1
|
Guo HW, Lai HJ, Long BQ, Xu LX, Wang EHC, Shapiro J, McElwee KJ. Increased CRHR1 expression on monocytes from patients with AA enables a pro-inflammatory response to corticotrophin-releasing hormone. Exp Dermatol 2024; 33:e15182. [PMID: 39367575 DOI: 10.1111/exd.15182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 08/19/2024] [Accepted: 09/06/2024] [Indexed: 10/06/2024]
Abstract
Stress may play a key role in alopecia areata (AA), though the exact interactions of stress with AA remain undefined. Corticotropin-releasing hormone (CRH), the proximal regulator of the stress axis, has been recognized as an immunomodulatory factor in tissues and peripheral blood mononuclear cells (PBMCs). We used multicolour flow cytometry to identify receptor CRHR1 expression on PBMC subsets in AA patients (n = 54) and controls (n = 66). We found that CRHR1 was primarily expressed by circulating monocytes. CRHR1 expression on monocytes was enhanced in AA compared with controls (3.17% vs. 1.44%, p = 0.002, chi-squared test). AA incidence was correlated to elevated CD14+ monocyte numbers (R = 0.092, p = 0.036) and markedly independently correlated with increased CRHR1 expression (R = 0.215, p = 0.027). High CRHR1 expression was significantly related to chronic AA (disease duration >1 year; p = 0.003, chi-squared test), and large lesion area (AA area >25%; p = 0.049, chi-squared test). We also observed enhanced percentages of active monocytes and reduced CD16+ CD3- NK cell numbers in AA patients' PBMCs (p = 0.010; 0.025, respectively). In vitro CRH treatment of PBMCs and human monocyte cell line THP-1 promoted CD86 upregulation. The findings imply that stress-related factors CRH and CRHR1 contribute to AA development and progression where higher CRHR1 expression is associated with chronic AA and larger lesions.
Collapse
Affiliation(s)
- Hong-Wei Guo
- Department of Dermatology and Skin Science, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Dermatology, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Hui-Jun Lai
- Department of Dermatology, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Bo-Quan Long
- Department of Dermatology, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Li-Xin Xu
- Flow Core Facility, Children and Family Research Institute, Vancouver, British Columbia, Canada
| | - Eddy Hsi Chun Wang
- Department of Dermatology and Skin Science, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jerry Shapiro
- Department of Dermatology and Skin Science, University of British Columbia, Vancouver, British Columbia, Canada
- The Ronald O. Perelman Department of Dermatology, New York University Grossman School of Medicine, New York, New York, USA
| | - Kevin J McElwee
- Department of Dermatology and Skin Science, University of British Columbia, Vancouver, British Columbia, Canada
- Centre for Skin Sciences, University of Bradford, Bradford, West Yorkshire, UK
| |
Collapse
|
2
|
Agura T, Shin S, Jo H, Jeong S, Ahn H, Pang SY, Lee J, Park JH, Kim Y, Kang JS. Aptamin C enhances anti-cancer activity NK cells through the activation of STAT3: a comparative study with vitamin C. Anat Cell Biol 2024; 57:408-418. [PMID: 39048513 PMCID: PMC11424563 DOI: 10.5115/acb.24.120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/16/2024] [Accepted: 05/18/2024] [Indexed: 07/27/2024] Open
Abstract
Vitamin C is a well-known antioxidant with antiviral, anticancer, and anti-inflammatory properties based on its antioxidative function. Aptamin C, a complex of vitamin C with its specific aptamer, has been reported to maintain or even enhance the efficacy of vitamin C while increasing its stability. To investigate in vivo distribution of Aptamin C, Gulo knockout mice, which, like humans, cannot biosynthesize vitamin C, were administered Aptamin C orally for 2 and 4 weeks. The results showed higher vitamin C accumulation in all tissues when administered Aptamin C, especially in the spleen. Next, the activity of natural killer (NK) cells were conducted. CD69, a marker known for activating for NK cells, which had decreased due to vitamin C deficiency, did not recover with vitamin C treatment but showed an increasing with Aptamin C. Furthermore, the expression of CD107a, a cell surface marker that increases during the killing process of target cells, also did not recover with vitamin C but increased with Aptamin C. Based on these results, when cultured with tumor cells to measure the extent of tumor cell death, an increase in tumor cell death was observed. To investigate the signaling mechanisms and related molecules involved in the proliferation and activation of NK cells by Aptamin C showed that Aptamin C treatment led to an increase in intracellular STAT3 activation. In conclusion, Aptamin C has a higher capability to activate NK cells and induce tumor cell death compared to vitamin C and it is mediated through the activation of STAT3.
Collapse
Affiliation(s)
- Tomoyo Agura
- Laboratory of Vitamin C and Antioxidant Immunology, Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul, Korea
- Institute of Allergy and Clinical Immunology, Medical Research Center, Seoul National University, Seoul, Korea
| | - Seulgi Shin
- Laboratory of Vitamin C and Antioxidant Immunology, Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul, Korea
- Institute of Allergy and Clinical Immunology, Medical Research Center, Seoul National University, Seoul, Korea
- Department of Research and Development, N Therapeutics Co., Ltd., Seoul, Korea
| | - Hyejung Jo
- Laboratory of Vitamin C and Antioxidant Immunology, Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul, Korea
- Institute of Allergy and Clinical Immunology, Medical Research Center, Seoul National University, Seoul, Korea
| | - Seoyoun Jeong
- Laboratory of Vitamin C and Antioxidant Immunology, Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul, Korea
- Institute of Allergy and Clinical Immunology, Medical Research Center, Seoul National University, Seoul, Korea
| | - Hyovin Ahn
- Laboratory of Vitamin C and Antioxidant Immunology, Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul, Korea
- Institute of Allergy and Clinical Immunology, Medical Research Center, Seoul National University, Seoul, Korea
| | - So Young Pang
- Laboratory of Vitamin C and Antioxidant Immunology, Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul, Korea
| | | | | | - Yejin Kim
- Laboratory of Vitamin C and Antioxidant Immunology, Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul, Korea
- Institute of Allergy and Clinical Immunology, Medical Research Center, Seoul National University, Seoul, Korea
| | - Jae Seung Kang
- Laboratory of Vitamin C and Antioxidant Immunology, Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul, Korea
- Institute of Allergy and Clinical Immunology, Medical Research Center, Seoul National University, Seoul, Korea
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Korea
- Artificial Intelligence Institute, Seoul National University, Seoul, Korea
| |
Collapse
|
3
|
Bragazzi MC, Pianigiani F, Venere R, Ridola L. Dysbiosis in Inflammatory Bowel Disease and Spondyloarthritis: Still a Long Way to Go? J Clin Med 2024; 13:2237. [PMID: 38673510 PMCID: PMC11050776 DOI: 10.3390/jcm13082237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/02/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
The association between Inflammatory Bowel Disease (IBD) and Spondyloarthritis (SpA) has been known for years, as has the concept that IBD is associated with an altered intestinal bacterial composition, a condition known as "dysbiosis". Recently, a state of intestinal dysbiosis has also been found in SpA. Dysbiosis in the field of IBD has been well characterized so far, as well as in SpA. The aim of this review is to summarize what is known to date and to emphasize the similarities between the microbiota conditions in these two diseases: particularly, an altered distribution in the gut of Enterobacteriaceae, Streptococcus, Haemophilus, Clostridium, Akkermansia, Ruminococcus, Faecalibacterium Prausnitzii, Bacteroides Vulgatus, Dialister Invisus, and Bifidubacterium Adolescentis is common to both IBD and SpA. At the same time, little is known about intestinal dysbiosis in IBD-related SpA. Only a single recent study has found an increase in Escherichia and Shigella abundances and a decrease in Firmicutes, Ruminococcaceae, and Faecalibacterium abundances in an IBD-related SpA group. Based on what has been discovered so far about the altered distribution of bacteria that unite both pathologies, it is appropriate to carry out further studies aiming to improve the understanding of IBD-related SpA for the purpose of developing new therapeutic strategies.
Collapse
Affiliation(s)
| | | | | | - Lorenzo Ridola
- Department of Medical-Surgical Sciences and Biotechnology, Sapienza University of Rome, Polo Pontino, 04100 Rome, Italy; (M.C.B.); (F.P.); (R.V.)
| |
Collapse
|
4
|
Wu WC, Shiu C, Tong TK, Leung SO, Hui CW. Suppression of NK Cell Activation by JAK3 Inhibition: Implication in the Treatment of Autoimmune Diseases. J Immunol Res 2023; 2023:8924603. [PMID: 38106519 PMCID: PMC10723930 DOI: 10.1155/2023/8924603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/16/2023] [Accepted: 11/20/2023] [Indexed: 12/19/2023] Open
Abstract
Natural killer (NK) cell is an essential cytotoxic lymphocyte in our innate immunity. Activation of NK cells is of paramount importance in defending against pathogens, suppressing autoantibody production and regulating other immune cells. Common gamma chain (γc) cytokines, including IL-2, IL-15, and IL-21, are defined as essential regulators for NK cell homeostasis and development. However, it is inconclusive whether γc cytokine-driven NK cell activation plays a protective or pathogenic role in the development of autoimmunity. In this study, we investigate and correlate the differential effects of γc cytokines in NK cell expansion and activation. IL-2 and IL-15 are mainly responsible for NK cell activation, while IL-21 preferentially stimulates NK cell proliferation. Blockade of Janus tyrosine kinase/signal transducer and activator of transcription (JAK/STAT) signaling pathway by either JAK inhibitors or antibodies targeting γc receptor subunits reverses the γc cytokine-induced NK cell activation, leading to suppression of its autoimmunity-like phenotype in vitro. These results underline the mechanisms of how γc cytokines trigger autoimmune phenotype in NK cells as a potential target to autoimmune diseases.
Collapse
Affiliation(s)
- Wai Chung Wu
- SinoMab BioScience Limited, Units 303 and 305 to 307, No. 15 Science Park West Avenue, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong
| | - Carol Shiu
- SinoMab BioScience Limited, Units 303 and 305 to 307, No. 15 Science Park West Avenue, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong
| | - Tak Keung Tong
- SinoMab BioScience Limited, Units 303 and 305 to 307, No. 15 Science Park West Avenue, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong
| | - Shui On Leung
- SinoMab BioScience Limited, Units 303 and 305 to 307, No. 15 Science Park West Avenue, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong
| | - Chin Wai Hui
- SinoMab BioScience Limited, Units 303 and 305 to 307, No. 15 Science Park West Avenue, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong
| |
Collapse
|
5
|
Rahmati A, Bigam S, Elahi S. Galectin-9 promotes natural killer cells activity via interaction with CD44. Front Immunol 2023; 14:1131379. [PMID: 37006235 PMCID: PMC10060867 DOI: 10.3389/fimmu.2023.1131379] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 03/06/2023] [Indexed: 03/18/2023] Open
Abstract
Natural killer (NK) cells are a potent innate source of cytokines and cytoplasmic granules. Their effector functions are tightly synchronized by the balance between the stimulatory and inhibitory receptors. Here, we quantified the proportion of NK cells and the surface presence of Galectin-9 (Gal-9) from the bone marrow, blood, liver, spleen, and lungs of adult and neonatal mice. We also examined the effector functions of Gal-9+NK cells compared with their Gal-9- counterparts. Our results revealed that Gal-9+NK cells are more abundant in tissues, in particular, in the liver than in the blood and bone marrow. We found Gal-9 presence was associated with enhanced cytotoxic effector molecules granzyme B (GzmB) and perforin expression. Likewise, Gal-9 expressing NK cells displayed greater IFN-γ and TNF-α expression than their negative counterparts under hemostatic circumstances. Notably, the expansion of Gal-9+NK cells in the spleen of mice infected with E. coli implies that Gal-9+NK cells may provide a protective role against infection. Similarly, we found the expansion of Gal-9+NK cells in the spleen and tumor tissues of melanoma B16-F10 mice. Mechanistically, our results revealed the interaction of Gal-9 with CD44 as noted by their co-expression/co-localization. Subsequently, this interaction resulted in enhanced expression of Phospho-LCK, ERK, Akt, MAPK, and mTOR in NK cells. Moreover, we found Gal-9+NK cells exhibited an activated phenotype as evidenced by increased CD69, CD25, and Sca-1 but reduced KLRG1 expression. Likewise, we found Gal-9 preferentially interacts with CD44high in human NK cells. Despite this interaction, we noted a dichotomy in terms of effector functions in NK cells from COVID-19 patients. We observed that the presence of Gal-9 on NK cells resulted in a greater IFN-γ expression without any changes in cytolytic molecule expression in these patients. These observations suggest differences in Gal-9+NK cell effector functions between mice and humans that should be considered in different physiological and pathological conditions. Therefore, our results highlight the important role of Gal-9 via CD44 in NK cell activation, which suggests Gal-9 is a potential new avenue for the development of therapeutic approaches to modulate NK cell effector functions.
Collapse
Affiliation(s)
- Amirhossein Rahmati
- School of Dentistry, Division of Foundational Sciences, University of Alberta, Edmonton, AB, Canada
| | - Steven Bigam
- School of Dentistry, Division of Foundational Sciences, University of Alberta, Edmonton, AB, Canada
| | - Shokrollah Elahi
- School of Dentistry, Division of Foundational Sciences, University of Alberta, Edmonton, AB, Canada
- Department of Oncology, University of Alberta, Edmonton, AB, Canada
- Li Ka Shing Institute of Virology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
- *Correspondence: Shokrollah Elahi,
| |
Collapse
|
6
|
Li H, Zhang S, Zhang J, Cheng T, Liu Y, Liu H, Hao M, Chen J. A decreased number of circulating regulatory T cells is associated with adverse pregnancy outcomes in patients with systemic lupus erythematosus. Immun Inflamm Dis 2022; 10:e731. [PMID: 36444629 PMCID: PMC9639458 DOI: 10.1002/iid3.731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 09/30/2022] [Accepted: 10/16/2022] [Indexed: 11/09/2022] Open
Abstract
OBJECTIVE As an autoimmune disease affecting women of reproductive age, systemic lupus erythematosus (SLE) is linked to adverse fetal and maternal outcomes. However, the status of peripheral lymphocytes in SLE patients with different pregnancy outcomes is unclear. This retrospective cross-sectional study explored the relationship between lymphocyte subpopulations and pregnancy outcomes in married SLE female patients. METHODS The absolute numbers of peripheral T, helper T (Th)1, Th2, Th17, regulatory T (Treg), B, and natural killer (NK) cell subpopulations from 585 female SLE patients and 91 female healthy controls (HCs) were assessed. We compared the lymphocyte subpopulations in SLE patients with HCs and analyzed the absolute number and ratio of Treg cells according to pregnancy outcome in SLE patients. RESULTS SLE patients had decreased numbers of T, B, NK, Th1, Th2, Th17, and Treg cells and an imbalance in pro- and anti-inflammatory cells (p < .05), as well as adverse pregnancy outcomes. In abortion patients, the number of Treg cells (p = .008) decreased, leading to an imbalance in effector T and Treg cells. The ratio of Treg cells was higher in SLE patients with nulliparity than in those with one or two parities. CONCLUSIONS The absolute numbers of lymphocyte subpopulations in SLE patients decreased, which was associated with abortion and parity (p < .05). These results suggest that a loss of immune tolerance mediated by Tregs triggers pregnancy loss.
Collapse
Affiliation(s)
- He‐Tong Li
- Department of Obstetrics and GynecologySecond Hospital of Shanxi Medical UniversityTaiyuanChina
- Key Laboratory of Cellular Physiology, Ministry of EducationShanxi Medical UniversityTaiyuanChina
| | - Sheng‐Xiao Zhang
- Key Laboratory of Cellular Physiology, Ministry of EducationShanxi Medical UniversityTaiyuanChina
- Department of RheumatologySecond Hospital of Shanxi Medical UniversityTaiyuanChina
| | - Jia‐Qi Zhang
- Key Laboratory of Cellular Physiology, Ministry of EducationShanxi Medical UniversityTaiyuanChina
- Department of RheumatologySecond Hospital of Shanxi Medical UniversityTaiyuanChina
| | - Ting Cheng
- Key Laboratory of Cellular Physiology, Ministry of EducationShanxi Medical UniversityTaiyuanChina
- Department of RheumatologySecond Hospital of Shanxi Medical UniversityTaiyuanChina
| | - Yan Liu
- Department of Information managementSecond Hospital of Shanxi Medical UniversityTaiyuanChina
| | - Hong‐Qi Liu
- Department of Information managementSecond Hospital of Shanxi Medical UniversityTaiyuanChina
| | - Min Hao
- Department of Obstetrics and GynecologySecond Hospital of Shanxi Medical UniversityTaiyuanChina
| | - Jun‐Wei Chen
- Key Laboratory of Cellular Physiology, Ministry of EducationShanxi Medical UniversityTaiyuanChina
- Department of RheumatologySecond Hospital of Shanxi Medical UniversityTaiyuanChina
| |
Collapse
|
7
|
Abbasi B, Shamsasenjan K, Ahmadi M, Beheshti SA, Saleh M. Mesenchymal stem cells and natural killer cells interaction mechanisms and potential clinical applications. Stem Cell Res Ther 2022; 13:97. [PMID: 35255980 PMCID: PMC8900412 DOI: 10.1186/s13287-022-02777-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 10/09/2021] [Indexed: 12/29/2022] Open
Abstract
Natural killer cells (NK cells) are innate immune cells that are activated to fight tumor cells and virus-infected cells. NK cells also play an important role in the graft versus leukemia response. However, they can over-develop inflammatory reactions by secreting inflammatory cytokines and increasing Th1 differentiation, eventually leading to tissue damage. Today, researchers have attributed some autoimmune diseases and GVHD to NK cells. On the other hand, it has been shown that mesenchymal stem cells (MSCs) can modulate the activity of NK cells, while some researchers have shown that NK cells can cause MSCs to lysis. Therefore, we considered it is necessary to investigate the effect of these two cells and their signaling pathway in contact with each other, also their clinical applications.
Collapse
Affiliation(s)
- Batol Abbasi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Karim Shamsasenjan
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Majid Ahmadi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyedeh Ameneh Beheshti
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahshid Saleh
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Fuchs S, Scheffschick A, Gunnarsson I, Brauner H. Natural Killer Cells in Anti-Neutrophil Cytoplasmic Antibody-Associated Vasculitis - A Review of the Literature. Front Immunol 2022; 12:796640. [PMID: 35116030 PMCID: PMC8805084 DOI: 10.3389/fimmu.2021.796640] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 12/20/2021] [Indexed: 01/22/2023] Open
Abstract
Anti-neutrophil cytoplasmic antibody (ANCA)- associated vasculitis (AAV) is a group of systemic autoimmune diseases characterized by inflammation of small- and medium-sized vessels. The three main types of AAV are granulomatosis with polyangiitis (GPA), microscopic polyangiitis (MPA) and eosinophilic granulomatosis with polyangiitis (EGPA). A growing number of studies focus on natural killer (NK) cells in AAV. NK cells are innate lymphoid cells with important roles in anti-viral and anti-tumor defense, but their roles in the pathogenesis of autoimmunity is less well established. In this review, we will present a summary of what is known about the number, phenotype and function of NK cells in patients with AAV. We review the literature on NK cells in the circulation of AAV patients, studies on tissue resident NK cells and how the treatment affects NK cells.
Collapse
Affiliation(s)
- Sina Fuchs
- Division of Rheumatology, Department of Medicine, Solna and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Andrea Scheffschick
- Division of Rheumatology, Department of Medicine, Solna and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Iva Gunnarsson
- Division of Rheumatology, Department of Medicine, Solna and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Rheumatology, Karolinska University Hospital, Stockholm, Sweden
| | - Hanna Brauner
- Division of Rheumatology, Department of Medicine, Solna and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Dermato-Venereology, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
9
|
da Silva LHR, Catharino LCC, da Silva VJ, Evangelista GCM, Barbuto JAM. The War Is on: The Immune System against Glioblastoma—How Can NK Cells Drive This Battle? Biomedicines 2022; 10:biomedicines10020400. [PMID: 35203609 PMCID: PMC8962431 DOI: 10.3390/biomedicines10020400] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/09/2021] [Accepted: 12/16/2021] [Indexed: 11/24/2022] Open
Abstract
Natural killer (NK) cells are innate lymphocytes that play an important role in immunosurveillance, acting alongside other immune cells in the response against various types of malignant tumors and the prevention of metastasis. Since their discovery in the 1970s, they have been thoroughly studied for their capacity to kill neoplastic cells without the need for previous sensitization, executing rapid and robust cytotoxic activity, but also helper functions. In agreement with this, NK cells are being exploited in many ways to treat cancer. The broad arsenal of NK-based therapies includes adoptive transfer of in vitro expanded and activated cells, genetically engineered cells to contain chimeric antigen receptors (CAR-NKs), in vivo stimulation of NK cells (by cytokine therapy, checkpoint blockade therapies, etc.), and tumor-specific antibody-guided NK cells, among others. In this article, we review pivotal aspects of NK cells’ biology and their contribution to immune responses against tumors, as well as providing a wide perspective on the many antineoplastic strategies using NK cells. Finally, we also discuss those approaches that have the potential to control glioblastoma—a disease that, currently, causes inevitable death, usually in a short time after diagnosis.
Collapse
Affiliation(s)
- Lucas Henrique Rodrigues da Silva
- Departamento de Imunologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo 05508000, Brazil; (L.H.R.d.S.); (L.C.C.C.); (V.J.d.S.); (G.C.M.E.)
| | - Luana Correia Croda Catharino
- Departamento de Imunologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo 05508000, Brazil; (L.H.R.d.S.); (L.C.C.C.); (V.J.d.S.); (G.C.M.E.)
| | - Viviane Jennifer da Silva
- Departamento de Imunologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo 05508000, Brazil; (L.H.R.d.S.); (L.C.C.C.); (V.J.d.S.); (G.C.M.E.)
- Laboratory of Medical Investigation in Pathogenesis and Targeted Therapy in Onco-Immuno-Hematology (LIM-31), Departamento de Hematologia, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 0124690, Brazil
| | - Gabriela Coeli Menezes Evangelista
- Departamento de Imunologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo 05508000, Brazil; (L.H.R.d.S.); (L.C.C.C.); (V.J.d.S.); (G.C.M.E.)
| | - José Alexandre Marzagão Barbuto
- Departamento de Imunologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo 05508000, Brazil; (L.H.R.d.S.); (L.C.C.C.); (V.J.d.S.); (G.C.M.E.)
- Laboratory of Medical Investigation in Pathogenesis and Targeted Therapy in Onco-Immuno-Hematology (LIM-31), Departamento de Hematologia, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 0124690, Brazil
- Correspondence: ; Tel.: +55-11-3091-7375
| |
Collapse
|
10
|
Capturing SNP Association across the NK Receptor and HLA Gene Regions in Multiple Sclerosis by Targeted Penalised Regression Models. Genes (Basel) 2021; 13:genes13010087. [PMID: 35052430 PMCID: PMC8774935 DOI: 10.3390/genes13010087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/22/2021] [Accepted: 12/24/2021] [Indexed: 11/17/2022] Open
Abstract
Conventional genome-wide association studies (GWASs) of complex traits, such as Multiple Sclerosis (MS), are reliant on per-SNP p-values and are therefore heavily burdened by multiple testing correction. Thus, in order to detect more subtle alterations, ever increasing sample sizes are required, while ignoring potentially valuable information that is readily available in existing datasets. To overcome this, we used penalised regression incorporating elastic net with a stability selection method by iterative subsampling to detect the potential interaction of loci with MS risk. Through re-analysis of the ANZgene dataset (1617 cases and 1988 controls) and an IMSGC dataset as a replication cohort (1313 cases and 1458 controls), we identified new association signals for MS predisposition, including SNPs above and below conventional significance thresholds while targeting two natural killer receptor loci and the well-established HLA loci. For example, rs2844482 (98.1% iterations), otherwise ignored by conventional statistics (p = 0.673) in the same dataset, was independently strongly associated with MS in another GWAS that required more than 40 times the number of cases (~45 K). Further comparison of our hits to those present in a large-scale meta-analysis, confirmed that the majority of SNPs identified by the elastic net model reached conventional statistical GWAS thresholds (p < 5 × 10−8) in this much larger dataset. Moreover, we found that gene variants involved in oxidative stress, in addition to innate immunity, were associated with MS. Overall, this study highlights the benefit of using more advanced statistical methods to (re-)analyse subtle genetic variation among loci that have a biological basis for their contribution to disease risk.
Collapse
|
11
|
Shen Z, Huang W, Liu J, Tian J, Wang S, Rui K. Effects of Mesenchymal Stem Cell-Derived Exosomes on Autoimmune Diseases. Front Immunol 2021; 12:749192. [PMID: 34646275 PMCID: PMC8503317 DOI: 10.3389/fimmu.2021.749192] [Citation(s) in RCA: 117] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/13/2021] [Indexed: 12/15/2022] Open
Abstract
Recent years, the immunosuppressive properties of mesenchymal stem cells (MSCs) have been demonstrated in preclinical studies and trials of inflammatory and autoimmune diseases. Emerging evidence indicates that the immunomodulatory effect of MSCs is primarily attributed to the paracrine pathway. As one of the key paracrine effectors, mesenchymal stem cell-derived exosomes (MSC-EXOs) are small vesicles 30-200 nm in diameter that play an important role in cell-to-cell communication by carrying bioactive substances from parental cells. Recent studies support the finding that MSC-EXOs have an obvious inhibitory effect toward different effector cells involved in the innate and adaptive immune response. Moreover, substantial progress has been made in the treatment of autoimmune diseases, including multiple sclerosis (MS), systemic lupus erythematosus (SLE), type-1 diabetes (T1DM), uveitis, rheumatoid arthritis (RA), and inflammatory bowel disease (IBD). MSC-EXOs are capable of reproducing MSC function and overcoming the limitations of traditional cell therapy. Therefore, using MSC-EXOs instead of MSCs to treat autoimmune diseases appears to be a promising cell-free treatment strategy. In this review, we review the current understanding of MSC-EXOs and discuss the regulatory role of MSC-EXOs on immune cells and its potential application in autoimmune diseases.
Collapse
Affiliation(s)
- Ziwei Shen
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China.,Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Wei Huang
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China.,Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Jun Liu
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China.,Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Jie Tian
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Shengjun Wang
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Ke Rui
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China.,Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| |
Collapse
|
12
|
Chen CC, Hung YM, Chiu LT, Chou MC, Chang R, Wei JCC. Association Between Severity of Leptospirosis and Subsequent Major Autoimmune Diseases: A Nationwide Observational Cohort Study. Front Immunol 2021; 12:721752. [PMID: 34566978 PMCID: PMC8461302 DOI: 10.3389/fimmu.2021.721752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/04/2021] [Indexed: 11/17/2022] Open
Abstract
Introduction Infections play a role in autoimmune diseases (AD). Leptospirosis has been linked to the trigger of systemic lupus erythematosus. Objective To investigate subsequent risk of major AD in hospitalized Taiwanese for Leptospirosis. Methods Retrospective observational cohort study was employed. The enrolled period was from 2000 to 2012. In the main model, we extracted 4026 inpatients with leptospirosis from the Taiwan National Health Insurance Research Database (NHIRD) and 16,104 participants without leptospirosis at a 1:4 ratio propensity-score matched (PSM) by age, gender, index year, and comorbidities. The follow-up period was defined as the time from the initial diagnosis of leptospirosis to major AD occurrence or 2013. This study was re-analyzed by frequency-matching as a sensitivity analysis for cross-validation. Univariable and multivariable Cox proportional hazards regression models were applied to estimate hazard ratios (HRs) and 95% confidence intervals (CIs). Results The adjusted HR (95% CI) of major ADs for the leptospirosis group was 4.45 (3.25–6.79) (p < 0.001) compared to the controls after full adjustment. The risk of major ADs was 5.52-fold (95% CI, 3.82–7.99) higher in leptospirosis patients hospitalized for seven days and above than the controls, while 2.80-fold (95% CI, 1.68–5.61) in those hospitalized less than seven days. The sensitivity analysis yields consistent findings. Stratified analysis revealed that the association between leptospirosis and major ADs was generalized in both genders, and all age groups. Conclusions Symptomatic leptospirosis is associated with increased rate of subsequent major ADs, and the risk seems to be higher in severe cases.
Collapse
Affiliation(s)
- Chih-Chung Chen
- Department of Emergency Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Yao-Min Hung
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,College of Health and Nursing, Meiho University, Pingtung, Taiwan.,Department of Internal Medicine, Kaohsiung Municipal United Hospital, Kaohsiung, Taiwan.,School of Medicine, National Yang Ming University, Taipei, Taiwan
| | - Lu-Ting Chiu
- Management Office for Health Data, China Medical University Hospital, Taichung, Taiwan
| | - Mei-Chia Chou
- Department of Physical Therapy, Shu-Zen Junior College of Medicine and Management, Kaohsiung, Taiwan.,Department of Recreation and Sports Management, Tajen University, Pingtung County, Taiwan.,Department of Physical Medicine and Rehabilitation, Kaohsiung Veterans General Hospital, Pingtung Branch, Pingtung County, Taiwan
| | - Renin Chang
- Department of Emergency Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan.,Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Recreation and Sports Management, Tajen University, Pingtung County, Taiwan
| | - James Cheng-Chung Wei
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Division of Allergy, Immunology and Rheumatology, Chung Shan Medical University Hospital, Taichung, Taiwan.,Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan
| |
Collapse
|
13
|
Three-Dimensional Culture Models to Study Innate Anti-Tumor Immune Response: Advantages and Disadvantages. Cancers (Basel) 2021; 13:cancers13143417. [PMID: 34298630 PMCID: PMC8303518 DOI: 10.3390/cancers13143417] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 06/29/2021] [Accepted: 07/05/2021] [Indexed: 12/12/2022] Open
Abstract
Several approaches have shown that the immune response against tumors strongly affects patients' clinical outcome. Thus, the study of anti-tumor immunity is critical to understand and potentiate the mechanisms underlying the elimination of tumor cells. Natural killer (NK) cells are members of innate immunity and represent powerful anti-tumor effectors, able to eliminate tumor cells without a previous sensitization. Thus, the study of their involvement in anti-tumor responses is critical for clinical translation. This analysis has been performed in vitro, co-incubating NK with tumor cells and quantifying the cytotoxic activity of NK cells. In vivo confirmation has been applied to overcome the limits of in vitro testing, however, the innate immunity of mice and humans is different, leading to discrepancies. Different activating receptors on NK cells and counter-ligands on tumor cells are involved in the antitumor response, and innate immunity is strictly dependent on the specific microenvironment where it takes place. Thus, three-dimensional (3D) culture systems, where NK and tumor cells can interact in a tissue-like architecture, have been created. For example, tumor cell spheroids and primary organoids derived from several tumor types, have been used so far to analyze innate immune response, replacing animal models. Herein, we briefly introduce NK cells and analyze and discuss in detail the properties of 3D tumor culture systems and their use for the study of tumor cell interactions with NK cells.
Collapse
|
14
|
A CD8 + NK cell transcriptomic signature associated with clinical outcome in relapsing remitting multiple sclerosis. Nat Commun 2021; 12:635. [PMID: 33504809 PMCID: PMC7840761 DOI: 10.1038/s41467-020-20594-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 11/24/2020] [Indexed: 02/07/2023] Open
Abstract
Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system (CNS) with the majority of cases characterised by relapsing/remitting (RRMS) attacks of neurologic dysfunction followed by variable resolution. Improving clinical outcomes in RRMS requires both a better understanding of the immunological mechanisms driving recurrent demyelination and better means of predicting future disease course to facilitate early targeted therapy. Here, we apply hypothesis-generating network transcriptomics to CD8+ cells isolated from patients in RRMS, identifying a signature reflecting expansion of a subset of CD8+ natural killer cells (NK8+) associated with favourable outcome. NK8+ are capable of regulating CD4+ T cell activation and proliferation in vitro, with reduced expression of HLA-G binding inhibitory receptors and consequent reduced sensitivity to HLA-G-mediated suppression. We identify surrogate markers of the NK8+ signature in peripheral blood leucocytes and validate their association with clinical outcome in an independent cohort, suggesting their measurement may facilitate early, targeted therapy in RRMS.
Collapse
|
15
|
Tozatto-Maio K, Girot R, Ly ID, Silva Pinto AC, Rocha V, Fernandes F, Diagne I, Benzerara Y, Dinardo CL, Soler JP, Kashima S, Araujo IL, Kenzey C, Fonseca GHH, Rodrigues ES, Volt F, Jarduli L, Ruggeri A, Mariaselvam C, Gualandro SFM, Rafii H, Cappelli B, Nogueira FM, Scigliuolo GM, Guerino-Cunha RL, Malmegrim KCR, Simões BP, Gluckman E, Tamouza R. Polymorphisms in Inflammatory Genes Modulate Clinical Complications in Patients With Sickle Cell Disease. Front Immunol 2020; 11:2041. [PMID: 33013863 PMCID: PMC7510050 DOI: 10.3389/fimmu.2020.02041] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 07/27/2020] [Indexed: 01/27/2023] Open
Abstract
Sickle cell disease (SCD), the most common monogenic disease worldwide, is marked by a phenotypic variability that is, to date, only partially understood. Because inflammation plays a major role in SCD pathophysiology, we hypothesized that single nucleotide polymorphisms (SNP) in genes encoding functionally important inflammatory proteins might modulate the occurrence of SCD complications. We assessed the association between 20 SNPs in genes encoding Toll-like receptors (TLR), NK cell receptors (NKG), histocompatibility leukocyte antigens (HLA), major histocompatibility complex class I polypeptide-related sequence A (MICA) and cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4), and the occurrence of six SCD clinical complications (stroke, acute chest syndrome (ACS), leg ulcers, cholelithiasis, osteonecrosis, or retinopathy). This study was performed in a cohort of 500 patients. We found that the TLR2 rs4696480 TA, TLR2 rs3804099 CC, and HLA-G, rs9380142 AA genotypes were more frequent in patients who had fewer complications. Also, in logistic regression, the HLA-G rs9380142 G allele increased the risk of cholelithiasis (AG vs. AA, OR 1.57, 95%CI 1.16-2.15; GG vs. AA, OR 2.47, 95%CI 1.34-4.64; P = 0.02). For SNPs located in the NKG2D loci, in logistic regression, the A allele in three SNPs was associated with a lower frequency of retinopathy, namely, rs2246809 (AA vs. GG: OR 0.22, 95%CI 0.09-0.50; AG vs. GG: OR 0.47, 95%CI 0.31-0.71; P = 0.004, for patients of same origin), rs2617160 (AT vs. TT: OR 0.67, 95%CI 0.48-0.92; AA vs. TT: OR 0.45, 95%CI 0.23-0.84; P = 0.04), and rs2617169 (AA vs. TT: OR 0.33, 95%CI 0.13-0.82; AT vs. TT: OR 0.58, 95%CI 0.36-0.91, P = 0.049, in patients of same SCD genotype). These results, by uncovering susceptibility to, or protection against SCD complications, might contribute to a better understanding of the inflammatory pathways involved in SCD manifestations and to pave the way for the discovery of biomarkers that predict disease severity, which would improve SCD management.
Collapse
Affiliation(s)
- Karina Tozatto-Maio
- Eurocord, Université de Paris, IRSL, Hopital Saint Louis, Paris, France.,Monacord, International Observatory on Sickle Cell Disease, Centre Scientifique de Monaco, Monaco, Monaco.,Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil.,Disciplina de Hematologia e Hemoterapia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | | | - Indou Deme Ly
- National Children Hospital Center Albert Royer, Cheikh Anta Diop University, Dakar, Senegal
| | - Ana Cristina Silva Pinto
- Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil.,Center for Cell-based Therapy, Regional Blood Center of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Vanderson Rocha
- Disciplina de Hematologia e Hemoterapia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Francisco Fernandes
- Instituto de Matematica e Estatistica da Universidade de São Paulo, São Paulo, Brazil
| | - Ibrahima Diagne
- National Children Hospital Center Albert Royer, Cheikh Anta Diop University, Dakar, Senegal
| | - Yahia Benzerara
- Département de Bactériologie, Hôpital Saint-Antoine, Hôpitaux de l'Est parisien, Paris, France
| | - Carla L Dinardo
- Disciplina de Hematologia e Hemoterapia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Julia Pavan Soler
- Instituto de Matematica e Estatistica da Universidade de São Paulo, São Paulo, Brazil
| | - Simone Kashima
- Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil.,Center for Cell-based Therapy, Regional Blood Center of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | | | - Chantal Kenzey
- Eurocord, Université de Paris, IRSL, Hopital Saint Louis, Paris, France.,Monacord, International Observatory on Sickle Cell Disease, Centre Scientifique de Monaco, Monaco, Monaco
| | - Guilherme H H Fonseca
- Disciplina de Hematologia e Hemoterapia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Evandra S Rodrigues
- Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil.,Center for Cell-based Therapy, Regional Blood Center of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Fernanda Volt
- Eurocord, Université de Paris, IRSL, Hopital Saint Louis, Paris, France.,Monacord, International Observatory on Sickle Cell Disease, Centre Scientifique de Monaco, Monaco, Monaco
| | - Luciana Jarduli
- Center for Cell-based Therapy, Regional Blood Center of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil.,School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Annalisa Ruggeri
- Eurocord, Université de Paris, IRSL, Hopital Saint Louis, Paris, France.,Haematology and Bone Marrow Transplant Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Cellular Therapy and Immunobiology Working Party, The European Society for Blood and Marrow Transplantation, Paris, France
| | | | - Sandra F M Gualandro
- Disciplina de Hematologia e Hemoterapia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Hanadi Rafii
- Eurocord, Université de Paris, IRSL, Hopital Saint Louis, Paris, France.,Monacord, International Observatory on Sickle Cell Disease, Centre Scientifique de Monaco, Monaco, Monaco
| | - Barbara Cappelli
- Eurocord, Université de Paris, IRSL, Hopital Saint Louis, Paris, France.,Monacord, International Observatory on Sickle Cell Disease, Centre Scientifique de Monaco, Monaco, Monaco
| | - Felipe Melo Nogueira
- Disciplina de Hematologia e Hemoterapia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Graziana Maria Scigliuolo
- Eurocord, Université de Paris, IRSL, Hopital Saint Louis, Paris, France.,Monacord, International Observatory on Sickle Cell Disease, Centre Scientifique de Monaco, Monaco, Monaco
| | - Renato Luiz Guerino-Cunha
- Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil.,Center for Cell-based Therapy, Regional Blood Center of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | | | - Belinda P Simões
- Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Eliane Gluckman
- Eurocord, Université de Paris, IRSL, Hopital Saint Louis, Paris, France.,Monacord, International Observatory on Sickle Cell Disease, Centre Scientifique de Monaco, Monaco, Monaco
| | | |
Collapse
|
16
|
Lang PA, Crome SQ, Xu HC, Lang KS, Chapatte L, Deenick EK, Grusdat M, Pandyra AA, Pozdeev VI, Wang R, Holderried TAW, Cantor H, Diefenbach A, Elford AR, McIlwain DR, Recher M, Häussinger D, Mak TW, Ohashi PS. NK Cells Regulate CD8 + T Cell Mediated Autoimmunity. Front Cell Infect Microbiol 2020; 10:36. [PMID: 32117809 PMCID: PMC7031256 DOI: 10.3389/fcimb.2020.00036] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 01/20/2020] [Indexed: 01/17/2023] Open
Abstract
Elucidating key factors that regulate immune-mediated pathology in vivo is critical for developing improved strategies to treat autoimmune disease and cancer. NK cells can exhibit regulatory functions against CD8+ T cells following viral infection. Here we show that while low doses of lymphocytic choriomeningitis virus (LCMV-WE) can readily induce strong CD8+ T cell responses and diabetes in mice expressing the LCMV glycoprotein on β-islet cells (RIP-GP mice), hyperglycemia does not occur after infection with higher doses of LCMV. High-dose LCMV infection induced an impaired CD8+ T cell response, which coincided with increased NK cell activity during early time points following infection. Notably, we observed increased NKp46 expression on NK cells during infection with higher doses, which resulted in an NK cell dependent suppression of T cells. Accordingly, depletion with antibodies specific for NK1.1 as well as NKp46 deficiency (Ncr1gfp/gfp mice) could restore CD8+ T cell immunity and permitted the induction of diabetes even following infection of RIP-GP mice with high-dose LCMV. Therefore, we identify conditions where innate lymphoid cells can play a regulatory role and interfere with CD8+ T cell mediated tissue specific pathology using an NKp46 dependent mechanism.
Collapse
Affiliation(s)
- Philipp A Lang
- Princess Margaret Cancer Centre, Campell Family Institute for Breast Cancer Research, University Health Network (UHN), Toronto, ON, Canada.,Department of Gastroenterology, Hepatology and Infectious Diseases, University of Düsseldorf, Düsseldorf, Germany.,Department of Molecular Medicine II, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Sarah Q Crome
- Department of Immunology, University of Toronto, Toronto, ON, Canada.,Toronto General Hospital Research Institute and UHN Transplant, University Health Network, Toronto, ON, Canada
| | - Haifeng C Xu
- Princess Margaret Cancer Centre, Campell Family Institute for Breast Cancer Research, University Health Network (UHN), Toronto, ON, Canada.,Department of Molecular Medicine II, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Karl S Lang
- Princess Margaret Cancer Centre, Campell Family Institute for Breast Cancer Research, University Health Network (UHN), Toronto, ON, Canada.,Institute of Immunology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Laurence Chapatte
- Princess Margaret Cancer Centre, Campell Family Institute for Breast Cancer Research, University Health Network (UHN), Toronto, ON, Canada
| | - Elissa K Deenick
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia
| | - Melanie Grusdat
- Department of Gastroenterology, Hepatology and Infectious Diseases, University of Düsseldorf, Düsseldorf, Germany
| | - Aleksandra A Pandyra
- Department of Gastroenterology, Hepatology and Infectious Diseases, University of Düsseldorf, Düsseldorf, Germany
| | - Vitaly I Pozdeev
- Department of Gastroenterology, Hepatology and Infectious Diseases, University of Düsseldorf, Düsseldorf, Germany
| | - Ruifeng Wang
- Department of Molecular Medicine II, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Tobias A W Holderried
- Department of Gastroenterology, Hepatology and Infectious Diseases, University of Düsseldorf, Düsseldorf, Germany.,Department of Hematology, Oncology and Rheumatology, University Hospital Bonn, Bonn, Germany
| | - Harvey Cantor
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute and Department of Immunology, Harvard Medical School, Boston, MA, United States
| | - Andreas Diefenbach
- Laboratory of Innate Immunity, Department of Microbiology, Infectious Diseases and Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany.,Mucosal and Developmental Immunology, Deutsches Rheuma-Forschungszentrum, Berlin, Germany
| | - Alisha R Elford
- Princess Margaret Cancer Centre, Campell Family Institute for Breast Cancer Research, University Health Network (UHN), Toronto, ON, Canada
| | - David R McIlwain
- Department of Gastroenterology, Hepatology and Infectious Diseases, University of Düsseldorf, Düsseldorf, Germany
| | - Mike Recher
- Medical Outpatient Clinic and Immunodeficiency Lab, University Hospital Basel, Basel, Switzerland
| | - Dieter Häussinger
- Department of Gastroenterology, Hepatology and Infectious Diseases, University of Düsseldorf, Düsseldorf, Germany
| | - Tak W Mak
- Princess Margaret Cancer Centre, Campell Family Institute for Breast Cancer Research, University Health Network (UHN), Toronto, ON, Canada.,Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Pamela S Ohashi
- Princess Margaret Cancer Centre, Campell Family Institute for Breast Cancer Research, University Health Network (UHN), Toronto, ON, Canada.,Department of Immunology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
17
|
Gallo D, Piantanida E, Gallazzi M, Bartalena L, Tanda ML, Bruno A, Mortara L. Immunological Drivers in Graves' Disease: NK Cells as a Master Switcher. Front Endocrinol (Lausanne) 2020; 11:406. [PMID: 32765422 PMCID: PMC7379480 DOI: 10.3389/fendo.2020.00406] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 05/20/2020] [Indexed: 12/18/2022] Open
Abstract
Graves' disease (GD) is a common autoimmune cause of hyperthyroidism, which is eventually related to the generation of IgG antibodies stimulating the thyrotropin receptor. Clinical manifestations of the disease reflect hyperstimulation of the gland, causing thyrocyte hyperplasia (goiter) and excessive thyroid hormone synthesis (hyperthyroidism). The above clinical manifestations are preceded by still partially unraveled pathogenic actions governed by the induction of aberrant phenotype/functions of immune cells. In this review article we investigated the potential contribution of natural killer (NK) cells, based on literature analysis, to discuss the bidirectional interplay with thyroid hormones (TH) in GD progression. We analyzed cellular and molecular NK-cell associated mechanisms potentially impacting on GD, in a view of identification of the main NK-cell subset with highest immunoregulatory role.
Collapse
Affiliation(s)
- Daniela Gallo
- Endocrine Unit, Department of Medicine and Surgery, University of Insubria, ASST dei Sette Laghi, Varese, Italy
| | - Eliana Piantanida
- Endocrine Unit, Department of Medicine and Surgery, University of Insubria, ASST dei Sette Laghi, Varese, Italy
| | - Matteo Gallazzi
- Immunology and General Pathology Laboratory, Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Luigi Bartalena
- Endocrine Unit, Department of Medicine and Surgery, University of Insubria, ASST dei Sette Laghi, Varese, Italy
| | - Maria Laura Tanda
- Endocrine Unit, Department of Medicine and Surgery, University of Insubria, ASST dei Sette Laghi, Varese, Italy
| | | | - Lorenzo Mortara
- Immunology and General Pathology Laboratory, Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| |
Collapse
|
18
|
Yang Q, Zhang L, Guo C, Kou C, Long Y, Li J, Zhang HQ. Reduced proportion and activity of natural killer cells in patients with Graves’ disease. EUR J INFLAMM 2020. [DOI: 10.1177/2058739220942337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Natural killer cells not only play important roles in protecting against viral infection and cancer but also involved in the pathogenesis of Graves’ disease. Killer Ig-like receptor (KIR) genes encode receptors which are mostly expressed on and regulate the activation of natural killer cells. Our previous research found that the KIR2DS4 gene frequency was lower in patients with Graves’ disease than in controls. Nevertheless, the specific mechanisms by which natural killer cell act is obscure in Graves’ disease. In total, 178 participants including newly diagnosed Graves’ disease patients (n = 95) and healthy individuals (n = 83) were recruited in this study. TSH (thyrotropin), FT3 (free triiodothyronine), and FT4 (free thyroxine) were assayed using electro chemiluminescent immunoassays. The counts of natural killer cell (CD3−CD56+ natural killer cell), activated natural killer cell (CD3−CD56+CD69+ natural killer cell), and KIR2DS4-expressing natural killer cell (CD3−CD56+CD158i+ natural killer cell) in peripheral blood were analyzed using flow cytometry. The proportions of natural killer cells and activated natural killer cells were lower in the newly diagnosed Graves’ disease patients than in the controls; the difference was statistically significant ( P < 0.05). However, the difference in the proportion of KIR2DS4-expressing natural killer cells between the two groups was not statistically significant. In Graves’ disease patients, no relationship was found between the proportion of natural killer cells and the blood FT3 level, the blood FT4 level, or the blood TSH level; however, the proportion of activated natural killer cells was negatively correlated with FT3 and FT4 and positively correlated with TSH. Our research findings revealed that a reduction in the counts of natural killer cell and activated natural killer cell might be involved in Graves’ disease pathogenesis.
Collapse
Affiliation(s)
- Qingqing Yang
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
- Department of Endocrinology, The First Affiliated Hospital of Bengbu Medical College, Bengbu Medical College, Bengbu, China
| | - Li Zhang
- Department of Vascular Surgery, Shandong Provincial Hospital affiliated to Shandong University, Jinan, China
| | - Cheng Guo
- Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
| | - ChunJia Kou
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Yu Long
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Jianting Li
- Department of Endocrinology, Jinan Central Hospital Affiliated to Shandong University, Jinan, China
| | - Hai-Qing Zhang
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| |
Collapse
|
19
|
Melis M, Littera R, Cocco E, Frau J, Lai S, Congeddu E, Ragatzu P, Serra M, Loi V, Maddi R, Pitzalis R, Orrù S, Chessa L, Perra A, Carcassi C. Entropy of human leukocyte antigen and killer-cell immunoglobulin-like receptor systems in immune-mediated disorders: A pilot study on multiple sclerosis. PLoS One 2019; 14:e0226615. [PMID: 31846493 PMCID: PMC6917289 DOI: 10.1371/journal.pone.0226615] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 11/29/2019] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Entropy is a thermodynamic variable statistically correlated with the disorder of a system. The hypothesis that entropy can be used to identify potentially unhealthy conditions was first suggested by Schrödinger, one of the founding fathers of quantum mechanics. Shannon later defined entropy as the quantity of information stored in a system. Shannon's entropy has the advantage of being adaptable across a variety of disciplines, including genetic studies on complex immunogenetic systems such as the human leukocyte antigen (HLA) and killer-cell immunoglobulin-like receptor (KIR) systems. METHODS In our study, entropy associated to the HLA and KIR systems was compared between a cohort of 619 Sardinian healthy controls and a group of 270 patients affected by multiple sclerosis (MS), the latter stratified into 81 patients with primary progressive multiple sclerosis (PPMS) and 189 patients with relapsing remitting multiple sclerosis (RRMS). RESULTS The entropy associated to HLA four-loci haplotypes (A, B, C, DR) and combinations of two inhibitory KIR genes was significantly higher in patients affected by RRMS than in healthy controls. No significant differences were observed for patients with PPMS. By calculating the total HLA and KIR entropy ratio in each subject, it was possible to determine the individual risk of developing MS, particularly RRMS. CONCLUSIONS In addition to the standard statistical methods used to evaluate immunogenetic parameters associated to immune-mediated disease, the analysis of entropy measures the global disorder status deriving from these parameters. This innovative approach may represent a useful complementary tool to the risk assessment of immune-mediated disorders. Improved risk assessment is particularly important for family members of patients with MS. However, further investigation is warranted to confirm our findings and to evaluate the validity of the entropy-based method in other types of immune-mediated disorders.
Collapse
Affiliation(s)
- Maurizio Melis
- Medical Genetics, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Roberto Littera
- Complex Structure of Medical Genetics, R. Binaghi Hospital, ASSL Cagliari, ATS Sardegna, Italy
| | - Eleonora Cocco
- Multiple Sclerosis Center, R. Binaghi Hospital, University of Cagliari/ATS Sardegna, Cagliari, Italy
| | - Jessica Frau
- Multiple Sclerosis Center, R. Binaghi Hospital, University of Cagliari/ATS Sardegna, Cagliari, Italy
| | - Sara Lai
- Complex Structure of Medical Genetics, R. Binaghi Hospital, ASSL Cagliari, ATS Sardegna, Italy
| | - Elena Congeddu
- Medical Genetics, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Paola Ragatzu
- Medical Genetics, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Maria Serra
- Complex Structure of Medical Genetics, R. Binaghi Hospital, ASSL Cagliari, ATS Sardegna, Italy
| | - Valentina Loi
- Complex Structure of Medical Genetics, R. Binaghi Hospital, ASSL Cagliari, ATS Sardegna, Italy
| | - Roberta Maddi
- Complex Structure of Medical Genetics, R. Binaghi Hospital, ASSL Cagliari, ATS Sardegna, Italy
| | - Roberta Pitzalis
- Multiple Sclerosis Center, R. Binaghi Hospital, University of Cagliari/ATS Sardegna, Cagliari, Italy
| | - Sandro Orrù
- Medical Genetics, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Luchino Chessa
- Center for the Study of Liver Diseases, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Andrea Perra
- Unit of Oncology and Molecular Pathology, Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Carlo Carcassi
- Medical Genetics, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| |
Collapse
|
20
|
Wessels I, Rink L. Micronutrients in autoimmune diseases: possible therapeutic benefits of zinc and vitamin D. J Nutr Biochem 2019; 77:108240. [PMID: 31841960 DOI: 10.1016/j.jnutbio.2019.108240] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 09/09/2019] [Indexed: 12/14/2022]
Abstract
A functional immune system is essential for healthy life. This is achieved by the coordinate activation and interaction of different immune cells. One should be aware that activation of the immune response is as important as its deactivation when the pathogens are cleared, as otherwise host tissue can be damaged up to life-threatening levels. Autoimmune diseases (AID) represent a phenomenon of immune cells attacking host cells and tissue. Five to eight percent of the world's population are currently affected by 80-100 AID. In recent years, the incidence has been constantly increasing, reaching alarmingly high numbers particularly for type 1 diabetes mellitus, Crohn's disease, rheumatoid arthritis, Sjogren's syndrome and multiple sclerosis. This indicates a higher societal burden of AID for the future. This article provides an overview of general concepts of triggers and underlying mechanisms leading to self-destruction. Lately, several original concepts of disease etiology were revised, and there is a variety of hypotheses on triggers, underlying mechanisms and preventive actions. This article concentrates on the importance of nutrition, especially zinc and vitamin D, for balancing the immune function. Homespun nutritional remedies seem to reenter today's therapeutic strategies. Current treatment approaches are largely symptomatic or suppress the immune system. However, recent studies reveal significant benefits of nutrition-related therapeutic approaches including prevention and treatment of established disease, which offer a cost-efficient and trigger-unspecific alternative addressing balancing rather than suppression of the immune system. Zinc and vitamin D are currently the best studied and most promising candidates for therapeutic intervention.
Collapse
Affiliation(s)
- Inga Wessels
- Institute of Immunology, Medical Faculty, RWTH Aachen University, Pauwelsstr. 30, D-52074 Aachen, Germany.
| | - Lothar Rink
- Institute of Immunology, Medical Faculty, RWTH Aachen University, Pauwelsstr. 30, D-52074 Aachen, Germany.
| |
Collapse
|
21
|
NK Cells as Potential Targets for Immunotherapy in Endometriosis. J Clin Med 2019; 8:jcm8091468. [PMID: 31540116 PMCID: PMC6780982 DOI: 10.3390/jcm8091468] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/10/2019] [Accepted: 09/12/2019] [Indexed: 12/19/2022] Open
Abstract
Endometriosis is a common gynecological disease defined by the presence of endometrial-like tissue outside the uterus, most frequently on the pelvic viscera and ovaries, which is associated with pelvic pains and infertility. It is an inflammatory disorder with some features of autoimmunity. It is accepted that ectopic endometriotic tissue originates from endometrial cells exfoliated during menstruation and disseminating into the peritoneum by retrograde menstrual blood flow. It is assumed that the survival of endometriotic cells in the peritoneal cavity may be partially due to their abrogated elimination by natural killer (NK) cells. The decrease of NK cell cytotoxic activity in endometriosis is associated with an increased expression of some inhibitory NK cell receptors. It may be also related to the expression of human leukocyte antigen G (HLA-G), a ligand for inhibitory leukocyte immunoglobulin-like receptor subfamily B member 1 (LILRB1) receptors. The downregulated cytotoxic activity of NK cells may be due to inhibitory cytokines present in the peritoneal milieu of patients with endometriosis. The role of NK cell receptors and their ligands in endometriosis is also confirmed by genetic association studies. Thus, endometriosis may be a subject of immunotherapy by blocking NK cell negative control checkpoints including inhibitory NK cell receptors. Immunotherapies with genetically modified NK cells also cannot be excluded.
Collapse
|
22
|
Ramos MPM, Ribeiro C, Soares AJ. A kinetic model of T cell autoreactivity in autoimmune diseases. J Math Biol 2019; 79:2005-2031. [PMID: 31501944 DOI: 10.1007/s00285-019-01418-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 07/04/2019] [Indexed: 01/01/2023]
Abstract
We construct a mathematical model of kinetic type in order to describe the immune system interactions in the context of autoimmune disease. The interacting populations are self-antigen presenting cells, self-reactive T cells and the set of immunosuppressive cells consisting of regulatory T cells and Natural Killer cells. The main aim of our work is to develop a qualitative analysis of the model equations and investigate the existence of biologically realistic solutions. Having this goal in mind we describe the interactions between cells during an autoimmune reaction based on biological considerations that are given in the literature and we show that the corresponding system of integro-differential equations has finite positive solutions. The asymptotic behaviour of the solution of the system is also studied. We complement our mathematical analysis with numerical simulations that study the sensitivity of the model to parameters related to proliferation of immunosuppressive cells, destruction of self-antigen presenting cells and self-reactive T cells and tolerance of SRTCs to self-antigens.
Collapse
Affiliation(s)
| | - C Ribeiro
- Centro de Matemática, Universidade do Minho, Guimarães, Portugal
| | - A J Soares
- Centro de Matemática, Universidade do Minho, Braga, Portugal.
| |
Collapse
|
23
|
Najar M, Fayyad-Kazan M, Merimi M, Meuleman N, Bron D, Fayyad-Kazan H, Lagneaux L. Reciprocal immuno-biological alterations occur during the co-culture of natural killer cells and adipose tissue-derived mesenchymal stromal cells. Cytotechnology 2019; 71:375-388. [PMID: 30632032 DOI: 10.1007/s10616-019-00294-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Accepted: 01/07/2019] [Indexed: 02/07/2023] Open
Abstract
Due to their immune-therapeutic value, adipose tissue-derived mesenchymal stromal cells (AT-MSCs) require a better characterization of their interplay with natural killer (NK) cells known to contribute to the graft-versus-leukemia effects. When cultivated together, AT-MSCs showed cellular cytotoxicity and were therefore killed by NK cells in an activating-cytokine dependent manner. In the presence of AT-MSCs, both ligands and receptors known to drive NK cell interactions were significantly altered. During this co-culture, the proliferation of NK cells was slightly reduced, while their IFN-γ and TNF-α secretion was significantly increased. NK cells displayed sustained degranulation accompanied by increased discharge of their cytolytic granules (perforin, granzymes A and B). On the other hand, activated NK cells reduced the expression of serpins C1 and B9 in AT-MSCs. Collectively, reciprocal immuno-biological alterations occur during the co-culture of NK cells and AT-MSCs. Understanding these changes will increase the safety and efficacy of cell-based immuno-oncotherapy.
Collapse
Affiliation(s)
- Mehdi Najar
- Laboratory of Clinical Cell Therapy, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Campus Erasme, Brussels, Belgium.,Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), 900 Saint-Denis, R11.424, Montreal, QC, H2X 0A9, Canada
| | - Mohammad Fayyad-Kazan
- Hematology Department, Institut Jules Bordet, Université Libre de Bruxelles, 121 Boulevard de Waterloo, 1000, Brussels, Belgium.
| | - Makram Merimi
- Hematology Department, Institut Jules Bordet, Université Libre de Bruxelles, 121 Boulevard de Waterloo, 1000, Brussels, Belgium.,Laboratory of Physiology, Genetics and Ethnopharmacology, Faculty of Sciences, University Mohammed Premier, Oujda, Morocco
| | - Nathalie Meuleman
- Laboratory of Clinical Cell Therapy, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Campus Erasme, Brussels, Belgium.,Hematology Department, Institut Jules Bordet, Université Libre de Bruxelles, 121 Boulevard de Waterloo, 1000, Brussels, Belgium
| | - Dominique Bron
- Laboratory of Clinical Cell Therapy, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Campus Erasme, Brussels, Belgium.,Hematology Department, Institut Jules Bordet, Université Libre de Bruxelles, 121 Boulevard de Waterloo, 1000, Brussels, Belgium
| | - Hussein Fayyad-Kazan
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences I, Lebanese University, Hadath, Lebanon
| | - Laurence Lagneaux
- Laboratory of Clinical Cell Therapy, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Campus Erasme, Brussels, Belgium
| |
Collapse
|
24
|
Omeka WKM, Liyanage DS, Priyathilaka TT, Kwon H, Lee S, Lee J. Characterization of four C1q/TNF-related proteins (CTRPs) from red-lip mullet (Liza haematocheila) and their transcriptional modulation in response to bacterial and pathogen-associated molecular pattern stimuli. FISH & SHELLFISH IMMUNOLOGY 2019; 84:158-168. [PMID: 30287348 DOI: 10.1016/j.fsi.2018.09.078] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 08/31/2018] [Accepted: 09/29/2018] [Indexed: 06/08/2023]
Abstract
The structural and evolutionary linkage between tumor necrosis factor (TNF) and the globular C1q (gC1q) domain defines the C1q and TNF-related proteins (CTRPs), which are involved in diverse functions such as immune defense, inflammation, apoptosis, autoimmunity, and cell differentiation. In this study, red-lip mullet (Liza haematocheila) CTRP4-like (MuCTRP4-like), CTRP5 (MuCTRP5), CTRP6 (MuCTRP6), and CTRP7 (MuCTRP7) were identified from the red-lip mullet transcriptome database and molecularly characterized. According to in silico analysis, coding sequences of MuCTRP4-like, MuCTRP5, MuCTRP6, and MuCTRP7 consisted of 1128, 753, 729, and 888 bp open reading frames (ORF), respectively and encoded 375, 250, 242, and 295 amino acids, respectively. All CTRPs possessed a putative C1q domain. Additionally, MuCTRP5, MuCTRP6, and MuCTRP7 consisted of a collagen region. Phylogenetic analysis exemplified that MuCTRPs were distinctly clustered with the respective CTRP orthologs. Tissue-specific expression analysis demonstrated that MuCTRP4-like was mostly expressed in the blood and intestine. Moreover, MuCTRP6 was highly expressed in the blood, whereas MuCTRP5 and MuCTRP7 were predominantly expressed in the muscle and stomach, respectively. According to the temporal expression in blood, all MuCTRPs exhibited significant modulations in response to polyinosinic:polycytidylic acid (poly I:C) and Lactococcus garvieae (L. garvieae). MuCTRP4-like, MuCTRP5, and MuCTRP6 showed significant upregulation in response to lipopolysaccharides (LPS). The results of this study suggest the potential involvement of Mullet CTRPs in post-immune responses.
Collapse
Affiliation(s)
- W K M Omeka
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - D S Liyanage
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - Thanthrige Thiunuwan Priyathilaka
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - Hyukjae Kwon
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - Seongdo Lee
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - Jehee Lee
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea.
| |
Collapse
|
25
|
NK cells in liver homeostasis and viral hepatitis. SCIENCE CHINA-LIFE SCIENCES 2018; 61:1477-1485. [PMID: 30421296 DOI: 10.1007/s11427-018-9407-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 08/15/2018] [Indexed: 12/11/2022]
Abstract
As an important member of the innate immune system, natural killer (NK) cells are well known for their rapid and efficient immune responses against infectious agents and tumors. NK cells are widely distributed throughout the body and are particularly enriched within the liver, where they display unique phenotypic and functional properties, playing important roles in various liver diseases. Herein, we present an overview of liver NK cell properties with regard to phenotype, function, and subset composition at steady state, and we also summarize the complex reciprocal interactions between liver NK cells and other cell types within the local environment of the liver. We also provide an overview of recent advances demonstrating the roles of NK cells in viral hepatitis, including a discussion of NK cell altered states and their beneficial versus harmful effects during hepatitis B virus and hepatitis C virus infection.
Collapse
|
26
|
Sheppard S, Ferry A, Guedes J, Guerra N. The Paradoxical Role of NKG2D in Cancer Immunity. Front Immunol 2018; 9:1808. [PMID: 30150983 PMCID: PMC6099450 DOI: 10.3389/fimmu.2018.01808] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 07/23/2018] [Indexed: 12/12/2022] Open
Abstract
The activating receptor NKG2D and its ligands are recognized as a potent immune axis that controls tumor growth and microbial infections. With regards to cancer surveillance, various studies have demonstrated the antitumor function mediated by NKG2D on natural killer cells and on conventional and unconventional T cells. The use of NKG2D-deficient mice established the importance of NKG2D in delaying tumor development in transgenic mouse models of cancer. However, we recently demonstrated an unexpected, flip side to this coin, the ability for NKG2D to contribute to tumor growth in a model of inflammation-driven liver cancer. With a focus on the liver, here, we review current knowledge of NKG2D-mediated tumor surveillance and discuss evidence supporting a dual role for NKG2D in cancer immunity. We postulate that in certain advanced cancers, expression of ligands for NKG2D can drive cancer progression rather than rejection. We propose that the nature of the microenvironment within and surrounding tumors impacts the outcome of NKG2D activation. In a form of autoimmune attack, NKG2D promotes tissue damage, mostly in the inflamed tissue adjacent to the tumor, facilitating tumor progression while being ineffective at rejecting transformed cells in the tumor bed.
Collapse
Affiliation(s)
- Sam Sheppard
- Department of Life Sciences, Imperial College London, London, United Kingdom.,Memorial Sloan Kettering Cancer Center, Zuckerman Research Center, New York, NY, United States
| | - Amir Ferry
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Joana Guedes
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Nadia Guerra
- Department of Life Sciences, Imperial College London, London, United Kingdom
| |
Collapse
|
27
|
Abel AM, Yang C, Thakar MS, Malarkannan S. Natural Killer Cells: Development, Maturation, and Clinical Utilization. Front Immunol 2018; 9:1869. [PMID: 30150991 PMCID: PMC6099181 DOI: 10.3389/fimmu.2018.01869] [Citation(s) in RCA: 667] [Impact Index Per Article: 111.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 07/30/2018] [Indexed: 12/25/2022] Open
Abstract
Natural killer (NK) cells are the predominant innate lymphocyte subsets that mediate anti-tumor and anti-viral responses, and therefore possess promising clinical utilization. NK cells do not express polymorphic clonotypic receptors and utilize inhibitory receptors (killer immunoglobulin-like receptor and Ly49) to develop, mature, and recognize “self” from “non-self.” The essential roles of common gamma cytokines such as interleukin (IL)-2, IL-7, and IL-15 in the commitment and development of NK cells are well established. However, the critical functions of pro-inflammatory cytokines IL-12, IL-18, IL-27, and IL-35 in the transcriptional-priming of NK cells are only starting to emerge. Recent studies have highlighted multiple shared characteristics between NK cells the adaptive immune lymphocytes. NK cells utilize unique signaling pathways that offer exclusive ways to genetically manipulate to improve their effector functions. Here, we summarize the recent advances made in the understanding of how NK cells develop, mature, and their potential translational use in the clinic.
Collapse
Affiliation(s)
- Alex M Abel
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Blood Center of Wisconsin, Milwaukee, WI, United States.,Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Chao Yang
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Blood Center of Wisconsin, Milwaukee, WI, United States.,Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Monica S Thakar
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Blood Center of Wisconsin, Milwaukee, WI, United States.,Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Subramaniam Malarkannan
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Blood Center of Wisconsin, Milwaukee, WI, United States.,Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States.,Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States.,Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States.,Center of Excellence in Prostate Cancer, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
28
|
Lougaris V, Tabellini G, Baronio M, Patrizi O, Gazzurelli L, Mitsuiki N, Pozzi MR, Grimbacher B, Parolini S, Plebani A. CTLA-4 regulates human Natural Killer cell effector functions. Clin Immunol 2018; 194:43-45. [PMID: 29966715 DOI: 10.1016/j.clim.2018.06.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 05/16/2018] [Accepted: 06/27/2018] [Indexed: 12/29/2022]
Affiliation(s)
- Vassilios Lougaris
- Pediatrics Clinic and Institute for Molecular Medicine A. Nocivelli, Department of Clinical and Experimental Sciences, University of Brescia and ASST-Spedali Civili of Brescia, Italy.
| | - Giovanna Tabellini
- Department of Molecular and Translational Medicine, University of Brescia, Italy
| | - Manuela Baronio
- Pediatrics Clinic and Institute for Molecular Medicine A. Nocivelli, Department of Clinical and Experimental Sciences, University of Brescia and ASST-Spedali Civili of Brescia, Italy
| | - Ornella Patrizi
- Department of Molecular and Translational Medicine, University of Brescia, Italy
| | - Luisa Gazzurelli
- Pediatrics Clinic and Institute for Molecular Medicine A. Nocivelli, Department of Clinical and Experimental Sciences, University of Brescia and ASST-Spedali Civili of Brescia, Italy
| | - Noriko Mitsuiki
- Center for Chronic Immunodeficiency (CCI), University Medical Center Freiburg and University of Freiburg, Freiburg 79106, Germany
| | - Maria Rosa Pozzi
- Department of Internal Medicine, Rheumatology Unit, San Gerardo Hospital, Monza, Italy
| | - Bodo Grimbacher
- Center for Chronic Immunodeficiency (CCI), University Medical Center Freiburg and University of Freiburg, Freiburg 79106, Germany
| | - Silvia Parolini
- Department of Molecular and Translational Medicine, University of Brescia, Italy
| | - Alessandro Plebani
- Pediatrics Clinic and Institute for Molecular Medicine A. Nocivelli, Department of Clinical and Experimental Sciences, University of Brescia and ASST-Spedali Civili of Brescia, Italy
| |
Collapse
|
29
|
Lewicki S, Leśniak M, Bertrandt J, Kalicki B, Kubiak JZ, Lewicka A. The long-term effect of a protein-deficient-diet enriched with vitamin B6 on the blood parameters in unexercised and exercised rats. FOOD AGR IMMUNOL 2018. [DOI: 10.1080/09540105.2018.1439900] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Sławomir Lewicki
- Department of Regenerative Medicine and Cell Biology, Military Institute of Hygiene and Epidemiology, Warsaw, Poland
| | - Monika Leśniak
- Department of Regenerative Medicine and Cell Biology, Military Institute of Hygiene and Epidemiology, Warsaw, Poland
| | - Jerzy Bertrandt
- Department of Hygiene and Physiology, Military Institute of Hygiene and Epidemiology, Warsaw, Poland
| | - Bolesław Kalicki
- Paediatric, Nephrology and Allergology Clinic, Military Institute of Medicine, Warsaw, Poland
| | - Jacek Z. Kubiak
- Department of Regenerative Medicine and Cell Biology, Military Institute of Hygiene and Epidemiology, Warsaw, Poland
- Faculté de Medecine, CNRS UMR 6290, IGDR, Université Rennes, Rennes, France
| | - Aneta Lewicka
- Laboratory of Epidemiology, Military Institute of Hygiene and Epidemiology, Warsaw, Poland
| |
Collapse
|
30
|
Najar M, Fayyad-Kazan M, Meuleman N, Bron D, Fayyad-Kazan H, Lagneaux L. Immunological impact of Wharton's Jelly mesenchymal stromal cells and natural killer cell co-culture. Mol Cell Biochem 2018; 447:111-124. [PMID: 29380244 DOI: 10.1007/s11010-018-3297-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 01/23/2018] [Indexed: 12/20/2022]
Abstract
Due to their easier isolation, multilineage potential, and immunomodulatory capacity, Wharton's Jelly-derived mesenchymal stromal cells (WJ-MSCs) exhibit promising efficacy in the field of regenerative medicine and immunotherapy. Characterization of WJ-MSCs-natural killer (NK) cells crosstalk is required for ameliorating the medicinal value of WJ-MSCs. Here, we revealed that the outcome of WJ-MSCs-NK cells crosstalk varied according to the type of cytokines (IL-2, IL-12, IL-15 and IL-21) utilized to activate NK cells. Differently activated NK cells exerted distinct cytotoxicities against WJ-MSCs causing their probable death. Cell surface ligands (CD112, CD155, ULPB-3) and receptors (LAIR, CD226, CD314, CD335, CD336 and CD337) governing the interaction between NK cells and their targets, exhibited altered expression profiles following the co-culture with WJ-MSCs. Although partly inhibited NK cell proliferation, WJ-MSCs enhanced activated NK-cell-mediated secretion of IFN-γ and TNF-α. Moreover, WJ-MSCs reinforced NK cells' degranulation as well as secretion of perforin and granzymes. On the other hand, WJ-MSCs displayed only slight increase in ROS generation but significant decrease in A1 and C1 serpins expression following co-culture with activated NK cells. Altogether, our results highlight that WJ-MSCs-NK cells interaction may affect both cell type features and, therefore, their therapeutic properties.
Collapse
Affiliation(s)
- Mehdi Najar
- Laboratory of Clinical Cell Therapy, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Campus Erasme, Brussels, Belgium
| | - Mohammad Fayyad-Kazan
- Hematology Department, Institut Jules Bordet, Université Libre de Bruxelles, 121, Boulevard de Waterloo, 1000, Bruxelles, Belgium.
| | - Nathalie Meuleman
- Laboratory of Clinical Cell Therapy, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Campus Erasme, Brussels, Belgium.,Hematology Department, Institut Jules Bordet, Université Libre de Bruxelles, 121, Boulevard de Waterloo, 1000, Bruxelles, Belgium
| | - Dominique Bron
- Laboratory of Clinical Cell Therapy, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Campus Erasme, Brussels, Belgium.,Hematology Department, Institut Jules Bordet, Université Libre de Bruxelles, 121, Boulevard de Waterloo, 1000, Bruxelles, Belgium
| | - Hussein Fayyad-Kazan
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences I, Lebanese University, Hadath, Lebanon
| | - Laurence Lagneaux
- Laboratory of Clinical Cell Therapy, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Campus Erasme, Brussels, Belgium
| |
Collapse
|
31
|
Najar M, Fayyad-Kazan M, Meuleman N, Bron D, Fayyad-Kazan H, Lagneaux L. Immunomodulatory effects of foreskin mesenchymal stromal cells on natural killer cells. J Cell Physiol 2018; 233:5243-5254. [PMID: 29194614 DOI: 10.1002/jcp.26305] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Accepted: 11/28/2017] [Indexed: 12/25/2022]
Abstract
Foreskin-mesenchymal stromal cells (FSK-MSCs) are immune-privileged thus making them valuable immunotherapeutic cell product. Characterization of the relationship between FSK-MSCs and natural killer (NK) cells is essential to improve cell-based therapy. In the present study, we studied for the first time FSK-MSCs-NK interaction and showed that the result of such cross talk was robustly dependent on the type of cytokines (IL-2, IL-12, IL-15, and IL-21) employed to activate NK cells. Distinctly activated-NK cells showed uneven cytotoxicity against FSK-MSCs, triggering their death in fine. The expression of different cell-surface ligands (CD112, CD155, ULPB-3) and receptors (LAIR, KIRs) ensuring such interaction was altered following co-culture of both populations. Despite their partial negative effect on NK cell proliferation, FSK-MSCs boosted the capacity of activated NK-cells to secrete IFN-γ and TNF-α. Moreover, FSK-MSCs enhanced degranulation of NK cells, reinforced secretion of perforin and granzymes, while only modestly increased ROS production. On the other hand, FSK-MSCs-mediated expression of C1 and B9 serpins was significantly lowered in the presence of activated NK cells. Altogether, our results highlight major immunological changes following FSK-MSCs-NK interaction. Understanding these outcomes will therefore enhance the value of the therapeutic strategy.
Collapse
Affiliation(s)
- Mehdi Najar
- Laboratory of Clinical Cell Therapy, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Campus Erasme, Brussels, Belgium
| | - Mohammad Fayyad-Kazan
- Institut de Biologie et de Médecine Moléculaires, Université Libre de Bruxelles, Gosselies, Belgium
| | - Nathalie Meuleman
- Laboratory of Clinical Cell Therapy, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Campus Erasme, Brussels, Belgium.,Hematology Department, Institut Jules Bordet, Université Libre de Bruxelles, Boulevard de Waterloo, Bruxelles, Belgium
| | - Dominique Bron
- Laboratory of Clinical Cell Therapy, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Campus Erasme, Brussels, Belgium.,Hematology Department, Institut Jules Bordet, Université Libre de Bruxelles, Boulevard de Waterloo, Bruxelles, Belgium
| | - Hussein Fayyad-Kazan
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences I, Lebanese University, Hadath, Lebanon
| | - Laurence Lagneaux
- Laboratory of Clinical Cell Therapy, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Campus Erasme, Brussels, Belgium
| |
Collapse
|
32
|
Najar M, Fayyad-Kazan M, Meuleman N, Bron D, Fayyad-Kazan H, Lagneaux L. Mesenchymal stromal cells of the bone marrow and natural killer cells: cell interactions and cross modulation. J Cell Commun Signal 2018; 12:673-688. [PMID: 29350342 DOI: 10.1007/s12079-018-0448-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 01/09/2018] [Indexed: 12/16/2022] Open
Abstract
Bone marrow-derived mesenchymal stromal cells (BM-MSCs) are multipotent progenitor cells that have shown promise for several different therapeutic applications. As they are able to modulate the function of several types of immune cells, BM-MSCs are highly important in the field of cell-based immunotherapy. Understanding BM-MSC-natural killer (NK) cell interactions is crucial for improving their therapeutic efficiency. Here, we observed that the type of NK cell-activating cytokine (e.g., IL-2, IL-12, IL-15 and IL-21) strongly influenced the outcomes of their interactions with BM-MSCs. The expression patterns of the ligands (CD112, CD155, ULPB-3) and receptors (LAIR, NCR) mediating the cross-talk between BM-MSCs and NK cells were critically modulated following co-culture. BM-MSCs partially impaired NK cell proliferation but up-regulated their secretion of IFN-γ and TNF-α. As they are cytotoxic, activated NK cells induced the killing of BM-MSCs. Indeed, BM-MSCs triggered the degranulation of NK cells and increased their release of perforin and granzymes. Interestingly, activated NK cells induced ROS generation within BM-MSCs that caused their decreased viability and reduced expression of serpin B9. Collectively, our observations reveal that BM-MSC-NK cell interactions may impact the immunobiology of both cell types. The therapeutic potential of BM-MSCs will be significantly improved once these issues are well characterized.
Collapse
Affiliation(s)
- Mehdi Najar
- Laboratory of Clinical Cell Therapy, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Campus Erasme, Brussels, Belgium
| | - Mohammad Fayyad-Kazan
- Hematology Department, Institut Jules Bordet, Université Libre de Bruxelles, 121, Boulevard de Waterloo, 1000, Bruxelles, Belgium.
| | - Nathalie Meuleman
- Laboratory of Clinical Cell Therapy, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Campus Erasme, Brussels, Belgium.,Hematology Department, Institut Jules Bordet, Université Libre de Bruxelles, 121, Boulevard de Waterloo, 1000, Bruxelles, Belgium
| | - Dominique Bron
- Laboratory of Clinical Cell Therapy, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Campus Erasme, Brussels, Belgium.,Hematology Department, Institut Jules Bordet, Université Libre de Bruxelles, 121, Boulevard de Waterloo, 1000, Bruxelles, Belgium
| | - Hussein Fayyad-Kazan
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences I, Lebanese University, Hadath, Lebanon
| | - Laurence Lagneaux
- Laboratory of Clinical Cell Therapy, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Campus Erasme, Brussels, Belgium
| |
Collapse
|
33
|
Rizzo R, Soffritti I, D'Accolti M, Bortolotti D, Di Luca D, Caselli E. HHV-6A/6B Infection of NK Cells Modulates the Expression of miRNAs and Transcription Factors Potentially Associated to Impaired NK Activity. Front Microbiol 2017; 8:2143. [PMID: 29163428 PMCID: PMC5671584 DOI: 10.3389/fmicb.2017.02143] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 10/19/2017] [Indexed: 12/15/2022] Open
Abstract
Natural killer (NK) cells have a critical role in controlling virus infections, and viruses have evolved several mechanisms to escape NK cell functions. In particular, Human herpesvirus 6 (HHV-6) is associated with diseases characterized by immune dysregulation and has been reported to infect NK cells. We recently found that HHV-6 in vitro infection of human thyroid follicular epithelial cells and T-lymphocytes modulates several miRNAs associated with alterations in immune response. Since miRNAs are key regulators of many immune pathways, including NK cell functions, we aimed to study the impact of HHV-6A and -6B in vitro infection on the intracellular mediators correlated to NK cell function. To this purpose, a human NK cell line (NK-92) was infected in vitro with HHV-6A or 6B and analyzed for alterations in the expression of miRNAs and transcription factors. The results showed that both viruses establish lytic replication in NK-92 cells, as shown by the presence of viral DNA, expression of lytic transcripts and antigens, and by the induction of an evident cytopathic effect. Notably, both viruses, although with species-specific differences, induced significant modifications in miRNA expression of miRNAs known for their role in NK cell development, maturation and effector functions (miR-146, miR-155, miR-181, miR-223), and on at least 13 miRNAs with recognized role in inflammation and autoimmunity. Also the expression of transcription factors was significantly modified by HHV-6A/6B infection, with an early increase of ATF3, JUN and FOXA2 by both species, whereas HHV-6A specifically induced a 15-fold decrease of POU2AF1, and HHV-6B an increase of FOXO1 and a decrease of ESR1. Overall, our data show that HHV-6A and -6B infections have a remarkable effect on the expression of miRNAs and transcription factors, which might be important in the induction of NK cell function impairment, virus escape strategies and related pathologies.
Collapse
Affiliation(s)
- Roberta Rizzo
- Section of Microbiology and Medical Genetics, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Irene Soffritti
- Section of Microbiology and Medical Genetics, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Maria D'Accolti
- Section of Microbiology and Medical Genetics, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Daria Bortolotti
- Section of Microbiology and Medical Genetics, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Dario Di Luca
- Section of Microbiology and Medical Genetics, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Elisabetta Caselli
- Section of Microbiology and Medical Genetics, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| |
Collapse
|
34
|
NK cell subsets in autoimmune diseases. J Autoimmun 2017; 83:22-30. [DOI: 10.1016/j.jaut.2017.02.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Accepted: 02/13/2017] [Indexed: 12/12/2022]
|
35
|
Abstract
Although natural killer (NK) cells were initially named for their spontaneous tumor-killing capacity, their concept has been greatly expanded with more than 40 years of extensive investigation. Currently, NK cells are known as a heterogeneous population of innate lymphoid cell (ILC) family, consisting of different subsets with unique phenotypic and functional features. Recent studies have shown that tissue-resident NK (trNK) cells, which are distinct from conventional NK (cNK) cells, preferentially distribute in non-lymphoid tissues, such as the liver, uterus, salivary gland, and adipose. In this review, we provide a comprehensive overview of the current knowledge about the phenotype, function and development of trNK cells across different tissues and describe the similarities and differences between diverse trNK cells and cNK cells, with a particular focus on the tissue-specific characteristics of different trNK cells.
Collapse
Affiliation(s)
- Hui Peng
- Institute of Immunology and The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China.
| | - Zhigang Tian
- Institute of Immunology and The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China.
| |
Collapse
|
36
|
|
37
|
Signal peptide peptidase and SPP-like proteases - Possible therapeutic targets? BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017. [PMID: 28624439 DOI: 10.1016/j.bbamcr.2017.06.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Signal peptide peptidase (SPP) and the four homologous SPP-like proteases SPPL2a, SPPL2b, SPPL2c and SPPL3 are GxGD-type intramembrane-cleaving proteases (I-CLIPs). In addition to divergent subcellular localisations, distinct differences in the mechanistic properties and substrate requirements of individual family members have been unravelled. SPP/SPPL proteases employ a catalytic mechanism related to that of the γ-secretase complex. Nevertheless, differential targeting of SPP/SPPL proteases and γ-secretase by inhibitors has been demonstrated. Furthermore, also within the SPP/SPPL family significant differences in the sensitivity to currently available inhibitory compounds have been reported. Though far from complete, our knowledge on pathophysiological functions of SPP/SPPL proteases, in particular based on studies in mice, has been significantly increased over the last years. Based on this, inhibition of distinct SPP/SPPL proteases has been proposed as a novel therapeutic concept e.g. for the treatment of autoimmunity and viral or protozoal infections, as we will discuss in this review. This article is part of a Special Issue entitled: Proteolysis as a Regulatory Event in Pathophysiology edited by Stefan Rose-John.
Collapse
|
38
|
Kyaw T, Peter K, Li Y, Tipping P, Toh BH, Bobik A. Cytotoxic lymphocytes and atherosclerosis: significance, mechanisms and therapeutic challenges. Br J Pharmacol 2017; 174:3956-3972. [PMID: 28471481 DOI: 10.1111/bph.13845] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 04/02/2017] [Accepted: 04/24/2017] [Indexed: 02/06/2023] Open
Abstract
Cytotoxic lymphocytes encompass natural killer lymphocytes (cells) and cytotoxic T cells that include CD8+ T cells, natural killer (NK) T cells, γ, δ (γδ)-T cells and human CD4 + CD28- T cells. These cells play critical roles in inflammatory diseases and in controlling cancers and infections. Cytotoxic lymphocytes can be activated via a number of mechanisms that may involve dendritic cells, macrophages, cytokines or surface proteins on stressed cells. Upon activation, they secrete pro-inflammatory cytokines as well as anti-inflammatory cytokines, chemokines and cytotoxins to promote inflammation and the development of atherosclerotic lesions including vulnerable lesions, which are strongly implicated in myocardial infarctions and strokes. Here, we review the mechanisms that activate and regulate cytotoxic lymphocyte activity, including activating and inhibitory receptors, cytokines, chemokine receptors-chemokine systems utilized to home to inflamed lesions and cytotoxins and cytokines through which they affect other cells within lesions. We also examine their roles in human and mouse models of atherosclerosis and the mechanisms by which they exert their pathogenic effects. Finally, we discuss strategies for therapeutically targeting these cells to prevent the development of atherosclerotic lesions and vulnerable plaques and the challenge of developing highly targeted therapies that only minimally affect the body's immune system, avoiding the complications, such as increased susceptibility to infections, which are currently associated with many immunotherapies for autoimmune diseases. LINKED ARTICLES This article is part of a themed section on Targeting Inflammation to Reduce Cardiovascular Disease Risk. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.22/issuetoc and http://onlinelibrary.wiley.com/doi/10.1111/bcp.v82.4/issuetoc.
Collapse
Affiliation(s)
- Tin Kyaw
- Baker Heart and Diabetes Institute, Melbourne, Vic, Australia.,Department of Medicine, Monash University, Melbourne, Vic, Australia
| | - Karlheinz Peter
- Baker Heart and Diabetes Institute, Melbourne, Vic, Australia.,Department of Immunology, Monash University, Melbourne, Vic, Australia
| | - Yi Li
- Baker Heart and Diabetes Institute, Melbourne, Vic, Australia.,Department of Medicine, Monash University, Melbourne, Vic, Australia
| | - Peter Tipping
- Department of Medicine, Monash University, Melbourne, Vic, Australia
| | - Ban-Hock Toh
- Baker Heart and Diabetes Institute, Melbourne, Vic, Australia.,Department of Medicine, Monash University, Melbourne, Vic, Australia
| | - Alex Bobik
- Baker Heart and Diabetes Institute, Melbourne, Vic, Australia.,Department of Immunology, Monash University, Melbourne, Vic, Australia.,Department of Medicine, Monash University, Melbourne, Vic, Australia
| |
Collapse
|
39
|
Dankers W, Colin EM, van Hamburg JP, Lubberts E. Vitamin D in Autoimmunity: Molecular Mechanisms and Therapeutic Potential. Front Immunol 2017; 7:697. [PMID: 28163705 PMCID: PMC5247472 DOI: 10.3389/fimmu.2016.00697] [Citation(s) in RCA: 195] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 12/29/2016] [Indexed: 12/31/2022] Open
Abstract
Over the last three decades, it has become clear that the role of vitamin D goes beyond the regulation of calcium homeostasis and bone health. An important extraskeletal effect of vitamin D is the modulation of the immune system. In the context of autoimmune diseases, this is illustrated by correlations of vitamin D status and genetic polymorphisms in the vitamin D receptor with the incidence and severity of the disease. These correlations warrant investigation into the potential use of vitamin D in the treatment of patients with autoimmune diseases. In recent years, several clinical trials have been performed to investigate the therapeutic value of vitamin D in multiple sclerosis, rheumatoid arthritis, Crohn’s disease, type I diabetes, and systemic lupus erythematosus. Additionally, a second angle of investigation has focused on unraveling the molecular pathways used by vitamin D in order to find new potential therapeutic targets. This review will not only provide an overview of the clinical trials that have been performed but also discuss the current knowledge about the molecular mechanisms underlying the immunomodulatory effects of vitamin D and how these advances can be used in the treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Wendy Dankers
- Department of Rheumatology, Erasmus MC, University Medical Center, Rotterdam, Netherlands; Department of Immunology, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| | - Edgar M Colin
- Department of Rheumatology, Erasmus MC, University Medical Center, Rotterdam, Netherlands; Department of Rheumatology, ZGT, Almelo, Netherlands
| | - Jan Piet van Hamburg
- Department of Rheumatology, Erasmus MC, University Medical Center, Rotterdam, Netherlands; Department of Immunology, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| | - Erik Lubberts
- Department of Rheumatology, Erasmus MC, University Medical Center, Rotterdam, Netherlands; Department of Immunology, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
40
|
Wałajtys-Rode E, Dzik JM. Monocyte/Macrophage: NK Cell Cooperation-Old Tools for New Functions. Results Probl Cell Differ 2017; 62:73-145. [PMID: 28455707 DOI: 10.1007/978-3-319-54090-0_5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Monocyte/macrophage and natural killer (NK) cells are partners from a phylogenetic standpoint of innate immune system development and its evolutionary progressive interaction with adaptive immunity. The equally conservative ways of development and differentiation of both invertebrate hemocytes and vertebrate macrophages are reviewed. Evolutionary conserved molecules occurring in macrophage receptors and effectors have been inherited by vertebrates after their common ancestor with invertebrates. Cytolytic functions of mammalian NK cells, which are rooted in immune cells of invertebrates, although certain NK cell receptors (NKRs) are mammalian new events, are characterized. Broad heterogeneity of macrophage and NK cell phenotypes that depends on surrounding microenvironment conditions and expression profiles of specific receptors and activation mechanisms of both cell types are discussed. The particular tissue specificity of macrophages and NK cells, as well as their plasticity and mechanisms of their polarization to different functional subtypes have been underlined. The chapter summarized studies revealing the specific molecular mechanisms and regulation of NK cells and macrophages that enable their highly specific cross-cooperation. Attention is given to the evolving role of human monocyte/macrophage and NK cell interaction in pathogenesis of hypersensitivity reaction-based disorders, including autoimmunity, as well as in cancer surveillance and progression.
Collapse
Affiliation(s)
- Elżbieta Wałajtys-Rode
- Faculty of Chemistry, Department of Drug Technology and Biotechnology, Warsaw University of Technology, Noakowskiego 3 Str, 00-664, Warsaw, Poland.
| | - Jolanta M Dzik
- Faculty of Agriculture and Biology, Department of Biochemistry, Warsaw University of Life Sciences-SGGW, Warsaw, Poland
| |
Collapse
|
41
|
Norero B, Serrano CA, Sanchez-Fueyo A, Duarte I, Torres J, Ocquetau M, Barrera F, Arrese M, Soza A, Benítez C. Conversion to mycophenolate mofetil monotherapy in liver recipients: Calcineurin inhibitor levels are key. Ann Hepatol 2017; 16:94-106. [PMID: 28051798 DOI: 10.5604/16652681.1226820] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The use of calcineurin inhibitors (CNI) after liver transplantation is associated with post-transplant nephrotoxicity. Conversion to mycophenolate mofetil (MMF) monotherapy improves renal function, but is related to graft rejection in some recipients. Our aim was to identify variables associated with rejection after conversion to MMF monotherapy. Conversion was attempted in 40 liver transplant recipients. Clinical variables were determined and peripheral mononuclear blood cells were immunophenotyped during a 12-month follow-up. Conversion was classified as successful (SC) if rejection did not occur during the follow-up. MMF conversion was successful with 28 patients (70%) and was associated with higher glomerular filtration rates at the end of study. It also correlated with increased time elapsed since transplantation, low baseline CNI levels (Tacrolimus ≤ 6.5 ng/mL or Cyclosporine ≤ 635 ng/mL) and lower frequency of tacrolimus use. The only clinical variable independently related to SC in multivariate analysis was low baseline CNI levels (p = 0.02, OR: 6.93, 95%, CI: 1.3-29.7). Mean baseline fluorescent intensity of FOXP3+ T cells was significantly higher among recipients with SC. In conclusion, this study suggests that baseline CNI levels can be used to identify recipients with higher probability of SC to MMF monotherapy. Clinicaltrials.gov identification: NCT01321112.
Collapse
Affiliation(s)
- Blanca Norero
- Departamentos de Gastroenterología, Escuela de Medicina, Pontificia Universidad Católica de Chile
| | - Carolina A Serrano
- Departamentos de Gastroenterología y Nutrición Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile
| | - Alberto Sanchez-Fueyo
- Institute of Liver Studies, MRC Centre for Transplantation, King's College London, London SE5 9RS, United Kingdom
| | - Ignacio Duarte
- Patología y Escuela de Medicina, Pontificia Universidad Católica de Chile
| | - Javiera Torres
- Patología y Escuela de Medicina, Pontificia Universidad Católica de Chile
| | - Mauricio Ocquetau
- Hemato-Oncología, Escuela de Medicina, Pontificia Universidad Católica de Chile
| | | | - Marco Arrese
- Departamentos de Gastroenterología, Escuela de Medicina, Pontificia Universidad Católica de Chile
| | - Alejandro Soza
- Departamentos de Gastroenterología, Escuela de Medicina, Pontificia Universidad Católica de Chile
| | - Carlos Benítez
- Departamentos de Gastroenterología, Escuela de Medicina, Pontificia Universidad Católica de Chile
| |
Collapse
|
42
|
Kieckens E, Rybarczyk J, Li RW, Vanrompay D, Cox E. Potential immunosuppressive effects of Escherichia coli O157:H7 experimental infection on the bovine host. BMC Genomics 2016; 17:1049. [PMID: 28003017 PMCID: PMC5178093 DOI: 10.1186/s12864-016-3374-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 12/05/2016] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Enterohaemorrhagic Escherichia coli (EHEC), like E. coli O157:H7 are frequently detected in bovine faecal samples at slaughter. Cattle do not show clinical symptoms upon infection, but for humans the consequences after consuming contaminated beef can be severe. The immune response against EHEC in cattle cannot always clear the infection as persistent colonization and shedding in infected animals over a period of months often occurs. In previous infection trials, we observed a primary immune response after infection which was unable to protect cattle from re-infection. These results may reflect a suppression of certain immune pathways, making cattle more prone to persistent colonization after re-infection. To test this, RNA-Seq was used for transcriptome analysis of recto-anal junction tissue and ileal Peyer's patches in nine Holstein-Friesian calves in response to a primary and secondary Escherichia coli O157:H7 infection with the Shiga toxin (Stx) negative NCTC12900 strain. Non-infected calves served as controls. RESULTS In tissue of the recto-anal junction, only 15 genes were found to be significantly affected by a first infection compared to 1159 genes in the ileal Peyer's patches. Whereas, re-infection significantly changed the expression of 10 and 17 genes in the recto-anal junction tissue and the Peyer's patches, respectively. A significant downregulation of 69 immunostimulatory genes and a significant upregulation of seven immune suppressing genes was observed. CONCLUSIONS Although the recto-anal junction is a major site of colonization, this area does not seem to be modulated upon infection to the same extent as ileal Peyer's patches as the changes in gene expression were remarkably higher in the ileal Peyer's patches than in the recto-anal junction during a primary but not a secondary infection. We can conclude that the main effect on the transcriptome was immunosuppression by E. coli O157:H7 (Stx-) due to an upregulation of immune suppressive effects (7/12 genes) or a downregulation of immunostimulatory effects (69/94 genes) in the ileal Peyer's patches. These data might indicate that a primary infection promotes a re-infection with EHEC by suppressing the immune function.
Collapse
Affiliation(s)
- E. Kieckens
- Laboratory of Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
- Laboratory of Immunology and Animal Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - J. Rybarczyk
- Laboratory of Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
- Laboratory of Immunology and Animal Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - R. W. Li
- USDA-ARS, Bovine Functional Genomics Laboratory, Beltsville, MD USA
| | - D. Vanrompay
- Laboratory of Immunology and Animal Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - E. Cox
- Laboratory of Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| |
Collapse
|
43
|
The Memories of NK Cells: Innate-Adaptive Immune Intrinsic Crosstalk. J Immunol Res 2016; 2016:1376595. [PMID: 28078307 PMCID: PMC5204097 DOI: 10.1155/2016/1376595] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 11/08/2016] [Indexed: 12/24/2022] Open
Abstract
Although NK cells are considered part of the innate immune system, a series of evidences has demonstrated that they possess characteristics typical of the adaptive immune system. These NK adaptive features, in particular their memory-like functions, are discussed from an ontogenetic and evolutionary point of view.
Collapse
|
44
|
Lin CM, Plenter RJ, Coulombe M, Gill RG. Interferon Gamma and Contact-dependent Cytotoxicity Are Each Rate Limiting for Natural Killer Cell-Mediated Antibody-dependent Chronic Rejection. Am J Transplant 2016; 16:3121-3130. [PMID: 27163757 PMCID: PMC5083186 DOI: 10.1111/ajt.13865] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Revised: 04/26/2016] [Accepted: 05/02/2016] [Indexed: 01/25/2023]
Abstract
Natural killer (NK) cells are key components of the innate immune system. In murine cardiac transplant models, donor-specific antibodies (DSA), in concert with NK cells, are sufficient to inflict chronic allograft vasculopathy independently of T and B cells. In this study, we aimed to determine the effector mechanism(s) required by NK cells to trigger chronic allograft vasculopathy during antibody-mediated rejection. Specifically, we tested the relative contribution of the proinflammatory cytokine interferon gamma (IFN-γ) versus the contact-dependent cytotoxic mediators of perforin and the CD95/CD95L (Fas/Fas ligand [FasL]) pathway for triggering these lesions. C3H/HeJ cardiac allografts were transplanted into immune-deficient C57BL/6 rag-/- γc-/- recipients, who also received monoclonal anti-major histocompatibility complex (MHC) class I DSA. The combination of DSA and wild-type NK cell transfer triggered aggressive chronic allograft vasculopathy. However, transfer of IFN-γ-deficient NK cells or host IFN-γ neutralization led to amelioration of these lesions. Use of either perforin-deficient NK cells or CD95 (Fas)-deficient donors alone did not alter development of vasculopathy, but simultaneous disruption of NK cell-derived perforin and allograft Fas expression resulted in prevention of these abnormalities. Therefore, both NK cell IFN-γ production and contact-dependent cytotoxic activity are rate-limiting effector pathways that contribute to this form of antibody-induced chronic allograft vasculopathy.
Collapse
Affiliation(s)
- C M Lin
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado, Aurora, CO.
| | - R J Plenter
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado, Aurora, CO
| | - M Coulombe
- Department of Surgery, University of Colorado, Aurora, CO
| | - R G Gill
- Department of Surgery, University of Colorado, Aurora, CO
| |
Collapse
|
45
|
Almeida I, Silva SV, Fonseca AR, Silva I, Vasconcelos C, Lima M. T and NK Cell Phenotypic Abnormalities in Systemic Sclerosis: a Cohort Study and a Comprehensive Literature Review. Clin Rev Allergy Immunol 2016; 49:347-69. [PMID: 26445774 DOI: 10.1007/s12016-015-8505-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Scleroderma (SSc) is a rare and heterogeneous immune-mediated disease involving the connective tissue and microvasculature whose pathogenesis remains unclear. Data concerning T and natural killer (NK) cell abnormalities and cytokine levels in the peripheral blood (PB) from patients with SSc are scarce, and the results are contradictory. The present study aimed to analyze the changes of T lymphocytes, NK cells, and T helper (Th)-related cytokines in the PB of patients with SSc in comparison to healthy individuals and its relation to disease subtype and stage, organ involvement, and nailfold capillaroscopic changes. A non-random convenience sample of 57 scleroderma patients was utilized. Fifty-five out of the 57 patients studied were women (97 %); 10 patients presented pre-scleroderma (pre-SSc) and 47 SSc: 34 limited cutaneous SSc (lcSSc) and 13 diffuse cutaneous SSc (dcSSc). Patients with SSc were classified in early (n = 7), intermediate (n = 10), and late (n = 30) disease. Blood samples were analyzed by flow cytometry for total T cells, CD4+ and CD8+ T cell subsets, total NK cells, and CD56+low and CD56+high NK cell subsets. T cells were further analyzed for the expression of the CD56 adhesion molecule and activation-related markers (HLA-DR, CD45RO). In addition, the serum levels of Th1-, Th2-, and Th17-related cytokines were measured by flow cytometry. Twenty-five healthy individuals recruited from the blood bank were used as controls. Patients had lower numbers of total lymphocytes and T cells comparing to healthy controls. Both CD4+ and CD8+ T cells were decreased, but differences were statistically significant only for CD8+ and CD8+ CD45RO+ T cells. These alterations were seen in patients with SSc but not in patients with pre-SSc, and, in general, they were more pronounced in patients with dcSSc than in patients with lcSSc, in patients with vascular involvement than in those without, as well as in patients having active and late nailfold capillaroscopic patterns. CD56+ T cells were also decreased in SSc patients, especially in those with active/late capillaroscopic patterns or with severe lung disease. Diminished numbers of circulating NK cells were also observed in patients with lcSSc and in those with early disease. No statistically significant changes were found in serum cytokine levels, as compared with controls. Patients with SSc had major alterations in circulating CD8+ and CD56+ T cells, as well as in NK cells, suggesting that these cells may play a relevant role in SSc pathogenesis, probably operating at different phases and/or at different organs. In addition, the serum levels of Th1, Th2, and Th17 cytokines did not provide useful information for evaluating T cell polarization in SSc.
Collapse
Affiliation(s)
- Isabel Almeida
- Clinical Immunology Unit, Department of Medicine, Hospital de Santo António (HSA), Centro Hospitalar do Porto (CHP), Rua D. Manuel II, s/n, 4099-001, Porto, Portugal. .,Multidisciplinary Unit for Biomedical Investigation (UMIB), Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal.
| | - Sara Vieira Silva
- Clinical Immunology Unit, Department of Medicine, Hospital de Santo António (HSA), Centro Hospitalar do Porto (CHP), Rua D. Manuel II, s/n, 4099-001, Porto, Portugal.
| | - Ana Raquel Fonseca
- Laboratory of Cytometry, Department of Haematology, Hospital de Santo António (HSA), Centro Hospitalar do Porto (CHP), Porto, Portugal
| | - Ivone Silva
- Clinical Immunology Unit, Department of Medicine, Hospital de Santo António (HSA), Centro Hospitalar do Porto (CHP), Rua D. Manuel II, s/n, 4099-001, Porto, Portugal. .,Department of Vascular Surgery, Hospital de Santo António (HSA), Centro Hospitalar do Porto (CHP), Porto, Portugal.
| | - Carlos Vasconcelos
- Clinical Immunology Unit, Department of Medicine, Hospital de Santo António (HSA), Centro Hospitalar do Porto (CHP), Rua D. Manuel II, s/n, 4099-001, Porto, Portugal. .,Multidisciplinary Unit for Biomedical Investigation (UMIB), Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal.
| | - Margarida Lima
- Laboratory of Cytometry, Department of Haematology, Hospital de Santo António (HSA), Centro Hospitalar do Porto (CHP), Porto, Portugal. .,Multidisciplinary Unit for Biomedical Investigation (UMIB), Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal.
| |
Collapse
|
46
|
Almishri W, Santodomingo-Garzon T, Le T, Stack D, Mody CH, Swain MG. TNFα Augments Cytokine-Induced NK Cell IFNγ Production through TNFR2. J Innate Immun 2016; 8:617-629. [PMID: 27560480 DOI: 10.1159/000448077] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Accepted: 06/29/2016] [Indexed: 12/11/2022] Open
Abstract
NK cells play a central role in innate immunity, acting directly through cell-mediated cytotoxicity and by secreting cytokines. TNFα activation of TNFR2 enhances NK cell cytotoxicity, but its effects on the other essential function of NK cells - cytokine production, for which IFNγ is paramount - are poorly defined. We identify the expression of both TNFα receptors on human peripheral blood NK cells (TNFR2 > TNFR1) and show that TNFα significantly augments IFNγ production from IL-2-/IL-12-treated NK cells in vitro, an effect mimicked by a TNFR2 agonistic antibody. TNFα also enhanced murine NK cell IFNγ production via TNFR2 in vitro. In a mouse model characterized by the hepatic recruitment and activation of NK cells, TNFR2 also regulated NK cell IFNγ production in vivo. Specifically, in this model, after activation of an innate immune response, hepatic numbers of TNFR2-expressing and IFNγ-producing NK cells were both significantly increased; however, the frequency of IFNγ-producing hepatic NK cells was significantly reduced in TNFR2-deficient mice. We delineate an important role for TNFα, acting through TNFR2, in augmenting cytokine-induced NK cell IFNγ production in vivo and in vitro, an effect with significant potential implications for the regulation of innate and adaptive immune responses.
Collapse
Affiliation(s)
- Wagdi Almishri
- Immunology Research Group, Snyder Institute, Liver Unit, Division of Gastroenterology and Hepatology, Cumming School of Medicine, University of Calgary, Calgary, Alta., Canada
| | | | | | | | | | | |
Collapse
|
47
|
Zanetti SR, Ziblat A, Torres NI, Zwirner NW, Bouzat C. Expression and Functional Role of α7 Nicotinic Receptor in Human Cytokine-stimulated Natural Killer (NK) Cells. J Biol Chem 2016; 291:16541-52. [PMID: 27284006 DOI: 10.1074/jbc.m115.710574] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Indexed: 12/18/2022] Open
Abstract
The homomeric α7 nicotinic receptor (nAChR) is one of the most abundant nAChRs in the central nervous system where it contributes to cognition, attention, and working memory. α7 nAChR is also present in lymphocytes, dendritic cells (DCs), and macrophages and it is emerging as an important drug target for intervention in inflammation and sepsis. Natural killer (NK) cells display cytotoxic activity against susceptible target cells and modulate innate and adaptive immune responses through their interaction with DCs. We here show that human NK cells also express α7 nAChR. α7 nAChR mRNA is detected by RT-PCR and cell surface expression of α7 nAChR is detected by confocal microscopy and flow cytometry using α-bungarotoxin, a specific antagonist. Both mRNA and protein levels increase during NK stimulation with cytokines (IL-12, IL-18, and IL-15). Exposure of cytokine-stimulated NK cells to PNU-282987, a specific α7 nAChR agonist, increases intracellular calcium concentration ([Ca(2+)]i) mainly released from intracellular stores, indicating that α7 nAChR is functional. Moreover, its activation by PNU-282987 plus a specific positive allosteric modulator greatly enhances the Ca(2+) responses in NK cells. Stimulation of NK cells with cytokines and PNU-282987 decreases NF-κB levels and nuclear mobilization, down-regulates NKG2D receptors, and decreases NKG2D-dependent cell-mediated cytotoxicity and IFN-γ production. Also, such NK cells are less efficient to trigger DC maturation. Thus, our results demonstrate the anti-inflammatory role of α7 nAChR in NK cells and suggest that modulation of its activity in these cells may constitute a novel target for regulation of the immune response.
Collapse
Affiliation(s)
- Samanta R Zanetti
- From the Instituto de Investigaciones Bioquímicas (INIBIBB), Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 8000 Bahía Blanca
| | - Andrea Ziblat
- the Instituto de Biología y Medicina Experimental, CONICET, C1428ADN-Ciudad de Buenos Aires, and
| | - Nicolás I Torres
- the Instituto de Biología y Medicina Experimental, CONICET, C1428ADN-Ciudad de Buenos Aires, and
| | - Norberto W Zwirner
- the Instituto de Biología y Medicina Experimental, CONICET, C1428ADN-Ciudad de Buenos Aires, and the Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428ADN-Ciudad de Buenos Aires, Argentina
| | - Cecilia Bouzat
- From the Instituto de Investigaciones Bioquímicas (INIBIBB), Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 8000 Bahía Blanca,
| |
Collapse
|
48
|
Dickerson F, Stallings C, Origoni A, Schroeder J, Katsafanas E, Schweinfurth L, Savage C, Khushalani S, Yolken R. Inflammatory Markers in Recent Onset Psychosis and Chronic Schizophrenia. Schizophr Bull 2016; 42:134-41. [PMID: 26294704 PMCID: PMC4681560 DOI: 10.1093/schbul/sbv108] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Immune markers have been associated with schizophrenia, but few studies have examined multiple markers in both recent onset and chronic schizophrenia patients. METHODS The sample of 588 individuals included 79 with recent onset psychosis, 249 with chronic schizophrenia, and 260 controls. A combined inflammation score was calculated by principal components factor analysis of the levels of C-reactive protein, Pentraxin 3, and IgG antibodies to gliadin, casein, and Saccharomyces cerevisiae measured in blood samples. Inflammation scores among groups were compared by multivariate analyses. RESULTS The chronic schizophrenia group showed significant elevations in the combined inflammation score compared with controls. The recent onset group surprisingly showed a reduction in the combined inflammation score. Consistent with these findings, the chronic schizophrenia group had significantly increased odds of a combined inflammation score greater than the 75th and the 90th percentile of that of the controls. The recent onset group had significantly increased odds of a combined inflammation score less than the 10th and the 25th percentile level of the controls. CONCLUSIONS The recent onset of psychosis may be associated with inherent deficits in innate immunity. Individuals later in the course of disease may have increased levels of innate immunity. The reasons for these changes are not known with certainty but may be related to compensatory increases as the disease progresses. Longitudinal studies are needed to determine the course of immune abnormalities in schizophrenia and their role in the clinical manifestations of the disorder.
Collapse
Affiliation(s)
- Faith Dickerson
- The Stanley Research Program at Sheppard Pratt, Baltimore, MD;
| | | | - Andrea Origoni
- The Stanley Research Program at Sheppard Pratt, Baltimore, MD
| | | | | | | | | | | | - Robert Yolken
- The Stanley Neurovirology Laboratory, Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD
| |
Collapse
|
49
|
Kabeerdoss J, Sandhya P, Danda D. Gut inflammation and microbiome in spondyloarthritis. Rheumatol Int 2015; 36:457-68. [PMID: 26719306 DOI: 10.1007/s00296-015-3414-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Accepted: 12/21/2015] [Indexed: 12/16/2022]
Abstract
Spondyloarthritis (SpA) is chronic inflammatory disease involving joints and the spine. Bowel inflammation is common in SpA, which may be classified as acute or chronic. Chronic gut inflammation is most common in SpA patients with axial involvement as compared to those presenting with peripheral involvement alone. The pathogenesis of gut inflammation in SpA could be explained by two factors-over-activation of immunological cells and altered gut microbiome. This is exemplified by SpA animal models, namely HLA-B27-expressing transgenic animals and SKG mice models. Immunological mechanisms include homing of activated T cells from gut into synovium, excess pro-inflammatory cytokines secretion by immune cells such as IL-23 and genetic variations in immunological genes. The evidence for role of gut microbiome in SpA is gradually emerging. Recently, metagenomic study of gut microbiome by sequencing of microbial nucleic acids has enabled identification of new microbial taxa and their functions in gut of patients with SpA. In SpA, the gut microbiome could emerge as diagnostic and prognostic marker of disease. Modulation of gut microbiome is slated to have therapeutic potential as well.
Collapse
Affiliation(s)
- Jayakanthan Kabeerdoss
- Department of Clinical Immunology and Rheumatology, Christian Medical College, Vellore, Tamil Nadu, 632004, India
| | - Pulukool Sandhya
- Department of Clinical Immunology and Rheumatology, Christian Medical College, Vellore, Tamil Nadu, 632004, India
| | - Debashish Danda
- Department of Clinical Immunology and Rheumatology, Christian Medical College, Vellore, Tamil Nadu, 632004, India.
| |
Collapse
|
50
|
Erick TK, Brossay L. Phenotype and functions of conventional and non-conventional NK cells. Curr Opin Immunol 2015; 38:67-74. [PMID: 26706497 DOI: 10.1016/j.coi.2015.11.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Revised: 11/26/2015] [Accepted: 11/27/2015] [Indexed: 12/18/2022]
Abstract
Here we focus on the phenotypic and functional diversity of NK cells. We give an overview of the phenotype and developmental pathways of conventional and tissue-resident NK cells. We also discuss the potential complementary functions of conventional NK cells and tissue-resident NK cells in a variety of tissues.
Collapse
Affiliation(s)
- Timothy K Erick
- Department of Molecular Microbiology and Immunology, Division of Biology and Medicine, Brown University, Providence, RI 02912, USA
| | - Laurent Brossay
- Department of Molecular Microbiology and Immunology, Division of Biology and Medicine, Brown University, Providence, RI 02912, USA.
| |
Collapse
|