1
|
Bordignon MB, Pesce Viglietti AI, Juliá EP, Sanchez MB, Rölle A, Mandó P, Sabatini L, Ostinelli A, Rizzo MM, Barrio MM, Mordoh J, Fainboim L, Levy EM. Phenotypic and functional analysis in HER2+ targeted therapy of human NK cell subpopulation according to the expression of FcεRIγ and NKG2C in breast cancer patients. Cancer Immunol Immunother 2023; 72:2687-2700. [PMID: 37081323 DOI: 10.1007/s00262-023-03448-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/06/2023] [Indexed: 04/22/2023]
Abstract
Adaptive NK cells constitute an NK cell subpopulation, which expands after human cytomegalovirus (HCMV) infection. This subpopulation has stronger production of cytokines after CD16 stimulation, longer life and persistence than conventional NK cells and are, therefore, interesting tools for cancer immunotherapy. Since there is limited information on adaptive NK cells in cancer patients, we described this population phenotypically and functionally, by flow cytometry, in the context of HER2 + breast cancer (BC) directed therapy. We assessed HCMV status in 78 patients with BC. We found that, similarly to healthy donors (HD), a high proportion of BC patients were HCMV-positive, and nearly 72% of them had an adaptive NK cell subpopulation characterized by the loss of FcεRIγ intracellular adaptor protein or the presence of NKG2C receptor. However, in BC patients, FcεRIγ- and NKG2C + NK cell populations overlapped to a lesser extent than in HD. Otherwise, no profound phenotypic differences were found between BC patients and HD. Although FcεRIγ- or NKG2C + NK cell subsets from BC patients produced more IFN-γ than their FcεRIγ + or NKG2C- NK cell counterparts, IFN-γ production increased only when NK cells simultaneously expressed FcεRIγ- and NKG2C + , whereas in HD the presence of NKG2C marker was sufficient to display greater functionality. Furthermore, in a group of patients treated with chemotherapy and Trastuzumab plus Pertuzumab, FcεRIγ-NKG2C + and FcεRIγ-NKG2C- NK cells retained greater functionality after treatment than FcεRIγ + NKG2C- NK cells. These results suggest that the presence or magnitude of adaptive NK cell subsets might serve as a key determinant for therapeutic approaches based on antibodies directed against tumor antigens.
Collapse
Affiliation(s)
- María B Bordignon
- Centro de Investigaciones Oncológicas - Fundación Cáncer FUCA, Ciudad Autónoma de Buenos Aires, Argentina
| | - Ayelén I Pesce Viglietti
- Centro de Investigaciones Oncológicas - Fundación Cáncer FUCA, Ciudad Autónoma de Buenos Aires, Argentina
| | - Estefanía P Juliá
- Centro de Investigaciones Oncológicas - Fundación Cáncer FUCA, Ciudad Autónoma de Buenos Aires, Argentina
| | - María B Sanchez
- Centro de Investigaciones Oncológicas - Fundación Cáncer FUCA, Ciudad Autónoma de Buenos Aires, Argentina
| | | | - Pablo Mandó
- Centro de Educación Médica e Investigaciones Clínicas "Norberto Quirno" (CEMIC), Ciudad Autónoma de Buenos Aires, Argentina
| | - Luciana Sabatini
- Instituto Alexander Fleming, Ciudad Autónoma de Buenos Aires, Argentina
| | - Alexis Ostinelli
- Instituto Alexander Fleming, Ciudad Autónoma de Buenos Aires, Argentina
| | - Manglio M Rizzo
- Cancer Immunobiology, Facultad de Ciencias Biomédicas, CONICET, Instituto de Investigaciones en Medicina Traslacional, Universidad Austral, Derqui, Pilar, Argentina
| | - María M Barrio
- Centro de Investigaciones Oncológicas - Fundación Cáncer FUCA, Ciudad Autónoma de Buenos Aires, Argentina
| | - José Mordoh
- Centro de Investigaciones Oncológicas - Fundación Cáncer FUCA, Ciudad Autónoma de Buenos Aires, Argentina
- Instituto de Investigaciones Bioquímicas. Fundación Instituto Leloir, Ciudad Autónoma de Buenos Aires, Argentina
| | - Leonardo Fainboim
- Laboratorio de Inmunogenética, INIGEM, CONICET-UBA, Hospital de Clínicas, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Estrella M Levy
- Centro de Investigaciones Oncológicas - Fundación Cáncer FUCA, Ciudad Autónoma de Buenos Aires, Argentina.
| |
Collapse
|
2
|
Zhou Z, Liu X, Zhang X, Wen S, Hua H, Wang Z, Xu Z, Lu Y, Wang F. Impact of Early Natural Killer Cell Reconstitution on the Outcomes of T Cell-Replete Allogeneic Hematopoietic Stem Cell Transplantation. J Inflamm Res 2023; 16:2993-3008. [PMID: 37489148 PMCID: PMC10363384 DOI: 10.2147/jir.s416708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/04/2023] [Indexed: 07/26/2023] Open
Abstract
Background Early immune reconstitution is crucial to successful outcomes after allogeneic stem cell transplantation (allo-HSCT). However, in T cell-replete HSCT, the impact of natural killer (NK) cells on transplantation outcome and the factors influencing early NK cell reconstitution remain unclear. Methods In this retrospective study, we analyzed 128 patients with hematological malignancies who received the first T cell-replete allo-HSCT between May 2019 and September 2021. After application of a conditioning regimen, prophylaxis for graft versus host disease (GVHD), and engraftment, the patients received prevention and treatment procedures for cytomegalovirus (CMV) reactivation. NK cells, T lymphocytes and B lymphocytes in peripheral blood were collected and analyzed at 30, 60, 90, 135 and 180 days after transplantation to observe immune cell reconstitution. Overall survival (OS), relapse-free survival (RFS), minimal residual disease (MRD), relapse, and non-relapse mortality (NRM) were evaluated. SPSS 25.0 and R version 4.2.1 were used for statistical analysis. Results In patients with rapid NK recovery (NK cell count at 30 days post-HSCT [NK30] >165/μL and 60 days post-HSCT [NK60] >265/μL), we observed lower rates of NRM, CMV reactivation and acute GVHD (aGVHD). Multivariate analysis indicated that a lower NK30 (≤165/μL) was an independent factor associated with inferior OS and RFS. The NK30 and NK60 in patients with CMV reactivation and aGVHD after transplantation were significantly lower than those in patients without these complications. In addition, CD107a expression in NK cells was also significantly lower in patients who experienced aGVHD. Correlation analysis did not find an inhibitory effect of T-lymphocyte subset reconstitution on NK cells in the early stage after transplantation. Conclusion Rapid NK cell reconstitution early after allo-HSCT had protective effects on NRM and survival. Promoting early NK cell reconstitution represents a new approach to improving the outcomes of allo-HSCT.
Collapse
Affiliation(s)
- Ziwei Zhou
- Department of Hematology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Hematology, Shijiazhuang, Hebei050000, People’s Republic of China
| | - Xuan Liu
- Department of Hematology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Hematology, Shijiazhuang, Hebei050000, People’s Republic of China
| | - Xuejun Zhang
- Department of Hematology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Hematology, Shijiazhuang, Hebei050000, People’s Republic of China
| | - Shupeng Wen
- Department of Hematology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Hematology, Shijiazhuang, Hebei050000, People’s Republic of China
| | - Huan Hua
- Department of Hematology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Hematology, Shijiazhuang, Hebei050000, People’s Republic of China
| | - Zhenzhen Wang
- Department of Hematology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Hematology, Shijiazhuang, Hebei050000, People’s Republic of China
| | - Zheng Xu
- Department of Hematology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Hematology, Shijiazhuang, Hebei050000, People’s Republic of China
| | - Yu Lu
- Department of Hematology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Hematology, Shijiazhuang, Hebei050000, People’s Republic of China
| | - Fuxu Wang
- Department of Hematology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Hematology, Shijiazhuang, Hebei050000, People’s Republic of China
| |
Collapse
|
3
|
Fares J, Davis ZB, Rechberger JS, Toll SA, Schwartz JD, Daniels DJ, Miller JS, Khatua S. Advances in NK cell therapy for brain tumors. NPJ Precis Oncol 2023; 7:17. [PMID: 36792722 PMCID: PMC9932101 DOI: 10.1038/s41698-023-00356-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 01/31/2023] [Indexed: 02/17/2023] Open
Abstract
Despite advances in treatment regimens that comprise surgery, chemotherapy, and radiation, outcome of many brain tumors remains dismal, more so when they recur. The proximity of brain tumors to delicate neural structures often precludes complete surgical resection. Toxicity and long-term side effects of systemic therapy remain a concern. Novel therapies are warranted. The field of NK cell-based cancer therapy has grown exponentially and currently constitutes a major area of immunotherapy innovation. This provides a new avenue for the treatment of cancerous lesions in the brain. In this review, we explore the mechanisms by which the brain tumor microenvironment suppresses NK cell mediated tumor control, and the methods being used to create NK cell products that subvert immune suppression. We discuss the pre-clinical studies evaluating NK cell-based immunotherapies that target several neuro-malignancies and highlight advances in molecular imaging of NK cells that allow monitoring of NK cell-based therapeutics. We review current and ongoing NK cell based clinical trials in neuro-oncology.
Collapse
Affiliation(s)
- Jawad Fares
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Northwestern Medicine Malnati Brain Tumor Institute, Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Zachary B Davis
- Department of Medicine, Division of Hematology, Oncology and Transplantation, Masonic Cancer Center, University of Minnesota, Minneapolis, MN, 55454, USA
| | - Julian S Rechberger
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, 55905, USA
| | - Stephanie A Toll
- Department of Pediatrics, Division of Hematology/Oncology, Children's Hospital of Michigan, Detroit, MI, 48201, USA
| | - Jonathan D Schwartz
- Department of Pediatric Hematology/Oncology, Section of Neuro-Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - David J Daniels
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, 55905, USA
| | - Jeffrey S Miller
- Department of Medicine, Division of Hematology, Oncology and Transplantation, Masonic Cancer Center, University of Minnesota, Minneapolis, MN, 55454, USA.
| | - Soumen Khatua
- Department of Pediatric Hematology/Oncology, Section of Neuro-Oncology, Mayo Clinic, Rochester, MN, 55905, USA.
| |
Collapse
|
4
|
PD-1 expression, among other immune checkpoints, on tumor-infiltrating NK and NKT cells is associated with longer disease-free survival in treatment-naïve CRC patients. Cancer Immunol Immunother 2022; 72:1933-1939. [DOI: 10.1007/s00262-022-03337-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 11/18/2022] [Indexed: 11/28/2022]
Abstract
AbstractA variety of variables, such as microsatellite instability or inflammatory mediators, are critical players in the development and progression of colorectal cancer (CRC). Natural killer (NK) and natural killer T (NKT) cells are involved in the prognoses of CRC. Immunological components of the tumor microenvironment (TME) impact cancer progression and therapeutic responses. We report that CRC patients with higher frequencies of tumor-infiltrating PD-1+ NK and NKT cells had significantly longer disease-free survival (DFS) than patients with lower frequencies. In agreement with that, patients with higher frequencies of tumor-infiltrating PD-1− NK and NKT cells showed shorter DFS. There were no significant associations between tumor-infiltrating PD-1+TIM-3+, PD-1+TIGIT+, PD-1+ICOS+, PD-1+LAG-3+ NK cells, and PD-1+TIM-3+, PD-1+TIGIT+, and PD-1+LAG-3+ NKT cells with DFS. This study highlights the significance of PD-1 expression on tumor-infiltrating NK and NKT cells and its association with disease prognoses in CRC patients.
Collapse
|
5
|
Zinovkin DA, Lyzikova YA, Nadyrov EA, Petrenyov DR, Yuzugulen J, Pranjol MZI. Gamma-ray irradiation modulates PGRMC1 expression and the number of CD56+ and FoxP3+ cells in the tumor microenvironment of endometrial endometrioid adenocarcinoma. Radiat Oncol J 2022; 39:324-333. [PMID: 34986554 PMCID: PMC8743460 DOI: 10.3857/roj.2021.00472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 06/17/2021] [Indexed: 11/18/2022] Open
Abstract
Purpose Although the conventional gamma ray brachytherapy has been successful in treating endometrioid endometrial adenocarcinoma (EC), the molecular and cellular mechanisms of this anti-tumorigenic response remain unclear. Therefore, we investigated whether gamma ray irradiation induces changes in the number of FoxP3+ T-regulatory lymphocytes (Tregs), CD56+ natural killer cells (NK), and the expression of progesterone receptor membrane component 1 (PGRMC1) in the tumor microenvironment (TME). Materials and Methods According to the inclusion criteria, 127 cases were selected and grouped into irradiation-treated (Rad+) and control (underwent surgery) groups and analyzed using immunohistochemistry. Predictive prognostic values were analyzed using Mann-Whitney U test, ROC analysis, relative risk, log-rank, Spearman rank tests and multivariate Cox’s regression. Results We observed significant differences (p < 0.001) between the radiation-treated patients and the control groups in FoxP3+ Tregs numbers, CD56+ NK cells and PGRMC1 expression. Gamma ray induced a 3.71- and 3.39-fold increase in the infiltration of FoxP3+ cells, CD56+ NK cells, respectively and 0.0034-fold change in PGRMC1 expression. Univariate and multivariate analyses revealed predictive role of the parameters. In the irradiated patients’ group, inverted correlations between clinical unfavorable outcome, FoxP3+ Tregs and CD56+ NK cells were observed. Conclusion Our results suggest an immune-modulating role, specifically by increasing immune cell infiltration, of gamma radiation in the TME which may potentially be utilized as biomarkers in prognostic values.
Collapse
Affiliation(s)
| | | | | | | | - Jale Yuzugulen
- Faculty of Pharmacy, Eastern Mediterranean University, Famagusta, North Cyprus
| | | |
Collapse
|
6
|
Finger CE, Moreno-Gonzalez I, Gutierrez A, Moruno-Manchon JF, McCullough LD. Age-related immune alterations and cerebrovascular inflammation. Mol Psychiatry 2022; 27:803-818. [PMID: 34711943 PMCID: PMC9046462 DOI: 10.1038/s41380-021-01361-1] [Citation(s) in RCA: 71] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 09/20/2021] [Accepted: 10/12/2021] [Indexed: 12/11/2022]
Abstract
Aging is associated with chronic systemic inflammation, which contributes to the development of many age-related diseases, including vascular disease. The world's population is aging, leading to an increasing prevalence of both stroke and vascular dementia. The inflammatory response to ischemic stroke is critical to both stroke pathophysiology and recovery. Age is a predictor of poor outcomes after stroke. The immune response to stroke is altered in aged individuals, which contributes to the disparate outcomes between young and aged patients. In this review, we describe the current knowledge of the effects of aging on the immune system and the cerebral vasculature and how these changes alter the immune response to stroke and vascular dementia in animal and human studies. Potential implications of these age-related immune alterations on chronic inflammation in vascular disease outcome are highlighted.
Collapse
Affiliation(s)
- Carson E. Finger
- Department of Neurology, McGovern Medical School, UTHealth Science Center at Houston, Houston, TX USA
| | - Ines Moreno-Gonzalez
- Department of Neurology, McGovern Medical School, UTHealth Science Center at Houston, Houston, TX USA ,grid.10215.370000 0001 2298 7828Department of Cell Biology, Genetics and Physiology, Instituto de Investigacion Biomedica de Malaga-IBIMA, Faculty of Sciences, Malaga University, Malaga, Spain ,grid.418264.d0000 0004 1762 4012Biomedical Research Networking Center on Neurodegenerative Diseases (CIBERNED), Malaga, Spain
| | - Antonia Gutierrez
- grid.10215.370000 0001 2298 7828Department of Cell Biology, Genetics and Physiology, Instituto de Investigacion Biomedica de Malaga-IBIMA, Faculty of Sciences, Malaga University, Malaga, Spain ,grid.418264.d0000 0004 1762 4012Biomedical Research Networking Center on Neurodegenerative Diseases (CIBERNED), Malaga, Spain
| | - Jose Felix Moruno-Manchon
- Department of Neurology, McGovern Medical School, UTHealth Science Center at Houston, Houston, TX USA
| | - Louise D. McCullough
- Department of Neurology, McGovern Medical School, UTHealth Science Center at Houston, Houston, TX USA
| |
Collapse
|
7
|
The Host Cellular Immune Response to Infection by Campylobacter Spp. and Its Role in Disease. Infect Immun 2021; 89:e0011621. [PMID: 34031129 DOI: 10.1128/iai.00116-21] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Campylobacter spp. are the leading cause of bacterium-derived gastroenteritis worldwide, impacting 96 million individuals annually. Unlike other bacterial pathogens of the gastrointestinal tract, Campylobacter spp. lack many of the classical virulence factors that are often associated with the ability to induce disease in humans, including an array of canonical secretion systems and toxins. Consequently, the clinical manifestations of human campylobacteriosis and its resulting gastrointestinal pathology are believed to be primarily due to the host immune response toward the bacterium. Further, while gastrointestinal infection is usually self-limiting, numerous postinfectious disorders can occur, including the development of Guillain-Barré syndrome, reactive arthritis, and irritable bowel syndrome. Because gastrointestinal disease likely results from the host immune response, the development of these postinfectious disorders may be due to dysregulation or misdirection of the same inflammatory response. As a result, it is becoming increasingly important to the Campylobacter field, and human health, that the cellular immune responses toward Campylobacter be better understood, including which immunological events are critical to the development of disease and the postinfectious disorders mentioned above. In this review, we collectively cover the cellular immune responses across susceptible hosts to Campylobacter jejuni infection, along with the tissue pathology and postinfectious disorders which may develop.
Collapse
|
8
|
Hamilton G, Plangger A. The Impact of NK Cell-Based Therapeutics for the Treatment of Lung Cancer for Biologics: Targets and Therapy. Biologics 2021; 15:265-277. [PMID: 34262255 PMCID: PMC8273903 DOI: 10.2147/btt.s290305] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/15/2021] [Indexed: 12/20/2022]
Abstract
Lung cancer has a dismal prognosis and novel targeted therapies leave still room for major improvements and better outcomes. Immunotherapy targeting immune checkpoint (IC) proteins, either as single agents or in combination with chemotherapy, is active but responders constitute only approximately 10-15% of non-small cell lung cancer (NSCLC) patients. Other effector immune cells such as CAR-T cells or NK cells may help to overcome the limitations of the IC inhibitor therapies for lung cancer. NK cells can kill tumor cells without previous priming and are present in the circulatory system and lymphoid organs. Tissue-residing NK cells differ from peripheral effector cells and, in case of the lung, comprise CD56bright CD16-negative populations showing high cytokine release but low cytotoxicity in contrast to the circulating CD56dim CD16-positive NK cells exhibiting high cytotoxic efficacy. This local attenuation of NK cell killing potency seems due to a specific stage of NK differentiation, immunosuppressive factors as well as presence of myeloid-derived suppressor cells (MDSCs) and regulatory T cells (TREGs). Improved NK cell-based immunotherapies involve IL-2-stimulated effector cells, NK cells expanded with the help of cytokines, permanent NK cell lines, induced pluripotent stem cell-derived NK cells and NK cells armed with chimeric antigen receptors. Compared to CAR T cell therapy, NK cells administration is devoid of graft-versus-host disease (GvHD) and cytokine-release syndrome. Although NK cells are clearly active against lung cancer cells, the low-cytotoxicity differentiation state in lung tumors, the presence of immunosuppressive leucocyte populations, limited infiltration and adverse conditions of the microenvironment need to be overcome. This goal may be achieved in the future using large numbers of activated and armed NK cells as provided by novel methods in NK cell isolation, expansion and stimulation of cytotoxic activity, including combinations with monoclonal antibodies in antibody-dependent cytotoxicity (ADCC). This review discusses the basic characteristics of NK cells and the potential of NK cell preparations in cancer therapy.
Collapse
Affiliation(s)
- Gerhard Hamilton
- Department of Vascular Surgery, Medical University of Vienna, Vienna, Austria
| | - Adelina Plangger
- Department of Vascular Surgery, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
9
|
Zalfa C, Paust S. Natural Killer Cell Interactions With Myeloid Derived Suppressor Cells in the Tumor Microenvironment and Implications for Cancer Immunotherapy. Front Immunol 2021; 12:633205. [PMID: 34025641 PMCID: PMC8133367 DOI: 10.3389/fimmu.2021.633205] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 02/12/2021] [Indexed: 12/17/2022] Open
Abstract
The tumor microenvironment (TME) is a complex and heterogeneous environment composed of cancer cells, tumor stroma, a mixture of tissue-resident and infiltrating immune cells, secreted factors, and extracellular matrix proteins. Natural killer (NK) cells play a vital role in fighting tumors, but chronic stimulation and immunosuppression in the TME lead to NK cell exhaustion and limited antitumor functions. Myeloid-derived suppressor cells (MDSCs) are a heterogeneous group of myeloid cells with potent immunosuppressive activity that gradually accumulate in tumor tissues. MDSCs interact with innate and adaptive immune cells and play a crucial role in negatively regulating the immune response to tumors. This review discusses MDSC-mediated NK cell regulation within the TME, focusing on critical cellular and molecular interactions. We review current strategies that target MDSC-mediated immunosuppression to enhance NK cell cytotoxic antitumor activity. We also speculate on how NK cell-based antitumor immunotherapy could be improved.
Collapse
Affiliation(s)
| | - Silke Paust
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States
| |
Collapse
|
10
|
Muhialdin BJ, Zawawi N, Abdull Razis AF, Bakar J, Zarei M. Antiviral activity of fermented foods and their probiotics bacteria towards respiratory and alimentary tracts viruses. Food Control 2021; 127:108140. [PMID: 33867696 PMCID: PMC8036130 DOI: 10.1016/j.foodcont.2021.108140] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 03/09/2021] [Accepted: 04/04/2021] [Indexed: 02/06/2023]
Abstract
The recent COVID-19, a viral outbreak calls for a high demand for non-conventional antiviral agents that can reduce the risk of infections and promote fast recovery. Fermented foods and their probiotics bacteria have recently received increasing interest due to the reported potential of high antiviral activity. Several probiotics strains demonstrated broad range of antiviral activities and different mechanisms of action. This article will review the diversity, health benefits, interaction with immune system and antiviral activity of fermented foods and their probiotics bacteria. In addition, the mechanisms of action will be reviewed to determine the broad range potential antiviral activity against the respiratory and alimentary tracts viruses. The probiotics bacteria and bioactive compounds in fermented foods demonstrated antiviral activities against respiratory and alimentary tracts viruses. The mechanism of action was reported to be due to the stimulation of the immune system function via enhancing natural killers cell toxicity, enhance the production of pro-inflammatory cytokines, and increasing the cytotoxic of T lymphocytes (CD3+, CD16+, CD56+). However, further studies are highly recommended to determine the potential antiviral activity for traditional fermented foods.
Collapse
Affiliation(s)
- Belal J Muhialdin
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400, UPM, Selangor, Malaysia.,Halal Products Research Institute, Universiti Putra Malaysia, 43400, UPM, Selangor, Malaysia
| | - Norhasnida Zawawi
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400, UPM, Selangor, Malaysia.,Natural Medicines and Product Research Laboratory, Universiti Putra Malaysia, 43400, UPM, Selangor, Malaysia
| | - Ahmad Faizal Abdull Razis
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400, UPM, Selangor, Malaysia.,Natural Medicines and Product Research Laboratory, Universiti Putra Malaysia, 43400, UPM, Selangor, Malaysia
| | - Jamilah Bakar
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400, UPM, Selangor, Malaysia
| | - Mohammad Zarei
- Department of Food Science and Technology, School of Industrial Technology, Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam, 40450, Selangor, Malaysia
| |
Collapse
|
11
|
Zhu M, Huang Y, Bender ME, Girard L, Kollipara R, Eglenen-Polat B, Naito Y, Savage TK, Huffman KE, Koyama S, Kumanogoh A, Minna JD, Johnson JE, Akbay EA. Evasion of Innate Immunity Contributes to Small Cell Lung Cancer Progression and Metastasis. Cancer Res 2021; 81:1813-1826. [PMID: 33495232 PMCID: PMC8137539 DOI: 10.1158/0008-5472.can-20-2808] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 12/07/2020] [Accepted: 01/12/2021] [Indexed: 11/16/2022]
Abstract
Small cell lung cancer (SCLC) is a pulmonary neuroendocrine cancer with very poor prognosis and limited effective therapeutic options. Most patients are diagnosed at advanced stages, and the exact reason for the aggressive and metastatic phenotype of SCLC is completely unknown. Despite a high tumor mutational burden, responses to immune checkpoint blockade are minimal in patients with SCLC. This may reflect defects in immune surveillance. Here we illustrate that evading natural killer (NK) surveillance contributes to SCLC aggressiveness and metastasis, primarily through loss of NK-cell recognition of these tumors by reduction of NK-activating ligands (NKG2DL). SCLC primary tumors expressed very low level of NKG2DL mRNA and SCLC lines express little to no surface NKG2DL at the protein level. Chromatin immunoprecipitation sequencing showed NKG2DL loci in SCLC are inaccessible compared with NSCLC, with few H3K27Ac signals. Restoring NKG2DL in preclinical models suppressed tumor growth and metastasis in an NK cell-dependent manner. Likewise, histone deacetylase inhibitor treatment induced NKG2DL expression and led to tumor suppression by inducing infiltration and activation of NK and T cells. Among all the common tumor types, SCLC and neuroblastoma were the lowest NKG2DL-expressing tumors, highlighting a lineage dependency of this phenotype. In conclusion, these data show that epigenetic silencing of NKG2DL results in a lack of stimulatory signals to engage and activate NK cells, highlighting the underlying immune avoidance of SCLC and neuroblastoma. SIGNIFICANCE: This study discovers in SCLC and neuroblastoma impairment of an inherent mechanism of recognition of tumor cells by innate immunity and proposes that this mechanism can be reactivated to promote immune surveillance.
Collapse
Affiliation(s)
- Mingrui Zhu
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas
- Simmons Comprehensive Cancer Center, Dallas, Texas
| | - Yi Huang
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas
- Simmons Comprehensive Cancer Center, Dallas, Texas
| | - Matthew E Bender
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas
- Simmons Comprehensive Cancer Center, Dallas, Texas
| | - Luc Girard
- Simmons Comprehensive Cancer Center, Dallas, Texas
- Hamon Center for Therapeutic Oncology Research University of Texas Southwestern Medical Center, Dallas, Texas
| | - Rahul Kollipara
- McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Buse Eglenen-Polat
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas
- Simmons Comprehensive Cancer Center, Dallas, Texas
| | - Yujiro Naito
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of medicine, Osaka University, Suita, Japan
| | - Trisha K Savage
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Kenneth E Huffman
- Simmons Comprehensive Cancer Center, Dallas, Texas
- Hamon Center for Therapeutic Oncology Research University of Texas Southwestern Medical Center, Dallas, Texas
| | - Shohei Koyama
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of medicine, Osaka University, Suita, Japan
| | - Atsushi Kumanogoh
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of medicine, Osaka University, Suita, Japan
| | - John D Minna
- Simmons Comprehensive Cancer Center, Dallas, Texas
- Hamon Center for Therapeutic Oncology Research University of Texas Southwestern Medical Center, Dallas, Texas
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Jane E Johnson
- Simmons Comprehensive Cancer Center, Dallas, Texas
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Esra A Akbay
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas.
- Simmons Comprehensive Cancer Center, Dallas, Texas
| |
Collapse
|
12
|
SPECTRUM AND FREQUENCY OF NK CELL RECEPTOR GENES AMONG CYSTIC FIBROSIS PATIENTS. EUREKA: LIFE SCIENCES 2020. [DOI: 10.21303/2504-5695.2020.001328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Aim – to establish and analyze the spectrum of KIR genes in people with a confirmed diagnosis of Cystic fibrosis (CF), homozygote of F508del mutation of the СFTR gene for understanding the genetic predisposition of congenital immunity key part functioning during CF.
Materials and Methods. Examined 48 people with a confirmed diagnosis of CF, homozygotes of the F508del mutation of the CFTR gene, and 104 practically healthy people without the F508del mutation of the CFTR gene from the control group. The following molecular genetic methods were used: DNA extraction from peripheral blood cells, KIR genotyping by PCR-SSP for the presence or absence of the 14 KIR genes (KIR2DL1, 2DL2, 2DL3, 2DL4, 2DL5, 2DS1, 2DS2, 2DS3, 2DS4, 2DS5, 3DL1, 3DL2, 3DL3, 3DS1).
Results – molecular genetic studies of KIR-genes repertoire in the group of cystic fibrosis patients showed a decrease in the frequency of genes, responsible for activating NK cells receptors. Of the five examined NK cell activation genes, one gene was completely absent, namely 2DS4, and another (2DS1) was detected in only 3 of 48 patients examined, which was 6.25 %, and this figure is significantly lower in comparison with the control group (c2=4.801, p<0.05). Regarding the genes of NK-cell inhibitory receptors, all investigated genes were detected in the study group (8 in general). By detection frequency, they mostly correspond to the control group, with the exception of the 2DL3 gene, found in patients with CF with a significantly lower frequency (c2=11.97, p<0.005).
Conclusion – for the first time in the group of patients with CF, a study was performed on the frequency and spectrum of KIR-genes, responsible for NK cell receptors. Reducing the frequency of activation NK cell receptor genes in patients with CF can lead to a weakening of congenital immunity and the severity of infectious processes during CF
Collapse
|
13
|
Ray AK, Somanchi SS, Dastgheyb N, Aquino-Lopez A, Cobanoglu ZE, Geier B, Lee DA. Expression of carcinoma, apoptosis, and cell-death-related genes are determinants for sensitivity of pediatric cancer cell lines to lysis by natural killer cells. Pediatr Blood Cancer 2019; 66:e27783. [PMID: 31304677 DOI: 10.1002/pbc.27783] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 03/13/2019] [Accepted: 03/23/2019] [Indexed: 11/09/2022]
Abstract
Natural killer (NK) cells have potential utility in pediatric cancer immunotherapy for their ability to lyse diverse tumor targets, lack of dependence on mutation-associated tumor antigens, and for their relative safety demonstrated so far in clinical trials. Here, we evaluate the cytotoxic potential of expanded NK cells against a well-characterized panel of pediatric cancer cell lines representing Ewing sarcoma, rhabdomyosarcoma, neuroblastoma, lymphoma, leukemia, and brain tumors. We correlate their sensitivity NK cell lysis with tumor phenotypic, transcriptomic, and genetic determinants, and correlate known immunogenetic determinants with donor NK cell potency. Although ligand expression on cell lines stratified according to hematologic versus nonhematologic cancer types, the sensitivity to NK cell lysis varied widely and did not correlate with cancer type, expression of individual activating or inhibitory ligands, gene-expression clusters of NK cell ligands, disease status (newly diagnosed or relapsed), or MYCN amplification. Rather, sensitivity to NK cell-mediated lysis was associated with a novel 96-gene cluster of predominantly carcinoma-, apoptosis-, and cell death-related pathways, and with functional p53 status. NK cell potency was strongly associated with activating KIR gene content, but not with KIR/KIR-ligand mismatch. This study suggests that adoptive immunotherapy with expanded NK cells has the potential for a wide range of pediatric cancers, identifies potential biomarkers of efficacy and response, and establishes a foundation for using this cell line panel for the preclinical evaluation of immunotherapies.
Collapse
Affiliation(s)
- Anish K Ray
- Department of Hematology/Oncology, Cook Children's Hospital, Fort Worth, Texas
| | - Srinivas S Somanchi
- Department of Pediatrics Research, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Neda Dastgheyb
- Department of Pediatrics Research, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Arianexys Aquino-Lopez
- Department of Pediatrics Research, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Zehra E Cobanoglu
- Department of Pediatrics Research, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Brian Geier
- Center for Childhood Cancer and Blood Diseases, Nationwide Children's Hospital, Columbus, Ohio
| | - Dean A Lee
- Center for Childhood Cancer and Blood Diseases, Nationwide Children's Hospital, Columbus, Ohio
| |
Collapse
|
14
|
Sanchez-Correa B, Lopez-Sejas N, Duran E, Labella F, Alonso C, Solana R, Tarazona R. Modulation of NK cells with checkpoint inhibitors in the context of cancer immunotherapy. Cancer Immunol Immunother 2019; 68:861-870. [PMID: 30953117 PMCID: PMC11028212 DOI: 10.1007/s00262-019-02336-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 04/01/2019] [Indexed: 02/08/2023]
Abstract
The incidence of some types of tumours has increased progressively in recent years and is expected to continue growing in the coming years due in part to the aging of the population. The design of new therapies based on natural killer (NK) cells opens new possibilities especially for the treatment of elderly patients who are particularly susceptible to the toxicity of conventional chemotherapy treatments. In recent years, the potential use of NK cells in cancer immunotherapy has been of great interest thanks to advances in the study of NK cell biology. The identification of key points (checkpoints) in the activation of NK cells that can be regulated by monoclonal antibodies has allowed the design of new therapeutic strategies based on NK cells. However, there are still limitations for its use and the first clinical trials blocking KIR inhibitory receptors have shown little efficacy by inhibiting the maturation of NK cells. Blockade of other inhibitory receptors such as TIGIT, TIM3, LAG3 and PD1 may represent novel strategies to increase NK function in cancer patients. Altogether, the identification of NK cell and tumour cell markers of resistance or susceptibility to the action of NK cells will contribute to identifying those patients that will most likely benefit from NK cell-based immunotherapy.
Collapse
Affiliation(s)
| | | | - Esther Duran
- Histology and Pathology Unit, Faculty of Veterinary, University of Extremadura, Caceres, Spain
| | | | - Corona Alonso
- Instituto Maimónides de Investigación Biomédica (IMIBIC), Córdoba, Spain
- Reina Sofia University Hospital, Córdoba, Spain
| | - Rafael Solana
- Immunology Unit, Universidad de Cordoba, Cordoba, Spain.
- Instituto Maimónides de Investigación Biomédica (IMIBIC), Córdoba, Spain.
- Reina Sofia University Hospital, Córdoba, Spain.
| | | |
Collapse
|
15
|
Fares J, Fares MY, Fares Y. Natural killer cells in the brain tumor microenvironment: Defining a new era in neuro-oncology. Surg Neurol Int 2019; 10:43. [PMID: 31528381 PMCID: PMC6743677 DOI: 10.25259/sni-97-2019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 02/05/2019] [Indexed: 12/19/2022] Open
Affiliation(s)
- Jawad Fares
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL - 60611, United States
| | - Mohamad Y. Fares
- Faculty of Medicine, American University of Beirut, Riad El-Solh
| | - Youssef Fares
- Department of Neurosurgery, Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, Beyrouth - 1102 2801, Lebanon
| |
Collapse
|
16
|
Shapovalova M, Pyper SR, Moriarity BS, LeBeau AM. The Molecular Imaging of Natural Killer Cells. Mol Imaging 2019; 17:1536012118794816. [PMID: 30203710 PMCID: PMC6134484 DOI: 10.1177/1536012118794816] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The recent success of autologous T cell-based therapies in hematological malignancies has spurred interest in applying similar immunotherapy strategies to the treatment of solid tumors. Identified nearly 4 decades ago, natural killer (NK) cells represent an arguably better cell type for immunotherapy development. Natural killer cells are cytotoxic lymphocytes that mediate the direct killing of transformed cells with reduced or absent major histocompatibility complex (MHC) and are the effector cells in antibody-dependent cell-mediated cytotoxicity. Unlike T cells, they do not require human leukocyte antigen (HLA) matching allowing for the adoptive transfer of allogeneic NK cells in the clinic. The development of NK cell-based therapies for solid tumors is complicated by the presence of an immunosuppressive tumor microenvironment that can potentially disarm NK cells rendering them inactive. The molecular imaging of NK cells in vivo will be crucial for the development of new therapies allowing for the immediate assessment of therapeutic response and off-target effects. A number of groups have investigated methods for detecting NK cells by optical, nuclear, and magnetic resonance imaging. In this review, we will provide an overview of the advances made in imaging NK cells in both preclinical and clinical studies.
Collapse
Affiliation(s)
- Mariya Shapovalova
- 1 Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Sean R Pyper
- 2 Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Branden S Moriarity
- 2 Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Aaron M LeBeau
- 1 Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN, USA
| |
Collapse
|
17
|
Montesinos MDM, Pellizas CG. Thyroid Hormone Action on Innate Immunity. Front Endocrinol (Lausanne) 2019; 10:350. [PMID: 31214123 PMCID: PMC6558108 DOI: 10.3389/fendo.2019.00350] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 05/15/2019] [Indexed: 12/31/2022] Open
Abstract
The interplay between thyroid hormone action and the immune system has been established in physiological and pathological settings. However, their connection is complex and still not completely understood. The thyroid hormones (THs), 3,3',5,5' tetraiodo-L-thyroxine (T4) and 3,3',5-triiodo-L-thyronine (T3) play essential roles in both the innate and adaptive immune responses. Despite much research having been carried out on this topic, the available data are sometimes difficult to interpret or even contradictory. Innate immune cells act as the first line of defense, mainly involving granulocytes and natural killer cells. In turn, antigen presenting cells, macrophages and dendritic cells capture, process and present antigens (self and foreign) to naïve T lymphocytes in secondary lymphoid tissues for the development of adaptive immunity. Here, we review the cellular and molecular mechanisms involved in T4 and T3 effects on innate immune cells. An overview of the state-of-the-art of TH transport across the target cell membrane, TH metabolism inside these cells, and the genomic and non-genomic mechanisms involved in the action of THs in the different innate immune cell subsets is included. The present knowledge of TH effects as well as the thyroid status on innate immunity helps to understand the complex adaptive responses achieved with profound implications in immunopathology, which include inflammation, cancer and autoimmunity, at the crossroads of the immune and endocrine systems.
Collapse
|
18
|
Interventional Radiologic Therapies for Hepatocellular Carcinoma: From Where We Began to Where We Are Going. MOLECULAR AND TRANSLATIONAL MEDICINE 2019. [DOI: 10.1007/978-3-030-21540-8_9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
19
|
Bonacini M, Soriano A, Zerbini A, Calò E, Cimino L, Muratore F, Fontana L, Braglia L, Parmeggiani M, Salvarani C, Croci S. Higher Frequencies of Lymphocytes Expressing the Natural Killer Group 2D Receptor in Patients With Behçet Disease. Front Immunol 2018; 9:2157. [PMID: 30319620 PMCID: PMC6167483 DOI: 10.3389/fimmu.2018.02157] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 08/31/2018] [Indexed: 12/31/2022] Open
Abstract
Behçet disease (BD) is an inflammatory systemic disease with a fluctuating course, which can affect the skin, eyes, central nervous system, musculoskeletal, gastrointestinal, and vascular systems. No laboratory tests are currently available for the diagnosis of BD and monitoring disease activity. Moreover there is a lack of knowledge on BD pathogenesis. This study focused on circulating Natural Killer (NK), NKT and T cells evaluated as CD3neg CD56pos, CD3pos CD56pos, and CD3pos CD56neg. Peripheral blood mononuclear cells (PBMCs) were collected from 38 BD patients and 20 healthy controls (HC). The frequencies of NK, NKT, and T cells expressing CD16, CD69, NKG2D, Nkp30, Nkp46, and NKG2A were assessed by flow cytometry. Cytotoxic potential of NK cells was evaluated by flow cytometry as the percentage of cells expressing the degranulation marker CD107a after incubation with K562 cells. The levels of 27 cytokines were determined in plasma with a multiplex bead-based assay. Higher percentages of NK, NKT, and T cells expressing NKG2D were detected in PBMCs of BD patients than HC. ROC curve analysis showed that the evaluation of NKG2Dpos NK, NKT, and T cell percentages discriminated between BD patients and HC. Moreover, there was a positive correlation between the BD Current Activity Form (BDCAF) scores and the frequencies of NKG2Dpos NK and NKT cells. A higher frequency of NK cells expressing CD107a was induced in PBMCs from BD patients than HC after incubation with K562 cells. Concentrations of IL-5, IL-6, IL-10, IL-13, IP-10, and MIP-1β were higher in plasma of BD patients than HC. Monitoring the frequencies of NKG2Dpos lymphocytes could help the clinicians in BD patients management. In addition, the increased expression of NKG2D in BD patients is likely involved in disease pathogenesis.
Collapse
Affiliation(s)
- Martina Bonacini
- Unit of Clinical Immunology, Allergy and Advanced Biotechnologies, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Alessandra Soriano
- Unit of Rheumatology, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, Italy.,Campus Bio-Medico, University of Rome, Rome, Italy
| | - Alessandro Zerbini
- Unit of Clinical Immunology, Allergy and Advanced Biotechnologies, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Eleonora Calò
- Unit of Clinical Immunology, Allergy and Advanced Biotechnologies, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Luca Cimino
- Unit of Ocular Immunology, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Francesco Muratore
- Unit of Rheumatology, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, Italy.,University of Modena and Reggio Emilia, Modena, Italy
| | - Luigi Fontana
- Unit of Ophtalmology, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Luca Braglia
- Research and Statistics Infrastructure, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Maria Parmeggiani
- Unit of Clinical Immunology, Allergy and Advanced Biotechnologies, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Carlo Salvarani
- Unit of Rheumatology, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, Italy.,University of Modena and Reggio Emilia, Modena, Italy
| | - Stefania Croci
- Unit of Clinical Immunology, Allergy and Advanced Biotechnologies, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| |
Collapse
|
20
|
Mandó P, Rizzo M, Roberti MP, Juliá EP, Pampena MB, Pérez de la Puente C, Loza CM, Ponce C, Nadal J, Coló FA, Mordoh J, Levy EM. High neutrophil to lymphocyte ratio and decreased CD69 +NK cells represent a phenotype of high risk in early-stage breast cancer patients. Onco Targets Ther 2018; 11:2901-2910. [PMID: 29844687 PMCID: PMC5961634 DOI: 10.2147/ott.s160911] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Purpose Breast cancer (BC) is a highly heterogeneous disease presenting a broad range of clinical and molecular characteristics. In the past years, a growing body of evidence demonstrated that immune response plays a significant role in cancer outcome. However, immune prognostic markers are not completely validated in clinical practice in BC patients. Materials and methods With the aim to characterize immune features, several parameters were analyzed in peripheral blood at diagnosis of 85 nonmetastatic BC patients between April 2011 and July 2014. Results With a median follow-up of 38.6 months, peripheral blood analysis of BC patients (stages I, II, and III) showed that total lymphocyte and T lymphocyte counts were augmented in nonrelapsed patients. Also, a higher neutrophil-to-lymphocytes ratio was associated with prolonged disease-free survival. Natural killer cell receptor analysis revealed that early activation receptor CD69 was associated with a better outcome. Conclusion This preliminary evidence is in accordance with the concept of immune surveillance. We suggest an “immune phenotype” that provides relevant prognostic information in early-stage BC patients and which could be useful in the decision-making process.
Collapse
Affiliation(s)
- Pablo Mandó
- Oncology Research Center CIO-FUCA, Buenos Aires, Argentina
| | - Manglio Rizzo
- Alexander Fleming Institute, Buenos Aires, Argentina
| | | | | | | | | | | | | | - Jorge Nadal
- Alexander Fleming Institute, Buenos Aires, Argentina
| | | | - José Mordoh
- Oncology Research Center CIO-FUCA, Buenos Aires, Argentina.,Alexander Fleming Institute, Buenos Aires, Argentina.,Biochemical Research Institute of Buenos Aires, Buenos Aires, Argentina
| | | |
Collapse
|
21
|
Lee GY, Park CY, Cha KS, Lee SE, Pae M, Han SN. Differential effect of dietary vitamin D supplementation on natural killer cell activity in lean and obese mice. J Nutr Biochem 2018; 55:178-184. [PMID: 29525609 DOI: 10.1016/j.jnutbio.2018.01.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 11/12/2017] [Accepted: 01/10/2018] [Indexed: 12/21/2022]
Abstract
Vitamin D has an immunoregulatory effect on both innate and adaptive immunity. Contradictory results regarding vitamin D and natural killer (NK) cell functions have been reported with in vitro studies, but little is known about this in vivo. We investigated whether vitamin D levels (50, 1000 or 10,000 IU/kg of diet: DD, DC or DS) affect NK cell functions in mice fed a control or high-fat diet (10% or 45% kcal fat: CD or HFD) for 12 weeks. The splenic NK cell activity was significantly higher in the CD-DS group than the HFD-DS group, and the CD-DS group showed significantly higher NK cell activity compared with the CD-DD and CD-DC groups. However, no difference in NK cell activity was observed among the HFD groups fed different levels of vitamin D. The splenic population of NK cells was significantly higher in the CD-DS group than the HFD-DS group. There was no difference in the intracellular expression of IFN-γ and the surface expression of NKG2D and CD107a in NK cells by both dietary fat and vitamin D content. The splenic mRNA expression of Ifng and Ccl5 was significantly lower in the HFD groups compared with the CD groups, but there was no difference in the mRNA levels of Vdup1 and Vdr among the groups. Taken together, these results suggest that dietary vitamin D supplementation can modulate innate immunity by increasing NK activity in control mice but not in obese mice. This effect might be mediated through alternation of the splenic NK cell population.
Collapse
Affiliation(s)
- Ga Young Lee
- Department of Food and Nutrition, College of Human Ecology, Seoul National University, Seoul, Korea.
| | - Chan Yoon Park
- Department of Food and Nutrition, College of Human Ecology, Seoul National University, Seoul, Korea.
| | - Kyeong Sun Cha
- Department of Food and Nutrition, College of Human Ecology, Seoul National University, Seoul, Korea.
| | - Seung Eun Lee
- Department of Food and Nutrition, College of Human Ecology, Seoul National University, Seoul, Korea.
| | - Munkyong Pae
- Department of Food and Nutrition, College of Human Ecology, Chungbuk National University, Cheongju, Korea.
| | - Sung Nim Han
- Department of Food and Nutrition, College of Human Ecology, Seoul National University, Seoul, Korea; Research Institute of Human Ecology, Seoul National University, Seoul, Korea.
| |
Collapse
|
22
|
Díaz-Rodríguez Y, Cordeiro P, Belounis A, Herblot S, Duval M. In vitro differentiated plasmacytoid dendritic cells as a tool to induce anti-leukemia activity of natural killer cells. Cancer Immunol Immunother 2017; 66:1307-1320. [PMID: 28555259 PMCID: PMC5626790 DOI: 10.1007/s00262-017-2022-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Accepted: 05/22/2017] [Indexed: 12/17/2022]
Abstract
Acute lymphoblastic leukemia (ALL) is believed to be resistant to NK cell-mediated killing. To overcome this resistance, we developed an innovative approach based on NK cell stimulation with Toll-like receptor (TLR)-activated plasmacytoid dendritic cells (pDC). The translation of this approach into the clinic requires the production of high numbers of human pDC. Herein, we show that in vitro differentiation of cord blood CD34+ progenitors in the presence of aryl hydrocarbon receptor antagonists gives rise to clinically relevant numbers of pDC, as about 108 pDC can be produced from a typical cord blood unit. Blocking the aryl hydrocarbon receptor (AHR) pathway significantly increased the yield of pDC. When compared to pDC isolated from peripheral blood, in vitro differentiated pDC (ivD-pDC) exhibited an increased capacity to induce NK cell-mediated killing of ALL. Although ivD-pDC produced lower amounts of IFN-α than peripheral blood pDC upon TLR activation, they produced more IFN-λ2, known to play a critical role in the induction of anti-tumoral NK cell functions. Both TLR-9 and TLR-7 ligands triggered pDC-induced NK cell activation, offering the possibility to use any clinical-grade TLR-7 or TLR-9 ligands in future clinical trials. Finally, adoptive transfer of ivD-pDC cultured in the presence of an AHR antagonist cured humanized mice with minimal ALL disease. Collectively, our results pave the way to clinical-grade production of sufficient numbers of human pDC for innate immunotherapy against ALL and other refractory malignancies.
Collapse
Affiliation(s)
- Yildian Díaz-Rodríguez
- Unité de recherche en hémato-oncologie Charles-Bruneau, Centre de Recherche du CHU Sainte-Justine, 3175, Côte Sainte-Catherine, Montreal, QC, H3T 1C5, Canada
- Département de Microbiologie, Infectiologie and Immunologie, Université de Montréal, Montreal, QC, Canada
| | - Paulo Cordeiro
- Unité de recherche en hémato-oncologie Charles-Bruneau, Centre de Recherche du CHU Sainte-Justine, 3175, Côte Sainte-Catherine, Montreal, QC, H3T 1C5, Canada
| | - Assila Belounis
- Unité de recherche en hémato-oncologie Charles-Bruneau, Centre de Recherche du CHU Sainte-Justine, 3175, Côte Sainte-Catherine, Montreal, QC, H3T 1C5, Canada
- Département de Microbiologie, Infectiologie and Immunologie, Université de Montréal, Montreal, QC, Canada
| | - Sabine Herblot
- Unité de recherche en hémato-oncologie Charles-Bruneau, Centre de Recherche du CHU Sainte-Justine, 3175, Côte Sainte-Catherine, Montreal, QC, H3T 1C5, Canada.
- Département de Microbiologie, Infectiologie and Immunologie, Université de Montréal, Montreal, QC, Canada.
- Département de Pédiatrie, Université de Montréal, Montreal, QC, Canada.
| | - Michel Duval
- Unité de recherche en hémato-oncologie Charles-Bruneau, Centre de Recherche du CHU Sainte-Justine, 3175, Côte Sainte-Catherine, Montreal, QC, H3T 1C5, Canada
- Département de Microbiologie, Infectiologie and Immunologie, Université de Montréal, Montreal, QC, Canada
- Département de Pédiatrie, Université de Montréal, Montreal, QC, Canada
| |
Collapse
|
23
|
Bláha J, Kalousková B, Skořepa O, Pažický S, Novák P, Vaněk O. High-level expression and purification of soluble form of human natural killer cell receptor NKR-P1 in HEK293S GnTI - cells. Protein Expr Purif 2017; 140:36-43. [PMID: 28757467 DOI: 10.1016/j.pep.2017.07.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 07/21/2017] [Accepted: 07/25/2017] [Indexed: 02/09/2023]
Abstract
Human natural killer receptor protein 1 (NKR-P1, CD161, gene klrb1) is a C-type lectin-like receptor of natural killer (NK) cells responsible for recognition of its cognate protein ligand lectin-like transcript 1 (LLT1). NKR-P1 is the single human orthologue of the prototypical rodent NKR-P1 receptors. Naturally, human NKR-P1 is expressed on the surface of NK cells, where it serves as inhibitory receptor; and on T and NKT cells functioning as co-stimulatory receptor promoting secretion of IFNγ. Most notably, it is expressed on Th17 and Tc17 lymphocytes where presumably promotes targeting into LLT1 expressing immunologically privileged niches. We tested effect of different protein tags (SUMO, TRX, GST, MsyB) on expression of soluble NKR-P1 in E. coli. Then we optimized the expression construct of soluble NKR-P1 by preparing a library of expression constructs in pOPING vector containing the extracellular lectin-like domain with different length of the putative N-terminal stalk region and tested its expression in Sf9 and HEK293 cells. Finally, a high-level expression of soluble NKR-P1 was achieved by stable expression in suspension-adapted HEK293S GnTI- cells utilizing pOPINGTTneo expression vector. Purified soluble NKR-P1 is homogeneous, deglycosylatable, crystallizable and monomeric in solution, as shown by size-exclusion chromatography, multi-angle light scattering and analytical ultracentrifugation.
Collapse
Affiliation(s)
- Jan Bláha
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova 2030/8, 12840 Prague, Czech Republic
| | - Barbora Kalousková
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova 2030/8, 12840 Prague, Czech Republic
| | - Ondřej Skořepa
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova 2030/8, 12840 Prague, Czech Republic
| | - Samuel Pažický
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova 2030/8, 12840 Prague, Czech Republic
| | - Petr Novák
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova 2030/8, 12840 Prague, Czech Republic; Institute of Microbiology, The Czech Academy of Sciences, BIOCEV, Průmyslová 595, 25250 Vestec, Czech Republic
| | - Ondřej Vaněk
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova 2030/8, 12840 Prague, Czech Republic.
| |
Collapse
|
24
|
Sake CS, Ngu L, Ambada G, Chedjou JP, Nji N, Tchadji JC, Lissom A, Tchouangueu TF, Djukouo L, Njambe G, Garcia R, Gutierrez A, Bopda Waffo A, Park CG, Mbacham W, Etoa FX, Nchinda GW. The Effect of Antiretroviral Naïve HIV-1 Infection on the Ability of Natural Killer Cells to Produce IFN-γ upon Exposure to Plasmodium falciparum-Infected Erythrocytes. Biomed Hub 2017; 2:1-13. [PMID: 31988903 PMCID: PMC6945957 DOI: 10.1159/000467386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Background In sub-Saharan Africa, intense perennial Plasmodium species transmission coincides with areas of high prevalence of the human immunodeficiency virus type 1 (HIV) infection. This implies that antiretroviral naïve HIV-infected people living within these regions are repeatedly exposed to Plasmodium species infection and consequently malaria. Natural killer (NK) cells are known to contribute to malaria immunity through the production of IFN-γ after exposure to Plasmodium falciparum-infected erythrocytes (infected red blood cells [iRBC]). However, in antiretroviral naïve HIV-1 infection, these functions could be impaired. In this study we assess the ability of NK cells from antiretroviral naïve HIV-1-infected people to respond to iRBC. Method Magnetically sorted NK cells from antiretroviral naïve HIV-1-infected people were tested for their ability to respond to iRBC following in vitro coculture. NK cell IFN-γ production after coculture was measured through multiparametric flow cytometry analysis. Results Our data show a significant reduction (p = 0.03) in IFN-γ production by NK cells from antiretroviral naïve HIV-1-infected people after coculture with iRBCs. This was in contrast to the NK cell response from healthy controls, which demonstrated elevated IFN-γ production. NK cell IFN-γ production from untreated HIV-1-infected participants correlated inversely with the viral load (r = −0.5, p = 0.02) and positively with total helper CD4+ T-cell count (r = 0.4, p = 0.04). Thus, antiretroviral naïve HIV-1 infection can dampen NK cell-mediated immunity to P. falciparum infection in malaria-intense regions. This could in effect escalate morbidity and mortality in people chronically infected with HIV-1.
Collapse
Affiliation(s)
- Carole Stéphanie Sake
- Laboratory of Vaccinology/Biobanking, CIRCB, Messa Yaounde, Cameroon.,Department of Microbiology, University of Yaoundé I, Yaoundé, Cameroon.,Department of Biochemistry, University of Yaoundé I, Yaoundé, Cameroon
| | - Loveline Ngu
- Laboratory of Vaccinology/Biobanking, CIRCB, Messa Yaounde, Cameroon.,Department of Biochemistry, University of Yaoundé I, Yaoundé, Cameroon
| | - Georgia Ambada
- Laboratory of Vaccinology/Biobanking, CIRCB, Messa Yaounde, Cameroon.,Department of Animal Biology and Physiology, University of Yaoundé I, Yaoundé, Cameroon
| | - Jean Paul Chedjou
- Department of Animal Biology and Physiology, University of Yaoundé I, Yaoundé, Cameroon.,The Biotechnology Center, University of Yaounde I, Yaoundé, Cameroon
| | - Nadesh Nji
- Laboratory of Vaccinology/Biobanking, CIRCB, Messa Yaounde, Cameroon
| | - Jules Colince Tchadji
- Laboratory of Vaccinology/Biobanking, CIRCB, Messa Yaounde, Cameroon.,Department of Animal Biology and Physiology, University of Yaoundé I, Yaoundé, Cameroon
| | - Abel Lissom
- Laboratory of Vaccinology/Biobanking, CIRCB, Messa Yaounde, Cameroon.,Department of Animal Biology and Physiology, University of Yaoundé I, Yaoundé, Cameroon
| | - Thibau Flaurant Tchouangueu
- Laboratory of Vaccinology/Biobanking, CIRCB, Messa Yaounde, Cameroon.,Department of Biochemistry, University of Dschang, Dschang, Cameroon
| | - Larissa Djukouo
- Laboratory of Vaccinology/Biobanking, CIRCB, Messa Yaounde, Cameroon.,Department of Biochemistry, University of Yaoundé I, Yaoundé, Cameroon
| | - Ghislain Njambe
- Laboratory of Vaccinology/Biobanking, CIRCB, Messa Yaounde, Cameroon.,Department of Animal Biology and Physiology, University of Yaoundé I, Yaoundé, Cameroon
| | - Rosario Garcia
- CSCB (Centre de santé catholique de Bikop), Bikop, Cameroon
| | - Anna Gutierrez
- CSCB (Centre de santé catholique de Bikop), Bikop, Cameroon.,Department of Biological Sciences, Alabama State University, Montgomery, AL, USA
| | - Alain Bopda Waffo
- Department of Biological Sciences, Alabama State University, Montgomery, AL, USA
| | - Chae Gyu Park
- Laboratory of Immunology, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Wilfried Mbacham
- Department of Biochemistry, University of Yaoundé I, Yaoundé, Cameroon.,The Biotechnology Center, University of Yaounde I, Yaoundé, Cameroon.,The Department of Biochemistry and Physiology, Faculty of Medicine, University of Yaounde I, Yaoundé, Cameroon
| | - François-Xavier Etoa
- Department of Microbiology, University of Yaoundé I, Yaoundé, Cameroon.,University of Douala, Douala, Cameroon
| | - Godwin W Nchinda
- Laboratory of Vaccinology/Biobanking, CIRCB, Messa Yaounde, Cameroon
| |
Collapse
|
25
|
Baggio L, Laureano ÁM, Silla LMDR, Lee DA. Natural killer cell adoptive immunotherapy: Coming of age. Clin Immunol 2017; 177:3-11. [DOI: 10.1016/j.clim.2016.02.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 02/06/2016] [Accepted: 02/09/2016] [Indexed: 11/26/2022]
|
26
|
Moriyama T, Suzuki T, Chang MO, Kitajima M, Takaku H. Baculovirus directly activates murine NK cells via TLR9. Cancer Gene Ther 2017; 24:175-179. [DOI: 10.1038/cgt.2017.2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 01/12/2016] [Accepted: 01/13/2017] [Indexed: 12/30/2022]
|
27
|
Abstract
Many diseases that were considered major affliction of mankind in the past have been successfully eradicated with introduction of appropriate vaccine strategies. In order to expedite new challenges coming up to deal with various infectious diseases, nano-particulate-based subunit vaccines seem to be the demand of ordeal. The nano-vaccines can find better scope for the diseases that were not rampant in the semi-advanced world few years back. For example in present-day circumstances that corroborate with advancement in the field of medical sciences in terms of cancer chemotherapy, organ transplantation, therapy of autoimmune diseases, etc.; along with prevalence of altogether unheard diseases such as HIV infection, people are at risk of infliction with many more pathogens. In this regard, development of an effective prophylactic strategy against many opportunistic infections primarily caused by fungal pathogens needs better understanding of host pathogen relation and role of active immunity against pathogenic fungi. In the present study, we have tried to decipher effectiveness of a nano-sized vaccine delivery system in imparting protection against fungal pathogens.
Collapse
Affiliation(s)
- Swaleha Zubair
- Women's College, Aligarh Muslim University (AMU), Aligarh, Uttar Pradesh, 202002, India
| | - Asim Azhar
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University (AMU), Aligarh, Uttar Pradesh, 202002, India
| | - Nazoora Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University (AMU), Aligarh, Uttar Pradesh, 202002, India
| | - Ejaj Ahmad
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University (AMU), Aligarh, Uttar Pradesh, 202002, India
| | - Mohd Ajmal
- Department of Anatomy, JNMC, Aligarh Muslim University (AMU), Aligarh, India
| | - Mohammad Owais
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University (AMU), Aligarh, Uttar Pradesh, 202002, India.
| |
Collapse
|
28
|
Rocca YS, Roberti MP, Juliá EP, Pampena MB, Bruno L, Rivero S, Huertas E, Sánchez Loria F, Pairola A, Caignard A, Mordoh J, Levy EM. Phenotypic and Functional Dysregulated Blood NK Cells in Colorectal Cancer Patients Can Be Activated by Cetuximab Plus IL-2 or IL-15. Front Immunol 2016; 7:413. [PMID: 27777574 PMCID: PMC5056190 DOI: 10.3389/fimmu.2016.00413] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 09/23/2016] [Indexed: 12/12/2022] Open
Abstract
The clinical outcome of colorectal cancer (CRC) is associated with the immune response; thus, these tumors could be responsive to different immune therapy approaches. Natural killer (NK) cells are key antitumor primary effectors that can eliminate CRC cells without prior immunization. We previously determined that NK cells from the local tumor environment of CRC tumors display a profoundly altered phenotype compared with circulating NK cells from healthy donors (HD). In this study, we evaluated peripheral blood NK cells from untreated patients and their possible role in metastasis progression. We observed profound deregulation in receptor expression even in early stages of disease compared with HD. CRC-NK cells displayed underexpression of CD16, NKG2D, DNAM-1, CD161, NKp46, and NKp30 activating receptors, while inhibitory receptors CD85j and NKG2A were overexpressed. This inhibited phenotype affected cytotoxic functionality against CRC cells and interferon-γ production. We also determined that NKp30 and NKp46 are the key receptors involved in detriment of CRC-NK cells’ antitumor activity. Moreover, NKp46 expression correlated with relapse-free survival of CRC patients with a maximum follow-up of 71 months. CRC-NK cells also exhibited altered antibody-dependent cellular cytotoxicity function responding poorly to cetuximab. IL-2 and IL-15 in combination with cetuximab stimulated NK cell, improving cytotoxicity. These results show potential strategies to enhance CRC-NK cell activity.
Collapse
Affiliation(s)
- Yamila Sol Rocca
- Fundación Instituto Leloir-IIBBA, Ciudad Autónoma de Buenos Aires , Buenos Aires , Argentina
| | - María Paula Roberti
- Centro de Investigaciones Oncológicas CIO-FUCA, Ciudad Autónoma de Buenos Aires , Buenos Aires , Argentina
| | - Estefanía Paula Juliá
- Centro de Investigaciones Oncológicas CIO-FUCA, Ciudad Autónoma de Buenos Aires , Buenos Aires , Argentina
| | - María Betina Pampena
- Centro de Investigaciones Oncológicas CIO-FUCA, Ciudad Autónoma de Buenos Aires , Buenos Aires , Argentina
| | - Luisina Bruno
- Instituto Alexander Fleming, Ciudad Autónoma de Buenos Aires , Buenos Aires , Argentina
| | - Sergio Rivero
- Instituto Alexander Fleming, Ciudad Autónoma de Buenos Aires , Buenos Aires , Argentina
| | - Eduardo Huertas
- Instituto Alexander Fleming, Ciudad Autónoma de Buenos Aires , Buenos Aires , Argentina
| | | | - Alejandro Pairola
- Instituto Alexander Fleming, Ciudad Autónoma de Buenos Aires , Buenos Aires , Argentina
| | - Anne Caignard
- UMRS-1160, Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France; U1160, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - José Mordoh
- Fundación Instituto Leloir-IIBBA, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina; Centro de Investigaciones Oncológicas CIO-FUCA, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina; Instituto Alexander Fleming, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Estrella Mariel Levy
- Centro de Investigaciones Oncológicas CIO-FUCA, Ciudad Autónoma de Buenos Aires , Buenos Aires , Argentina
| |
Collapse
|
29
|
Garcia-Beltran WF, Hölzemer A, Martrus G, Chung AW, Pacheco Y, Simoneau CR, Rucevic M, Lamothe-Molina PA, Pertel T, Kim TE, Dugan H, Alter G, Dechanet-Merville J, Jost S, Carrington M, Altfeld M. Open conformers of HLA-F are high-affinity ligands of the activating NK-cell receptor KIR3DS1. Nat Immunol 2016; 17:1067-74. [PMID: 27455421 PMCID: PMC4992421 DOI: 10.1038/ni.3513] [Citation(s) in RCA: 167] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 06/13/2016] [Indexed: 12/23/2022]
Abstract
The activating natural killer (NK)-cell receptor KIR3DS1 has been linked to the outcome of various human diseases, including delayed progression of disease caused by human immunodeficiency virus type 1 (HIV-1), yet a ligand that would account for its biological effects has remained unknown. We screened 100 HLA class I proteins and found that KIR3DS1 bound to HLA-F, a result we confirmed biochemically and functionally. Primary human KIR3DS1(+) NK cells degranulated and produced antiviral cytokines after encountering HLA-F and inhibited HIV-1 replication in vitro. Activation of CD4(+) T cells triggered the transcription and surface expression of HLA-F mRNA and HLA-F protein, respectively, and induced binding of KIR3DS1. HIV-1 infection further increased the transcription of HLA-F mRNA but decreased the binding of KIR3DS1, indicative of a mechanism for evading recognition by KIR3DS1(+) NK cells. Thus, we have established HLA-F as a ligand of KIR3DS1 and have demonstrated cell-context-dependent expression of HLA-F that might explain the widespread influence of KIR3DS1 in human disease.
Collapse
Affiliation(s)
| | - Angelique Hölzemer
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA
- Heinrich-Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
- First Department of Internal Medicine, University Medical Centre Eppendorf, Hamburg, Germany
| | - Gloria Martrus
- Heinrich-Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Amy W. Chung
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA
| | - Yovana Pacheco
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA
- Departamento de Matemáticas, Facultad de Ciencias, Universidad Nuestra Señora del Rosario, Bogotá, Colombia
| | | | | | | | - Thomas Pertel
- Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Tae-Eun Kim
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA
| | - Haley Dugan
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA
| | - Galit Alter
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA
| | | | | | - Mary Carrington
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA
- Cancer and Inflammation Program, Laboratory of Experimental Immunology, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD
| | - Marcus Altfeld
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA
- Heinrich-Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| |
Collapse
|
30
|
Almishri W, Santodomingo-Garzon T, Le T, Stack D, Mody CH, Swain MG. TNFα Augments Cytokine-Induced NK Cell IFNγ Production through TNFR2. J Innate Immun 2016; 8:617-629. [PMID: 27560480 DOI: 10.1159/000448077] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Accepted: 06/29/2016] [Indexed: 12/11/2022] Open
Abstract
NK cells play a central role in innate immunity, acting directly through cell-mediated cytotoxicity and by secreting cytokines. TNFα activation of TNFR2 enhances NK cell cytotoxicity, but its effects on the other essential function of NK cells - cytokine production, for which IFNγ is paramount - are poorly defined. We identify the expression of both TNFα receptors on human peripheral blood NK cells (TNFR2 > TNFR1) and show that TNFα significantly augments IFNγ production from IL-2-/IL-12-treated NK cells in vitro, an effect mimicked by a TNFR2 agonistic antibody. TNFα also enhanced murine NK cell IFNγ production via TNFR2 in vitro. In a mouse model characterized by the hepatic recruitment and activation of NK cells, TNFR2 also regulated NK cell IFNγ production in vivo. Specifically, in this model, after activation of an innate immune response, hepatic numbers of TNFR2-expressing and IFNγ-producing NK cells were both significantly increased; however, the frequency of IFNγ-producing hepatic NK cells was significantly reduced in TNFR2-deficient mice. We delineate an important role for TNFα, acting through TNFR2, in augmenting cytokine-induced NK cell IFNγ production in vivo and in vitro, an effect with significant potential implications for the regulation of innate and adaptive immune responses.
Collapse
Affiliation(s)
- Wagdi Almishri
- Immunology Research Group, Snyder Institute, Liver Unit, Division of Gastroenterology and Hepatology, Cumming School of Medicine, University of Calgary, Calgary, Alta., Canada
| | | | | | | | | | | |
Collapse
|
31
|
TRAIL-mediated killing of acute lymphoblastic leukemia by plasmacytoid dendritic cell-activated natural killer cells. Oncotarget 2016; 6:29440-55. [PMID: 26320191 PMCID: PMC4745738 DOI: 10.18632/oncotarget.4984] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 07/12/2015] [Indexed: 01/24/2023] Open
Abstract
Acute lymphoblastic leukemia (ALL) still frequently recurs after hematopoietic stem cell transplantation (HSCT), underscoring the need to improve the graft-versus-leukemia (GvL) effect. Natural killer (NK) cells reconstitute in the first months following HSCT when leukemia burden is at its lowest, but ALL cells have been shown to be resistant to NK cell-mediated killing. We show here that this resistance is overcome by NK cell stimulation with TLR-9-activated plasmacytoid dendritic cells (pDCs). NK cell priming with activated pDCs resulted in TRAIL and CD69 up-regulation on NK cells and IFN-γ production. NK cell activation was dependent on IFN-α produced by pDCs, but was not reproduced by IFN-α alone. ALL killing was further enhanced by inhibition of KIR engagement. We showed that ALL lysis was mainly mediated by TRAIL engagement, while the release of cytolytic granules was involved when ALL expressed NK cell activating receptor ligands. Finally, adoptive transfers of activated-pDCs in ALL-bearing humanized mice delayed the leukemia onset and cure 30% of mice. Our data therefore demonstrate that TLR-9 activated pDCs are a powerful tool to overcome ALL resistance to NK cell-mediated killing and to reinforce the GvL effect of HSCT. These results open new therapeutic avenues to prevent relapse in children with ALL.
Collapse
|
32
|
Ullah MA, Hill GR, Tey SK. Functional Reconstitution of Natural Killer Cells in Allogeneic Hematopoietic Stem Cell Transplantation. Front Immunol 2016; 7:144. [PMID: 27148263 PMCID: PMC4831973 DOI: 10.3389/fimmu.2016.00144] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 04/01/2016] [Indexed: 01/24/2023] Open
Abstract
Natural killer (NK) cells are the first lymphocyte population to reconstitute following allogeneic hematopoietic stem cell transplantation (HSCT) and are important in mediating immunity against both leukemia and pathogens. Although NK cell numbers generally reconstitute within a month, the acquisition of mature NK cell phenotype and full functional competency can take 6 months or more, and is influenced by graft composition, concurrent pharmacologic immunosuppression, graft-versus-host disease, and other clinical factors. In addition, cytomegalovirus infection and reactivation have a dominant effect on NK cell memory imprinting following allogeneic HSCT just as it does in healthy individuals. Our understanding of NK cell education and licensing has evolved in the years since the "missing self" hypothesis for NK-mediated graft-versus-leukemia effect was first put forward. For example, we now know that NK cell "re-education" can occur, and that unlicensed NK cells can be more protective than licensed NK cells in certain settings, thus raising new questions about how best to harness graft-versus-leukemia effect. Here, we review current understanding of the functional reconstitution of NK cells and NK cell education following allogeneic HSCT, highlighting a conceptual framework for future research.
Collapse
Affiliation(s)
- Md Ashik Ullah
- Bone Marrow Transplant Laboratory, QIMR Berghofer Medical Research Institute , Brisbane, QLD , Australia
| | - Geoffrey R Hill
- Bone Marrow Transplant Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia; Department of Haematology and Bone Marrow Transplantation, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
| | - Siok-Keen Tey
- Bone Marrow Transplant Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia; Department of Haematology and Bone Marrow Transplantation, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia; School of Medicine, University of Queensland, Herston, QLD, Australia
| |
Collapse
|
33
|
Pinhas N, Sternberg-Simon M, Chiossone L, Shahaf G, Walzer T, Vivier E, Mehr R. Murine peripheral NK-cell populations originate from site-specific immature NK cells more than from BM-derived NK cells. Eur J Immunol 2016; 46:1258-70. [PMID: 26919267 DOI: 10.1002/eji.201545847] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 12/17/2015] [Accepted: 02/10/2016] [Indexed: 01/09/2023]
Abstract
Murine NK cells can be divided by the expression of two cell surface markers, CD27 and Mac-1 (a.k.a. CD11b), into four separate subsets. These subsets suggest a linear development model: CD27(-) Mac-1(-) → CD27(+) Mac-1(-) → CD27(+) Mac-1(+) → CD27(-) Mac-1(+) . Here, we used a combination of BrdU labeling experiments and mathematical modeling to gain insights regarding NK-cell development in mouse bone marrow (BM), spleen and liver. The modeling results that best fit the experimental data show that the majority of NK cells already express CD27 upon entering the NK-cell developmental pathway. Additionally, only a small fraction of NK cells exit the BM to other sites, suggesting that peripheral NK-cell populations originate from site-specific immature NK cells more than from BM-derived mature NK cells.
Collapse
Affiliation(s)
- Nissim Pinhas
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Michal Sternberg-Simon
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | | | - Gitit Shahaf
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Thierry Walzer
- Centre International de Recherche en Infectiologie (CIRI), INSERM-CNRS, Lyon, France
| | - Eric Vivier
- Centre d'Immunologie de Marseille-Luminy, Aix-Marseille University UM2, Inserm U1104, CNRS UMR7280, Marseille, France
- Service d'Immunologie, Assistance Publique-Hôpitaux de Marseille, Marseille, France
| | - Ramit Mehr
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| |
Collapse
|
34
|
Lee SJ, Kang WY, Yoon Y, Jin JY, Song HJ, Her JH, Kang SM, Hwang YK, Kang KJ, Joo KM, Nam DH. Natural killer (NK) cells inhibit systemic metastasis of glioblastoma cells and have therapeutic effects against glioblastomas in the brain. BMC Cancer 2015; 15:1011. [PMID: 26704632 PMCID: PMC4690248 DOI: 10.1186/s12885-015-2034-y] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 12/17/2015] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Glioblastoma multiforme (GBM) is characterized by extensive local invasion, which is in contrast with extremely rare systemic metastasis of GBM. Molecular mechanisms inhibiting systemic metastasis of GBM would be a novel therapeutic candidate for GBM in the brain. METHODS Patient-derived GBM cells were primarily cultured from surgical samples of GBM patients and were inoculated into the brains of immune deficient BALB/c-nude or NOD-SCID IL2Rgamma(null) (NSG) mice. Human NK cells were isolated from peripheral blood mononucleated cells and expanded in vitro. RESULTS Patient-derived GBM cells in the brains of NSG mice unexpectedly induced spontaneous lung metastasis although no metastasis was detected in BALB/c-nude mice. Based on the difference of the innate immunity between two mouse strains, NK cell activities of orthotopic GBM xenograft models based on BALB/c-nude mice were inhibited. NK cell inactivation induced spontaneous lung metastasis of GBM cells, which indicated that NK cells inhibit the systemic metastasis. In vitro cytotoxic activities of human NK cells against GBM cells indicated that cytotoxic activity of NK cells against GBM cells prevents systemic metastasis of GBM and that NK cells could be effective cell therapeutics against GBM. Accordingly, NK cells transplanted into orthotopic GBM xenograft models intravenously or intratumorally induced apoptosis of GBM cells in the brain and showed significant therapeutic effects. CONCLUSIONS Our results suggest that innate NK immunity is responsible for rare systemic metastasis of GBM and that sufficient supplementation of NK cells could be a promising immunotherapeutic strategy for GBM in the brain.
Collapse
Affiliation(s)
- Se Jeong Lee
- Department of Anatomy and Cell Biology, Sungkyunkwan University School of Medicine, 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, 16419, South Korea.
| | - Won Young Kang
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Ilwon-Dong, Gangnam-Gu, Seoul, 06351, South Korea. .,Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, 50 Ilwon-Dong, Gangnam-Gu, Seoul, 06351, South Korea.
| | - Yeup Yoon
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Ilwon-Dong, Gangnam-Gu, Seoul, 06351, South Korea. .,Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, 50 Ilwon-Dong, Gangnam-Gu, Seoul, 06351, South Korea.
| | - Ju Youn Jin
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Ilwon-Dong, Gangnam-Gu, Seoul, 06351, South Korea.
| | - Hye Jin Song
- Department of Anatomy and Cell Biology, Sungkyunkwan University School of Medicine, 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, 16419, South Korea.
| | - Jung Hyun Her
- Cell Therapy Team, Mogam Biotechnology Institute, Yongin, 16928, South Korea.
| | - Sang Mi Kang
- Cell Therapy Team, Mogam Biotechnology Institute, Yongin, 16928, South Korea.
| | - Yu Kyeong Hwang
- Cell Therapy Team, Mogam Biotechnology Institute, Yongin, 16928, South Korea.
| | - Kyeong Jin Kang
- Department of Anatomy and Cell Biology, Sungkyunkwan University School of Medicine, 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, 16419, South Korea.
| | - Kyeung Min Joo
- Department of Anatomy and Cell Biology, Sungkyunkwan University School of Medicine, 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, 16419, South Korea. .,Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Ilwon-Dong, Gangnam-Gu, Seoul, 06351, South Korea. .,Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, 50 Ilwon-Dong, Gangnam-Gu, Seoul, 06351, South Korea. .,Department of Anatomy and Cell Biology, Sungkyunkwan University School of Medicine, 50 Ilwon-Dong, Gangnam-Gu, Seoul, 06351, South Korea.
| | - Do-Hyun Nam
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Ilwon-Dong, Gangnam-Gu, Seoul, 06351, South Korea. .,Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, 50 Ilwon-Dong, Gangnam-Gu, Seoul, 06351, South Korea.
| |
Collapse
|
35
|
Sarkar S, van Gelder M, Noort W, Xu Y, Rouschop KMA, Groen R, Schouten HC, Tilanus MGJ, Germeraad WTV, Martens ACM, Bos GMJ, Wieten L. Optimal selection of natural killer cells to kill myeloma: the role of HLA-E and NKG2A. Cancer Immunol Immunother 2015; 64:951-63. [PMID: 25920521 PMCID: PMC4506464 DOI: 10.1007/s00262-015-1694-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 03/27/2015] [Indexed: 12/30/2022]
Abstract
Immunotherapy with allogeneic natural killer (NK) cells offers therapeutic perspectives for multiple myeloma patients. Here, we aimed to refine NK cell therapy by evaluation of the relevance of HLA-class I and HLA-E for NK anti-myeloma reactivity. We show that HLA-class I was strongly expressed on the surface of patient-derived myeloma cells and on myeloma cell lines. HLA-E was highly expressed by primary myeloma cells but only marginally by cell lines. HLA-E(low) expression on U266 cells observed in vitro was strongly upregulated after in vivo (bone marrow) growth in RAG-2(-/-) γc(-/-) mice, suggesting that in vitro HLA-E levels poorly predict the in vivo situation. Concurrent analysis of inhibitory receptors (KIR2DL1, KIR2DL2/3, KIR3DL1 and NKG2A) and NK cell degranulation upon co-culture with myeloma cells revealed that KIR-ligand-mismatched NK cells degranulate more than matched subsets and that HLA-E abrogates degranulation of NKG2A+ subsets. Inhibition by HLA-class I and HLA-E was also observed with IL-2-activated NK cells and at low oxygen levels (0.6 %) mimicking hypoxic bone marrow niches where myeloma cells preferentially reside. Our study demonstrates that NKG2A-negative, KIR-ligand-mismatched NK cells are the most potent subset for clinical application. We envision that infusion of high numbers of this subclass will enhance clinical efficacy.
Collapse
Affiliation(s)
- Subhashis Sarkar
- />Division of Hematology, Department of Internal Medicine, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Michel van Gelder
- />Division of Hematology, Department of Internal Medicine, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Willy Noort
- />Department of Cell Biology, University Medical Center Utrecht, Utrecht, The Netherlands
- />Department of Hematology, VU University Medical Center, Amsterdam, The Netherlands
| | - Yunping Xu
- />Department of Transplantation Immunology, Tissue Typing Laboratory, Maastricht University Medical Center+, PO box 5800, 6202 AZ Maastricht, The Netherlands
| | - Kasper M. A. Rouschop
- />Department of Radiation Oncology (Maastro Lab), GROW School for Oncology and Developmental Biology, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Richard Groen
- />Department of Cell Biology, University Medical Center Utrecht, Utrecht, The Netherlands
- />Department of Hematology, VU University Medical Center, Amsterdam, The Netherlands
| | - Harry C. Schouten
- />Division of Hematology, Department of Internal Medicine, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Marcel G. J. Tilanus
- />Department of Transplantation Immunology, Tissue Typing Laboratory, Maastricht University Medical Center+, PO box 5800, 6202 AZ Maastricht, The Netherlands
| | - Wilfred T. V. Germeraad
- />Division of Hematology, Department of Internal Medicine, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Anton C. M. Martens
- />Department of Cell Biology, University Medical Center Utrecht, Utrecht, The Netherlands
- />Department of Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
- />Department of Hematology, VU University Medical Center, Amsterdam, The Netherlands
| | - Gerard M. J. Bos
- />Division of Hematology, Department of Internal Medicine, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Lotte Wieten
- />Department of Transplantation Immunology, Tissue Typing Laboratory, Maastricht University Medical Center+, PO box 5800, 6202 AZ Maastricht, The Netherlands
| |
Collapse
|
36
|
Yoon SR, Kim TD, Choi I. Understanding of molecular mechanisms in natural killer cell therapy. Exp Mol Med 2015; 47:e141. [PMID: 25676064 PMCID: PMC4346487 DOI: 10.1038/emm.2014.114] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 11/17/2014] [Accepted: 12/02/2014] [Indexed: 01/14/2023] Open
Abstract
Cancer cells and the immune system are closely related and thus influence each other. Although immune cells can suppress cancer cell growth, cancer cells can evade immune cell attack via immune escape mechanisms. Natural killer (NK) cells kill cancer cells by secreting perforins and granzymes. Upon contact with cancer cells, NK cells form immune synapses to deliver the lethal hit. Mature NK cells are differentiated from hematopoietic stem cells in the bone marrow. They move to lymph nodes, where they are activated through interactions with dendritic cells. Interleukin-15 (IL-15) is a key molecule that activates mature NK cells. The adoptive transfer of NK cells to treat incurable cancer is an attractive approach. A certain number of activated NK cells are required for adoptive NK cell therapy. To prepare these NK cells, mature NK cells can be amplified to obtain sufficient numbers of NK cells. Alternatively, NK cells can be differentiated and amplified from hematopoietic stem cells. In addition, the selection of donors is important to achieve maximal efficacy. In this review, we discuss the overall procedures and strategies of NK cell therapy against cancer.
Collapse
Affiliation(s)
- Suk Ran Yoon
- 1] Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea [2] Department of Functional Genomics, Korea University of Science and Technology, Daejeon, Republic of Korea
| | - Tae-Don Kim
- 1] Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea [2] Department of Functional Genomics, Korea University of Science and Technology, Daejeon, Republic of Korea
| | - Inpyo Choi
- 1] Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea [2] Department of Functional Genomics, Korea University of Science and Technology, Daejeon, Republic of Korea
| |
Collapse
|
37
|
Rudnicka K, Miszczyk E, Matusiak A, Walencka M, Moran AP, Rudnicka W, Chmiela M. Helicobacter pylori-driven modulation of NK cell expansion, intracellular cytokine expression and cytotoxic activity. Innate Immun 2014; 21:127-39. [PMID: 24448078 DOI: 10.1177/1753425913518225] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
During Helicobacter pylori (Hp) infections, innate immune cells may be positively or negatively modulated by Hp compounds or by Hp-induced cytokines. We have shown previously that the natural cytotoxic activity of PBMC was lower in Hp-infected [Hp(+)] than Hp-uninfected individuals [Hp(-)]. Here, we asked whether the Hp-modulated cytotoxic amplitude is associated with changes in the number of NK cells, their activation or intracellular cytokine expression. Flow cytometry immunophenotyping of PBMC was performed with regard to the surface receptors CD3, CD56 and CD25, and intracellular cytokine expression of IL-2, IFN-γ and IL-10 after in vitro stimulation with Hp glycine acid extract (GE), Hp LPS or standard Escherichia coli LPS. Hp GE-driven enhancement of lymphocyte cytotoxic activity was associated with the expansion of CD3(-)CD56(+)CD25(+) NK cells and the up-regulation of IFN-γ and/or IL-2 synthesis, up to the higher level in Hp(-) than in Hp(+), while Hp LPS-mediated decrease in lymphocyte cytotoxicity was accompanied by the lack of CD3(-)CD56(+)CD25(+) NK propagation, the inhibition of pro-inflammatory cytokine expression and intense expansion of IL-10-producing NK cells. Thus, the cytotoxic and cytokine activities of NK cells were dependent on the type of antigenic challenge and the Hp status, that is, NK cells could be modulated positively by Hp GE Ags and negatively by Hp LPS.
Collapse
Affiliation(s)
- Karolina Rudnicka
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Łódź, Łódź, Poland
| | - Eliza Miszczyk
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Łódź, Łódź, Poland
| | - Agnieszka Matusiak
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Łódź, Łódź, Poland
| | - Maria Walencka
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Łódź, Łódź, Poland
| | - Anthony P Moran
- Department of Microbiology, National University of Ireland, University Road, Galway, Ireland
| | - Wiesława Rudnicka
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Łódź, Łódź, Poland
| | - Magdalena Chmiela
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Łódź, Łódź, Poland
| |
Collapse
|
38
|
Horowitz A, Strauss-Albee DM, Leipold M, Kubo J, Nemat-Gorgani N, Dogan OC, Dekker CL, Mackey S, Maecker H, Swan GE, Davis MM, Norman PJ, Guethlein LA, Desai M, Parham P, Blish CA. Genetic and environmental determinants of human NK cell diversity revealed by mass cytometry. Sci Transl Med 2013; 5:208ra145. [PMID: 24154599 PMCID: PMC3918221 DOI: 10.1126/scitranslmed.3006702] [Citation(s) in RCA: 421] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Natural killer (NK) cells play critical roles in immune defense and reproduction, yet remain the most poorly understood major lymphocyte population. Because their activation is controlled by a variety of combinatorially expressed activating and inhibitory receptors, NK cell diversity and function are closely linked. To provide an unprecedented understanding of NK cell repertoire diversity, we used mass cytometry to simultaneously analyze 37 parameters, including 28 NK cell receptors, on peripheral blood NK cells from 5 sets of monozygotic twins and 12 unrelated donors of defined human leukocyte antigen (HLA) and killer cell immunoglobulin-like receptor (KIR) genotype. This analysis revealed a remarkable degree of NK cell diversity, with an estimated 6000 to 30,000 phenotypic populations within an individual and >100,000 phenotypes in the donor panel. Genetics largely determined inhibitory receptor expression, whereas activation receptor expression was heavily environmentally influenced. Therefore, NK cells may maintain self-tolerance through strictly regulated expression of inhibitory receptors while using adaptable expression patterns of activating and costimulatory receptors to respond to pathogens and tumors. These findings further suggest the possibility that discrete NK cell subpopulations could be harnessed for immunotherapeutic strategies in the settings of infection, reproduction, and transplantation.
Collapse
Affiliation(s)
- Amir Horowitz
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Stanford Immunology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Dara M. Strauss-Albee
- Stanford Immunology, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Michael Leipold
- Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Jessica Kubo
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Neda Nemat-Gorgani
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Ozge C. Dogan
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Cornelia L. Dekker
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Sally Mackey
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Holden Maecker
- Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Gary E. Swan
- Center for Health Sciences, SRI International, Menlo Park, CA, 94025, USA
| | - Mark M. Davis
- Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Stanford Immunology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Paul J. Norman
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Lisbeth A. Guethlein
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Manisha Desai
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Peter Parham
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Stanford Immunology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Catherine A. Blish
- Stanford Immunology, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| |
Collapse
|
39
|
Rudnicka K, Matusiak A, Miszczyk E, Rudnicka W, Tenderenda M, Chmiela M. Immunophenotype of peripheral blood natural killer cells and IL-10 serum levels in relation to Helicobacter pylori status. APMIS 2013; 121:806-13. [PMID: 23758061 DOI: 10.1111/apm.12120] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2013] [Accepted: 04/08/2013] [Indexed: 12/25/2022]
Abstract
Recent findings suggest that NK (Natural Killer) cells may directly modulate the antimicrobial immune responses. In this study, we performed immunophenotypic analysis of peripheral blood NK cells with regard to CD56, CD16, Nkp46, and CD25 markers, as well as IL-10 levels quantification in the sera samples of asymptomatic, H. pylori (Hp)-infected or uninfected individuals, and combined these results with our previous findings on lymphocyte cytotoxic activity. Twenty healthy volunteers [10 Hp(-);10 Hp(+)] were included in the study. The percentages of classic lymphocytes (CD3(+) ) and NK cells (CD3(-) CD56(+) , CD3(-) Nkp46(+) , CD3(-) CD16(+) ) with or without CD25 receptor were evaluated by fluorochrome-conjugated monoclonal antibody staining and flow cytometry analysis. IL-10 quantification was performed by enzyme-linked immunosorbent assay-ELISA. Our study showed elevated levels of IL-10 and higher NK cell numbers of both CD3(-) CD56(+) CD25(+) and CD3(-) Nkp46(+) CD25(+) phenotypes, as well as CD3(+) CD25(+) classic lymphocytes in Hp(+) compared with Hp(-) individuals. No differences between Hp(-) and Hp(+) individuals were found either in total number of classic lymphocytes or NK cell subtypes. Our data suggest that in Hp(+) donors, there is a domination of lymphocytes and NK cells co-expressing CD25 marker, which might be influenced by the regulatory IL-10. This phenomenon may be a result of H. pylori adaptation to a changing environment in vivo leading to a chronic infection and lack of severe gastric pathologies.
Collapse
Affiliation(s)
- Karolina Rudnicka
- Laboratory of Gastroimmunology, Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | | | | | | | | | | |
Collapse
|
40
|
Konjevic G, Jurisic V, Jovic V, Vuletic A, Mirjacic Martinovic K, Radenkovic S, Spuzic I. Investigation of NK cell function and their modulation in different malignancies. Immunol Res 2012; 52:139-56. [PMID: 22442005 DOI: 10.1007/s12026-012-8285-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
NK cells have become a subject of investigation not only in the field of tumor immunology and infectious diseases, but also within all aspects of immunology, such as transplantation, autoimmunity, and hypersensitivity. Our early studies aside from investigating NK cell activity in experimental animals and humans included studies of perforin expression and modulation in this lymphocyte subset. As NK cell activity is modified by their environment, we showed clinical stage-dependent impairment of their activity and in vitro effect of different sera, Th1 cytokines, and their combination in breast cancer, Hodgkin's disease, and non-Hodgkin's lymphoma patients, especially with respect to metabolic and cell membrane changes of peripheral blood lymphocytes evaluated by spontaneous release of the enzyme lactate dehydrogenase (LDH) that led to the correction of the LDH enzyme release assay for natural cytotoxicity. By long-term immuno-monitoring of patients with malignancies, we also showed the kinetics of NK cell modulation during chemo-immunotherapy. In our more recent studies, we give data of NK function and novel families of NK cell receptor expression in healthy individuals that may be of help in NK cell profiling, by giving referent values of basic and cytokine-induced expression of some NK cell receptors either in evaluation of disease or in immuno-monitoring during cytokine therapy of patients with malignancies. Moreover, we give novel aspects of modulation of NK cell activity by cytokines approved for immunotherapy, IFN and IL-2, in melanoma and other malignancies with respect to alterations in new activating (NKG2D and CD161) and inhibitory (CD158a and CD158b) receptor characteristics and signaling molecules in CD16- and CD56-defined NK cells and their small immunoregulatory and large cytotoxic subsets in peripheral blood and lymph nodes, as NK cell-mediated killing of tumor cells depends on the balance between stimulatory and inhibitory signaling.
Collapse
Affiliation(s)
- Gordana Konjevic
- Laboratory for Experimental Immunology, Institute of Oncology and Radiology of Serbia, Belgrade, Serbia.
| | | | | | | | | | | | | |
Collapse
|
41
|
Rag1-/- mutant zebrafish demonstrate specific protection following bacterial re-exposure. PLoS One 2012; 7:e44451. [PMID: 22970222 PMCID: PMC3435260 DOI: 10.1371/journal.pone.0044451] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 08/06/2012] [Indexed: 12/14/2022] Open
Abstract
Background Recombination activation gene 1 deficient (rag1−/−) mutant zebrafish have a reduced lymphocyte-like cell population that lacks functional B and T lymphocytes of the acquired immune system, but includes Natural Killer (NK)-like cells and Non-specific cytotoxic cells (NCC) of the innate immune system. The innate immune system is thought to lack the adaptive characteristics of an acquired immune system that provide enhanced protection to a second exposure of the same pathogen. It has been shown that NK cells have the ability to mediate adaptive immunity to chemical haptens and cytomegalovirus in murine models. In this study we evaluated the ability of rag1−/− mutant zebrafish to mount a protective response to the facultative intracellular fish bacterium Edwardsiella ictaluri. Methodology/Principal Findings Following secondary challenge with a lethal dose of homologous bacteria 4 and 8 weeks after a primary vaccination, rag1−/− mutant zebrafish demonstrated protective immunity. Heterologous bacterial exposures did not provide protection. Adoptive leukocyte transfers from previously exposed mutants conferred protective immunity to naïve mutants when exposed to homologous bacteria. Conclusions/Significance Our findings show that a component of the innate immune system mounted a response that provided significantly increased survival when rag1−/− mutant zebrafish were re-exposed to the same bacteria. Further, adoptive cell transfers demonstrated that kidney interstitial leukocytes from previously exposed rag1−/− mutant zebrafish transferred this protective immunity. This is the first report of any rag1−/− mutant vertebrate mounting a protective secondary immune response to a bacterial pathogen, and demonstrates that a type of zebrafish innate immune cell can mediate adaptive immunity in the absence of T and B cells.
Collapse
|