1
|
Shah S, Yu S, Zhang C, Ali I, Wang X, Qian Y, Xiao T. Retrotransposon SINEs in age-related diseases: Mechanisms and therapeutic implications. Ageing Res Rev 2024; 101:102539. [PMID: 39395576 DOI: 10.1016/j.arr.2024.102539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/27/2024] [Accepted: 10/03/2024] [Indexed: 10/14/2024]
Abstract
Retrotransposons are self-replicating genomic elements that move from one genomic location to another using a "copy-and-paste" method involving RNA intermediaries. One family of retrotransposon that has garnered considerable attention for its association with age-related diseases and anti-aging interventions is the short interspersed nuclear elements (SINEs). This review summarizes current knowledge on the roles of SINEs in aging processes and therapies. To underscore the significant research on the involvement of SINEs in aging-related diseases, we commence by outlining compelling evidence on the classification and mechanism, highlighting implications in age-related phenomena. The intricate relationship between SINEs and diseases such as neurodegenerative disorders, heart failure, high blood pressure, atherosclerosis, type 2 diabetes mellitus, osteoporosis, visual system dysfunctions, and cancer is explored, emphasizing their roles in various age-related diseases. Recent investigations into the anti-aging potential of SINE-targeted treatments are examined, with particular attention to how SINE antisense RNA mitigate age-related alterations at the cellular and molecular levels, offering insights into potential therapeutic targets for age-related pathologies. This review aims to compile the most recent advances on the multifaceted roles of SINE retrotransposons in age-related diseases and anti-aging interventions, providing valuable insights into underlying mechanisms and therapeutic avenues for promoting healthy aging.
Collapse
Affiliation(s)
- Suleman Shah
- Thoracic Surgery Department of the First Affiliated Hospital, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Department of Cell Biology and Genetics, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China; Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical school, Shenzhen 518055, China
| | - Siyi Yu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Chen Zhang
- Department of Thoracic Surgery, The People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, Nanning 530021, China
| | - Ilyas Ali
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical school, Shenzhen 518055, China
| | - Xiufang Wang
- Department of Genetics, Hebei Medical University, Hebei Key Lab of Laboratory Animal, Shijiazhuang 050017, China
| | - Youhui Qian
- Thoracic Surgery Department of the First Affiliated Hospital, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Department of Cell Biology and Genetics, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China.
| | - Tian Xiao
- Thoracic Surgery Department of the First Affiliated Hospital, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Department of Cell Biology and Genetics, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China.
| |
Collapse
|
2
|
Snowbarger J, Koganti P, Spruck C. Evolution of Repetitive Elements, Their Roles in Homeostasis and Human Disease, and Potential Therapeutic Applications. Biomolecules 2024; 14:1250. [PMID: 39456183 PMCID: PMC11506328 DOI: 10.3390/biom14101250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024] Open
Abstract
Repeating sequences of DNA, or repetitive elements (REs), are common features across both prokaryotic and eukaryotic genomes. Unlike many of their protein-coding counterparts, the functions of REs in host cells remained largely unknown and have often been overlooked. While there is still more to learn about their functions, REs are now recognized to play significant roles in both beneficial and pathological processes in their hosts at the cellular and organismal levels. Therefore, in this review, we discuss the various types of REs and review what is known about their evolution. In addition, we aim to classify general mechanisms by which REs promote processes that are variously beneficial and harmful to host cells/organisms. Finally, we address the emerging role of REs in cancer, aging, and neurological disorders and provide insights into how RE modulation could provide new therapeutic benefits for these specific conditions.
Collapse
Affiliation(s)
| | | | - Charles Spruck
- Cancer Genome and Epigenetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA; (J.S.); (P.K.)
| |
Collapse
|
3
|
Mrabti C, Yang N, Desdín-Micó G, Alonso-Calleja A, Vílchez-Acosta A, Pico S, Parras A, Piao Y, Schoenfeldt L, Luo S, Haghani A, Brooke R, del Carmen Maza M, Branchina C, Maroun CY, von Meyenn F, Naveiras O, Horvath S, Sen P, Ocampo A. Loss of H3K9 trimethylation leads to premature aging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.24.604929. [PMID: 39091811 PMCID: PMC11291141 DOI: 10.1101/2024.07.24.604929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Aging is the major risk factor for most human diseases and represents a major socio-economical challenge for modern societies. Despite its importance, the process of aging remains poorly understood. Epigenetic dysregulation has been proposed as a key driver of the aging process. Modifications in transcriptional networks and chromatin structure might be central to age-related functional decline. A prevalent feature described during aging is the overall reduction in heterochromatin, specifically marked by the loss of repressive histone modification, Histone 3 lysine 9 trimethylation (H3K9me3). However, the role of H3K9me3 in aging, especially in mammals, remains unclear. Here we show using a novel mouse strain, (TKOc), carrying a triple knockout of three methyltransferases responsible for H3K9me3 deposition, that the inducible loss of H3K9me3 in adulthood results in premature aging. TKOc mice exhibit reduced lifespan, lower body weight, increased frailty index, multi-organ degeneration, transcriptional changes with significant upregulation of transposable elements, and accelerated epigenetic age. Our data strongly supports the concept that the loss of epigenetic information directly drives the aging process. These findings reveal the importance of epigenetic regulation in aging and suggest that interventions targeting epigenetic modifications could potentially slow down or reverse age-related decline. Understanding the molecular mechanisms underlying the process of aging will be crucial for developing novel therapeutic strategies that can delay the onset of age-associated diseases and preserve human health at old age specially in rapidly aging societies.
Collapse
Affiliation(s)
- Calida Mrabti
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Vaud, Switzerland
| | - Na Yang
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Gabriela Desdín-Micó
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Vaud, Switzerland
| | - Alejandro Alonso-Calleja
- Laboratory of Regenerative Hematopoiesis, Department of Biomedical Sciences, University of Lausanne, Switzerland
- Laboratory of Metabolic Signaling, Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Alba Vílchez-Acosta
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Vaud, Switzerland
| | - Sara Pico
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Vaud, Switzerland
| | | | - Yulan Piao
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Lucas Schoenfeldt
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Vaud, Switzerland
- EPITERNA SA, Epalinges, Switzerland
| | - Siyuan Luo
- Departement of Health Sciences and Technology, ETH Zurich, Zurich
| | | | - Robert Brooke
- Epigenetic Clock Development, Foundation, Torrance, California, USA
| | - María del Carmen Maza
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Vaud, Switzerland
| | - Clémence Branchina
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Vaud, Switzerland
| | - Céline Yacoub Maroun
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Vaud, Switzerland
| | | | - Olaia Naveiras
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD 21224, USA
- Laboratory of Regenerative Hematopoiesis, Department of Biomedical Sciences, University of Lausanne, Switzerland
| | - Steve Horvath
- Altos Labs, San Diego, CA, USA
- Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Payel Sen
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Alejandro Ocampo
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Vaud, Switzerland
- EPITERNA SA, Epalinges, Switzerland
| |
Collapse
|
4
|
Oomen ME, Torres-Padilla ME. Jump-starting life: balancing transposable element co-option and genome integrity in the developing mammalian embryo. EMBO Rep 2024; 25:1721-1733. [PMID: 38528171 PMCID: PMC11015026 DOI: 10.1038/s44319-024-00118-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/23/2024] [Accepted: 03/05/2024] [Indexed: 03/27/2024] Open
Abstract
Remnants of transposable elements (TEs) are widely expressed throughout mammalian embryo development. Originally infesting our genomes as selfish elements and acting as a source of genome instability, several of these elements have been co-opted as part of a complex system of genome regulation. Many TEs have lost transposition ability and their transcriptional potential has been tampered as a result of interactions with the host throughout evolutionary time. It has been proposed that TEs have been ultimately repurposed to function as gene regulatory hubs scattered throughout our genomes. In the early embryo in particular, TEs find a perfect environment of naïve chromatin to escape transcriptional repression by the host. As a consequence, it is thought that hosts found ways to co-opt TE sequences to regulate large-scale changes in chromatin and transcription state of their genomes. In this review, we discuss several examples of TEs expressed during embryo development, their potential for co-option in genome regulation and the evolutionary pressures on TEs and on our genomes.
Collapse
Affiliation(s)
- Marlies E Oomen
- Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, München, Germany
| | - Maria-Elena Torres-Padilla
- Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, München, Germany.
- Faculty of Biology, Ludwig-Maximilians Universität, München, Germany.
| |
Collapse
|
5
|
Mustafin RN, Khusnutdinova EK. Involvement of transposable elements in Alzheimer's disease pathogenesis. Vavilovskii Zhurnal Genet Selektsii 2024; 28:228-238. [PMID: 38680184 PMCID: PMC11043511 DOI: 10.18699/vjgb-24-27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 10/30/2023] [Accepted: 11/02/2023] [Indexed: 05/01/2024] Open
Abstract
Alzheimer's disease affects an average of 5 % of the population with a significant increase in prevalence with age, suggesting that the same mechanisms that underlie aging may influence this pathology. Investigation of these mechanisms is promising for effective methods of treatment and prevention of the disease. Possible participants in these mechanisms are transposons, which serve as drivers of epigenetic regulation, since they form species-specific distributions of non-coding RNA genes in genomes in evolution. Study of miRNA involvement in Alzheimer's disease pathogenesis is relevant, since the associations of protein-coding genes (APOE4, ABCA7, BIN1, CLU, CR1, PICALM, TREM2) with the disease revealed as a result of GWAS make it difficult to explain its complex pathogenesis. Specific expression changes of many genes were found in different brain parts of Alzheimer's patients, which may be due to global regulatory changes under the influence of transposons. Experimental and clinical studies have shown pathological activation of retroelements in Alzheimer's disease. Our analysis of scientific literature in accordance with MDTE DB revealed 28 miRNAs derived from transposons (17 from LINE, 5 from SINE, 4 from HERV, 2 from DNA transposons), the expression of which specifically changes in this disease (decreases in 17 and increases in 11 microRNA). Expression of 13 out of 28 miRNAs (miR-151a, -192, -211, -28, -31, -320c, -335, -340, -378a, -511, -576, -708, -885) also changes with aging and cancer development, which indicates the presence of possible common pathogenetic mechanisms. Most of these miRNAs originated from LINE retroelements, the pathological activation of which is associated with aging, carcinogenesis, and Alzheimer's disease, which supports the hypothesis that these three processes are based on the primary dysregulation of transposons that serve as drivers of epigenetic regulation of gene expression in ontogeny.
Collapse
Affiliation(s)
| | - E K Khusnutdinova
- Bashkir State Medical University, Ufa, Russia Institute of Biochemistry and Genetics - Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa, Russia
| |
Collapse
|
6
|
Benarroch E. What Is the Role of Nuclear Envelope Proteins in Neurologic Disorders? Neurology 2024; 102:e209202. [PMID: 38330281 DOI: 10.1212/wnl.0000000000209202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 02/10/2024] Open
|
7
|
Kang J, Benjamin DI, Kim S, Salvi JS, Dhaliwal G, Lam R, Goshayeshi A, Brett JO, Liu L, Rando TA. Depletion of SAM leading to loss of heterochromatin drives muscle stem cell ageing. Nat Metab 2024; 6:153-168. [PMID: 38243132 PMCID: PMC10976122 DOI: 10.1038/s42255-023-00955-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 11/30/2023] [Indexed: 01/21/2024]
Abstract
The global loss of heterochromatin during ageing has been observed in eukaryotes from yeast to humans, and this has been proposed as one of the causes of ageing. However, the cause of this age-associated loss of heterochromatin has remained enigmatic. Here we show that heterochromatin markers, including histone H3K9 di/tri-methylation and HP1, decrease with age in muscle stem cells (MuSCs) as a consequence of the depletion of the methyl donor S-adenosylmethionine (SAM). We find that restoration of intracellular SAM in aged MuSCs restores heterochromatin content to youthful levels and rejuvenates age-associated features, including DNA damage accumulation, increased cell death, and defective muscle regeneration. SAM is not only a methyl group donor for transmethylation, but it is also an aminopropyl donor for polyamine synthesis. Excessive consumption of SAM in polyamine synthesis may reduce its availability for transmethylation. Consistent with this premise, we observe that perturbation of increased polyamine synthesis by inhibiting spermidine synthase restores intracellular SAM content and heterochromatin formation, leading to improvements in aged MuSC function and regenerative capacity in male and female mice. Together, our studies demonstrate a direct causal link between polyamine metabolism and epigenetic dysregulation during murine MuSC ageing.
Collapse
Affiliation(s)
- Jengmin Kang
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Paul F. Glenn Laboratories for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA
| | - Daniel I Benjamin
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Paul F. Glenn Laboratories for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA
| | - Soochi Kim
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Paul F. Glenn Laboratories for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA
| | - Jayesh S Salvi
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Paul F. Glenn Laboratories for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA
| | - Gurkamal Dhaliwal
- Paul F. Glenn Laboratories for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA
| | - Richard Lam
- Paul F. Glenn Laboratories for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA
| | - Armon Goshayeshi
- Paul F. Glenn Laboratories for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA
| | - Jamie O Brett
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Paul F. Glenn Laboratories for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA
| | - Ling Liu
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Paul F. Glenn Laboratories for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA
- Department of Neurology and Broad Stem Cell Research Center, University of California, Los Angeles, Los Angeles, CA, USA
| | - Thomas A Rando
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA.
- Paul F. Glenn Laboratories for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA.
- Neurology Service, Veterans Affairs Palo Alto Healthcare System, Palo Alto, CA, USA.
- Department of Neurology and Broad Stem Cell Research Center, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
8
|
DeMarino C, Nath A, Zhuang Z, Doucet-O’Hare TT. Does the interplay between human endogenous retrovirus K and extracellular vesicles contribute to aging? EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2023; 4:548-56. [PMID: 38606283 PMCID: PMC11007738 DOI: 10.20517/evcna.2023.45] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
The role of extracellular vesicles (EVs), including retroviral-like particles (RVLPs), in pathogenic processes is currently a subject of active investigation. Several studies have identified mechanistic links between the increased presence of EVs and the process of senescence. A recent study reveals that the reverse transcribed complementary DNA (cDNA) of a human endogenous retroviral sequence can activate the innate immune system and result in tissue damage and/or the spread of cellular senescence to distant tissues. Several studies have linked EVs to age-related diseases, such as Alzheimer's disease and Parkinson's disease, and have included isolation of EVs from individuals with these diseases. Loss of epigenetic regulation, immune activation, and environmental stimuli can all lead to the expression of endogenous retroviruses and the incorporation of their proteins and transcripts into EVs. In addition, EVs disseminating these endogenous retroviral components have now been shown to act in a paracrine manner in multiple human diseases. Further investigation of the connection between EVs containing endogenous retroviral protein products or nucleotides should be pursued in models of age-related diseases.
Collapse
Affiliation(s)
- Catherine DeMarino
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA
| | - Avindra Nath
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA
| | - Zhengping Zhuang
- Neuro-Oncology Branch, National Cancer Institute, Bethesda, MD 20892, USA
| | | |
Collapse
|
9
|
Frost B. Alzheimer's disease and related tauopathies: disorders of disrupted neuronal identity. Trends Neurosci 2023; 46:797-813. [PMID: 37591720 PMCID: PMC10528597 DOI: 10.1016/j.tins.2023.07.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/20/2023] [Accepted: 07/24/2023] [Indexed: 08/19/2023]
Abstract
Postmitotic neurons require persistently active controls to maintain terminal differentiation. Unlike dividing cells, aberrant cell cycle activation in mature neurons causes apoptosis rather than transformation. In Alzheimer's disease (AD) and related tauopathies, evidence suggests that pathogenic forms of tau drive neurodegeneration via neuronal cell cycle re-entry. Multiple interconnected mechanisms linking tau to cell cycle activation have been identified, including, but not limited to, tau-induced overstabilization of the actin cytoskeleton, consequent changes to nuclear architecture, and disruption of heterochromatin-mediated gene silencing. Cancer- and development-associated pathways are upregulated in human and cellular models of tauopathy, and many tau-induced cellular phenotypes are also present in various cancers and progenitor/stem cells. In this review, I delve into mechanistic parallels between tauopathies, cancer, and development, and highlight the role of tau in cancer and in the developing brain. Based on these studies, I put forth a model by which pathogenic forms of tau disrupt the program that maintains terminal neuronal differentiation, driving cell cycle re-entry and consequent neuronal death. This framework presents tauopathies as conditions involving the profound toxic disruption of neuronal identity.
Collapse
Affiliation(s)
- Bess Frost
- Sam & Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, TX, USA; Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health San Antonio, San Antonio, TX, USA; Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, TX, USA.
| |
Collapse
|
10
|
López-Gil L, Pascual-Ahuir A, Proft M. Genomic Instability and Epigenetic Changes during Aging. Int J Mol Sci 2023; 24:14279. [PMID: 37762580 PMCID: PMC10531692 DOI: 10.3390/ijms241814279] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Aging is considered the deterioration of physiological functions along with an increased mortality rate. This scientific review focuses on the central importance of genomic instability during the aging process, encompassing a range of cellular and molecular changes that occur with advancing age. In particular, this revision addresses the genetic and epigenetic alterations that contribute to genomic instability, such as telomere shortening, DNA damage accumulation, and decreased DNA repair capacity. Furthermore, the review explores the epigenetic changes that occur with aging, including modifications to histones, DNA methylation patterns, and the role of non-coding RNAs. Finally, the review discusses the organization of chromatin and its contribution to genomic instability, including heterochromatin loss, chromatin remodeling, and changes in nucleosome and histone abundance. In conclusion, this review highlights the fundamental role that genomic instability plays in the aging process and underscores the need for continued research into these complex biological mechanisms.
Collapse
Affiliation(s)
- Lucía López-Gil
- Department of Biotechnology, Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València, Ingeniero Fausto Elio s/n, 46022 Valencia, Spain;
- Department of Molecular and Cellular Pathology and Therapy, Instituto de Biomedicina de Valencia IBV-CSIC, Consejo Superior de Investigaciones Científicas CSIC, Jaime Roig 11, 46010 Valencia, Spain
| | - Amparo Pascual-Ahuir
- Department of Biotechnology, Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València, Ingeniero Fausto Elio s/n, 46022 Valencia, Spain;
| | - Markus Proft
- Department of Molecular and Cellular Pathology and Therapy, Instituto de Biomedicina de Valencia IBV-CSIC, Consejo Superior de Investigaciones Científicas CSIC, Jaime Roig 11, 46010 Valencia, Spain
| |
Collapse
|
11
|
Berteli TS, Wang F, McKerrow W, Navarro PA, Fenyo D, Boeke JD, Kohlrausch FB, Keefe DL. Transposon insertion profiling by sequencing (TIPseq) identifies novel LINE-1 insertions in human sperm. J Assist Reprod Genet 2023; 40:1835-1843. [PMID: 37310664 PMCID: PMC10371950 DOI: 10.1007/s10815-023-02852-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/01/2023] [Indexed: 06/14/2023] Open
Abstract
PURPOSE Long interspersed nuclear element-1 (LINE-1 or L1) comprises 17% of the human genome. Retrotransposons may perturb gene integrity or alter gene expression by altering regulatory regions in the genome. The germline employs a number of mechanisms, including cytosine methylation, to repress retrotransposon transcription throughout most of life. Demethylation during germ cell and early embryo development de-represses retrotransposons. Intriguingly, de novo genetic variation appearing in sperm has been implicated in a number of disorders in offspring, including autism spectrum disorder, schizophrenia, and bipolar disorder. We hypothesize that human sperm exhibit de novo retrotransposition and employ a new sequencing method, single cell transposon insertion profiling by sequencing (scTIPseq) to map them in small amounts of human sperm. METHODS Cross-sectional case-control study of sperm samples (n=10 men; ages 32-55 years old) from consenting men undergoing IVF at NYU Langone Fertility Center. scTIPseq identified novel LINE-1 insertions in individual sperm and TIPseqHunter, a custom bioinformatics pipeline, compared the architecture of sperm LINE-1 to known LINE-1 insertions from the European database of Human specific LINE-1 (L1Hs) retrotransposon insertions (euL1db). RESULTS scTIPseq identified 17 novel insertions in sperm. New insertions were mainly intergenic or intronic. Only one sample did not exhibit new insertions. The location or number of novel insertions did not differ by paternal age. CONCLUSION This study for the first time reports novel LINE-1 insertions in human sperm, demonstrating the feasibility of scTIPseq, and identifies new contributors to genetic diversity in the human germ line.
Collapse
Affiliation(s)
- Thalita S Berteli
- Department of Obstetrics and Gynecology, NYU Grossman School of Medicine, New York, NY, USA.
- Human Reproduction Division, Department of Gynecology and Obstetrics, Faculty of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP, Brazil.
| | - Fang Wang
- Department of Obstetrics and Gynecology, NYU Grossman School of Medicine, New York, NY, USA
| | - Wilson McKerrow
- Institute for Systems Genetics, NYU Grossman School of Medicine, New York, NY, USA
| | - Paula A Navarro
- Human Reproduction Division, Department of Gynecology and Obstetrics, Faculty of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - David Fenyo
- Institute for Systems Genetics, NYU Grossman School of Medicine, New York, NY, USA
| | - Jef D Boeke
- Institute for Systems Genetics, NYU Grossman School of Medicine, New York, NY, USA
| | - Fabiana B Kohlrausch
- Department of Obstetrics and Gynecology, NYU Grossman School of Medicine, New York, NY, USA
- Biology Institute, Department of General Biology, Fluminense Federal University (UFF), Niteroi, RJ, Brazil
| | - David L Keefe
- Department of Obstetrics and Gynecology, NYU Grossman School of Medicine, New York, NY, USA
| |
Collapse
|
12
|
Vallés-Saiz L, Ávila J, Hernández F. Lamivudine (3TC), a Nucleoside Reverse Transcriptase Inhibitor, Prevents the Neuropathological Alterations Present in Mutant Tau Transgenic Mice. Int J Mol Sci 2023; 24:11144. [PMID: 37446327 DOI: 10.3390/ijms241311144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/03/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023] Open
Abstract
The dysregulation of transposable elements contributes to neurodegenerative disorders. Previous studies have reported an increase in retrotransposon transcription in Drosophila models as well as in human tauopathies. In this context, we tested the possible protective effects of a reverse transcriptase inhibitor, namely lamivudine (also known as 3TC), in P301S mice, an animal model of Alzheimer's disease based on FTDP-17-tau overexpression. Transgenic P301S mice administered lamivudine through drinking water showed a decrease in the following histopathological marks typical of tauopathies: tau phosphorylation; inflammation; neuronal death; and hippocampal atrophy. Lamivudine treatment attenuated motor deficits (Rotarod test) and improved short-term memory (Y-maze test). To evaluate the role of tau in retrotransposition, we cotransfected HeLa cells with a plasmid containing a complete LINE-1 sequence and a neomycin reporter cassette designed for retrotransposition assays, and a plasmid with the tau sequence. LINE-1 insertion increased considerably in the cotransfection compared to the transfection without tau. In addition, lamivudine inhibited the insertion of LINE-1. Our data suggest that the progression of the tauopathy can be attenuated by the administration of lamivudine upon the first symptoms of neuropathology.
Collapse
Affiliation(s)
- Laura Vallés-Saiz
- Centro de Biología Molecular "Severo Ochoa", CSIC/UAM, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Jesús Ávila
- Centro de Biología Molecular "Severo Ochoa", CSIC/UAM, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Félix Hernández
- Centro de Biología Molecular "Severo Ochoa", CSIC/UAM, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
13
|
Escobedo SE, McGovern SE, Jauregui-Lozano JP, Stanhope SC, Anik P, Singhal K, DeBernardis R, Weake VM. Targeted RNAi screen identifies transcriptional mechanisms that prevent premature degeneration of adult photoreceptors. FRONTIERS IN EPIGENETICS AND EPIGENOMICS 2023; 1:1187980. [PMID: 37901602 PMCID: PMC10603763 DOI: 10.3389/freae.2023.1187980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
Aging is associated with a decline in visual function and increased prevalence of ocular disease, correlating with changes in the transcriptome and epigenome of cells in the eye. Here, we sought to identify the transcriptional mechanisms that are necessary to maintain photoreceptor viability and function during aging. To do this, we performed a targeted photoreceptor-specific RNAi screen in Drosophila to identify transcriptional regulators whose knockdown results in premature, age-dependent retinal degeneration. From an initial set of 155 RNAi lines each targeting a unique gene and spanning a diverse set of transcription factors, chromatin remodelers, and histone modifiers, we identified 18 high-confidence target genes whose decreased expression in adult photoreceptors leads to premature and progressive retinal degeneration. These 18 target genes were enriched for factors involved in the regulation of transcription initiation, pausing, and elongation, suggesting that these processes are essential for maintaining the health of aging photoreceptors. To identify the genes regulated by these factors, we profiled the photoreceptor transcriptome in a subset of lines. Strikingly, two of the 18 target genes, Spt5 and domino, show similar changes in gene expression to those observed in photoreceptors with advanced age. Together, our data suggest that dysregulation of factors involved in transcription initiation and elongation plays a key role in shaping the transcriptome of aging photoreceptors. Further, our findings indicate that the age-dependent changes in gene expression not only correlate but might also contribute to an increased risk of retinal degeneration.
Collapse
Affiliation(s)
- Spencer E. Escobedo
- Department of Biochemistry, Purdue University, West Lafayette, IN, United States
| | - Sarah E. McGovern
- Department of Biochemistry, Purdue University, West Lafayette, IN, United States
| | | | - Sarah C. Stanhope
- Department of Biochemistry, Purdue University, West Lafayette, IN, United States
| | - Paul Anik
- Department of Biochemistry, Purdue University, West Lafayette, IN, United States
| | - Kratika Singhal
- Department of Biochemistry, Purdue University, West Lafayette, IN, United States
| | - Ryan DeBernardis
- Department of Biochemistry, Purdue University, West Lafayette, IN, United States
| | - Vikki M. Weake
- Department of Biochemistry, Purdue University, West Lafayette, IN, United States
- Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
14
|
McKerrow W, Kagermazova L, Doudican N, Frazzette N, Kaparos E, Evans SA, Rocha A, Sedivy JM, Neretti N, Carucci J, Boeke J, Fenyö D. LINE-1 retrotransposon expression in cancerous, epithelial and neuronal cells revealed by 5' single-cell RNA-Seq. Nucleic Acids Res 2023; 51:2033-2045. [PMID: 36744437 PMCID: PMC10018344 DOI: 10.1093/nar/gkad049] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 01/11/2023] [Accepted: 01/17/2023] [Indexed: 02/07/2023] Open
Abstract
LINE-1 retrotransposons are sequences capable of copying themselves to new genomic loci via an RNA intermediate. New studies implicate LINE-1 in a range of diseases, especially in the context of aging, but without an accurate understanding of where and when LINE-1 is expressed, a full accounting of its role in health and disease is not possible. We therefore developed a method-5' scL1seq-that makes use of a widely available library preparation method (10x Genomics 5' single cell RNA-seq) to measure LINE-1 expression in tens of thousands of single cells. We recapitulated the known pattern of LINE-1 expression in tumors-present in cancer cells, absent from immune cells-and identified hitherto undescribed LINE-1 expression in human epithelial cells and mouse hippocampal neurons. In both cases, we saw a modest increase with age, supporting recent research connecting LINE-1 to age related diseases.
Collapse
Affiliation(s)
- Wilson McKerrow
- Institute for Systems Genetics, NYU Langone Health, New York, NY, USA
- Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - Larisa Kagermazova
- Institute for Systems Genetics, NYU Langone Health, New York, NY, USA
- Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - Nicole Doudican
- Ronald O. Perelman Department of Dermatology, NYU Langone Health, New York, NY, USA
| | - Nicholas Frazzette
- Ronald O. Perelman Department of Dermatology, NYU Langone Health, New York, NY, USA
| | - Efiyenia Ismini Kaparos
- Institute for Systems Genetics, NYU Langone Health, New York, NY, USA
- Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - Shane A Evans
- Center for Computational Molecular Biology, Brown University, Providence, RI, USA
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, USA
| | - Azucena Rocha
- Center for Computational Molecular Biology, Brown University, Providence, RI, USA
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, USA
| | - John M Sedivy
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, USA
- Center on the Biology of Aging, Brown University, Providence, RI, USA
| | - Nicola Neretti
- Center for Computational Molecular Biology, Brown University, Providence, RI, USA
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, USA
| | - John Carucci
- Ronald O. Perelman Department of Dermatology, NYU Langone Health, New York, NY, USA
| | - Jef D Boeke
- Institute for Systems Genetics, NYU Langone Health, New York, NY, USA
- Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
- Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn,NY11201, USA
| | - David Fenyö
- Institute for Systems Genetics, NYU Langone Health, New York, NY, USA
- Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| |
Collapse
|
15
|
Morgunova VV, Sokolova OA, Sizova TV, Malaev LG, Babaev DS, Kwon DA, Kalmykova AI. Dysfunction of Lamin B and Physiological Aging Cause Telomere Instability in Drosophila Germline. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:1600-1610. [PMID: 36717449 DOI: 10.1134/s000629792212015x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Chromatin spatial organization in the nucleus is essential for the genome functioning and regulation of gene activity. The nuclear lamina and lamina-associated proteins, lamins, play a key role in this process. Lamin dysfunction leads to the decompaction and transcriptional activation of heterochromatin, which is associated with the premature aging syndrome. In many cell types, telomeres are located at the nuclear periphery, where their replication and stability are ensured by the nuclear lamina. Moreover, diseases associated with defects in lamins and telomeres have similar manifestations and resemble physiological aging. Understanding molecular changes associated with aging at the organismal level is especially important. In this study, we compared the effects caused by the mutation in lamin B and physiological aging in the germline of the model organism Drosophila melanogaster. We have shown that the impaired localization of lamin B leads to the heterochromatin decompaction and transcriptional activation of some transposable elements and telomeric repeats. Both DNA damage and activation of homologous recombination in the telomeres were observed in the germ cells of lamin B mutants. The instability of repeat-enriched heterochromatin can be directly related to the genome destabilization, germ cell death, and sterility observed in lamin B mutants. Similar processes were observed in Drosophila germline in the course of physiological aging, which indicates a close link between the maintenance of the heterochromatin stability at the nuclear periphery and mechanisms of aging.
Collapse
Affiliation(s)
- Valeriya V Morgunova
- Institute of Molecular Genetics of National Research Centre "Kurchatov Institute", Moscow, 123182, Russia
| | - Olesya A Sokolova
- Institute of Molecular Genetics of National Research Centre "Kurchatov Institute", Moscow, 123182, Russia
| | - Tatyana V Sizova
- Institute of Molecular Genetics of National Research Centre "Kurchatov Institute", Moscow, 123182, Russia
| | - Leonid G Malaev
- Institute of Molecular Genetics of National Research Centre "Kurchatov Institute", Moscow, 123182, Russia.,Faculty of Biotechnology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Dmitry S Babaev
- Institute of Molecular Genetics of National Research Centre "Kurchatov Institute", Moscow, 123182, Russia.,Faculty of Biotechnology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Dmitry A Kwon
- Kurchatov Center for Genome Research, National Research Centre "Kurchatov Institute", Moscow, 123182, Russia
| | - Alla I Kalmykova
- Institute of Molecular Genetics of National Research Centre "Kurchatov Institute", Moscow, 123182, Russia.
| |
Collapse
|
16
|
Huang M, Hong M, Hou X, Zhu C, Chen D, Chen X, Guang S, Feng X. H3K9me1/2 methylation limits the lifespan of daf-2 mutants in C. elegans. eLife 2022; 11:74812. [PMID: 36125117 PMCID: PMC9514849 DOI: 10.7554/elife.74812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 09/16/2022] [Indexed: 11/29/2022] Open
Abstract
Histone methylation plays crucial roles in the development, gene regulation, and maintenance of stem cell pluripotency in mammals. Recent work shows that histone methylation is associated with aging, yet the underlying mechanism remains unclear. In this work, we identified a class of putative histone 3 lysine 9 mono/dimethyltransferase genes (met-2, set-6, set-19, set-20, set-21, set-32, and set-33), mutations in which induce synergistic lifespan extension in the long-lived DAF-2 (insulin growth factor 1 [IGF-1] receptor) mutant in Caenorhabditis elegans. These putative histone methyltransferase plus daf-2 double mutants not only exhibited an average lifespan nearly three times that of wild-type animals and a maximal lifespan of approximately 100 days, but also significantly increased resistance to oxidative and heat stress. Synergistic lifespan extension depends on the transcription factor DAF-16 (FOXO). mRNA-seq experiments revealed that the mRNA levels of DAF-16 Class I genes, which are activated by DAF-16, were further elevated in the daf-2;set double mutants. Among these genes, tts-1, F35E8.7, ins-35, nhr-62, sod-3, asm-2, and Y39G8B.7 are required for the lifespan extension of the daf-2;set-21 double mutant. In addition, treating daf-2 animals with the H3K9me1/2 methyltransferase G9a inhibitor also extends lifespan and increases stress resistance. Therefore, investigation of DAF-2 and H3K9me1/2 deficiency-mediated synergistic longevity will contribute to a better understanding of the molecular mechanisms of aging and therapeutic applications.
Collapse
Affiliation(s)
- Meng Huang
- Department of Obstetrics and Gynecology, University of Science and Technology of China, Hefei, China
| | - Minjie Hong
- Department of Obstetrics and Gynecology, University of Science and Technology of China, Hefei, China
| | - Xinhao Hou
- Department of Obstetrics and Gynecology, University of Science and Technology of China, Hefei, China
| | - Chengming Zhu
- Department of Obstetrics and Gynecology, University of Science and Technology of China, Hefei, China
| | - Di Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Xiangyang Chen
- Department of Obstetrics and Gynecology, University of Science and Technology of China, Hefei, China
| | - Shouhong Guang
- Department of Obstetrics and Gynecology, University of Science and Technology of China, Hefei, China
| | - Xuezhu Feng
- Department of Obstetrics and Gynecology, University of Science and Technology of China, Hefei, China
| |
Collapse
|
17
|
Rigal J, Martin Anduaga A, Bitman E, Rivellese E, Kadener S, Marr MT. Artificially stimulating retrotransposon activity increases mortality and accelerates a subset of aging phenotypes in Drosophila. eLife 2022; 11:80169. [PMID: 35980024 PMCID: PMC9427105 DOI: 10.7554/elife.80169] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/17/2022] [Indexed: 11/19/2022] Open
Abstract
Transposable elements (TEs) are mobile sequences of DNA that can become transcriptionally active as an animal ages. Whether TE activity is simply a by-product of heterochromatin breakdown or can contribute toward the aging process is not known. Here, we place the TE gypsy under the control of the UAS GAL4 system to model TE activation during aging. We find that increased TE activity shortens the life span of male Drosophila melanogaster. The effect is only apparent in middle-aged animals. The increase in mortality is not seen in young animals. An intact reverse transcriptase is necessary for the decrease in life span, implicating a DNA-mediated process in the effect. The decline in life span in the active gypsy flies is accompanied by the acceleration of a subset of aging phenotypes. TE activity increases sensitivity to oxidative stress and promotes a decline in circadian rhythmicity. The overexpression of the Forkhead-box O family (FOXO) stress response transcription factor can partially rescue the detrimental effects of increased TE activity on life span. Our results provide evidence that active TEs can behave as effectors in the aging process and suggest a potential novel role for dFOXO in its promotion of longevity in D. melanogaster.
Collapse
Affiliation(s)
- Joyce Rigal
- Department of Biology, Brandeis University, Waltham, United States
| | | | - Elena Bitman
- Department of Biology, Brandeis University, Waltham, United States
| | - Emma Rivellese
- Department of Biology, Brandeis University, Waltham, United States
| | | | - Michael T Marr
- Department of Biology, Brandeis University, Waltham, United States
| |
Collapse
|
18
|
Della Valle F, Reddy P, Yamamoto M, Liu P, Saera-Vila A, Bensaddek D, Zhang H, Prieto Martinez J, Abassi L, Celii M, Ocampo A, Nuñez Delicado E, Mangiavacchi A, Aiese Cigliano R, Rodriguez Esteban C, Horvath S, Izpisua Belmonte JC, Orlando V. LINE-1 RNA causes heterochromatin erosion and is a target for amelioration of senescent phenotypes in progeroid syndromes. Sci Transl Med 2022; 14:eabl6057. [PMID: 35947677 DOI: 10.1126/scitranslmed.abl6057] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Constitutive heterochromatin is responsible for genome repression of DNA enriched in repetitive sequences, telomeres, and centromeres. During physiological and pathological premature aging, heterochromatin homeostasis is profoundly compromised. Here, we showed that LINE-1 (Long Interspersed Nuclear Element-1; L1) RNA accumulation was an early event in both typical and atypical human progeroid syndromes. L1 RNA negatively regulated the enzymatic activity of the histone-lysine N-methyltransferase SUV39H1 (suppression of variegation 3-9 homolog 1), resulting in heterochromatin loss and onset of senescent phenotypes in vitro. Depletion of L1 RNA in dermal fibroblast cells from patients with different progeroid syndromes using specific antisense oligonucleotides (ASOs) restored heterochromatin histone 3 lysine 9 and histone 3 lysine 27 trimethylation marks, reversed DNA methylation age, and counteracted the expression of senescence-associated secretory phenotype genes such as p16, p21, activating transcription factor 3 (ATF3), matrix metallopeptidase 13 (MMP13), interleukin 1a (IL1a), BTG anti-proliferation factor 2 (BTG2), and growth arrest and DNA damage inducible beta (GADD45b). Moreover, systemic delivery of ASOs rescued the histophysiology of tissues and increased the life span of a Hutchinson-Gilford progeria syndrome mouse model. Transcriptional profiling of human and mouse samples after L1 RNA depletion demonstrated that pathways associated with nuclear chromatin organization, cell proliferation, and transcription regulation were enriched. Similarly, pathways associated with aging, inflammatory response, innate immune response, and DNA damage were down-regulated. Our results highlight the role of L1 RNA in heterochromatin homeostasis in progeroid syndromes and identify a possible therapeutic approach to treat premature aging and related syndromes.
Collapse
Affiliation(s)
- Francesco Della Valle
- King Abdullah University of Science and Technology (KAUST), Biological Environmental Sciences and Engineering Division BESE, KAUST Environmental Epigenetics Program, Thuwal, Saudi Arabia
| | - Pradeep Reddy
- Salk Institute for Biological Studies, La Jolla, CA, USA.,Altos Labs, San Diego, CA, USA
| | - Mako Yamamoto
- Salk Institute for Biological Studies, La Jolla, CA, USA.,Altos Labs, San Diego, CA, USA
| | - Peng Liu
- King Abdullah University of Science and Technology (KAUST), Biological Environmental Sciences and Engineering Division BESE, KAUST Environmental Epigenetics Program, Thuwal, Saudi Arabia
| | | | - Dalila Bensaddek
- King Abdullah University of Science and Technology (KAUST), Bioscience Core Lab
| | - Huoming Zhang
- King Abdullah University of Science and Technology (KAUST), Bioscience Core Lab
| | | | - Leila Abassi
- King Abdullah University of Science and Technology (KAUST), Biological Environmental Sciences and Engineering Division BESE, KAUST Environmental Epigenetics Program, Thuwal, Saudi Arabia
| | - Mirko Celii
- King Abdullah University of Science and Technology (KAUST), Biological Environmental Sciences and Engineering Division BESE, KAUST Environmental Epigenetics Program, Thuwal, Saudi Arabia
| | | | | | - Arianna Mangiavacchi
- King Abdullah University of Science and Technology (KAUST), Biological Environmental Sciences and Engineering Division BESE, KAUST Environmental Epigenetics Program, Thuwal, Saudi Arabia
| | | | | | | | | | - Valerio Orlando
- King Abdullah University of Science and Technology (KAUST), Biological Environmental Sciences and Engineering Division BESE, KAUST Environmental Epigenetics Program, Thuwal, Saudi Arabia
| |
Collapse
|
19
|
Sikder S, Arunkumar G, Melters DP, Dalal Y. Breaking the aging epigenetic barrier. Front Cell Dev Biol 2022; 10:943519. [PMID: 35966762 PMCID: PMC9366916 DOI: 10.3389/fcell.2022.943519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
Aging is an inexorable event occurring universally for all organisms characterized by the progressive loss of cell function. However, less is known about the key events occurring inside the nucleus in the process of aging. The advent of chromosome capture techniques and extensive modern sequencing technologies have illuminated a rather dynamic structure of chromatin inside the nucleus. As cells advance along their life cycle, chromatin condensation states alter which leads to a different epigenetic landscape, correlated with modified gene expression. The exact factors mediating these changes in the chromatin structure and function remain elusive in the context of aging cells. The accumulation of DNA damage, reactive oxygen species and loss of genomic integrity as cells cease to divide can contribute to a tumor stimulating environment. In this review, we focus on genomic and epigenomic changes occurring in an aged cell which can contribute to age-related tumor formation.
Collapse
Affiliation(s)
| | | | | | - Yamini Dalal
- Chromatin Structure and Epigenetic Mechanisms, Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, NCI, NIH, Bethesda, MD, United States
| |
Collapse
|
20
|
Li Y, Agrawal V, Virk RKA, Roth E, Li WS, Eshein A, Frederick J, Huang K, Almassalha L, Bleher R, Carignano MA, Szleifer I, Dravid VP, Backman V. Analysis of three-dimensional chromatin packing domains by chromatin scanning transmission electron microscopy (ChromSTEM). Sci Rep 2022; 12:12198. [PMID: 35842472 PMCID: PMC9288481 DOI: 10.1038/s41598-022-16028-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 07/04/2022] [Indexed: 11/09/2022] Open
Abstract
Chromatin organization over multiple length scales plays a critical role in the regulation of transcription. Deciphering the interplay of these processes requires high-resolution, three-dimensional, quantitative imaging of chromatin structure in vitro. Herein, we introduce ChromSTEM, a method that utilizes high-angle annular dark-field imaging and tomography in scanning transmission electron microscopy combined with DNA-specific staining for electron microscopy. We utilized ChromSTEM for an in-depth quantification of 3D chromatin conformation with high spatial resolution and contrast, allowing for characterization of higher-order chromatin structure almost down to the level of the DNA base pair. Employing mass scaling analysis on ChromSTEM mass density tomograms, we observed that chromatin forms spatially well-defined higher-order domains, around 80 nm in radius. Within domains, chromatin exhibits a polymeric fractal-like behavior and a radially decreasing mass-density from the center to the periphery. Unlike other nanoimaging and analysis techniques, we demonstrate that our unique combination of this high-resolution imaging technique with polymer physics-based analysis enables us to (i) investigate the chromatin conformation within packing domains and (ii) quantify statistical descriptors of chromatin structure that are relevant to transcription. We observe that packing domains have heterogeneous morphological properties even within the same cell line, underlying the potential role of statistical chromatin packing in regulating gene expression within eukaryotic nuclei.
Collapse
Affiliation(s)
- Yue Li
- Applied Physics Program, Northwestern University, Evanston, IL, 60208, USA
| | - Vasundhara Agrawal
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Ranya K A Virk
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Eric Roth
- Department of Materials Sciences and Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Wing Shun Li
- Applied Physics Program, Northwestern University, Evanston, IL, 60208, USA
| | - Adam Eshein
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Jane Frederick
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Kai Huang
- Shenzhen Bay Laboratory, Institute of Systems and Physical Biology, Shenzhen, 518132, China
| | - Luay Almassalha
- Medical Scientist Training Program, Feinberg School of Medicine, Northwestern University, Evanston, IL, 60611, USA
| | - Reiner Bleher
- Department of Materials Sciences and Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Marcelo A Carignano
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Igal Szleifer
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA.,Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
| | - Vinayak P Dravid
- Department of Materials Sciences and Engineering, Northwestern University, Evanston, IL, 60208, USA.
| | - Vadim Backman
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA.
| |
Collapse
|
21
|
A retrotransposon storm marks clinical phenoconversion to late-onset Alzheimer's disease. GeroScience 2022; 44:1525-1550. [PMID: 35585302 PMCID: PMC9213607 DOI: 10.1007/s11357-022-00580-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 04/26/2022] [Indexed: 12/03/2022] Open
Abstract
Recent reports have suggested that the reactivation of otherwise transcriptionally silent transposable elements (TEs) might induce brain degeneration, either by dysregulating the expression of genes and pathways implicated in cognitive decline and dementia or through the induction of immune-mediated neuroinflammation resulting in the elimination of neural and glial cells. In the work we present here, we test the hypothesis that differentially expressed TEs in blood could be used as biomarkers of cognitive decline and development of AD. To this aim, we used a sample of aging subjects (age > 70) that developed late-onset Alzheimer’s disease (LOAD) over a relatively short period of time (12–48 months), for which blood was available before and after their phenoconversion, and a group of cognitive stable subjects as controls. We applied our developed and validated customized pipeline that allows the identification, characterization, and quantification of the differentially expressed (DE) TEs before and after the onset of manifest LOAD, through analyses of RNA-Seq data. We compared the level of DE TEs within more than 600,000 TE-mapping RNA transcripts from 25 individuals, whose specimens we obtained before and after their phenotypic conversion (phenoconversion) to LOAD, and discovered that 1790 TE transcripts showed significant expression differences between these two timepoints (logFC ± 1.5, logCMP > 5.3, nominal p value < 0.01). These DE transcripts mapped both over- and under-expressed TE elements. Occurring before the clinical phenoconversion, this TE storm features significant increases in DE transcripts of LINEs, LTRs, and SVAs, while those for SINEs are significantly depleted. These dysregulations end with signs of manifest LOAD. This set of highly DE transcripts generates a TE transcriptional profile that accurately discriminates the before and after phenoconversion states of these subjects. Our findings suggest that a storm of DE TEs occurs before phenoconversion from normal cognition to manifest LOAD in risk individuals compared to controls, and may provide useful blood-based biomarkers for heralding such a clinical transition, also suggesting that TEs can indeed participate in the complex process of neurodegeneration.
Collapse
|
22
|
Liu JK. Antiaging agents: safe interventions to slow aging and healthy life span extension. NATURAL PRODUCTS AND BIOPROSPECTING 2022; 12:18. [PMID: 35534591 PMCID: PMC9086005 DOI: 10.1007/s13659-022-00339-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 03/29/2022] [Indexed: 05/02/2023]
Abstract
Human longevity has increased dramatically during the past century. More than 20% of the 9 billion population of the world will exceed the age of 60 in 2050. Since the last three decades, some interventions and many preclinical studies have been found to show slowing aging and increasing the healthy lifespan of organisms from yeast, flies, rodents to nonhuman primates. The interventions are classified into two groups: lifestyle modifications and pharmacological/genetic manipulations. Some genetic pathways have been characterized to have a specific role in controlling aging and lifespan. Thus, all genes in the pathways are potential antiaging targets. Currently, many antiaging compounds target the calorie-restriction mimetic, autophagy induction, and putative enhancement of cell regeneration, epigenetic modulation of gene activity such as inhibition of histone deacetylases and DNA methyltransferases, are under development. It appears evident that the exploration of new targets for these antiaging agents based on biogerontological research provides an incredible opportunity for the healthcare and pharmaceutical industries. The present review focus on the properties of slow aging and healthy life span extension of natural products from various biological resources, endogenous substances, drugs, and synthetic compounds, as well as the mechanisms of targets for antiaging evaluation. These bioactive compounds that could benefit healthy aging and the potential role of life span extension are discussed.
Collapse
Affiliation(s)
- Ji-Kai Liu
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, 430074, People's Republic of China.
| |
Collapse
|
23
|
Yang N, Srivastav SP, Rahman R, Ma Q, Dayama G, Li S, Chinen M, Lei EP, Rosbash M, Lau NC. Transposable element landscapes in aging Drosophila. PLoS Genet 2022; 18:e1010024. [PMID: 35239675 PMCID: PMC8893327 DOI: 10.1371/journal.pgen.1010024] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 01/10/2022] [Indexed: 11/28/2022] Open
Abstract
Genetic mechanisms that repress transposable elements (TEs) in young animals decline during aging, as reflected by increased TE expression in aged animals. Does increased TE expression during aging lead to more genomic TE copies in older animals? To address this question, we quantified TE Landscapes (TLs) via whole genome sequencing of young and aged Drosophila strains of wild-type and mutant backgrounds. We quantified TLs in whole flies and dissected brains and validated the feasibility of our approach in detecting new TE insertions in aging Drosophila genomes when small RNA and RNA interference (RNAi) pathways are compromised. We also describe improved sequencing methods to quantify extra-chromosomal DNA circles (eccDNAs) in Drosophila as an additional source of TE copies that accumulate during aging. Lastly, to combat the natural progression of aging-associated TE expression, we show that knocking down PAF1, a conserved transcription elongation factor that antagonizes RNAi pathways, may bolster suppression of TEs during aging and extend lifespan. Our study suggests that in addition to a possible influence by different genetic backgrounds, small RNA and RNAi mechanisms may mitigate genomic TL expansion despite the increase in TE transcripts during aging. Transposable elements, also called transposons, are genetic parasites found in all animal genomes. Normally, transposons are compacted away in silent chromatin in young animals. But, as animals age and transposon-silencing defense mechanisms break down, transposon RNAs accumulate to significant levels in old animals like fruit flies. An open question is whether the increased levels of transposon RNAs in older animals also correspond to increased genomic copies of transposons. This study approached this question by sequencing the whole genomes of young and old wild-type and mutant flies lacking a functional RNA interference (RNAi) pathway, which naturally silences transposon RNAs. Although the wild-type flies with intact RNAi activity had little new accumulation of transposon copies, the sequencing approach was able to detect several transposon accumulation occurrences in some RNAi mutants. In addition, we found that some fly transposon families can also accumulate as extra-chromosomal circular DNA copies. Lastly, we showed that genetically augmenting the expression of RNAi factors can counteract the rising transposon RNA levels in aging and promote longevity. This study improves our understanding of the animal host genome relationship with transposons during natural aging processes.
Collapse
Affiliation(s)
- Nachen Yang
- Boston University School of Medicine, Department of Biochemistry, Boston, Massachusetts, United States of America
| | - Satyam P. Srivastav
- Boston University School of Medicine, Department of Biochemistry, Boston, Massachusetts, United States of America
| | - Reazur Rahman
- Brandeis University, Department of Biology and Howard Hughes Medical Institute, Waltham, Massachusetts, United States of America
| | - Qicheng Ma
- Boston University School of Medicine, Department of Biochemistry, Boston, Massachusetts, United States of America
| | - Gargi Dayama
- Boston University School of Medicine, Department of Biochemistry, Boston, Massachusetts, United States of America
| | - Sizheng Li
- Boston University School of Medicine, Department of Biochemistry, Boston, Massachusetts, United States of America
| | - Madoka Chinen
- Nuclear Organization and Gene Expression Section, NIDDK, NIH, Bethesda, Maryland, United States of America
| | - Elissa P. Lei
- Nuclear Organization and Gene Expression Section, NIDDK, NIH, Bethesda, Maryland, United States of America
| | - Michael Rosbash
- Brandeis University, Department of Biology and Howard Hughes Medical Institute, Waltham, Massachusetts, United States of America
| | - Nelson C. Lau
- Boston University School of Medicine, Department of Biochemistry, Boston, Massachusetts, United States of America
- Boston University Genome Science Institute, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
24
|
Bakhtogarimov IR, Kudryavtseva AV, Krasnov GS, Gladysh NS, Volodin VV, Kudryavtsev AA, Bulavkina EV, Goncharova MA, Ledyaeva VS, Pastukhov IS, Vershinina YS, Starkova AM, Snezhkina AV, Shuvalova AI, Pavlov VS, Nikiforov-Nikishin DL, Moskalev AA, Guvatova ZG. The Effect of Meclofenoxate on the Transcriptome of Aging Brain of Nothobranchius guentheri Annual Killifish. Int J Mol Sci 2022; 23:ijms23052491. [PMID: 35269638 PMCID: PMC8910246 DOI: 10.3390/ijms23052491] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/16/2022] [Accepted: 02/21/2022] [Indexed: 02/04/2023] Open
Abstract
Annual fish of the genus Nothobranchius are promising models for aging research. Nothobranchius reproduces typical aspects of vertebrate aging, including hallmarks of brain aging. Meclofenoxate (MF) is a well-known compound that can enhance cognitive performance. The drug is prescribed for asthenic conditions, trauma, and vascular diseases of the brain. It is believed that MF is able to delay age-dependent changes in the human brain. However, until now, there has been no study of the MF effect on the brain transcriptome. In the present work, we performed an RNA-Seq study of brain tissues from aged Nothobranchius guentheri, which were almost lifetime administered with MF, as well as young and aged control fish. As expected, in response to MF, we revealed significant overexpression of neuron-specific genes including genes involved in synaptic activity and plasticity, neurotransmitter secretion, and neuron projection. The effect was more pronounced in female fish. In this aspect, MF alleviated age-dependent decreased expression of genes involved in neuronal activity. In both treated and untreated animals, we observed strong aging-associated overexpression of immune and inflammatory response genes. MF treatment did not prevent this effect, and moreover, some of these genes tended to be slightly upregulated under MF treatment. Additionally, we noticed upregulation of some genes associated with aging and cellular senescence, including isoforms of putative vascular cell adhesion molecule 1 (VCAM1), protein O-GlcNAcase (OGA), protein kinase C alpha type (KPCA), prolow-density lipoprotein receptor-related protein 1 (LRP1). Noteworthy, MF treatment was also associated with the elevated transcription of transposons, which are highly abundant in the N. guentheri genome. In conclusion, MF compensates for the age-dependent downregulation of neuronal activity genes, but its effect on aging brain transcriptome still cannot be considered unambiguously positive.
Collapse
Affiliation(s)
- Ildar R. Bakhtogarimov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (I.R.B.); (G.S.K.); (N.S.G.); (V.V.V.); (A.A.M.)
| | - Anna V. Kudryavtseva
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (I.R.B.); (G.S.K.); (N.S.G.); (V.V.V.); (A.A.M.)
- Correspondence: (A.V.K.); (Z.G.G.); Tel.: +7-(499)-135-23-91 (A.V.K. & Z.G.G.)
| | - George S. Krasnov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (I.R.B.); (G.S.K.); (N.S.G.); (V.V.V.); (A.A.M.)
| | - Natalya S. Gladysh
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (I.R.B.); (G.S.K.); (N.S.G.); (V.V.V.); (A.A.M.)
| | - Vsevolod V. Volodin
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (I.R.B.); (G.S.K.); (N.S.G.); (V.V.V.); (A.A.M.)
| | - Alexander A. Kudryavtsev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (A.A.K.); (E.V.B.); (M.A.G.); (V.S.L.); (Y.S.V.); (A.M.S.); (A.V.S.); (A.I.S.); (V.S.P.)
| | - Elizaveta V. Bulavkina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (A.A.K.); (E.V.B.); (M.A.G.); (V.S.L.); (Y.S.V.); (A.M.S.); (A.V.S.); (A.I.S.); (V.S.P.)
| | - Margarita A. Goncharova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (A.A.K.); (E.V.B.); (M.A.G.); (V.S.L.); (Y.S.V.); (A.M.S.); (A.V.S.); (A.I.S.); (V.S.P.)
| | - Veronika S. Ledyaeva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (A.A.K.); (E.V.B.); (M.A.G.); (V.S.L.); (Y.S.V.); (A.M.S.); (A.V.S.); (A.I.S.); (V.S.P.)
| | - Ivan S. Pastukhov
- Institute of Biotechnology and Fisheries, K.G. Razumovsky Moscow State University of Technologies and Management (the First Cossack University), 109004 Moscow, Russia; (I.S.P.); (D.L.N.-N.)
| | - Yulia S. Vershinina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (A.A.K.); (E.V.B.); (M.A.G.); (V.S.L.); (Y.S.V.); (A.M.S.); (A.V.S.); (A.I.S.); (V.S.P.)
| | - Anna M. Starkova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (A.A.K.); (E.V.B.); (M.A.G.); (V.S.L.); (Y.S.V.); (A.M.S.); (A.V.S.); (A.I.S.); (V.S.P.)
| | - Anastasiya V. Snezhkina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (A.A.K.); (E.V.B.); (M.A.G.); (V.S.L.); (Y.S.V.); (A.M.S.); (A.V.S.); (A.I.S.); (V.S.P.)
| | - Anastasija I. Shuvalova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (A.A.K.); (E.V.B.); (M.A.G.); (V.S.L.); (Y.S.V.); (A.M.S.); (A.V.S.); (A.I.S.); (V.S.P.)
| | - Vladislav S. Pavlov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (A.A.K.); (E.V.B.); (M.A.G.); (V.S.L.); (Y.S.V.); (A.M.S.); (A.V.S.); (A.I.S.); (V.S.P.)
| | - Dmitry L. Nikiforov-Nikishin
- Institute of Biotechnology and Fisheries, K.G. Razumovsky Moscow State University of Technologies and Management (the First Cossack University), 109004 Moscow, Russia; (I.S.P.); (D.L.N.-N.)
| | - Alexey A. Moskalev
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (I.R.B.); (G.S.K.); (N.S.G.); (V.V.V.); (A.A.M.)
| | - Zulfiya G. Guvatova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (I.R.B.); (G.S.K.); (N.S.G.); (V.V.V.); (A.A.M.)
- Correspondence: (A.V.K.); (Z.G.G.); Tel.: +7-(499)-135-23-91 (A.V.K. & Z.G.G.)
| |
Collapse
|
25
|
Retrotransposons Down- and Up-Regulation in Aging Somatic Tissues. Cells 2021; 11:cells11010079. [PMID: 35011640 PMCID: PMC8750722 DOI: 10.3390/cells11010079] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/22/2021] [Accepted: 12/26/2021] [Indexed: 01/19/2023] Open
Abstract
The transposon theory of aging hypothesizes the activation of transposable elements (TEs) in somatic tissues with age, leading to a shortening of the lifespan. It is thought that TE activation in aging produces an increase in DNA double-strand breaks, contributing to genome instability and promoting the activation of inflammatory responses. To investigate how TE regulation changes in somatic tissues during aging, we analyzed the expression of some TEs, as well as a source of small RNAs that specifically silence the analyzed TEs; the Drosophila cluster named flamenco. We found significant variations in the expression levels of all the analyzed TEs during aging, with a trend toward reduction in middle-aged adults and reactivation in older individuals that suggests dynamic regulation during the lifespan.
Collapse
|
26
|
Schwarz R, Koch P, Wilbrandt J, Hoffmann S. Locus-specific expression analysis of transposable elements. Brief Bioinform 2021; 23:6400501. [PMID: 34664075 PMCID: PMC8769692 DOI: 10.1093/bib/bbab417] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/24/2021] [Accepted: 09/10/2021] [Indexed: 11/16/2022] Open
Abstract
Transposable elements (TEs) have been associated with many, frequently detrimental, biological roles. Consequently, the regulations of TEs, e.g. via DNA-methylation and histone modifications, are considered critical for maintaining genomic integrity and other functions. Still, the high-throughput study of TEs is usually limited to the family or consensus-sequence level because of alignment problems prompted by high-sequence similarities and short read lengths. To entirely comprehend the effects and reasons of TE expression, however, it is necessary to assess the TE expression at the level of individual instances. Our simulation study demonstrates that sequence similarities and short read lengths do not rule out the accurate assessment of (differential) expression of TEs at the instance-level. With only slight modifications to existing methods, TE expression analysis works surprisingly well for conventional paired-end sequencing data. We find that SalmonTE and Telescope can accurately tally a considerable amount of TE instances, allowing for differential expression recovery in model and non-model organisms.
Collapse
Affiliation(s)
- Robert Schwarz
- Computational Biology Group, Leibniz Institute on Aging - Fritz Lipmann Institute (FLI) Beutenbergstrasse 11, 07745 Jena, Germany
| | - Philipp Koch
- CF Life Science Computing, Leibniz Institute on Aging - Fritz Lipmann Institute (FLI) Beutenbergstrasse 11, 07745 Jena, Germany
| | - Jeanne Wilbrandt
- CF Life Science Computing, Leibniz Institute on Aging - Fritz Lipmann Institute (FLI) Beutenbergstrasse 11, 07745 Jena, Germany
| | - Steve Hoffmann
- Computational Biology Group, Leibniz Institute on Aging - Fritz Lipmann Institute (FLI) Beutenbergstrasse 11, 07745 Jena, Germany
| |
Collapse
|
27
|
Ravel-Godreuil C, Znaidi R, Bonnifet T, Joshi RL, Fuchs J. Transposable elements as new players in neurodegenerative diseases. FEBS Lett 2021; 595:2733-2755. [PMID: 34626428 DOI: 10.1002/1873-3468.14205] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/23/2021] [Accepted: 10/03/2021] [Indexed: 01/02/2023]
Abstract
Neurodegenerative diseases (NDs), including the most prevalent Alzheimer's disease and Parkinson disease, share common pathological features. Despite decades of gene-centric approaches, the molecular mechanisms underlying these diseases remain widely elusive. In recent years, transposable elements (TEs), long considered 'junk' DNA, have gained growing interest as pathogenic players in NDs. Age is the major risk factor for most NDs, and several repressive mechanisms of TEs, such as heterochromatinization, fail with age. Indeed, heterochromatin relaxation leading to TE derepression has been reported in various models of neurodegeneration and NDs. There is also evidence that certain pathogenic proteins involved in NDs (e.g., tau, TDP-43) may control the expression of TEs. The deleterious consequences of TE activation are not well known but they could include DNA damage and genomic instability, altered host gene expression, and/or neuroinflammation, which are common hallmarks of neurodegeneration and aging. TEs might thus represent an overlooked pathogenic culprit for both brain aging and neurodegeneration. Certain pathological effects of TEs might be prevented by inhibiting their activity, pointing to TEs as novel targets for neuroprotection.
Collapse
Affiliation(s)
- Camille Ravel-Godreuil
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France
| | - Rania Znaidi
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France
| | - Tom Bonnifet
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France
| | - Rajiv L Joshi
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France
| | - Julia Fuchs
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France
| |
Collapse
|
28
|
Abstract
P-element-induced wimpy testis (PIWI)-interacting RNAs (piRNAs) are regulatory small non-coding RNAs that participate in transposon inactivation, chromatin regulation, and endogenous gene regulation. Numerous genetic and epigenetic factors regulate cell proliferation and tumor metastasis. PIWI proteins and piRNAs have been revealed to function in regulating upstream or downstream of oncogenes or tumor-suppressor genes in cancer tissues. In the present review, we summarize major recent findings in uncovering the regulation and role of PIWI proteins and piRNAs in tumorigenesis and highlight some of the promising applications of specific piRNAs in cancer therapeutics and as cancer biomarkers.
Collapse
|
29
|
Alvarez-Franco A, Rouco R, Ramirez RJ, Guerrero-Serna G, Tiana M, Cogliati S, Kaur K, Saeed M, Magni R, Enriquez JA, Sanchez-Cabo F, Jalife J, Manzanares M. Transcriptome and proteome mapping in the sheep atria reveal molecular featurets of atrial fibrillation progression. Cardiovasc Res 2021; 117:1760-1775. [PMID: 33119050 PMCID: PMC8208739 DOI: 10.1093/cvr/cvaa307] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 10/15/2020] [Indexed: 12/14/2022] Open
Abstract
AIMS Atrial fibrillation (AF) is a progressive cardiac arrhythmia that increases the risk of hospitalization and adverse cardiovascular events. There is a clear demand for more inclusive and large-scale approaches to understand the molecular drivers responsible for AF, as well as the fundamental mechanisms governing the transition from paroxysmal to persistent and permanent forms. In this study, we aimed to create a molecular map of AF and find the distinct molecular programmes underlying cell type-specific atrial remodelling and AF progression. METHODS AND RESULTS We used a sheep model of long-standing, tachypacing-induced AF, sampled right and left atrial tissue, and isolated cardiomyocytes (CMs) from control, intermediate (transition), and late time points during AF progression, and performed transcriptomic and proteome profiling. We have merged all these layers of information into a meaningful three-component space in which we explored the genes and proteins detected and their common patterns of expression. Our data-driven analysis points at extracellular matrix remodelling, inflammation, ion channel, myofibril structure, mitochondrial complexes, chromatin remodelling, and genes related to neural function, as well as critical regulators of cell proliferation as hallmarks of AF progression. Most important, we prove that these changes occur at early transitional stages of the disease, but not at later stages, and that the left atrium undergoes significantly more profound changes than the right atrium in its expression programme. The pattern of dynamic changes in gene and protein expression replicate the electrical and structural remodelling demonstrated previously in the sheep and in humans, and uncover novel mechanisms potentially relevant for disease treatment. CONCLUSIONS Transcriptomic and proteomic analysis of AF progression in a large animal model shows that significant changes occur at early stages, and that among others involve previously undescribed increase in mitochondria, changes to the chromatin of atrial CMs, and genes related to neural function and cell proliferation.
Collapse
Affiliation(s)
- Alba Alvarez-Franco
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Raquel Rouco
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Rafael J Ramirez
- Department of Internal Medicine, Center for Arrhythmia Research, University of Michigan, Ann Arbor, MI, USA
| | - Guadalupe Guerrero-Serna
- Department of Internal Medicine, Center for Arrhythmia Research, University of Michigan, Ann Arbor, MI, USA
| | - Maria Tiana
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Sara Cogliati
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
- Department of Physiology, Institute of Nutrition and Food Technology, Biomedical Research Centre, University of Granada, Granada, Spain
| | - Kuljeet Kaur
- Department of Internal Medicine, Center for Arrhythmia Research, University of Michigan, Ann Arbor, MI, USA
| | - Mohammed Saeed
- Department of Internal Medicine, Center for Arrhythmia Research, University of Michigan, Ann Arbor, MI, USA
| | - Ricardo Magni
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Jose Antonio Enriquez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Fatima Sanchez-Cabo
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - José Jalife
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
- Department of Internal Medicine, Center for Arrhythmia Research, University of Michigan, Ann Arbor, MI, USA
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Spain
| | - Miguel Manzanares
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain
| |
Collapse
|
30
|
McCauley BS, Dang W. Loosening chromatin and dysregulated transcription: a perspective on cryptic transcription during mammalian aging. Brief Funct Genomics 2021; 21:56-61. [PMID: 34050364 DOI: 10.1093/bfgp/elab026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/23/2021] [Accepted: 04/27/2021] [Indexed: 12/14/2022] Open
Abstract
Cryptic transcription, the initiation of transcription from non-promoter regions within a gene body, is a type of transcriptional dysregulation that occurs throughout eukaryotes. In mammals, cryptic transcription is normally repressed at the level of chromatin, and this process is increased upon perturbation of complexes that increase intragenic histone H3 lysine 4 methylation or decrease intragenic H3 lysine 36 methylation, DNA methylation, or nucleosome occupancy. Significantly, similar changes to chromatin structure occur during aging, and, indeed, recent work indicates that cryptic transcription is elevated during aging in mammalian stem cells. Although increased cryptic transcription is known to promote aging in yeast, whether elevated cryptic transcription also contributes to mammalian aging is unclear. There is ample evidence that perturbations known to increase cryptic transcription are deleterious in embryonic and adult stem cells, and in some cases phenocopy certain aging phenotypes. Furthermore, an increase in cryptic transcription requires or impedes pathways that are known to have reduced function during aging, potentially exacerbating other aging phenotypes. Thus, we propose that increased cryptic transcription contributes to mammalian stem cell aging.
Collapse
|
31
|
Monroy Kuhn JM, Meusemann K, Korb J. Disentangling the aging gene expression network of termite queens. BMC Genomics 2021; 22:339. [PMID: 33975542 PMCID: PMC8114706 DOI: 10.1186/s12864-021-07649-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 04/22/2021] [Indexed: 02/07/2023] Open
Abstract
Background Most insects are relatively short-lived, with a maximum lifespan of a few weeks, like the aging model organism, the fruit-fly Drosophila melanogaster. By contrast, the queens of many social insects (termites, ants and some bees) can live from a few years to decades. This makes social insects promising models in aging research providing insights into how a long reproductive life can be achieved. Yet, aging studies on social insect reproductives are hampered by a lack of quantitative data on age-dependent survival and time series analyses that cover the whole lifespan of such long-lived individuals. We studied aging in queens of the drywood termite Cryptotermes secundus by determining survival probabilities over a period of 15 years and performed transcriptome analyses for queens of known age that covered their whole lifespan. Results The maximum lifespan of C. secundus queens was 13 years, with a median maximum longevity of 11.0 years. Time course and co-expression network analyses of gene expression patterns over time indicated a non-gradual aging pattern. It was characterized by networks of genes that became differentially expressed only late in life, namely after ten years, which associates well with the median maximum lifespan for queens. These old-age gene networks reflect processes of physiological upheaval. We detected strong signs of stress, decline, defense and repair at the transcriptional level of epigenetic control as well as at the post-transcriptional level with changes in transposable element activity and the proteostasis network. The latter depicts an upregulation of protein degradation, together with protein synthesis and protein folding, processes which are often down-regulated in old animals. The simultaneous upregulation of protein synthesis and autophagy is indicative of a stress-response mediated by the transcription factor cnc, a homolog of human nrf genes. Conclusions Our results show non-linear senescence with a rather sudden physiological upheaval at old-age. Most importantly, they point to a re-wiring in the proteostasis network and stress as part of the aging process of social insect queens, shortly before queens die. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07649-4.
Collapse
Affiliation(s)
- José Manuel Monroy Kuhn
- Department of Evolutionary Biology & Ecology, Institute of Biology I, Albert Ludwig University of Freiburg, Hauptstr. 1, D-79104, Freiburg (i. Brsg.), Germany. .,Computational Discovery Research, Institute for Diabetes and Obesity, Helmholtz Zentrum München, Ingolstaedter Landstr. 1, D-85764, Neuherberg, Germany.
| | - Karen Meusemann
- Department of Evolutionary Biology & Ecology, Institute of Biology I, Albert Ludwig University of Freiburg, Hauptstr. 1, D-79104, Freiburg (i. Brsg.), Germany.,Australian National Insect Collection, CSIRO National Research Collections Australia, Clunies Ross Street, Acton, ACT 2601, Canberra, Australia
| | - Judith Korb
- Department of Evolutionary Biology & Ecology, Institute of Biology I, Albert Ludwig University of Freiburg, Hauptstr. 1, D-79104, Freiburg (i. Brsg.), Germany.
| |
Collapse
|
32
|
Tain LS, Sehlke R, Meilenbrock RL, Leech T, Paulitz J, Chokkalingam M, Nagaraj N, Grönke S, Fröhlich J, Atanassov I, Mann M, Beyer A, Partridge L. Tissue-specific modulation of gene expression in response to lowered insulin signalling in Drosophila. eLife 2021; 10:e67275. [PMID: 33879316 PMCID: PMC8060030 DOI: 10.7554/elife.67275] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 03/18/2021] [Indexed: 01/15/2023] Open
Abstract
Reduced activity of the insulin/IGF signalling network increases health during ageing in multiple species. Diverse and tissue-specific mechanisms drive the health improvement. Here, we performed tissue-specific transcriptional and proteomic profiling of long-lived Drosophila dilp2-3,5 mutants, and identified tissue-specific regulation of >3600 transcripts and >3700 proteins. Most expression changes were regulated post-transcriptionally in the fat body, and only in mutants infected with the endosymbiotic bacteria, Wolbachia pipientis, which increases their lifespan. Bioinformatic analysis identified reduced co-translational ER targeting of secreted and membrane-associated proteins and increased DNA damage/repair response proteins. Accordingly, age-related DNA damage and genome instability were lower in fat body of the mutant, and overexpression of a minichromosome maintenance protein subunit extended lifespan. Proteins involved in carbohydrate metabolism showed altered expression in the mutant intestine, and gut-specific overexpression of a lysosomal mannosidase increased autophagy, gut homeostasis, and lifespan. These processes are candidates for combatting ageing-related decline in other organisms.
Collapse
Affiliation(s)
| | - Robert Sehlke
- Max-Planck Institute for Biology of AgeingCologneGermany
- CECAD Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated DiseasesCologneGermany
| | | | - Thomas Leech
- Max-Planck Institute for Biology of AgeingCologneGermany
| | - Jonathan Paulitz
- Max-Planck Institute for Biology of AgeingCologneGermany
- CECAD Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated DiseasesCologneGermany
| | - Manopriya Chokkalingam
- CECAD Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated DiseasesCologneGermany
| | - Nagarjuna Nagaraj
- Department of Proteomics and Signal Transduction, Max-Planck-Institute of BiochemistryMartinsriedGermany
| | | | - Jenny Fröhlich
- Max-Planck Institute for Biology of AgeingCologneGermany
| | | | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max-Planck-Institute of BiochemistryMartinsriedGermany
| | - Andreas Beyer
- CECAD Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated DiseasesCologneGermany
- Center for Molecular Medicine (CMMC) & Cologne School for Computational Biology (CSCB), University of CologneCologneGermany
| | - Linda Partridge
- Max-Planck Institute for Biology of AgeingCologneGermany
- Institute of Healthy Ageing, and GEE, UCLLondonUnited Kingdom
| |
Collapse
|
33
|
Muyle A, Bachtrog D, Marais GAB, Turner JMA. Epigenetics drive the evolution of sex chromosomes in animals and plants. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200124. [PMID: 33866802 DOI: 10.1098/rstb.2020.0124] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
We review how epigenetics affect sex chromosome evolution in animals and plants. In a few species, sex is determined epigenetically through the action of Y-encoded small RNAs. Epigenetics is also responsible for changing the sex of individuals through time, even in species that carry sex chromosomes, and could favour species adaptation through breeding system plasticity. The Y chromosome accumulates repeats that become epigenetically silenced which leads to an epigenetic conflict with the expression of Y genes and could accelerate Y degeneration. Y heterochromatin can be lost through ageing, which activates transposable elements and lowers male longevity. Y chromosome degeneration has led to the evolution of meiotic sex chromosome inactivation in eutherians (placentals) and marsupials, and dosage compensation mechanisms in animals and plants. X-inactivation convergently evolved in eutherians and marsupials via two independently evolved non-coding RNAs. In Drosophila, male X upregulation by the male specific lethal (MSL) complex can spread to neo-X chromosomes through the transposition of transposable elements that carry an MSL-binding motif. We discuss similarities and possible differences between plants and animals and suggest future directions for this dynamic field of research. This article is part of the theme issue 'How does epigenetics influence the course of evolution?'
Collapse
Affiliation(s)
- Aline Muyle
- University of California Irvine, Irvine, CA 92697, USA
| | - Doris Bachtrog
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA, USA
| | - Gabriel A B Marais
- Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Évolutive UMR 5558, F-69622 Villeurbanne, France.,LEAF- Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, Portugal
| | | |
Collapse
|
34
|
Keegan RM, Talbot LR, Chang YH, Metzger MJ, Dubnau J. Intercellular viral spread and intracellular transposition of Drosophila gypsy. PLoS Genet 2021; 17:e1009535. [PMID: 33886543 PMCID: PMC8096092 DOI: 10.1371/journal.pgen.1009535] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 05/04/2021] [Accepted: 04/06/2021] [Indexed: 01/12/2023] Open
Abstract
It has become increasingly clear that retrotransposons (RTEs) are more widely expressed in somatic tissues than previously appreciated. RTE expression has been implicated in a myriad of biological processes ranging from normal development and aging, to age related diseases such as cancer and neurodegeneration. Long Terminal Repeat (LTR)-RTEs are evolutionary ancestors to, and share many features with, exogenous retroviruses. In fact, many organisms contain endogenous retroviruses (ERVs) derived from exogenous retroviruses that integrated into the germ line. These ERVs are inherited in Mendelian fashion like RTEs, and some retain the ability to transmit between cells like viruses, while others develop the ability to act as RTEs. The process of evolutionary transition between LTR-RTE and retroviruses is thought to involve multiple steps by which the element loses or gains the ability to transmit copies between cells versus the ability to replicate intracellularly. But, typically, these two modes of transmission are incompatible because they require assembly in different sub-cellular compartments. Like murine IAP/IAP-E elements, the gypsy family of retroelements in arthropods appear to sit along this evolutionary transition. Indeed, there is some evidence that gypsy may exhibit retroviral properties. Given that gypsy elements have been found to actively mobilize in neurons and glial cells during normal aging and in models of neurodegeneration, this raises the question of whether gypsy replication in somatic cells occurs via intracellular retrotransposition, intercellular viral spread, or some combination of the two. These modes of replication in somatic tissues would have quite different biological implications. Here, we demonstrate that Drosophila gypsy is capable of both cell-associated and cell-free viral transmission between cultured S2 cells of somatic origin. Further, we demonstrate that the ability of gypsy to move between cells is dependent upon a functional copy of its viral envelope protein. This argues that the gypsy element has transitioned from an RTE into a functional endogenous retrovirus with the acquisition of its envelope gene. On the other hand, we also find that intracellular retrotransposition of the same genomic copy of gypsy can occur in the absence of the Env protein. Thus, gypsy exhibits both intracellular retrotransposition and intercellular viral transmission as modes of replicating its genome.
Collapse
Affiliation(s)
- Richard M. Keegan
- Program in Neuroscience, Department of Neurobiology and Behavior, Stony Brook University, New York City, New York, United States of America
| | - Lillian R. Talbot
- Medical Scientist Training Program, Department of Neurobiology and Behavior, Stony Brook University, New York City, New York, United States of America
| | - Yung-Heng Chang
- Department of Anesthesiology, Stony Brook School of Medicine, New York City, New York, United States of America
| | - Michael J. Metzger
- Pacific Northwest Research Institute, Seattle, Washington, United States of America
| | - Josh Dubnau
- Program in Neuroscience, Department of Neurobiology and Behavior, Stony Brook University, New York City, New York, United States of America
- Department of Anesthesiology, Stony Brook School of Medicine, New York City, New York, United States of America
- Pacific Northwest Research Institute, Seattle, Washington, United States of America
| |
Collapse
|
35
|
Fabian DK, Dönertaş HM, Fuentealba M, Partridge L, Thornton JM. Transposable Element Landscape in Drosophila Populations Selected for Longevity. Genome Biol Evol 2021; 13:6141024. [PMID: 33595657 PMCID: PMC8355499 DOI: 10.1093/gbe/evab031] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2021] [Indexed: 12/11/2022] Open
Abstract
Transposable elements (TEs) inflict numerous negative effects on health and fitness as they replicate by integrating into new regions of the host genome. Even though organisms employ powerful mechanisms to demobilize TEs, transposons gradually lose repression during aging. The rising TE activity causes genomic instability and was implicated in age-dependent neurodegenerative diseases, inflammation, and the determination of lifespan. It is therefore conceivable that long-lived individuals have improved TE silencing mechanisms resulting in reduced TE expression relative to their shorter-lived counterparts and fewer genomic insertions. Here, we test this hypothesis by performing the first genome-wide analysis of TE insertions and expression in populations of Drosophila melanogaster selected for longevity through late-life reproduction for 50–170 generations from four independent studies. Contrary to our expectation, TE families were generally more abundant in long-lived populations compared with nonselected controls. Although simulations showed that this was not expected under neutrality, we found little evidence for selection driving TE abundance differences. Additional RNA-seq analysis revealed a tendency for reducing TE expression in selected populations, which might be more important for lifespan than regulating genomic insertions. We further find limited evidence of parallel selection on genes related to TE regulation and transposition. However, telomeric TEs were genomically and transcriptionally more abundant in long-lived flies, suggesting improved telomere maintenance as a promising TE-mediated mechanism for prolonging lifespan. Our results provide a novel viewpoint indicating that reproduction at old age increases the opportunity of TEs to be passed on to the next generation with little impact on longevity.
Collapse
Affiliation(s)
- Daniel K Fabian
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, United Kingdom
- Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, United Kingdom
- Corresponding author: E-mail:
| | - Handan Melike Dönertaş
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Matías Fuentealba
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, United Kingdom
- Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, United Kingdom
| | - Linda Partridge
- Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, United Kingdom
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Janet M Thornton
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| |
Collapse
|
36
|
Gilbert C, Peccoud J, Cordaux R. Transposable Elements and the Evolution of Insects. ANNUAL REVIEW OF ENTOMOLOGY 2021; 66:355-372. [PMID: 32931312 DOI: 10.1146/annurev-ento-070720-074650] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Insects are major contributors to our understanding of the interaction between transposable elements (TEs) and their hosts, owing to seminal discoveries, as well as to the growing number of sequenced insect genomes and population genomics and functional studies. Insect TE landscapes are highly variable both within and across insect orders, although phylogenetic relatedness appears to correlate with similarity in insect TE content. This correlation is unlikely to be solely due to inheritance of TEs from shared ancestors and may partly reflect preferential horizontal transfer of TEs between closely related species. The influence of insect traits on TE landscapes, however, remains unclear. Recent findings indicate that, in addition to being involved in insect adaptations and aging, TEs are seemingly at the cornerstone of insect antiviral immunity. Thus, TEs are emerging as essential insect symbionts that may have deleterious or beneficial consequences on their hosts, depending on context.
Collapse
Affiliation(s)
- Clément Gilbert
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, 91198 Gif-sur-Yvette, France;
| | - Jean Peccoud
- Laboratoire Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, Unité Mixte de Recherche 7267 Centre National de la Recherche Scientifique, Université de Poitiers, 86073 Poitiers CEDEX 9, France
| | - Richard Cordaux
- Laboratoire Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, Unité Mixte de Recherche 7267 Centre National de la Recherche Scientifique, Université de Poitiers, 86073 Poitiers CEDEX 9, France
| |
Collapse
|
37
|
Saha N, Muntean AG. Insight into the multi-faceted role of the SUV family of H3K9 methyltransferases in carcinogenesis and cancer progression. Biochim Biophys Acta Rev Cancer 2020; 1875:188498. [PMID: 33373647 DOI: 10.1016/j.bbcan.2020.188498] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/21/2020] [Accepted: 12/21/2020] [Indexed: 12/13/2022]
Abstract
Growing evidence implicates histone H3 lysine 9 methylation in tumorigenesis. The SUV family of H3K9 methyltransferases, which include G9a, GLP, SETDB1, SETDB2, SUV39H1 and SUV39H2 deposit H3K9me1/2/3 marks at euchromatic and heterochromatic regions, catalyzed by their conserved SET domain. In cancer, this family of enzymes can be deregulated by genomic alterations and transcriptional mis-expression leading to alteration of transcriptional programs. In solid and hematological malignancies, studies have uncovered pro-oncogenic roles for several H3K9 methyltransferases and accordingly, small molecule inhibitors are being tested as potential therapies. However, emerging evidence demonstrate onco-suppressive roles for these enzymes in cancer development as well. Here, we review the role H3K9 methyltransferases play in tumorigenesis focusing on gene targets and biological pathways affected due to misregulation of these enzymes. We also discuss molecular mechanisms regulating H3K9 methyltransferases and their influence on cancer. Finally, we describe the impact of H3K9 methylation on therapy induced resistance in carcinoma. Converging evidence point to multi-faceted roles for H3K9 methyltransferases in development and cancer that encourages a deeper understanding of these enzymes to inform novel therapy.
Collapse
Affiliation(s)
- Nirmalya Saha
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States of America
| | - Andrew G Muntean
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States of America.
| |
Collapse
|
38
|
Petrozziello T, Dios AM, Mueller KA, Vaine CA, Hendriks WT, Glajch KE, Mills AN, Mangkalaphiban K, Penney EB, Ito N, Fernandez-Cerado C, Legarda GPA, Velasco-Andrada MS, Acuña PJ, Ang MA, Muñoz EL, Diesta CCE, Macalintal-Canlas R, Acuña G, Sharma N, Ozelius LJ, Bragg DC, Sadri-Vakili G. SVA insertion in X-linked Dystonia Parkinsonism alters histone H3 acetylation associated with TAF1 gene. PLoS One 2020; 15:e0243655. [PMID: 33315879 PMCID: PMC7735578 DOI: 10.1371/journal.pone.0243655] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 11/20/2020] [Indexed: 12/11/2022] Open
Abstract
X-linked Dystonia-Parkinsonism (XDP) is a neurodegenerative disease linked to an insertion of a SINE-VNTR-Alu (SVA)-type retrotransposon within an intron of TAF1. This SVA insertion induces aberrant TAF1 splicing and partial intron retention, thereby decreasing levels of the full-length transcript. Here we sought to determine if these altered transcriptional dynamics caused by the SVA are also accompanied by local changes in histone acetylation, given that these modifications influence gene expression. Because TAF1 protein may itself exhibit histone acetyltransferase activity, we also examined whether decreased TAF1 expression in XDP cell lines and post-mortem brain affects global levels of acetylated histone H3 (AcH3). The results demonstrate that total AcH3 are not altered in XDP post-mortem prefrontal cortex or cell lines. We also did not detect local differences in AcH3 associated with TAF1 exons or intronic sites flanking the SVA insertion. There was, however, a decrease in AcH3 association with the exon immediately proximal to the intronic SVA, and this decrease was normalized by CRISPR/Cas-excision of the SVA. Collectively, these data suggest that the SVA insertion alters histone status in this region, which may contribute to the dysregulation of TAF1 expression.
Collapse
Affiliation(s)
- Tiziana Petrozziello
- NeuroEpigenetics Laboratory, Healey Center for ALS at Mass General, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Amanda M. Dios
- NeuroEpigenetics Laboratory, Healey Center for ALS at Mass General, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Kaly A. Mueller
- NeuroEpigenetics Laboratory, Healey Center for ALS at Mass General, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Christine A. Vaine
- The Collaborative Center for X-linked Dystonia-Parkinsonism, Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - William T. Hendriks
- The Collaborative Center for X-linked Dystonia-Parkinsonism, Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Kelly E. Glajch
- NeuroEpigenetics Laboratory, Healey Center for ALS at Mass General, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Alexandra N. Mills
- NeuroEpigenetics Laboratory, Healey Center for ALS at Mass General, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Kotchaphorn Mangkalaphiban
- The Collaborative Center for X-linked Dystonia-Parkinsonism, Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Ellen B. Penney
- The Collaborative Center for X-linked Dystonia-Parkinsonism, Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Naoto Ito
- The Collaborative Center for X-linked Dystonia-Parkinsonism, Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | | | | | | | - Patrick J. Acuña
- The Collaborative Center for X-linked Dystonia-Parkinsonism, Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Mark A. Ang
- Department of Pathology, College of Medicine, University of the Philippines, Manila, Philippines
| | - Edwin L. Muñoz
- Department of Pathology, College of Medicine, University of the Philippines, Manila, Philippines
| | | | | | - Geraldine Acuña
- The Collaborative Center for X-linked Dystonia-Parkinsonism, Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Nutan Sharma
- The Collaborative Center for X-linked Dystonia-Parkinsonism, Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Laurie J. Ozelius
- The Collaborative Center for X-linked Dystonia-Parkinsonism, Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - D. Cristopher Bragg
- The Collaborative Center for X-linked Dystonia-Parkinsonism, Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Ghazaleh Sadri-Vakili
- NeuroEpigenetics Laboratory, Healey Center for ALS at Mass General, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| |
Collapse
|
39
|
Klutstein M. Cause and effect in epigenetics - where lies the truth, and how can experiments reveal it?: Epigenetic self-reinforcing loops obscure causation in cancer and aging. Bioessays 2020; 43:e2000262. [PMID: 33236359 DOI: 10.1002/bies.202000262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 12/19/2022]
Abstract
Epigenetic changes are implicated in aging and cancer. Sometimes, it is clear whether the causing agent of the condition is a genetic factor or epigenetic. In other cases, the causative factor is unclear, and could be either genetic or epigenetic. Is there a general role for epigenetic changes in cancer and aging? Here, I present the paradigm of causative roles executed by epigenetic changes. I discuss cases with clear roles of the epigenome in cancer and aging, and other cases showing involvement of other factors. I also present the possibility that sometimes causality is difficult to assign because of the presence of self-reinforcing loops in epigenetic regulation. Such loops hinder the identification of the causative factor. I provide an experimental framework by which the role of the epigenome can be examined in a better setting and where the presence of such loops could be investigated in more detail.
Collapse
Affiliation(s)
- Michael Klutstein
- Institute of Dental Sciences, Faculty of Dental Medicine, The Hebrew University of Jerusalem, Ein Kerem, Jerusalem, Israel
| |
Collapse
|
40
|
Papadogianni G, Ravens I, Dittrich-Breiholz O, Bernhardt G, Georgiev H. Impact of Aging on the Phenotype of Invariant Natural Killer T Cells in Mouse Thymus. Front Immunol 2020; 11:575764. [PMID: 33193368 PMCID: PMC7662090 DOI: 10.3389/fimmu.2020.575764] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 10/12/2020] [Indexed: 11/16/2022] Open
Abstract
Invariant natural killer T (iNKT) cells represent a subclass of T cells possessing a restricted repertoire of T cell receptors enabling them to recognize lipid derived ligands. iNKT cells are continuously generated in thymus and differentiate into three main subpopulations: iNKT1, iNKT2, and iNKT17 cells. We investigated the transcriptomes of these subsets comparing cells isolated from young adult (6–10 weeks old) and aged BALB/c mice (25–30 weeks of age) in order to identify genes subject to an age-related regulation of expression. These time points were selected to take into consideration the consequences of thymic involution that radically alter the existing micro-milieu. Significant differences were detected in the expression of histone genes affecting all iNKT subsets. Also the proliferative capacity of iNKT cells decreased substantially upon aging. Several genes were identified as possible candidates causing significant age-dependent changes in iNKT cell generation and/or function such as genes coding for granzyme A, ZO-1, EZH2, SOX4, IGF1 receptor, FLT4, and CD25. Moreover, we provide evidence that IL2 differentially affects homeostasis of iNKT subsets with iNKT17 cells engaging a unique mechanism to respond to IL2 by initiating a slow rate of proliferation.
Collapse
Affiliation(s)
| | - Inga Ravens
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | | | - Günter Bernhardt
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Hristo Georgiev
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
41
|
Petrozziello T, Mills AN, Vaine CA, Penney EB, Fernandez-Cerado C, Legarda GPA, Velasco-Andrada MS, Acuña PJ, Ang MA, Muñoz EL, Diesta CCE, Macalintal-Canlas R, Acuña-Sunshine G, Ozelius LJ, Sharma N, Bragg DC, Sadri-Vakili G. Neuroinflammation and histone H3 citrullination are increased in X-linked Dystonia Parkinsonism post-mortem prefrontal cortex. Neurobiol Dis 2020; 144:105032. [PMID: 32739252 DOI: 10.1016/j.nbd.2020.105032] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/17/2020] [Accepted: 07/26/2020] [Indexed: 12/16/2022] Open
Abstract
Neuroinflammation plays a pathogenic role in neurodegenerative diseases and recent findings suggest that it may also be involved in X-linked Dystonia-Parkinsonism (XDP) pathogenesis. Previously, fibroblasts and neuronal stem cells derived from XDP patients demonstrated hypersensitivity to TNF-α, dysregulation in NFκB signaling, and an increase in several pro-inflammatory markers. However, the role of inflammatory processes in XDP patient brain remains unknown. Here we demonstrate that there is a significant increase in astrogliosis and microgliosis in human post-mortem XDP prefrontal cortex (PFC) compared to control. Furthermore, there is a significant increase in histone H3 citrullination (H3R2R8R17cit3) with a concomitant increase in peptidylarginine deaminase 2 (PAD2) and 4 (PAD4), the enzymes catalyzing citrullination, in XDP post-mortem PFC. While there is a significant increase in myeloperoxidase (MPO) levels in XDP PFC, neutrophil elastase (NE) levels are not altered, suggesting that MPO may be released by activated microglia or reactive astrocytes in the brain. Similarly, there was an increase in H3R2R8R17cit3, PAD2 and PAD4 levels in XDP-derived fibroblasts. Importantly, treatment of fibroblasts with Cl-amidine, a pan inhibitor of PAD enzymes, reduced histone H3 citrullination and pro-inflammatory chemokine expression, without affecting cell survival. Taken together, our results demonstrate that inflammation is increased in XDP post-mortem brain and fibroblasts and unveil a new epigenetic potential therapeutic target.
Collapse
Affiliation(s)
- Tiziana Petrozziello
- NeuroEpigenetics Laboratory, Healey Center for ALS at Mass General, Massachusetts General Hospital, Boston, MA 02129, United States of America
| | - Alexandra N Mills
- NeuroEpigenetics Laboratory, Healey Center for ALS at Mass General, Massachusetts General Hospital, Boston, MA 02129, United States of America
| | - Christine A Vaine
- The Collaborative Center for X-linked Dystonia-Parkinsonism, Department of Neurology, Massachusetts General Hospital, Boston, MA 02129, United States of America
| | - Ellen B Penney
- The Collaborative Center for X-linked Dystonia-Parkinsonism, Department of Neurology, Massachusetts General Hospital, Boston, MA 02129, United States of America
| | | | | | | | - Patrick J Acuña
- The Collaborative Center for X-linked Dystonia-Parkinsonism, Department of Neurology, Massachusetts General Hospital, Boston, MA 02129, United States of America; Sunshine Care Foundation, Roxas City, 5800, Capiz, Philippines
| | - Mark A Ang
- Department of Pathology, College of Medicine, University of the Philippines, Manila, Philippines
| | - Edwin L Muñoz
- Department of Pathology, College of Medicine, University of the Philippines, Manila, Philippines
| | | | | | - Geraldine Acuña-Sunshine
- The Collaborative Center for X-linked Dystonia-Parkinsonism, Department of Neurology, Massachusetts General Hospital, Boston, MA 02129, United States of America; Sunshine Care Foundation, Roxas City, 5800, Capiz, Philippines
| | - Laurie J Ozelius
- The Collaborative Center for X-linked Dystonia-Parkinsonism, Department of Neurology, Massachusetts General Hospital, Boston, MA 02129, United States of America
| | - Nutan Sharma
- The Collaborative Center for X-linked Dystonia-Parkinsonism, Department of Neurology, Massachusetts General Hospital, Boston, MA 02129, United States of America
| | - D Cristopher Bragg
- The Collaborative Center for X-linked Dystonia-Parkinsonism, Department of Neurology, Massachusetts General Hospital, Boston, MA 02129, United States of America
| | - Ghazaleh Sadri-Vakili
- NeuroEpigenetics Laboratory, Healey Center for ALS at Mass General, Massachusetts General Hospital, Boston, MA 02129, United States of America.
| |
Collapse
|
42
|
Kuriyama K, Tabara M, Moriyama H, Kanazawa A, Koiwa H, Takahashi H, Fukuhara T. Disturbance of floral colour pattern by activation of an endogenous pararetrovirus, petunia vein clearing virus, in aged petunia plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:497-511. [PMID: 32100385 PMCID: PMC7496347 DOI: 10.1111/tpj.14728] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 02/04/2020] [Indexed: 05/22/2023]
Abstract
White areas of star-type bicolour petals of petunia (Petunia hybrida) are caused by post-transcriptional gene silencing (PTGS) of the key enzyme of anthocyanin biosynthesis. We observed blotched flowers and a vein-clearing symptom in aged petunia plants. To determine the cause of blotched flowers, we focused on an endogenous pararetrovirus, petunia vein clearing virus (PVCV), because this virus may have a suppressor of PTGS (VSR). Transcripts and episomal DNAs derived from proviral PVCVs accumulated in aged plants, indicating that PVCV was activated as the host plant aged. Furthermore, DNA methylation of CG and CHG sites in the promoter region of proviral PVCV decreased in aged plants, suggesting that poor maintenance of DNA methylation activates PVCV. In parallel, de novo DNA methylation of CHH sites in its promoter region was also detected. Therefore, both activation and inactivation of PVCV occurred in aged plants. The accumulation of PVCV transcripts and episomal DNAs in blotched regions and the detection of VSR activity support a mechanism in which suppression of PTGS by PVCV causes blotched flowers.
Collapse
Affiliation(s)
- Kazunori Kuriyama
- Department of Applied Biological SciencesTokyo University of Agriculture and Technology3‐5‐8 SaiwaichoFuchuTokyo183‐8509Japan
| | - Midori Tabara
- Department of Applied Biological SciencesTokyo University of Agriculture and Technology3‐5‐8 SaiwaichoFuchuTokyo183‐8509Japan
- Institute of Global Innovation ResearchTokyo University of Agriculture and Technology3‐5‐8 SaiwaichoFuchuTokyo183‐8509Japan
| | - Hiromitsu Moriyama
- Department of Applied Biological SciencesTokyo University of Agriculture and Technology3‐5‐8 SaiwaichoFuchuTokyo183‐8509Japan
| | - Akira Kanazawa
- Research Faculty of AgricultureHokkaido UniversityKita 9, Nishi 9, Kita‐kuSapporo060‐8589Japan
| | - Hisashi Koiwa
- Institute of Global Innovation ResearchTokyo University of Agriculture and Technology3‐5‐8 SaiwaichoFuchuTokyo183‐8509Japan
- Department of Horticultural SciencesTexas A&M UniversityCollege StationTX77843USA
| | - Hideki Takahashi
- Graduate School of Agricultural ScienceTohoku University468‐1, Aramaki‐Aza‐AobaSendai980‐0845Japan
| | - Toshiyuki Fukuhara
- Department of Applied Biological SciencesTokyo University of Agriculture and Technology3‐5‐8 SaiwaichoFuchuTokyo183‐8509Japan
- Institute of Global Innovation ResearchTokyo University of Agriculture and Technology3‐5‐8 SaiwaichoFuchuTokyo183‐8509Japan
| |
Collapse
|
43
|
Proshkina E, Shaposhnikov M, Moskalev A. Genome-Protecting Compounds as Potential Geroprotectors. Int J Mol Sci 2020; 21:E4484. [PMID: 32599754 PMCID: PMC7350017 DOI: 10.3390/ijms21124484] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 02/06/2023] Open
Abstract
Throughout life, organisms are exposed to various exogenous and endogenous factors that cause DNA damages and somatic mutations provoking genomic instability. At a young age, compensatory mechanisms of genome protection are activated to prevent phenotypic and functional changes. However, the increasing stress and age-related deterioration in the functioning of these mechanisms result in damage accumulation, overcoming the functional threshold. This leads to aging and the development of age-related diseases. There are several ways to counteract these changes: 1) prevention of DNA damage through stimulation of antioxidant and detoxification systems, as well as transition metal chelation; 2) regulation of DNA methylation, chromatin structure, non-coding RNA activity and prevention of nuclear architecture alterations; 3) improving DNA damage response and repair; 4) selective removal of damaged non-functional and senescent cells. In the article, we have reviewed data about the effects of various trace elements, vitamins, polyphenols, terpenes, and other phytochemicals, as well as a number of synthetic pharmacological substances in these ways. Most of the compounds demonstrate the geroprotective potential and increase the lifespan in model organisms. However, their genome-protecting effects are non-selective and often are conditioned by hormesis. Consequently, the development of selective drugs targeting genome protection is an advanced direction.
Collapse
Affiliation(s)
- Ekaterina Proshkina
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (M.S.)
| | - Mikhail Shaposhnikov
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (M.S.)
| | - Alexey Moskalev
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (M.S.)
- Pitirim Sorokin Syktyvkar State University, 55 Oktyabrsky prosp., 167001 Syktyvkar, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
44
|
Braga DL, Mousovich-Neto F, Tonon-da-Silva G, Salgueiro WG, Mori MA. Epigenetic changes during ageing and their underlying mechanisms. Biogerontology 2020; 21:423-443. [PMID: 32356238 DOI: 10.1007/s10522-020-09874-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 03/20/2020] [Indexed: 12/12/2022]
Abstract
As life expectancy increases worldwide, ageing and age-related diseases arise as a major issue for societies around the globe. Understanding the biological mechanisms underlying the ageing process is thus instrumental for the development of efficient interventions aimed to prevent and treat age-related conditions. Current knowledge in the biogerontology field points to epigenetics as a critical component of the ageing process, not only by serving as a bona-fide marker of biological age but also by controlling and conferring inheritability to cellular and organismal ageing. This is reflected by a myriad of evidences demonstrating the relationship between DNA methylation, histone modifications, chromatin remodeling and small non-coding RNAs and several age-related phenotypes. Given the reversibility of epigenetic alterations, epigenetic reprogramming may also be envisioned as a potential approach to treat age-related disorders. Here we review how different types of epigenetic mechanisms are involved in the ageing process. In addition, we highlight how interventions modulate epigenetics and thus promote health- and lifespan.
Collapse
Affiliation(s)
- Deisi L Braga
- Department of Biochemistry and Tissue Biology, University of Campinas, Rua Monteiro Lobato, 255, Campinas, São Paulo, 13083-862, Brazil
- Program in Genetics and Molecular Biology, University of Campinas, Campinas, São Paulo, 13083-862, Brazil
| | - Felippe Mousovich-Neto
- Department of Biochemistry and Tissue Biology, University of Campinas, Rua Monteiro Lobato, 255, Campinas, São Paulo, 13083-862, Brazil
| | - Guilherme Tonon-da-Silva
- Department of Biochemistry and Tissue Biology, University of Campinas, Rua Monteiro Lobato, 255, Campinas, São Paulo, 13083-862, Brazil
- Program in Genetics and Molecular Biology, University of Campinas, Campinas, São Paulo, 13083-862, Brazil
| | - Willian G Salgueiro
- Department of Biochemistry and Tissue Biology, University of Campinas, Rua Monteiro Lobato, 255, Campinas, São Paulo, 13083-862, Brazil
- Program in Genetics and Molecular Biology, University of Campinas, Campinas, São Paulo, 13083-862, Brazil
| | - Marcelo A Mori
- Department of Biochemistry and Tissue Biology, University of Campinas, Rua Monteiro Lobato, 255, Campinas, São Paulo, 13083-862, Brazil.
- Obesity and Comorbidities Research Center (OCRC), University of Campinas, Campinas, São Paulo, 13083-862, Brazil.
- Experimental Medicine Research Cluster (EMRC), University of Campinas, Campinas, São Paulo, 13083-862, Brazil.
| |
Collapse
|
45
|
The Y chromosome may contribute to sex-specific ageing in Drosophila. Nat Ecol Evol 2020; 4:853-862. [PMID: 32313175 PMCID: PMC7274899 DOI: 10.1038/s41559-020-1179-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 03/16/2020] [Indexed: 12/03/2022]
Abstract
Heterochromatin suppresses repetitive DNA, and a loss of heterochromatin has been observed in aged cells of several species, including humans and Drosophila. Males often contain substantially more heterochromatic DNA than females, due to the presence of a large, repeat-rich Y chromosome, and male flies generally have shorter average life spans than females. Here we show that repetitive DNA becomes de-repressed more rapidly in old male flies relative to females, and repeats on the Y chromosome are disproportionally mis-expressed during aging. This is associated with a loss of heterochromatin at repetitive elements during aging in male flies, and a general loss of repressive chromatin in aged males away from pericentromeric regions and the Y. By generating flies with different sex chromosome karyotypes (XXY females; X0 and XYY males), we show that repeat de-repression and average lifespan is correlated with the number of Y chromosomes. This suggests that sex-specific chromatin differences may contribute to sex-specific aging in flies.
Collapse
|
46
|
The role of transposable elements activity in aging and their possible involvement in laminopathic diseases. Ageing Res Rev 2020; 57:100995. [PMID: 31786372 DOI: 10.1016/j.arr.2019.100995] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 10/17/2019] [Accepted: 11/25/2019] [Indexed: 01/17/2023]
Abstract
Eukaryotic genomes contain a large number of transposable elements, part of which are still active and able to transpose in the host genome. Mobile element activation is repressed to avoid deleterious effects, such as gene mutations or chromosome rearrangements. Control of transposable elements includes a variety of mechanisms comprising silencing pathways, which are based on the production of small non-coding RNAs. Silencing can occur either through transposable element RNA degradation or through the targeting of DNA sequences by heterochromatin formation and consequent transcriptional inhibition. Since the important role of the heterochromatin silencing, the gradual loss of heterochromatin marks in constitutive heterochromatin regions during the aging process promotes derepression of transposable elements, which is considered a cause of the progressive increase in genomic instability and of the activation of inflammatory responses. This review provides an overview of the effects of heterochromatin loss on the activity of transposable elements during the aging process and the possible impact on genome function. In this context, we discuss the possible role of the nuclear lamina, a major player in heterochromatin dynamics, in the regulation of transposable element activity and potential implications in laminopathic diseases.
Collapse
|
47
|
Lee TWS, David HS, Engstrom AK, Carpenter BS, Katz DJ. Repressive H3K9me2 protects lifespan against the transgenerational burden of COMPASS activity in C. elegans. eLife 2019; 8:e48498. [PMID: 31815663 PMCID: PMC7299346 DOI: 10.7554/elife.48498] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 12/06/2019] [Indexed: 12/17/2022] Open
Abstract
In Caenorhabditis elegans, mutations in WDR-5 and other components of the COMPASS H3K4 methyltransferase complex extend lifespan and enable its inheritance. Here, we show that wdr-5 mutant longevity is itself a transgenerational trait that corresponds with a global enrichment of the heterochromatin factor H3K9me2 over twenty generations. In addition, we find that the transgenerational aspects of wdr-5 mutant longevity require the H3K9me2 methyltransferase MET-2, and can be recapitulated by removal of the putative H3K9me2 demethylase JHDM-1. Finally, we show that the transgenerational acquisition of longevity in jhdm-1 mutants is associated with accumulating genomic H3K9me2 that is inherited by their long-lived wild-type descendants at a subset of loci. These results suggest that heterochromatin facilitates the transgenerational establishment and inheritance of a complex trait. Based on these results, we propose that transcription-coupled H3K4me via COMPASS limits lifespan by encroaching upon domains of heterochromatin in the genome.
Collapse
Affiliation(s)
- Teresa Wei-sy Lee
- Department of Cell BiologyEmory University School of MedicineAtlantaUnited States
| | - Heidi Shira David
- Department of Cell BiologyEmory University School of MedicineAtlantaUnited States
| | | | | | - David John Katz
- Department of Cell BiologyEmory University School of MedicineAtlantaUnited States
| |
Collapse
|
48
|
Roles of Topoisomerases in Heterochromatin, Aging, and Diseases. Genes (Basel) 2019; 10:genes10110884. [PMID: 31683993 PMCID: PMC6896002 DOI: 10.3390/genes10110884] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 10/23/2019] [Accepted: 10/26/2019] [Indexed: 12/11/2022] Open
Abstract
Heterochromatin is a transcriptionally repressive chromatin architecture that has a low abundance of genes but an enrichment of transposons. Defects in heterochromatin can cause the de-repression of genes and transposons, leading to deleterious physiological changes such as aging, cancer, and neurological disorders. While the roles of topoisomerases in many DNA-based processes have been investigated and reviewed, their roles in heterochromatin formation and function are only beginning to be understood. In this review, we discuss recent findings on how topoisomerases can promote heterochromatin organization and impact the transcription of genes and transposons. We will focus on two topoisomerases: Top2α, which catenates and decatenates double-stranded DNA, and Top3β, which can change the topology of not only DNA, but also RNA. Both enzymes are required for normal heterochromatin formation and function, as the inactivation of either protein by genetic mutations or chemical inhibitors can result in defective heterochromatin formation and the de-silencing of transposons. These defects may contribute to the shortened lifespan and neurological disorders observed in individuals carrying mutations of Top3β. We propose that topological stress may be generated in both DNA and RNA during heterochromatin formation and function, which depend on multiple topoisomerases to resolve.
Collapse
|
49
|
Peifer AC, Maxwell PH. Preferential Ty1 retromobility in mother cells and nonquiescent stationary phase cells is associated with increased concentrations of total Gag or processed Gag and is inhibited by exposure to a high concentration of calcium. Aging (Albany NY) 2019; 10:402-424. [PMID: 29562219 PMCID: PMC5892695 DOI: 10.18632/aging.101402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 03/16/2018] [Indexed: 01/31/2023]
Abstract
Retrotransposons are abundant mobile DNA elements in eukaryotic genomes that are more active with age in diverse species. Details of the regulation and consequences of retrotransposon activity during aging remain to be determined. Ty1 retromobility in Saccharomyces cerevisiae is more frequent in mother cells compared to daughter cells, and we found that Ty1 was more mobile in nonquiescent compared to quiescent subpopulations of stationary phase cells. This retromobility asymmetry was absent in mutant strains lacking BRP1 that have reduced expression of the essential Pma1p plasma membrane proton pump, lacking the mRNA decay gene LSM1, and in cells exposed to a high concentration of calcium. Mother cells had higher levels of Ty1 Gag protein than daughters. The proportion of protease-processed Gag decreased as cells transitioned to stationary phase, processed Gag was the dominant form in nonquiescent cells, but was virtually absent from quiescent cells. Treatment with calcium reduced total Gag levels and the proportion of processed Gag, particularly in mother cells. We also found that Ty1 reduced the fitness of proliferating but not stationary phase cells. These findings may be relevant to understanding regulation and consequences of retrotransposons during aging in other organisms, due to conserved impacts and regulation of retrotransposons.
Collapse
Affiliation(s)
- Andrew C Peifer
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Patrick H Maxwell
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.,Wadsworth Center, Division of Genetics, Albany, NY 12208, USA
| |
Collapse
|
50
|
Lai RW, Lu R, Danthi PS, Bravo JI, Goumba A, Sampathkumar NK, Benayoun BA. Multi-level remodeling of transcriptional landscapes in aging and longevity. BMB Rep 2019. [PMID: 30526773 PMCID: PMC6386224 DOI: 10.5483/bmbrep.2019.52.1.296] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
In multi-cellular organisms, the control of gene expression is key not only for development, but also for adult cellular homeostasis, and gene expression has been observed to be deregulated with aging. In this review, we discuss the current knowledge on the transcriptional alterations that have been described to occur with age in metazoans. First, we discuss age-related transcriptional changes in protein-coding genes, the expected functional impact of such changes, and how known pro-longevity interventions impact these changes. Second, we discuss the changes and impact of emerging aspects of transcription in aging, including age-related changes in splicing, lncRNAs and circRNAs. Third, we discuss the changes and potential impact of transcription of transposable elements with aging. Fourth, we highlight small ncRNAs and their potential impact on the regulation of aging phenotypes. Understanding the aging transcriptome will be key to identify important regulatory targets, and ultimately slow-down or reverse aging and extend healthy lifespan in humans.
Collapse
Affiliation(s)
- Rochelle W Lai
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Ryan Lu
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Prakroothi S Danthi
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Juan I Bravo
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089; Graduate program in the Biology of Aging, University of Southern California, Los Angeles, CA 90089, USA
| | - Alexandre Goumba
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | | | - Bérénice A Benayoun
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089; USC Norris Comprehensive Cancer Center, Epigenetics and Gene Regulation, Los Angeles, CA 90089; USC Stem Cell Initiative, Los Angeles, CA 90089, USA
| |
Collapse
|