cycling. Limited access to specific nutritional elements may hinder bee development in a sex-dependent manner, and N and P limitations, commonly considered elsewhere, may not play important roles in O. bicornis. Sexual dimorphism in nutritional limitations due to nutrient scarcity during the larval stage may influence bee population function and should be considered in bee conservation efforts.
Collapse
Affiliation(s)
- Michał Filipiak
- grid.5522.00000 0001 2162 9631Faculty of Biology, Institute of Environmental Sciences, Jagiellonian University, Kraków, Poland
| | - Michal Woyciechowski
- grid.5522.00000 0001 2162 9631Faculty of Biology, Institute of Environmental Sciences, Jagiellonian University, Kraków, Poland
| | - Marcin Czarnoleski
- grid.5522.00000 0001 2162 9631Faculty of Biology, Institute of Environmental Sciences, Jagiellonian University, Kraków, Poland
| |
Collapse
|
12
|
Sherman RE, Hartnett R, Kiehnau EL, Weider LJ, Jeyasingh PD. Quantitative genetics of phosphorus content in the freshwater herbivore, Daphnia pulicaria. J Anim Ecol 2020; 90:909-916. [PMID: 33368234 DOI: 10.1111/1365-2656.13419] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 12/02/2020] [Indexed: 11/29/2022]
Abstract
Phosphorus (P) is essential for growth of all organisms, and P content is correlated with growth in most taxa. Although P content was initially considered to be a trait fixed at the species level, there is growing evidence for considerable intraspecific variation. Selection on such variation can thus alter the rates at which P fluxes through food webs. Nevertheless, prior work describing the sources and extent of intraspecific variation in P content were not genetically explicit, confounded by unknown genetic background and evolutionary history. We constructed an F2 recombinant population of the dominant freshwater grazer, Daphnia pulicaria to mitigate such issues. F2 recombinants exhibited considerable variation in growth rate, P content (0.49%-1.97%), P use efficiency (PUE; 51-208 mg biomass/mg P), and correlated traits such as hatching time of resting eggs, in common garden conditions. These results clearly demonstrate the scope of genetic recombination in generating variation in ecologically relevant traits. The absence of environmental selection is a likely component driving such variation not observed in natural settings. Although phosphoglucose isomerase (PGI) genotype was significantly associated with variation in hatching time of resting eggs, contrary to prior work with less rigorous designs, and allelic variation at the PGI locus did not explain variation in P content and PUE of Daphnia, indicating that such quantitative traits are under polygenic control. Together, these results suggest that although there is considerable genetic scope for variation in key ecologically relevant traits, such as P content and efficiency of P use, these traits are likely under strong stabilizing selection, most likely due to selection on growth rate and size. Importantly, our observations suggest that anthropogenic alterations to P supply due to eutrophication could alter selection on these traits, thereby rapidly altering the role Daphnia plays in the P cycle of lakes.
Collapse
Affiliation(s)
- Ryan E Sherman
- Department of Integrative Biology, Oklahoma State University, Stillwater, OK, USA
| | - Rachel Hartnett
- Department of Integrative Biology, Oklahoma State University, Stillwater, OK, USA.,Department of Biology, Program in Ecology & Evolutionary Biology, University of Oklahoma, Norman, OK, USA
| | - Emily L Kiehnau
- Department of Biology, Program in Ecology & Evolutionary Biology, University of Oklahoma, Norman, OK, USA
| | - Lawrence J Weider
- Department of Biology, Program in Ecology & Evolutionary Biology, University of Oklahoma, Norman, OK, USA
| | - Punidan D Jeyasingh
- Department of Integrative Biology, Oklahoma State University, Stillwater, OK, USA
| |
Collapse
|
13
|
Sobczyk Ł, Filipiak M, Czarnoleski M. Sexual Dimorphism in the Multielemental Stoichiometric Phenotypes and Stoichiometric Niches of Spiders. INSECTS 2020; 11:E484. [PMID: 32751585 PMCID: PMC7469175 DOI: 10.3390/insects11080484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/28/2020] [Accepted: 07/29/2020] [Indexed: 11/17/2022]
Abstract
Nutritional limitations may shape populations and communities of organisms. This phenomenon is often studied by treating populations and communities as pools of homogenous individuals with average nutritional optima and experiencing average constraints and trade-offs that influence their fitness in a standardized way. However, populations and communities consist of individuals belonging to different sexes, each with specific nutritional demands and limitations. Taking this into account, we used the ecological stoichiometry framework to study sexual differences in the stoichiometric phenotypes, reflecting stoichiometric niches, of four spider taxa differing in the hunting mode. The species and sexes differed fundamentally in their elemental phenotypes, including elements beyond those most commonly studied (C, N and P). Both species and sexes were distinguished by the C:N ratio and concentrations of Cu, K and Zn. Species additionally differed in concentrations of Na, Mg and Mn. Phosphorous was not involved in this differentiation. Sexual dimorphism in spiders' elemental phenotypes, related to differences in their stoichiometric niches, suggests different nutritional optima and differences in nutritional limitation experienced by different sexes and species. This may influence the structure and functioning of spider populations and communities.
Collapse
Affiliation(s)
| | - Michał Filipiak
- Institute of Environmental Sciences, Jagiellonian University, ul. Gronostajowa 7, 30-387 Kraków, Poland; (Ł.S.); (M.C.)
| | | |
Collapse
|