1
|
Li D, Xiang B, Peng J, Li H, Peng L, Chen X. Association of genetic variations of 3'-UTR in clopidogrel pharmacokinetic-relevant genes with clopidogrel response in Han Chinese patients with coronary artery disease. Eur J Pharm Sci 2024; 200:106830. [PMID: 38878906 DOI: 10.1016/j.ejps.2024.106830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/23/2024] [Accepted: 06/10/2024] [Indexed: 06/20/2024]
Abstract
Dual antiplatelet therapy with aspirin and clopidogrel has reduced ischemic vascular events significantly. Genetic influence, especially those in clopidogrel pharmacokinetic-relevant genes partially accounts for interindividual pharmacodynamic variability of clopidogrel. However, most studies have concentrated on the genetic variations in introns, exons, or promoters of the candidate genes, and the association between genetic variations in 3'-UTR in clopidogrel pharmacokinetic-relevant genes and clopidogrel response is unknown. In our study, ten different algorithms were applied to pick potential miRNAs targeting the clopidogrel pharmacokinetic-relevant genes. Furthermore, the correlation between miRNA expression profiles and mRNA expression of corresponding clopidogrel pharmacokinetic-relevant genes was analyzed. Through comprehensive analysis, including bioinformatics prediction and correlation analysis of miRNA and mRNA expression profiles, miR-218-5p and miR-506-5p were supposed to regulate the expression of PON1 via binding with its 3'-UTR. Moreover, PON1 rs854551 and rs854552 were located in miRNA recognizing sequences and may serve as potential miRSNPs possibly affecting PON1 expression. The rs854552 polymorphism was genotyped and platelet reactivity index (PRI) indicative of clopidogrel response was measured in 341 Chinese coronary artery disease (CAD) patients 24 h after administration of 300 mg clopidogrel. Our results showed that PON1 rs854552 had a significant influence on PRI in CAD patients, especially in patients with CYP2C19 extensive metabolic phenotype. In conclusion, PON1 rs854552 polymorphisms may affect clopidogrel response. Bioinformatics prediction followed by functional validation could aid in decoding the contribution of unexplained variations in the 3'-UTR in drug-metabolizing enzymes on clopidogrel response.
Collapse
Affiliation(s)
- Dongjie Li
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China; Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Boyu Xiang
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Jingxuan Peng
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - He Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, China
| | - Liming Peng
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, China; Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoping Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
2
|
SNPs in 3'UTR miRNA Target Sequences Associated with Individual Drug Susceptibility. Int J Mol Sci 2022; 23:ijms232213725. [PMID: 36430200 PMCID: PMC9692299 DOI: 10.3390/ijms232213725] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/04/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022] Open
Abstract
The complementary interaction of microRNAs (miRNAs) with their binding sites in the 3'untranslated regions (3'UTRs) of target gene mRNAs represses translation, playing a leading role in gene expression control. MiRNA recognition elements (MREs) in the 3'UTRs of genes often contain single nucleotide polymorphisms (SNPs), which can change the binding affinity for target miRNAs leading to dysregulated gene expression. Accumulated data suggest that these SNPs can be associated with various human pathologies (cancer, diabetes, neuropsychiatric disorders, and cardiovascular diseases) by disturbing the interaction of miRNAs with their MREs located in mRNA 3'UTRs. Numerous data show the role of SNPs in 3'UTR MREs in individual drug susceptibility and drug resistance mechanisms. In this review, we brief the data on such SNPs focusing on the most rigorously proven cases. Some SNPs belong to conventional genes from the drug-metabolizing system (in particular, the genes coding for cytochromes P450 (CYP 450), phase II enzymes (SULT1A1 and UGT1A), and ABCB3 transporter and their expression regulators (PXR and GATA4)). Other examples of SNPs are related to the genes involved in DNA repair, RNA editing, and specific drug metabolisms. We discuss the gene-by-gene studies and genome-wide approaches utilized or potentially utilizable to detect the MRE SNPs associated with individual response to drugs.
Collapse
|
3
|
Tantawy M, Collins JM, Wang D. Genome-wide microRNA profiles identify miR-107 as a top miRNA associating with expression of the CYP3As and other drug metabolizing cytochrome P450 enzymes in the liver. Front Pharmacol 2022; 13:943538. [PMID: 36059981 PMCID: PMC9428441 DOI: 10.3389/fphar.2022.943538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/06/2022] [Indexed: 11/13/2022] Open
Abstract
Cytochrome P450 (CYP) drug metabolizing enzymes are responsible for the metabolism of over 70% of currently used medications with the CYP3A family being the most important CYP enzymes in the liver. Large inter-person variability in expression/activity of the CYP3As greatly affects drug exposure and treatment outcomes, yet the cause of such variability remains elusive. Micro-RNAs (miRNAs) are small noncoding RNAs that negatively regulate gene expression and are involved in diverse cellular processes including metabolism of xenobiotics and therapeutic outcomes. Target prediction and in vitro functional assays have linked several miRNAs to the control of CYP3A4 expression. Yet, their co-expression with CYP3As in the liver remain unclear. In this study, we used genome-wide miRNA profiling in liver samples to identify miRNAs associated with the expression of the CYP3As. We identified and validated both miR-107 and miR-1260 as strongly associated with the expression of CYP3A4, CYP3A5, and CYP3A43. Moreover, we found associations between miR-107 and nine transcription factors (TFs) that regulate CYP3A expression, with estrogen receptor alpha (ESR1) having the largest effect size. Including ESR1 and the other TFs in the regression model either diminished or abolished the associations between miR-107 and the CYP3As, indicating that the role of miR-107 in CYP3A expression may be indirect and occur through these key TFs. Indeed, testing the other nine CYPs previously shown to be regulated by ESR1 identified similar miR-107 associations that were dependent on the exclusion of ESR1 and other key TFs in the regression model. In addition, we found significant differences in miRNA expression profiles in liver samples between race and sex. Together, our results identify miR-107 as a potential epigenetic regulator that is strongly associated with the expression of many CYPs, likely via impacting the CYP regulatory network controlled by ESR1 and other key TFs. Therefore, both genetic and epigenetic factors that alter the expression of miR-107 may have a broad influence on drug metabolism.
Collapse
|
4
|
Liu Y, Lan C, Li B, Wang N, Zuo X, Huang L, Wu Y, Zhu Y. Associations of CYP2B6 genetic polymorphisms with Hirschsprung's disease in a southern Chinese population. J Clin Lab Anal 2021; 35:e24074. [PMID: 34752660 PMCID: PMC8649360 DOI: 10.1002/jcla.24074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 10/08/2021] [Accepted: 10/17/2021] [Indexed: 11/11/2022] Open
Abstract
Background Hirschsprung’s disease (HSCR) is an enteric nervous system birth defect partially caused by a genetic disorder. Single‐nucleotide polymorphisms (SNPs) of the cytochrome P450 family 2 subfamily B member 6 (CYP2B6) gene are reported to be associated with HSCR. Methods We evaluated the association of rs2054675, rs707265, and rs1042389 with HSCR susceptibility in southern Chinese children including 1470 HSCR patients and 1473 controls using the TaqMan SNP Genotyping Assay. Results rs2054675 C allele and the rs707265 G allele were risk SNPs for total colonic aganglionosis (OR = 1.82, 95% CI 1.29 ~ 2.55, P_adj < 0.001 and OR = 0.68, 95% CI 0.48 ~ 0.97, P_adj = 0.034). These results suggested that CYP2B6 rs2054675 and rs707265 polymorphisms were associated with increased susceptibility to the severe HSCR subtype in southern Chinese children. Conclusion We suggest that CYP2B6 rs2054675 and rs707265 polymorphisms are associated with increased susceptibility to the severe HSCR subtype in southern Chinese children.
Collapse
Affiliation(s)
- Yanqing Liu
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Chaoting Lan
- The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Bingxiao Li
- The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Ning Wang
- Guangzhou Medical University, Guangzhou, China
| | - Xiaoyu Zuo
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Lihua Huang
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Yuxin Wu
- The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yun Zhu
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
5
|
Powell NR, Zhao H, Ipe J, Liu Y, Skaar TC. Mapping the miRNA-mRNA Interactome in Human Hepatocytes and Identification of Functional mirSNPs in Pharmacogenes. Clin Pharmacol Ther 2021; 110:1106-1118. [PMID: 34314509 PMCID: PMC9007393 DOI: 10.1002/cpt.2379] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 07/21/2021] [Indexed: 12/21/2022]
Abstract
MiRNAs regulate the expression of hepatic genes involved in pharmacokinetics and pharmacodynamics. Genetic variants affecting miRNA binding (mirSNPs) have been associated with altered drug response, but previously used methods to identify miRNA binding sites and functional mirSNPs in pharmacogenes are indirect and limited by low throughput. We utilized the high-throughput chimeric-eCLIP assay to directly map thousands of miRNA-mRNA interactions and define the miRNA binding sites in primary hepatocytes. We then used the high-throughput PASSPORT-seq assay to functionally test 262 potential mirSNPs with coordinates overlapping the identified miRNA binding sites. Using chimeric-eCLIP, we identified a network of 448 miRNAs that collectively target 11,263 unique genes in primary hepatocytes pooled from 100 donors. Our data provide an extensive map of miRNA binding of each gene, including pharmacogenes, expressed in primary hepatocytes. For example, we identified the hsa-mir-27b-DPYD interaction at a previously validated binding site. A second example is our identification of 19 unique miRNAs that bind to CYP2B6 across 20 putative binding sites on the transcript. Using PASSPORT-seq, we then identified 24 mirSNPs that functionally impacted reporter mRNA levels. To our knowledge, this is the most comprehensive identification of miRNA binding sites in pharmacogenes. Combining chimeric-eCLIP with PASSPORT-seq successfully identified functional mirSNPs in pharmacogenes that may affect transcript levels through altered miRNA binding. These results provide additional insights into potential mechanisms contributing to interindividual variability in drug response.
Collapse
Affiliation(s)
- Nicholas R. Powell
- Indiana University School of Medicine, Department of Medicine, Division of Clinical Pharmacology, Indianapolis, Indiana, USA
| | - Harrison Zhao
- Indiana University School of Medicine, Department of Medical and Molecular Genetics, Indianapolis, Indiana, USA
| | - Joseph Ipe
- Indiana University School of Medicine, Department of Medicine, Division of Clinical Pharmacology, Indianapolis, Indiana, USA
| | - Yunlong Liu
- Indiana University School of Medicine, Department of Medical and Molecular Genetics, Indianapolis, Indiana, USA
| | - Todd C. Skaar
- Indiana University School of Medicine, Department of Medicine, Division of Clinical Pharmacology, Indianapolis, Indiana, USA
| |
Collapse
|
6
|
Skandalaki A, Sarantis P, Theocharis S. Pregnane X Receptor (PXR) Polymorphisms and Cancer Treatment. Biomolecules 2021; 11:1142. [PMID: 34439808 PMCID: PMC8394562 DOI: 10.3390/biom11081142] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 12/20/2022] Open
Abstract
Pregnane X Receptor (PXR) belongs to the nuclear receptors' superfamily and mainly functions as a xenobiotic sensor activated by a variety of ligands. PXR is widely expressed in normal and malignant tissues. Drug metabolizing enzymes and transporters are also under PXR's regulation. Antineoplastic agents are of particular interest since cancer patients are characterized by significant intra-variability to treatment response and severe toxicities. Various PXR polymorphisms may alter the function of the protein and are linked with significant effects on the pharmacokinetics of chemotherapeutic agents and clinical outcome variability. The purpose of this review is to summarize the roles of PXR polymorphisms in the metabolism and pharmacokinetics of chemotherapeutic drugs. It is also expected that this review will highlight the importance of PXR polymorphisms in selection of chemotherapy, prediction of adverse effects and personalized medicine.
Collapse
Affiliation(s)
| | | | - Stamatios Theocharis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (A.S.); (P.S.)
| |
Collapse
|
7
|
Kwon YJ, Shin S, Chun YJ. Biological roles of cytochrome P450 1A1, 1A2, and 1B1 enzymes. Arch Pharm Res 2021; 44:63-83. [PMID: 33484438 DOI: 10.1007/s12272-021-01306-w] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 01/06/2021] [Indexed: 12/13/2022]
Abstract
Human cytochrome P450 enzymes (CYPs) play a critical role in various biological processes and human diseases. CYP1 family members, including CYP1A1, CYP1A2, and CYP1B1, are induced by aryl hydrocarbon receptors (AhRs). The binding of ligands such as polycyclic aromatic hydrocarbons activates the AhRs, which are involved in the metabolism (including oxidation) of various endogenous or exogenous substrates. The ligands that induce CYP1 expression are reported to be carcinogenic xenobiotics. Hence, CYP1 enzymes are correlated with the pathogenesis of cancers. Various endogenous substrates are involved in the metabolism of steroid hormones, eicosanoids, and other biological molecules that mediate the pathogenesis of several human diseases. Additionally, CYP1s metabolize and activate/inactivate therapeutic drugs, especially, anti-cancer agents. As the metabolism of drugs determines their therapeutic efficacy, CYP1s can determine the susceptibility of patients to some drugs. Thus, understanding the role of CYP1s in diseases and establishing novel and efficient therapeutic strategies based on CYP1s have piqued the interest of the scientific community.
Collapse
Affiliation(s)
- Yeo-Jung Kwon
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Sangyun Shin
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Young-Jin Chun
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea.
| |
Collapse
|
8
|
Smutny T, Hyrsova L, Braeuning A, Ingelman-Sundberg M, Pavek P. Transcriptional and post-transcriptional regulation of the pregnane X receptor: a rationale for interindividual variability in drug metabolism. Arch Toxicol 2020; 95:11-25. [PMID: 33164107 DOI: 10.1007/s00204-020-02916-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/17/2020] [Indexed: 12/15/2022]
Abstract
The pregnane X receptor (PXR, encoded by the NR1I2 gene) is a ligand-regulated transcription factor originally described as a master regulator of xenobiotic detoxification. Later, however, PXR was also shown to interact with endogenous metabolism and to be further associated with various pathological states. This review focuses predominantly on such aspects, currently less covered in literature, as the control of PXR expression per se in the context of inter-individual differences in drug metabolism. There is growing evidence that non-coding RNAs post-transcriptionally regulate PXR. Effects on PXR have especially been reported for microRNAs (miRNAs), which include miR-148a, miR-18a-5p, miR-140-3p, miR-30c-1-3p and miR-877-5p. Likewise, miRNAs control the expression of both transcription factors involved in PXR expression and regulators of PXR function. The impact of NR1I2 genetic polymorphisms on miRNA-mediated PXR regulation is also discussed. As revealed recently, long non-coding RNAs (lncRNAs) appear to interfere with PXR expression. Reciprocally, PXR activation regulates non-coding RNA expression, thus comprising another level of PXR action in addition to the direct transactivation of protein-coding genes. PXR expression is further controlled by several transcription factors (cross-regulation) giving rise to different PXR transcript variants. Controversies remain regarding the suggested role of feedback regulation (auto-regulation) of PXR expression. In this review, we comprehensively summarize the miRNA-mediated, lncRNA-mediated and transcriptional regulation of PXR expression, and we propose that deciphering the precise mechanisms of PXR expression may bridge our knowledge gap in inter-individual differences in drug metabolism and toxicity.
Collapse
Affiliation(s)
- Tomas Smutny
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, 500 05, Hradec Kralove, Czech Republic.
| | - Lucie Hyrsova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, 500 05, Hradec Kralove, Czech Republic
| | - Albert Braeuning
- Department Food Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Magnus Ingelman-Sundberg
- Department of Physiology and Pharmacology, Section of Pharmacogenetics, Karolinska Institutet, Solna vägen 9, 17165, Stockholm, Sweden
| | - Petr Pavek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, 500 05, Hradec Kralove, Czech Republic
| |
Collapse
|
9
|
Akhtar S, Hourani S, Therachiyil L, Al-Dhfyan A, Agouni A, Zeidan A, Uddin S, Korashy HM. Epigenetic Regulation of Cancer Stem Cells by the Aryl Hydrocarbon Receptor Pathway. Semin Cancer Biol 2020; 83:177-196. [PMID: 32877761 DOI: 10.1016/j.semcancer.2020.08.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/20/2020] [Accepted: 08/23/2020] [Indexed: 12/14/2022]
Abstract
Compelling evidence has demonstrated that tumor bulk comprises distinctive subset of cells generally referred as cancer stem cells (CSCs) that have been proposed as a strong sustainer and promoter of tumorigenesis and therapeutic resistance. These distinguished properties of CSCs have raised interest in understanding the molecular mechanisms that govern the maintenance of these cells. Numerous experimental and epidemiological studies have demonstrated that exposure to environmental toxins such as the polycyclic aromatic hydrocarbons (PAHs) is strongly involved in cancer initiation and progression. The PAH-induced carcinogenesis is shown to be mediated through the activation of a cytosolic receptor, aryl hydrocarbon receptor (AhR)/Cytochrome P4501A pathway, suggesting a possible direct link between AhR and CSCs. Several recent studies have investigated the role of AhR in CSCs self-renewal and maintenance, however the molecular mechanisms and particularly the epigenetic regulations of CSCs by the AhR/CYP1A pathway have not been reviewed before. In this review, we first summarize the crosstalk between AhR and cancer genetics, with a particular emphasis on the mechanisms relevant to CSCs such as Wnt/β-catenin, Notch, NF-κB, and PTEN-PI3K/Akt signaling pathways. The second part of this review discusses the recent advances and studies highlighting the epigenetic mechanisms mediated by the AhR/CYP1A pathway that control CSC gene expression, self-renewal, and chemoresistance in various human cancers. Furthermore, the review also sheds light on the importance of targeting the epigenetic pathways as a novel therapeutic approach against CSCs.
Collapse
Affiliation(s)
- Sabah Akhtar
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha, Qatar
| | - Shireen Hourani
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha, Qatar
| | - Lubna Therachiyil
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha, Qatar; Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Abdullah Al-Dhfyan
- Stem Cell & Tissue Re-Engineering, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211, Saudi Arabia
| | - Abdelali Agouni
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha, Qatar
| | - Asad Zeidan
- Department of Biomedical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Hesham M Korashy
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha, Qatar.
| |
Collapse
|
10
|
Reuter T, Herold-Mende C, Dyckhoff G, Rigalli JP, Weiss J. Functional role of miR-148a in oropharyngeal cancer: influence on pregnane X receptor and P-glycoprotein expression. J Recept Signal Transduct Res 2019; 39:451-459. [PMID: 31771390 DOI: 10.1080/10799893.2019.1694541] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
MicroRNAs are short noncoding RNAs of about 19-25 nucleotides that usually target the 3' untranslated regions of mRNAs thus mediating post-transcriptional regulation of gene expression. Previous data indicate a role for miR-148a in the regulation of the pregnane X receptor (PXR/NR1I2), a nuclear receptor that regulates the expression of drug transporters like P-glycoprotein (P-gp/ABCB1). Our study investigated the effect of miR-148a on the post-transcriptional regulation of PXR and its target gene ABCB1 in oropharyngeal cancer cell lines (OPSCC). miR-148a was over-expressed and knocked-down in three OPSCC cell lines (HNO41, HNO206, and HNO413) by transfection with miR-148a mimic and miR-148a antagomir, respectively. Expression of miR-148a, NR1I2, and ABCB1 mRNA was quantified via real-time qPCR, protein expression of PXR was assessed by immunoblotting. Transfection of miR-148a mimic led to increased miR-148a levels in all cell lines and transfection of miR-148a antagomir reduced miR-148a expression in HNO206 and HNO413. Whereas these changes had no significant effect on PXR mRNA expression, protein expression was reduced in HNO41 by transfection with miR-148a and increased in HNO413 by transfection with miR-148a antagomir. Transfection of miR-148a downregulated ABCB1 mRNA in all cell lines, whereas antagonizing miR-148a had no significant effect. Our data demonstrate a modulation of PXR/NR1I2 and ABCB1 expression in OPSCC by miR-148a, however the effect was not uniform in all cell lines and depended on the range of expression of miR-148 and the genotype of rs1054190 SNP in NR1I2 3'UTR. Thus, our findings argue against an unequivocal association between miR-148a and PXR levels in OPSCC.
Collapse
Affiliation(s)
- Tasmin Reuter
- Department of Clinical Pharmacology and Pharmacoepidemiology, University of Heidelberg, Heidelberg, Germany
| | - Christel Herold-Mende
- Experimental Neurosurgery Research, Department of Neurosurgery, University of Heidelberg, Heidelberg, Germany.,Molecular Cell Biology Group, Department of Otorhinolaryngology, Head and Neck Surgery, University of Heidelberg, Heidelberg, Germany
| | - Gerhard Dyckhoff
- Molecular Cell Biology Group, Department of Otorhinolaryngology, Head and Neck Surgery, University of Heidelberg, Heidelberg, Germany
| | - Juan Pablo Rigalli
- Department of Clinical Pharmacology and Pharmacoepidemiology, University of Heidelberg, Heidelberg, Germany.,Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Johanna Weiss
- Department of Clinical Pharmacology and Pharmacoepidemiology, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
11
|
Zhou WL, Mo ZZ, Xiao FY, Dai W, Wang G, Zhou G, Zhang W, Chen BL. microRNA-605 rs2043556 polymorphisms affect clopidogrel therapy through modulation of CYP2B6 and P2RY12 in acute coronary syndrome patients. Platelets 2019; 31:897-905. [PMID: 31766967 DOI: 10.1080/09537104.2019.1696455] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Wan-Lu Zhou
- Department of Geriatrics, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zhen-Zhen Mo
- Department of Geriatrics, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Fei-Yan Xiao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
| | - Wei Dai
- Department of Geriatrics, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Guo Wang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
| | - Gan Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
| | - Bi-Lian Chen
- Department of Geriatrics, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
12
|
Hosseindokht M, Boroumand M, Salehi R, Mandegary A, Hajhosseini Talasaz A, Pourgholi L, Zare H, Ziaee S, Sharifi M. Association between four microRNA binding site-related polymorphisms and the risk of warfarin-induced bleeding complications. EXCLI JOURNAL 2019; 18:287-299. [PMID: 31338002 PMCID: PMC6635724 DOI: 10.17179/excli2019-1352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 05/02/2019] [Indexed: 12/18/2022]
Abstract
Bleeding is the most serious complication of warfarin anticoagulation therapy and is known to occur even at patients with therapeutic international normalized ratio (INR) range. Recently, it has been shown that microRNAs play a significant role in pharmacogenetics by regulating genes that are critical for drug function. Interaction between microRNAs and these target genes could be affected by single-nucleotide polymorphisms (SNPs) located in microRNA-binding sites. This study focused on 3′-untranslated region (3′-UTR) SNPs of the genes involved in the warfarin action and the occurrence of bleeding complications in an Iranian population receiving warfarin. A total of 526 patients under warfarin anticoagulation therapy with responding to the therapeutic dose and maintenance of the INR in the range of 2.0-3.5 in three consecutive blood tests were included in the study. Four selected 3'-UTR SNPs (rs12458, rs7294, rs1868774 and rs34669593 located in GATA4, VKORC1, CALU and GGCX genes, respectively) with the potential to disrupt/eliminate or enhance/create microRNA-binding site were genotyped using a simple PCR-based restriction fragment length polymorphism (PCR-RFLP) method. Patients with the rs12458 AT or TT genotypes of the GATA4 gene had a lower risk of bleeding compared to patients with the AA genotype (adjusted OR: 0.478, 95% CI: 0.285-0.802, P= 0.005, OR: 0.416, 95% CI: 0.192-0.902, P= 0.026, respectively). 3'-UTR polymorphisms in other genes were not significantly associated with the risk of bleeding complications. In conclusion, the SNP rs12458A>T in the 3′UTR region of GATA4 is associated with the incidence of warfarin-related bleeding at target range of INR, likely by altering microRNA binding and warfarin metabolism. Further genetics association studies are needed to validate these findings before they can be implemented in clinical settings.
Collapse
Affiliation(s)
- Maryam Hosseindokht
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammadali Boroumand
- Department of Pathology and Laboratory Medicine, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Rasoul Salehi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ali Mandegary
- Department of Pharmacology and Toxicology, School of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran; Gastroenterology and Hepatology Research Center, Afzalipour's Hospital, Imam Highway, Kerman, Iran
| | - Azita Hajhosseini Talasaz
- Department of Cardiac Research, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Clinical Pharmacy, School of Pharmacy, Tehran University of Medical Sciences
| | - Leyla Pourgholi
- Department of Pathology and Laboratory Medicine, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamed Zare
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Shayan Ziaee
- Department of Pathology and Laboratory Medicine, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Sharifi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
13
|
Ziebarth JD, Bhattacharya A, Cui Y. Functional Analysis of Genetic Variants and Somatic Mutations Impacting MicroRNA-Target Recognition: Bioinformatics Resources. Methods Mol Biol 2019; 1970:101-120. [PMID: 30963491 DOI: 10.1007/978-1-4939-9207-2_8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
MicroRNAs are small noncoding RNA molecules with great importance in regulating a large number of diverse biological processes in health and disease. MicroRNAs can bind to both coding and noncoding RNAs and regulate their stability and expression. Genetic variants and somatic mutations may alter microRNA sequences and their target sites and therefore impact microRNA-target recognition. Aberrant microRNA-target interactions have been associated with many diseases. In recent years, computational resources have been developed for retrieving, annotating, and analyzing the impact of mutations on microRNA-target recognition. In this chapter, we provide an overview on the computational analysis of mutations impacting microRNA target recognition, followed by a detailed tutorial on how to use three major Web-based bioinformatics resources: PolymiRTS ( http://compbio.uthsc.edu/miRSNP ), a database of genetic variants impacting microRNA target recognition; SomamiR ( http://compbio.uthsc.edu/SomamiR ), a database of somatic mutations affecting the interactions between microRNAs and their targets in mRNAs and noncoding RNAs; and miR2GO ( http://compbio.uthsc.edu/miR2GO ), a computational tool for knowledge-based functional analysis of genetic variants and somatic mutations in microRNA seed regions.
Collapse
Affiliation(s)
- Jesse D Ziebarth
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA.,Center for Integrative and Translational Genomics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Anindya Bhattacharya
- Department of Computer Science and Engineering, University of California, San Diego, CA, USA.
| | - Yan Cui
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA.,Center for Integrative and Translational Genomics, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
14
|
Ding W, Cao C, Gao Y, Zhou X, Lai Y. Inhibition of CYP3A4 and CYP3A5 expression by scutellarin is not mediated via the regulation of hsa-miR-27a, 27b, 148a, 298 and 451a levels. Xenobiotica 2018; 50:1267-1274. [PMID: 30501535 DOI: 10.1080/00498254.2018.1555344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
1. Scutellarin is a flavonoid glycoside widely used in the treatment of cardio-cerebrovascular diseases in China. In this study, we investigated the effect of scutellarin on cytochrome P450 3A4 (CYP3A4) and CYP3A5 expression. Furthermore, we studied the expression of hsa-miR-27a, hsa-miR-27b, hsa-miR-148a, hsa-miR-298 and hsa-miR-451a in humans to determine whether scutellarin regulated CYP3A4 and CYP3A5 expression by altering levels of those micro-ribonucleic acids (miRNAs). 2. In vitro CYP3A4 and CYP3A5 expression was measured in Chang liver cells via quantitative real-time polymerase chain reaction (qPCR) and western blot. In vivo CYP3A4 and CYP3A5 expression was evaluated through the metabolism of their substrate midazolam (MID), and detected via ultra-performance liquid chromatography-mass spectrometry. The relative miRNA levels in the plasma of study participants were investigated via qPCR. 3. Results showed that scutellarin significantly inhibited the CYP3A4 and CYP3A5 expression both in vitro and in vivo. However, the levels of hsa-miR-27a, hsa-miR-27b, hsa-miR-148a, hsa-miR-298 and hsa-miR-451a in scutellarin group did not show significant changes when compared with those of the placebo group (p > 0.05), suggesting that the expression of these miRNAs is not relevant to the scutellarin-induced down-regulation of CYP3A4 and CYP3A5.
Collapse
Affiliation(s)
- Weiyao Ding
- Institute of Pharmacy and Chemistry, Dali University, Yunnan, China
| | - Change Cao
- Institute of Pharmacy and Chemistry, Dali University, Yunnan, China.,Central Laboratory, Qujing hospital of traditional Chinese medicine, Yunnan, China
| | - Yangyang Gao
- Institute of Pharmacy and Chemistry, Dali University, Yunnan, China
| | - Xuan Zhou
- Institute of Pharmacy and Chemistry, Dali University, Yunnan, China
| | - Yong Lai
- Institute of Pharmacy and Chemistry, Dali University, Yunnan, China.,Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, Yunnan, China
| |
Collapse
|
15
|
O'Connell KS, Swart M, McGregor NW, Dandara C, Warnich L. Pharmacogenetics of Antiretroviral Drug Response and Pharmacokinetic Variations in Indigenous South African Populations. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2018; 22:589-597. [PMID: 30235109 DOI: 10.1089/omi.2018.0117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Interindividual and interethnic differences in response to antiretroviral drugs (ARVs) are influenced by genetic variation. The few genomic studies conducted among African-Americans and African ethnic groups do not reflect the extensive genetic diversity within African populations. ARVs are widely used in Africa. Therefore, genomic characterization of African populations is required before genotype-guided dosing becomes possible. The aim of this study was to determine and report on the frequency of genetic variants in genes implicated in metabolism and transport of ARVs in South African populations. The study comprised 48 self-reported South African Colored (SAC) and 296 self-reported Black African (BA) individuals. Allele and genotype frequency distributions for 93 variants contributing to metabolism and transport of ARVs were compared between groups, and other global populations. Fifty-three variants had significant differences in allele and genotype frequencies when comparing SAC and BA groups. Thirteen of these have strong clinical annotations, affecting efavirenz and tenofovir pharmacokinetics. This study provides a summary of the genetic variation within genes implicated in metabolism and transport of ARVs in indigenous South African populations. The observed differences between indigenous population groups, and between these groups and global populations, demonstrate that data generated from specific African populations cannot be used to infer genetic diversity within other populations on the continent. These results highlight the need for comprehensive characterization of genetic variation within indigenous African populations, and the clinical utility of these variants in ARV dosing for global precision medicine. Population pharmacogenetics is a nascent field of global health and warrants further research and education.
Collapse
Affiliation(s)
- Kevin S O'Connell
- 1 Systems Genetics Working Group, Department of Genetics, Stellenbosch University , Stellenbosch, South Africa
| | - Marelize Swart
- 2 Pharmacogenomics and Drug Metabolism Group, Division of Human Genetics, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town , Cape Town, South Africa
| | - Nathaniel W McGregor
- 1 Systems Genetics Working Group, Department of Genetics, Stellenbosch University , Stellenbosch, South Africa
| | - Collet Dandara
- 2 Pharmacogenomics and Drug Metabolism Group, Division of Human Genetics, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town , Cape Town, South Africa
| | - Louise Warnich
- 1 Systems Genetics Working Group, Department of Genetics, Stellenbosch University , Stellenbosch, South Africa
| |
Collapse
|
16
|
Burgess KS, Ipe J, Swart M, Metzger IF, Lu J, Gufford BT, Thong N, Desta Z, Gaedigk R, Pearce RE, Gaedigk A, Liu Y, Skaar TC. Variants in the CYP2B6 3'UTR Alter In Vitro and In Vivo CYP2B6 Activity: Potential Role of MicroRNAs. Clin Pharmacol Ther 2018; 104:130-138. [PMID: 28960269 PMCID: PMC5871545 DOI: 10.1002/cpt.892] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 09/20/2017] [Accepted: 09/22/2017] [Indexed: 01/07/2023]
Abstract
CYP2B6*6 and CYP2B6*18 are the most clinically important variants causing reduced CYP2B6 protein expression and activity. However, these variants do not account for all variability in CYP2B6 activity. Emerging evidence has shown that genetic variants in the 3'UTR may explain variable drug response by altering microRNA regulation. Five 3'UTR variants were associated with significantly altered efavirenz AUC0-48 (8-OH-EFV/EFV) ratios in healthy human volunteers. The rs70950385 (AG>CA) variant, predicted to create a microRNA binding site for miR-1275, was associated with a 33% decreased CYP2B6 activity among normal metabolizers (AG/AG vs. CA/CA (P < 0.05)). In vitro luciferase assays were used to confirm that the CA on the variant allele created a microRNA binding site causing an 11.3% decrease in activity compared to the AG allele when treated with miR-1275 (P = 0.0035). Our results show that a 3'UTR variant contributes to variability in CYP2B6 activity.
Collapse
Affiliation(s)
- Kimberly S. Burgess
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, IN
- Department of Medicine, Division of Clinical Pharmacology, Indiana University School of Medicine, Indianapolis, IN
| | - Joseph Ipe
- Department of Medicine, Division of Clinical Pharmacology, Indiana University School of Medicine, Indianapolis, IN
| | - Marelize Swart
- Department of Medicine, Division of Clinical Pharmacology, Indiana University School of Medicine, Indianapolis, IN
| | - Ingrid F. Metzger
- Department of Medicine, Division of Clinical Pharmacology, Indiana University School of Medicine, Indianapolis, IN
| | - Jessica Lu
- Department of Medicine, Division of Clinical Pharmacology, Indiana University School of Medicine, Indianapolis, IN
| | - Brandon T. Gufford
- Department of Medicine, Division of Clinical Pharmacology, Indiana University School of Medicine, Indianapolis, IN
| | - Nancy Thong
- Department of Medicine, Division of Clinical Pharmacology, Indiana University School of Medicine, Indianapolis, IN
| | - Zeruesenay Desta
- Department of Medicine, Division of Clinical Pharmacology, Indiana University School of Medicine, Indianapolis, IN
| | - Roger Gaedigk
- Division of Clinical Pharmacology, Toxicology and Therapeutic Innovation, Children’s Mercy Kansas City, Kansas City, MO
| | - Robin E. Pearce
- Division of Clinical Pharmacology, Toxicology and Therapeutic Innovation, Children’s Mercy Kansas City, Kansas City, MO
| | - Andrea Gaedigk
- Division of Clinical Pharmacology, Toxicology and Therapeutic Innovation, Children’s Mercy Kansas City, Kansas City, MO
| | - Yunlong Liu
- Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN
| | - Todd C. Skaar
- Department of Medicine, Division of Clinical Pharmacology, Indiana University School of Medicine, Indianapolis, IN
| |
Collapse
|
17
|
Ellwanger JH, Zambra FMB, Guimarães RL, Chies JAB. MicroRNA-Related Polymorphisms in Infectious Diseases-Tiny Changes With a Huge Impact on Viral Infections and Potential Clinical Applications. Front Immunol 2018; 9:1316. [PMID: 29963045 PMCID: PMC6010531 DOI: 10.3389/fimmu.2018.01316] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 05/28/2018] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs (miRNAs) are single-stranded sequences of non-coding RNA with approximately 22 nucleotides that act posttranscriptionally on gene expression. miRNAs are important gene regulators in physiological contexts, but they also impact the pathogenesis of various diseases. The role of miRNAs in viral infections has been explored by different authors in both population-based as well as in functional studies. However, the effect of miRNA polymorphisms on the susceptibility to viral infections and on the clinical course of these diseases is still an emerging topic. Thus, this review will compile and organize the findings described in studies that evaluated the effects of genetic variations on miRNA genes and on their binding sites, in the context of human viral diseases. In addition to discussing the basic aspects of miRNAs biology, we will cover the studies that investigated miRNA polymorphisms in infections caused by hepatitis B virus, hepatitis C virus, human immunodeficiency virus, Epstein–Barr virus, and human papillomavirus. Finally, emerging topics concerning the importance of miRNA genetic variants will be presented, focusing on the context of viral infectious diseases.
Collapse
Affiliation(s)
- Joel Henrique Ellwanger
- Laboratório de Imunobiologia e Imunogenética, Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Francis Maria Báo Zambra
- Laboratório de Imunobiologia e Imunogenética, Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Rafael Lima Guimarães
- Departamento de Genética, Universidade Federal do Pernambuco (UFPE), Recife, Brazil.,Laboratório de Imunopatologia Keizo Asami (LIKA), Universidade Federal de Pernambuco (UFPE), Recife, Brazil
| | - José Artur Bogo Chies
- Laboratório de Imunobiologia e Imunogenética, Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| |
Collapse
|
18
|
Zanger UM, Klein K, Kugler N, Petrikat T, Ryu CS. Epigenetics and MicroRNAs in Pharmacogenetics. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2018; 83:33-64. [PMID: 29801581 DOI: 10.1016/bs.apha.2018.02.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Germline pharmacogenetics has so far mainly studied common variants in "pharmacogenes," i.e., genes encoding drug metabolizing enzymes and transporters (DMET genes), certain auxiliary and regulatory genes, and drug target genes. Despite remarkable progress in understanding genetically determined differences in pharmacokinetics and pharmacodynamics of drugs, currently known common variants even in important pharmacogenes explain genetic variability only partially. This suggests "missing heritability" that may in part be due to rare variants in the classical pharmacogenes, but current evidence suggests that largely unexplored resources with potential for pharmacogenetics exist, both within already known pharmacogenes and in entirely new areas. In particular, recent studies suggest that epigenetic processes and noncoding RNAs, including mostly microRNAs (miRNAs), represent important and largely unexplored layers of DMET gene regulation that may fill some of the gaps in understanding interindividual variability and lead to new biomarkers. In this chapter we summarize recent advances in the understanding of genetic variability in epigenetic and miRNA-mediated processes with focus on their significance for DMET regulation and pharmacokinetic or pharmacological endpoints.
Collapse
Affiliation(s)
- Ulrich M Zanger
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany; University Hospital Tübingen, Tübingen, Germany.
| | - Kathrin Klein
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
| | - Nicole Kugler
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
| | - Tamara Petrikat
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
| | - Chang S Ryu
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
| |
Collapse
|
19
|
Ten Years' Experience with the CYP2D6 Activity Score: A Perspective on Future Investigations to Improve Clinical Predictions for Precision Therapeutics. J Pers Med 2018; 8:jpm8020015. [PMID: 29673183 PMCID: PMC6023391 DOI: 10.3390/jpm8020015] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/06/2018] [Accepted: 04/10/2018] [Indexed: 12/20/2022] Open
Abstract
The seminal paper on the CYP2D6 Activity Score (AS) was first published ten years ago and, since its introduction in 2008, it has been widely accepted in the field of pharmacogenetics. This scoring system facilitates the translation of highly complex CYP2D6 diplotype data into a patient’s phenotype to guide drug therapy and is at the core of all CYP2D6 gene/drug pair guidelines issued by the Clinical Pharmacogenetics Implementation Consortium (CPIC). The AS, however, only explains a portion of the variability observed among individuals and ethnicities. In this review, we provide an overview of sources in addition to CYP2D6 genotype that contribute to the variability in CYP2D6-mediated drug metabolism and discuss other factors, genetic and non-genetic, that likely contribute to the observed variability in CYP2D6 enzymatic activity.
Collapse
|
20
|
Mbatchi LC, Brouillet JP, Evrard A. Genetic variations of the xenoreceptors NR1I2 and NR1I3 and their effect on drug disposition and response variability. Pharmacogenomics 2017; 19:61-77. [PMID: 29199543 DOI: 10.2217/pgs-2017-0121] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
NR1I2 (PXR) and NR1I3 (CAR) are nuclear receptors that are classified as xenoreceptors. Upon activation by various xenobiotics, including marketed drugs, they regulate the transcription level of major drug-metabolizing enzymes and transporters and facilitate the elimination of xenobiotics from the body. The modulation of the activity of these two xenoreceptors by various ligands is a major source of pharmacokinetic variability of environmental origin. NR1I2 and NR1I3 genetic polymorphisms can affect the pharmacokinetics and therapeutic response to many drugs, such as irinotecan, tacrolimus and atazanavir. This review provides an overview of NR1I2 and NR1I3 pharmacogenetic studies in various therapeutic fields (oncology, immunomodulation and infectiology) and discusses the implementation of NR1I2 and NR1I3 genetic polymorphism testing in the clinical routine.
Collapse
Affiliation(s)
- Litaty Céphanoée Mbatchi
- Laboratoire de biochimie, Centre Hospitalier Universitaire (CHU) of Nîmes, Hôpital Carémeau, Nîmes, France.,IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, F-34298, INSERM, U1194 France.,Laboratoire de Pharmacocinétique, Faculté de Pharmacie, Université de Montpellier, Montpellier, France
| | - Jean-Paul Brouillet
- Laboratoire de biochimie, Centre Hospitalier Universitaire (CHU) of Nîmes, Hôpital Carémeau, Nîmes, France.,IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, F-34298, INSERM, U1194 France
| | - Alexandre Evrard
- Laboratoire de biochimie, Centre Hospitalier Universitaire (CHU) of Nîmes, Hôpital Carémeau, Nîmes, France.,IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, F-34298, INSERM, U1194 France.,Laboratoire de Pharmacocinétique, Faculté de Pharmacie, Université de Montpellier, Montpellier, France
| |
Collapse
|
21
|
Helsley RN, Zhou C. Epigenetic impact of endocrine disrupting chemicals on lipid homeostasis and atherosclerosis: a pregnane X receptor-centric view. ENVIRONMENTAL EPIGENETICS 2017; 3:dvx017. [PMID: 29119010 PMCID: PMC5672952 DOI: 10.1093/eep/dvx017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 08/08/2017] [Accepted: 09/02/2017] [Indexed: 05/25/2023]
Abstract
Despite the major advances in developing diagnostic techniques and effective treatments, atherosclerotic cardiovascular disease (CVD) is still the leading cause of mortality and morbidity worldwide. While considerable progress has been achieved to identify gene variations and environmental factors that contribute to CVD, much less is known about the role of "gene-environment interactions" in predisposing individuals to CVD. Our chemical environment has significantly changed in the last few decades, and there are more than 100,000 synthetic chemicals in the market. Recent large-scale human population studies have associated exposure to certain chemicals including many endocrine disrupting chemicals (EDCs) with increased CVD risk, and animal studies have also confirmed that some EDCs can cause aberrant lipid homeostasis and increase atherosclerosis. However, the underlying mechanisms of how exposure to those EDCs influences CVD risk remain elusive. Numerous EDCs can activate the nuclear receptor pregnane X receptor (PXR) that functions as a xenobiotic sensor to regulate host xenobiotic metabolism. Recent studies have demonstrated the novel functions of PXR in lipid homeostasis and atherosclerosis. In addition to directly regulating transcription, PXR has been implicated in the epigenetic regulation of gene transcription. Exposure to many EDCs can also induce epigenetic modifications, but little is known about how the changes relate to the onset or progression of CVD. In this review, we will discuss recent research on PXR and EDCs in the context of CVD and propose that PXR may play a previously unrealized role in EDC-mediated epigenetic modifications that affect lipid homeostasis and atherosclerosis.
Collapse
Affiliation(s)
- Robert N Helsley
- Department of Pharmacology and Nutritional Sciences, Center for Metabolic Disease Research, University of Kentucky, Lexington, KY 40536, USA
- Department of Cellular and Molecular Medicine, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA
| | - Changcheng Zhou
- Department of Pharmacology and Nutritional Sciences, Center for Metabolic Disease Research, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
22
|
Identification and validation of the microRNA response elements in the 3'-untranslated region of the UDP glucuronosyltransferase (UGT) 2B7 and 2B15 genes by a functional genomics approach. Biochem Pharmacol 2017; 146:199-213. [PMID: 28962835 DOI: 10.1016/j.bcp.2017.09.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 09/25/2017] [Indexed: 12/15/2022]
Abstract
Posttranscriptional repression of UDP-glucuronosyltransferase (UGT) 2B7 and 2B15 expression by microRNAs (miRNAs) may be an important mechanism underlying inter-individual variability in drug glucuronidation. Furthermore, the UGT2B15 3'-UTR contains a common SNP (rs3100) that could influence miRNA binding. The aim of this study was to identify the complete complement of miRNAs that could regulate UGT2B7 and UGT2B15 expression through binding to the reference and/or variant 3'-UTRs. Luciferase reporter plasmids containing either the reference or variant 3'-UTRs were screened against a 2,048 human miRNA library to identify those miRNAs that decrease luciferase activity by at least 30% when co-transfected into HEK293 cells. Six novel miRNAs (miR-1293, miR-3664-3p, miR-4317, miR-513c-3p, miR-4483, and miR-142-3p) were identified that repressed the reference UGT2B7 3'-UTR, while twelve novel miRNAs (miR-770-5p, miR-103b, miR-3924, miR-376b-3p, miR-455-5p, miR-605, miR-624-3p, miR-4712-5p, miR-3675-3p, miR-6500-5p, miR-548as-3p, and miR-4292) repressed both the reference and rs3100 variant UGT2B15 3'-UTR. Deletion and mutagenesis studies confirmed the binding site location of each miRNA. Although the UGT2B15 rs3100 SNP was located within the miR-376c-3p response element, there was no effect on miRNA binding. miR-142-3p, miR-3664-3p, miR-4317, miR-455-5p, miR-376c-3p, miR-770-5p, miR-3675-3p, miR-331-5p, miR-605, and miR-376b-3p transcript levels were measured by quantitative PCR and correlated with UGT2B7 and UGT2B15 enzyme activities in 27 human liver samples. A significant negative correlation (Rs = -0.53; p = 0.005) was demonstrated between hepatic miR-455-5p transcript levels and UGT2B15-mediated S-oxazepam glucuronidation activities. Thus, the UGT2B7 and UGT2B15 3'-UTRs contain miRNA response elements for multiple miRNAs that may contribute to variable drug glucuronidation.
Collapse
|
23
|
Gill P, Bhattacharyya S, McCullough S, Letzig L, Mishra PJ, Luo C, Dweep H, James L. MicroRNA regulation of CYP 1A2, CYP3A4 and CYP2E1 expression in acetaminophen toxicity. Sci Rep 2017; 7:12331. [PMID: 28951593 PMCID: PMC5614957 DOI: 10.1038/s41598-017-11811-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 08/30/2017] [Indexed: 01/29/2023] Open
Abstract
MicroRNAs (miRNAs) that regulate the cytochrome P-450 isoforms involved in acetaminophen (APAP) toxicity were examined in HepaRG cells treated with APAP (20 mM). In-vitro studies found that APAP protein adducts were increased at 1 h, followed by ALT increases at 12 and 24 h. CYP1A2, CYP3A4 and CYP2E1 mRNA levels were decreased, while miRNAs were increased for miR-122-5p, miR-378a-5p, miR-27b-3p at 6 h and miR-125b-5p at 12 h and miR-27b-3p at 24 h. Putative miRNA binding sites on the 3′UTRs of the CYPs were identified in-silico. Overexpression of miR-122-5p and miR-378a-5p in cells suppressed protein expression of CYP1A2, CYP3A4 and CYP2E1. Luciferase reporter assays confirmed the interaction between miR-122 and the 3′UTR of the CYP1A2 and CYP3A4. Thus, the in-vitro experiments showed that miR-122-5p and miR-378a-5p upregulation were associated with translational repression of CYPs. Serum samples of children with APAP overdose had significant elevation of miR-122-5p, miR-378a-5p, miR-125b-5p and miR-27b-3p, compared to healthy controls and receiver operator curves of the miRNAs had AUCs of 91 to 100%. Collectively, the data suggest that miRNA elevations in APAP toxicity represent a regulatory response to modify CYP1A2, CYP3A4 and CYP2E1 translation due to cellular stress and injury.
Collapse
Affiliation(s)
- Pritmohinder Gill
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, 72202, USA. .,Arkansas Children's Research Institute, Little Rock, AR, 72202, USA.
| | - Sudeepa Bhattacharyya
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, 72202, USA.,Arkansas Children's Research Institute, Little Rock, AR, 72202, USA
| | - Sandra McCullough
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, 72202, USA.,Arkansas Children's Research Institute, Little Rock, AR, 72202, USA
| | - Lynda Letzig
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, 72202, USA.,Arkansas Children's Research Institute, Little Rock, AR, 72202, USA
| | - Prasun J Mishra
- Department of Biochemical and Cellular Pharmacology, Genentech, 1, DNA Way, South San Francisco, California, 94080, USA
| | - Chunqiao Luo
- Arkansas Children's Research Institute, Little Rock, AR, 72202, USA
| | - Harsh Dweep
- The Wistar Institute, 3601 Spruce St, Philadelphia, Pennsylvania, 19104, USA
| | - Laura James
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, 72202, USA.,Arkansas Children's Research Institute, Little Rock, AR, 72202, USA
| |
Collapse
|
24
|
Detassis S, Grasso M, Del Vescovo V, Denti MA. microRNAs Make the Call in Cancer Personalized Medicine. Front Cell Dev Biol 2017; 5:86. [PMID: 29018797 PMCID: PMC5614923 DOI: 10.3389/fcell.2017.00086] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 09/08/2017] [Indexed: 12/13/2022] Open
Abstract
Since their discovery and the advent of RNA interference, microRNAs have drawn enormous attention because of their ubiquitous involvement in cellular pathways from life to death, from metabolism to communication. It is also widely accepted that they possess an undeniable role in cancer both as tumor suppressors and tumor promoters modulating cell proliferation and migration, epithelial-mesenchymal transition and tumor cell invasion and metastasis. Moreover, microRNAs can even affect the tumor surrounding environment influencing angiogenesis and immune system activation and recruitment. The tight association of microRNAs with several cancer-related processes makes them undoubtedly connected to the effect of specific cancer drugs inducing either resistance or sensitization. In this context, personalized medicine through microRNAs arose recently with the discovery of single nucleotide polymorphisms in the target binding sites, in the sequence of the microRNA itself or in microRNA biogenesis related genes, increasing risk, susceptibility and progression of multiple types of cancer in different sets of the population. The depicted scenario implies that the overall variation displayed by these small non-coding RNAs have an impact on patient-specific pharmacokinetics and pharmacodynamics of cancer drugs, pushing on a rising need of personalized treatment. Indeed, microRNAs from either tissues or liquid biopsies are also extensively studied as valuable biomarkers for disease early recognition, progression and prognosis. Despite microRNAs being intensively studied in recent years, a comprehensive review describing these topics all in one is missing. Here we report an up-to-date and critical summary of microRNAs as tools for better understanding personalized cancer biogenesis, evolution, diagnosis and treatment.
Collapse
Affiliation(s)
| | | | | | - Michela A. Denti
- Laboratory of RNA Biology and Biotechnology, Centre for Integrative Biology, University of TrentoTrento, Italy
| |
Collapse
|
25
|
Chen Y, Zeng L, Wang Y, Tolleson WH, Knox B, Chen S, Ren Z, Guo L, Mei N, Qian F, Huang K, Liu D, Tong W, Yu D, Ning B. The expression, induction and pharmacological activity of CYP1A2 are post-transcriptionally regulated by microRNA hsa-miR-132-5p. Biochem Pharmacol 2017; 145:178-191. [PMID: 28822783 DOI: 10.1016/j.bcp.2017.08.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 08/14/2017] [Indexed: 11/20/2022]
Abstract
Cytochrome P450 1A2 (CYP1A2) is one of the most abundant and important drug metabolizing enzymes in human liver. However, little is known about the post-transcriptional regulation of CYP1A2, especially the mechanisms involving microRNAs (miRNAs). This study applied a systematic approach to investigate the post-transcriptional regulation of CYP1A2 by miRNAs. Candidate miRNAs targeting the 3'-untranslated region (3'-UTR) of CYP1A2 were screened in silico, resulting in the selection of sixty-two potential miRNAs for further analysis. The levels of two miRNAs, hsa-miR-132-5p and hsa-miR-221-5p, were inversely correlated with the expression of CYP1A2 mRNA transcripts in normal human liver tissue samples represented in The Cancer Genome Atlas (TCGA) dataset. The interactions between these miRNAs and cognate CYP1A2 mRNA sequences were evaluated using luciferase reporter gene studies and electrophoretic mobility shift assays, by which a direct interaction was confirmed involving hsa-miR-132-5p and a cognate binding site present in the CYP1A2 3'-UTR. Experiments by which hsa-miR-132-5p or random miRNA controls were introduced into HepG2, Huh-7 and HepaRG hepatic cell lines showed that only hsa-miR-132-5p suppressed the endogenous and lansoprazole-induced expression of CYP1A2, at biological activity, protein production, and mRNA transcript levels. Furthermore, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), and lactate dehydrogenase (LDH) assays showed that hsa-miR-132-5p attenuates CYP1A2-mediated, lansoprazole-enhanced, flutamide-induced hepatic cell toxicity. Results from multilayer experiments demonstrate that hsa-miR-132-5p suppresses the expression of CYP1A2 and that this suppression is able to decrease the extent of an adverse drug-drug interaction involving lansoprazole and flutamide.
Collapse
Affiliation(s)
- Yinting Chen
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| | - Linjuan Zeng
- National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA; Department of Oncology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China
| | - Yong Wang
- National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| | - William H Tolleson
- National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| | - Bridgett Knox
- National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| | - Si Chen
- National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| | - Zhen Ren
- National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| | - Lei Guo
- National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| | - Nan Mei
- National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| | - Feng Qian
- National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| | - Kaihong Huang
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - David Liu
- Longevity Center of CHI St. Vincent Hospital, Little Rock, AR 72205, USA
| | - Weida Tong
- National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| | - Dianke Yu
- National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA; School of Public Health, Qingdao University, Qingdao 266071, China.
| | - Baitang Ning
- National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA.
| |
Collapse
|
26
|
Sanjay S, Girish C. Role of miRNA and its potential as a novel diagnostic biomarker in drug-induced liver injury. Eur J Clin Pharmacol 2016; 73:399-407. [PMID: 28028586 DOI: 10.1007/s00228-016-2183-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 12/16/2016] [Indexed: 12/14/2022]
Abstract
PURPOSE MicroRNAs (miRNA or miR) are the most abundant and stable class of small RNA. Unlike the typical RNA molecules present in the cell, they do not encode proteins but can control translation. and Hhence, they are found to play a major role in the regulation of cellular processes. miRNAs have been shown to differentially regulate various genes, and the expression levels of some miRNAs changes several fold in liver and serum, during drug- induced toxicity. This review summarises some of the latest findings about the biological functions of miRNA and its potential use as diagnostic biomarkers in drug- induced liver injury. METHODS The information presented in this article is taken from published literature, both original work and reviews on mechanisms of drug- induced liver injury, miRNA in liver pathophysiology, and studies exploring the use of miRNA as biomarker in drug- induced liver injury. Literature search was done using search engines:- PUBMED, Google scholar, and relevant journal sites. RESULTS AND CONCLUSIONS Recent research provides insight into the ability of miRNA to regulate various pathways in diseased and nondiseased states of liver. They also lay a foundation for development of diagnostic tests utilizing the potential of miRNAs that can not only be used for early detection of DILI but also to differentiate between different types of DILI. More studies on biological functions of miRNA and standardisation of protocol between research laboratories can lead to further advancement in this field. Considering the therapeutic and diagnostic potential of miRNA, the major challenge would be to integrate these findings to clinical settings where it can be used for the treatment of cases with DILI.
Collapse
Affiliation(s)
- Sukumaran Sanjay
- Department of Pharmacology, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, India
| | - Chandrashekaran Girish
- Department of Pharmacology, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, India.
| |
Collapse
|
27
|
Abstract
After the introduction of highly active antiretroviral therapy in the 1990s, the perception of the diagnosis of HIV infection gradually shifted from a 'death sentence' to a chronic disease requiring long-term treatment. The host genetic variability has been shown to play a relevant role in both antiretroviral drugs bioavailability and adverse effects susceptibility. Knowledge about pharmacogenetics role in HIV infection treatment has largely increased over the last years, and is reviewed in the present report, as well as future perspectives for the inclusion of pharmacogenetics information in the directing of HIV infection treatment.
Collapse
Affiliation(s)
- Vanessa S Mattevi
- Graduate Program in Biosciences, Federal University of Health Sciences of Porto Alegre, Porto Alegre, RS, Brazil
| | - Carmela Fs Tagliari
- Graduate Program in Biosciences, Federal University of Health Sciences of Porto Alegre, Porto Alegre, RS, Brazil
| |
Collapse
|
28
|
Tang QJ, Lin HM, He GD, Liu JE, Wu H, Li XX, Zhong WP, Tang L, Meng JX, Zhang MZ, Li HP, Chen JY, Zhong SL, Wang LY. Plasma miR-142 accounting for the missing heritability of CYP3A4/5 functionality is associated with pharmacokinetics of clopidogrel. Pharmacogenomics 2016; 17:1503-17. [PMID: 27556885 DOI: 10.2217/pgs-2016-0027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
AIM To investigate whether plasma miRNAs targeting CYP3A4/5 have an impact on the variance of pharmacokinetics of clopidogrel. MATERIALS & METHODS The contribution of 13 miRNAs to the CYP3A4/5 gene expression and activity was investigated in 55 liver tissues. The association between plasma miRNAs targeting CYP3A4/5 mRNA and clopidogrel pharmacokinetics was analyzed in 31 patients with coronary heart disease who received 300 mg loading dose of clopidogrel. RESULTS Among 13 miRNAs, miR-142 was accounting for 12.2% (p = 0.002) CYP3A4 mRNA variance and 9.4% (p = 0.005) CYP3A5 mRNA variance, respectively. Plasma miR-142 was negatively associated with H4 Cmax (r = -0.5269; p = 0.0040) and associated with H4 AUC0-4h (r = -0.4986; p = 0.0069) after 300 mg loading dose of clopidogrel in coronary heart disease patients. CONCLUSION miR-142 could account for a part of missing heritability of CYP3A4/5 functionality related to clopidogrel activation.
Collapse
Affiliation(s)
- Qian-Jie Tang
- School of Pharmacy, Guangdong Metabolic Diseases Research Center of Integrated Chinese & Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China.,Medical Research Center of Guangdong General Hospital, Guangzhou, China
| | - Hao-Ming Lin
- Department of Biliary & Pancreatic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Guo-Dong He
- Medical Research Center of Guangdong General Hospital, Guangzhou, China.,Guangdong Cardiovascular Institute, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Ju-E Liu
- Medical Research Center of Guangdong General Hospital, Guangzhou, China.,Department of Pharmacy, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Hong Wu
- Department of Biliary & Pancreatic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xin-Xin Li
- Medical Research Center of Guangdong General Hospital, Guangzhou, China
| | - Wan-Ping Zhong
- Medical Research Center of Guangdong General Hospital, Guangzhou, China.,Guangdong Cardiovascular Institute, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Lan Tang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Jin-Xiu Meng
- Medical Research Center of Guangdong General Hospital, Guangzhou, China
| | - Meng-Zhen Zhang
- Medical Research Center of Guangdong General Hospital, Guangzhou, China
| | - Han-Ping Li
- Medical Research Center of Guangdong General Hospital, Guangzhou, China
| | - Ji-Yan Chen
- Medical Research Center of Guangdong General Hospital, Guangzhou, China.,Guangdong Cardiovascular Institute, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Shi-Long Zhong
- Medical Research Center of Guangdong General Hospital, Guangzhou, China.,Guangdong Cardiovascular Institute, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Lai-You Wang
- School of Pharmacy, Guangdong Metabolic Diseases Research Center of Integrated Chinese & Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
29
|
Lei L, Wang X, Wu XD, Wang Z, Chen ZH, Zheng YB, Wang XJ. Association of CYP2D6*10 (c.100C>T) polymorphisms with clinical outcome of breast cancer after tamoxifen adjuvant endocrine therapy in Chinese population. Am J Transl Res 2016; 8:3585-3592. [PMID: 27648149 PMCID: PMC5009411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 07/15/2016] [Indexed: 06/06/2023]
Abstract
Tamoxifen is the most widely used adjuvant endocrine therapy for breast cancer. However, the pharmacogenetic effect of CYP2D6 on its efficacy remains unclear. Therefore, this study aimed to evaluate the association of CYP2D6*10 (c.100C>T) polymorphisms with clinical outcome in Chinese breast cancer patients. A total of 72 tamoxifen-treated early breast cancer patients were included in this study. CYP2D6*10 (c.100C>T) polymorphisms (C/C: wild type; T/T: homozygous mutant genotype T; C/T: heterozygote genotype C) were detected by pyrosequencing. The plasma concentrations of tamoxifen and its two major active metabolites were determined by liquid chromatography tandem mass spectrometry (LC-MS). Disease-free survival (DFS) and overall survival (OS) were assessed by Kaplan-Meier analysis, while the Cox proportional hazards model was used in multivariate tests for prognostic significance. We found that T/T carrier showed the lowest serum concentration of endoxifen as compared to C/C and C/T carriers (p<0.01). In the subgroup of patients below 40 years of age, T/T carriers appeared to have the shortest DFS and OS as compared to other genotype carriers (p<0.01). When genotypes (C/C, C/T and T/T carriers) and other clinical characteristics were adjusted, tumor size (>2 cm) and grades were independent prognostic factors for DFS but not OS (tumor size >2 cm: HR: 3.870, 95% CI: 1.045-14.330, P = 0.043; tumor grades: HR: 2.230, 95% CI: 1.090-4.562, P = 0.028). In conclusion, the T/T genotype is a negative prognostic factor in young breast cancer patients using tamoxifen. Tumor size (>2 cm) and grades are independent prognostic factors for DFS, when genotype of CYP2D6*10 (c.100C>T) is adjusted.
Collapse
Affiliation(s)
- Lei Lei
- Department of Medical Oncology, Zhejiang Cancer Hospital Hangzhou, Zhejiang Province, P. R. China
| | - Xian Wang
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine Hangzhou, Zhejiang Province, P. R. China
| | - Xiao-Dan Wu
- Department of Pharmaceutical Analysis and Drug Metabolism, College of Pharmaceutical Sciences, Zhejiang University Hangzhou, Zhejiang Province, P. R. China
| | - Zeng Wang
- Department of Pharmacy, Zhejiang Cancer Hospital Hangzhou, Zhejiang Province, P. R. China
| | - Zhan-Hong Chen
- Department of Medical Oncology, Zhejiang Cancer Hospital Hangzhou, Zhejiang Province, P. R. China
| | - Ya-Bin Zheng
- Department of Medical Oncology, Zhejiang Cancer Hospital Hangzhou, Zhejiang Province, P. R. China
| | - Xiao-Jia Wang
- Department of Medical Oncology, Zhejiang Cancer Hospital Hangzhou, Zhejiang Province, P. R. China
| |
Collapse
|
30
|
Jin Y, Yu D, Tolleson WH, Knox B, Wang Y, Chen S, Ren Z, Deng H, Guo Y, Ning B. MicroRNA hsa-miR-25-3p suppresses the expression and drug induction of CYP2B6 in human hepatocytes. Biochem Pharmacol 2016; 113:88-96. [PMID: 27311985 DOI: 10.1016/j.bcp.2016.06.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 06/10/2016] [Indexed: 10/21/2022]
Abstract
Cytochrome P450 2B6 (CYP2B6), mainly expressed in the liver and brain, is important for processing a number of widely used drugs. Variations in CYP2B6 expression are associated with decreased drug efficacy or adverse effects in some patients. Although CYP2B6 genetic variants are associated with its differential expression, epigenetic mechanisms affecting CYP2B6 gene regulation have not been established. Sequence analysis identified 29 domains in the CYP2B6 mRNA transcript that could be subject to regulation by microRNAs. Inverse correlations were found in human hepatocytes for the levels of the microRNAs hsa-miR-504-5p and hsa-miR-25-3p compared with CYP2B6 mRNA. Reporter gene assays showed that hsa-miR-25-3p suppresses CYP2B6 expression by targeting a specific sequence in the 3'-untranslated region of the mRNA transcript. Electrophoretic mobility shift assays confirmed that hsa-miR-25-3p forms stable complexes with its cognate mRNA sequence and that it recruits cellular factors, including Ago-4. Transfection of HepaRG cells with hsa-miR-25-3p mimics inhibited expression of the endogenous CYP2B6 gene and it also decreased rifampicin-dependent induction of CYP2B6 at the mRNA and protein levels. In summary, in silico and in vitro analyses show that hsa-miR-25-3p suppresses CYP2B6 expression in human liver cells via an epigenetic mechanism.
Collapse
Affiliation(s)
- Yaqiong Jin
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Beijing 100045, China
| | - Dianke Yu
- National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA.
| | - William H Tolleson
- National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| | - Bridgett Knox
- National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| | - Yong Wang
- National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| | - Si Chen
- National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| | - Zhen Ren
- National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| | - Helen Deng
- Arkansas Department of Health, Little Rock, AR 72205, USA
| | - Yongli Guo
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Beijing 100045, China.
| | - Baitang Ning
- National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA.
| |
Collapse
|
31
|
Liu JE, Ren B, Tang L, Tang QJ, Liu XY, Li X, Bai X, Zhong WP, Meng JX, Lin HM, Wu H, Chen JY, Zhong SL. The independent contribution of miRNAs to the missing heritability in CYP3A4/5 functionality and the metabolism of atorvastatin. Sci Rep 2016; 6:26544. [PMID: 27211076 PMCID: PMC4876377 DOI: 10.1038/srep26544] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 05/03/2016] [Indexed: 12/14/2022] Open
Abstract
To evaluate the independent contribution of miRNAs to the missing heritability in CYP3A4/5 functionality and atorvastatin metabolism, the relationships among three levels of factors, namely (1) clinical characteristics, CYP3A4/5 genotypes, and miRNAs, (2) CYP3A4 and CYP3A5 mRNAs, and (3) CYP3A activity, as well as their individual impacts on atorvastatin metabolism, were assessed in 55 human liver tissues. MiR-27b, miR-206, and CYP3A4 mRNA respectively accounted for 20.0%, 5.8%, and 9.5% of the interindividual variations in CYP3A activity. MiR-142 was an independent contributor to the expressions of CYP3A4 mRNA (partial R(2) = 0.12, P = 0.002) and CYP3A5 mRNA (partial R(2) = 0.09, P = 0.005) but not CYP3A activity or atorvastatin metabolism. CYP3A activity was a unique independent predictor of variability of atorvastatin metabolism, explaining the majority of the variance in reduction of atorvastatin (60.0%) and formation of ortho-hydroxy atorvastatin (78.8%) and para-hydroxy atorvastatin (83.9%). MiR-27b and miR-206 were found to repress CYP3A4 gene expression and CYP3A activity by directly binding to CYP3A4 3'-UTR, while miR-142 was found to indirectly repress CYP3A activity. Our study indicates that miRNAs play significant roles in bridging the gap between epigenetic effects and missing heritability in CYP3A functionality.
Collapse
Affiliation(s)
- Ju-E Liu
- Department of Pharmacy, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
- Medical Research Center, Guangdong General Hospital, Guangzhou, Guangdong 510080, China
| | - Bin Ren
- Department of Pharmacy, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Lan Tang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Qian-Jie Tang
- Medical Research Center, Guangdong General Hospital, Guangzhou, Guangdong 510080, China
- Institute of Chinese medical science, Guangdong TCM key Laboratory for metabolism, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xiao-Ying Liu
- Medical Research Center, Guangdong General Hospital, Guangzhou, Guangdong 510080, China
| | - Xin Li
- Medical Research Center, Guangdong General Hospital, Guangzhou, Guangdong 510080, China
- Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Xue Bai
- Medical Research Center, Guangdong General Hospital, Guangzhou, Guangdong 510080, China
- School of Pharmaceutical Science, Sun Yat-Sen University, Guangzhou, Guangdong 510006, China
| | - Wan-Ping Zhong
- Medical Research Center, Guangdong General Hospital, Guangzhou, Guangdong 510080, China
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jin-Xiu Meng
- Medical Research Center, Guangdong General Hospital, Guangzhou, Guangdong 510080, China
| | - Hao-Ming Lin
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Hong Wu
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Ji-Yan Chen
- Medical Research Center, Guangdong General Hospital, Guangzhou, Guangdong 510080, China
- Guangdong Cardiovascular Institute, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, China
| | - Shi-Long Zhong
- Medical Research Center, Guangdong General Hospital, Guangzhou, Guangdong 510080, China
- Guangdong Cardiovascular Institute, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, China
| |
Collapse
|
32
|
Cecchin E, De Mattia E, Toffoli G. Nuclear receptors and drug metabolism for the personalization of cancer therapy. Expert Opin Drug Metab Toxicol 2016; 12:291-306. [DOI: 10.1517/17425255.2016.1141196] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Erika Cecchin
- Experimental and Clinical Pharmacology, Centro di Riferimento Oncologico- National Cancer Institute, Aviano, Italy
| | - Elena De Mattia
- Experimental and Clinical Pharmacology, Centro di Riferimento Oncologico- National Cancer Institute, Aviano, Italy
| | - Giuseppe Toffoli
- Experimental and Clinical Pharmacology, Centro di Riferimento Oncologico- National Cancer Institute, Aviano, Italy
| |
Collapse
|
33
|
Swart M, Evans J, Skelton M, Castel S, Wiesner L, Smith PJ, Dandara C. An Expanded Analysis of Pharmacogenetics Determinants of Efavirenz Response that Includes 3'-UTR Single Nucleotide Polymorphisms among Black South African HIV/AIDS Patients. Front Genet 2016; 6:356. [PMID: 26779253 PMCID: PMC4703773 DOI: 10.3389/fgene.2015.00356] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 12/10/2015] [Indexed: 01/11/2023] Open
Abstract
Introduction: Efavirenz (EFV) is a non-nucleoside reverse transcriptase inhibitor prescribed as part of first-line highly active antiretroviral therapy (HAART) in South Africa. Despite administration of fixed doses of EFV, inter-individual variability in plasma concentrations has been reported. Poor treatment outcomes such as development of adverse drug reactions or treatment failure have been linked to EFV plasma concentrations outside the therapeutic range (1–4 μg/mL) in some studies. The drug metabolizing enzyme (DME), CYP2B6, is primarily responsible for EFV metabolism with minor contributions by CYP1A2, CYP2A6, CYP3A4, CYP3A5, and UGT2B7. DME coding genes are also regulated by microRNAs through targeting the 3′-untranslated region. Expanded analysis of 30 single nucleotide polymorphisms (SNPs), including those in the 3′-UTR, was performed to identify pharmacogenetics determinants of EFV plasma concentrations in addition to CYP2B6 c.516G>T and c.983T>C SNPs. Methods: SNPs in CYP1A2, CYP2B6, UGT2B7, and NR1I2 (PXR) were selected for genotyping among 222 Bantu-speaking South African HIV-infected patients receiving EFV-containing HAART. This study is a continuation of earlier pharmacogenetics studies emphasizing the role of genetic variation in the 3′-UTR of genes which products are either pharmacokinetic or pharmacodynamic targets of EFV. Results: Despite evaluating thirty SNPs, CYP2B6 c.516G>T and c.983T>C SNPs remain the most prominent predictors of EFV plasma concentration. Conclusion: We have shown that CYP2B6 c.516G>T and c.983T>C SNPs are the most important predictors of EFV plasma concentration after taking into account all other SNPs, including genetic variation in the 3′-UTR, and variables affecting EFV metabolism.
Collapse
Affiliation(s)
- Marelize Swart
- Division of Human Genetics, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town Cape Town, South Africa
| | - Jonathan Evans
- Division of Human Genetics, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town Cape Town, South Africa
| | - Michelle Skelton
- Division of Human Genetics, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town Cape Town, South Africa
| | - Sandra Castel
- Division of Clinical Pharmacology, Faculty of Health Sciences, University of Cape Town Cape Town, South Africa
| | - Lubbe Wiesner
- Division of Clinical Pharmacology, Faculty of Health Sciences, University of Cape Town Cape Town, South Africa
| | - Peter J Smith
- Division of Clinical Pharmacology, Faculty of Health Sciences, University of Cape Town Cape Town, South Africa
| | - Collet Dandara
- Division of Human Genetics, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town Cape Town, South Africa
| |
Collapse
|
34
|
|
35
|
Dong H, Sun Y, Shan F, Sun Q, Yang B. Down-Regulation of miR-101 Contributes to Rheumatic Heart Disease Through Up-Regulating TLR2. Med Sci Monit 2015; 21:1500-6. [PMID: 26022377 PMCID: PMC4455321 DOI: 10.12659/msm.893540] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Background RHD is an autoimmune disease that arises following infection by S. pyogenes and imposes a heavy burden on public health. Material/Methods We detected 11 selected miRNAs expressed in the cardiac tissues of 11 RHD patients and 11 controls. By employing dual-luciferase assay and Western blot, we identified the relationship between TLR2 and miR-101 and miR-101. We used ELISA to test the concentration of TNF-α, IL-1β, and IL-6. Results In cardiac tissue of RHD patients, miR-101 was significantly down-regulated (p=0.011). Ectopically expressed miR-101 repressed the luciferase activity by 27% through targeting TLR2 3′UTR. Combined with the results of Western blot, we confirmed that TLR2 is a direct target gene of miR-101. miR-101 knock-down is related to over-stimulated immune response in PGN-activated THP-1 cells. We detected a significantly higher concentration of TNF-α (p=0.0017), IL-1β (p=0.015), and IL-6 (p=0.014) in serum samples. TLR2 had a higher expression in patients in the protein level rather than the mRNA level, indicating that post-transcriptional regulation factors play a crucial role in regulating TLR2 expression. Conclusions The present study confirmed that miR-101 targets TLR2 3′UTR and represses TLR2 expression. This work also found an association between down-regulated miR-101 and rheumatic heart disease.
Collapse
Affiliation(s)
- Hai Dong
- Department of Critical Care Medicine, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China (mainland)
| | - Yongmei Sun
- Department of Ultrasound, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China (mainland)
| | - Feng Shan
- Department of Critical Care Medicine, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China (mainland)
| | - Qiang Sun
- Department of Critical Care Medicine, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China (mainland)
| | - Bingxin Yang
- Department of Critical Care Medicine, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China (mainland)
| |
Collapse
|
36
|
The 3'UTR of the pseudogene CYP4Z2P promotes tumor angiogenesis in breast cancer by acting as a ceRNA for CYP4Z1. Breast Cancer Res Treat 2015; 150:105-18. [PMID: 25701119 DOI: 10.1007/s10549-015-3298-2] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 02/03/2015] [Indexed: 12/31/2022]
Abstract
Pseudogenes are now known to regulate their protein-coding counterparts. Additionally, disturbances of 3'UTRs could increase the risk of cancer susceptibility by acting as modulators of gene expression. The aim of this study was to investigate the roles of the pseudogene CYP4Z2P-3'UTR and functional gene CYP4Z1-3'UTR in breast cancer angiogenesis process. The levels of CYP4Z2P- and CYP4Z1-3'UTR and miRNA of interests were measured in 22 cancerous tissues paired with non-cancerous samples by qRT-PCR. The effects of CYP4Z2P- and CYP4Z1-3'UTR were studied by overexpression and RNA interference approaches in vitro and ex vivo. Insights of the mechanism of competitive endogenous RNAs were gained from bioinformatic analysis, luciferase assays, and western blot. The positive CYP4Z2P/CYP4Z1 interaction and negative interaction between predicted miRNAs and CYP4Z2P or CYP4Z1 were identified via qRT-PCR assay and bivariate correlation analysis. CYP4Z2P- and CYP4Z1-3'UTR share several miRNA-binding sites, including miR-211, miR-125a-3p, miR-197, miR-1226, and miR-204. The CYP4Z2P- and CYP4Z1-3'UTRs arrest the interference caused by of these miRNAs, resulting in increased translation of CYP4Z1. Moreover, ectopic expression of the CYP4Z2P- and CYP4Z1-3'UTRs exhibit tumor angiogenesis-promoting properties in breast cancer collectively by inducing the phosphorylation of ERK1/2 and PI3K/Akt. Co-transfection with Dicer siRNA reversed the CYP4Z2P 3'UTR-mediated changes. Additionally, PI3K or ERK inhibitors reversed CYP4Z2P- and CYP4Z1-3'UTR-mediated changes in VEGF-A expression. Increased CYP4Z2P- and CYP4Z1-3'UTR expression promotes tumor angiogenesis in breast cancer partly via miRNA-dependent activation of PI3K/Akt and ERK1/2. The CYP4Z2P- and CYP4Z1-3'UTRs could thus be used as combinatorial miRNA inhibitors.
Collapse
|
37
|
Kan CWS, Howell VM, Hahn MA, Marsh DJ. Genomic alterations as mediators of miRNA dysregulation in ovarian cancer. Genes Chromosomes Cancer 2014; 54:1-19. [PMID: 25280227 DOI: 10.1002/gcc.22221] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 09/10/2014] [Indexed: 12/18/2022] Open
Abstract
Ovarian cancer is the fifth most common cause of cancer death in women worldwide. Serous epithelial ovarian cancer (SEOC) is the most common and aggressive histological subtype. Widespread genomic alterations go hand-in-hand with aberrant DNA damage signaling and are a hallmark of high-grade SEOC. MicroRNAs (miRNAs) are a class of small noncoding RNA molecules that are nonrandomly distributed in the genome. They are frequently located in chromosomal regions susceptible to copy number variation (CNV) associated with malignancy that can influence their expression. Widespread changes in miRNA expression have been reported in multiple cancer types including ovarian cancer. This review examines CNV and single nucleotide polymorphisms, two common types of genomic alterations that occur in ovarian cancer, in the context of their influence on the expression of miRNA and the ability of miRNA to bind to and regulate their target genes. This includes genes encoding proteins involved in DNA repair and the maintenance of genomic stability. Improved understanding of mechanisms of miRNA dysregulation and the role of miRNA in ovarian cancer will provide further insight into the pathogenesis and treatment of this disease.
Collapse
Affiliation(s)
- Casina W S Kan
- Hormones and Cancer Group, Kolling Institute of Medical Research, University of Sydney, Royal North Shore Hospital, St Leonards, Sydney, NSW 2065, Australia
| | | | | | | |
Collapse
|