1
|
Ewald JD, Lu Y, Ellis CE, Worton J, Kolic J, Sasaki S, Zhang D, dos Santos T, Spigelman AF, Bautista A, Dai XQ, Lyon JG, Smith NP, Wong JM, Rajesh V, Sun H, Sharp SA, Rogalski JC, Moravcova R, Cen HH, Manning Fox JE, Atlas E, Bruin JE, Mulvihill EE, Verchere CB, Foster LJ, Gloyn AL, Johnson JD, Pepper AR, Lynn FC, Xia J, MacDonald PE. HumanIslets: An integrated platform for human islet data access and analysis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.19.599613. [PMID: 38948734 PMCID: PMC11212983 DOI: 10.1101/2024.06.19.599613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Comprehensive molecular and cellular phenotyping of human islets can enable deep mechanistic insights for diabetes research. We established the Human Islet Data Analysis and Sharing (HI-DAS) consortium to advance goals in accessibility, usability, and integration of data from human islets isolated from donors with and without diabetes at the Alberta Diabetes Institute (ADI) IsletCore. Here we introduce HumanIslets.com, an open resource for the research community. This platform, which presently includes data on 547 human islet donors, allows users to access linked datasets describing molecular profiles, islet function and donor phenotypes, and to perform various statistical and functional analyses at the donor, islet and single-cell levels. As an example of the analytic capacity of this resource we show a dissociation between cell culture effects on transcript and protein expression, and an approach to correct for exocrine contamination found in hand-picked islets. Finally, we provide an example workflow and visualization that highlights links between type 2 diabetes status, SERCA3b Ca2+-ATPase levels at the transcript and protein level, insulin secretion and islet cell phenotypes. HumanIslets.com provides a growing and adaptable set of resources and tools to support the metabolism and diabetes research community.
Collapse
Affiliation(s)
- Jessica D. Ewald
- Institute of Parasitology, McGill University, Montreal, QC
- Imaging Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Yao Lu
- Institute of Parasitology, McGill University, Montreal, QC
| | - Cara E. Ellis
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB
- Department of Pharmacology, University of Alberta, Edmonton, AB
| | - Jessica Worton
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB
- Department of Surgery, University of Alberta, Edmonton, AB
| | - Jelena Kolic
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC
| | - Shugo Sasaki
- Diabetes Research Group, BC Children’s Hospital Research Institute, Vancouver, BC, Canada
- Department of Surgery, School of Biomedical Engineering, University of British Columbia, Vancouver, BC
| | - Dahai Zhang
- Diabetes Research Group, BC Children’s Hospital Research Institute, Vancouver, BC, Canada
- Department of Surgery, School of Biomedical Engineering, University of British Columbia, Vancouver, BC
| | - Theodore dos Santos
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB
- Department of Pharmacology, University of Alberta, Edmonton, AB
| | - Aliya F. Spigelman
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB
- Department of Pharmacology, University of Alberta, Edmonton, AB
| | - Austin Bautista
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB
| | - Xiao-Qing Dai
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB
- Department of Pharmacology, University of Alberta, Edmonton, AB
| | - James G. Lyon
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB
| | - Nancy P. Smith
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB
- Department of Pharmacology, University of Alberta, Edmonton, AB
| | - Jordan M. Wong
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB
- Department of Surgery, University of Alberta, Edmonton, AB
| | - Varsha Rajesh
- Department of Pediatrics, Division of Endocrinology, Stanford School of Medicine, Stanford, CA
- Stanford Diabetes Research Center, Stanford School of Medicine, Stanford, CA
| | - Han Sun
- Department of Pediatrics, Division of Endocrinology, Stanford School of Medicine, Stanford, CA
- Stanford Diabetes Research Center, Stanford School of Medicine, Stanford, CA
| | - Seth A. Sharp
- Department of Pediatrics, Division of Endocrinology, Stanford School of Medicine, Stanford, CA
- Stanford Diabetes Research Center, Stanford School of Medicine, Stanford, CA
| | - Jason C. Rogalski
- Department of Biochemistry & Molecular Biology, Michael Smith Laboratories, Life Sciences Institute, University of British Columbia, Vancouver, BC
| | - Renata Moravcova
- Department of Biochemistry & Molecular Biology, Michael Smith Laboratories, Life Sciences Institute, University of British Columbia, Vancouver, BC
| | - Haoning H Cen
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC
| | - Jocelyn E. Manning Fox
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB
- Department of Pharmacology, University of Alberta, Edmonton, AB
| | | | - Ella Atlas
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON
| | - Jennifer E. Bruin
- Department of Biology & Institute of Biochemistry, Carleton University, Ottawa, ON
| | - Erin E. Mulvihill
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, ON
- University of Ottawa Heart Institute, Ottawa, ON
| | - C. Bruce Verchere
- Department of Surgery, BC Children’s Hospital Research Institute and University of British Columbia, Vancouver, BC
- Department of Pathology and Laboratory Medicine, BC Children’s Hospital Research Institute and University of British Columbia, Vancouver, BC
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC
| | - Leonard J. Foster
- Department of Biochemistry & Molecular Biology, Michael Smith Laboratories, Life Sciences Institute, University of British Columbia, Vancouver, BC
| | - Anna L. Gloyn
- Department of Pediatrics, Division of Endocrinology, Stanford School of Medicine, Stanford, CA
- Stanford Diabetes Research Center, Stanford School of Medicine, Stanford, CA
| | - James D. Johnson
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC
| | - Andrew R. Pepper
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB
- Department of Surgery, University of Alberta, Edmonton, AB
| | - Francis C. Lynn
- Diabetes Research Group, BC Children’s Hospital Research Institute, Vancouver, BC, Canada
- Department of Surgery, School of Biomedical Engineering, University of British Columbia, Vancouver, BC
| | - Jianguo Xia
- Institute of Parasitology, McGill University, Montreal, QC
| | - Patrick E. MacDonald
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB
- Department of Pharmacology, University of Alberta, Edmonton, AB
| |
Collapse
|
2
|
Sabadell-Basallote J, Astiarraga B, Castaño C, Ejarque M, Repollés-de-Dalmau M, Quesada I, Blanco J, Nuñez-Roa C, Rodríguez-Peña MM, Martínez L, De Jesus DF, Marroqui L, Bosch R, Montanya E, Sureda FX, Tura A, Mari A, Kulkarni RN, Vendrell J, Fernández-Veledo S. SUCNR1 regulates insulin secretion and glucose elevates the succinate response in people with prediabetes. J Clin Invest 2024; 134:e173214. [PMID: 38713514 PMCID: PMC11178533 DOI: 10.1172/jci173214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 04/26/2024] [Indexed: 05/09/2024] Open
Abstract
Pancreatic β-cell dysfunction is a key feature of type 2 diabetes, and novel regulators of insulin secretion are desirable. Here we report that the succinate receptor (SUCNR1) is expressed in β-cells and is up-regulated in hyperglycemic states in mice and humans. We found that succinate acts as a hormone-like metabolite and stimulates insulin secretion via a SUCNR1-Gq-PKC-dependent mechanism in human β-cells. Mice with β-cell-specific Sucnr1 deficiency exhibit impaired glucose tolerance and insulin secretion on a high-fat diet, indicating that SUCNR1 is essential for preserving insulin secretion in diet-induced insulin resistance. Patients with impaired glucose tolerance show an enhanced nutritional-related succinate response, which correlates with the potentiation of insulin secretion during intravenous glucose administration. These data demonstrate that the succinate/SUCNR1 axis is activated by high glucose and identify a GPCR-mediated amplifying pathway for insulin secretion relevant to the hyperinsulinemia of prediabetic states.
Collapse
Affiliation(s)
- Joan Sabadell-Basallote
- Unitat de Recerca, Hospital Universitari Joan XXIII, Insitut d'Investigació Sanitària Pere Virgili, Tarragona, Spain
| | - Brenno Astiarraga
- Unitat de Recerca, Hospital Universitari Joan XXIII, Insitut d'Investigació Sanitària Pere Virgili, Tarragona, Spain
| | - Carlos Castaño
- Unitat de Recerca, Hospital Universitari Joan XXIII, Institut d'Investigació Sanitària Pere Virgili, Tarragona, Spain
| | - Miriam Ejarque
- Unitat de Recerca, Hospital Universitari Joan XXIII, Insitut d'Investigació Sanitària Pere Virgili, Tarragona, Spain
| | - Maria Repollés-de-Dalmau
- Unitat de Recerca, Hospital Universitari Joan XXIII, Insitut d'Investigació Sanitària Pere Virgili, Tarragona, Spain
| | - Ivan Quesada
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, ELCHE, Spain
| | - Jordi Blanco
- Departament de Medicina i Cirurgia, Universitat Rovira i Virgili, Reus, Spain
| | - Catalina Nuñez-Roa
- Unitat de Recerca, Hospital Universitari Joan XXIII, Institut d'Investigació Sanitària Pere Virgili, Tarragona, Spain
| | - M-Mar Rodríguez-Peña
- Unitat de Recerca, Hospital Universitari Joan XXIII, Institut d'Investigació Sanitària Pere Virgili, Tarragona, Spain
| | - Laia Martínez
- Unitat de Recerca, Hospital Universitari Joan XXIII, Institut d'Investigació Sanitària Pere Virgili, Tarragona, Spain
| | - Dario F De Jesus
- Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, United States of America
| | - Laura Marroqui
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, ELCHE, Spain
| | - Ramon Bosch
- Unitat de Recerca, Hospital Universitari Joan XXIII, Insitut d'Investigació Sanitària Pere Virgili, Tarragona, Spain
| | - Eduard Montanya
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, ELCHE, Spain
| | - Francesc X Sureda
- Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, United States of America
| | - Andrea Tura
- Institute of Neuroscience, National Research Council, Padova, Italy
| | - Andrea Mari
- Institute of Neuroscience, National Research Council, Padova, Italy
| | - Rohit N Kulkarni
- Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, United States of America
| | - Joan Vendrell
- Unitat de Recerca, Hospital Universitari Joan XXIII, Institut d'Investigació Sanitària Pere Virgili, Tarragona, Spain
| | - Sonia Fernández-Veledo
- Unitat de Recerca, Hospital Universitari Joan XXIII, Institut d'Investigació Sanitària Pere Virgili, Tarragona, Spain
| |
Collapse
|
3
|
Coykendall VM, Qian MF, Tellez K, Bautista A, Bevacqua RJ, Gu X, Hang Y, Neukam M, Zhao W, Chang C, MacDonald PE, Kim SK. RFX6 Maintains Gene Expression and Function of Adult Human Islet α-Cells. Diabetes 2024; 73:448-460. [PMID: 38064570 PMCID: PMC10882151 DOI: 10.2337/db23-0483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 11/21/2023] [Indexed: 02/22/2024]
Abstract
Mutations in the gene encoding the transcription factor regulatory factor X-box binding 6 (RFX6) are associated with human diabetes. Within pancreatic islets, RFX6 expression is most abundant in islet α-cells, and α-cell RFX6 expression is altered in diabetes. However, the roles of RFX6 in regulating gene expression, glucagon output, and other crucial human adult α-cell functions are not yet understood. We developed a method for selective genetic targeting of human α-cells and assessed RFX6-dependent α-cell function. RFX6 suppression with RNA interference led to impaired α-cell exocytosis and dysregulated glucagon secretion in vitro and in vivo. By contrast, these phenotypes were not observed with RFX6 suppression across all islet cells. Transcriptomics in α-cells revealed RFX6-dependent expression of genes governing nutrient sensing, hormone processing, and secretion, with some of these exclusively expressed in human α-cells. Mapping of RFX6 DNA-binding sites in primary human islet cells identified a subset of direct RFX6 target genes. Together, these data unveil RFX6-dependent genetic targets and mechanisms crucial for regulating adult human α-cell function. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Vy M.N. Coykendall
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA
| | - Mollie F. Qian
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA
| | - Krissie Tellez
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA
| | - Austin Bautista
- Department of Pharmacology and Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Romina J. Bevacqua
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA
| | - Xueying Gu
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA
| | - Yan Hang
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA
- Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA
| | - Martin Neukam
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA
| | - Weichen Zhao
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA
| | - Charles Chang
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA
| | - Patrick E. MacDonald
- Department of Pharmacology and Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Seung K. Kim
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA
- Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA
| |
Collapse
|
4
|
Bevacqua RJ, Zhao W, Merheb E, Kim SH, Marson A, Gloyn AL, Kim SK. Multiplexed CRISPR gene editing in primary human islet cells with Cas9 ribonucleoprotein. iScience 2024; 27:108693. [PMID: 38205242 PMCID: PMC10777115 DOI: 10.1016/j.isci.2023.108693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/27/2023] [Accepted: 12/05/2023] [Indexed: 01/12/2024] Open
Abstract
Successful genome editing in primary human islets could reveal features of the genetic regulatory landscape underlying β cell function and diabetes risk. Here, we describe a CRISPR-based strategy to interrogate functions of predicted regulatory DNA elements using electroporation of a complex of Cas9 ribonucleoprotein (Cas9 RNP) and guide RNAs into primary human islet cells. We successfully targeted coding regions including the PDX1 exon 1, and non-coding DNA linked to diabetes susceptibility. CRISPR-Cas9 RNP approaches revealed genetic targets of regulation by DNA elements containing candidate diabetes risk SNPs, including an in vivo enhancer of the MPHOSPH9 gene. CRISPR-Cas9 RNP multiplexed targeting of two cis-regulatory elements linked to diabetes risk in PCSK1, which encodes an endoprotease crucial for Insulin processing, also demonstrated efficient simultaneous editing of PCSK1 regulatory elements, resulting in impaired β cell PCSK1 regulation and Insulin secretion. Multiplex CRISPR-Cas9 RNP provides powerful approaches to investigate and elucidate human islet cell gene regulation in health and diabetes.
Collapse
Affiliation(s)
- Romina J Bevacqua
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Diabetes, Obesity and Metabolism Institute (DOMI), Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Weichen Zhao
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Emilio Merheb
- Diabetes, Obesity and Metabolism Institute (DOMI), Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Seung Hyun Kim
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Alexander Marson
- Gladstone-UCSF Institute of Genomic Immunology and Northern California JDRF Center of Excellence, University of California at San Francisco, San Francisco, CA 94158, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Anna L Gloyn
- Department of Pediatrics (Endocrinology) and of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
- Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Seung K Kim
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Departments of Medicine and of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA
- Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA 94305, USA
- Northern California JDRF Center of Excellence, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
5
|
Qian MF, Bevacqua RJ, Coykendall VM, Liu X, Zhao W, Chang CA, Gu X, Dai XQ, MacDonald PE, Kim SK. HNF1α maintains pancreatic α and β cell functions in primary human islets. JCI Insight 2023; 8:e170884. [PMID: 37943614 PMCID: PMC10807710 DOI: 10.1172/jci.insight.170884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 11/08/2023] [Indexed: 11/12/2023] Open
Abstract
HNF1A haploinsufficiency underlies the most common form of human monogenic diabetes (HNF1A-maturity onset diabetes of the young [HNF1A-MODY]), and hypomorphic HNF1A variants confer type 2 diabetes risk. But a lack of experimental systems for interrogating mature human islets has limited our understanding of how the transcription factor HNF1α regulates adult islet function. Here, we combined conditional genetic targeting in human islet cells, RNA-Seq, chromatin mapping with cleavage under targets and release using nuclease (CUT&RUN), and transplantation-based assays to determine HNF1α-regulated mechanisms in adult human pancreatic α and β cells. Short hairpin RNA-mediated (shRNA-mediated) suppression of HNF1A in primary human pseudoislets led to blunted insulin output and dysregulated glucagon secretion after transplantation in mice, recapitulating phenotypes observed in patients with diabetes. These deficits corresponded with altered expression of genes encoding factors critical for hormone secretion, including calcium channel subunits, ATPase transporters, and extracellular matrix constituents. Additionally, HNF1A loss led to upregulation of transcriptional repressors, providing evidence for a mechanism of transcriptional derepression through HNF1α. CUT&RUN mapping of HNF1α DNA binding sites in primary human islets imputed a subset of HNF1α-regulated genes as direct targets. These data elucidate mechanistic links between HNF1A loss and diabetic phenotypes in mature human α and β cells.
Collapse
Affiliation(s)
- Mollie F. Qian
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California, USA
| | - Romina J. Bevacqua
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California, USA
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Vy M.N. Coykendall
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California, USA
| | - Xiong Liu
- Department of Pharmacology and
- Alberta Diabetes Institute, University of Alberta, Edmonton, Canada
| | - Weichen Zhao
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California, USA
| | - Charles A. Chang
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California, USA
| | - Xueying Gu
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California, USA
- Stanford Diabetes Research Center
| | - Xiao-Qing Dai
- Department of Pharmacology and
- Alberta Diabetes Institute, University of Alberta, Edmonton, Canada
| | - Patrick E. MacDonald
- Department of Pharmacology and
- Alberta Diabetes Institute, University of Alberta, Edmonton, Canada
| | - Seung K. Kim
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California, USA
- Stanford Diabetes Research Center
- Departments of Medicine and Pediatrics (Endocrinology), and
- Northern California JDRF Center of Excellence, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
6
|
Osipovich AB, Zhou FY, Chong JJ, Trinh LT, Cottam MA, Shrestha S, Cartailler JP, Magnuson MA. Deletion of Ascl1 in pancreatic β-cells improves insulin secretion, promotes parasympathetic innervation, and attenuates dedifferentiation during metabolic stress. Mol Metab 2023; 78:101811. [PMID: 37769990 PMCID: PMC10570713 DOI: 10.1016/j.molmet.2023.101811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/03/2023] Open
Abstract
OBJECTIVE ASCL1, a pioneer transcription factor, is essential for neural cell differentiation and function. Previous studies have shown that Ascl1 expression is increased in pancreatic β-cells lacking functional KATP channels or after feeding of a high fat diet (HFD) suggesting that it may contribute to the metabolic stress response of β-cells. METHODS We generated β-cell-specific Ascl1 knockout mice (Ascl1βKO) and assessed their glucose homeostasis, islet morphology and gene expression after feeding either a normal diet or HFD for 12 weeks, or in combination with a genetic disruption of Abcc8, an essential KATP channel component. RESULTS Ascl1 expression is increased in response to both a HFD and membrane depolarization and requires CREB-dependent Ca2+ signaling. No differences in glucose homeostasis or islet morphology were observed in Ascl1βKO mice fed a normal diet or in the absence of KATP channels. However, male Ascl1βKO mice fed a HFD exhibited decreased blood glucose levels, improved glucose tolerance, and increased β-cell proliferation. Bulk RNA-seq analysis of islets from Ascl1βKO mice from three studied conditions showed alterations in genes associated with the secretory function. HFD-fed Ascl1βKO mice showed the most extensive changes with increased expression of genes necessary for glucose sensing, insulin secretion and β-cell proliferation, and a decrease in genes associated with β-cell dysfunction, inflammation and dedifferentiation. HFD-fed Ascl1βKO mice also displayed increased expression of parasympathetic neural markers and cholinergic receptors that was accompanied by increased insulin secretion in response to acetylcholine and an increase in islet innervation. CONCLUSIONS Ascl1 expression is induced by stimuli that cause Ca2+-signaling to the nucleus and contributes in a multifactorial manner to the loss of β-cell function by promoting the expression of genes associated with cellular dedifferentiation, attenuating β-cells proliferation, suppressing acetylcholine sensitivity, and repressing parasympathetic innervation of islets. Thus, the removal of Ascl1 from β-cells improves their function in response to metabolic stress.
Collapse
Affiliation(s)
- Anna B Osipovich
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA; Center for Stem Cell Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Frank Y Zhou
- College of Arts and Sciences, Vanderbilt University, Nashville, TN 37232, USA
| | - Judy J Chong
- College of Arts and Sciences, Vanderbilt University, Nashville, TN 37232, USA
| | - Linh T Trinh
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Mathew A Cottam
- Center for Stem Cell Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Shristi Shrestha
- Center for Stem Cell Biology, Vanderbilt University, Nashville, TN 37232, USA
| | | | - Mark A Magnuson
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA; Center for Stem Cell Biology, Vanderbilt University, Nashville, TN 37232, USA; Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
7
|
Pasquier A, Pastore N, D'Orsi L, Colonna R, Esposito A, Maffia V, De Cegli R, Mutarelli M, Ambrosio S, Tufano G, Grimaldi A, Cesana M, Cacchiarelli D, Delalleau N, Napolitano G, Ballabio A. TFEB and TFE3 control glucose homeostasis by regulating insulin gene expression. EMBO J 2023; 42:e113928. [PMID: 37712288 PMCID: PMC10620765 DOI: 10.15252/embj.2023113928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 07/31/2023] [Accepted: 08/25/2023] [Indexed: 09/16/2023] Open
Abstract
To fulfill their function, pancreatic beta cells require precise nutrient-sensing mechanisms that control insulin production. Transcription factor EB (TFEB) and its homolog TFE3 have emerged as crucial regulators of the adaptive response of cell metabolism to environmental cues. Here, we show that TFEB and TFE3 regulate beta-cell function and insulin gene expression in response to variations in nutrient availability. We found that nutrient deprivation in beta cells promoted TFEB/TFE3 activation, which resulted in suppression of insulin gene expression. TFEB overexpression was sufficient to inhibit insulin transcription, whereas beta cells depleted of both TFEB and TFE3 failed to suppress insulin gene expression in response to amino acid deprivation. Interestingly, ChIP-seq analysis showed binding of TFEB to super-enhancer regions that regulate insulin transcription. Conditional, beta-cell-specific, Tfeb-overexpressing, and Tfeb/Tfe3 double-KO mice showed severe alteration of insulin transcription, secretion, and glucose tolerance, indicating that TFEB and TFE3 are important physiological mediators of pancreatic function. Our findings reveal a nutrient-controlled transcriptional mechanism that regulates insulin production, thus playing a key role in glucose homeostasis at both cellular and organismal levels.
Collapse
Affiliation(s)
- Adrien Pasquier
- Telethon Institute of Genetics and Medicine (TIGEM)NaplesItaly
| | - Nunzia Pastore
- Telethon Institute of Genetics and Medicine (TIGEM)NaplesItaly
- Medical Genetics Unit, Department of Medical and Translational ScienceFederico II UniversityNaplesItaly
| | - Luca D'Orsi
- Telethon Institute of Genetics and Medicine (TIGEM)NaplesItaly
| | - Rita Colonna
- Telethon Institute of Genetics and Medicine (TIGEM)NaplesItaly
| | | | - Veronica Maffia
- Telethon Institute of Genetics and Medicine (TIGEM)NaplesItaly
| | | | - Margherita Mutarelli
- Institute of Applied Sciences and Intelligent SystemsNational Research Council (ISASI‐CNR)PozzuoliItaly
| | | | - Gennaro Tufano
- Telethon Institute of Genetics and Medicine (TIGEM)NaplesItaly
| | | | - Marcella Cesana
- Telethon Institute of Genetics and Medicine (TIGEM)NaplesItaly
| | - Davide Cacchiarelli
- Telethon Institute of Genetics and Medicine (TIGEM)NaplesItaly
- Medical Genetics Unit, Department of Medical and Translational ScienceFederico II UniversityNaplesItaly
- School for Advanced Studies, Genomics and Experimental Medicine ProgramUniversity of Naples "Federico II"NaplesItaly
| | | | - Gennaro Napolitano
- Telethon Institute of Genetics and Medicine (TIGEM)NaplesItaly
- Medical Genetics Unit, Department of Medical and Translational ScienceFederico II UniversityNaplesItaly
- School for Advanced Studies, Genomics and Experimental Medicine ProgramUniversity of Naples "Federico II"NaplesItaly
| | - Andrea Ballabio
- Telethon Institute of Genetics and Medicine (TIGEM)NaplesItaly
- Medical Genetics Unit, Department of Medical and Translational ScienceFederico II UniversityNaplesItaly
- School for Advanced Studies, Genomics and Experimental Medicine ProgramUniversity of Naples "Federico II"NaplesItaly
- Department of Molecular and Human GeneticsBaylor College of MedicineHoustonTXUSA
- Jan and Dan Duncan Neurological Research InstituteTexas Children's HospitalHoustonTXUSA
| |
Collapse
|
8
|
Bevacqua RJ, Zhao W, Merheb E, Kim SH, Marson A, Gloyn AL, Kim SK. Multiplexed CRISPR gene editing in primary human islet cells with Cas9 ribonucleoprotein. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.16.558090. [PMID: 37745551 PMCID: PMC10516051 DOI: 10.1101/2023.09.16.558090] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Successful genome editing in primary human islets could reveal features of the genetic regulatory landscape underlying β cell function and diabetes risk. Here, we describe a CRISPR-based strategy to interrogate functions of predicted regulatory DNA elements using electroporation of a complex of Cas9 ribonucleoprotein (Cas9 RNP) and guide RNAs into primary human islet cells. We successfully targeted coding regions including the PDX1 exon 1, and non-coding DNA linked to diabetes susceptibility. CRISPR/Cas9 RNP approaches revealed genetic targets of regulation by DNA elements containing candidate diabetes risk SNPs, including an in vivo enhancer of the MPHOSPH9 gene. CRISPR/Cas9 RNP multiplexed targeting of two cis-regulatory elements linked to diabetes risk in PCSK1, which encodes an endoprotease crucial for insulin processing, also demonstrated efficient simultaneous editing of PCSK1 regulatory elements, resulting in impaired β cell PCSK1 regulation and insulin secretion. Multiplex CRISPR/Cas9 RNP provides powerful approaches to investigate and elucidate human islet cell gene regulation in health and diabetes.
Collapse
Affiliation(s)
- Romina J. Bevacqua
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Diabetes, Obesity and Metabolism Institute (DOMI), Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Mount Sinai Regenerative Biology and Stem Cell Institute, New York, NY, United States
| | - Weichen Zhao
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Emilio Merheb
- Diabetes, Obesity and Metabolism Institute (DOMI), Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Seung Hyun Kim
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Alexander Marson
- Gladstone-UCSF Institute of Genomic Immunology and Northern California JDRF Center of Excellence, University of California at San Francisco, CA, 94158, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Anna L. Gloyn
- Department of Pediatrics (Endocrinology) and of Genetics, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Departments of Medicine and of Pediatrics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Seung K. Kim
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Departments of Medicine and of Pediatrics, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Northern California JDRF Center of Excellence, Stanford University School of Medicine, Stanford, CA, 94305, USA
| |
Collapse
|
9
|
Cha J, Tong X, Walker EM, Dahan T, Cochrane VA, Ashe S, Russell R, Osipovich AB, Mawla AM, Guo M, Liu JH, Loyd ZA, Huising MO, Magnuson MA, Hebrok M, Dor Y, Stein R. Species-specific roles for the MAFA and MAFB transcription factors in regulating islet β cell identity. JCI Insight 2023; 8:e166386. [PMID: 37606041 PMCID: PMC10543725 DOI: 10.1172/jci.insight.166386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 07/06/2023] [Indexed: 08/23/2023] Open
Abstract
Type 2 diabetes (T2D) is associated with compromised identity of insulin-producing pancreatic islet β cells, characterized by inappropriate production of other islet cell-enriched hormones. Here, we examined how hormone misexpression was influenced by the MAFA and MAFB transcription factors, closely related proteins that maintain islet cell function. Mice specifically lacking MafA in β cells demonstrated broad, population-wide changes in hormone gene expression with an overall gene signature closely resembling islet gastrin+ (Gast+) cells generated under conditions of chronic hyperglycemia and obesity. A human β cell line deficient in MAFB, but not one lacking MAFA, also produced a GAST+ gene expression pattern. In addition, GAST was detected in human T2D β cells with low levels of MAFB. Moreover, evidence is provided that human MAFB can directly repress GAST gene transcription. These results support a potentially novel, species-specific role for MafA and MAFB in maintaining adult mouse and human β cell identity, respectively. Here, we discuss the possibility that induction of Gast/GAST and other non-β cell hormones, by reduction in the levels of these transcription factors, represents a dysfunctional β cell signature.
Collapse
Affiliation(s)
- Jeeyeon Cha
- Division of Diabetes, Endocrinology, and Metabolism, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Xin Tong
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Emily M. Walker
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Tehila Dahan
- Department of Developmental Biology and Cancer Research, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Veronica A. Cochrane
- Diabetes Center, Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Sudipta Ashe
- Diabetes Center, Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Ronan Russell
- Diabetes Center, Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Anna B. Osipovich
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Alex M. Mawla
- Department of Neurobiology, Physiology & Behavior, College of Biological Sciences, University of California, Davis, Davis, California, USA
| | - Min Guo
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Jin-hua Liu
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Zachary A. Loyd
- Division of Diabetes, Endocrinology, and Metabolism, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Mark O. Huising
- Department of Neurobiology, Physiology & Behavior, College of Biological Sciences, University of California, Davis, Davis, California, USA
| | - Mark A. Magnuson
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Matthias Hebrok
- Diabetes Center, Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Yuval Dor
- Department of Developmental Biology and Cancer Research, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Roland Stein
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
10
|
Tan WX, Sim X, Khoo CM, Teo AKK. Prioritization of genes associated with type 2 diabetes mellitus for functional studies. Nat Rev Endocrinol 2023:10.1038/s41574-023-00836-1. [PMID: 37169822 DOI: 10.1038/s41574-023-00836-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/28/2023] [Indexed: 05/13/2023]
Abstract
Existing therapies for type 2 diabetes mellitus (T2DM) show limited efficacy or have adverse effects. Numerous genetic variants associated with T2DM have been identified, but progress in translating these findings into potential drug targets has been limited. Here, we describe the tools and platforms available to identify effector genes from T2DM-associated coding and non-coding variants and prioritize them for functional studies. We discuss QSER1 and SLC12A8 as examples of genes that have been identified as possible T2DM candidate genes using these tools and platforms. We suggest further approaches, including the use of sequencing data with increased sample size and ethnic diversity, single-cell omics data for analyses, glycaemic trait associations to predict gene function and, potentially, human induced pluripotent stem cell 'village' cultures, to strengthen current gene functionalization workflows. Effective prioritization of T2DM-associated genes for experimental validation could expedite our understanding of the genetic mechanisms responsible for T2DM to facilitate the use of precision medicine in its treatment.
Collapse
Affiliation(s)
- Wei Xuan Tan
- Stem Cells and Diabetes Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Xueling Sim
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
| | - Chin Meng Khoo
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Adrian K K Teo
- Stem Cells and Diabetes Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Precision Medicine Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
11
|
Mawla AM, van der Meulen T, Huising MO. Chromatin accessibility differences between alpha, beta, and delta cells identifies common and cell type-specific enhancers. BMC Genomics 2023; 24:202. [PMID: 37069576 PMCID: PMC10108528 DOI: 10.1186/s12864-023-09293-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 04/03/2023] [Indexed: 04/19/2023] Open
Abstract
BACKGROUND High throughput sequencing has enabled the interrogation of the transcriptomic landscape of glucagon-secreting alpha cells, insulin-secreting beta cells, and somatostatin-secreting delta cells. These approaches have furthered our understanding of expression patterns that define healthy or diseased islet cell types and helped explicate some of the intricacies between major islet cell crosstalk and glucose regulation. All three endocrine cell types derive from a common pancreatic progenitor, yet alpha and beta cells have partially opposing functions, and delta cells modulate and control insulin and glucagon release. While gene expression signatures that define and maintain cellular identity have been widely explored, the underlying epigenetic components are incompletely characterized and understood. However, chromatin accessibility and remodeling is a dynamic attribute that plays a critical role to determine and maintain cellular identity. RESULTS Here, we compare and contrast the chromatin landscape between mouse alpha, beta, and delta cells using ATAC-Seq to evaluate the significant differences in chromatin accessibility. The similarities and differences in chromatin accessibility between these related islet endocrine cells help define their fate in support of their distinct functional roles. We identify patterns that suggest that both alpha and delta cells are poised, but repressed, from becoming beta-like. We also identify patterns in differentially enriched chromatin that have transcription factor motifs preferentially associated with different regions of the genome. Finally, we not only confirm and visualize previously discovered common endocrine- and cell specific- enhancer regions across differentially enriched chromatin, but identify novel regions as well. We compiled our chromatin accessibility data in a freely accessible database of common endocrine- and cell specific-enhancer regions that can be navigated with minimal bioinformatics expertise. CONCLUSIONS Both alpha and delta cells appear poised, but repressed, from becoming beta cells in murine pancreatic islets. These data broadly support earlier findings on the plasticity in identity of non-beta cells under certain circumstances. Furthermore, differential chromatin accessibility shows preferentially enriched distal-intergenic regions in beta cells, when compared to either alpha or delta cells.
Collapse
Affiliation(s)
- Alex M Mawla
- Department of Neurobiology, Physiology & Behavior, College of Biological Sciences, University of California, One Shields Avenue, Davis, CA, 95616, USA
| | - Talitha van der Meulen
- Department of Neurobiology, Physiology & Behavior, College of Biological Sciences, University of California, One Shields Avenue, Davis, CA, 95616, USA
| | - Mark O Huising
- Department of Neurobiology, Physiology & Behavior, College of Biological Sciences, University of California, One Shields Avenue, Davis, CA, 95616, USA.
- Department of Physiology and Membrane Biology, School of Medicine, University of California, One Shields Avenue, Davis, CA, 95616, USA.
| |
Collapse
|
12
|
Shapira SN, Naji A, Atkinson MA, Powers AC, Kaestner KH. Understanding islet dysfunction in type 2 diabetes through multidimensional pancreatic phenotyping: The Human Pancreas Analysis Program. Cell Metab 2022; 34:1906-1913. [PMID: 36206763 PMCID: PMC9742126 DOI: 10.1016/j.cmet.2022.09.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/26/2022] [Accepted: 09/13/2022] [Indexed: 01/12/2023]
Abstract
In this perspective, we provide an overview of a recently established National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) initiative, the Human Pancreas Analysis Program for Type 2 Diabetes (HPAP-T2D). This program is designed to define the molecular pathogenesis of islet dysfunction by studying human pancreatic tissue samples from organ donors with T2D. HPAP-T2D generates detailed datasets of physiological, histological, transcriptomic, epigenomic, and genomic information. Importantly, all data collected, generated, and analyzed by HPAP-T2D are made immediately and freely available through a centralized database, PANC-DB, thus providing a comprehensive data resource for the diabetes research community.
Collapse
Affiliation(s)
- Suzanne N Shapira
- Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Philadelphia, PA 19104, USA; The Human Pancreas Analysis Program (RRID: SCR_016202)
| | - Ali Naji
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; The Human Pancreas Analysis Program (RRID: SCR_016202)
| | - Mark A Atkinson
- Departments of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, FL 32610, USA; The Human Pancreas Analysis Program (RRID: SCR_016202)
| | - Alvin C Powers
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; VA Tennessee Valley Healthcare System, Nashville, TN 37212, USA; The Human Pancreas Analysis Program (RRID: SCR_016202).
| | - Klaus H Kaestner
- Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Philadelphia, PA 19104, USA; The Human Pancreas Analysis Program (RRID: SCR_016202).
| |
Collapse
|
13
|
Yong HJ, Toledo MP, Nowakowski RS, Wang YJ. Sex Differences in the Molecular Programs of Pancreatic Cells Contribute to the Differential Risks of Type 2 Diabetes. Endocrinology 2022; 163:bqac156. [PMID: 36130190 PMCID: PMC10409906 DOI: 10.1210/endocr/bqac156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Indexed: 11/19/2022]
Abstract
Epidemiology studies demonstrate that women are at a significantly lower risk of developing type 2 diabetes (T2D) compared to men. However, the molecular basis of this risk difference is not well understood. In this study, we examined the sex differences in the genetic programs of pancreatic endocrine cells. We combined pancreas perifusion data and single-cell genomic data from our laboratory and from publicly available data sets to investigate multiple axes of the sex differences in the human pancreas at the single-cell type and single-cell level. We systematically compared female and male islet secretion function, gene expression program, and regulatory principles of pancreatic endocrine cells. The perifusion data indicate that female endocrine cells have a higher secretion capacity than male endocrine cells. Single-cell RNA-sequencing analysis suggests that endocrine cells in male controls have molecular signatures that resemble T2D. In addition, we identified genomic elements associated with genome-wide association study T2D loci to have differential accessibility between female and male delta cells. These genomic elements may play a sex-specific causal role in the pathogenesis of T2D. We provide molecular mechanisms that explain the differential risk of T2D between women and men. Knowledge gained from our study will accelerate the development of diagnostics and therapeutics in sex-aware precision medicine for diabetes.
Collapse
Affiliation(s)
- Hyo Jeong Yong
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida 32306, USA
| | - Maria Pilar Toledo
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida 32306, USA
| | - Richard S Nowakowski
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida 32306, USA
| | - Yue J Wang
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida 32306, USA
| |
Collapse
|
14
|
Cataldo LR, Singh T, Achanta K, Bsharat S, Prasad RB, Luan C, Renström E, Eliasson L, Artner I. MAFA and MAFB regulate exocytosis-related genes in human β-cells. Acta Physiol (Oxf) 2022; 234:e13761. [PMID: 34978761 DOI: 10.1111/apha.13761] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 12/22/2021] [Accepted: 01/01/2022] [Indexed: 12/13/2022]
Abstract
AIMS Reduced expression of exocytotic genes is associated with functional defects in insulin exocytosis contributing to impaired insulin secretion and type 2 diabetes (T2D) development. MAFA and MAFB transcription factors regulate β-cell physiology, and their gene expression is reduced in T2D β cells. We investigate if loss of MAFA and MAFB in human β cells contributes to T2D progression by regulating genes required for insulin exocytosis. METHODS Three approaches were performed: (1) RNAseq analysis with the focus on exocytosis-related genes in MafA-/- mouse islets, (2) correlational analysis between MAFA, MAFB and exocytosis-related genes in human islets and (3) MAFA and MAFB silencing in human islets and EndoC-βH1 cells followed by functional in vitro studies. RESULTS The expression of 30 exocytosis-related genes was significantly downregulated in MafA-/- mouse islets. In human islets, the expression of 29 exocytosis-related genes correlated positively with MAFA and MAFB. Eight exocytosis-related genes were downregulated in MafA-/- mouse islets and positively correlated with MAFA and MAFB in human islets. From this analysis, the expression of RAB3A, STXBP1, UNC13A, VAMP2, NAPA, NSF, STX1A and SYT7 was quantified after acute MAFA or MAFB silencing in EndoC-βH1 cells and human islets. MAFA and MAFB silencing resulted in impaired insulin secretion and reduced STX1A, SYT7 and STXBP1 (EndoC-βH1) and STX1A (human islets) mRNA expression. STX1A and STXBP1 protein expression was also impaired in islets from T2D donors which lack MAFA expression. CONCLUSION Our data indicate that STXBP1 and STX1A are important MAFA/B-regulated exocytosis genes which may contribute to insulin exocytosis defects observed in MAFA-deficient human T2D β cells.
Collapse
Affiliation(s)
- Luis Rodrigo Cataldo
- Endocrine Cell Differentiation and Function Group Stem Cell Centre Lund University Lund Sweden
- Lund University Diabetes Centre Clinical Research Center Malmo Sweden
- The Novo Nordisk Foundation Centre for Basic Metabolic Research Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| | - Tania Singh
- Endocrine Cell Differentiation and Function Group Stem Cell Centre Lund University Lund Sweden
- Lund University Diabetes Centre Clinical Research Center Malmo Sweden
| | - Kavya Achanta
- Endocrine Cell Differentiation and Function Group Stem Cell Centre Lund University Lund Sweden
- Lund University Diabetes Centre Clinical Research Center Malmo Sweden
| | - Sara Bsharat
- Endocrine Cell Differentiation and Function Group Stem Cell Centre Lund University Lund Sweden
- Lund University Diabetes Centre Clinical Research Center Malmo Sweden
| | - Rashmi B. Prasad
- Lund University Diabetes Centre Clinical Research Center Malmo Sweden
- Department of Clinical Sciences in Malmö Malmo Sweden
| | - Cheng Luan
- Lund University Diabetes Centre Clinical Research Center Malmo Sweden
| | - Erik Renström
- Lund University Diabetes Centre Clinical Research Center Malmo Sweden
| | - Lena Eliasson
- Lund University Diabetes Centre Clinical Research Center Malmo Sweden
- Department of Clinical Sciences in Malmö Malmo Sweden
- Islet Cell Exocytosis Lund University Lund Sweden
| | - Isabella Artner
- Endocrine Cell Differentiation and Function Group Stem Cell Centre Lund University Lund Sweden
- Lund University Diabetes Centre Clinical Research Center Malmo Sweden
| |
Collapse
|
15
|
Cataldo LR, Vishnu N, Singh T, Bertonnier-Brouty L, Bsharat S, Luan C, Renström E, Prasad RB, Fex M, Mulder H, Artner I. The MafA-target gene PPP1R1A regulates GLP1R-mediated amplification of glucose-stimulated insulin secretion in β-cells. Metabolism 2021; 118:154734. [PMID: 33631146 DOI: 10.1016/j.metabol.2021.154734] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 02/07/2021] [Accepted: 02/15/2021] [Indexed: 12/11/2022]
Abstract
The amplification of glucose-stimulated insulin secretion (GSIS) through incretin signaling is critical for maintaining physiological glucose levels. Incretins, like glucagon-like peptide 1 (GLP1), are a target of type 2 diabetes drugs aiming to enhance insulin secretion. Here we show that the protein phosphatase 1 inhibitor protein 1A (PPP1R1A), is expressed in β-cells and that its expression is reduced in dysfunctional β-cells lacking MafA and upon acute MafA knock down. MafA is a central regulator of GSIS and β-cell function. We observed a strong correlation of MAFA and PPP1R1A mRNA levels in human islets, moreover, PPP1R1A mRNA levels were reduced in type 2 diabetic islets and positively correlated with GLP1-mediated GSIS amplification. PPP1R1A silencing in INS1 (832/13) β-cells impaired GSIS amplification, PKA-target protein phosphorylation, mitochondrial coupling efficiency and also the expression of critical β-cell marker genes like MafA, Pdx1, NeuroD1 and Pax6. Our results demonstrate that the β-cell transcription factor MafA is required for PPP1R1A expression and that reduced β-cell PPP1R1A levels impaired β-cell function and contributed to β-cell dedifferentiation during type 2 diabetes. Loss of PPP1R1A in type 2 diabetic β-cells may explains the unresponsiveness of type 2 diabetic patients to GLP1R-based treatments.
Collapse
Affiliation(s)
- Luis Rodrigo Cataldo
- Endocrine Cell Differentiation and Function group, Stem Cell Centre, Lund University, Sweden; Lund University Diabetes Centre, Clinical Research Center, Sweden.
| | - Neelanjan Vishnu
- Lund University Diabetes Centre, Clinical Research Center, Sweden
| | - Tania Singh
- Endocrine Cell Differentiation and Function group, Stem Cell Centre, Lund University, Sweden; Lund University Diabetes Centre, Clinical Research Center, Sweden
| | - Ludivine Bertonnier-Brouty
- Endocrine Cell Differentiation and Function group, Stem Cell Centre, Lund University, Sweden; Lund University Diabetes Centre, Clinical Research Center, Sweden
| | - Sara Bsharat
- Endocrine Cell Differentiation and Function group, Stem Cell Centre, Lund University, Sweden; Lund University Diabetes Centre, Clinical Research Center, Sweden
| | - Cheng Luan
- Lund University Diabetes Centre, Clinical Research Center, Sweden
| | - Erik Renström
- Lund University Diabetes Centre, Clinical Research Center, Sweden
| | - Rashmi B Prasad
- Lund University Diabetes Centre, Clinical Research Center, Sweden; Department of Clinical Sciences in Malmö, Sweden
| | - Malin Fex
- Lund University Diabetes Centre, Clinical Research Center, Sweden
| | - Hindrik Mulder
- Lund University Diabetes Centre, Clinical Research Center, Sweden
| | - Isabella Artner
- Endocrine Cell Differentiation and Function group, Stem Cell Centre, Lund University, Sweden; Lund University Diabetes Centre, Clinical Research Center, Sweden.
| |
Collapse
|
16
|
Osipovich AB, Dudek KD, Greenfest-Allen E, Cartailler JP, Manduchi E, Potter Case L, Choi E, Chapman AG, Clayton HW, Gu G, Stoeckert CJ, Magnuson MA. A developmental lineage-based gene co-expression network for mouse pancreatic β-cells reveals a role for Zfp800 in pancreas development. Development 2021; 148:dev.196964. [PMID: 33653874 DOI: 10.1242/dev.196964] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 02/17/2021] [Indexed: 12/15/2022]
Abstract
To gain a deeper understanding of pancreatic β-cell development, we used iterative weighted gene correlation network analysis to calculate a gene co-expression network (GCN) from 11 temporally and genetically defined murine cell populations. The GCN, which contained 91 distinct modules, was then used to gain three new biological insights. First, we found that the clustered protocadherin genes are differentially expressed during pancreas development. Pcdhγ genes are preferentially expressed in pancreatic endoderm, Pcdhβ genes in nascent islets, and Pcdhα genes in mature β-cells. Second, after extracting sub-networks of transcriptional regulators for each developmental stage, we identified 81 zinc finger protein (ZFP) genes that are preferentially expressed during endocrine specification and β-cell maturation. Third, we used the GCN to select three ZFPs for further analysis by CRISPR mutagenesis of mice. Zfp800 null mice exhibited early postnatal lethality, and at E18.5 their pancreata exhibited a reduced number of pancreatic endocrine cells, alterations in exocrine cell morphology, and marked changes in expression of genes involved in protein translation, hormone secretion and developmental pathways in the pancreas. Together, our results suggest that developmentally oriented GCNs have utility for gaining new insights into gene regulation during organogenesis.
Collapse
Affiliation(s)
- Anna B Osipovich
- Center for Stem Cell Biology, Vanderbilt University, Nashville, TN 37232, USA.,Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Karrie D Dudek
- Center for Stem Cell Biology, Vanderbilt University, Nashville, TN 37232, USA.,Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37240, USA
| | - Emily Greenfest-Allen
- Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA.,Institute for Biomedical Informatics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | - Elisabetta Manduchi
- Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA.,Institute for Biomedical Informatics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Leah Potter Case
- Center for Stem Cell Biology, Vanderbilt University, Nashville, TN 37232, USA.,Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Eunyoung Choi
- Center for Stem Cell Biology, Vanderbilt University, Nashville, TN 37232, USA.,Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Austin G Chapman
- Center for Stem Cell Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Hannah W Clayton
- Center for Stem Cell Biology, Vanderbilt University, Nashville, TN 37232, USA.,Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37240, USA
| | - Guoqiang Gu
- Center for Stem Cell Biology, Vanderbilt University, Nashville, TN 37232, USA.,Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37240, USA
| | - Christian J Stoeckert
- Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA.,Institute for Biomedical Informatics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Mark A Magnuson
- Center for Stem Cell Biology, Vanderbilt University, Nashville, TN 37232, USA .,Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA.,Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37240, USA
| |
Collapse
|
17
|
Kaur S, Mirza AH, Overgaard AJ, Pociot F, Størling J. A Dual Systems Genetics Approach Identifies Common Genes, Networks, and Pathways for Type 1 and 2 Diabetes in Human Islets. Front Genet 2021; 12:630109. [PMID: 33777101 PMCID: PMC7987941 DOI: 10.3389/fgene.2021.630109] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 02/16/2021] [Indexed: 12/13/2022] Open
Abstract
Type 1 and 2 diabetes (T1/2D) are complex metabolic diseases caused by absolute or relative loss of functional β-cell mass, respectively. Both diseases are influenced by multiple genetic loci that alter disease risk. For many of the disease-associated loci, the causal candidate genes remain to be identified. Remarkably, despite the partially shared phenotype of the two diabetes forms, the associated loci for T1D and T2D are almost completely separated. We hypothesized that some of the genes located in risk loci for T1D and T2D interact in common pancreatic islet networks to mutually regulate important islet functions which are disturbed by disease-associated variants leading to β-cell dysfunction. To address this, we took a dual systems genetics approach. All genes located in 57 T1D and 243 T2D established genome-wide association studies (GWAS) loci were extracted and filtered for genes expressed in human islets using RNA sequencing data, and then integrated with; (1) human islet expression quantitative trait locus (eQTL) signals in linkage disequilibrium (LD) with T1D- and T2D-associated variants; or (2) with genes transcriptionally regulated in human islets by pro-inflammatory cytokines or palmitate as in vitro models of T1D and T2D, respectively. Our in silico systems genetics approaches created two interaction networks consisting of densely-connected T1D and T2D loci genes. The "T1D-T2D islet eQTL interaction network" identified 9 genes (GSDMB, CARD9, DNLZ, ERAP1, PPIP5K2, TMEM69, SDCCAG3, PLEKHA1, and HEMK1) in common T1D and T2D loci that harbor islet eQTLs in LD with disease-associated variants. The "cytokine and palmitate islet interaction network" identified 4 genes (ASCC2, HIBADH, RASGRP1, and SRGAP2) in common T1D and T2D loci whose expression is mutually regulated by cytokines and palmitate. Functional annotation analyses of the islet networks revealed a number of significantly enriched pathways and molecular functions including cell cycle regulation, inositol phosphate metabolism, lipid metabolism, and cell death and survival. In summary, our study has identified a number of new plausible common candidate genes and pathways for T1D and T2D.
Collapse
Affiliation(s)
- Simranjeet Kaur
- Department of Translational T1D Research, Steno Diabetes Center Copenhagen, Gentofte, Denmark
| | - Aashiq H Mirza
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, United States
| | - Anne J Overgaard
- Department of Translational T1D Research, Steno Diabetes Center Copenhagen, Gentofte, Denmark
| | - Flemming Pociot
- Department of Translational T1D Research, Steno Diabetes Center Copenhagen, Gentofte, Denmark.,Pediatric Department E, University Hospital, Herlev, Denmark.,Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Joachim Størling
- Department of Translational T1D Research, Steno Diabetes Center Copenhagen, Gentofte, Denmark.,Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
18
|
Bevacqua RJ, Lam JY, Peiris H, Whitener RL, Kim S, Gu X, Friedlander MSH, Kim SK. SIX2 and SIX3 coordinately regulate functional maturity and fate of human pancreatic β cells. Genes Dev 2021; 35:234-249. [PMID: 33446570 PMCID: PMC7849364 DOI: 10.1101/gad.342378.120] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 12/08/2020] [Indexed: 12/16/2022]
Abstract
The physiological functions of many vital tissues and organs continue to mature after birth, but the genetic mechanisms governing this postnatal maturation remain an unsolved mystery. Human pancreatic β cells produce and secrete insulin in response to physiological cues like glucose, and these hallmark functions improve in the years after birth. This coincides with expression of the transcription factors SIX2 and SIX3, whose functions in native human β cells remain unknown. Here, we show that shRNA-mediated SIX2 or SIX3 suppression in human pancreatic adult islets impairs insulin secretion. However, transcriptome studies revealed that SIX2 and SIX3 regulate distinct targets. Loss of SIX2 markedly impaired expression of genes governing β-cell insulin processing and output, glucose sensing, and electrophysiology, while SIX3 loss led to inappropriate expression of genes normally expressed in fetal β cells, adult α cells, and other non-β cells. Chromatin accessibility studies identified genes directly regulated by SIX2. Moreover, β cells from diabetic humans with impaired insulin secretion also had reduced SIX2 transcript levels. Revealing how SIX2 and SIX3 govern functional maturation and maintain developmental fate in native human β cells should advance β-cell replacement and other therapeutic strategies for diabetes.
Collapse
Affiliation(s)
- Romina J Bevacqua
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Jonathan Y Lam
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Heshan Peiris
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Robert L Whitener
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Seokho Kim
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Xueying Gu
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Mollie S H Friedlander
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Seung K Kim
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California 94305, USA
- Department of Medicine (Endocrinology), Stanford University School of Medicine, Stanford, California 94305, USA
- Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, California 94305, USA
| |
Collapse
|
19
|
Ramos-Rodríguez M, Pérez-González B, Pasquali L. The β-Cell Genomic Landscape in T1D: Implications for Disease Pathogenesis. Curr Diab Rep 2021; 21:1. [PMID: 33387073 PMCID: PMC7778620 DOI: 10.1007/s11892-020-01370-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/19/2020] [Indexed: 11/15/2022]
Abstract
PURPOSE OF REVIEW Type 1 diabetes (T1D) develops as a consequence of a combination of genetic predisposition and environmental factors. Combined, these events trigger an autoimmune disease that results in progressive loss of pancreatic β cells, leading to insulin deficiency. This article reviews the current knowledge on the genetics of T1D with a specific focus on genetic variation in pancreatic islet regulatory networks and its implication to T1D risk and disease development. RECENT FINDINGS Accumulating evidence suggest an active role of β cells in T1D pathogenesis. Based on such observation several studies aimed in mapping T1D risk variants acting at the β cell level. Such studies unravel T1D risk loci shared with type 2 diabetes (T2D) and T1D risk variants potentially interfering with β-cell responses to external stimuli. The characterization of regulatory genomics maps of disease-relevant states and cell types can be used to elucidate the mechanistic role of β cells in the pathogenesis of T1D.
Collapse
Affiliation(s)
- Mireia Ramos-Rodríguez
- Endocrine Regulatory Genomics, Department of Experimental & Health Sciences, University Pompeu Fabra, 08003, Barcelona, Spain
| | - Beatriz Pérez-González
- Endocrine Regulatory Genomics, Department of Experimental & Health Sciences, University Pompeu Fabra, 08003, Barcelona, Spain
| | - Lorenzo Pasquali
- Endocrine Regulatory Genomics, Department of Experimental & Health Sciences, University Pompeu Fabra, 08003, Barcelona, Spain.
| |
Collapse
|
20
|
Yong HJ, Xie G, Liu C, Wang W, Naji A, Irianto J, Wang YJ. Gene Signatures of NEUROGENIN3+ Endocrine Progenitor Cells in the Human Pancreas. Front Endocrinol (Lausanne) 2021; 12:736286. [PMID: 34566896 PMCID: PMC8456125 DOI: 10.3389/fendo.2021.736286] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/23/2021] [Indexed: 12/12/2022] Open
Abstract
NEUROGENIN3+ (NEUROG3+) cells are considered to be pancreatic endocrine progenitors. Our current knowledge on the molecular program of NEUROG3+ cells in humans is largely extrapolated from studies in mice. We hypothesized that single-cell RNA-seq enables in-depth exploration of the rare NEUROG3+ cells directly in humans. We aligned four large single-cell RNA-seq datasets from postnatal human pancreas. Our integrated analysis revealed 10 NEUROG3+ epithelial cells from a total of 11,174 pancreatic cells. Noticeably, human NEUROG3+ cells clustered with mature pancreatic cells and epsilon cells displayed the highest frequency of NEUROG3 positivity. We confirmed the co-expression of NEUROG3 with endocrine markers and the high percentage of NEUROG3+ cells among epsilon cells at the protein level based on immunostaining on pancreatic tissue sections. We further identified unique genetic signatures of the NEUROG3+ cells. Regulatory network inference revealed novel transcription factors including Prospero homeobox protein 1 (PROX1) may act jointly with NEUROG3. As NEUROG3 plays a central role in endocrine differentiation, knowledge gained from our study will accelerate the development of beta cell regeneration therapies to treat diabetes.
Collapse
Affiliation(s)
- Hyo Jeong Yong
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, United States
| | - Gengqiang Xie
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, United States
| | - Chengyang Liu
- Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, PA, United States
| | - Wei Wang
- Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, PA, United States
| | - Ali Naji
- Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, PA, United States
| | - Jerome Irianto
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, United States
| | - Yue J. Wang
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, United States
- *Correspondence: Yue J. Wang,
| |
Collapse
|
21
|
Eufrásio A, Perrod C, Ferreira FJ, Duque M, Galhardo M, Bessa J. In Vivo Reporter Assays Uncover Changes in Enhancer Activity Caused by Type 2 Diabetes-Associated Single Nucleotide Polymorphisms. Diabetes 2020; 69:2794-2805. [PMID: 32912862 PMCID: PMC7679775 DOI: 10.2337/db19-1049] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 09/02/2020] [Indexed: 12/11/2022]
Abstract
Many single nucleotide polymorphisms (SNPs) associated with type 2 diabetes overlap with putative endocrine pancreatic enhancers, suggesting that these SNPs modulate enhancer activity and, consequently, gene expression. We performed in vivo mosaic transgenesis assays in zebrafish to quantitatively test the enhancer activity of type 2 diabetes-associated loci. Six out of 10 tested sequences are endocrine pancreatic enhancers. The risk variant of two sequences decreased enhancer activity, while in another two incremented it. One of the latter (rs13266634) locates in an SLC30A8 exon, encoding a tryptophan-to-arginine substitution that decreases SLC30A8 function, which is the canonical explanation for type 2 diabetes risk association. However, other type 2 diabetes-associated SNPs that truncate SLC30A8 confer protection from this disease, contradicting this explanation. Here, we clarify this incongruence, showing that rs13266634 boosts the activity of an overlapping enhancer and suggesting an SLC30A8 gain of function as the cause for the increased risk for the disease. We further dissected the functionality of this enhancer, finding a single nucleotide mutation sufficient to impair its activity. Overall, this work assesses in vivo the importance of disease-associated SNPs in the activity of endocrine pancreatic enhancers, including a poorly explored case where a coding SNP modulates the activity of an enhancer.
Collapse
Affiliation(s)
- Ana Eufrásio
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, and IBMC-Instituto de Biologia Celular e Molecular, Porto, Portugal
| | - Chiara Perrod
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, and IBMC-Instituto de Biologia Celular e Molecular, Porto, Portugal
| | - Fábio J Ferreira
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, and IBMC-Instituto de Biologia Celular e Molecular, Porto, Portugal
| | - Marta Duque
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, and IBMC-Instituto de Biologia Celular e Molecular, Porto, Portugal
| | - Mafalda Galhardo
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, and IBMC-Instituto de Biologia Celular e Molecular, Porto, Portugal
| | - José Bessa
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, and IBMC-Instituto de Biologia Celular e Molecular, Porto, Portugal
| |
Collapse
|
22
|
Russell R, Carnese PP, Hennings TG, Walker EM, Russ HA, Liu JS, Giacometti S, Stein R, Hebrok M. Loss of the transcription factor MAFB limits β-cell derivation from human PSCs. Nat Commun 2020; 11:2742. [PMID: 32488111 PMCID: PMC7265500 DOI: 10.1038/s41467-020-16550-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 05/06/2020] [Indexed: 12/11/2022] Open
Abstract
Next generation sequencing studies have highlighted discrepancies in β-cells which exist between mice and men. Numerous reports have identified MAF BZIP Transcription Factor B (MAFB) to be present in human β-cells postnatally, while its expression is restricted to embryonic and neo-natal β-cells in mice. Using CRISPR/Cas9-mediated gene editing, coupled with endocrine cell differentiation strategies, we dissect the contribution of MAFB to β-cell development and function specifically in humans. Here we report that MAFB knockout hPSCs have normal pancreatic differentiation capacity up to the progenitor stage, but favor somatostatin- and pancreatic polypeptide–positive cells at the expense of insulin- and glucagon-producing cells during endocrine cell development. Our results describe a requirement for MAFB late in the human pancreatic developmental program and identify it as a distinguishing transcription factor within islet cell subtype specification. We propose that hPSCs represent a powerful tool to model human pancreatic endocrine development and associated disease pathophysiology. The MAF bZIP transcription factor B (MAFB) is present in postnatal human beta cells but its role is unclear. Here, the authors show that MAFB regulates endocrine pancreatic cell fate specification.
Collapse
Affiliation(s)
- Ronan Russell
- UCSF Diabetes Center, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Phichitpol P Carnese
- UCSF Diabetes Center, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Thomas G Hennings
- UCSF Diabetes Center, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Emily M Walker
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Holger A Russ
- UCSF Diabetes Center, University of California San Francisco, San Francisco, CA, 94143, USA.,Barbara Davis Center for Diabetes, School of Medicine, University of Colorado Denver, Aurora, CO, 80045, USA
| | - Jennifer S Liu
- UCSF Diabetes Center, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Simone Giacometti
- UCSF Diabetes Center, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Roland Stein
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Matthias Hebrok
- UCSF Diabetes Center, University of California San Francisco, San Francisco, CA, 94143, USA.
| |
Collapse
|
23
|
The impact of proinflammatory cytokines on the β-cell regulatory landscape provides insights into the genetics of type 1 diabetes. Nat Genet 2019; 51:1588-1595. [PMID: 31676868 PMCID: PMC7040466 DOI: 10.1038/s41588-019-0524-6] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 09/27/2019] [Indexed: 01/31/2023]
Abstract
Early stages of type 1 diabetes (T1D) are characterized by local autoimmune inflammation and progressive loss of insulin-producing pancreatic β cells. We show here that exposure to pro-inflammatory cytokines unmasks a marked plasticity of the β-cell regulatory landscape. We expand the repertoire of human islet regulatory elements by mapping stimulus-responsive enhancers linked to changes in the β-cell transcriptome, proteome and 3D chromatin structure. Our data indicate that the β cell response to cytokines is mediated by the induction of new regulatory regions as well as the activation of primed regulatory elements prebound by islet-specific transcription factors. We find that T1D-associated loci are enriched of the newly mapped cis-regulatory regions and identify T1D-associated variants disrupting cytokine-responsive enhancer activity in human β cells. Our study illustrates how β cells respond to a pro-inflammatory environment and implicate a role for stimulus-response islet enhancers in T1D.
Collapse
|
24
|
Human pancreatic islet three-dimensional chromatin architecture provides insights into the genetics of type 2 diabetes. Nat Genet 2019; 51:1137-1148. [PMID: 31253982 DOI: 10.1038/s41588-019-0457-0] [Citation(s) in RCA: 173] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 05/29/2019] [Indexed: 01/07/2023]
Abstract
Genetic studies promise to provide insight into the molecular mechanisms underlying type 2 diabetes (T2D). Variants associated with T2D are often located in tissue-specific enhancer clusters or super-enhancers. So far, such domains have been defined through clustering of enhancers in linear genome maps rather than in three-dimensional (3D) space. Furthermore, their target genes are often unknown. We have created promoter capture Hi-C maps in human pancreatic islets. This linked diabetes-associated enhancers to their target genes, often located hundreds of kilobases away. It also revealed >1,300 groups of islet enhancers, super-enhancers and active promoters that form 3D hubs, some of which show coordinated glucose-dependent activity. We demonstrate that genetic variation in hubs impacts insulin secretion heritability, and show that hub annotations can be used for polygenic scores that predict T2D risk driven by islet regulatory variants. Human islet 3D chromatin architecture, therefore, provides a framework for interpretation of T2D genome-wide association study (GWAS) signals.
Collapse
|
25
|
Noncoding Variations in the Gene Encoding Ceramide Synthase 6 are Associated with Type 2 Diabetes in a Large Indigenous Australian Pedigree. Twin Res Hum Genet 2019; 22:79-87. [PMID: 31012404 DOI: 10.1017/thg.2019.13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Type 2 diabetes (T2D) is a chronic disease that disproportionately affects Indigenous Australians. We have previously reported the localization of a novel T2D locus by linkage analysis to chromosome 2q24 in a large admixed Indigenous Australian pedigree (Busfield et al. (2002). American Journal of Human Genetics, 70, 349-357). Here we describe fine mapping of this region in this pedigree, with the identification of SNPs showing strong association with T2D: rs3845724 (diabetes p = 7 × 10-4), rs4668106 (diabetes p = 9 × 10-4) and rs529002 (plasma glucose p = 3 × 10-4). These associations were successfully replicated in an independent collection of Indigenous Australian T2D cases and controls. These SNPs all lie within the gene encoding ceramide synthase 6 (CERS6) and thus may regulate ceramide synthesis.
Collapse
|
26
|
Xue A, Wu Y, Zhu Z, Zhang F, Kemper KE, Zheng Z, Yengo L, Lloyd-Jones LR, Sidorenko J, Wu Y, McRae AF, Visscher PM, Zeng J, Yang J. Genome-wide association analyses identify 143 risk variants and putative regulatory mechanisms for type 2 diabetes. Nat Commun 2018; 9:2941. [PMID: 30054458 PMCID: PMC6063971 DOI: 10.1038/s41467-018-04951-w] [Citation(s) in RCA: 494] [Impact Index Per Article: 82.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Accepted: 06/05/2018] [Indexed: 02/06/2023] Open
Abstract
Type 2 diabetes (T2D) is a very common disease in humans. Here we conduct a meta-analysis of genome-wide association studies (GWAS) with ~16 million genetic variants in 62,892 T2D cases and 596,424 controls of European ancestry. We identify 139 common and 4 rare variants associated with T2D, 42 of which (39 common and 3 rare variants) are independent of the known variants. Integration of the gene expression data from blood (n = 14,115 and 2765) with the GWAS results identifies 33 putative functional genes for T2D, 3 of which were targeted by approved drugs. A further integration of DNA methylation (n = 1980) and epigenomic annotation data highlight 3 genes (CAMK1D, TP53INP1, and ATP5G1) with plausible regulatory mechanisms, whereby a genetic variant exerts an effect on T2D through epigenetic regulation of gene expression. Our study uncovers additional loci, proposes putative genetic regulatory mechanisms for T2D, and provides evidence of purifying selection for T2D-associated variants.
Collapse
Affiliation(s)
- Angli Xue
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Yang Wu
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Zhihong Zhu
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Futao Zhang
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Kathryn E Kemper
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Zhili Zheng
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, 4072, Australia
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Loic Yengo
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Luke R Lloyd-Jones
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Julia Sidorenko
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, 4072, Australia
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, 51010, Estonia
| | - Yeda Wu
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Allan F McRae
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, 4072, Australia
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Peter M Visscher
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, 4072, Australia
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Jian Zeng
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, 4072, Australia.
| | - Jian Yang
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, 4072, Australia.
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China.
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, 4072, Australia.
| |
Collapse
|
27
|
Insulin promoter in human pancreatic β cells contacts diabetes susceptibility loci and regulates genes affecting insulin metabolism. Proc Natl Acad Sci U S A 2018; 115:E4633-E4641. [PMID: 29712868 DOI: 10.1073/pnas.1803146115] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Both type 1 and type 2 diabetes involve a complex interplay between genetic, epigenetic, and environmental factors. Our laboratory has been interested in the physical interactions, in nuclei of human pancreatic β cells, between the insulin (INS) gene and other genes that are involved in insulin metabolism. We have identified, using Circularized Chromosome Conformation Capture (4C), many physical contacts in a human pancreatic β cell line between the INS promoter on chromosome 11 and sites on most other chromosomes. Many of these contacts are associated with type 1 or type 2 diabetes susceptibility loci. To determine whether physical contact is correlated with an ability of the INS locus to affect expression of these genes, we knock down INS expression by targeting the promoter; 259 genes are either up or down-regulated. Of these, 46 make physical contact with INS We analyze a subset of the contacted genes and show that all are associated with acetylation of histone H3 lysine 27, a marker of actively expressed genes. To demonstrate the usefulness of this approach in revealing regulatory pathways, we identify from among the contacted sites the previously uncharacterized gene SSTR5-AS1 and show that it plays an important role in controlling the effect of somatostatin-28 on insulin secretion. These results are consistent with models in which clustering of genes supports transcriptional activity. This may be a particularly important mechanism in pancreatic β cells and in other cells where a small subset of genes is expressed at high levels.
Collapse
|
28
|
Assay for Transposase Accessible Chromatin (ATAC-Seq) to Chart the Open Chromatin Landscape of Human Pancreatic Islets. Methods Mol Biol 2018; 1766:197-208. [PMID: 29605854 DOI: 10.1007/978-1-4939-7768-0_11] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The regulatory mechanisms that ensure an accurate control of gene transcription are central to cellular function, development and disease. Such mechanisms rely largely on noncoding regulatory sequences that allow the establishment and maintenance of cell identity and tissue-specific cellular functions.The study of chromatin structure and nucleosome positioning allowed revealing transcription factor accessible genomic sites with regulatory potential, facilitating the comprehension of tissue-specific cis-regulatory networks. Recently a new technique coupled with high-throughput sequencing named Assay for Transposase Accessible Chromatin (ATAC-seq) emerged as an efficient method to chart open chromatin genome wide. The application of such technique to different cell types allowed unmasking tissue-specific regulatory elements and characterizing cis-regulatory networks. Herein we describe the implementation of the ATAC-seq method to human pancreatic islets, a tissue playing a central role in the control of glucose metabolism.
Collapse
|