1
|
Greenler SM, Lake FK, Tripp W, McCovey K, Tripp A, Hillman LG, Dunn CJ, Prichard SJ, Hessburg PF, Harling W, Bailey JD. Blending Indigenous and western science: Quantifying cultural burning impacts in Karuk Aboriginal Territory. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2024; 34:e2973. [PMID: 38616644 DOI: 10.1002/eap.2973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 02/07/2024] [Indexed: 04/16/2024]
Abstract
The combined effects of Indigenous fire stewardship and lightning ignitions shaped historical fire regimes, landscape patterns, and available resources in many ecosystems globally. The resulting fire regimes created complex fire-vegetation dynamics that were further influenced by biophysical setting, disturbance history, and climate. While there is increasing recognition of Indigenous fire stewardship among western scientists and managers, the extent and purpose of cultural burning is generally absent from the landscape-fire modeling literature and our understanding of ecosystem processes and development. In collaboration with the Karuk Tribe Department of Natural Resources, we developed a transdisciplinary Monte Carlo simulation model of cultural ignition location, frequency, and timing to simulate spatially explicit cultural ignitions across a 264,399-ha landscape within Karuk Aboriginal Territory in northern California. Estimates of cultural ignition parameters were developed with Tribal members and knowledge holders using existing interviews, historical maps, ethnographies, recent ecological studies, contemporary maps, and generational knowledge. Spatial and temporal attributes of cultural burning were explicitly tied to the ecology of specific cultural resources, fuel receptivity, seasonal movement patterns, and spiritual practices. Prior to colonization, cultural burning practices were extensive across the study landscape with an estimated 6972 annual ignitions, averaging approximately 6.5 ignitions per Indigenous fire steward per year. The ignition characteristics we document align closely with data on historical fire regimes and vegetation but differ substantially from the location and timing of contemporary ignitions. This work demonstrates the importance of cultural burning for developing and maintaining the ecosystems present at the time of colonization and underscores the need to work collaboratively with Indigenous communities to restore ecocultural processes in these systems.
Collapse
Affiliation(s)
- Skye M Greenler
- Oregon State University College of Forestry, Corvallis, Oregon, USA
| | - Frank K Lake
- U.S. Forest Service Pacific Southwest Research Station, Arcata, California, USA
| | - William Tripp
- Karuk Tribe, Department of Natural Resources, Orleans, California, USA
| | | | - Analisa Tripp
- Karuk Tribe, Department of Natural Resources, Orleans, California, USA
| | | | | | - Susan J Prichard
- University of Washington School of Environmental and Forest Sciences, Seattle, Washington, USA
| | - Paul F Hessburg
- University of Washington School of Environmental and Forest Sciences, Seattle, Washington, USA
- U.S. Forest Service PNW Research Station, Wenatchee, Washington, USA
| | - Will Harling
- Mid Klamath Watershed Council, Orleans, California, USA
| | - John D Bailey
- Oregon State University College of Forestry, Corvallis, Oregon, USA
| |
Collapse
|
2
|
Crowley MA, Stockdale CA, Johnston JM, Wulder MA, Liu T, McCarty JL, Rieb JT, Cardille JA, White JC. Towards a whole-system framework for wildfire monitoring using Earth observations. GLOBAL CHANGE BIOLOGY 2023; 29:1423-1436. [PMID: 36537002 DOI: 10.1111/gcb.16567] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 12/09/2022] [Accepted: 12/09/2022] [Indexed: 05/26/2023]
Abstract
Fire seasons have become increasingly variable and extreme due to changing climatological, ecological, and social conditions. Earth observation data are critical for monitoring fires and their impacts. Herein, we present a whole-system framework for identifying and synthesizing fire monitoring objectives and data needs throughout the life cycle of a fire event. The four stages of fire monitoring using Earth observation data include the following: (1) pre-fire vegetation inventories, (2) active-fire monitoring, (3) post-fire assessment, and (4) multi-scale synthesis. We identify the challenges and opportunities associated with current approaches to fire monitoring, highlighting four case studies from North American boreal, montane, and grassland ecosystems. While the case studies are localized to these ecosystems and regional contexts, they provide insights for others experiencing similar monitoring challenges worldwide. The field of remote sensing is experiencing a rapid proliferation of new data sources, providing observations that can inform all aspects of our fire monitoring framework; however, significant challenges for meeting fire monitoring objectives remain. We identify future opportunities for data sharing and rapid co-development of information products using cloud computing that benefits from open-access Earth observation and other geospatial data layers.
Collapse
Affiliation(s)
- Morgan A Crowley
- Canadian Forest Service (Great Lakes Forestry Centre), Natural Resources Canada, Sault Sainte Marie, Ontario, Canada
| | - Christopher A Stockdale
- Canadian Forest Service (Northern Forestry Centre), Natural Resources Canada, Edmonton, Alberta, Canada
| | - Joshua M Johnston
- Canadian Forest Service (Great Lakes Forestry Centre), Natural Resources Canada, Sault Sainte Marie, Ontario, Canada
| | - Michael A Wulder
- Canadian Forest Service (Pacific Forestry Centre), Natural Resources Canada, Victoria, British Columbia, Canada
| | - Tianjia Liu
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, Massachusetts, USA
| | - Jessica L McCarty
- Department of Geography and Geospatial Analysis Center, Miami University, Oxford, Ohio, USA
| | - Jesse T Rieb
- Department of Geography, McGill University, Montréal, Québec, Canada
| | - Jeffrey A Cardille
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, Québec, Canada
| | - Joanne C White
- Canadian Forest Service (Pacific Forestry Centre), Natural Resources Canada, Victoria, British Columbia, Canada
| |
Collapse
|
3
|
Steel ZL, Jones GM, Collins BM, Green R, Koltunov A, Purcell KL, Sawyer SC, Slaton MR, Stephens SL, Stine P, Thompson C. Mega-disturbances cause rapid decline of mature conifer forest habitat in California. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2023; 33:e2763. [PMID: 36264047 DOI: 10.1002/eap.2763] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/25/2022] [Accepted: 08/30/2022] [Indexed: 06/16/2023]
Abstract
Mature forests provide important wildlife habitat and support critical ecosystem functions globally. Within the dry conifer forests of the western United States, past management and fire exclusion have contributed to forest conditions that are susceptible to increasingly severe wildfire and drought. We evaluated declines in conifer forest cover in the southern Sierra Nevada of California during a decade of record disturbance by using spatially comprehensive forest structure estimates, wildfire perimeter data, and the eDaRT forest disturbance tracking algorithm. Primarily due to the combination of wildfires, drought, and drought-associated beetle epidemics, 30% of the region's conifer forest extent transitioned to nonforest vegetation during 2011-2020. In total, 50% of mature forest habitat and 85% of high density mature forests either transitioned to lower density forest or nonforest vegetation types. California spotted owl protected activity centers (PAC) experienced greater canopy cover decline (49% of 2011 cover) than non-PAC areas (42% decline). Areas with high initial canopy cover and without tall trees were most vulnerable to canopy cover declines, likely explaining the disproportionate declines of mature forest habitat and within PACs. Drought and beetle attack caused greater cumulative declines than areas where drought and wildfire mortality overlapped, and both types of natural disturbance far outpaced declines attributable to mechanical activities. Drought mortality that disproportionately affects large conifers is particularly problematic to mature forest specialist species reliant on large trees. However, patches of degraded forests within wildfire perimeters were larger with greater core area than those outside burned areas, and remnant forest habitats were more fragmented within burned perimeters than those affected by drought and beetle mortality alone. The percentage of mature forest that survived and potentially benefited from lower severity wildfire increased over time as the total extent of mature forest declined. These areas provide some opportunity for improved resilience to future disturbances, but strategic management interventions are likely also necessary to mitigate worsening mega-disturbances. Remaining dry mature forest habitat in California may be susceptible to complete loss in the coming decades without a rapid transition from a conservation paradigm that attempts to maintain static conditions to one that manages for sustainable disturbance dynamics.
Collapse
Affiliation(s)
| | - Gavin M Jones
- USFS Rocky Mountain Research Station, Albuquerque, New Mexico, USA
- University of New Mexico, Albuquerque, New Mexico, USA
| | - Brandon M Collins
- University of California, Berkeley, California, USA
- USFS Pacific Southwest Research Station, Davis, California, USA
| | - Rebecca Green
- Sequoia & Kings Canyon National Park, Three Rivers, California, USA
| | - Alexander Koltunov
- USFS Pacific Southwest Region, McClellan, California, USA
- University of California, Davis, California, USA
| | - Kathryn L Purcell
- USFS Pacific Southwest Research Station, Coarsegold, California, USA
| | | | | | | | - Peter Stine
- Stine Wildland Resources Science, Sacramento, California, USA
| | - Craig Thompson
- USFS Pacific Southwest Research Station, Fresno, California, USA
| |
Collapse
|
4
|
Christianson AC, Sutherland CR, Moola F, Gonzalez Bautista N, Young D, MacDonald H. Centering Indigenous Voices: The Role of Fire in the Boreal Forest of North America. CURRENT FORESTRY REPORTS 2022; 8:257-276. [PMID: 36217365 PMCID: PMC9537118 DOI: 10.1007/s40725-022-00168-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/05/2022] [Indexed: 05/31/2023]
Abstract
PURPOSE OF REVIEW Indigenous perspectives have often been overlooked in fire management in North America. With a focus on the boreal region of North America, this paper provides a review of the existing literature documenting Indigenous voices and the historical relationship of Indigenous peoples in northern North America to fire and landscapes that burn. RECENT FINDINGS Early research on the topic explored how Indigenous people used fire in the boreal forest, with most research coming out of case studies in northern Alberta. Emerging research in the last two decades has broadened the geographic focus to include case studies in Alaska, Ontario, Labrador, and other regions in North America. This broadening of focus has shown that the diversity of Indigenous peoples in North America is reflected in a diversity of relationships to fire and landscapes that burn. Of note is an emerging interest in Indigenous fire knowledge in the wake of settler colonialism. SUMMARY Indigenous peoples in the boreal forest have applied fire on their landscapes to fulfill numerous objectives for thousands of years. More than a tool, Indigenous peoples in the boreal view fire as an agent, capable of movement, destruction and creation, acting on the landscape to create order, within a living, connected environment. Unfortunately, restrictions on the application of Indigenous fire knowledge and practice initiated during early colonial times remains a contemporary challenge as well. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s40725-022-00168-9.
Collapse
Affiliation(s)
- Amy Cardinal Christianson
- Canadian Forest Service, Natural Resources Canada, Northern Forestry Centre, 5320 – 122 St, Edmonton, Edmonton, AB T6H 3S5 Canada
- National Fire Management Division, Natural Resource Management Branch, Parks Canada, Rocky Mountain House National Historic Site, Rocky Mountain House, T4T 2A4 Canada
| | - Colin Robert Sutherland
- Conservation Through Reconciliation Partnership, Department of Geography, Environment & Geomatics, University of Guelph, 350 Hutt Building, Guelph, ON N1G2W1 Canada
| | - Faisal Moola
- Department of Geography, Environment and Geomatics, University of Guelph, 350 Hutt Building, Guelph, ON N1G2W1 Canada
| | - Noémie Gonzalez Bautista
- Centre Interuniversitaire d’études et de recherches autochtones (CIÉRA), Université Laval, Québec, Canada
| | - David Young
- Canadian Forest Service, Natural Resources Canada, Northern Forestry Centre, 5320 – 122 St, Edmonton, Edmonton, AB T6H 3S5 Canada
| | - Heather MacDonald
- Canadian Forest Service, Great Lakes Forestry Centre, Natural Resources Canada, 1219 Queen Street, Sault Ste. Marie, Sault Ste. Marie, ON P6A 2E5 Canada
| |
Collapse
|
5
|
OUP accepted manuscript. J Mammal 2022. [DOI: 10.1093/jmammal/gyac054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
6
|
Prichard SJ, Hessburg PF, Hagmann RK, Povak NA, Dobrowski SZ, Hurteau MD, Kane VR, Keane RE, Kobziar LN, Kolden CA, North M, Parks SA, Safford HD, Stevens JT, Yocom LL, Churchill DJ, Gray RW, Huffman DW, Lake FK, Khatri‐Chhetri P. Adapting western North American forests to climate change and wildfires: 10 common questions. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2021; 31:e02433. [PMID: 34339088 PMCID: PMC9285930 DOI: 10.1002/eap.2433] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 03/09/2021] [Accepted: 03/22/2021] [Indexed: 05/22/2023]
Abstract
We review science-based adaptation strategies for western North American (wNA) forests that include restoring active fire regimes and fostering resilient structure and composition of forested landscapes. As part of the review, we address common questions associated with climate adaptation and realignment treatments that run counter to a broad consensus in the literature. These include the following: (1) Are the effects of fire exclusion overstated? If so, are treatments unwarranted and even counterproductive? (2) Is forest thinning alone sufficient to mitigate wildfire hazard? (3) Can forest thinning and prescribed burning solve the problem? (4) Should active forest management, including forest thinning, be concentrated in the wildland urban interface (WUI)? (5) Can wildfires on their own do the work of fuel treatments? (6) Is the primary objective of fuel reduction treatments to assist in future firefighting response and containment? (7) Do fuel treatments work under extreme fire weather? (8) Is the scale of the problem too great? Can we ever catch up? (9) Will planting more trees mitigate climate change in wNA forests? And (10) is post-fire management needed or even ecologically justified? Based on our review of the scientific evidence, a range of proactive management actions are justified and necessary to keep pace with changing climatic and wildfire regimes and declining forest heterogeneity after severe wildfires. Science-based adaptation options include the use of managed wildfire, prescribed burning, and coupled mechanical thinning and prescribed burning as is consistent with land management allocations and forest conditions. Although some current models of fire management in wNA are averse to short-term risks and uncertainties, the long-term environmental, social, and cultural consequences of wildfire management primarily grounded in fire suppression are well documented, highlighting an urgency to invest in intentional forest management and restoration of active fire regimes.
Collapse
Affiliation(s)
- Susan J. Prichard
- University of Washington School of Environmental and Forest SciencesSeattleWashington98195‐2100USA
| | - Paul F. Hessburg
- University of Washington School of Environmental and Forest SciencesSeattleWashington98195‐2100USA
- U.S. Forest Service PNW Research StationWenatcheeWashington98801USA
| | - R. Keala Hagmann
- University of Washington School of Environmental and Forest SciencesSeattleWashington98195‐2100USA
- Applegate Forestry LLCCorvallisOregon97330USA
| | - Nicholas A. Povak
- U.S. Forest ServicePacific Southwest Research StationInstitute of Forest Genetics2480 Carson RoadPlacervilleCalifornia95667USA
| | - Solomon Z. Dobrowski
- University of Montana College of Forestry and ConservationMissoulaMontana59812USA
| | - Matthew D. Hurteau
- University of New Mexico Biology DepartmentAlbuquerqueNew Mexico87131‐0001USA
| | - Van R. Kane
- University of Washington School of Environmental and Forest SciencesSeattleWashington98195‐2100USA
| | - Robert E. Keane
- U.S. Forest Service Rocky Mountain Research StationMissoula Fire Sciences LaboratoryMissoulaMontana59808USA
| | - Leda N. Kobziar
- Department of Natural Resources and SocietyUniversity of IdahoMoscowIdaho83844USA
| | - Crystal A. Kolden
- School of EngineeringUniversity of California MercedMercedCalifornia95343USA
| | - Malcolm North
- U.S. Forest Service Pacific Southwest Research Station1731 Research ParkDavisCalifornia95618USA
| | - Sean A. Parks
- U.S. Forest Service Aldo Leopold Wilderness Research InstituteMissoulaMontana59801USA
| | - Hugh D. Safford
- U.S. Forest Service Pacific Southwest Research StationAlbanyCalifornia94710USA
| | - Jens T. Stevens
- U.S. Geological Survey Fort Collins Science CenterNew Mexico Landscapes Field StationSanta FeNew Mexico87544USA
| | - Larissa L. Yocom
- Department of Wildland Resources and Ecology CenterUtah State University College of Agriculture and Applied SciencesLoganUtah84322USA
| | - Derek J. Churchill
- Washington State Department of Natural Resources Forest Health ProgramOlympiaWashington98504USA
| | - Robert W. Gray
- R.W. Gray ConsultingChilliwackBritish ColumbiaV2R2N2Canada
| | - David W. Huffman
- Northern Arizona University Ecological Restoration InstituteFlagstaffArizona86011USA
| | - Frank K. Lake
- U.S. Forest Service Pacific Southwest Research StationArcataCalifornia95521USA
| | - Pratima Khatri‐Chhetri
- University of Washington School of Environmental and Forest SciencesSeattleWashington98195‐2100USA
| |
Collapse
|
7
|
Hagmann RK, Hessburg PF, Prichard SJ, Povak NA, Brown PM, Fulé PZ, Keane RE, Knapp EE, Lydersen JM, Metlen KL, Reilly MJ, Sánchez Meador AJ, Stephens SL, Stevens JT, Taylor AH, Yocom LL, Battaglia MA, Churchill DJ, Daniels LD, Falk DA, Henson P, Johnston JD, Krawchuk MA, Levine CR, Meigs GW, Merschel AG, North MP, Safford HD, Swetnam TW, Waltz AEM. Evidence for widespread changes in the structure, composition, and fire regimes of western North American forests. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2021; 31:e02431. [PMID: 34339067 PMCID: PMC9285092 DOI: 10.1002/eap.2431] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 03/04/2021] [Accepted: 03/22/2021] [Indexed: 05/06/2023]
Abstract
Implementation of wildfire- and climate-adaptation strategies in seasonally dry forests of western North America is impeded by numerous constraints and uncertainties. After more than a century of resource and land use change, some question the need for proactive management, particularly given novel social, ecological, and climatic conditions. To address this question, we first provide a framework for assessing changes in landscape conditions and fire regimes. Using this framework, we then evaluate evidence of change in contemporary conditions relative to those maintained by active fire regimes, i.e., those uninterrupted by a century or more of human-induced fire exclusion. The cumulative results of more than a century of research document a persistent and substantial fire deficit and widespread alterations to ecological structures and functions. These changes are not necessarily apparent at all spatial scales or in all dimensions of fire regimes and forest and nonforest conditions. Nonetheless, loss of the once abundant influence of low- and moderate-severity fires suggests that even the least fire-prone ecosystems may be affected by alteration of the surrounding landscape and, consequently, ecosystem functions. Vegetation spatial patterns in fire-excluded forested landscapes no longer reflect the heterogeneity maintained by interacting fires of active fire regimes. Live and dead vegetation (surface and canopy fuels) is generally more abundant and continuous than before European colonization. As a result, current conditions are more vulnerable to the direct and indirect effects of seasonal and episodic increases in drought and fire, especially under a rapidly warming climate. Long-term fire exclusion and contemporaneous social-ecological influences continue to extensively modify seasonally dry forested landscapes. Management that realigns or adapts fire-excluded conditions to seasonal and episodic increases in drought and fire can moderate ecosystem transitions as forests and human communities adapt to changing climatic and disturbance regimes. As adaptation strategies are developed, evaluated, and implemented, objective scientific evaluation of ongoing research and monitoring can aid differentiation of warranted and unwarranted uncertainties.
Collapse
Affiliation(s)
- R. K. Hagmann
- College of the Environment‐SEFSUniversity of WashingtonSeattleWashington98195USA
- Applegate Forestry LLCCorvallisOregon97330USA
| | - P. F. Hessburg
- College of the Environment‐SEFSUniversity of WashingtonSeattleWashington98195USA
- USDA‐FS, Forestry Sciences LaboratoryPacific Northwest Research StationWenatcheeWashington98801USA
| | - S. J. Prichard
- College of the Environment‐SEFSUniversity of WashingtonSeattleWashington98195USA
| | - N. A. Povak
- USDA‐FS, Forestry Sciences LaboratoryPacific Northwest Research StationWenatcheeWashington98801USA
- USDA‐FS, Pacific Southwest Research StationPlacervilleCalifornia95667USA
| | - P. M. Brown
- Rocky Mountain Tree‐Ring ResearchFort CollinsColorado80526USA
| | - P. Z. Fulé
- School of ForestryNorthern Arizona UniversityFlagstaffArizona86011USA
| | - R. E. Keane
- Missoula Fire Sciences LaboratoryUSDA‐FS, Rocky Mountain Research StationMissoulaMontana59808USA
| | - E. E. Knapp
- USDA‐FS, Pacific Southwest Research StationReddingCalifornia96002USA
| | - J. M. Lydersen
- Fire and Resource Assessment ProgramCalifornia Department of Forestry and Fire ProtectionSacramentoCalifornia94244USA
| | | | - M. J. Reilly
- USDA‐FS, Pacific Northwest Research StationCorvallisOregon97333USA
| | - A. J. Sánchez Meador
- Ecological Restoration InstituteNorthern Arizona UniversityFlagstaffArizona86011USA
| | - S. L. Stephens
- Department of Environmental Science, Policy, and ManagementUniversity of California–BerkeleyBerkeleyCalifornia94720USA
| | - J. T. Stevens
- U.S. Geological SurveyFort Collins Science CenterNew Mexico Landscapes Field StationSanta FeNew Mexico87508USA
| | - A. H. Taylor
- Department of Geography, Earth and Environmental Systems InstituteThe Pennsylvania State UniversityUniversity ParkPennsylvania16802USA
| | - L. L. Yocom
- Department of Wildland Resources and the Ecology CenterUtah State UniversityLoganUtah84322USA
| | - M. A. Battaglia
- USDA‐FS, Rocky Mountain Research StationFort CollinsColorado80526USA
| | - D. J. Churchill
- Washington State Department of Natural ResourcesOlympiaWashington98504USA
| | - L. D. Daniels
- Department of Forest and Conservation SciencesUniversity of British ColumbiaVancouverBritish ColumbiaV6T 1Z4Canada
| | - D. A. Falk
- School of Natural Resources and the EnvironmentUniversity of ArizonaTucsonArizona85721USA
- Laboratory of Tree‐Ring ResearchUniversity of ArizonaTucsonArizona85721USA
| | - P. Henson
- Oregon Fish and Wildlife OfficeUSDI Fish & Wildlife ServicePortlandOregon97232USA
| | - J. D. Johnston
- College of ForestryOregon State UniversityCorvallisOregon97333USA
| | - M. A. Krawchuk
- College of ForestryOregon State UniversityCorvallisOregon97333USA
| | - C. R. Levine
- Spatial Informatics GroupPleasantonCalifornia94566USA
| | - G. W. Meigs
- Washington State Department of Natural ResourcesOlympiaWashington98504USA
| | - A. G. Merschel
- College of ForestryOregon State UniversityCorvallisOregon97333USA
| | - M. P. North
- USDA‐FS, Pacific Southwest Research StationMammoth LakesCalifornia93546USA
| | - H. D. Safford
- USDA‐FS, Pacific Southwest RegionVallejoCalifornia94592USA
| | - T. W. Swetnam
- Laboratory of Tree‐Ring ResearchUniversity of ArizonaTucsonArizona85721USA
| | - A. E. M. Waltz
- Ecological Restoration InstituteNorthern Arizona UniversityFlagstaffArizona86011USA
| |
Collapse
|
8
|
Jager HI, Long JW, Malison RL, Murphy BP, Rust A, Silva LGM, Sollmann R, Steel ZL, Bowen MD, Dunham JB, Ebersole JL, Flitcroft RL. Resilience of terrestrial and aquatic fauna to historical and future wildfire regimes in western North America. Ecol Evol 2021; 11:12259-12284. [PMID: 34594498 PMCID: PMC8462151 DOI: 10.1002/ece3.8026] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/12/2021] [Accepted: 07/24/2021] [Indexed: 01/08/2023] Open
Abstract
Wildfires in many western North American forests are becoming more frequent, larger, and severe, with changed seasonal patterns. In response, coniferous forest ecosystems will transition toward dominance by fire-adapted hardwoods, shrubs, meadows, and grasslands, which may benefit some faunal communities, but not others. We describe factors that limit and promote faunal resilience to shifting wildfire regimes for terrestrial and aquatic ecosystems. We highlight the potential value of interspersed nonforest patches to terrestrial wildlife. Similarly, we review watershed thresholds and factors that control the resilience of aquatic ecosystems to wildfire, mediated by thermal changes and chemical, debris, and sediment loadings. We present a 2-dimensional life history framework to describe temporal and spatial life history traits that species use to resist wildfire effects or to recover after wildfire disturbance at a metapopulation scale. The role of fire refuge is explored for metapopulations of species. In aquatic systems, recovery of assemblages postfire may be faster for smaller fires where unburned tributary basins or instream structures provide refuge from debris and sediment flows. We envision that more-frequent, lower-severity fires will favor opportunistic species and that less-frequent high-severity fires will favor better competitors. Along the spatial dimension, we hypothesize that fire regimes that are predictable and generate burned patches in close proximity to refuge will favor species that move to refuges and later recolonize, whereas fire regimes that tend to generate less-severely burned patches may favor species that shelter in place. Looking beyond the trees to forest fauna, we consider mitigation options to enhance resilience and buy time for species facing a no-analog future.
Collapse
Affiliation(s)
- Henriette I. Jager
- Environmental Sciences DivisionOak Ridge National Laboratory (ORNL)Oak RidgeTNUSA
| | - Jonathan W. Long
- U.S. Department of AgriculturePacific Southwest Research StationDavisCAUSA
| | - Rachel L. Malison
- Flathead Lake Biological StationThe University of MontanaPolsonMTUSA
| | - Brendan P. Murphy
- School of Environmental ScienceSimon Fraser UniversityBurnabyBCCanada
| | - Ashley Rust
- Civil and Environmental Engineering DepartmentColorado School of MinesGoldenCOUSA
| | - Luiz G. M. Silva
- Institute for Land, Water and SocietyCharles Sturt UniversityAlburyNSWAustralia
- Department of CivilEnvironmental and Geomatic EngineeringStocker LabInstitute of Environmental EngineeringETH ZurichZürichSwitzerland
| | - Rahel Sollmann
- Department of Wildlife, Fish, and Conservation BiologyUniversity of California DavisDavisCAUSA
| | - Zachary L. Steel
- Department of Environmental Science, Policy and ManagementUniversity of CaliforniaBerkeleyCAUSA
| | - Mark D. Bowen
- Thomas Gast & Associates Environmental ConsultantsArcataCAUSA
| | - Jason B. Dunham
- U.S. Geological Survey, Forest and Rangeland Ecosystem Science CenterCorvallisORUSA
| | - Joseph L. Ebersole
- Center for Public Health and Environmental AssessmentPacific Ecological Systems DivisionU.S. Environmental Protection AgencyCorvallisORUSA
| | | |
Collapse
|
9
|
Aronson J, Goodwin N, Orlando L, Eisenberg C, Cross AT. A world of possibilities: six restoration strategies to support the United Nation's Decade on Ecosystem Restoration. Restor Ecol 2020. [DOI: 10.1111/rec.13170] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- James Aronson
- Center for Conservation and Sustainable Development Missouri Botanical Garden 4344 Shaw Blvd, St Louis MO 63110 U.S.A
| | - Neva Goodwin
- Economics in Context Initiative at the Global Development Policy Center Boston University Boston MA 02215 U.S.A
| | - Laura Orlando
- School of Public Health School Boston University Boston MA 02118 U.S.A
| | - Cristina Eisenberg
- College of Forestry, Forest Ecosystems and Society Oregon State University Corvallis OR 97331 U.S.A
| | - Adam T. Cross
- ARC Centre for Mine Site Restoration, School of Molecular and Life Science Curtin University GPO Box U1987, Bentley WA, Perth 6102 Australia
| |
Collapse
|