1
|
Pieri A, Beleggia R, Gioia T, Tong H, Di Vittori V, Frascarelli G, Bitocchi E, Nanni L, Bellucci E, Fiorani F, Pecchioni N, Marzario S, De Quattro C, Limongi AR, De Vita P, Rossato M, Schurr U, David JL, Nikoloski Z, Papa R. Transcriptomic response to nitrogen availability reveals signatures of adaptive plasticity during tetraploid wheat domestication. THE PLANT CELL 2024; 36:3809-3823. [PMID: 39056474 PMCID: PMC11371143 DOI: 10.1093/plcell/koae202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 06/18/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024]
Abstract
The domestication of crops, coupled with agroecosystem development, is associated with major environmental changes and provides an ideal model of phenotypic plasticity. Here, we examined 32 genotypes of three tetraploid wheat (Triticum turgidum L.) subspecies, wild emmer, emmer, and durum wheat, which are representative of the key stages in the domestication of tetraploid wheat. We developed a pipeline that integrates RNA-Seq data and population genomics to assess gene expression plasticity and identify selection signatures under diverse nitrogen availability conditions. Our analysis revealed differing gene expression responses to nitrogen availability across primary (wild emmer to emmer) and secondary (emmer to durum wheat) domestication. Notably, nitrogen triggered the expression of twice as many genes in durum wheat compared to that in emmer and wild emmer. Unique selection signatures were identified at each stage: primary domestication mainly influenced genes related to biotic interactions, whereas secondary domestication affected genes related to amino acid metabolism, in particular lysine. Selection signatures were found in differentially expressed genes (DEGs), notably those associated with nitrogen metabolism, such as the gene encoding glutamate dehydrogenase (GDH). Overall, our study highlights the pivotal role of nitrogen availability in the domestication and adaptive responses of a major food crop, with varying effects across different traits and growth conditions.
Collapse
Affiliation(s)
- Alice Pieri
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, via Brecce Bianche, Ancona 60131, Italy
| | - Romina Beleggia
- Council for Agricultural Research and Economics (CREA), Research Centre for Cereal and Industrial Crops (CREA-CI), Foggia 71122, Italy
| | - Tania Gioia
- School of Agricultural, Forestry, Food and Environmental Sciences, University of Basilicata, Potenza 85100, Italy
| | - Hao Tong
- Bioinformatics Department, Institute of Biochemistry and Biology, University of Potsdam, Potsdam 14476, Germany
- Systems Biology and Mathematical Modeling Group, Max Planck Institute of Molecular Plant Physiology, Potsdam 14476, Germany
| | - Valerio Di Vittori
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, via Brecce Bianche, Ancona 60131, Italy
| | - Giulia Frascarelli
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, via Brecce Bianche, Ancona 60131, Italy
| | - Elena Bitocchi
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, via Brecce Bianche, Ancona 60131, Italy
| | - Laura Nanni
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, via Brecce Bianche, Ancona 60131, Italy
| | - Elisa Bellucci
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, via Brecce Bianche, Ancona 60131, Italy
| | - Fabio Fiorani
- Institute of Biosciences and Geosciences (IBG-2): Plant Sciences, Forschungszentrum Julich GmbH, Julich 52428, Germany
| | - Nicola Pecchioni
- Council for Agricultural Research and Economics (CREA), Research Centre for Cereal and Industrial Crops (CREA-CI), Foggia 71122, Italy
| | - Stefania Marzario
- School of Agricultural, Forestry, Food and Environmental Sciences, University of Basilicata, Potenza 85100, Italy
| | - Concetta De Quattro
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, Verona 37134, Italy
| | - Antonina Rita Limongi
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, Verona 37134, Italy
| | - Pasquale De Vita
- Council for Agricultural Research and Economics (CREA), Research Centre for Cereal and Industrial Crops (CREA-CI), Foggia 71122, Italy
| | - Marzia Rossato
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, Verona 37134, Italy
| | - Ulrich Schurr
- Institute of Biosciences and Geosciences (IBG-2): Plant Sciences, Forschungszentrum Julich GmbH, Julich 52428, Germany
| | - Jacques L David
- AGAP, Univ. Montpellier, CIRAD, INRAE, Institut Agro, Montpellier 34060, France
| | - Zoran Nikoloski
- Bioinformatics Department, Institute of Biochemistry and Biology, University of Potsdam, Potsdam 14476, Germany
- Systems Biology and Mathematical Modeling Group, Max Planck Institute of Molecular Plant Physiology, Potsdam 14476, Germany
| | - Roberto Papa
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, via Brecce Bianche, Ancona 60131, Italy
| |
Collapse
|
2
|
Peters Haugrud AR, Achilli AL, Martínez-Peña R, Klymiuk V. Future of durum wheat research and breeding: Insights from early career researchers. THE PLANT GENOME 2024:e20453. [PMID: 38760906 DOI: 10.1002/tpg2.20453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/26/2024] [Accepted: 04/02/2024] [Indexed: 05/20/2024]
Abstract
Durum wheat (Triticum turgidum ssp. durum) is globally cultivated for pasta, couscous, and bulgur production. With the changing climate and growing world population, the need to significantly increase durum production to meet the anticipated demand is paramount. This review summarizes recent advancements in durum research, encompassing the exploitation of existing and novel genetic diversity, exploration of potential new diversity sources, breeding for climate-resilient varieties, enhancements in production and management practices, and the utilization of modern technologies in breeding and cultivar development. In comparison to bread wheat (T. aestivum), the durum wheat community and production area are considerably smaller, often comprising many small-family farmers, notably in African and Asian countries. Public breeding programs such as the International Maize and Wheat Improvement Center (CIMMYT) and the International Center for Agricultural Research in the Dry Areas (ICARDA) play a pivotal role in providing new and adapted cultivars for these small-scale growers. We spotlight the contributions of these and others in this review. Additionally, we offer our recommendations on key areas for the durum research community to explore in addressing the challenges posed by climate change while striving to enhance durum production and sustainability. As part of the Wheat Initiative, the Expert Working Group on Durum Wheat Genomics and Breeding recognizes the significance of collaborative efforts in advancing toward a shared objective. We hope the insights presented in this review stimulate future research and deliberations on the trajectory for durum wheat genomics and breeding.
Collapse
Affiliation(s)
- Amanda R Peters Haugrud
- Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Fargo, North Dakota, USA
| | - Ana Laura Achilli
- Faculty of Land and Food Systems, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Raquel Martínez-Peña
- Regional Institute of Agri-Food and Forestry Research and Development of Castilla-La Mancha (IRIAF), Agroenvironmental Research Center El Chaparrillo, Ciudad Real, Spain
| | - Valentyna Klymiuk
- Crop Development Centre and Department of Plant Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
3
|
Prakash NR, Kumar K, Muthusamy V, Zunjare RU, Hossain F. Unique genetic architecture of prolificacy in 'Sikkim Primitive' maize unraveled through whole-genome resequencing-based DNA polymorphism. PLANT CELL REPORTS 2024; 43:134. [PMID: 38702564 DOI: 10.1007/s00299-024-03176-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 02/13/2024] [Indexed: 05/06/2024]
Abstract
KEY MESSAGE 'Sikkim Primitive' maize landrace, unique for prolificacy (7-9 ears per plant) possesses unique genomic architecture in branching and inflorescence-related gene(s), and locus Zm00001eb365210 encoding glycosyltransferases was identified as the putative candidate gene underlying QTL (qProl-SP-8.05) for prolificacy. The genotype possesses immense usage in breeding high-yielding baby-corn genotypes. 'Sikkim Primitive' is a native landrace of North Eastern Himalayas, and is characterized by having 7-9 ears per plant compared to 1-2 ears in normal maize. Though 'Sikkim Primitive' was identified in the 1960s, it has not been characterized at a whole-genome scale. Here, we sequenced the entire genome of an inbred (MGUSP101) derived from 'Sikkim Primitive' along with three non-prolific (HKI1128, UMI1200, and HKI1105) and three prolific (CM150Q, CM151Q and HKI323) inbreds. A total of 942,417 SNPs, 24,160 insertions, and 27,600 deletions were identified in 'Sikkim Primitive'. The gene-specific functional mutations in 'Sikkim Primitive' were classified as 10,847 missense (54.36%), 402 non-sense (2.015%), and 8,705 silent (43.625%) mutations. The number of transitions and transversions specific to 'Sikkim Primitive' were 666,021 and 279,950, respectively. Among all base changes, (G to A) was the most frequent (215,772), while (C to G) was the rarest (22,520). Polygalacturonate 4-α-galacturonosyltransferase enzyme involved in pectin biosynthesis, cell-wall organization, nucleotide sugar, and amino-sugar metabolism was found to have unique alleles in 'Sikkim Primitive'. The analysis further revealed the Zm00001eb365210 gene encoding glycosyltransferases as the putative candidate underlying QTL (qProl-SP-8.05) for prolificacy in 'Sikkim Primitive'. High-impact nucleotide variations were found in ramosa3 (Zm00001eb327910) and zeaxanthin epoxidase1 (Zm00001eb081460) genes having a role in branching and inflorescence development in 'Sikkim Primitive'. The information generated unraveled the genetic architecture and identified key genes/alleles unique to the 'Sikkim Primitive' genome. This is the first report of whole-genome characterization of the 'Sikkim Primitive' landrace unique for its high prolificacy.
Collapse
Affiliation(s)
- Nitish Ranjan Prakash
- ICAR-Indian Agricultural Research Institute, New Delhi, Delhi, 110012, India
- ICAR-Central Soil Salinity Research Institute, Karnal, Haryana, 132001, India
| | - Kuldeep Kumar
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi, Delhi, 110012, India
| | - Vignesh Muthusamy
- ICAR-Indian Agricultural Research Institute, New Delhi, Delhi, 110012, India
| | | | - Firoz Hossain
- ICAR-Indian Agricultural Research Institute, New Delhi, Delhi, 110012, India.
| |
Collapse
|
4
|
Abasi F, Raja NI, Mashwani ZUR, Ehsan M, Ali H, Shahbaz M. Heat and Wheat: Adaptation strategies with respect to heat shock proteins and antioxidant potential; an era of climate change. Int J Biol Macromol 2024; 256:128379. [PMID: 38000583 DOI: 10.1016/j.ijbiomac.2023.128379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/21/2023] [Accepted: 11/21/2023] [Indexed: 11/26/2023]
Abstract
Extreme changes in weather including heat-wave and high-temperature fluctuations are predicted to increase in intensity and duration due to climate change. Wheat being a major staple crop is under severe threat of heat stress especially during the grain-filling stage. Widespread food insecurity underscores the critical need to comprehend crop responses to forthcoming climatic shifts, pivotal for devising adaptive strategies ensuring sustainable crop productivity. This review addresses insights concerning antioxidant, physiological, molecular impacts, tolerance mechanisms, and nanotechnology-based strategies and how wheat copes with heat stress at the reproductive stage. In this study stress resilience strategies were documented for sustainable grain production under heat stress at reproductive stage. Additionally, the mechanisms of heat resilience including gene expression, nanomaterials that trigger transcription factors, (HSPs) during stress, and physiological and antioxidant traits were explored. The most reliable method to improve plant resilience to heat stress must include nano-biotechnology-based strategies, such as the adoption of nano-fertilizers in climate-smart practices and the use of advanced molecular approaches. Notably, the novel resistance genes through advanced molecular approach and nanomaterials exhibit promise for incorporation into wheat cultivars, conferring resilience against imminent adverse environmental conditions. This review will help scientific communities in thermo-tolerance wheat cultivars and new emerging strategies to mitigate the deleterious impact of heat stress.
Collapse
Affiliation(s)
- Fozia Abasi
- Department of Botany, PMAS-Arid Agriculture University, Rawalpindi 46300, Pakistan.
| | - Naveed Iqbal Raja
- Department of Botany, PMAS-Arid Agriculture University, Rawalpindi 46300, Pakistan.
| | | | - Maria Ehsan
- Department of Botany, PMAS-Arid Agriculture University, Rawalpindi 46300, Pakistan
| | - Habib Ali
- Department of Agronomy, PMAS-Arid Agriculture University, Rawalpindi 46300, Pakistan
| | - Muhammad Shahbaz
- Institute for Tropical Biology and Conservation (ITBC), Universiti Malaysia Sabah, 88400 Kota Kinabalu, Malaysia
| |
Collapse
|
5
|
Rabieyan E, Darvishzadeh R, Mohammadi R, Gul A, Rasheed A, Akhar FK, Abdi H, Alipour H. Genetic diversity, linkage disequilibrium, and population structure of tetraploid wheat landraces originating from Europe and Asia. BMC Genomics 2023; 24:682. [PMID: 37964224 PMCID: PMC10644499 DOI: 10.1186/s12864-023-09768-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 10/26/2023] [Indexed: 11/16/2023] Open
Abstract
BACKGROUND Durum wheat is one of the most important crops, especially in the Mediterranean region. Insight into the genetic diversity of germplasm can improve the breeding program management in various traits. This study was done using single nucleotide polymorphisms (SNP) markers to characterize the genetic distinctiveness and differentiation of tetraploid wheat landraces collected from nine European and Asian countries. A sum of 23,334 polymorphic SNPs was detected in 126 tetraploid wheat landraces in relation to the reference genome. RESULTS The number of identified SNPs was 11,613 and 11,721 in A and B genomes, respectively. The highest and lowest diversity was on 6B and 6 A chromosomes, respectively. Structure analysis classified the landraces into two distinct subpopulations (K = 2). Evaluating the principal coordinate analysis (PCoA) and weighted pair-group method using arithmetic averages (WPGMA) clustering results demonstrated that landraces (99.2%) are categorized into one of the two chief subpopulations. Therefore, the grouping pattern did not clearly show the presence of a clear pattern of relationships between genetic diversity and their geographical derivation. Part of this result could be due to the historical exchange between different germplasms. Although the result did not separate landraces based on their region of origin, the landraces collected from Iran were classified into the same group and cluster. Analysis of molecular variance (AMOVA) also confirmed the results of population structure. Finally, Durum wheat landraces in some countries, including Turkey, Russia, Ukraine, and Afghanistan, were highly diverse, while others, including Iran and China, were low-diversity. CONCLUSION The recent study concluded that the 126 tetraploid wheat genotypes and their GBS-SNP markers are very appropriate for quantitative trait loci (QTLs) mapping and genome-wide association studies (GWAS). The core collection comprises two distinct subpopulations. Subpopulation II genotypes are the most diverse genotypes, and if they possess desired traits, they may be used in future breeding programs. The degree of diversity in the landraces of countries can provide the ground for the improvement of new cultivars with international cooperation. linkage disequilibrium (LD) hotspot distribution across the genome was investigated, which provides useful information about the genomic regions that contain intriguing genes.
Collapse
Affiliation(s)
- Ehsan Rabieyan
- Department of Agronomy and Plant Breeding, University of Tehran, Karaj, Iran
| | - Reza Darvishzadeh
- Department of Plant Production and Genetics, Faculty of Agriculture, Urmia University, Urmia, Iran
| | - Reza Mohammadi
- Dryland Agricultural Research Institute (DARI), AREEO, Sararood branch, Iran
| | - Alvina Gul
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Awais Rasheed
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
- International Maize and Wheat Improvement Center (CIMMYT), c/o CAAS, Beijing, 100081, China
- Department of Plant Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Fatemeh Keykha Akhar
- Department of Plant Biotechnology, College of Agriculture, Jahrom University, Jahrom, Iran
| | - Hossein Abdi
- Department of Plant Production and Genetics, Faculty of Agriculture, Urmia University, Urmia, Iran
| | - Hadi Alipour
- Department of Plant Production and Genetics, Faculty of Agriculture, Urmia University, Urmia, Iran.
| |
Collapse
|
6
|
Laribi M, Fredua-Agyeman R, Ben M’Barek S, Sansaloni CP, Dreisigacker S, Gamba FM, Abdedayem W, Nefzaoui M, Araar C, Hwang SF, Yahyaoui AH, Strelkov SE. Genome-wide association analysis of tan spot disease resistance in durum wheat accessions from Tunisia. Front Genet 2023; 14:1231027. [PMID: 37946749 PMCID: PMC10631785 DOI: 10.3389/fgene.2023.1231027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 10/02/2023] [Indexed: 11/12/2023] Open
Abstract
Background: Tunisia harbors a rich collection of unexploited durum wheat landraces (Triticum durum ssp. durum) that have been gradually replaced by elite cultivars since the 1970s. These landraces represent an important potential source for broadening the genetic background of elite durum wheat cultivars and for the introgression of novel genes for key traits, including disease resistance, into these cultivars. Methods: In this study, single nucleotide polymorphism (SNP) markers were used to investigate the genetic diversity and population structure of a core collection of 235 durum wheat accessions consisting mainly of landraces. The high phenotypic and genetic diversity of the fungal pathogen Pyrenophora tritici-repentis (cause of tan spot disease of wheat) in Tunisia allowed the assessment of the accessions for tan spot resistance at the adult plant stage under field conditions over three cropping seasons. A genome-wide association study (GWAS) was performed using a 90k SNP array. Results: Bayesian population structure analysis with 9191 polymorphic SNP markers classified the accessions into two groups, where groups 1 and 2 included 49.79% and 31.49% of the accessions, respectively, while the remaining 18.72% were admixtures. Principal coordinate analysis, the unweighted pair group method with arithmetic mean and the neighbor-joining method clustered the accessions into three to five groups. Analysis of molecular variance indicated that 76% of the genetic variation was among individuals and 23% was between individuals. Genome-wide association analyses identified 26 SNPs associated with tan spot resistance and explained between 8.1% to 20.2% of the phenotypic variation. The SNPs were located on chromosomes 1B (1 SNP), 2B (4 SNPs), 3A (2 SNPs), 3B (2 SNPs), 4A (2 SNPs), 4B (1 SNP), 5A (2 SNPs), 5B (4 SNPs), 6A (5 SNPs), 6B (2 SNPs), and 7B (1 SNP). Four markers, one on each of chromosomes 1B, and 5A, and two on 5B, coincided with previously reported SNPs for tan spot resistance, while the remaining SNPs were either novel markers or closely related to previously reported SNPs. Eight durum wheat accessions were identified as possible novel sources of tan spot resistance that could be introgressed into elite cultivars. Conclusion: The results highlighted the significance of chromosomes 2B, 5B, and 6A as genomic regions associated with tan spot resistance.
Collapse
Affiliation(s)
- Marwa Laribi
- CRP Wheat Septoria Precision Phenotyping Platform, Tunis, Tunisia
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Rudolph Fredua-Agyeman
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Sarrah Ben M’Barek
- CRP Wheat Septoria Precision Phenotyping Platform, Tunis, Tunisia
- Regional Field Crops Research Center of Beja (CRRGC), Beja, Tunisia
| | | | | | | | - Wided Abdedayem
- CRP Wheat Septoria Precision Phenotyping Platform, Tunis, Tunisia
| | - Meriem Nefzaoui
- CRP Wheat Septoria Precision Phenotyping Platform, Tunis, Tunisia
| | - Chayma Araar
- CRP Wheat Septoria Precision Phenotyping Platform, Tunis, Tunisia
| | - Sheau-Fang Hwang
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Amor H. Yahyaoui
- CRP Wheat Septoria Precision Phenotyping Platform, Tunis, Tunisia
- Borlaug Training Foundation, Colorado State University, Fort Collins, CO, United States
| | - Stephen E. Strelkov
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
7
|
Tateo F, Bononi M, Castorina G, Colecchia SA, De Benedetti S, Consonni G, Geuna F. Whole-genome resequencing-based characterization of a durum wheat landrace showing similarity to 'Senatore Cappelli'. PLoS One 2023; 18:e0291430. [PMID: 37733684 PMCID: PMC10513328 DOI: 10.1371/journal.pone.0291430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 08/29/2023] [Indexed: 09/23/2023] Open
Abstract
Durum wheat (Triticum turgidum spp. durum) is a major cereal adopted since antiquity to feed humans. Due to its use, dating back several millennia, this species features a wide genetic diversity and landraces are considered important repositories of gene pools which constitute invaluable tools for breeders. The aim of this work is to provide a first characterization of a wheat landrace, referred to as 'TB2018', that was collected in the Apulia region (Southern Italy). 'TB2018' revealed, through visual inspection, characters reminiscent of the traditional variety 'Senatore Cappelli', while exhibiting a distinctive trait, i.e., reduced stature. Indeed, the comparison with a set of Italian durum wheat cultivars conducted in this study, in which 24 CPVO plant descriptors were adopted, placed the 'TB2018' landrace in proximity to the 'Senatore Cappelli' cultivar. In addition, the close similarity between the two genotypes was confirmed by the analysis of the seed protein pattern. A relative reduction was detected for 'TB2018' root elongation in the early stages of plant growth. The 'TB2018' genome sequence, obtained through low-coverage resequencing and comparison to the reference 'Svevo' cultivar is also reported in this study, followed by a genome-wide comparison against 259 durum wheat accessions that placed 'TB2018' close to the 'Cappelli' reference. Hundreds of genes putatively affected by variants that possess Gene Ontology descriptors were detected, among which some were shown to be putatively linked to the morphological traits that distinguish 'TB2018' from 'Senatore Cappelli', Overall, this study poses the basis for a possible exploitation of 'TB2018' per se in cultivation or as a source of alternative alleles in the breeding of traditional cultivars. This work also presents a genomic methodology that exploits the information contained in a low-depth, whole-genome sequence to derive genotypic data useful for cross-platform (chip data) comparisons.
Collapse
Affiliation(s)
- Fernando Tateo
- Department of Agricultural and Environmental Sciences – Production, Landscape, Agroenergy (DISAA), University of Milan, Milan, Italy
| | - Monica Bononi
- Department of Agricultural and Environmental Sciences – Production, Landscape, Agroenergy (DISAA), University of Milan, Milan, Italy
| | - Giulia Castorina
- Department of Agricultural and Environmental Sciences – Production, Landscape, Agroenergy (DISAA), University of Milan, Milan, Italy
| | - Salvatore Antonio Colecchia
- Council for Agricultural Research and Economics, Research Center for Cereal and Industrial Crops (CREA-CI), Foggia, Italy
| | - Stefano De Benedetti
- Department of Food, Environmental and Nutritional Sciences, University of Milan, Milan, Italy
| | - Gabriella Consonni
- Department of Agricultural and Environmental Sciences – Production, Landscape, Agroenergy (DISAA), University of Milan, Milan, Italy
| | - Filippo Geuna
- Department of Agricultural and Environmental Sciences – Production, Landscape, Agroenergy (DISAA), University of Milan, Milan, Italy
| |
Collapse
|
8
|
Taranto F, Esposito S, Fania F, Sica R, Marzario S, Logozzo G, Gioia T, De Vita P. Breeding effects on durum wheat traits detected using GWAS and haplotype block analysis. FRONTIERS IN PLANT SCIENCE 2023; 14:1206517. [PMID: 37794940 PMCID: PMC10546023 DOI: 10.3389/fpls.2023.1206517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 08/08/2023] [Indexed: 10/06/2023]
Abstract
Introduction The recent boosting of genomic data in durum wheat (Triticum turgidum subsp. durum) offers the opportunity to better understand the effects of breeding on the genetic structures that regulate the expression of traits of agronomic interest. Furthermore, the identification of DNA markers useful for marker-assisted selection could also improve the reliability of technical protocols used for variety protection and registration. Methods Within this motivation context, 123 durum wheat accessions, classified into three groups: landraces (LR), ancient (OC) and modern cultivars (MC), were evaluated in two locations, for 34 agronomic traits, including UPOV descriptors, to assess the impact of changes that occurred during modern breeding. Results The association mapping analysis, performed with 4,241 SNP markers and six multi-locus-GWAS models, revealed 28 reliable Quantitative Trait Nucleotides (QTNs) related to plant morphology and kernel-related traits. Some important genes controlling flowering time and plant height were in linkage disequilibrium (LD) decay with QTNs identified in this study. A strong association for yellow berry was found on chromosome 6A (Q.Yb-6A) in a region containing the nadh-ubiquinone oxidoreductase subunit, a gene involved in starch metabolism. The Q.Kcp-2A harbored the PPO locus, with the associated marker (Ku_c13700_1196) in LD decay with Ppo-A1 and Ppo-A2. Interestingly, the Q.FGSGls-2B.1, identified by RAC875_c34512_685 for flag leaf glaucosity, mapped less than 1 Mb from the Epistatic inhibitors of glaucousness (Iw1), thus representing a good candidate for supporting the morphological DUS traits also with molecular markers. LD haplotype block approach revealed a higher diversity, richness and length of haploblocks in MC than OC and LR (580 in LR, 585 in OC and 612 in MC), suggesting a possible effect exerted by breeding programs on genomic regions associated with the agronomic traits. Discussion Our findings pave new ways to support the phenotypic characterization necessary for variety registration by using a panel of cost-effectiveness SNP markers associated also to the UPOV descriptors. Moreover, the panel of associated SNPs might represent a reservoir of favourable alleles to use in durum wheat breeding and genetics.
Collapse
Affiliation(s)
- F. Taranto
- Italian National Council of Research (CNR), Institute of Biosciences and Bioresources (IBBR), Bari, Italy
| | - S. Esposito
- Council for Agricultural Research and Economics (CREA), Research Centre for Cereal and Industrial Crops (CREA-CI), Foggia, Italy
| | - F. Fania
- Council for Agricultural Research and Economics (CREA), Research Centre for Cereal and Industrial Crops (CREA-CI), Foggia, Italy
- Department of Agriculture, Food, Natural Resources, and Engineering (DAFNE) - University of Foggia, Foggia, Italy
| | - R. Sica
- School of Agricultural, Forestry, Food and Environmental Sciences, University of Basilicata, Potenza, Italy
| | - S. Marzario
- School of Agricultural, Forestry, Food and Environmental Sciences, University of Basilicata, Potenza, Italy
| | - G. Logozzo
- School of Agricultural, Forestry, Food and Environmental Sciences, University of Basilicata, Potenza, Italy
| | - T. Gioia
- School of Agricultural, Forestry, Food and Environmental Sciences, University of Basilicata, Potenza, Italy
| | - P. De Vita
- Council for Agricultural Research and Economics (CREA), Research Centre for Cereal and Industrial Crops (CREA-CI), Foggia, Italy
| |
Collapse
|
9
|
Villano C, Procino S, Blaiotta G, Carputo D, D’Agostino N, Di Serio E, Fanelli V, La Notte P, Miazzi MM, Montemurro C, Taranto F, Aversano R. Genetic diversity and signature of divergence in the genome of grapevine clones of Southern Italy varieties. FRONTIERS IN PLANT SCIENCE 2023; 14:1201287. [PMID: 37771498 PMCID: PMC10525710 DOI: 10.3389/fpls.2023.1201287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 08/21/2023] [Indexed: 09/30/2023]
Abstract
Sexual reproduction has contributed to a significant degree of variability in cultivated grapevine populations. However, the additional influence of spontaneous somatic mutations has played a pivotal role in shaping the diverse landscape of grapevine agrobiodiversity. These naturally occurring selections, termed 'clones,' represent a vast reservoir of potentially valuable traits and alleles that hold promise for enhancing grape quality and bolstering plant resilience against environmental and biotic challenges. Despite their potential, many of these clones remain largely untapped.In light of this context, this study aims to delve into the population structure, genetic diversity, and distinctive genetic loci within a collection of 138 clones derived from six Campanian and Apulian grapevine varieties, known for their desirable attributes in viticulture and winemaking. Employing two reduced representation sequencing methods, we extracted Single-Nucleotide Polymorphism (SNP) markers. Population structure analysis and fixation index (FST) calculations were conducted both between populations and at individual loci. Notably, varieties originating from the same geographical region exhibited pronounced genetic similarity.The resulting SNP dataset facilitated the identification of approximately two hundred loci featuring divergent markers (FST ≥ 0.80) within annotated exons. Several of these loci exhibited associations with essential traits like phenotypic adaptability and environmental responsiveness, offering compelling opportunities for grapevine breeding initiatives. By shedding light on the genetic variability inherent in these treasured traditional grapevines, our study contributes to the broader understanding of their potential. Importantly, it underscores the urgency of preserving and characterizing these valuable genetic resources to safeguard their intra-varietal diversity and foster future advancements in grapevine cultivation.
Collapse
Affiliation(s)
- Clizia Villano
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Silvia Procino
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
- Institute of Biosciences and Bioresources (CNR-IBBR), Bari, Italy
| | - Giuseppe Blaiotta
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Domenico Carputo
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Nunzio D’Agostino
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
- Institute of Biosciences and Bioresources (CNR-IBBR), Bari, Italy
| | - Ermanno Di Serio
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Valentina Fanelli
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Pierfederico La Notte
- Support Unit Bari, Institute for Sustainable Plant Protection, National Research Council of Italy (CNR), Bari, Italy
| | | | - Cinzia Montemurro
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
- Support Unit Bari, Institute for Sustainable Plant Protection, National Research Council of Italy (CNR), Bari, Italy
- SINAGRI S.r.l., Spin Off of the University of Bari Aldo Moro, Bari, Italy
| | | | - Riccardo Aversano
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| |
Collapse
|
10
|
Marzario S, Sica R, Taranto F, Fania F, Esposito S, De Vita P, Gioia T, Logozzo G. Phenotypic evolution in durum wheat ( Triticum durum Desf.) based on SNPs, morphological traits, UPOV descriptors and kernel-related traits. FRONTIERS IN PLANT SCIENCE 2023; 14:1206560. [PMID: 37701808 PMCID: PMC10493298 DOI: 10.3389/fpls.2023.1206560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 07/21/2023] [Indexed: 09/14/2023]
Abstract
Durum wheat is a worldwide staple crop cultivated mainly in the Mediterranean basin. Progress in durum wheat breeding requires the exploitation of genetic variation among the gene pool enclosed in landraces, old cultivars and modern cultivars. The aim of this study was to provide a more comprehensive view of the genetic architecture evolution among 123 durum wheat accessions (41 landraces, 41 old cultivars and 41 modern cultivars), grown in replicated randomized complete block in two areas, Metaponto (Basilicata) and Foggia (Apulia), using the Illumina iSelect 15K wheat SNP array and 33 plant and kernel traits including the International Union for the Protection of new Varieties of Plants (UPOV) descriptors. Through DAPC and Bayesian population structure five groups were identified according to type of material data and reflecting the genetic basis and breeding strategies involved in their development. Phenotypic and genotypic coefficient of variation were low for kernel width (6.43%) and for grain protein content (1.03%). Highly significant differences between environments, genotypes and GEI (Genotype x Environment Interaction) were detected by mixed ANOVAs for agro-morphological-quality traits. Number of kernels per spike (h2 = 0.02) and grain protein content (h2 = 0.03) were not a heritability character and highly influenced by the environment. Nested ANOVAs revealed highly significant differences between DAPC clusters within environments for all traits except kernel roundness. Ten UPOV traits showed significant diversity for their frequencies in the two environments. By PCAmix multivariate analysis, plant height, heading time, spike length, weight of kernels per spike, thousand kernel weight, and the seed related traits had heavy weight on the differentiation of the groups, while UPOV traits discriminated moderately or to a little extent. The data collected in this study provide useful resources to facilitate management and use of wheat genetic diversity that has been lost due to selection in the last decades.
Collapse
Affiliation(s)
- Stefania Marzario
- School of Agricultural, Forestry, Food and Environmental Sciences, University of Basilicata, Potenza, Italy
| | - Rita Sica
- School of Agricultural, Forestry, Food and Environmental Sciences, University of Basilicata, Potenza, Italy
| | | | - Fabio Fania
- Department of Agriculture, Food, Natural Resources, and Engineering (DAFNE) - University of Foggia, Foggia, Italy
| | | | - Pasquale De Vita
- Council for Agricultural Research and Economics (CREA), Research Centre for Cereal and Industrial Crops (CREA-CI), Foggia, Italy
| | - Tania Gioia
- School of Agricultural, Forestry, Food and Environmental Sciences, University of Basilicata, Potenza, Italy
| | - Giuseppina Logozzo
- School of Agricultural, Forestry, Food and Environmental Sciences, University of Basilicata, Potenza, Italy
| |
Collapse
|
11
|
Mulugeta B, Ortiz R, Geleta M, Hailesilassie T, Hammenhag C, Hailu F, Tesfaye K. Harnessing genome-wide genetic diversity, population structure and linkage disequilibrium in Ethiopian durum wheat gene pool. FRONTIERS IN PLANT SCIENCE 2023; 14:1192356. [PMID: 37546270 PMCID: PMC10400094 DOI: 10.3389/fpls.2023.1192356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 07/05/2023] [Indexed: 08/08/2023]
Abstract
Yanyang Liu, Henan Academy of Agricultural Sciences (HNAAS), China; Landraces are an important genetic source for transferring valuable novel genes and alleles required to enhance genetic variation. Therefore, information on the gene pool's genetic diversity and population structure is essential for the conservation and sustainable use of durum wheat genetic resources. Hence, the aim of this study was to assess genetic diversity, population structure, and linkage disequilibrium, as well as to identify regions with selection signature. Five hundred (500) individuals representing 46 landraces, along with 28 cultivars were evaluated using the Illumina Infinium 25K wheat SNP array, resulting in 8,178 SNPs for further analysis. Gene diversity (GD) and the polymorphic information content (PIC) ranged from 0.13-0.50 and 0.12-0.38, with mean GD and PIC values of 0.34 and 0.27, respectively. Linkage disequilibrium (LD) revealed 353,600 pairs of significant SNPs at a cut-off (r2 > 0.20, P < 0.01), with an average r2 of 0.21 for marker pairs. The nucleotide diversity (π) and Tajima's D (TD) per chromosome for the populations ranged from 0.29-0.36 and 3.46-5.06, respectively, with genome level, mean π values of 0.33 and TD values of 4.43. Genomic scan using the Fst outlier test revealed 85 loci under selection signatures, with 65 loci under balancing selection and 17 under directional selection. Putative candidate genes co-localized with regions exhibiting strong selection signatures were associated with grain yield, plant height, host plant resistance to pathogens, heading date, grain quality, and phenolic content. The Bayesian Model (STRUCTURE) and distance-based (principal coordinate analysis, PCoA, and unweighted pair group method with arithmetic mean, UPGMA) methods grouped the genotypes into five subpopulations, where landraces from geographically non-adjoining environments were clustered in the same cluster. This research provides further insights into population structure and genetic relationships in a diverse set of durum wheat germplasm, which could be further used in wheat breeding programs to address production challenges sustainably.
Collapse
Affiliation(s)
- Behailu Mulugeta
- Institute of Biotechnology, Addis Ababa University, Addis Ababa, Ethiopia
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
- Sinana Agricultural Research Center, Oromia Agricultural Research Institute, Bale-Robe, Ethiopia
| | - Rodomiro Ortiz
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Mulatu Geleta
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | | | - Cecilia Hammenhag
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Faris Hailu
- Bio and Emerging Technology Institute, Addis Ababa, Ethiopia
| | - Kassahun Tesfaye
- Institute of Biotechnology, Addis Ababa University, Addis Ababa, Ethiopia
- Department of Biology and Biotechnology, Wollo University, Dessie, Ethiopia
| |
Collapse
|
12
|
Broccanello C, Bellin D, DalCorso G, Furini A, Taranto F. Genetic approaches to exploit landraces for improvement of Triticum turgidum ssp. durum in the age of climate change. FRONTIERS IN PLANT SCIENCE 2023; 14:1101271. [PMID: 36778704 PMCID: PMC9911883 DOI: 10.3389/fpls.2023.1101271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/09/2023] [Indexed: 06/18/2023]
Abstract
Addressing the challenges of climate change and durum wheat production is becoming an important driver for food and nutrition security in the Mediterranean area, where are located the major producing countries (Italy, Spain, France, Greece, Morocco, Algeria, Tunisia, Turkey, and Syria). One of the emergent strategies, to cope with durum wheat adaptation, is the exploration and exploitation of the existing genetic variability in landrace populations. In this context, this review aims to highlight the important role of durum wheat landraces as a useful genetic resource to improve the sustainability of Mediterranean agroecosystems, with a focus on adaptation to environmental stresses. We described the most recent molecular techniques and statistical approaches suitable for the identification of beneficial genes/alleles related to the most important traits in landraces and the development of molecular markers for marker-assisted selection. Finally, we outline the state of the art about landraces genetic diversity and signature of selection, already identified from these accessions, for adaptability to the environment.
Collapse
Affiliation(s)
| | - Diana Bellin
- Department of Biotechnology, University of Verona, Verona, Italy
| | | | - Antonella Furini
- Department of Biotechnology, University of Verona, Verona, Italy
| | | |
Collapse
|
13
|
Fiore MC, Blangiforti S, Preiti G, Spina A, Bosi S, Marotti I, Mauceri A, Puccio G, Sunseri F, Mercati F. Elucidating the Genetic Relationships on the Original Old Sicilian Triticum Spp. Collection by SNP Genotyping. Int J Mol Sci 2022; 23:13378. [PMID: 36362168 PMCID: PMC9694989 DOI: 10.3390/ijms232113378] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 07/30/2023] Open
Abstract
Several Triticum species spread in cultivation in Sicily and neighboring regions over the centuries, which led to the establishment of a large genetic diversity. Many ancient varieties were widely cultivated until the beginning of the last century before being replaced by modern varieties. Recently, they have been reintroduced in cultivation in Sicily. Here, the genetic diversity of 115 and 11 accessions from Sicily and Calabria, respectively, belonging to Triticum species was evaluated using a high-density SNP array. Einkorn, emmer, and spelta wheat genotypes were used as outgroups for species and subspecies; five modern varieties of durum and bread wheat were used as references. A principal coordinates analysis (PCoA) and an unweighted pair group method with arithmetic mean (UPGMA) showed four distinct groups among Triticum species and T. turgidum subspecies. The population structure analysis distinguished five gene pools, among which three appeared private to the T. aestivum, T. turgidum subsp. Turgidum, and 'Timilia' group. The principal component analysis (PCA) displayed a bio-morphological trait relationship of a subset (110) of ancient wheat varieties and their wide variability within the T. turgidum subsp. durum subgroups. A discriminant analysis of principal components (DAPC) and phylogenetic analyses applied to the four durum wheat subgroups revealed that the improved varieties harbored a different gene pool compared to the most ancient varieties. The 'Russello' and 'Russello Ibleo' groups were distinguished; both displayed higher genetic variability compared to the 'Timilia' group accessions. This research represents a comprehensive approach to fingerprinting the old wheat Sicilian germplasm, which is useful in avoiding commercial fraud and sustaining the cultivation of landraces and ancient varieties.
Collapse
Affiliation(s)
- Maria Carola Fiore
- Council for Agricultural Research and Economics (CREA), Research Centre for Plant Protection and Certification, 90011 Bagheria, Italy
| | - Sebastiano Blangiforti
- Stazione Consorziale Sperimentale di Granicoltura per la Sicilia, Santo Pietro, 95041 Caltagirone, Italy
| | - Giovanni Preiti
- Department AGRARIA, University Mediterranea of Reggio Calabria, 89122 Reggio Calabria, Italy
| | - Alfio Spina
- Council for Agricultural Research and Economics (CREA), Research Centre for Cereal and Industrial Crops, 190, 95024 Acireale, Italy
| | - Sara Bosi
- Department of Agricultural and Food Science, Alma Mater Studiorum, University of Bologna, Viale Fanin, 40127 Bologna, Italy
| | - Ilaria Marotti
- Department of Agricultural and Food Science, Alma Mater Studiorum, University of Bologna, Viale Fanin, 40127 Bologna, Italy
| | - Antonio Mauceri
- Department AGRARIA, University Mediterranea of Reggio Calabria, 89122 Reggio Calabria, Italy
| | - Guglielmo Puccio
- National Research Council (CNR) of Italy, Institute of Biosciences and Bioresources (IBBR), 90129 Palermo, Italy
| | - Francesco Sunseri
- Department AGRARIA, University Mediterranea of Reggio Calabria, 89122 Reggio Calabria, Italy
| | - Francesco Mercati
- National Research Council (CNR) of Italy, Institute of Biosciences and Bioresources (IBBR), 90129 Palermo, Italy
| |
Collapse
|
14
|
Delvento C, Pavan S, Miazzi MM, Marcotrigiano AR, Ricciardi F, Ricciardi L, Lotti C. Genotyping-by-Sequencing Defines Genetic Structure within the “Acquaviva” Red Onion Landrace. PLANTS 2022; 11:plants11182388. [PMID: 36145789 PMCID: PMC9502971 DOI: 10.3390/plants11182388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/05/2022] [Accepted: 09/11/2022] [Indexed: 11/26/2022]
Abstract
Genetic structure and distinctive features of landraces, such as adaptability to local agro-ecosystems and specific qualitative profiles, can be substantially altered by the massive introduction of allochthonous germplasm. The landrace known as “Cipolla rossa di Acquaviva” (Acquaviva red onion, further referred to as ARO) is traditionally cultivated and propagated in a small area of the Apulia region (southern Italy). However, the recent rise of its market value and cultivation area is possibly causing genetic contamination with foreign propagating material. In this work, genotyping-by-sequencing (GBS) was used to characterize genetic variation of seven onion populations commercialized as ARO, as well as one population of the landrace “Montoro” (M), which is phenotypically similar, but originates from another cultivation area and displays different qualitative features. A panel of 5011 SNP markers was used to perform parametric and non-parametric genetic structure analyses, which supported the hypothesis of genetic contamination of germplasm commercialized as ARO with a gene pool including the M landrace. Four ARO populations formed a core genetic group, homogeneous and clearly distinct from the other ARO and M populations. Conversely, the remaining three ARO populations did not display significant differences with the M population. A set of private alleles for the ARO core genetic group was identified, indicating the possibility to trace the ARO landrace by means of a SNP-based molecular barcode. Overall, the results of this study provide a framework for further breeding activities and the traceability of the ARO landrace.
Collapse
Affiliation(s)
- Chiara Delvento
- Department of Soil, Plant and Food Sciences, Section of Genetics and Plant Breeding, University of Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy
| | - Stefano Pavan
- Department of Soil, Plant and Food Sciences, Section of Genetics and Plant Breeding, University of Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy
- Correspondence: (S.P.); (C.L.)
| | - Monica Marilena Miazzi
- Department of Soil, Plant and Food Sciences, Section of Genetics and Plant Breeding, University of Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy
| | - Angelo Raffaele Marcotrigiano
- Department of Soil, Plant and Food Sciences, Section of Genetics and Plant Breeding, University of Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy
| | - Francesca Ricciardi
- Department of Agriculture, Food, Natural Resources and Engineering, University of Foggia, Via Napoli 25, 71122 Foggia, Italy
| | - Luigi Ricciardi
- Department of Soil, Plant and Food Sciences, Section of Genetics and Plant Breeding, University of Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy
| | - Concetta Lotti
- Department of Agriculture, Food, Natural Resources and Engineering, University of Foggia, Via Napoli 25, 71122 Foggia, Italy
- Correspondence: (S.P.); (C.L.)
| |
Collapse
|
15
|
Genievskaya Y, Pecchioni N, Laidò G, Anuarbek S, Rsaliyev A, Chudinov V, Zatybekov A, Turuspekov Y, Abugalieva S. Genome-Wide Association Study of Leaf Rust and Stem Rust Seedling and Adult Resistances in Tetraploid Wheat Accessions Harvested in Kazakhstan. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11151904. [PMID: 35893608 PMCID: PMC9329756 DOI: 10.3390/plants11151904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/13/2022] [Accepted: 07/20/2022] [Indexed: 05/05/2023]
Abstract
Leaf rust (LR) and stem rust (SR) are diseases increasingly impacting wheat production worldwide. Fungal pathogens producing rust diseases in wheat may cause yield losses of up to 50−60%. One of the most effective methods for preventing such losses is the development of resistant cultivars with high yield potential. This goal can be achieved through complex breeding studies, including the identification of key genetic factors controlling rust disease resistance. The objective of this study was to identify sources of tetraploid wheat resistance to LR and SR races, both at the seedling growth stage in the greenhouse and at the adult plant stage in field experiments, under the conditions of the North Kazakhstan region. A panel consisting of 193 tetraploid wheat accessions was used in a genome-wide association study (GWAS) for the identification of quantitative trait loci (QTLs) associated with LR and SR resistance, using 16,425 polymorphic single-nucleotide polymorphism (SNP) markers in the seedling and adult stages of plant development. The investigated panel consisted of seven tetraploid subspecies (Triticum turgidum ssp. durum, ssp. turanicum, ssp. turgidum, ssp. polonicum, ssp. carthlicum, ssp. dicoccum, and ssp. dicoccoides). The GWAS, based on the phenotypic evaluation of the tetraploid collection’s reaction to the two rust species at the seedling (in the greenhouse) and adult (in the field) stages, revealed 38 QTLs (p < 0.001), comprising 17 for LR resistance and 21 for SR resistance. Ten QTLs were associated with the reaction to LR at the seedling stage, while six QTLs were at the adult plant stage and one QTL was at both the seedling and adult stages. Eleven QTLs were associated with SR response at the seedling stage, while nine QTLs were at the adult plant stage and one QTL was at both the seedling and adult stages. A comparison of these results with previous LR and SR studies indicated that 11 of the 38 QTLs are presumably novel loci. The QTLs identified in this work can potentially be used for marker-assisted selection of tetraploid and hexaploid wheat for the breeding of new LR- and SR-resistant cultivars.
Collapse
Affiliation(s)
- Yuliya Genievskaya
- Laboratory of Molecular Genetics, Institute of Plant Biology and Biotechnology, Almaty 050040, Kazakhstan; (Y.G.); (S.A.); (A.Z.); (Y.T.)
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| | - Nicola Pecchioni
- Research Centre for Cereal and Industrial Crops, 71122 Foggia, Italy; (N.P.); (G.L.)
| | - Giovanni Laidò
- Research Centre for Cereal and Industrial Crops, 71122 Foggia, Italy; (N.P.); (G.L.)
| | - Shynar Anuarbek
- Laboratory of Molecular Genetics, Institute of Plant Biology and Biotechnology, Almaty 050040, Kazakhstan; (Y.G.); (S.A.); (A.Z.); (Y.T.)
| | - Aralbek Rsaliyev
- Laboratory of Phytosanitary Safety, Research Institute of Biological Safety Problems, Gvardeisky 080409, Kazakhstan;
| | - Vladimir Chudinov
- Breeding Department, Karabalyk Agricultural Experimental Station, Nauchnoe 110908, Kazakhstan;
| | - Alibek Zatybekov
- Laboratory of Molecular Genetics, Institute of Plant Biology and Biotechnology, Almaty 050040, Kazakhstan; (Y.G.); (S.A.); (A.Z.); (Y.T.)
| | - Yerlan Turuspekov
- Laboratory of Molecular Genetics, Institute of Plant Biology and Biotechnology, Almaty 050040, Kazakhstan; (Y.G.); (S.A.); (A.Z.); (Y.T.)
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| | - Saule Abugalieva
- Laboratory of Molecular Genetics, Institute of Plant Biology and Biotechnology, Almaty 050040, Kazakhstan; (Y.G.); (S.A.); (A.Z.); (Y.T.)
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
- Correspondence: ; Tel.: +7-727-394-8006
| |
Collapse
|
16
|
Miazzi MM, Babay E, De Vita P, Montemurro C, Chaabane R, Taranto F, Mangini G. Comparative Genetic Analysis of Durum Wheat Landraces and Cultivars Widespread in Tunisia. FRONTIERS IN PLANT SCIENCE 2022; 13:939609. [PMID: 35909756 PMCID: PMC9326505 DOI: 10.3389/fpls.2022.939609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/06/2022] [Indexed: 06/15/2023]
Abstract
The durum wheat (Triticum turgidum L. ssp. durum Desf.) landraces constitute a useful natural germplasm to increase the genetic diversity in the modern durum cultivars. The Tunisian durum germplasm constitutes 28 accessions conserved in Genebank of Tunisia, which are still unexplored. In this study, a comparative genetic analysis was performed to investigate the relationships between the Tunisian durum lines and the modern cultivars and detect divergent loci involved in breeding history. The genetic diversity analyses carried out using nine morphological descriptors and the 25K single-nucleotide polymorphism (SNP) array allowed us to distinguish two groups of Tunisian landraces and one of durum cultivars. The analysis of molecular variance and diversity indices confirmed the genetic variability among the groups. A total of 529 SNP loci were divergent between Tunisian durum landraces and modern cultivars. Candidate genes related to plant and spike architecture, including FLOWERING LOCUS T (FT-B1), zinc finger CONSTANS, and AP2/EREBPs transcription factors, were identified. In addition, divergent genes involved in grain composition and biotic stress nucleotide-binding site and leucine-reach repeats proteins and disease resistance proteins (NBS-LRR and RPM) were found, suggesting that the Tunisian durum germplasm may represent an important source of favorable alleles to be used in future durum breeding programs for developing well-adapted and resilient cultivars.
Collapse
Affiliation(s)
- Monica Marilena Miazzi
- Department of Soil, Plant and Food Sciences (DiSSPA), Section Genetics and Plant Breeding, University of Bari Aldo Moro, Bari, Italy
| | - Elyes Babay
- National Gene Bank of Tunisia (BNG), Tunis, Tunisia
- Agricultural Applied Biotechnology Laboratory (LR16INRAT06), Institut National de la Recherche Agronomique de Tunisie (INRAT), University of Carthage, Tunis, Tunisia
| | - Pasquale De Vita
- Research Centre for Cereal and Industrial Crops (CREA-CI), Foggia, Italy
| | - Cinzia Montemurro
- Department of Soil, Plant and Food Sciences (DiSSPA), Section Genetics and Plant Breeding, University of Bari Aldo Moro, Bari, Italy
- Spin Off Sinagri s.r.l., University of Bari Aldo Moro, Bari, Italy
- Support Unit Bari, Institute for Sustainable Plant Protection, National Research Council of Italy (IPSP-CNR), Bari, Italy
| | - Ramzi Chaabane
- National Gene Bank of Tunisia (BNG), Tunis, Tunisia
- Agricultural Applied Biotechnology Laboratory (LR16INRAT06), Institut National de la Recherche Agronomique de Tunisie (INRAT), University of Carthage, Tunis, Tunisia
| | - Francesca Taranto
- Institute of Biosciences and Bioresources, National Research Council of Italy (IBBR-CNR), Bari, Italy
| | - Giacomo Mangini
- Institute of Biosciences and Bioresources, National Research Council of Italy (IBBR-CNR), Bari, Italy
| |
Collapse
|
17
|
Ali M, Danting S, Wang J, Sadiq H, Rasheed A, He Z, Li H. Genetic Diversity and Selection Signatures in Synthetic-Derived Wheats and Modern Spring Wheat. FRONTIERS IN PLANT SCIENCE 2022; 13:877496. [PMID: 35903232 PMCID: PMC9315363 DOI: 10.3389/fpls.2022.877496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
Synthetic hexaploid wheats and their derived advanced lines were subject to empirical selection in developing genetically superior cultivars. To investigate genetic diversity, patterns of nucleotide diversity, population structure, and selection signatures during wheat breeding, we tested 422 wheat accessions, including 145 synthetic-derived wheats, 128 spring wheat cultivars, and 149 advanced breeding lines from Pakistan. A total of 18,589 high-quality GBS-SNPs were identified that were distributed across the A (40%), B (49%), and D (11%) genomes. Values of population diversity parameters were estimated across chromosomes and genomes. Genome-wide average values of genetic diversity and polymorphic information content were estimated to be 0.30 and 0.25, respectively. Neighbor-joining (NJ) tree, principal component analysis (PCA), and kinship analyses revealed that synthetic-derived wheats and advanced breeding lines were genetically diverse. The 422 accessions were not separated into distinct groups by NJ analysis and confirmed using the PCA. This conclusion was validated with both relative kinship and Rogers' genetic distance analyses. EigenGWAS analysis revealed that 32 unique genome regions had undergone selection. We found that 50% of the selected regions were located in the B-genome, 29% in the D-genome, and 21% in the A-genome. Previously known functional genes or QTL were found within the selection regions associated with phenology-related traits such as vernalization, adaptability, disease resistance, and yield-related traits. The selection signatures identified in the present investigation will be useful for understanding the targets of modern wheat breeding in Pakistan.
Collapse
Affiliation(s)
- Mohsin Ali
- Institute of Crop Sciences and CIMMYT China Office, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- Nanfan Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Sanya, China
| | - Shan Danting
- Institute of Crop Sciences and CIMMYT China Office, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- Nanfan Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Sanya, China
| | - Jiankang Wang
- Institute of Crop Sciences and CIMMYT China Office, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Hafsa Sadiq
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Awais Rasheed
- Institute of Crop Sciences and CIMMYT China Office, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Zhonghu He
- Institute of Crop Sciences and CIMMYT China Office, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Huihui Li
- Institute of Crop Sciences and CIMMYT China Office, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- Nanfan Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Sanya, China
| |
Collapse
|
18
|
Population structure, allelic variation at Rht-B1 and Ppd-A1 loci and its effects on agronomic traits in Argentinian durum wheat. Sci Rep 2022; 12:9629. [PMID: 35688907 PMCID: PMC9187632 DOI: 10.1038/s41598-022-13563-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 05/25/2022] [Indexed: 12/22/2022] Open
Abstract
Exploring the genetic variability in yield and yield-related traits is essential to continue improving genetic gains. Fifty-nine Argentinian durum wheat cultivars were analyzed for important agronomic traits in three field experiments. The collection was genotyped with 3565 genome-wide SNPs and functional markers in order to determine the allelic variation at Rht-B1 and Ppd-A1 genes. Population structure analyses revealed the presence of three main groups, composed by old, modern and genotypes with European or CIMMYT ancestry. The photoperiod sensitivity Ppd-A1b allele showed higher frequency (75%) than the insensitivity one Ppd-A1a (GS105). The semi-dwarfism Rht-B1b and the Ppd-A1a (GS105) alleles were associated with increases in harvest index and decreases in plant height, grain protein content and earlier heading date, although only the varieties carrying the Rht-B1 variants showed differences in grain yield. Out of the two main yield components, grain number per plant was affected by allelic variants at Rht-B1 and Ppd-A1 loci, while no differences were observed in thousand kernel weight. The increases in grain number per spike associated with Rht-B1b were attributed to a higher grain number per spikelet, whereas Ppd-A1a (GS105) was associated with higher grain number per spikelet, but also with lower spikelets per spike.
Collapse
|
19
|
Balla MY, Gorafi YSA, Kamal NM, Abdalla MGA, Tahir ISA, Tsujimoto H. Harnessing the diversity of wild emmer wheat for genetic improvement of durum wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:1671-1684. [PMID: 35257197 PMCID: PMC9110450 DOI: 10.1007/s00122-022-04062-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 02/12/2022] [Indexed: 05/02/2023]
Abstract
The multiple derivative lines (MDLs) characterized in this study offer a promising strategy for harnessing the diversity of wild emmer wheat for durum and bread wheat improvement. Crop domestication has diminished genetic diversity and reduced phenotypic plasticity and adaptation. Exploring the adaptive capacity of wild progenitors offer promising opportunities to improve crops. We developed a population of 178 BC1F6 durum wheat (Triticum turgidum ssp. durum) lines by crossing and backcrossing nine wild emmer wheat (T. turgidum ssp. dicoccoides) accessions with the common durum wheat cultivar 'Miki 3'. Here, we describe the development of this population, which we named as multiple derivative lines (MDLs), and demonstrated its suitability for durum wheat breeding. We genotyped the MDL population, the parents, and 43 Sudanese durum wheat cultivars on a Diversity Array Technology sequencing platform. We evaluated days to heading and plant height in Dongola (Sudan) and in Tottori (Japan). The physical map length of the MDL population was 9 939 Mb with an average of 1.4 SNP/Mb. The MDL population had greater diversity than the Sudanese cultivars. We found high gene exchange between the nine wild emmer accessions and the MDL population, indicating that the MDL captured most of the diversity in the wild emmer accessions. Genome-wide association analysis identified three loci for days to heading on chromosomes 1A and 5A in Dongola and one on chromosome 3B in Tottori. For plant height, common genomic loci were found on chromosomes 4A and 4B in both locations, and one genomic locus on chromosome 7B was found only in Dongola. The results revealed that the MDLs are an effective strategy towards harnessing wild emmer wheat diversity for wheat genetic improvement.
Collapse
Affiliation(s)
- Mohammed Yousif Balla
- United Graduate School of Agricultural Sciences, Tottori University, Tottori, 680-8553 Japan
| | - Yasir Serag Alnor Gorafi
- Arid Land Research Center, Tottori University, 1390 Hamasaka, Tottori, 680-0001 Japan
- Agricultural Research Corporation, P.O. Box 126, Wad Medani, Sudan
| | - Nasrein Mohamed Kamal
- Arid Land Research Center, Tottori University, 1390 Hamasaka, Tottori, 680-0001 Japan
- Agricultural Research Corporation, P.O. Box 126, Wad Medani, Sudan
| | | | | | - Hisashi Tsujimoto
- Arid Land Research Center, Tottori University, 1390 Hamasaka, Tottori, 680-0001 Japan
| |
Collapse
|
20
|
Bokore FE, Cuthbert RD, Knox RE, Campbell HL, Meyer B, N'Diaye A, Pozniak CJ, DePauw R. Main effect and epistatic QTL affecting spike shattering and association with plant height revealed in two spring wheat (Triticum aestivum L.) populations. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:1143-1162. [PMID: 35306567 PMCID: PMC9033718 DOI: 10.1007/s00122-021-03980-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 10/18/2021] [Indexed: 05/26/2023]
Abstract
A major QTL on chromosome arm 4BS was associated with reduced spike shattering and reduced plant height in coupling phase, and a second major QTL associated with reduced spike shattering was detected on chromosome arm 5AL in the same wheat variety Carberry. Spike shattering can cause severe grain yield loss in wheat. Development of cultivars with reduced shattering but having easy mechanical threshability is the target of wheat breeding programs. This study was conducted to determine quantitative trait loci (QTL) associated with shattering resistance, and epistasis among QTL in the populations Carberry/AC Cadillac and Carberry/Thatcher. Response of the populations to spike shattering was evaluated near Swift Current, SK, in four to five environments. Plant height data recorded in different locations and years were used to determine the relationship of the trait with spike shattering. Each population was genotyped and mapped with the wheat 90 K Illumina iSelect SNP array. Main effect QTL were analyzed by MapQTL 6, and epistatic interactions between main effect QTL were determined by QTLNetwork 2.0. Correlations between height and shattering ranged from 0.15 to 0.49. Carberry contributed two major QTL associated with spike shattering on chromosome arms 4BS and 5AL, detected in both populations. Carberry also contributed two minor QTL on 7AS and 7AL. AC Cadillac contributed five minor QTL on 1AL, 2DL, 3AL, 3DL and 7DS. Nine epistatic QTL interactions were identified, out of which the most consistent and synergistic interaction, that reduced the expression of shattering, occurred between 4BS and 5AL QTL. The 4BS QTL was consistently associated with reduced shattering and reduced plant height in the coupling phase. The present findings shed light on the inheritance of shattering resistance and provide genetic markers for manipulating the trait to develop wheat cultivars.
Collapse
Affiliation(s)
- Firdissa E Bokore
- Swift Current Research and Development Centre, Agriculture and Agri-Food Canada, 1 Airport Road, P.O. Box 1030, Swift Current, SK, S9H 3X2, Canada.
| | - Richard D Cuthbert
- Swift Current Research and Development Centre, Agriculture and Agri-Food Canada, 1 Airport Road, P.O. Box 1030, Swift Current, SK, S9H 3X2, Canada.
| | - Ron E Knox
- Swift Current Research and Development Centre, Agriculture and Agri-Food Canada, 1 Airport Road, P.O. Box 1030, Swift Current, SK, S9H 3X2, Canada
| | - Heather L Campbell
- Swift Current Research and Development Centre, Agriculture and Agri-Food Canada, 1 Airport Road, P.O. Box 1030, Swift Current, SK, S9H 3X2, Canada
| | - Brad Meyer
- Swift Current Research and Development Centre, Agriculture and Agri-Food Canada, 1 Airport Road, P.O. Box 1030, Swift Current, SK, S9H 3X2, Canada
| | - Amidou N'Diaye
- Department of Plant Sciences and Crop Development Centre, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK, S7N 5A8, Canada
| | - Curtis J Pozniak
- Department of Plant Sciences and Crop Development Centre, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK, S7N 5A8, Canada
| | - Ron DePauw
- Advancing Wheat Technologies, 118 Strathcona Rd SW, Calgary, AB, T3H 1P3, Canada
| |
Collapse
|
21
|
Kumar R, Gyawali A, Morrison GD, Saski CA, Robertson DJ, Cook DD, Tharayil N, Schaefer RJ, Beissinger TM, Sekhon RS. Genetic Architecture of Maize Rind Strength Revealed by the Analysis of Divergently Selected Populations. PLANT & CELL PHYSIOLOGY 2021; 62:1199-1214. [PMID: 34015110 DOI: 10.1093/pcp/pcab059] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 05/04/2021] [Accepted: 05/19/2021] [Indexed: 06/12/2023]
Abstract
The strength of the stalk rind, measured as rind penetrometer resistance (RPR), is an important contributor to stalk lodging resistance. To enhance the genetic architecture of RPR, we combined selection mapping on populations developed by 15 cycles of divergent selection for high and low RPR with time-course transcriptomic and metabolic analyses of the stalks. Divergent selection significantly altered allele frequencies of 3,656 and 3,412 single- nucleotide polymorphisms (SNPs) in the high and low RPR populations, respectively. Surprisingly, only 110 (1.56%) SNPs under selection were common in both populations, while the majority (98.4%) were unique to each population. This result indicated that high and low RPR phenotypes are produced by biologically distinct mechanisms. Remarkably, regions harboring lignin and polysaccharide genes were preferentially selected in high and low RPR populations, respectively. The preferential selection was manifested as higher lignification and increased saccharification of the high and low RPR stalks, respectively. The evolution of distinct gene classes according to the direction of selection was unexpected in the context of parallel evolution and demonstrated that selection for a trait, albeit in different directions, does not necessarily act on the same genes. Tricin, a grass-specific monolignol that initiates the incorporation of lignin in the cell walls, emerged as a key determinant of RPR. Integration of selection mapping and transcriptomic analyses with published genetic studies of RPR identified several candidate genes including ZmMYB31, ZmNAC25, ZmMADS1, ZmEXPA2, ZmIAA41 and hk5. These findings provide a foundation for an enhanced understanding of RPR and the improvement of stalk lodging resistance.
Collapse
Affiliation(s)
- Rohit Kumar
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA
| | - Abiskar Gyawali
- Division of Biological Sciences, University of Missouri, 105 Tucker Hall, Columbia, MO 65211, USA
| | - Ginnie D Morrison
- Division of Biological Sciences, University of Missouri, 105 Tucker Hall, Columbia, MO 65211, USA
| | - Christopher A Saski
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC 29634, USA
| | - Daniel J Robertson
- Department of Mechanical Engineering, University of Idaho, Moscow, ID, USA
| | - Douglas D Cook
- Department of Mechanical Engineering, Brigham Young University, Provo, UT, USA
| | - Nishanth Tharayil
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC 29634, USA
| | | | - Timothy M Beissinger
- Department of Plant Breeding Methodology, University of Göttingen, Göttingen 37075, Germany
- Center for Integrated Breeding Research, University of Göttingen, Göttingen 37075, Germany
| | - Rajandeep S Sekhon
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA
| |
Collapse
|
22
|
Sharma S, Schulthess AW, Bassi FM, Badaeva ED, Neumann K, Graner A, Özkan H, Werner P, Knüpffer H, Kilian B. Introducing Beneficial Alleles from Plant Genetic Resources into the Wheat Germplasm. BIOLOGY 2021; 10:982. [PMID: 34681081 PMCID: PMC8533267 DOI: 10.3390/biology10100982] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/24/2021] [Accepted: 09/24/2021] [Indexed: 12/02/2022]
Abstract
Wheat (Triticum sp.) is one of the world's most important crops, and constantly increasing its productivity is crucial to the livelihoods of millions of people. However, more than a century of intensive breeding and selection processes have eroded genetic diversity in the elite genepool, making new genetic gains difficult. Therefore, the need to introduce novel genetic diversity into modern wheat has become increasingly important. This review provides an overview of the plant genetic resources (PGR) available for wheat. We describe the most important taxonomic and phylogenetic relationships of these PGR to guide their use in wheat breeding. In addition, we present the status of the use of some of these resources in wheat breeding programs. We propose several introgression schemes that allow the transfer of qualitative and quantitative alleles from PGR into elite germplasm. With this in mind, we propose the use of a stage-gate approach to align the pre-breeding with main breeding programs to meet the needs of breeders, farmers, and end-users. Overall, this review provides a clear starting point to guide the introgression of useful alleles over the next decade.
Collapse
Affiliation(s)
- Shivali Sharma
- Global Crop Diversity Trust, Platz der Vereinten Nationen 7, D-53113 Bonn, Germany; (S.S.); (P.W.)
| | - Albert W. Schulthess
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), OT Gatersleben, Corrensstr. 3, D-06466 Seeland, Germany; (A.W.S.); (K.N.); (A.G.); (H.K.)
| | - Filippo M. Bassi
- International Center for Agricultural Research in the Dry Areas (ICARDA), Rabat 10112, Morocco;
| | - Ekaterina D. Badaeva
- N.I. Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia;
- The Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences (ICG SB RAS), 630090 Novosibirsk, Russia
| | - Kerstin Neumann
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), OT Gatersleben, Corrensstr. 3, D-06466 Seeland, Germany; (A.W.S.); (K.N.); (A.G.); (H.K.)
| | - Andreas Graner
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), OT Gatersleben, Corrensstr. 3, D-06466 Seeland, Germany; (A.W.S.); (K.N.); (A.G.); (H.K.)
| | - Hakan Özkan
- Department of Field Crops, Faculty of Agriculture, University of Çukurova, Adana 01330, Turkey;
| | - Peter Werner
- Global Crop Diversity Trust, Platz der Vereinten Nationen 7, D-53113 Bonn, Germany; (S.S.); (P.W.)
| | - Helmut Knüpffer
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), OT Gatersleben, Corrensstr. 3, D-06466 Seeland, Germany; (A.W.S.); (K.N.); (A.G.); (H.K.)
| | - Benjamin Kilian
- Global Crop Diversity Trust, Platz der Vereinten Nationen 7, D-53113 Bonn, Germany; (S.S.); (P.W.)
| |
Collapse
|
23
|
Impacts of environmental conditions, and allelic variation of cytosolic glutamine synthetase on maize hybrid kernel production. Commun Biol 2021; 4:1095. [PMID: 34535763 PMCID: PMC8448750 DOI: 10.1038/s42003-021-02598-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 08/24/2021] [Indexed: 11/19/2022] Open
Abstract
Cytosolic glutamine synthetase (GS1) is the enzyme mainly responsible of ammonium assimilation and reassimilation in maize leaves. The agronomic potential of GS1 in maize kernel production was investigated by examining the impact of an overexpression of the enzyme in the leaf cells. Transgenic hybrids exhibiting a three-fold increase in leaf GS activity were produced and characterized using plants grown in the field. Several independent hybrids overexpressing Gln1-3, a gene encoding cytosolic (GS1), in the leaf and bundle sheath mesophyll cells were grown over five years in different locations. On average, a 3.8% increase in kernel yield was obtained in the transgenic hybrids compared to controls. However, we observed that such an increase was simultaneously dependent upon both the environmental conditions and the transgenic event for a given field trial. Although variable from one environment to another, significant associations were also found between two GS1 genes (Gln1-3 and Gln1-4) polymorphic regions and kernel yield in different locations. We propose that the GS1 enzyme is a potential lead for producing high yielding maize hybrids using either genetic engineering or marker-assisted selection. However, for these hybrids, yield increases will be largely dependent upon the environmental conditions used to grow the plants. Amiour et al. use a multi-year field trial evaluation and association mapping to determine if increased enzyme activity and native allelic variations at the GS1 loci in maize contribute to differences in grain yield. Overexpression of GS1 and polymorphisms in the corresponding loci were associated with kernel yield, indicating that GS1 expression can directly control kernel production and that GS1 has a potential lead in the production of high yielding maize hybrids depending on environmental conditions.
Collapse
|
24
|
Buzdin AV, Patrushev MV, Sverdlov ED. Will Plant Genome Editing Play a Decisive Role in "Quantum-Leap" Improvements in Crop Yield to Feed an Increasing Global Human Population? PLANTS (BASEL, SWITZERLAND) 2021; 10:1667. [PMID: 34451712 PMCID: PMC8398637 DOI: 10.3390/plants10081667] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/04/2021] [Accepted: 08/07/2021] [Indexed: 02/08/2023]
Abstract
Growing scientific evidence demonstrates unprecedented planetary-scale human impacts on the Earth's system with a predicted threat to the existence of the terrestrial biosphere due to population increase, resource depletion, and pollution. Food systems account for 21-34% of global carbon dioxide (CO2) emissions. Over the past half-century, water and land-use changes have significantly impacted ecosystems, biogeochemical cycles, biodiversity, and climate. At the same time, food production is falling behind consumption, and global grain reserves are shrinking. Some predictions suggest that crop yields must approximately double by 2050 to adequately feed an increasing global population without a large expansion of crop area. To achieve this, "quantum-leap" improvements in crop cultivar productivity are needed within very narrow planetary boundaries of permissible environmental perturbations. Strategies for such a "quantum-leap" include mutation breeding and genetic engineering of known crop genome sequences. Synthetic biology makes it possible to synthesize DNA fragments of any desired sequence, and modern bioinformatics tools may hopefully provide an efficient way to identify targets for directed modification of selected genes responsible for known important agronomic traits. CRISPR/Cas9 is a new technology for incorporating seamless directed modifications into genomes; it is being widely investigated for its potential to enhance the efficiency of crop production. We consider the optimism associated with the new genetic technologies in terms of the complexity of most agronomic traits, especially crop yield potential (Yp) limits. We also discuss the possible directions of overcoming these limits and alternative ways of providing humanity with food without transgressing planetary boundaries. In conclusion, we support the long-debated idea that new technologies are unlikely to provide a rapidly growing population with significantly increased crop yield. Instead, we suggest that delicately balanced humane measures to limit its growth and the amount of food consumed per capita are highly desirable for the foreseeable future.
Collapse
Affiliation(s)
- Anton V Buzdin
- The Laboratory of Clinical and Genomic Bioinformatics, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701 Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Maxim V Patrushev
- Kurchatov Center for Genome Research, National Research Center Kurchatov Institute, 123182 Moscow, Russia
| | - Eugene D Sverdlov
- Kurchatov Center for Genome Research, National Research Center Kurchatov Institute, 123182 Moscow, Russia
- Institute of Molecular Genetics, National Research Center Kurchatov Institute, 123182 Moscow, Russia
| |
Collapse
|
25
|
Genetic variability assessment of 127 Triticum turgidum L. accessions for mycorrhizal susceptibility-related traits detection. Sci Rep 2021; 11:13426. [PMID: 34183734 PMCID: PMC8239029 DOI: 10.1038/s41598-021-92837-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 06/02/2021] [Indexed: 02/06/2023] Open
Abstract
Positive effects of arbuscular mycorrhizal fungi (AMF)-wheat plant symbiosis have been well discussed by research, while the actual role of the single wheat genotype in establishing this type of association is still poorly investigated. In this work, the genetic diversity of Triticum turgidum wheats was exploited to detect roots susceptibility to AMF and to identify genetic markers in linkage with chromosome regions involved in this symbiosis. A tetraploid wheat collection of 127 accessions was genotyped using 35K single-nucleotide polymorphism (SNP) array and inoculated with the AMF species Funneliformis mosseae (F. mosseae) and Rhizoglomus irregulare (R. irregulare), and a genome-wide association study (GWAS) was conducted. Six clusters of genetically related accessions were identified, showing a different mycorrhizal colonization among them. GWAS revealed four significant quantitative trait nucleotides (QTNs) involved in mycorrhizal symbiosis, located on chromosomes 1A, 2A, 2B and 6A. The results of this work enrich future breeding activities aimed at developing new grains on the basis of genetic diversity on low or high susceptibility to mycorrhization, and, possibly, maximizing the symbiotic effects.
Collapse
|
26
|
Taranto F, Mangini G, Miazzi MM, Stevanato P, De Vita P. Polyphenol oxidase genes as integral part of the evolutionary history of domesticated tetraploid wheat. Genomics 2021; 113:2989-3001. [PMID: 34182080 DOI: 10.1016/j.ygeno.2021.06.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 04/14/2021] [Accepted: 06/23/2021] [Indexed: 01/05/2023]
Abstract
Studying and understanding the genetic basis of polyphenol oxidases (PPO)-related traits plays a crucial role in genetic improvement of crops. A tetraploid wheat collection (T. turgidum ssp., TWC) was analyzed using the 90K wheat SNP iSelect assay and phenotyped for PPO activity. A total of 21,347 polymorphic SNPs were used to perform genome-wide association analysis (GWA) in TWC and durum wheat sub-groups, detecting 23 and 85 marker-trait associations (MTA). In addition, candidate genes responsible for PPO activity were predicted. Based on the 23 MTAs detected in TWC, two haplotypes associated with low and high PPO activity were identified. Four SNPs were developed and validated providing one reliable marker (IWB75732) for marker assisted selection. The 23 MTAs were used to evaluate the genetic divergence (FST > 0.25) between the T. turgidum subspecies, providing new information important for understanding the domestication process of Triticum turgidum ssp. and in particular of ssp. carthlicum.
Collapse
Affiliation(s)
- Francesca Taranto
- National Research Council (CNR), Institute of Biosciences and Bioresources (CNR-IBBR), 80055 Portici, NA, Italy.
| | - Giacomo Mangini
- National Research Council (CNR), Institute of Biosciences and Bioresources (CNR-IBBR), 70126 Bari, BA, Italy.
| | - Monica Marilena Miazzi
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, 70126 Bari, Italy
| | | | - Pasquale De Vita
- Council for Agricultural Research and Economics (CREA), Research Centre for Cereal and Industrial Crops (CREA-CI), 71122 Foggia, Italy
| |
Collapse
|
27
|
Di Francesco A, Cunsolo V, Saletti R, Svensson B, Muccilli V, De Vita P, Foti S. Quantitative Label-Free Comparison of the Metabolic Protein Fraction in Old and Modern Italian Wheat Genotypes by a Shotgun Approach. Molecules 2021; 26:molecules26092596. [PMID: 33946829 PMCID: PMC8124627 DOI: 10.3390/molecules26092596] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 12/20/2022] Open
Abstract
Wheat represents one of the most important cereals for mankind. However, since wheat proteins are also the causative agent of several adverse reactions, during the last decades, consumers have shown an increasing interest in the old wheat genotypes, which are generally perceived as more "natural" and healthier than the modern ones. Comparison of nutritional value for modern and old wheat genotypes is still controversial, and to evaluate the real impact of these foods on human health comparative experiments involving old and modern genotypes are desirable. The nutritional quality of grain is correlated with its proteomic composition that depends on the interplay between the genetic characteristics of the plant and external factors related to the environment. We report here the label-free shotgun quantitative comparison of the metabolic protein fractions of two old Sicilian landraces (Russello and Timilia) and the modern variety Simeto, from the 2010-2011 and 2011-2012 growing seasons. The overall results show that Timilia presents the major differences with respect to the other two genotypes investigated. These differences may be related to different defense mechanisms and some other peculiar properties of these genotypes. On the other hand, our results confirm previous results leading to the conclusion that with respect to a nutritional value evaluation, there is a substantial equivalence between old and modern wheat genotypes. Data are available via ProteomeXchange with identifier <PXD024204>.
Collapse
Affiliation(s)
- Antonella Di Francesco
- Laboratory of Organic Mass Spectrometry, Department of Chemical Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (A.D.F.); (R.S.); (V.M.); (S.F.)
| | - Vincenzo Cunsolo
- Laboratory of Organic Mass Spectrometry, Department of Chemical Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (A.D.F.); (R.S.); (V.M.); (S.F.)
- Correspondence:
| | - Rosaria Saletti
- Laboratory of Organic Mass Spectrometry, Department of Chemical Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (A.D.F.); (R.S.); (V.M.); (S.F.)
| | - Birte Svensson
- Department of Biotechnology and Bioengineering, Technical University of Denmark, Søltofts Plads, Building 224, 2800 Kgs. Lyngby, Denmark;
| | - Vera Muccilli
- Laboratory of Organic Mass Spectrometry, Department of Chemical Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (A.D.F.); (R.S.); (V.M.); (S.F.)
| | - Pasquale De Vita
- CREA Research Centre for Cereal and Industrial Crops (CREA-CI), S.S. 673 km 25.200, 71122 Foggia, Italy;
| | - Salvatore Foti
- Laboratory of Organic Mass Spectrometry, Department of Chemical Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (A.D.F.); (R.S.); (V.M.); (S.F.)
| |
Collapse
|
28
|
Roncallo PF, Larsen AO, Achilli AL, Pierre CS, Gallo CA, Dreisigacker S, Echenique V. Linkage disequilibrium patterns, population structure and diversity analysis in a worldwide durum wheat collection including Argentinian genotypes. BMC Genomics 2021; 22:233. [PMID: 33820546 PMCID: PMC8022437 DOI: 10.1186/s12864-021-07519-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 03/02/2021] [Indexed: 01/04/2023] Open
Abstract
Background Durum wheat (Triticum turgidum L. ssp. durum Desf. Husn) is the main staple crop used to make pasta products worldwide. Under the current climate change scenarios, genetic variability within a crop plays a crucial role in the successful release of new varieties with high yields and wide crop adaptation. In this study we evaluated a durum wheat collection consisting of 197 genotypes that mainly comprised a historical set of Argentinian germplasm but also included worldwide accessions. Results We assessed the genetic diversity, population structure and linkage disequilibrium (LD) patterns in this collection using a 35 K SNP array. The level of polymorphism was considered, taking account of the frequent and rare allelic variants. A total of 1547 polymorphic SNPs was located within annotated genes. Genetic diversity in the germplasm collection increased slightly from 1915 to 2010. However, a reduction in genetic diversity using SNPs with rare allelic variants was observed after 1979. However, larger numbers of rare private alleles were observed in the 2000–2009 period, indicating that a high reservoir of rare alleles is still present among the recent germplasm in a very low frequency. The percentage of pairwise loci in LD in the durum genome was low (13.4%) in our collection. Overall LD and the high (r2 > 0.7) or complete (r2 = 1) LD presented different patterns in the chromosomes. The LD increased over three main breeding periods (1915–1979, 1980–1999 and 2000–2020). Conclusions Our results suggest that breeding and selection have impacted differently on the A and B genomes, particularly on chromosome 6A and 2A. The collection was structured in five sub-populations and modern Argentinian accessions (cluster Q4) which were clearly differentiated. Our study contributes to the understanding of the complexity of Argentinian durum wheat germplasm and to derive future breeding strategies enhancing the use of genetic diversity in a more efficient and targeted way. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07519-z.
Collapse
Affiliation(s)
- Pablo Federico Roncallo
- Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS), Departamento de Agronomía, Universidad Nacional del Sur (UNS)-CONICET, Bahía Blanca, Argentina
| | - Adelina Olga Larsen
- CEI Barrow, Instituto Nacional de Tecnología Agropecuaria (INTA), Tres Arroyos, Buenos Aires, Argentina
| | - Ana Laura Achilli
- Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS), Departamento de Agronomía, Universidad Nacional del Sur (UNS)-CONICET, Bahía Blanca, Argentina
| | - Carolina Saint Pierre
- International Maize and Wheat Improvement Center (CIMMYT), El Batán, Edo. de México, Mexico
| | - Cristian Andrés Gallo
- Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS), Departamento de Agronomía, Universidad Nacional del Sur (UNS)-CONICET, Bahía Blanca, Argentina
| | - Susanne Dreisigacker
- International Maize and Wheat Improvement Center (CIMMYT), El Batán, Edo. de México, Mexico
| | - Viviana Echenique
- Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS), Departamento de Agronomía, Universidad Nacional del Sur (UNS)-CONICET, Bahía Blanca, Argentina.
| |
Collapse
|
29
|
Extensive Genetic Diversity and Widespread Azole Resistance in Greenhouse Populations of Aspergillus fumigatus in Yunnan, China. mSphere 2021; 6:6/1/e00066-21. [PMID: 33568450 PMCID: PMC8544883 DOI: 10.1128/msphere.00066-21] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Aspergillus fumigatus is the main cause of invasive aspergillosis (IA) with a high annual global incidence and mortality rate. Recent studies have indicated an increasing prevalence of azole-resistant A. fumigatus (ARAF) strains, with agricultural use of azole fungicides as a potential contributor. China has an extensive agricultural production system and uses a wide array of fungicides for crop production, including in modern growth facilities such as greenhouses. Soils in greenhouses are among the most intensively cultivated. However, little is known about the occurrence and distribution of ARAF in greenhouse soils. Here, we investigated genetic variation and triazole drug susceptibility in A. fumigatus from greenhouses around metropolitan Kunming in Yunnan, southwest China. Abundant allelic and genotypic variations were found among 233 A. fumigatus strains isolated from nine greenhouses in this region. Significantly, ∼80% of the strains were resistant to at least one medical triazole drug, with >30% showing cross-resistance to both itraconazole and voriconazole. Several previously reported mutations associated with triazole resistance in the triazole target gene cyp51A were also found in our strains, with a strong positive correlation between the frequency of mutations at the cyp51A promoter and that of voriconazole resistance. Phylogenetic analyses of cyp51A gene sequences showed evidence for multiple independent origins of azole-resistant genotypes of A. fumigatus in these greenhouses. Evidence for multiple origins of azole resistance and the widespread distributions of genetically very diverse triazole-resistant strains of A. fumigatus in greenhouses calls for significant attention from public health agencies. IMPORTANCE The origin and prevalence of azole-resistant Aspergillus fumigatus have been attracting increasing attention from biologists, clinicians, and public health agencies. Current evidence suggests agricultural fungicide use as a major cause. In southwest China, greenhouses are used to produce large amounts of fruits, flowers, and vegetables for consumers throughout China as well as those in other countries, primarily in southeast Asia. Here, we found a very high frequency (∼80%) of triazole-resistant A. fumigatus in our sample, the highest reported so far, with a significant proportion of these strains resistant to both tested agricultural fungicides and medical triazole drugs. In addition, we found novel allelic and genotypic diversities and evidence for multiple independent origins of azole-resistant genotypes of A. fumigatus in greenhouse populations in this region. Our study calls for a systematic evaluation of the effects of azole fungicide usage in greenhouses on human health.
Collapse
|
30
|
Bentivenga G, Spina A, Ammar K, Allegra M, Cacciola SO. Screening of Durum Wheat ( Triticum turgidum L. subsp. durum (Desf.) Husn.) Italian Cultivars for Susceptibility to Fusarium Head Blight Incited by Fusarium graminearum. PLANTS 2020; 10:plants10010068. [PMID: 33396264 PMCID: PMC7823612 DOI: 10.3390/plants10010068] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/27/2020] [Accepted: 12/28/2020] [Indexed: 12/17/2022]
Abstract
In 2009, a set of 35 cultivars of durum wheat (Triticum turgidum L. subsp. durum (Desf.) Husn.) of Italian origin was screened for fusarium head blight (FHB) susceptibility at CIMMYT (Mexico) and in the 2019-20 cropping season, 16 of these cultivars, which had been included in the Italian National Plant Variety Register, were tested again in southern and northern Italy. Wheat cultivars were artificially inoculated during anthesis with a conidial suspension of Fusarium graminearum sensu lato using a standard spray inoculation method. Inoculum was a mixture of mono-conidial isolates sourced in the same areas where the trials were performed. Isolates had been characterized on the basis of morphological characteristics and by DNA PCR amplification using a specific primer set and then selected for their virulence and ability to produce mycotoxins. The susceptibility to FHB was rated on the basis of the disease severity, disease incidence and FHB index. Almost all of the tested cultivars were susceptible or very susceptible to FHB with the only exception of "Duprì", "Tiziana" and "Dylan" which proved to be moderately susceptible. The susceptibility to FHB was inversely correlated with the plant height and flowering biology, the tall and the late heading cultivars being less susceptible.
Collapse
Affiliation(s)
| | - Alfio Spina
- Agricultural Research Council and Economics (CREA)–Research Centre for Cereal and Industrial Crops, Corso Savoia, 190, 95024 Acireale, Italy;
| | - Karim Ammar
- International Maize and Wheat Improvement Center (CIMMYT), Km. 45, Carretera México-Veracruz, El Batán, Texcoco 56237, Mexico;
| | - Maria Allegra
- Agricultural Research Council and Economics (CREA)–Research Centre for Olive, Fruit and Citrus Crops, Corso Savoia 190, 95123 Catania, Italy;
| | - Santa Olga Cacciola
- Department Agriculture, Food and Environment (Di3A), University of Catania, via S. Sofia n.100, 95123 Catania, Italy
- Correspondence:
| |
Collapse
|
31
|
The Diverse Potential of Gluten from Different Durum Wheat Varieties in Triggering Celiac Disease: A Multilevel In Vitro, Ex Vivo and In Vivo Approach. Nutrients 2020; 12:nu12113566. [PMID: 33233787 PMCID: PMC7699868 DOI: 10.3390/nu12113566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/15/2020] [Accepted: 11/18/2020] [Indexed: 11/16/2022] Open
Abstract
The reasons behind the increasing prevalence of celiac disease (CD) worldwide are still not fully understood. This study adopted a multilevel approach (in vitro, ex vivo, in vivo) to assess the potential of gluten from different wheat varieties in triggering CD. Peptides triggering CD were identified and quantified in mixtures generated from simulated gastrointestinal digestion of wheat varieties (n = 82). Multivariate statistics enabled the discrimination of varieties generating low impact on CD (e.g., Saragolla) and high impact (e.g., Cappelli). Enrolled subjects (n = 46) were: 19 healthy subjects included in the control group; 27 celiac patients enrolled for the in vivo phase. Celiacs were divided into a gluten-free diet group (CD-GFD), and a GFD with Saragolla-based pasta group (CD-Sar). The diet was followed for 3 months. Data were compared between CD-Sar and CD-GFD before and after the experimental diet, demonstrating a limited ability of Saragolla to trigger immunity, although not comparable to a GFD. Ex vivo studies showed that Saragolla and Cappelli activated immune responses, although with great variability among patients. The diverse potential of durum wheat varieties in triggering CD immune response was demonstrated. Saragolla is not indicated for celiacs, yet it has a limited potential to trigger adverse immune response.
Collapse
|
32
|
Arriagada O, Marcotuli I, Gadaleta A, Schwember AR. Molecular Mapping and Genomics of Grain Yield in Durum Wheat: A Review. Int J Mol Sci 2020; 21:ijms21197021. [PMID: 32987666 PMCID: PMC7582296 DOI: 10.3390/ijms21197021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/14/2020] [Accepted: 09/17/2020] [Indexed: 02/07/2023] Open
Abstract
Durum wheat is the most relevant cereal for the whole of Mediterranean agriculture, due to its intrinsic adaptation to dryland and semi-arid environments and to its strong historical cultivation tradition. It is not only relevant for the primary production sector, but also for the food industry chains associated with it. In Mediterranean environments, wheat is mostly grown under rainfed conditions and the crop is frequently exposed to environmental stresses, with high temperatures and water scarcity especially during the grain filling period. For these reasons, and due to recurrent disease epidemics, Mediterranean wheat productivity often remains under potential levels. Many studies, using both linkage analysis (LA) and a genome-wide association study (GWAS), have identified the genomic regions controlling the grain yield and the associated markers that can be used for marker-assisted selection (MAS) programs. Here, we have summarized all the current studies identifying quantitative trait loci (QTLs) and/or candidate genes involved in the main traits linked to grain yield: kernel weight, number of kernels per spike and number of spikes per unit area.
Collapse
Affiliation(s)
- Osvin Arriagada
- Departamento de Ciencias Vegetales, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, 306-22 Santiago, Chile;
| | - Ilaria Marcotuli
- Department of Agricultural and Environmental Science, University of Bari Aldo Moro, 70121 Bari, Italy; (I.M.); (A.G.)
| | - Agata Gadaleta
- Department of Agricultural and Environmental Science, University of Bari Aldo Moro, 70121 Bari, Italy; (I.M.); (A.G.)
| | - Andrés R. Schwember
- Departamento de Ciencias Vegetales, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, 306-22 Santiago, Chile;
- Correspondence: ; Tel.: +56-223544123
| |
Collapse
|
33
|
Pavan S, Delvento C, Ricciardi L, Lotti C, Ciani E, D'Agostino N. Recommendations for Choosing the Genotyping Method and Best Practices for Quality Control in Crop Genome-Wide Association Studies. Front Genet 2020; 11:447. [PMID: 32587600 PMCID: PMC7299185 DOI: 10.3389/fgene.2020.00447] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 04/14/2020] [Indexed: 12/19/2022] Open
Abstract
High-throughput genotyping boosts genome-wide association studies (GWAS) in crop species, leading to the identification of single-nucleotide polymorphisms (SNPs) associated with economically important traits. Choosing a cost-effective genotyping method for crop GWAS requires careful examination of several aspects, namely, the purpose and the scale of the study, crop-specific genomic features, and technical and economic matters associated with each genotyping option. Once genotypic data have been obtained, quality control (QC) procedures must be applied to avoid bias and false signals in genotype–phenotype association tests. QC for human GWAS has been extensively reviewed; however, QC for crop GWAS may require different actions, depending on the GWAS population type. Here, we review most popular genotyping methods based on next-generation sequencing (NGS) and array hybridization, and report observations that should guide the investigator in the choice of the genotyping method for crop GWAS. We provide recommendations to perform QC in crop species, and deliver an overview of bioinformatics tools that can be used to accomplish all needed tasks. Overall, this work aims to provide guidelines to harmonize those procedures leading to SNP datasets ready for crop GWAS.
Collapse
Affiliation(s)
- Stefano Pavan
- Department of Soil, Plant and Food Science, Section of Genetics and Plant Breeding, University of Bari Aldo Moro, Bari, Italy.,Institute of Biomedical Technologies, National Research Council (CNR), Bari, Italy
| | - Chiara Delvento
- Department of Soil, Plant and Food Science, Section of Genetics and Plant Breeding, University of Bari Aldo Moro, Bari, Italy
| | - Luigi Ricciardi
- Department of Soil, Plant and Food Science, Section of Genetics and Plant Breeding, University of Bari Aldo Moro, Bari, Italy
| | - Concetta Lotti
- Department of Agricultural, Food and Environmental Sciences, University of Foggia, Foggia, Italy
| | - Elena Ciani
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy
| | - Nunzio D'Agostino
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| |
Collapse
|
34
|
Lupini A, Preiti G, Badagliacca G, Abenavoli MR, Sunseri F, Monti M, Bacchi M. Nitrogen Use Efficiency in Durum Wheat Under Different Nitrogen and Water Regimes in the Mediterranean Basin. FRONTIERS IN PLANT SCIENCE 2020; 11:607226. [PMID: 33643329 PMCID: PMC7902889 DOI: 10.3389/fpls.2020.607226] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 12/28/2020] [Indexed: 05/11/2023]
Abstract
Improving nitrogen use efficiency (NUE) represents one of the main goals to reduce N input in maximizing crop yield for sustainable agriculture. A NUE key strategy is the exploitation of genetic variation in available germplasm together with the understanding of molecular mechanisms governing this complex trait. Thus, NUE, its components, nitrogen uptake efficiency (NUpE) and nitrogen utilization efficiency (NUtE), and NUE-related traits heritability were evaluated in ancient (Cappelli, Capeiti, Russello, and Mazzancoio) and modern (Messapia, Tiziana, Svevo, and Normanno) wheat genotypes for tackling nitrogen (N) and/or water limitation in both growth chamber and field experiments. Our results exhibited a reduction of NUE, NUpE, and NUtE under water and combined (nitrogen + water) stress in all the genotypes, as expected. The contribution of genetic variability on phenotypic variation was significant for NUtE, harvest index, post-anthesis nitrogen uptake (PANU), and biomass production traits. Moreover, the stress tolerance indexes, calculated and bi-plotted for N and water stresses, exhibited two distinct clusters for many traits as then confirmed by principal component analysis. Although modern varieties showed higher crop yield and NUE under conventional N and water regimes, ancient varieties exhibited best performances to cope with both stresses, mainly under water limitation. Finally, the usage index, which takes into account total biomass increase, underlined that old genotypes were less affected by both stresses during crop cycle. In particular, these genotypes showed the best performances for NUE and its components under both stresses at stem elongation and milk ripening as shown also by PANU. In addition, at these stages, nitrate and ammonium transporter gene expressions in the root were performed, showing the highest activity in ancient varieties. In conclusion, the identification of NUE traits during a specific crop cycle stage, under both N and water limitation, will help in the breeding of more resilient varieties in Mediterranean sustainable agriculture by reducing N supply.
Collapse
|
35
|
Mazzucotelli E, Sciara G, Mastrangelo AM, Desiderio F, Xu SS, Faris J, Hayden MJ, Tricker PJ, Ozkan H, Echenique V, Steffenson BJ, Knox R, Niane AA, Udupa SM, Longin FCH, Marone D, Petruzzino G, Corneti S, Ormanbekova D, Pozniak C, Roncallo PF, Mather D, Able JA, Amri A, Braun H, Ammar K, Baum M, Cattivelli L, Maccaferri M, Tuberosa R, Bassi FM. The Global Durum Wheat Panel (GDP): An International Platform to Identify and Exchange Beneficial Alleles. FRONTIERS IN PLANT SCIENCE 2020; 11:569905. [PMID: 33408724 PMCID: PMC7779600 DOI: 10.3389/fpls.2020.569905] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 11/24/2020] [Indexed: 05/04/2023]
Abstract
Representative, broad and diverse collections are a primary resource to dissect genetic diversity and meet pre-breeding and breeding goals through the identification of beneficial alleles for target traits. From 2,500 tetraploid wheat accessions obtained through an international collaborative effort, a Global Durum wheat Panel (GDP) of 1,011 genotypes was assembled that captured 94-97% of the original diversity. The GDP consists of a wide representation of Triticum turgidum ssp. durum modern germplasm and landraces, along with a selection of emmer and primitive tetraploid wheats to maximize diversity. GDP accessions were genotyped using the wheat iSelect 90K SNP array. Among modern durum accessions, breeding programs from Italy, France and Central Asia provided the highest level of genetic diversity, with only a moderate decrease in genetic diversity observed across nearly 50 years of breeding (1970-2018). Further, the breeding programs from Europe had the largest sets of unique alleles. LD was lower in the landraces (0.4 Mbp) than in modern germplasm (1.8 Mbp) at r 2 = 0.5. ADMIXTURE analysis of modern germplasm defined a minimum of 13 distinct genetic clusters (k), which could be traced to the breeding program of origin. Chromosome regions putatively subjected to strong selection pressure were identified from fixation index (F st ) and diversity reduction index (DRI) metrics in pairwise comparisons among decades of release and breeding programs. Clusters of putative selection sweeps (PSW) were identified as co-localized with major loci controlling phenology (Ppd and Vrn), plant height (Rht) and quality (gliadins and glutenins), underlining the role of the corresponding genes as driving elements in modern breeding. Public seed availability and deep genetic characterization of the GDP make this collection a unique and ideal resource to identify and map useful genetic diversity at loci of interest to any breeding program.
Collapse
Affiliation(s)
- Elisabetta Mazzucotelli
- Council for Agricultural Research and Economics-Research Centre for Genomics and Bioinformatics, Fiorenzuola d’Arda, Italy
| | - Giuseppe Sciara
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Anna M. Mastrangelo
- Council for Agricultural Research and Economics-Research Centre for Cereal and Industrial Crops, Foggia, Italy
- Council for Agricultural Research and Economics-Research Centre for Cereal and Industrial Crops, Bergamo, Italy
| | - Francesca Desiderio
- Council for Agricultural Research and Economics-Research Centre for Genomics and Bioinformatics, Fiorenzuola d’Arda, Italy
| | - Steven S. Xu
- Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, United States Department of Agriculture, Agricultural Research Service, Fargo, ND, United States
| | - Justin Faris
- Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, United States Department of Agriculture, Agricultural Research Service, Fargo, ND, United States
| | - Matthew J. Hayden
- Agriculture Victoria, Agribio, Centre for AgriBiosciences, Bundoora, VIC, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, Australia
| | - Penny J. Tricker
- School of Agriculture, Food and Wine, Faculty of Sciences, Waite Research Institute, The University of Adelaide, Adelaide, SA, Australia
| | - Hakan Ozkan
- Department of Field Crops, Faculty of Agriculture, Çukurova University, Adana, Turkey
| | - Viviana Echenique
- Centro de Recursos Naturales Renovables de la Zona Semiárida, Departamento de Agronomía, Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y Técnicas, Bahía Blanca, Argentina
| | - Brian J. Steffenson
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, United States
| | - Ron Knox
- Swift Current Research and Development Centre, Agriculture and Agri-Food Canada, Swift Current, SK, Canada
| | - Abdoul A. Niane
- International Center for Agricultural Research in the Dry Areas, Beirut, Lebanon
| | - Sripada M. Udupa
- International Center for Agricultural Research in the Dry Areas, Beirut, Lebanon
| | | | - Daniela Marone
- Council for Agricultural Research and Economics-Research Centre for Cereal and Industrial Crops, Foggia, Italy
| | - Giuseppe Petruzzino
- Council for Agricultural Research and Economics-Research Centre for Cereal and Industrial Crops, Foggia, Italy
| | - Simona Corneti
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Danara Ormanbekova
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Curtis Pozniak
- Plant Sciences and Crop Development Center, University of Saskatchewan, Saskatoon, SK, Canada
| | - Pablo F. Roncallo
- Centro de Recursos Naturales Renovables de la Zona Semiárida, Departamento de Agronomía, Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y Técnicas, Bahía Blanca, Argentina
| | - Diane Mather
- School of Agriculture, Food and Wine, Faculty of Sciences, Waite Research Institute, The University of Adelaide, Adelaide, SA, Australia
| | - Jason A. Able
- School of Agriculture, Food and Wine, Faculty of Sciences, Waite Research Institute, The University of Adelaide, Adelaide, SA, Australia
| | - Ahmed Amri
- International Center for Agricultural Research in the Dry Areas, Beirut, Lebanon
| | - Hans Braun
- Plant Sciences and Crop Development Center, University of Saskatchewan, Saskatoon, SK, Canada
| | - Karim Ammar
- International Maize and Wheat Improvement Center, Texcoco de Mora, Mexico
| | - Michael Baum
- International Center for Agricultural Research in the Dry Areas, Beirut, Lebanon
| | - Luigi Cattivelli
- Council for Agricultural Research and Economics-Research Centre for Genomics and Bioinformatics, Fiorenzuola d’Arda, Italy
| | - Marco Maccaferri
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Roberto Tuberosa
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Filippo M. Bassi
- International Center for Agricultural Research in the Dry Areas, Beirut, Lebanon
- *Correspondence: Filippo M. Bassi,
| |
Collapse
|
36
|
Royo C, Dreisigacker S, Soriano JM, Lopes MS, Ammar K, Villegas D. Allelic Variation at the Vernalization Response ( Vrn-1) and Photoperiod Sensitivity ( Ppd-1) Genes and Their Association With the Development of Durum Wheat Landraces and Modern Cultivars. FRONTIERS IN PLANT SCIENCE 2020; 11:838. [PMID: 32655598 PMCID: PMC7325763 DOI: 10.3389/fpls.2020.00838] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 05/26/2020] [Indexed: 05/17/2023]
Abstract
Wheat adaptability to a wide range of environmental conditions is mostly determined by allelic diversity within genes controlling vernalization requirement (Vrn-1) and photoperiod sensitivity (Ppd-1). We characterized a panel of 151 durum wheat Mediterranean landraces and 20 representative locally adapted modern cultivars for their allelic composition at Vrn-1 and Ppd-1 gene using diagnostic molecular markers and studied their association with the time needed to reach six growth stages under field conditions over 6 years. Compared with the more diverse and representative landrace collection, the set of modern cultivars were characterized by a reduction of 50% in the number of allelic variants at the Vrn-A1 and Vrn-B1 genes, and the high frequency of mutant alleles conferring photoperiod insensitivity at Ppd-A1, which resulted on a shorter cycle length. Vrn-A1 played a greater role than Vrn-B1 in regulating crop development (Vrn-A1 > Vrn-B1). The results suggest that mutations in the Vrn-A1 gene may have been the most important in establishing the spring growth habit of Mediterranean landraces and modern durum cultivars. The allele Vrn-A1d, found in 10 landraces, delayed development. The relative effects of single Vrn-A1 alleles on delaying the development of the landraces were vrn-A1 = Vrn-A1d > Vrn-A1b > Vrn-A1c. Allele vrn-B1 was present in all except two landraces and in all modern cultivars. The null allele at Ppd-A1 (a deletion first observed in the French bread wheat cultivar 'Capelle-Desprez') was found for the first time in durum wheat in the present study that identified it in 30 landraces from 13 Mediterranean countries. Allele Ppd-A1a (GS105) was detected in both germplasm types, while the allele Ppd-A1a (GS100) was found only in modern North American and Spanish cultivars. The relative effect of single Ppd-A1 alleles on extending phenological development was Ppd-A1(DelCD) > Ppd-A1b > Ppd-A1a (GS105) > Ppd-A1a (GS100). Sixteen Vrn-1+Ppd-1 allelic combinations were found in landraces and six in modern cultivars, but only three were common to both panels. Differences in the number of days to reach anthesis were 10 days in landraces and 3 days in modern cultivars. Interactive effects between Vrn-1 and Ppd-1 genes were detected.
Collapse
Affiliation(s)
- Conxita Royo
- Sustainable Field Crops Programme, Institute for Food and Agricultural Research and Technology (IRTA), Lleida, Spain
- *Correspondence: Conxita Royo,
| | | | - Jose Miguel Soriano
- Sustainable Field Crops Programme, Institute for Food and Agricultural Research and Technology (IRTA), Lleida, Spain
| | - Marta S. Lopes
- Sustainable Field Crops Programme, Institute for Food and Agricultural Research and Technology (IRTA), Lleida, Spain
| | - Karim Ammar
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| | - Dolors Villegas
- Sustainable Field Crops Programme, Institute for Food and Agricultural Research and Technology (IRTA), Lleida, Spain
| |
Collapse
|