1
|
Mongan D, Perry BI, Healy C, Susai SR, Zammit S, Cannon M, Cotter DR. Longitudinal Trajectories of Plasma Polyunsaturated Fatty Acids and Associations With Psychosis Spectrum Outcomes in Early Adulthood. Biol Psychiatry 2024; 96:772-781. [PMID: 38631425 DOI: 10.1016/j.biopsych.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/15/2024] [Accepted: 04/07/2024] [Indexed: 04/19/2024]
Abstract
BACKGROUND Evidence supports associations between polyunsaturated fatty acids such as docosahexaenoic acid (DHA) and psychosis. However, polyunsaturated fatty acid trajectories in the general population have not been characterized, and associations with psychosis spectrum outcomes in early adulthood are unknown. METHODS Plasma omega-6 to omega-3 ratio and DHA (expressed as percentage of total fatty acids) were measured by nuclear magnetic spectroscopy at 7, 15, 17, and 24 years of age in participants of ALSPAC (Avon Longitudinal Study of Parents and Children). Curvilinear growth mixture modeling evaluated body mass index-adjusted trajectories of both measures. Outcomes were assessed at 24 years. Psychotic experiences (PEs), at-risk mental state status, psychotic disorder, and number of PEs were assessed using the Psychosis-Like Symptoms interview (n = 3635; 2247 [61.8%] female). Negative symptoms score was measured using the Community Assessment of Psychic Experiences (n = 3484; 2161 [62.0%] female). Associations were adjusted for sex, ethnicity, parental social class, and cumulative smoking and alcohol use. RESULTS Relative to stable average, the persistently high omega-6 to omega-3 ratio trajectory was associated with increased odds of PEs and psychotic disorder, but attenuated on adjustment for covariates (PEs adjusted odds ratio [aOR] = 1.63, 95% CI = 0.92-2.89; psychotic disorder aOR = 1.69, 95% CI = 0.71-4.07). This was also the case for persistently low DHA (PEs aOR = 1.42, 95% CI = 0.84-2.37; psychotic disorder aOR = 1.14, 95% CI = 0.49-2.67). Following adjustment, persistently high omega-6 to omega-3 ratio was associated with increased number of PEs (β = 0.41, 95% CI = 0.05-0.78) and negative symptoms score (β = 0.43, 95% CI = 0.14-0.72), as was persistently low DHA (number of PEs β = 0.45, 95% CI = 0.14-0.76; negative symptoms β = 0.35, 95% CI = 0.12-0.58). CONCLUSIONS Optimization of polyunsaturated fatty acid status during development warrants further investigation in relation to psychotic symptoms in early adulthood.
Collapse
Affiliation(s)
- David Mongan
- Centre for Public Health, Queen's University Belfast, Northern Ireland; Department of Psychiatry, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin, Ireland.
| | - Benjamin I Perry
- Department of Psychiatry, University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom; Cambridgeshire and Peterborough National Health Service Foundation Trust, Cambridge, United Kingdom
| | - Colm Healy
- Department of Psychiatry, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin, Ireland
| | - Subash Raj Susai
- Department of Psychiatry, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin, Ireland
| | - Stan Zammit
- Centre for Academic Mental Health, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom; Division of Psychological Medicine and Clinical Neurosciences, Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, United Kingdom
| | - Mary Cannon
- Department of Psychiatry, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin, Ireland; FutureNeuro Science Foundation Ireland Research Centre, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin, Ireland
| | - David R Cotter
- Department of Psychiatry, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin, Ireland; FutureNeuro Science Foundation Ireland Research Centre, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin, Ireland
| |
Collapse
|
2
|
Desale SE, Chidambaram H, Qureshi T, Chinnathambi S. Internalization and Endosomal Trafficking of Extracellular Tau in Microglia Improved by α-Linolenic Acid. Methods Mol Biol 2024; 2761:245-255. [PMID: 38427241 DOI: 10.1007/978-1-0716-3662-6_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Alzheimer's disease (AD) is distinguished by extracellular accumulation of amyloid-beta plaques and intracellular neurofibrillary tangles of Tau. Pathogenic Tau species are also known to display "prion-like propagation," which explains their presence in extracellular spaces as well. Glial population, especially microglia, tend to proclaim neuroinflammatory condition, disrupted signaling mechanisms, and cytoskeleton deregulation in AD. Omega-3 fatty acids play a neuroprotective role in the brain, which can trigger the anti-inflammatory pathways as well as actin dynamics in the cells. Improvement of cytoskeletal assembly mechanism by omega-3 fatty acids would regulate the other signaling cascades in the cells, leading to refining clearance of extracellular protein burden in AD. In this study, we focused on analyzing the ability of α-linolenic acid (ALA) as a regulator of actin dynamics to balance the signaling pathways in microglia, including endocytosis of extracellular Tau burden in AD.
Collapse
Affiliation(s)
- Smita Eknath Desale
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Department of Neurochemistry, National Institute of Mental Health and Neuro Sciences (NIMHANS), Institute of National Importance, Bengaluru, Karnataka, India
| | - Hariharakrishnan Chidambaram
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Department of Neurochemistry, National Institute of Mental Health and Neuro Sciences (NIMHANS), Institute of National Importance, Bengaluru, Karnataka, India
| | - Tazeen Qureshi
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Department of Neurochemistry, National Institute of Mental Health and Neuro Sciences (NIMHANS), Institute of National Importance, Bengaluru, Karnataka, India
| | - Subashchandrabose Chinnathambi
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
- Department of Neurochemistry, National Institute of Mental Health and Neuro Sciences (NIMHANS), Institute of National Importance, Bengaluru, Karnataka, India.
| |
Collapse
|
3
|
Runau F, Arshad A, Isherwood JD, Sandhu JK, Ng LL, Dennison AR, Jones DJL. Proteomic Characterization of Circulating Molecular Perturbations Associated With Pancreatic Adenocarcinoma Following Intravenous ω-3 Fatty Acid and Gemcitabine Administration: A Pilot Study. JPEN J Parenter Enteral Nutr 2020; 45:738-750. [PMID: 32716569 DOI: 10.1002/jpen.1952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 02/01/2023]
Abstract
BACKGROUND Administration of intravenous ω-3 fatty acid (ω-3FA) in advanced pancreatic adenocarcinoma patients receiving gemcitabine chemotherapy shows disease stabilization and improved progression-free survival. Using high-definition plasma proteomics, the underlying biological mechanisms responsible for these clinical effects are investigated. METHODS AND RESULTS A pilot study involving plasma that was collected at baseline from 13 patients with histologically confirmed, unresectable pancreatic adenocarcinoma (baseline group) after 1-month treatment with intravenous gemcitabine and ω-3FA (treatment group) and intravenous gemcitabine only (control group) and was prepared for proteomic analysis. A 2-arm study comparing baseline vs treatment and treatment vs control was performed. Proteins were isolated from plasma with extensive immunodepletion, then digested and labeled with isobaric tandem mass tag peptide tags. Samples were then combined, fractionated, and injected into a QExactive-Orbitrap Mass-Spectrometer and analyzed on Proteome Discoverer and Scaffold with ensuing bioinformatics analysis. Selective reaction monitoring analysis was performed for verification. In total, 3476 proteins were identified. Anti-inflammatory markers (C-reactive protein, haptoglobin, and serum amyloid-A1) were reduced in the treatment group. Enrichment analysis showed angiogenesis downregulation, complement immune systems upregulation, and epigenetic modifications on histones. Pathway analysis identified direct action via the Pi3K-AKT pathway. Serum amyloid-A1 significantly reduced (P < .001) as a potential biomarker of efficacy for ω-3FA. CONCLUSIONS This pilot study demonstrates administration of ω-3FA has potential anti-inflammatory, antiangiogenic, and proapoptotic effects via direct interaction with cancer-signaling pathways in patients with advanced pancreatic adenocarcinoma. Further studies in a larger sample size is required to validate the clinical correlation found in this preliminary study.
Collapse
Affiliation(s)
- Franscois Runau
- Department of Hepatobiliary and Pancreatic Surgery, Leicester General Hospital, Leicester, UK.,Leicester Cancer Research Centre, University of Leicester, Leicester, UK
| | - Ali Arshad
- Department of Hepatobiliary and Pancreatic Surgery, Leicester General Hospital, Leicester, UK
| | - John D Isherwood
- Department of Hepatobiliary and Pancreatic Surgery, Leicester General Hospital, Leicester, UK
| | - Jatinderpal K Sandhu
- Department of Cardiovascular Sciences and NIHR Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester, UK
| | - Leong L Ng
- Department of Cardiovascular Sciences and NIHR Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester, UK
| | - Ashley R Dennison
- Department of Hepatobiliary and Pancreatic Surgery, Leicester General Hospital, Leicester, UK
| | - Donald J L Jones
- Leicester Cancer Research Centre, University of Leicester, Leicester, UK.,Department of Cardiovascular Sciences and NIHR Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester, UK
| |
Collapse
|
4
|
Guo C, Liu Y, Fang MS, Li Y, Li W, Mahaman YAR, Zeng K, Xia Y, Ke D, Liu R, Wang JZ, Shen H, Shu X, Wang X. ω-3PUFAs Improve Cognitive Impairments Through Ser133 Phosphorylation of CREB Upregulating BDNF/TrkB Signal in Schizophrenia. Neurotherapeutics 2020; 17:1271-1286. [PMID: 32367475 PMCID: PMC7609637 DOI: 10.1007/s13311-020-00859-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Schizophrenia (SZ) is a serious mental condition and is associated with cognitive impairments. Brain-derived neurotrophic factor (BDNF) is one of the learning- and memory-related molecules found in the CNS and its level was reported to be reduced in SZ brain, while ω-3 polyunsaturated fatty acids (ω-3PUFAs) could improve SZ symptoms, but its mechanism of action remains unknown. Using MK801 injection-induced SZ rat model, we here found that supplementation with ω-3PUFAs improved the levels of p-CREB, BDNF, and p-TrkB in the brain of SZ rats, and restore hippocampal neuronal damage, thereby reducing cognitive impairments in SZ rats. However, overexpression of AAV9/CREB S133A (CREB inactivated mutation) downregulated BDNF/TrkB signaling pathway and remarkably abolished the preventive effect of ω-3PUFAs in MK801-induced schizophrenia. Interestingly, AAV9/CREB S133D (CREB activated mutation) improved synaptic dysfunctions and cognitive defects in MK801 rats. In conclusion, these findings indicate that MK801-induced SZ lesions dephosphorylate CREB at Ser133 site, leading to neuron damage, and ω-3PUFAs improve SZ cognitive impairments by upregulating the CREB/BDNF/TrkB pathway, which provides new clues for the mechanism of SZ cognitive impairments, and a basis for therapeutic intervention.
Collapse
Affiliation(s)
- Cuiping Guo
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yi Liu
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Department of Pathophysiology, Weifang Medical University, Weifang, 261053, China
| | | | - Yuanyuan Li
- Laboratory of Neurobiology, School of Biomedical Engineering, Tianjin Medical University, Tianjin, China
| | - Wensheng Li
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yacoubou Abdoul Razak Mahaman
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Cognitive Impairment Ward of Neurology Department, The Third Affiliated Hospital of Shenzhen University, 47 Youyi Rd., Shenzhen, 518001, Guangdong Province, China
| | - Kuan Zeng
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Wuhan Mental Health Center, Wuhan, 430022, China
| | - Yiyuan Xia
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Dan Ke
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Rong Liu
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jian-Zhi Wang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, Jiangsu, China
| | - Hui Shen
- Laboratory of Neurobiology, School of Biomedical Engineering, Tianjin Medical University, Tianjin, China
| | - Xiji Shu
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, 430056, China.
| | - Xiaochuan Wang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
5
|
Behdani F, Roudbaraki SN, Saberi-Karimian M, Tayefi M, Hebrani P, Akhavanrezayat A, Amlashi SV, Ferns GA, Ghayour-Mobarhan M. Assessment of the efficacy of omega-3 fatty acids on metabolic and inflammatory parameters in patients with schizophrenia taking clozapine and sodium valproate. Psychiatry Res 2018; 261:243-247. [PMID: 29329042 DOI: 10.1016/j.psychres.2017.12.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 10/15/2017] [Accepted: 12/11/2017] [Indexed: 01/21/2023]
Abstract
Omega-3 fatty acid (FA) supplementation has been reported to improve several cardio-metabolic risk factors. We aimed to assess the efficacy of omega-3 fatty acids on metabolic and inflammatory indices in patients with schizophrenia who were taking clozapine and sodium valproate. All patients were on a stable dose of 300-400mg of clozapine for 3 months. Subjects were randomized to treatment with either omega-3 fatty acid (4gr/day) or a placebo for 8 weeks. Height, weight, abdominal circumference, serum lipid profile, fasting blood glucose (FBG), and serum high sensitivity-C-reactive protein (hs-CRP) were determined at baseline and after 8 weeks of treatment. Fifty six subjects were recruited into the study. Patients with schizophrenia who were in the group receiving omega-3 FA capsules had an improvement in some anthropometric indices including weight, BMI, wrist and waist circumference, compared to the placebo group. Only changes in waist circumferences remained significantly different after adjustment for serum fasted TG. Our results showed omega-3 FA supplementation can improve some anthropometric indices in patients with schizophrenia who are taking clozapine pharmacotherapy.
Collapse
Affiliation(s)
- Fatemeh Behdani
- Psychiatry and Behavioral Sciences Research Center, Ibn-e-Sina Hospital, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyede Narjes Roudbaraki
- Psychiatry and Behavioral Sciences Research Center, Ibn-e-Sina Hospital, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Saberi-Karimian
- Student Research Committee, Department of Modern Sciences and Technologies, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Tayefi
- Department of Modern Sciences and Technologies, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Paria Hebrani
- Psychiatry and Behavioral Sciences Research Center, Ibn-e-Sina Hospital, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Akhavanrezayat
- Student Research Committee, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sadegh Vahabi Amlashi
- Department of Dermatology, Imam Reza Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Brighton & Sussex Medical School, Division of Medical Education, Falmer, Brighton, Sussex BN1 9PH, UK
| | - Majid Ghayour-Mobarhan
- Metabolic Syndrome Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad 99199-91766, Iran.
| |
Collapse
|
6
|
Neuroinflammation and Oxidative Stress in Psychosis and Psychosis Risk. Int J Mol Sci 2017; 18:ijms18030651. [PMID: 28304340 PMCID: PMC5372663 DOI: 10.3390/ijms18030651] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 03/07/2017] [Accepted: 03/15/2017] [Indexed: 12/18/2022] Open
Abstract
Although our understanding of psychotic disorders has advanced substantially in the past few decades, very little has changed in the standard of care for these illnesses since the development of atypical anti-psychotics in the 1990s. Here, we integrate new insights into the pathophysiology with the increasing interest in early detection and prevention. First, we explore the role of N-methyl-d-aspartate receptors in a subpopulation of cortical parvalbumin-containing interneurons (PVIs). Postmortem and preclinical data has implicated these neurons in the positive and negative symptoms, as well as the cognitive dysfunction present in schizophrenia. These neurons also appear to be sensitive to inflammation and oxidative stress during the perinatal and peripubertal periods, which may be mediated in large part by aberrant synaptic pruning. After exploring some of the molecular mechanisms through which neuroinflammation and oxidative stress are thought to exert their effects, we highlight the progress that has been made in identifying psychosis prior to onset through the identification of individuals at clinical high risk for psychosis (CHR). By combining our understanding of psychosis pathogenesis with the increasing characterization of endophenotypes that precede frank psychosis, it may be possible to identify patients before they present with psychosis and intervene to reduce the burden of the disease to both patients and families.
Collapse
|
7
|
Bundy JL, Inouye BD, Mercer RS, Nowakowski RS. Fractionation-dependent improvements in proteome resolution in the mouse hippocampus by IEF LC-MS/MS. Electrophoresis 2016; 37:2054-62. [DOI: 10.1002/elps.201600076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 04/03/2016] [Accepted: 04/20/2016] [Indexed: 01/19/2023]
Affiliation(s)
- Joseph L. Bundy
- Department of Biomedical Sciences, College of Medicine; Florida State University; Tallahassee FL USA
| | - Brian D. Inouye
- Department of Biological Science; Florida State University; Tallahassee FL USA
| | - Roger S. Mercer
- Translational Science Laboratory; College of Medicine Florida State University; Tallahassee FL USA
| | - Richard S. Nowakowski
- Department of Biomedical Sciences, College of Medicine; Florida State University; Tallahassee FL USA
| |
Collapse
|
8
|
Abstract
Despite a lack of recent progress in the treatment of schizophrenia, our understanding of its genetic and environmental causes has considerably improved, and their relationship to aberrant patterns of neurodevelopment has become clearer. This raises the possibility that 'disease-modifying' strategies could alter the course to - and of - this debilitating disorder, rather than simply alleviating symptoms. A promising window for course-altering intervention is around the time of the first episode of psychosis, especially in young people at risk of transition to schizophrenia. Indeed, studies performed in both individuals at risk of developing schizophrenia and rodent models for schizophrenia suggest that pre-diagnostic pharmacotherapy and psychosocial or cognitive-behavioural interventions can delay or moderate the emergence of psychosis. Of particular interest are 'hybrid' strategies that both relieve presenting symptoms and reduce the risk of transition to schizophrenia or another psychiatric disorder. This Review aims to provide a broad-based consideration of the challenges and opportunities inherent in efforts to alter the course of schizophrenia.
Collapse
|
9
|
English JA, Scaife C, Harauma A, Focking M, Wynne K, Cagney G, Moriguchi T, Cotter DR. Dataset of mouse hippocampus profiled by LC-MS/MS for label-free quantitation. Data Brief 2016; 7:341-3. [PMID: 26977433 PMCID: PMC4781930 DOI: 10.1016/j.dib.2015.12.057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 12/21/2015] [Accepted: 12/31/2015] [Indexed: 11/17/2022] Open
Abstract
This dataset reports on the analysis of mouse hippocampus by LC–MS/MS, from mice fed a diet that was either deficient in n-3 FA (n-3 Def) or sufficient in n-3 FA (n-3 Adq). Label free quantitative (LFQ) analysis of the mass spectrometry data identified 1008 quantifiable proteins, 115 of which were found to be differentially expressed between the two dietary groups (n=8 per group). This data article refers to the research article “Omega-3 fatty acid deficiency disrupts endocytosis, neuritogenesis, and mitochondrial protein pathways in the mouse hippocampus” (English et al., 2013 [1]), in which a more comprehensive interpretation and analysis of the data is given.
Collapse
Affiliation(s)
- Jane A English
- Department of Psychiatry, Royal College of Surgeons in Ireland, ERC Beaumont Hospital, Dublin, Ireland; Proteome Research Centre, School of Medicine and Medical Science, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Ireland
| | - Caitriona Scaife
- Proteome Research Centre, School of Medicine and Medical Science, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Ireland
| | - Akiko Harauma
- Department of Food and Life Science, Azabu University, Sagamihara, Japan
| | - Melanie Focking
- Department of Psychiatry, Royal College of Surgeons in Ireland, ERC Beaumont Hospital, Dublin, Ireland
| | - Kieran Wynne
- Proteome Research Centre, School of Medicine and Medical Science, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Ireland
| | - Gerard Cagney
- Proteome Research Centre, School of Medicine and Medical Science, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Ireland
| | - Toru Moriguchi
- Department of Food and Life Science, Azabu University, Sagamihara, Japan
| | - David R Cotter
- Department of Psychiatry, Royal College of Surgeons in Ireland, ERC Beaumont Hospital, Dublin, Ireland
| |
Collapse
|
10
|
Carboni L, Domenici E. Proteome effects of antipsychotic drugs: Learning from preclinical models. Proteomics Clin Appl 2015; 10:430-41. [PMID: 26548651 DOI: 10.1002/prca.201500087] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 10/27/2015] [Accepted: 11/03/2015] [Indexed: 02/02/2023]
Abstract
Proteome-wide expression analyses are performed in the brain of schizophrenia patients to understand the biological basis of the disease and discover molecular paths for new clinical interventions. A major issue with postmortem analysis is the lack of tools to discern molecular modulation related to the disease from dysregulation due to medications. We review available proteome-wide analysis of antipsychotic treatment in rodents, highlighting shared dysregulated pathways that may contribute to an extended view of molecular processes underlying their pharmacological activity. Fourteen proteomic studies conducted with typical and atypical antipsychotic treatments were examined; hypothesis-based approaches are also briefly discussed. Treatment with antipsychotics mainly affects proteins belonging to metabolic pathways involved in energy generation, both in glycolytic and oxidative phosphorylation pathways, suggesting antipsychotics-induced impairments in metabolism. Nevertheless, schizophrenic patients show impaired glucose metabolism and mitochondrial dysfunctions independent of therapy. Other antipsychotics-induced changes shared by different studies implicate cytoskeletal and synaptic function proteins. The mechanism can be related to the reorganization of dendritic spines resulting from neural plasticity events induced by treatments affecting neurotransmitter circuitry. However, metabolic and plasticity pathways activated by antipsychotics can also play an authentic role in the etiopathological basis of schizophrenia.
Collapse
Affiliation(s)
- Lucia Carboni
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Enrico Domenici
- Roche Pharmaceutical Research and Early Development, Neuroscience, Ophthalmology and Rare Diseases Discovery & Translational Medicine Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| |
Collapse
|
11
|
Abstract
BACKGROUND In humans, omega-3 fatty acids are necessary for cell membranes, brain function and nerve transmission continuation. When animals are exposed to a new environment-or as a result of an apomorphine application that creates an agonistic effect on D1 and D2 receptors-they display behavioral reactions like rearing and stereotypy. This study aims to reveal the possible antipsychotic and oxidative effects of omega-3 fatty acids by comparing with chlorpromazine, a conventional antipsychotic drug, through evaluating the novelty-induced rearing and apomorphine-induced stereotypic behaviors, as well as malondialdehyde and glutathione levels in rats. METHODS Twenty-eight, adult, male, Wistar rats were used in the study. Briefly, 4 groups of rats (n = 7) were administered docosahexaenoic acid (DHA) + eicosapentaenoic acid (EPA) (300 mg/kg; DHA: 120 mg/kg + EPA: 180 mg/kg intraperitoneally [IP]), DHA + EPA (150 mg/kg; DHA: 60 mg/kg + EPA: 90 mg/kg IP), chlorpromazine (1 mg/kg, IP) and isotonic saline (1 mL/kg, IP). One hour later, apomorphine (2 mg/kg, subcutaneously) was administered to each rat. After the apomorphine administration, rats were observed for stereotypic behavior. RESULTS This study shows that omega-3 fatty acids, "similar to antipsychotics," reversed the psychotic like effects, increase of oxidants and decrease of antioxidants that are composed experimentally in rats. CONCLUSIONS The application of omega-3 fatty acids has antipsychotic effects and causes an oxidative imbalance. This study adds new evidence to the current literature regarding the possible antipsychotic effects of omega-3 fatty acids.
Collapse
|
12
|
Topol A, English JA, Flaherty E, Rajarajan P, Hartley BJ, Gupta S, Desland F, Zhu S, Goff T, Friedman L, Rapoport J, Felsenfeld D, Cagney G, Mackay-Sim A, Savas JN, Aronow B, Fang G, Zhang B, Cotter D, Brennand KJ. Increased abundance of translation machinery in stem cell-derived neural progenitor cells from four schizophrenia patients. Transl Psychiatry 2015; 5:e662. [PMID: 26485546 PMCID: PMC4930118 DOI: 10.1038/tp.2015.118] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 06/23/2015] [Accepted: 06/25/2015] [Indexed: 12/17/2022] Open
Abstract
The genetic and epigenetic factors contributing to risk for schizophrenia (SZ) remain unresolved. Here we demonstrate, for the first time, perturbed global protein translation in human-induced pluripotent stem cell (hiPSC)-derived forebrain neural progenitor cells (NPCs) from four SZ patients relative to six unaffected controls. We report increased total protein levels and protein synthesis, together with two independent sets of quantitative mass spectrometry evidence indicating markedly increased levels of ribosomal and translation initiation and elongation factor proteins, in SZ hiPSC NPCs. We posit that perturbed levels of global protein synthesis in SZ hiPSC NPCs represent a novel post-transcriptional mechanism that might contribute to disease progression.
Collapse
Affiliation(s)
- A Topol
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - J A English
- Royal College of Surgeons in Ireland, Beaumont Hospital, Beaumont, Dublin, Ireland
| | - E Flaherty
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - P Rajarajan
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - B J Hartley
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - S Gupta
- Department of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, USA
| | - F Desland
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - S Zhu
- Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - T Goff
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - L Friedman
- Childhood Psychiatry Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - J Rapoport
- Childhood Psychiatry Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - D Felsenfeld
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - G Cagney
- UCD Conway Institute of Biomolecular and Biomedical Research, Dublin, Ireland
| | - A Mackay-Sim
- Eskitis Institute for Drug Discovery, Griffith University, Brisbane, QLD, Australia
| | - J N Savas
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA, USA
| | - B Aronow
- Department of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, USA
| | - G Fang
- Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - B Zhang
- Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - D Cotter
- Royal College of Surgeons in Ireland, Beaumont Hospital, Beaumont, Dublin, Ireland
| | - K J Brennand
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
13
|
Reduced protein synthesis in schizophrenia patient-derived olfactory cells. Transl Psychiatry 2015; 5:e663. [PMID: 26485547 PMCID: PMC4930119 DOI: 10.1038/tp.2015.119] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 06/16/2015] [Accepted: 07/08/2015] [Indexed: 11/16/2022] Open
Abstract
Human olfactory neurosphere-derived (ONS) cells have the potential to provide novel insights into the cellular pathology of schizophrenia. We used discovery-based proteomics and targeted functional analyses to reveal reductions in 17 ribosomal proteins, with an 18% decrease in the total ribosomal signal intensity in schizophrenia-patient-derived ONS cells. We quantified the rates of global protein synthesis in vitro and found a significant reduction in the rate of protein synthesis in schizophrenia patient-derived ONS cells compared with control-derived cells. Protein synthesis rates in fibroblast cell lines from the same patients did not differ, suggesting cell type-specific effects. Pathway analysis of dysregulated proteomic and transcriptomic data sets from these ONS cells converged to highlight perturbation of the eIF2α, eIF4 and mammalian target of rapamycin (mTOR) translational control pathways, and these pathways were also implicated in an independent induced pluripotent stem cell-derived neural stem model, and cohort, of schizophrenia patients. Analysis in schizophrenia genome-wide association data from the Psychiatric Genetics Consortium specifically implicated eIF2α regulatory kinase EIF2AK2, and confirmed the importance of the eIF2α, eIF4 and mTOR translational control pathways at the level of the genome. Thus, we integrated data from proteomic, transcriptomic, and functional assays from schizophrenia patient-derived ONS cells with genomics data to implicate dysregulated protein synthesis for the first time in schizophrenia.
Collapse
|
14
|
Brain membrane lipids in major depression and anxiety disorders. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1851:1052-65. [DOI: 10.1016/j.bbalip.2014.12.014] [Citation(s) in RCA: 188] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 12/06/2014] [Accepted: 12/16/2014] [Indexed: 11/13/2022]
|
15
|
Keenan K, Hipwell AE. Modulation of prenatal stress via docosahexaenoic acid supplementation: implications for child mental health. Nutr Rev 2015; 73:166-74. [PMID: 26024539 DOI: 10.1093/nutrit/nuu020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Pregnant women living in poverty experience chronic and acute stressors that may lead to alterations in circulating glucocorticoids. Experimental evidence from animal models and correlational studies in humans support the hypothesis that prenatal exposure to high levels of glucocorticoids can negatively affect the developing fetus and later emotional and behavioral regulation in the offspring. In this integrative review, recent findings from research in psychiatry, obstetrics, and animal and human experimental studies on the role of docosahexaenoic acid in modulation of the stress response and brain development are discussed. The potential for an emerging field of nutritionally based perinatal preventive interventions for improving offspring mental health is described. Prenatal nutritional interventions may prove to be effective approaches to reducing common childhood mental disorders.
Collapse
Affiliation(s)
- Kate Keenan
- K. Keenan is with the Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, Illinois, USA. A.E. Hipwell is with the Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
| | - Alison E Hipwell
- K. Keenan is with the Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, Illinois, USA. A.E. Hipwell is with the Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
16
|
English JA, Wynne K, Cagney G, Cotter DR. Targeted proteomics for validation of biomarkers in early psychosis. Biol Psychiatry 2014; 76:e7-9. [PMID: 24332930 DOI: 10.1016/j.biopsych.2013.11.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 11/06/2013] [Indexed: 11/29/2022]
Affiliation(s)
- Jane A English
- Department of Psychiatry, Royal College of Surgeons in Ireland, ERC Beaumont Hospital, Dublin, Ireland.
| | - Kieran Wynne
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - Gerard Cagney
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - David R Cotter
- Department of Psychiatry, Royal College of Surgeons in Ireland, ERC Beaumont Hospital, Dublin, Ireland
| |
Collapse
|