1
|
Ybarra TK, Bishop GA. TRAF3 regulation of proximal TLR signaling in B cells. J Leukoc Biol 2024; 116:210-223. [PMID: 38489541 PMCID: PMC11271984 DOI: 10.1093/jleuko/qiae038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/24/2024] [Accepted: 02/09/2024] [Indexed: 03/17/2024] Open
Abstract
Toll-like receptors are pattern recognition receptors that bridge the innate and adaptive immune responses and are critical for host defense. Most studies of Toll-like receptors have focused upon their roles in myeloid cells. B lymphocytes express most Toll-like receptors and are responsive to Toll-like receptor ligands, yet Toll-like receptor-mediated signaling in B cells is relatively understudied. This is an important knowledge gap, as Toll-like receptor functions can be cell type specific. In striking contrast to myeloid cells, TRAF3 inhibits TLR-mediated functions in B cells. TRAF3-deficient B cells display enhanced IRF3 and NFκB activation, cytokine production, immunoglobulin isotype switching, and antibody production in response to Toll-like receptors 3, 4, 7, and 9. Here, we address the question of how TRAF3 impacts initial B-cell Toll-like receptor signals to regulate downstream activation. We found that TRAF3 in B cells associated with proximal Toll-like receptor 4 and 7 signaling proteins, including MyD88, TRAF6, and the tyrosine kinase Syk. In the absence of TRAF3, TRAF6 showed a greater association with several Toll-like receptor signaling proteins, suggesting that TRAF3 may inhibit TRAF6 access to Toll-like receptor signaling complexes and thus early Toll-like receptor signaling. In addition, our results highlight a key role for Syk in Toll-like receptor signaling in B cells. In the absence of TRAF3, Syk activation was enhanced in response to ligands for Toll-like receptors 4 and 7, and Syk inhibition reduced downstream Toll-like receptor-mediated NFκB activation and proinflammatory cytokine production. This study reveals multiple mechanisms by which TRAF3 serves as a key negative regulator of early Toll-like receptor signaling events in B cells.
Collapse
Affiliation(s)
- Tiffany K Ybarra
- Interdisciplinary Graduate Program in Immunology, University of Iowa, 285 Newton Road, Iowa City, IA 52242, United States
- Departments of Microbiology and Immunology, University of Iowa, 285 Newton Road, Iowa City, IA 52242, United States
| | - Gail A Bishop
- Interdisciplinary Graduate Program in Immunology, University of Iowa, 285 Newton Road, Iowa City, IA 52242, United States
- Departments of Microbiology and Immunology, University of Iowa, 285 Newton Road, Iowa City, IA 52242, United States
- VA Medical Center, University of Iowa, 285 Newton Road, Iowa City, IA 52242, United States
| |
Collapse
|
2
|
AMJAD ELHAM, PEZZANI RAFFAELE, SOKOUTI BABAK. A review of the literature on the use of CRISPR/Cas9 gene therapy to treat hepatocellular carcinoma. Oncol Res 2024; 32:439-461. [PMID: 38361756 PMCID: PMC10865741 DOI: 10.32604/or.2023.044473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/24/2023] [Indexed: 02/17/2024] Open
Abstract
Noncoding RNAs instruct the Cas9 nuclease to site-specifically cleave DNA in the CRISPR/Cas9 system. Despite the high incidence of hepatocellular carcinoma (HCC), the patient's outcome is poor. As a result of the emergence of therapeutic resistance in HCC patients, clinicians have faced difficulties in treating such tumor. In addition, CRISPR/Cas9 screens were used to identify genes that improve the clinical response of HCC patients. It is the objective of this article to summarize the current understanding of the use of the CRISPR/Cas9 system for the treatment of cancer, with a particular emphasis on HCC as part of the current state of knowledge. Thus, in order to locate recent developments in oncology research, we examined both the Scopus database and the PubMed database. The ability to selectively interfere with gene expression in combinatorial CRISPR/Cas9 screening can lead to the discovery of new effective HCC treatment regimens by combining clinically approved drugs. Drug resistance can be overcome with the help of the CRISPR/Cas9 system. HCC signature genes and resistance to treatment have been uncovered by genome-scale CRISPR activation screening, although this method is not without limitations. It has been extensively examined whether CRISPR can be used as a tool for disease research and gene therapy. CRISPR and its applications to tumor research, particularly in HCC, are examined in this study through a review of the literature.
Collapse
Affiliation(s)
- ELHAM AMJAD
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, 5165665813, Iran
| | - RAFFAELE PEZZANI
- Phytotherapy Lab, Endocrinology Unit, Dipartimento di Medicina (DIMED), University of Padova, Via Ospedale 105, Padova, 35128, Italy
- Associazione Italiana Per La Ricerca Oncologica Di Base, Associazione Italiana Per La Ricerca Oncologica Di Base, Padova, 35128, Italy
| | - BABAK SOKOUTI
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, 5165665813, Iran
| |
Collapse
|
3
|
Ren A, Sun J, Yin W, Westerberg LS, Miller H, Lee P, Candotti F, Guan F, Lei J, Gong Q, Chen Y, Liu C. Signaling networks in B cell development and related therapeutic strategies. J Leukoc Biol 2021; 111:877-891. [PMID: 34528729 DOI: 10.1002/jlb.2ru0221-088rrr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
B cells are essential for Ab production during humoral immune responses. From decades of B cell research, there is now a detailed understanding of B cell subsets, development, functions, and most importantly, signaling pathways. The complicated pathways in B cells and their interactions with each other are stage-dependent, varying with surface marker expression during B cell development. With the increasing understanding of B cell development and signaling pathways, the mechanisms underlying B cell related diseases are being unraveled as well, making it possible to provide more precise and effective treatments. In this review, we describe several essential and recently discovered signaling pathways in B cell development and take a look at newly developed therapeutic strategies targeted at B cell signaling.
Collapse
Affiliation(s)
- Anwen Ren
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianxuan Sun
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Yin
- Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lisa S Westerberg
- Department of Microbiology Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Heather Miller
- The Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Pamela Lee
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Fabio Candotti
- Division of Immunology and Allergy, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Fei Guan
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiahui Lei
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Quan Gong
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, China.,Clinical Molecular Immunology Center, School of Medicine, Yangtze University, Jingzhou, China
| | - Yan Chen
- The Second Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Chaohong Liu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
4
|
Li H, Hostager BS, Arkee T, Bishop GA. Multiple mechanisms for TRAF3-mediated regulation of the T cell costimulatory receptor GITR. J Biol Chem 2021; 297:101097. [PMID: 34418432 PMCID: PMC8441216 DOI: 10.1016/j.jbc.2021.101097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/10/2021] [Accepted: 08/17/2021] [Indexed: 11/28/2022] Open
Abstract
Tumor necrosis factor receptor (TNFR)-associated factor 3 (TRAF3) plays context-specific roles in multiple receptor-mediated signaling pathways in different cell types. Mice lacking TRAF3 in T cells display defective T-cell-mediated immune responses to immunization and infection and demonstrate defective early signaling via the TCR complex. However, the role of TRAF3 in the function of GITR/TNFRSF18, an important costimulatory member of the TNFR superfamily, is unclear. Here we investigated the impact of T cell TRAF3 status on both GITR expression and activation of specific kinases in the GITR signaling pathway in T cells. Our results indicate that TRAF3 negatively regulates GITR functions in several ways. First, expression of GITR protein was elevated in TRAF3-deficient T cells, resulting from both transcriptional and posttranslational regulation that led to greater GITR transcript levels, as well as enhanced GITR protein stability. TRAF3 associated with T cell GITR in a manner dependent upon GITR ligation. TRAF3 also inhibited several events of the GITR mediated early signaling cascade, in a manner independent of recruitment of phosphatases, a mechanism by which TRAF3 inhibits signaling through several other cytokine receptors. These results add new information to our understanding of GITR signaling and function in T cells, which is relevant to the potential use of GITR to enhance immune therapies.
Collapse
Affiliation(s)
- Hanzeng Li
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, Iowa, USA
| | - Bruce S Hostager
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, Iowa, USA
| | - Tina Arkee
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, Iowa, USA; Medical Scientist Training Program, The University of Iowa, Iowa City, Iowa, USA
| | - Gail A Bishop
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, Iowa, USA; Medical Scientist Training Program, The University of Iowa, Iowa City, Iowa, USA; Department of Internal Medicine, The University of Iowa, Iowa City, Iowa, USA; Research, Iowa City VA Medical Center, Iowa City, Iowa, USA.
| |
Collapse
|
5
|
Gurley JM, Gmyrek GB, Hargis EA, Bishop GA, Carr DJJ, Elliott MH. The Chx10-Traf3 Knockout Mouse as a Viable Model to Study Neuronal Immune Regulation. Cells 2021; 10:cells10082068. [PMID: 34440839 PMCID: PMC8391412 DOI: 10.3390/cells10082068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/06/2021] [Accepted: 08/09/2021] [Indexed: 12/15/2022] Open
Abstract
Uncontrolled inflammation is associated with neurodegenerative conditions in central nervous system tissues, including the retina and brain. We previously found that the neural retina (NR) plays an important role in retinal immunity. Tumor necrosis factor Receptor-Associated Factor 3 (TRAF3) is a known immune regulator expressed in the retina; however, whether TRAF3 regulates retinal immunity is unknown. We have generated the first conditional NR-Traf3 knockout mouse model (Chx10-Cre/Traf3f/f) to enable studies of neuronal TRAF3 function. Here, we evaluated NR-Traf3 depletion effects on whole retinal TRAF3 protein expression, visual acuity, and retinal structure and function. Additionally, to determine if NR-Traf3 plays a role in retinal immune regulation, we used flow cytometry to assess immune cell infiltration following acute local lipopolysaccharide (LPS) administration. Our results show that TRAF3 protein is highly expressed in the NR and establish that NR-Traf3 depletion does not affect basal retinal structure or function. Importantly, NR-Traf3 promoted LPS-stimulated retinal immune infiltration. Thus, our findings propose NR-Traf3 as a positive regulator of retinal immunity. Further, the NR-Traf3 mouse provides a tool for investigations of neuronal TRAF3 as a novel potential target for therapeutic interventions aimed at suppressing retinal inflammatory disease and may also inform treatment approaches for inflammatory neurodegenerative brain conditions.
Collapse
Affiliation(s)
- Jami M. Gurley
- Department of Ophthalmology, Dean McGee Eye Institute, University of Oklahoma Health Sciences Center (OUHSC), 608 Stanton L. Young Blvd., Oklahoma City, OK 73104, USA; (G.B.G.); (E.A.H.); (D.J.J.C.); (M.H.E.)
- Correspondence:
| | - Grzegorz B. Gmyrek
- Department of Ophthalmology, Dean McGee Eye Institute, University of Oklahoma Health Sciences Center (OUHSC), 608 Stanton L. Young Blvd., Oklahoma City, OK 73104, USA; (G.B.G.); (E.A.H.); (D.J.J.C.); (M.H.E.)
| | - Elizabeth A. Hargis
- Department of Ophthalmology, Dean McGee Eye Institute, University of Oklahoma Health Sciences Center (OUHSC), 608 Stanton L. Young Blvd., Oklahoma City, OK 73104, USA; (G.B.G.); (E.A.H.); (D.J.J.C.); (M.H.E.)
| | - Gail A. Bishop
- Department of Microbiology and Immunology, University of Iowa and VAMC, Iowa City, IA 52242, USA;
| | - Daniel J. J. Carr
- Department of Ophthalmology, Dean McGee Eye Institute, University of Oklahoma Health Sciences Center (OUHSC), 608 Stanton L. Young Blvd., Oklahoma City, OK 73104, USA; (G.B.G.); (E.A.H.); (D.J.J.C.); (M.H.E.)
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center (OUHSC), 608 Stanton L. Young Blvd., Oklahoma City, OK 73104, USA
| | - Michael H. Elliott
- Department of Ophthalmology, Dean McGee Eye Institute, University of Oklahoma Health Sciences Center (OUHSC), 608 Stanton L. Young Blvd., Oklahoma City, OK 73104, USA; (G.B.G.); (E.A.H.); (D.J.J.C.); (M.H.E.)
| |
Collapse
|
6
|
Matson EM, Abyazi ML, Bell KA, Hayes KM, Maglione PJ. B Cell Dysregulation in Common Variable Immunodeficiency Interstitial Lung Disease. Front Immunol 2021; 11:622114. [PMID: 33613556 PMCID: PMC7892472 DOI: 10.3389/fimmu.2020.622114] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 12/23/2020] [Indexed: 12/16/2022] Open
Abstract
Common variable immunodeficiency (CVID) is the most frequently diagnosed primary antibody deficiency. About half of CVID patients develop chronic non-infectious complications thought to be due to intrinsic immune dysregulation, including autoimmunity, gastrointestinal disease, and interstitial lung disease (ILD). Multiple studies have found ILD to be a significant cause of morbidity and mortality in CVID. Yet, the precise mechanisms underlying this complication in CVID are poorly understood. CVID ILD is marked by profound pulmonary infiltration of both T and B cells as well as granulomatous inflammation in many cases. B cell depletive therapy, whether done as a monotherapy or in combination with another immunosuppressive agent, has become a standard of therapy for CVID ILD. However, CVID is a heterogeneous disorder, as is its lung pathology, and the precise patients that would benefit from B cell depletive therapy, when it should administered, and how long it should be repeated all remain gaps in our knowledge. Moreover, some have ILD recurrence after B cell depletive therapy and the relative importance of B cell biology remains incompletely defined. Developmental and functional abnormalities of B cell compartments observed in CVID ILD and related conditions suggest that imbalance of B cell signaling networks may promote lung disease. Included within these potential mechanisms of disease is B cell activating factor (BAFF), a cytokine that is upregulated by the interferon gamma (IFN-γ):STAT1 signaling axis to potently influence B cell activation and survival. B cell responses to BAFF are shaped by the divergent effects and expression patterns of its three receptors: BAFF receptor (BAFF-R), transmembrane activator and CAML interactor (TACI), and B cell maturation antigen (BCMA). Moreover, soluble forms of BAFF-R, TACI, and BCMA exist and may further influence the pathogenesis of ILD. Continued efforts to understand how dysregulated B cell biology promotes ILD development and progression will help close the gap in our understanding of how to best diagnose, define, and manage ILD in CVID.
Collapse
Affiliation(s)
- Erik M Matson
- Pulmonary Center, Section of Pulmonary, Allergy, Sleep & Critical Care Medicine, Department of Medicine, Boston University School of Medicine, Boston Medical Center, Boston, MA, United States
| | - Miranda L Abyazi
- Pulmonary Center, Section of Pulmonary, Allergy, Sleep & Critical Care Medicine, Department of Medicine, Boston University School of Medicine, Boston Medical Center, Boston, MA, United States
| | - Kayla A Bell
- Pulmonary Center, Section of Pulmonary, Allergy, Sleep & Critical Care Medicine, Department of Medicine, Boston University School of Medicine, Boston Medical Center, Boston, MA, United States
| | - Kevin M Hayes
- Pulmonary Center, Section of Pulmonary, Allergy, Sleep & Critical Care Medicine, Department of Medicine, Boston University School of Medicine, Boston Medical Center, Boston, MA, United States
| | - Paul J Maglione
- Pulmonary Center, Section of Pulmonary, Allergy, Sleep & Critical Care Medicine, Department of Medicine, Boston University School of Medicine, Boston Medical Center, Boston, MA, United States
| |
Collapse
|
7
|
Workman LM, Zhang L, Fan Y, Zhang W, Habelhah H. TRAF2 Ser-11 Phosphorylation Promotes Cytosolic Translocation of the CD40 Complex To Regulate Downstream Signaling Pathways. Mol Cell Biol 2020; 40:e00429-19. [PMID: 32041822 PMCID: PMC7156217 DOI: 10.1128/mcb.00429-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 11/14/2019] [Accepted: 01/29/2020] [Indexed: 11/20/2022] Open
Abstract
CD40 plays an important role in immune responses by activating the c-Jun N-terminal protein kinase (JNK) and NF-κB pathways; however, the precise mechanisms governing the spatiotemporal activation of these two signaling pathways are not fully understood. Here, using four different TRAF2-deficient cell lines (A20.2J, CH12.LX, HAP1, and mouse embryonic fibroblasts [MEFs]) reconstituted with wild-type or phosphorylation mutant forms of TRAF2, along with immunoprecipitation, immunoblotting, gene expression, and immunofluorescence analyses, we report that CD40 ligation elicits TANK-binding kinase 1 (TBK1)-mediated phosphorylation of TRAF2 at Ser-11. This phosphorylation interfered with the interaction between TRAF2's RING domain and membrane phospholipids and enabled translocation of the TRAF2 complex from CD40 to the cytoplasm. We also observed that this cytoplasmic translocation is required for full activation of the JNK pathway and the secondary phase of the NF-κB pathway. Moreover, we found that in the absence of Ser-11 phosphorylation, the TRAF2 RING domain interacts with phospholipids, leading to the translocation of the TRAF2 complex to lipid rafts, resulting in its degradation and activation of the noncanonical NF-κB pathway. Thus, our results provide new insights into the CD40 signaling mechanisms whereby Ser-11 phosphorylation controls RING domain-dependent subcellular localization of TRAF2 to modulate the spatiotemporal activation of the JNK and NF-κB pathways.
Collapse
Affiliation(s)
- Lauren M Workman
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Laiqun Zhang
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Yumei Fan
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Science, Hebei Normal University, Shijiazhuang, People's Republic of China
| | - Weizhou Zhang
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Hasem Habelhah
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| |
Collapse
|
8
|
Whillock AL, Mambetsariev N, Lin WW, Stunz LL, Bishop GA. TRAF3 regulates the oncogenic proteins Pim2 and c-Myc to restrain survival in normal and malignant B cells. Sci Rep 2019; 9:12884. [PMID: 31501481 PMCID: PMC6733949 DOI: 10.1038/s41598-019-49390-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 08/23/2019] [Indexed: 12/30/2022] Open
Abstract
TRAF3 is a versatile intracellular adapter protein with multiple context-specific roles. Uniquely in B cells, TRAF3 deficiency enhances survival and increases the risk of transformation, as loss of TRAF3 is observed in several types of B cell cancers. Here, we report a new mechanism for TRAF3 in the restraint of B cell survival. We found that TRAF3 deficiency was associated with induction of the pro-survival kinase Pim2 in mouse primary B cells and human malignant B cell lines. The increase in Pim2 was independent of NF-κB2 activation but was ameliorated with inhibition of STAT3 expression or function. TRAF3 deficiency also led to a Pim2-dependent increase in c-Myc protein levels and was associated with reduced c-Myc ubiquitination. TRAF3-deficient primary B cells were less sensitive to cell death induced by the Pim inhibitors SGI-1776 and TP-3654. Interestingly, human malignant B cell lines with low expression of TRAF3 were more sensitive to Pim inhibition-induced cell death. Combination treatment of TRAF3-deficient B cells and B cell tumor lines with c-Myc inhibitors enhanced their sensitivity to Pim inhibition, suggesting a possible therapeutic strategy. TRAF3 thus suppresses a Pim2-mediated B cell survival axis, which can be a potential target for treatment of B cell malignancies.
Collapse
Affiliation(s)
- Amy L Whillock
- Department of Microbiology & Immunology, University of Iowa, Iowa City, IA, USA.,Immunology Graduate Program, University of Iowa, Iowa City, IA, USA.,Medical Scientist Training Program, University of Iowa, Iowa City, IA, USA.,Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA
| | - Nurbek Mambetsariev
- Department of Microbiology & Immunology, University of Iowa, Iowa City, IA, USA.,Immunology Graduate Program, University of Iowa, Iowa City, IA, USA.,Medical Scientist Training Program, University of Iowa, Iowa City, IA, USA.,Northwestern Memorial Hospital, Chicago, IL, USA
| | - Wai W Lin
- Department of Microbiology & Immunology, University of Iowa, Iowa City, IA, USA.,Immunology Graduate Program, University of Iowa, Iowa City, IA, USA.,Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Laura L Stunz
- Department of Microbiology & Immunology, University of Iowa, Iowa City, IA, USA.,Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA
| | - Gail A Bishop
- Department of Microbiology & Immunology, University of Iowa, Iowa City, IA, USA. .,Internal Medicine, University of Iowa, Iowa City, IA, USA. .,Immunology Graduate Program, University of Iowa, Iowa City, IA, USA. .,Medical Scientist Training Program, University of Iowa, Iowa City, IA, USA. .,Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA. .,VA Medical Center, Iowa City, IA, USA.
| |
Collapse
|
9
|
Seijkens TTP, van Tiel CM, Kusters PJH, Atzler D, Soehnlein O, Zarzycka B, Aarts SABM, Lameijer M, Gijbels MJ, Beckers L, den Toom M, Slütter B, Kuiper J, Duchene J, Aslani M, Megens RTA, van 't Veer C, Kooij G, Schrijver R, Hoeksema MA, Boon L, Fay F, Tang J, Baxter S, Jongejan A, Moerland PD, Vriend G, Bleijlevens B, Fisher EA, Duivenvoorden R, Gerdes N, de Winther MPJ, Nicolaes GA, Mulder WJM, Weber C, Lutgens E. Targeting CD40-Induced TRAF6 Signaling in Macrophages Reduces Atherosclerosis. J Am Coll Cardiol 2019; 71:527-542. [PMID: 29406859 PMCID: PMC5800892 DOI: 10.1016/j.jacc.2017.11.055] [Citation(s) in RCA: 140] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 11/02/2017] [Accepted: 11/16/2017] [Indexed: 02/05/2023]
Abstract
Background Disrupting the costimulatory CD40-CD40L dyad reduces atherosclerosis, but can result in immune suppression. The authors recently identified small molecule inhibitors that block the interaction between CD40 and tumor necrosis factor receptor-associated factor (TRAF) 6 (TRAF-STOPs), while leaving CD40-TRAF2/3/5 interactions intact, thereby preserving CD40-mediated immunity. Objectives This study evaluates the potential of TRAF-STOP treatment in atherosclerosis. Methods The effects of TRAF-STOPs on atherosclerosis were investigated in apolipoprotein E deficient (Apoe−/−) mice. Recombinant high-density lipoprotein (rHDL) nanoparticles were used to target TRAF-STOPs to macrophages. Results TRAF-STOP treatment of young Apoe−/− mice reduced atherosclerosis by reducing CD40 and integrin expression in classical monocytes, thereby hampering monocyte recruitment. When Apoe−/− mice with established atherosclerosis were treated with TRAF-STOPs, plaque progression was halted, and plaques contained an increase in collagen, developed small necrotic cores, and contained only a few immune cells. TRAF-STOP treatment did not impair “classical” immune pathways of CD40, including T-cell proliferation and costimulation, Ig isotype switching, or germinal center formation, but reduced CD40 and β2-integrin expression in inflammatory monocytes. In vitro testing and transcriptional profiling showed that TRAF-STOPs are effective in reducing macrophage migration and activation, which could be attributed to reduced phosphorylation of signaling intermediates of the canonical NF-κB pathway. To target TRAF-STOPs specifically to macrophages, TRAF-STOP 6877002 was incorporated into rHDL nanoparticles. Six weeks of rHDL-6877002 treatment attenuated the initiation of atherosclerosis in Apoe−/− mice. Conclusions TRAF-STOPs can overcome the current limitations of long-term CD40 inhibition in atherosclerosis and have the potential to become a future therapeutic for atherosclerosis.
Collapse
Affiliation(s)
- Tom T P Seijkens
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, the Netherlands; Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University, Munich, Germany
| | - Claudia M van Tiel
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, the Netherlands
| | - Pascal J H Kusters
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, the Netherlands
| | - Dorothee Atzler
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, the Netherlands; Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University, Munich, Germany; Walther-Straub-Institut for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany; German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
| | - Oliver Soehnlein
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University, Munich, Germany; German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
| | - Barbara Zarzycka
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| | - Suzanne A B M Aarts
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, the Netherlands
| | - Marnix Lameijer
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, the Netherlands
| | - Marion J Gijbels
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, the Netherlands; Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands; Department of Molecular Genetics, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| | - Linda Beckers
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, the Netherlands
| | - Myrthe den Toom
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, the Netherlands
| | - Bram Slütter
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, the Netherlands
| | - Johan Kuiper
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, the Netherlands
| | - Johan Duchene
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University, Munich, Germany
| | - Maria Aslani
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University, Munich, Germany
| | - Remco T A Megens
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University, Munich, Germany; Department of Biomedical Engineering, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| | - Cornelis van 't Veer
- Center for Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Gijs Kooij
- Department of Molecular Cell Biology and Immunology, Neuroscience Campus Amsterdam, VU Medical Center, Amsterdam, the Netherlands
| | - Roy Schrijver
- German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
| | - Marten A Hoeksema
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, the Netherlands
| | | | - Francois Fay
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Jun Tang
- Bioceros BV, Utrecht, the Netherlands; Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Samantha Baxter
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Aldo Jongejan
- Department of Bioinformatics, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Perry D Moerland
- Department of Bioinformatics, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Gert Vriend
- Centre for Molecular and Biomolecular Informatics (CMBI), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Boris Bleijlevens
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, the Netherlands
| | - Edward A Fisher
- Division of Cardiology, Department of Medicine, Marc and Ruti Bell Program in Vascular Biology, New York University School of Medicine, New York, New York
| | - Raphael Duivenvoorden
- Department of Vascular Medicine, Academic Medical Center, Amsterdam, the Netherlands
| | - Norbert Gerdes
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University, Munich, Germany; Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Menno P J de Winther
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, the Netherlands; Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University, Munich, Germany
| | - Gerry A Nicolaes
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| | - Willem J M Mulder
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, the Netherlands; Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Christian Weber
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University, Munich, Germany; German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany; Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| | - Esther Lutgens
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, the Netherlands; Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University, Munich, Germany.
| |
Collapse
|
10
|
Perez-Chacon G, Adrados M, Vallejo-Cremades MT, Lefebvre S, Reed JC, Zapata JM. Dysregulated TRAF3 and BCL2 Expression Promotes Multiple Classes of Mature Non-hodgkin B Cell Lymphoma in Mice. Front Immunol 2019; 9:3114. [PMID: 30687320 PMCID: PMC6338067 DOI: 10.3389/fimmu.2018.03114] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 12/17/2018] [Indexed: 11/13/2022] Open
Abstract
TNF-Receptor Associated Factor (TRAF)-3 is a master regulator of B cell homeostasis and function. TRAF3 has been shown to bind and regulate various proteins involved in the control of innate and adaptive immune responses. Previous studies showed that TRAF3 overexpression renders B cells hyper-reactive to antigens and Toll-like receptor (TLR) agonists, while TRAF3 deficiency has been implicated in the development of a variety of B cell neoplasms. In this report, we show that transgenic mice overexpressing TRAF3 and BCL2 in B cells develop with high incidence severe lymphadenopathy, splenomegaly and lymphoid infiltrations into tissues and organs, which is the result of the growth of monoclonal and oligoclonal B cell neoplasms, as demonstrated by analysis of VHDJH gene rearrangement. FACS and immunohistochemical analyses show that different types of mature B cell neoplasms arise in TRAF3/BCL2 double-transgenic (tg) mice, all of which are characterized by the loss of surface IgM and IgD expression. However, two types of lymphomas are predominant: (1) mature B cell neoplasms consistent with diffuse large B cell lymphoma and (2) plasma cell neoplasms. The Ig isotypes expressed by the expanded B-cell clones included IgA, IgG, and IgM, with most having undergone somatic hypermutation. In contrast, mouse littermates representing all the other genotypes (TRAF3-/BCL2-; TRAF3+/BCL2-, and TRAF3-/BCL2+) did not develop significant lymphadenopathy or clonal B cell expansions within the observation period of 20 months. Interestingly, a large representation of the HCDR3 sequences expressed in the TRAF3-tg and TRAF3/BCL2-double-tg B cells are highly similar to those recognizing pathogen-associated molecular patterns and damage-associated molecular patterns, strongly suggesting a role for TRAF3 in promoting B cell differentiation in response to these antigens. Finally, allotransplantation of either splenocytes or cell-containing ascites from lymphoma-bearing TRAF3/BCL2 mice into SCID/NOD immunodeficient mice showed efficient transfer of the parental expanded B-cell clones. Altogether, these results indicate that TRAF3, perhaps by promoting exacerbated B cell responses to certain antigens, and BCL2, presumably by supporting survival of these clones, cooperate to induce mature B cell neoplasms in transgenic mice.
Collapse
Affiliation(s)
- Gema Perez-Chacon
- Instituto de Investigaciones Biomédicas "Alberto Sols", CSIC-UAM, Madrid, Spain.,Instituto de Investigación Hospital Universitario La Paz, Madrid, Spain
| | - Magdalena Adrados
- Instituto de Investigación del Hospital Universitario de La Princesa, Madrid, Spain
| | | | - Sophie Lefebvre
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - John C Reed
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Juan M Zapata
- Instituto de Investigaciones Biomédicas "Alberto Sols", CSIC-UAM, Madrid, Spain.,Instituto de Investigación Hospital Universitario La Paz, Madrid, Spain
| |
Collapse
|
11
|
Zapata JM, Perez-Chacon G, Carr-Baena P, Martinez-Forero I, Azpilikueta A, Otano I, Melero I. CD137 (4-1BB) Signalosome: Complexity Is a Matter of TRAFs. Front Immunol 2018; 9:2618. [PMID: 30524423 PMCID: PMC6262405 DOI: 10.3389/fimmu.2018.02618] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 10/24/2018] [Indexed: 12/11/2022] Open
Abstract
CD137 (4-1BB, Tnsfr9) is a member of the TNF-receptor (TNFR) superfamily without known intrinsic enzymatic activity in its cytoplasmic domain. Hence, akin to other members of the TNFR family, it relies on the TNFR-Associated-Factor (TRAF) family of adaptor proteins to build the CD137 signalosome for transducing signals into the cell. Thus, upon CD137 activation by binding of CD137L trimers or by crosslinking with agonist monoclonal antibodies, TRAF1, TRAF2, and TRAF3 are readily recruited to the cytoplasmic domain of CD137, likely as homo- and/or heterotrimers with different configurations, initiating the construction of the CD137 signalosome. The formation of TRAF2-RING dimers between TRAF2 molecules from contiguous trimers would help to establish a multimeric structure of TRAF-trimers that is probably essential for CD137 signaling. In addition, available studies have identified a large number of proteins that are recruited to CD137:TRAF complexes including ubiquitin ligases and proteases, kinases, and modulatory proteins. Working in a coordinated fashion, these CD137-signalosomes will ultimately promote CD137-mediated T cell proliferation and survival and will endow T cells with stronger effector functions. Current evidence allows to envision the molecular events that might take place in the early stages of CD137-signalosome formation, underscoring the key roles of TRAFs and of K63 and K48-ubiquitination of target proteins in the signaling process. Understanding the composition and fine regulation of CD137-signalosomes assembly and disassembly will be key to improve the therapeutic activities of chimeric antigen receptors (CARs) encompassing the CD137 cytoplasmic domain and a new generation of CD137 agonists for the treatment of cancer.
Collapse
Affiliation(s)
- Juan M Zapata
- Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), Madrid, Spain.,Instituto de Investigación Hospital Universitario La Paz, Madrid, Spain
| | - Gema Perez-Chacon
- Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), Madrid, Spain.,Instituto de Investigación Hospital Universitario La Paz, Madrid, Spain
| | - Pablo Carr-Baena
- Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), Madrid, Spain
| | - Ivan Martinez-Forero
- Departamento de Inmunologia and Inmunoterapia, Centro de Investigación Medica Aplicada, Universidad de Navarra, Pamplona, Spain
| | - Arantza Azpilikueta
- Departamento de Inmunologia and Inmunoterapia, Centro de Investigación Medica Aplicada, Universidad de Navarra, Pamplona, Spain
| | - Itziar Otano
- Departamento de Inmunologia and Inmunoterapia, Centro de Investigación Medica Aplicada, Universidad de Navarra, Pamplona, Spain
| | - Ignacio Melero
- Departamento de Inmunologia and Inmunoterapia, Centro de Investigación Medica Aplicada, Universidad de Navarra, Pamplona, Spain.,MSD, London, United Kingdom.,Departamento de Inmunologia e Inmunoterapia, Clinica Universitaria, Universidad de Navarra, Pamplona, Spain.,Instituto de Investigacion Sanitaria de Navarra, Pamplona, Spain.,Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain
| |
Collapse
|
12
|
Smulski CR, Eibel H. BAFF and BAFF-Receptor in B Cell Selection and Survival. Front Immunol 2018; 9:2285. [PMID: 30349534 PMCID: PMC6186824 DOI: 10.3389/fimmu.2018.02285] [Citation(s) in RCA: 201] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 09/14/2018] [Indexed: 12/16/2022] Open
Abstract
The BAFF-receptor (BAFFR) is encoded by the TNFRSF13C gene and is one of the main pro-survival receptors in B cells. Its function is impressively documented in humans by a homozygous deletion within exon 2, which leads to an almost complete block of B cell development at the stage of immature/transitional B cells. The resulting immunodeficiency is characterized by B-lymphopenia, agammaglobulinemia, and impaired humoral immune responses. However, different from mutations affecting pathway components coupled to B cell antigen receptor (BCR) signaling, BAFFR-deficient B cells can still develop into IgA-secreting plasma cells. Therefore, BAFFR deficiency in humans is characterized by very few circulating B cells, very low IgM and IgG serum concentrations but normal or high IgA levels.
Collapse
Affiliation(s)
- Cristian R Smulski
- Faculty of Medicine, Center for Chronic Immunodeficiency, Medical Center - University of Freiburg, Freiburg, Germany
| | - Hermann Eibel
- Faculty of Medicine, Center for Chronic Immunodeficiency, Medical Center - University of Freiburg, Freiburg, Germany
| |
Collapse
|
13
|
Bishop GA, Stunz LL, Hostager BS. TRAF3 as a Multifaceted Regulator of B Lymphocyte Survival and Activation. Front Immunol 2018; 9:2161. [PMID: 30319624 PMCID: PMC6165887 DOI: 10.3389/fimmu.2018.02161] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 09/03/2018] [Indexed: 12/20/2022] Open
Abstract
The adaptor protein TNF receptor-associated factor 3 (TRAF3) serves as a powerful negative regulator in multiple aspects of B cell biology. Early in vitro studies in transformed cell lines suggested the potential of TRAF3 to inhibit signaling by its first identified binding receptor, CD40. However, because the canonical TRAF3 binding site on many receptors also mediates binding of other TRAFs, and whole-mouse TRAF3 deficiency is neonatally lethal, an accurate understanding of TRAF3's specific functions was delayed until conditional TRAF3-deficient mice were produced. Studies of B cell-specific TRAF3-deficient mice, complemented by investigations in normal and malignant mouse and human B cells, reveal that TRAF3 has powerful regulatory roles that are unique to this TRAF, as well as functions context-specific to the B cell. This review summarizes the current state of knowledge of these roles and functions. These include inhibition of signaling by plasma membrane receptors, negative regulation of intracellular receptors, and restraint of cytoplasmic NF- κB pathways. TRAF3 is also now known to function as a resident nuclear protein, and to impact B cell metabolism. Through these and additional mechanisms TRAF3 exerts powerful restraint upon B cell survival and activation. It is thus perhaps not surprising that TRAF3 has been revealed as an important tumor suppressor in B cells. The many and varied functions of TRAF3 in B cells, and new directions to pursue in future studies, are summarized and discussed here.
Collapse
Affiliation(s)
- Gail A. Bishop
- Department of Microbiology & Immunology, University of Iowa, Iowa City, IA, United States
- Department of Internal Medicine, University of Iowa, Iowa City, IA, United States
- Iowa City VA Health Care System, Iowa City, Iowa City, IA, United States
| | - Laura L. Stunz
- Department of Microbiology & Immunology, University of Iowa, Iowa City, IA, United States
| | - Bruce S. Hostager
- Department of Microbiology & Immunology, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
14
|
Tang X, Zhang L, Wei W. Roles of TRAFs in NF-κB signaling pathways mediated by BAFF. Immunol Lett 2018; 196:113-118. [PMID: 29378215 DOI: 10.1016/j.imlet.2018.01.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 01/20/2018] [Accepted: 01/22/2018] [Indexed: 12/27/2022]
Abstract
B cell activating factor (BAFF) is an important cytokine for the maintenance of B cell development, survival and homeostasis. BAFF/BAFF-R could directly activate nuclear factor kappa B (NF-κB) pathway. Tumour necrosis factor receptor-associated factors (TRAFs) are key regulatory proteins in NF-κB signaling pathways. TRAF1 enhances the activation of tumor necrosis factor receptor 2 (TNF-R2) induced by NF-κB. TRAF2 and TRAF3 signal adapters act cooperatively to control the maturation and survival signals mediated by BAFF receptor. TRAF5 is most homologous to TRAF3, as well as most functionally similar to TRAF2. TRAF6 is also required for the BAFF-mediated activation of NF-κB signal pathway. TRAF7 is involved in signal transduction pathways that lead either to activation or repression of NF-κB transcription factor. In this article, we reviewed the roles of TRAFs in NF-κB signaling pathway mediated by BAFF.
Collapse
Affiliation(s)
- Xiaoyu Tang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immunopharmacology of Education, Ministry of China, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei 230032, China
| | - Lingling Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immunopharmacology of Education, Ministry of China, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei 230032, China.
| | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immunopharmacology of Education, Ministry of China, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei 230032, China.
| |
Collapse
|
15
|
Schweighoffer E, Tybulewicz VL. Signalling for B cell survival. Curr Opin Cell Biol 2017; 51:8-14. [PMID: 29149682 DOI: 10.1016/j.ceb.2017.10.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 10/10/2017] [Indexed: 12/21/2022]
Abstract
The number of mature B cells is carefully controlled by signalling from receptors that support B cell survival. The best studied of these are the B cell antigen receptor (BCR) and BAFFR. Recent work has shown that signalling from these receptors is closely linked, involves the CD19 co-receptor, and leads to activation of canonical and non-canonical NF-κB pathways, ERK1, ERK2 and ERK5 MAP kinases, and PI-3 kinases. Importantly, studies show that investigation of the importance of signalling molecules in cell survival requires the use of inducible gene deletions within mature B cells. This overcomes the limitations of many earlier studies using constitutive gene deletions which were unable to distinguish between requirements for a protein in development versus survival.
Collapse
Affiliation(s)
| | - Victor Lj Tybulewicz
- The Francis Crick Institute, London NW1 1AT, UK; Imperial College, London W12 0NN, UK.
| |
Collapse
|
16
|
Uzzan M, Colombel JF, Cerutti A, Treton X, Mehandru S. B Cell-Activating Factor (BAFF)-Targeted B Cell Therapies in Inflammatory Bowel Diseases. Dig Dis Sci 2016; 61:3407-3424. [PMID: 27655102 DOI: 10.1007/s10620-016-4317-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 09/13/2016] [Indexed: 12/23/2022]
Abstract
Inflammatory bowel diseases (IBD) involve dysregulated immune responses to gut antigens in genetically predisposed individuals. While a better elucidation of IBD pathophysiology has considerably increased the number of treatment options, the need for more effective therapeutic strategies remains a pressing priority. Defects of both non-hematopoietic (epithelial and stromal) and hematopoietic (lymphoid and myeloid) cells have been described in patients with IBD. Within the lymphoid system, alterations of the T cell compartment are viewed as essential in the pathogenesis of IBD. However, growing evidence points to the additional perturbations of the B cell compartment. Indeed, the intestinal lamina propria from IBD patients shows an increased presence of antibody-secreting plasma cells, which correlates with enhanced pro-inflammatory immunoglobulin G production and changes in the quality of non-inflammatory IgA responses. These B cell abnormalities are compounded by the emergence of systemic antibody responses to various autologous and microbial antigens, which predates the clinical diagnosis of IBD and identifies patients with complicated disease. It is presently unclear whether such antibody responses play a pathogenetic role, as B cell depletion with the CD20-targeting monoclonal antibody rituximab did not ameliorate ulcerative colitis in a clinical trial. However, it must be noted that unresponsiveness to rituximab is also observed also in some patients with autoimmune disorders usually responsive to B cell-depleting therapies. In this review, we discussed mechanistic aspects of B cell-based therapies and their potential role in IBD with a special interest on BAFF and BAFF-targeting therapies buoyed by the success of anti-BAFF treatments in rheumatologic disorders.
Collapse
Affiliation(s)
- Mathieu Uzzan
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA. .,The Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| | - Jean-Frederic Colombel
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.,Departments of Medicine and Pediatrics, Susan and Leonard Feinstein IBD Clinical Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Andrea Cerutti
- The Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Xavier Treton
- Department of Gastroenterology, Beaujon Hospital, APHP, Denis Diderot University, Paris, France
| | - Saurabh Mehandru
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.,The Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| |
Collapse
|
17
|
Bishop GA. TRAF3 as a powerful and multitalented regulator of lymphocyte functions. J Leukoc Biol 2016; 100:919-926. [PMID: 27154354 PMCID: PMC6608063 DOI: 10.1189/jlb.2mr0216-063r] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 03/31/2016] [Accepted: 04/07/2016] [Indexed: 12/12/2022] Open
Abstract
This review summarizes the current state of knowledge regarding the roles of the signaling adapter protein tumor necrosis factor receptor (TNFR)-associated factor 3 in regulating the functions of B and T lymphocytes. In B lymphocytes, TNFR-associated factor 3 inhibits signaling by TNFR superfamily receptors, Toll-like receptors, and interleukin-6R. In contrast, signaling to B cells by the virally encoded oncogenic protein latent membrane protein 1 is promoted by TNFR-associated factor 3. An important B cell-specific role for TNFR-associated factor 3 is the inhibition of homeostatic survival, directly relevant to the common occurrence of TNFR-associated factor 3 mutations in human B cell malignancies. TNFR-associated factor 3 was recently found to be a resident nuclear protein in B cells, where it interacts with and inhibits gene expression mediated by the cAMP response element-binding protein transcription complex, including expression of the prosurvival protein myeloid leukemia cell differentiation protein 1. In T lymphocytes, TNFR-associated factor 3 is required for normal signaling by the T cell antigen receptor, while inhibiting signaling by the interleukin-2 receptor. Cytoplasmic TNFR -associated factor 3 restrains nuclear factor-κB2 activation in both T and B cells. Clinical implications and future directions for the study of this context-dependent signaling regulator are discussed.
Collapse
Affiliation(s)
- Gail A Bishop
- Department of Microbiology, The University of Iowa, Iowa City, Iowa, USA;
- Department of Internal Medicine, The University of Iowa, Iowa City, Iowa, USA; and
- Department of Veterans Affairs Medical Center, Iowa City, Iowa, USA
| |
Collapse
|
18
|
Serão NVL, Kemp RA, Mote BE, Willson P, Harding JCS, Bishop SC, Plastow GS, Dekkers JCM. Genetic and genomic basis of antibody response to porcine reproductive and respiratory syndrome (PRRS) in gilts and sows. Genet Sel Evol 2016; 48:51. [PMID: 27417876 PMCID: PMC4944421 DOI: 10.1186/s12711-016-0230-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 07/06/2016] [Indexed: 12/19/2022] Open
Abstract
Background Our recent research showed that antibody response to porcine reproductive and respiratory syndrome (PRRS), measured as sample-to-positive (S/P) ratio, is highly heritable and has a high genetic correlation with reproductive performance during a PRRS outbreak. Two major quantitative trait loci (QTL) on Sus scrofa chromosome 7 (SSC7; QTLMHC and QTL130) accounted for ~40 % of the genetic variance for S/P. Objectives of this study were to estimate genetic parameters for PRRS S/P in gilts during acclimation, identify regions associated with S/P, and evaluate the accuracy of genomic prediction of S/P across populations with different prevalences of PRRS and using different single nucleotide polymorphism (SNP) sets. Methods Phenotypes and high-density SNP genotypes of female pigs from two datasets were used. The outbreak dataset included 607 animals from one multiplier herd, whereas the gilt acclimation (GA) dataset included data on 2364 replacement gilts from seven breeding companies placed on health-challenged farms. Genomic prediction was evaluated using GA for training and validation, and using GA for training and outbreak for validation. Predictions were based on SNPs across the genome (SNPAll), SNPs in one (SNPMHC and SNP130) or both (SNPSSC7) QTL, or SNPs outside the QTL (SNPRest). Results Heritability of S/P in the GA dataset increased with the proportion of PRRS-positive animals in the herd (from 0.28 to 0.47). Genomic prediction accuracies ranged from low to moderate. Average accuracies were highest when using only the 269 SNPs in both QTL regions (SNPSSC7, with accuracies of 0.39 and 0.31 for outbreak and GA validation datasets, respectively. Average accuracies for SNPALL, SNPMHC, SNP130, and SNPRest were, respectively, 0.26, 0.39, 0.21, and 0.05 for the outbreak, and 0.28, 0.25, 0.22, and 0.12, for the GA validation datasets. Conclusions Moderate genomic prediction accuracies can be obtained for PRRS antibody response using SNPs located within two major QTL on SSC7, while the rest of the genome showed limited predictive ability. Results were obtained using data from multiple genetic sources and farms, which further strengthens these findings. Further research is needed to validate the use of S/P ratio as an indicator trait for reproductive performance during PRRS outbreaks. Electronic supplementary material The online version of this article (doi:10.1186/s12711-016-0230-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nick V L Serão
- Department of Animal Science, Iowa State University, Ames, IA, 50011, USA.,Department of Animal Science, North Carolina State University, Raleigh, NC, 27695, USA
| | | | - Benny E Mote
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | - Philip Willson
- Canadian Centre for Health and Safety in Agriculture, University of Saskatchewan, Saskatoon, SK, S7N 2Z4, Canada
| | - John C S Harding
- Department of Large Animal Clinical Sciences, University of Saskatchewan, Saskatoon, SK, S7N 5B4, Canada
| | - Stephen C Bishop
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Graham S Plastow
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2R3, Canada
| | - Jack C M Dekkers
- Department of Animal Science, Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
19
|
Abstract
The signaling adapter protein tumor necrosis factor receptor (TNFR)-associated factor 3 (TRAF3) is both modified by and contributes to several types of ubiquitination events. TRAF3 plays a variety of context-dependent regulatory roles in all types of immune cells. In B lymphocytes, TRAF3 contributes to regulation of signaling by members of both the TNFR superfamily and innate immune receptors. TRAF3 also plays a unique cell type-specific and critical role in the restraint of B-cell homeostatic survival, a role with important implications for both B-cell differentiation and the pathogenesis of B-cell malignancies. This review focuses upon the relationship between ubiquitin and TRAF3, and how this contributes to multiple functions of TRAF3 in the regulation of signal transduction, transcriptional activation, and effector functions of B lymphocytes.
Collapse
Affiliation(s)
- Wai W Lin
- The Graduate Program in Immunology, University of Iowa, Iowa City, IA, USA
| | - Bruce S Hostager
- Department of Pediatrics, University of Iowa, Iowa City, IA, USA
| | - Gail A Bishop
- The Graduate Program in Immunology, University of Iowa, Iowa City, IA, USA.,Department of Microbiology, University of Iowa, Iowa City, IA, USA.,Department of Internal Medicine, University of Iowa, Iowa City, IA, USA.,VA Medical Center, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
20
|
Levit-Zerdoun E, Becker M, Pohlmeyer R, Wilhelm I, Maity PC, Rajewsky K, Reth M, Hobeika E. Survival of Igα-Deficient Mature B Cells Requires BAFF-R Function. THE JOURNAL OF IMMUNOLOGY 2016; 196:2348-60. [PMID: 26843325 DOI: 10.4049/jimmunol.1501707] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 12/29/2015] [Indexed: 12/18/2022]
Abstract
Expression of a functional BCR is essential for the development of mature B cells and has been invoked in the control of their maintenance. To test this maintenance function in a new experimental setting, we used the tamoxifen-inducible mb1-CreER(T2) mouse strain to delete or truncate either the mb-1 gene encoding the BCR signaling subunit Igα or the VDJ segment of the IgH (H chain [HC]). In this system, Cre-mediated deletion of the mb-1 gene is accompanied by expression of a GFP reporter. We found that, although the Igα-deficient mature B cells survive for >20 d in vivo, the HC-deficient or Igα tail-truncated B cell population is short-lived, with the HC-deficient cells displaying signs of an unfolded protein response. We also show that Igα-deficient B cells still respond to the prosurvival factor BAFF in culture and require BAFF-R signaling for their in vivo maintenance. These results suggest that, under certain conditions, the loss of the BCR can be tolerated by mature B cells for some time, whereas HC-deficient B cells, potentially generated by aberrant somatic mutations in the germinal center, are rapidly eliminated.
Collapse
Affiliation(s)
- Ella Levit-Zerdoun
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany; Department of Molecular Immunology, Biology III, Faculty of Biology, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany; International Max Planck Research School for Molecular and Cellular Biology, 79108 Freiburg, Germany
| | - Martin Becker
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany; Department of Molecular Immunology, Biology III, Faculty of Biology, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany; International Max Planck Research School for Molecular and Cellular Biology, 79108 Freiburg, Germany
| | - Roland Pohlmeyer
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany; Department of Molecular Immunology, Biology III, Faculty of Biology, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany; Centre for Biological Signaling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Isabel Wilhelm
- Department of Molecular Immunology, Biology III, Faculty of Biology, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany; Centre for Biological Signaling Studies, University of Freiburg, 79104 Freiburg, Germany; Spemann Graduate School of Biology and Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Palash Chandra Maity
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany; Department of Molecular Immunology, Biology III, Faculty of Biology, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany; Centre for Biological Signaling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Klaus Rajewsky
- Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany; and
| | - Michael Reth
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany; Department of Molecular Immunology, Biology III, Faculty of Biology, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany; Centre for Biological Signaling Studies, University of Freiburg, 79104 Freiburg, Germany;
| | - Elias Hobeika
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany; Centre for Biological Signaling Studies, University of Freiburg, 79104 Freiburg, Germany; Institute of Immunology, University Hospital Ulm, 89081 Ulm, Germany
| |
Collapse
|
21
|
Abstract
Tumor necrosis factor receptor (TNFR)-associated factor 3 (TRAF3) is broadly involved in different receptor-mediated signaling pathways. Considerable progress was made recently in understanding the role of TRAF3 in T cell biology. Here we review these new findings about how TRAF3 participates in T cell development and function. The different roles of TRAF3 in distinct immune cells are also compared. That TRAF3 is required for T cell effector functions, and invariant Natural Killer T cell function and development, was unexpected. Another surprising finding is that TRAF3 normally restrains regulatory T cell development. It is now clear that TRAF3 regulates signaling to T cells not only through costimulatory members of the TNFR superfamily, but also through the T cell receptor complex, and cytokine receptors. The diverse roles it plays support the multifaceted nature of this molecule. How TRAF3 mediates integration of different signaling cascades is an important topic for future study.
Collapse
Key Words
- DC, dendritic cell
- IBD, inflammatory bowel disease
- ICOS, inducible co-stimulator
- IKK, IκB kinase
- IL-2 receptor
- IL-2, interleukin-2
- Jak1, Janus kinase 1
- LMC, litter mate control
- LMP1, latent membrane protein-1
- MAPK, mitogen-activated protein kinase
- MΦ, macrophage
- NIK, NF-κB inducing kinase
- NLR, nucleotide binding-oligomerization domain (NOD)-like receptor
- RLR, retinoic acid-inducible gene (RIG)-I-like receptor
- SLAM, signaling lymphocyte activation molecule
- SOCS1, Suppressor of cytokine signaling 1
- T cell
- T cell receptor
- T-TRAF3−/−, CD4CreTRAF3flox/flox
- TCPTP, T cell protein tyrosine phosphatase
- TCR, T cell receptor
- TFH, follicular helper T cell
- TFR, follicular Treg cell
- TLR, Toll-like receptor
- TNFR, Tumor necrosis factor receptor
- TRAF3
- TRAF3, TNFR-associated factor 3
- Tcm cell, central memory T cell
- Tem cell, effector memory T cell
- Treg cell, regulatory T cell
- adaptor molecule
- iNKT cell, invariant Natural Killer T cell
- invariant Natural Killer T cell
- regulatory T cell
- signaling pathway
Collapse
Affiliation(s)
- Zuoan Yi
- a Departments of Microbiology ; University of Iowa ; Iowa City , IA USA
| | | | | |
Collapse
|
22
|
Abstract
The adaptor protein TNF receptor-associated factor 3 (TRAF3) regulates signaling through B-lymphocyte receptors, including CD40, BAFF receptor, and Toll-like receptors, and also plays a critical role inhibiting B-cell homoeostatic survival. Consistent with these findings, loss-of-function human TRAF3 mutations are common in B-cell cancers, particularly multiple myeloma and B-cell lymphoma. B cells of B-cell-specific TRAF3(-/-) mice (B-Traf3(-/-)) display remarkably enhanced survival compared with littermate control (WT) B cells. The mechanism for this abnormal homeostatic survival is poorly understood, a key knowledge gap in selecting optimal treatments for human B-cell cancers with TRAF3 deficiency. We show here for the first time to our knowledge that TRAF3 is a resident nuclear protein that associates with the transcriptional regulator cAMP response element binding protein (CREB) in both mouse and human B cells. The TRAF-C domain of TRAF3 was necessary and sufficient to localize TRAF3 to the nucleus via a functional nuclear localization signal. CREB protein was elevated in TRAF3(-/-) B cells, without change in mRNA, but with a decrease in CREB ubiquitination. CREB-mediated transcriptional activity was increased in TRAF3-deficient B cells. Consistent with these findings, Mcl-1, an antiapoptotic target of CREB-mediated transcription, was increased in the absence of TRAF3 and enhanced Mcl-1 was suppressed with CREB inhibition. TRAF3-deficient B cells were also preferentially sensitive to survival inhibition with pharmacologic CREB inhibitor. Our results identify a new mechanism by which nuclear TRAF3 regulates B-cell survival via inhibition of CREB stability, information highly relevant to the role of TRAF3 in B-cell malignancies.
Collapse
|
23
|
Lin WW, Yi Z, Stunz LL, Maine CJ, Sherman LA, Bishop GA. The adaptor protein TRAF3 inhibits interleukin-6 receptor signaling in B cells to limit plasma cell development. Sci Signal 2015; 8:ra88. [PMID: 26329582 DOI: 10.1126/scisignal.aaa5157] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Tumor necrosis factor receptor-associated factor 3 (TRAF3) is an adaptor protein that inhibits signaling by CD40 and by the receptor for B cell-activating factor (BAFF) and negatively regulates homeostatic B cell survival. Loss-of-function mutations in TRAF3 are associated with human B cell malignancies, in particular multiple myeloma. The cytokine interleukin-6 (IL-6) supports the differentiation and survival of normal and neoplastic plasma cells. We found that mice with a deficiency in TRAF3 specifically in B cells (B-Traf3(-/-) mice) had about twice as many plasma cells as did their littermate controls. TRAF3-deficient B cells had enhanced responsiveness to IL-6, and genetic loss of IL-6 in B-Traf3(-/-) mice restored their plasma cell numbers to normal. TRAF3 inhibited IL-6 receptor (IL-6R)-mediated signaling by facilitating the association of PTPN22 (a nonreceptor protein tyrosine phosphatase) with the kinase Janus-activated kinase 1 (Jak1), which in turn blocked phosphorylation of the transcription factor STAT3 (signal transducer and activator of transcription 3). Consistent with these results, the number of plasma cells in the PTPN22-deficient mice was increased compared to that in the wild-type mice. Our findings identify TRAF3 and PTPN22 as inhibitors of IL-6R signaling in B cells and reveal a previously uncharacterized role for TRAF3 in the regulation of plasma cell differentiation.
Collapse
Affiliation(s)
- Wai W Lin
- Graduate Immunology Program, University of Iowa, Iowa City, IA 52242, USA
| | - Zuoan Yi
- Department of Microbiology, University of Iowa, Iowa City, IA 52242, USA
| | - Laura L Stunz
- Department of Microbiology, University of Iowa, Iowa City, IA 52242, USA
| | - Christian J Maine
- Department of Immunology and Microbial Sciences, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Linda A Sherman
- Department of Immunology and Microbial Sciences, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Gail A Bishop
- Graduate Immunology Program, University of Iowa, Iowa City, IA 52242, USA. Department of Microbiology, University of Iowa, Iowa City, IA 52242, USA. Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA. Veterans Affairs Medical Center, Iowa City, IA 52246, USA.
| |
Collapse
|
24
|
Abstract
Rheumatoid arthritis (RA) is a common autoimmune disease that is marked by a systemic inflammatory reaction and joint erosions. Elevated levels of B cell activating factor (BAFF) have been detected in the serum and synovial fluid of RA patients. Moreover, the levels of BAFF increase in cases of autoimmune disease and are correlated with the level of disease activity. As an innate cytokine mediator, BAFF affects the immune response of the synovial microenvironment. In this review, we consider recent observations of BAFF and its receptors in RA progression, as well as the effects of BAFF on the cell-cell interactions network. We also summarize the clinical development of BAFF antagonists for the treatment of RA.
Collapse
|
25
|
Burkly LC. Regulation of Tissue Responses: The TWEAK/Fn14 Pathway and Other TNF/TNFR Superfamily Members That Activate Non-Canonical NFκB Signaling. Front Immunol 2015; 6:92. [PMID: 25784914 PMCID: PMC4345838 DOI: 10.3389/fimmu.2015.00092] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 02/17/2015] [Indexed: 12/29/2022] Open
Affiliation(s)
- Linda C Burkly
- Department of Immunology, Biogen Idec, Inc. , Cambridge, MA , USA
| |
Collapse
|
26
|
Yi Z, Lin WW, Stunz LL, Bishop GA. The adaptor TRAF3 restrains the lineage determination of thymic regulatory T cells by modulating signaling via the receptor for IL-2. Nat Immunol 2014; 15:866-74. [PMID: 25029551 PMCID: PMC4139452 DOI: 10.1038/ni.2944] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 06/18/2014] [Indexed: 12/25/2022]
Abstract
The number of Foxp3+ regulatory T cells (Treg cells) must be tightly controlled for efficient suppression of autoimmunity with no impairment of normal immune responses. Here we found that the adaptor TRAF3 was intrinsically required for restraining the lineage determination of thymic Treg cells. T cell-specific deficiency in TRAF3 resulted in a two- to threefold greater frequency of Treg cells, due to the more efficient transition of precursors of Treg cells into Foxp3+ Treg cells. TRAF3 dampened interleukin 2 (IL-2) signaling by facilitating recruitment of the tyrosine phosphatase TCPTP to the IL-2 receptor complex, which resulted in dephosphorylation of the signaling molecules Jak1 and Jak3 and negative regulation of signaling via Jak and the transcription factor STAT5. Our results identify a role for TRAF3 as an important negative regulator of signaling via the IL-2 receptor that affects the development of Treg cells.
Collapse
Affiliation(s)
- Zuoan Yi
- Department of Microbiology, University of Iowa, Iowa, USA
| | - Wai Wai Lin
- 1] Department of Microbiology, University of Iowa, Iowa, USA. [2] Graduate Immunology Program, University of Iowa, Iowa, USA
| | - Laura L Stunz
- Department of Microbiology, University of Iowa, Iowa, USA
| | - Gail A Bishop
- 1] Department of Microbiology, University of Iowa, Iowa, USA. [2] Graduate Immunology Program, University of Iowa, Iowa, USA. [3] Department of Internal Medicine, University of Iowa, Iowa, USA. [4] Veterans Affairs Medical Center, Iowa City, Iowa, USA
| |
Collapse
|
27
|
Figgett WA, Vincent FB, Saulep-Easton D, Mackay F. Roles of ligands from the TNF superfamily in B cell development, function, and regulation. Semin Immunol 2014; 26:191-202. [PMID: 24996229 DOI: 10.1016/j.smim.2014.06.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 06/09/2014] [Indexed: 01/01/2023]
Abstract
Most ligands from the tumour necrosis factor (TNF) superfamily play very important roles in the immune system, and particularly so in B lymphocyte biology. TNF ligands are essential to many aspects of normal B cell biology from development in the bone marrow to maturation in the periphery as well as for activation and differentiation into germinal centre, memory or plasma cells. TNF ligands also influence other aspects of B cell biology such as their ability to present antigens or regulate immune responses. Importantly, inadequate regulation of many TNF ligands is associated with B cell disorders including autoimmunity and cancers. As a result, inhibitors of a number of TNF ligands have been tested in the clinic, with some becoming very successful approved treatments alleviating B cell-mediated pathologies.
Collapse
Affiliation(s)
- William A Figgett
- Department of Immunology, Monash University, Central Clinical School, Alfred Medical Research and Education Precinct (AMREP), Commercial Road, Melbourne, Victoria 3004, Australia
| | - Fabien B Vincent
- Department of Immunology, Monash University, Central Clinical School, Alfred Medical Research and Education Precinct (AMREP), Commercial Road, Melbourne, Victoria 3004, Australia
| | - Damien Saulep-Easton
- Department of Immunology, Monash University, Central Clinical School, Alfred Medical Research and Education Precinct (AMREP), Commercial Road, Melbourne, Victoria 3004, Australia
| | - Fabienne Mackay
- Department of Immunology, Monash University, Central Clinical School, Alfred Medical Research and Education Precinct (AMREP), Commercial Road, Melbourne, Victoria 3004, Australia.
| |
Collapse
|
28
|
Serão NVL, Matika O, Kemp RA, Harding JCS, Bishop SC, Plastow GS, Dekkers JCM. Genetic analysis of reproductive traits and antibody response in a PRRS outbreak herd. J Anim Sci 2014; 92:2905-21. [PMID: 24879764 DOI: 10.2527/jas.2014-7821] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is the most economically significant disease impacting pig production in North America, Europe, and Asia, causing reproductive losses such as increased rates of stillbirth and mummified piglets. The objective of this study was to explore the genetic basis of host response to the PRRS virus (PRRSV) in a commercial multiplier sow herd before and after a PRRS outbreak, using antibody response and reproductive traits. Reproductive data comprising number born alive (NBA), number alive at 24 h (NA24), number stillborn (NSB), number born mummified (NBM), proportion born dead (PBD), number born dead (NBD), number weaned (NW), and number of mortalities through weaning (MW) of 5,227 litters from 1,967 purebred Landrace sows were used along with a pedigree comprising 2,995 pigs. The PRRS outbreak date was estimated from rolling averages of farrowing traits and was used to split the data into a pre-PRRS phase and a PRRS phase. All 641 sows in the herd during the outbreak were blood sampled 46 d after the estimated outbreak date and were tested for anti-PRRSV IgG using ELISA (sample-to-positive [S/P] ratio). Genetic parameters of traits were estimated separately for the pre-PRRS and PRRS phase data sets. Sows were genotyped using the PorcineSNP60 BeadChip, and genome-wide association studies (GWAS) were performed using method Bayes B. Heritability estimates for reproductive traits ranged from 0.01 (NBM) to 0.12 (NSB) and from 0.01 (MW) to 0.12 (NBD) for the pre-PRRS and PRRS phases, respectively. S/P ratio had heritability (0.45) and strong genetic correlations with most traits, ranging from -0.72 (NBM) to 0.73 (NBA). In the pre-PRRS phase, regions associated with NSB and PBD explained 1.6% and 3% of the genetic variance, respectively. In the PRRS phase, regions associated with NBD, NSB, and S/P ratio explained 0.8%, 11%, and 50.6% of the genetic variance, respectively. For S/P ratio, 2 regions on SSC 7 (SSC7) separated by 100 Mb explained 40% of the genetic variation, including a region encompassing the major histocompatibility complex, which explained 25% of the genetic variance. These results indicate a significant genomic component associated with PRRSV antibody response and NSB in this data set. Also, the high heritability and genetic correlation estimates for S/P ratio during the PRRS phase suggest that S/P ratio could be used as an indicator of the impact of PRRS on reproductive traits.
Collapse
Affiliation(s)
- N V L Serão
- Department of Animal Science, Iowa State University, Ames 50011
| | - O Matika
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - R A Kemp
- Genesus, Oakville, MB R0H 0Y0, Canada
| | - J C S Harding
- Department of Large Animal Clinical Sciences, University of Saskatchewan, Saskatoon, SK S7N 5A1, Canada
| | - S C Bishop
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - G S Plastow
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - J C M Dekkers
- Department of Animal Science, Iowa State University, Ames 50011
| |
Collapse
|
29
|
Roles for TNF-receptor associated factor 3 (TRAF3) in lymphocyte functions. Cytokine Growth Factor Rev 2013; 25:147-56. [PMID: 24433987 DOI: 10.1016/j.cytogfr.2013.12.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 12/15/2013] [Indexed: 12/27/2022]
Abstract
TRAF3 is an adapter protein that serves and regulates the functions of several types of receptors, located both inside the cell and at the plasma membrane. These include members of the TNF receptor superfamily (TNFR-SF), toll-like receptors (TLR), and cytokine receptors. It has become increasingly evident that the roles and functions of TRAF3 are highly context-dependent. TRAF3 can serve distinct roles for different receptors in the same cell, and also has highly cell-type-dependent functions. This review focuses upon the current state of knowledge regarding how TRAF3 regulates the biology and effector functions of B and T lymphocytes, two major cell types of the adaptive immune response in which TRAF3 has markedly distinct roles.
Collapse
|